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Abstract

This thesis reports the performance of a simple classifier as a function of its training

data set. The classifier is used to remove analog tests and is named the Test

Removal Classifier (TRC).

The thesis proposes seven different training data set designs that vary by the

number of wafers in the data set, the source of the wafers and the replacement

scheme of the wafers. The training data set size ranges from a single wafer to a

maximum of five wafers. Three of the training data sets include wafers from the

Lot Under Test (LUT). The training wafers in the data set are either fixed across

all lots, partially replaced by wafers from the new LUT or fully replaced by wafers

from the new LUT.

The TRC’s training is based on rank correlation and selects a subset of tests that

may be bypassed. After training, the TRC identifies the dies that bypass the

selected tests.

The TRC’s performance is measured by the reduction in over-testing and the

number of test escapes after testing is completed. The comparison of the different

training data sets on the TRC’s performance is evaluated using production data

for a mixed-signal integrated circuit.

The results show that the TRC’s performance is controlled by a single parameter

- the rank correlation threshold.
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Chapter 1

Introduction and Previous Work

1.1 Introduction to IC Test

Manufactured dies have to be tested before they are shipped to the customer

so as to ensure that the customer does not receive dies outside their datasheet

specifications. IC testing is the process of differentiating the good dies from the

defective ones. IC testing is carried out in two stages. The first stage is called

wafer sort wherein dies are tested at the wafer level. Dies passing this stage are

packaged and tested at the second stage called the package level. Dies which pass

this final stage are shipped to the customer. The dies passing package level are

sometimes subjected to burn-in and stress tests. This testing phase needs to be

comprehensive in order to meet high expectations (typically less than 100 DPPM)

of the customer [1].

With continual advancement in the field of semiconductors, the complexity of

ICs has increased but the cost of fabrication has downgraded. The need for a

comprehensive testing technique for such complex dies has led to significantly

increased costs of testing them. Researchers predicted that the cost of testing

a die would equal the cost of fabricating it [2] [3]. The industry was not able

to drive down the test cost per fabricated transistor. To overcome the increasing

costs of testing an IC dies, test engineers adopted many techniques such as multisite

testing, design for test (DFT), structural test among others [1]. One method used

to reduce the manufacturing test cost is called adaptive testing. A technique used
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in adaptive testing is called machine learning. The thesis focuses on machine

learning used in adaptive test.

1.2 Introduction to Adaptive Test

Adaptive test, as described by the ITRS 2013 [1], is an industry term for the prac-

tice of going beyond the use of fixed limits and invariant test flows and operations,

by using data that has been collected during the process of IC manufacturing to

influence, change, or “adapt” how a device or system is tested, or to alter its

manufacturing flow. The adaptive test alters test limits or changes test rules in

response to any manufacturing changes at the die, wafer or lot level [4]. Adaptive

test using machine learning tools has been applied at many decision levels. The

machine parametrized model makes classification decisions about tests already run

or prediction decisions about future events.

1.3 Introduction to Machine Learning

In the context of this thesis, machine learning is a data-driven technique that

exploits the correlation among tests carried out at one temperature to predict the

outcomes of tests carried out at another temperature. At its root, machine learning

sifts example data, called training data, which has been classified some other way.

The training data is processed to determine parameters of a classification model

based on a statistical model of the system. After the training, new data (assumed

to be from the same statistical ensemble but without the classification label) is

input to the parametrized model with the output a prediction of the class the new

data was from.
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The application of machine learning techniques to digital and analog test data has

attracted considerable attention and is about to enter its second decade [5] [6].

In test, a common decision scenario is the trade-off between a test’s cost and a

test’s benefit to later testing, product quality or reliability, or other manufacturing

costs. The cost/benefit example this thesis uses is the removal of a fraction of tests

from wafer testing where the benefit is measured in test removal and the cost is

failing die escaping to an expensive (downstream) insertion. Test classifies each

manufactured die as pass or fail [7]. During test, the pass or fail classification uses

combinations of the die’s measured response and categorical (binned) response.

In addition to using the data to classify the die, decisions are made about the

disposition of the wafer the die is on, the lot the wafer was manufactured in, or

the entire production run.

The machine learning performance applied to adaptive test depends critically on

the choice of training data [5]. Imbalanced training data is when the population is

practically all one class (e.g. >99%). Imbalance is almost always the case in test

and extra care in training set selection is needed [8]. The training data selection

and use has to meet two requirements to ensure consistent performance of trained

and parametrized model. First, training data must represent as completely as

possible the response range of each class of interest. Second, there has to be a

built-in monitor mechanism to detect and respond to slowly varying trends or

sudden excursions in the manufacturing process. This thesis explores different

training strategies that meet these requirements and highlights the impact of these

requirements on the performance of the machine learning methods.
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From the semiconductor test perspective, machine learning can be used in two

different ways. When machine learning tools are used as classifiers, the goal is to

process the die’s test response data from a subset of the tests and assign one or

more new labels to the die [9]. A typical binary classifier assigns a label to the

die such as pass or fail. When machine learning tools are used as predictors, the

goal is to use the data in-hand to anticipate a future result. For prediction the

data from many die may be combined to predict something other than a pass/fail

label [3] [10]. For example, a predictor may estimate the test response value of

a die to an, as yet, unexecuted test in the test flow. Predicted results are used

to evaluate the die’s actual response to the test once it is executed. Often the

goal of machine learning prediction of future test outcomes is to control the risk of

eliminating a future test for one, some, or all manufactured die so that the benefit

outweighs the risk [11].

Some machine learning test schemes use the predictor as well as the classifier [5].

The Test Removal Classifier described in this thesis is one such scheme. It is based

on a parametrized model for predicting the pass/fail bin of a die for a future test.

The die’s predicted value is followed by a classification step where the die’s future

tests are scheduled.

1.4 Brief Description and Contribution of the Thesis

The goal of this thesis is to review a key factor common to all machine learning

methods, the selection and use of imbalanced training data [8] [12]. The thesis

demonstrates the advantage of matching the machine learning output to the level

of decision making. The thesis will assume that the machine learning tool is a

4



decision about a single die.

The study reported in this thesis highlights the selection and dependence of ma-

chine learning performance on the training data sets. The study is limited to a

simple machine learning classifier called the Test Removal Classifier (TRC). The

TRC is purposely chosen to be simple so as to not distract from the central point

that training is a degree of freedom which must be well characterized in and of

itself.

Figure 1.1: Flowchart describing the adaptive test flow applied to a test manufac-
turing process using machine learning. Full test flow indicates that all tests must
be run. Adaptive test flow indicates that depending on the test limits set by the
test removal classifier, tests can be eliminated on a per-die basis.

Figure 1.1 depicts the typical adaptive test flow used in this thesis. The test flow

is designed on a per-die basis based on the limits set in the training phase. Failing

dies are discarded and passing dies are transferred to packaging. The test flow

consists of two phases - the training phase and the production test phase. In the

training phase, a subset of the dies from wafer sort is chosen to be the training set.
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A full test flow is executed for the training set. The test data from the full test flow

is used to train the TRC, enclosed by the dashed box. Rank correlation among

tests is exploited to identify tests that could be eliminated. Using the training

data, limits are set for the adaptive test flow. In the testing phase, the new dies

which are not used in training are tested by the adaptive test flow.

The objective of the thesis is to study the impact of the training set selection on

the test removal limits and the performance of the TRC, highlighted by the green

boxes in Figure 1.1. Seven different strategies are designed to select the training

set. The strategies vary by the number of wafers in the data set, the source of the

wafers and the replacement scheme of the wafers. Chapter 4 describes in detail

the seven different training strategies used in this thesis. Each strategy involves

using rank correlation to identify tests that can be bypassed in the production test

phase. This is discussed in detail in Chapter 3. The TRC performance results are

reported in Chapter 5.

The results of the study show that the TRC performance and its dependence on

training is controlled by a single parameter - the rank correlation threshold. The

study also reports that stable predictions are found by using a filtering scheme

that samples old, recent and new training data.

1.5 Previous Work

Researchers have proposed various different strategies [9] [13] [14] [11] [15] to select

training data for the machine learning techniques. But, there is no detailed study

in the literature on the aspect of the dependence of the performance of machine

learning on the training data selection. Some of the different training strategies

6



proposed by researchers are discussed in this section.

H. Ayari et al [13] studied the influence of the training set size on the accuracy

and reliability of prediction models and concluded that the prediction accuracy

degrades with the reduction of the training set size. They proposed a new im-

plementation of predictive alternative testing based on model redundancy. This

approach permits to achieve accurate prediction results independent of the training

set size.

Mingjing Chen and A. Orailoglu [11] explored an adaptive test strategy that in-

cluded pruning the test set based on test correlation analysis. Pruning involves

elimination and reordering of the test set. The training phase included random

selection of chips on which the full test was performed. The analysis of the statis-

tical features of the characterized data obtained by this step led to the pruning of

the test set.

S. Benner and O. Boroffice [14] devised a method by which optimal production

test times could be obtained using adaptive test programming. They suggested

choosing a proper sample size for training based on various criteria such as Accept-

able Quality Level (AQL) sampling plans, internal sampling plans, and historical

knowledge of the particular device under test (DUT) among others. Whichever

way is chosen, the sample size must be adequate enough to produce a good estimate

for the mean and standard deviation for the rest of the population.

S. Biswas and R.D. Blanton [15] used stratified random sampling to train the

model used for test compaction. When the accuracy of the model dipped below

a preset tolerable threshold, this training data was updated using three different

7



methods of sampling. The scheme was called adaptive re-learning. This scheme

was applied to test data from two in-production integrated systems. It was found

that the difference between the actual functional accuracy and its estimate using

stratified sampling was less than 2%.

H.G Stratigopoulos et al [9] proposed a machine learning approach that used a

multi-objective genetic algorithm.The machine learning approach searches a subset

of appropriate subsets and a classifier that makes pass/fail decisions based solely

on these subsets. The multi-objective genetic algorithm was trained by a fixed

set of 1/4N devices, where N is the total number of devices, and validated by the

remaining 3/4N devices. To reduce the variance of the reported test error, cross

validation was implemented with a uniform sample of devices at random in each

run.

1.6 Organization of the Thesis

The thesis is organized into five additional chapters. The next chapter, Chapter

2, briefly describes the background concepts used in the thesis. Chapters 3 and 4

discuss the strategy used to study the dependence of machine learning on training.

Chapter 3 outlines the simple machine learning technique called the Test Removal

Classifier (TRC). Chapter 4 provides the details of the seven training strategies

used in the study. Chapter 5 discusses the five figures-of-merit used in the study

and presents TRC results for different training strategies which were described in

Chapter 4. Chapter 6 offers conclusions and some recommendations for research

in the application of machine learning tools to test.

8



Chapter 2

Background Concepts

This chapter introduces basic concepts to help better understand the ideas pre-

sented in the thesis. This chapter begins with the description of statistical terms

which are central to the thesis. The discussion continues with the concept of

mixed-signal test followed by the idea of test limits and binning of dies. Finally,

the queue and server model is discussed followed by the concept of data buffer.

2.1 Rank

In statistics, ranking refers to the data transformation in which numerical values

are replaced by their index when the data is sorted [16]. The rank of a value in a

distribution is simply its numbered place in the list of ordered values.

S= 34, 56, 12, 99, 23 Rank-order(S) = 3, 4, 1, 5, 2

Statistics calculated using rank order are called ordinal invariant statistics or non-

parametric statistics.

2.2 Properties of Rank order

Rank order does not change if any monotonic transformation is applied to val-

ues in the original set. Monotonic transformation can be addition, subtraction,

multiplication, division, logarithm etc [17]. For example: Consider the monotonic

transformation S′=S·100 where all the elements of S are multiplied by 100 to obtain

S′. The rank order of S′ remains the same as S after the monotonic transformation.

9



S′= 3400, 5600, 1200, 9900, 2300 Rank-order(S′) = 3, 4, 1, 5, 2

When two or more observations in a set have the same values they are called ties.

Tied data values have to be resolved while ranking the data. There are several

different methods to handle ties. The method used in the thesis is fractional

ranking. In fractional ranking, tied values receive the same ranking which is the

mean of ordinal ranks.

S′= 23, 56, 12, 99, 23 Rank-order(S′)= 2.5, 4, 1, 5, 2.5

The two numbers in S′ have same value 23. Hence, in the rank-order, the tied

values are assigned the rank 2.5 which is the mean of ranks 2 and 3.

2.3 Correlation

The concept of statistical correlation is central to this thesis. Correlation is a

statistical measure of dependence between two variables. Consider two random

variables X and Y. If an increase in X is associated with increase in Y then they

have a dependence and are said to be positively correlated. If an increase in X

is associated with a decrease in Y then they have anti-dependence and said to be

negatively correlated.

Correlation between two variables is measured in terms of the correlation coeffi-

cient. Correlation gives information regarding relationship between variables. The

correlation coefficient is a measure of the strength of the relationship between the

two variables. In the thesis, correlation is used to study the relationship between

tests at one temperature and tests at a higher temperature.

10



Pearson’s correlation coefficient (linear correlation) between two random variables

X and Y with mean µx and µy and standard deviations σx and σy is defined as

ρ =
cov(X, Y )

σx · σy
=
E[(X − µx)(Y − µy)]

σx · σy
(2.1)

If X and Y are perfectly correlated then ρ=1. If they are perfectly anti-correlated

then ρ=-1 and if X and Y are independent, ρ=0.

Correlation between two variables can also be measured after transforming the

variables in the rank domain. Two non-parametric statistics measuring rank cor-

relation are Spearman’s rho (ρ) and Kendall’s tau (τ).

Spearman’s rho is the correlation coefficient of the ranks. The data is trans-

formed into ranks and the correlation coefficient is evaluated using Equation 2.1

for the transformed values. The thesis uses Kendall’s τ rank correlation statistics

to measure the strength of correlation between tests at different temperatures. The

Kendall’s τ rank correlation is discussed in detail in the following section.

2.4 Kendall’s tau rank correlation

Kendall’s τ rank correlation is a non-parametric statistic measuring the association

between two or more variables. Kendall’s τ coefficient varies between -1 and 1.

Kendall’s τ rank correlation is independent of the scale and the location of the

random variables.

Let {X} = X1, X2.., Xn and {Y} =Y1, Y2..,Yn be two sets of n observations. A

pair of observations (Xi, Yi) and (Xj, Yj) is concordant, if

11



(Xi - Xj)·(Yi -Yj) > 0.

On the other hand, a pair of measurements (Xi, Yi) and (Xj,Yj) is discordant, if

(Xi - Xj)·(Yi -Yj) < 0.

The number of unique pairs between N observations is N(N-1)/2. The Kendall’s

τ rank correlation coefficient between the two data sets X and Y of each sample

size N is calculated as shown.

τ =
(number of concordant pairs− number of discordant pairs)

N(N-1)/2
(2.2)

For perfect correlation τ = 1, for perfect anti-correlation τ = -1, and for indepen-

dence τ = 0.

Figure 2.1 shows the concordance-discordance plot to explain Kendall’s τ . The

x-axis and y-axis are the ranks of X and Y respectively. Each point on the graph

is an observation of X and Y.

{X}= 32, 20, 41, 1, 88, 63, 50, 74 {Y}= 0.5, 0.3, 0.4, 0.6, 0.7, 0.2, 0.6, 1.0

Rank order(X) = 3, 2, 4, 1, 8, 6, 5, 7 Rank order(Y) = 4, 2, 3, 1, 5, 6, 8, 7

Consider the first two observations in the graph which are colored in green and

labeled ‘Concordant’. An increase in the rank of the X variable corresponds to

an increase in the rank of the Y variable. Hence, the pair of observations are

concordant. In general, pairs whose x-intercepts and y-intercepts do not intersect

are concordant. In the figure, there are 22 concordant pairs out of 28 possible

pairs..

12



Consider the next pair of observations colored in red and labeled ‘Discordant’. An

increase in the rank of the X variable corresponds to a decrease in the rank of the

Y variable. Hence, the pair of observations are discordant. In general, pairs whose

x-intercepts or y-intercepts intersect are discordant pairs. In the figure, there are

6 discordant pairs out of 28 possible pairs.
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Figure 2.1: Concordance-discordance plot for random variables X, Y

Using Equation 2.2, the value of τ is calculated as shown below:

τ =
(22− 6)

8(8-1)/2

τ =
16

28

τ = 0.57
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Now that the idea of rank statistics and Kendall’s τ rank correlation have been

established, the next three sections discuss the concept of mixed-signal test, the

idea of test limits and binning of dies.

2.5 Mixed Signal Test

The thesis uses production data for mixed-signal dies. Mixed-signal dies consist

of analog circuitry(operational amplifiers, comparators, filters and PLL) as well as

digital circuitry(datapaths, control logic). Several different schemes are required to

test mixed signal die [18]. A typical strategy for testing them involves first testing

the digital and analog components, followed by some system tests to check the at-

speed interaction among the components. The digital parts of the chip would be

tested with standard tests such as IDDQ, path-delay fault tests, stuck-at fault tests

etc. Analog parts are usually tested for circuit functionality. For example, ADC

and DAC are tested for static parameters such as accuracy, resolution, dynamic

range, offset, gain, differential nonlinearity (DNL), integral nonlinearity (INL) and

dynamic parameters such as SNR, total harmonic distortion etc.

Broadly tests can be classified into two categories:

� Parametric Tests - Parametric tests are executed to decide whether the chip

pins meet various specifications for rise and fall times, setup and hold times,

low and high voltage thresholds, and low and high current thresholds. Para-

metric tests are carried out for both the DC and AC components of the die.

DC parametric tests include shorts test, opens test, maximum current test,

leakage test, output drive current test, and threshold levels test. AC para-

metric tests include propagation delay test, setup and hold test, functional
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speed test, access time test, refresh and pause time test, and rise and fall

time test [19].

� Functional Tests - Functional test vectors verify the proper operation of the

dies. Input vectors are applied and output responses are recorded and com-

pared to expected responses. Functional tests cover a very high percentage of

modeled (e.g., stuck type) faults in logic circuits. Functional tests determine

whether the internal digital logic and analog sub-systems in the die behave

as intended. The results are usually recorded by pass/fail or go/no-go binary

result [19].

2.6 Test Limits

During mixed-signal testing, many different parametric measurements such as cur-

rent, voltage, frequency etc are taken. The tester compares the measured test

responses with limits specified in the datasheet and then labels the die either a

‘Pass’ or a ‘Fail’. These limits are called as test limits. Test limits can either be

one-sided (upper/lower) or two-sided. Figure 2.2 depicts one-sided and two-sided

limits. For tests with one-sided limits with an upper bound, the die is labeled as

a ‘Pass’ if its test response is greater than the limit as shown in Figure 2.2a. For

tests with one-sided limits with a lower bound, the die is labeled as a ‘Pass’ if its

test response is lower than the limit as shown in Figure 2.2b. On the other hand,

for tests with two-sided limits with an upper bound, the die is labeled as a ‘Pass’

if its test response is within the limits as shown in Figure 2.2c.
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Figure 2.2: a)Single-sided test limits with an upper bound b)Single-sided test limits
with a lower bound and c)Two-sided test limits

2.7 Binning dies

Tests in the test program are divided into different groups depending upon their

nature or the section of the circuit they are testing. If a die fails in any one

test from a group of tests, the die is assigned a failure bin number and testing

is terminated. Generally different types of bins in which the dies are divided are

open/shorts, IDDQ fails, delay test fails, etc. The number of dies in various bins

provides information about the common failure modes of the chip. The order of

the groups of tests with a common bin number often depends on the complexity

of the test.

The previous three sections dealt with mixed-signal testing and binning of dies.

The following two sections discuss the concept of queue and server and the concept

of data buffer. The queue and server model is used to depict tests in the adaptive
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test flow which is discussed in Chapter 3. The data buffer concept helps understand

the training strategies which are discussed in detail in Chapter 4.

2.8 Queue and Server

The queue and server model is used in Chapter 3 to describe the tests in an adaptive

test flow. The queue consists of the dies to be tested and the server indicates the

test to be executed on the die input from the queue.

A queue is a collection of entities which are stored in the same order which they are

received. The addition of new entities occur at the rear terminal position whereas

the removal of entities occur at the front terminal position. A queue can be either

unbounded or bounded. A bounded queue is limited to a fixed number of entities.

On the other hand, an unbounded queue does not have a specific capacity. A queue

can also be empty, at which point removing an entity will be impossible until a

new entity has been added again.

A server is a device that executes a routine on the entities stored in a queue. The

Figure 2.3 depicts a single queue and single server model. The circle represents

the server and the rectangular box represents a queue with each slot occupied by

an entity. The entities are input to the server one at a time. The routine Ri first

services q1 followed by q2 and so on. The left blue arrow indicates the flow of

entities into the queue. The right green arrow indicates the flow of entities out of

the server after being operated by it.
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Figure 2.3: The figure depicts the queue and server model. The blue arrow indi-
cates the flow of entities into the queue and the green arrow indicates the flow of
entities out of the server.

2.9 Buffer

In the thesis, a buffer is used to store the training data set. A buffer is a region of

a physical memory storage used to temporarily store data while it is being moved

from one place to another [20]. Typically, the data is stored in a buffer as it is

retrieved from an input device or just before it is sent to an output device. However,

a buffer may be used when moving data between processes within a system.

A buffer can be implemented in many ways. The training strategies, described in

Chapter 4, that use a data buffer to store the training data set are implemented in

the FIFO configuration. A FIFO is a method for organizing and manipulating a

data buffer where the oldest entry is processed first and removed from the buffer.

Figure 2.4 shows the working of the FIFO implementation for a buffer of size 4.
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Figure 2.4: Data buffer implementations for FIFO configuration

This concludes the discussion of the Background Concepts. Chapters 3 and 4

discuss the strategy used to study the dependence of machine learning on training.

Chapter 3 outlines the simple machine learning technique called the Test Removal

Classifier (TRC). Chapter 4 provides the details of the six training strategies used

in the study.
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Chapter 3

Test Removal Classifier

This chapter introduces a test removal tool called the Test Removal Classifier

(TRC) which is a simple machine learning scheme designed to reduce over-testing.

The TRC predicts a die’s pass/fail test response for a sub-set of tests. The TRC’s

simple structure means it is easy to compare the TRC model parametrization and

the model performance with different training sets. Limiting the TRC prediction

of tests to pass/fail simplifies the training. Pass/fail predictions control the flow

of die and if correct, do not require a prediction of the die’s response to the test.

When the same test is repeated at different environmental conditions, there is an

opportunity for test removal. The challenge is to isolate from all possible tests

the tests which can safely be eliminated from one environmental condition or the

other. Complete removal of a test from one flow is generally easier to manage

than selectively picking and choosing the die to be screened at one or the other

environmental condition. But, the elimination of a test has an increased risk of test

escapes being shipped. The TRC seeks a tradeoff between single test elimination

and a sensible scheme for picking and choosing die that should be screened by

exploiting the concept of Kendall’s τ rank correlation discussed in Chapter 2.

The section below briefly describes the typical two insertion test flow originally

used in the study.
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3.1 Typical Two Insertion Test Flow

A two insertion test flow is originally used in the study to test the dies at wafer sort.

Figure 3.1 displays the configuration of a typical two insertion full test flow. Each

insertion is carried out at a different temperature. Tests are executed at different

temperatures because different temperatures may expose different failing parts as

outliers [21]. Tests in the first insertion (Insert1) are executed at room temperature.

Tests in the second insertion (Insert2) are executed at high temperature (85 ◦C).

The insertions are wafer tests and are Stop-on-First-Fail (SoF). In the Stop-on-

First-Fail strategy, tests are terminated early once a fail is discovered so as to save

test time [4]. A third package test completes the production testing.

Figure 3.1: Typical two insertion full test flow

The original full test flows consist of defect screens as well as tests to verify data-

sheet specifications. The full test flows at Insert1 and Insert2 have a subset of tests

in common. The commonality of tests between the two insertions is an opportunity

for test removal. The next section describes how the potential tests for removal on

a die-by-die basis were identified.
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3.2 Correlation among Tests

The initial step involved in identification of potential tests to be removed was to

analyze the correlation between tests at Insert1 and tests at Insert2 since strongly

correlated tests are highly likely to result in consistent test conclusions [11]. The

strength of correlation was measured using Kendall’s τ rank correlation as dis-

cussed in Chapter 2.

Figure 3.2 shows the joint distributions of tests at Insert1 and tests at Insert2 in the

performance space organized in a three-by-three matrix. The joint distributions are

plotted for a single wafer and each point corresponds to an individual die belonging

to the wafer. The X and Y axes of each panel are the test responses for a test at

Insert1 and a test at Insert2 respectively. The notation T1i denotes the ith test in

the Insert1 test flow and the notation T2i denotes the ith test in the Insert2 test

flow. T1i,T1u and T1j correspond to the ith, uth and jth tests at Insert1. Similarly,

T2i,T2u and T2j correspond to the ith, uth and jth tests at Insert2. The Kendall’s τ

correlation value is reported at the top left corner for each panel in the figure. The

diagonal plots from upper left to lower right are for homogeneous test pairs and the

off-diagonal plots are for heterogeneous test pairs. Each distribution corresponds

to a test pair which includes a test from Insert1 and a test from Insert2.
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Figure 3.2: Joint distributions of tests between Insert1 and Insert2 in the parameter
space. Each joint distribution plot is between a test at Insert1 (x-axis) and a test
at Insert2 (y-axis). The diagonal plots from upper left to lower right are for
homogeneous test pairs and the off-diagonal plots are for heterogeneous test pairs.

Figure 3.3 shows the joint distributions of the same tests at Insert1 and the same

tests at Insert2 in the rank space organized in the same order as Figure 3.3. The

rank space plots are included to ensure that the correlation is independent of scale

and location of the test responses. The X and Y axes of each panel are the rank

of test responses of a test at Insert1 and a test at Insert2. The scales of both axes

are equal because they are measured in the rank space.
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Figure 3.3: Joint distributions of tests between Insert1 and Insert2 in the rank
space. Each joint distribution plot is between a test at Insert1 (x-axis) and a
test at Insert2 (y-axis). The diagonal plots from upper left to lower right are for
homogeneous test pairs and the off-diagonal plots are for heterogeneous test pairs.

From Figures 3.2 and 3.3, the following different types of test pairs were identified:

� Homogeneous test pairs that have a strong positive correlation. For example:

(T1i,T2i) has a strong positive correlation of τ = 0.89.

� Heterogeneous test pairs that have a strong positive correlation. For example:

(T1i,T2j) has a strong positive correlation of τ = 0.63.

� Test pairs that are uncorrelated. For example: T2u is uncorrelated with all

three tests at Insert2 in the figure.
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The strong correlation among tests executed at different temperatures reveals an

opportunity to predict binning limits and dynamically adjust test flow on a die-

by-die basis. The opportunity is exploited to design an adaptive test flow. The

adaptive test flow is specific to tests pairs called matched test pairs which have a

strong correlation. Hence, matched test pairs are test pairs that have a Kendall’s

|τ | greater than a preset threshold. The absolute value is chosen to take advantage

of both positive and negative correlation. Tests such as T2u which are uncor-

related with any test in Insert1 are inapplicable for an adaptive test flow. The

method to determine the matched test pairs is discussed in detail in Section 3.3

and Section 3.4.

3.3 Test Data and Matched Test Pairs

In training, the TRC uses per wafer die test response data. Figure 3.4 summarizes

the training data model. The test data table on the left consists of the test response

of every die for all the tests in the test flow at Insert1 and Insert2. The notation

T1i denotes the ith test in the Insert1 test flow and the notation T2i denotes the

ith test in the Insert2 test flow. TRC training data is die test response for the

complete test flow at both insertions.
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Figure 3.4: Test Removal Classifier training data and Kendall’s τ Rank Correlation
matrix

The training data is processed by test pairs. A test pair (T1i,T2j) consists of a

test at Insert1 (T1i) and a test at Insert2 (T2j). Kendall’s tau rank correlation

value is computed for test pairs, τ1i,2j and tabulated in a correlation matrix as

shown in the table on the right. Kendall’s tau rank correlation is used to reduce

the effects of data outliers on the correlation estimate since it is scale and location

invariant. The correlation matrix table is asymmetric about the diagonal as seen

in Figures 3.2 and 3.3.

A matched test pair (T1i, T2j) must satisfy three rules. First, both the tests forming

the test pair T1i and T2j must have more than 10 unique test responses. This rule

eliminates test pairs for which the computed Kendall’s τ has a high standard error

estimate due to a large number of ties. Second, there must be at least one failing

die from either test T1i or T2j. This eliminates test pairs which are only used

for data-sheet verification or are ineffective screens. Finally, the Kendall’s τ for

the test pair must be larger than a pre-determined absolute threshold (example:

|τ | ≥ 0.6). Absolute value permits matched test pairs to be both positively and

negatively correlated. The number of matched test pairs is a sub-set of the total
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number of test pairs the TRC can take advantage of for test removal and varies by

the training strategy used.

For strategies involving multiple training wafers, there are two different scenarios

in which matched test pairs can be selected. They are discussed in detail in the

next section.

3.4 Matched Test Pair Selection Scenarios

Three training strategies described in the next chapter use multiple wafers in the

training set. There are two different scenarios for the selection of matched test

pairs for the training strategies involving multiple wafers - the intersection scenario

and the union scenario. In the intersection scenario, test pairs which meet the

requirements on all the training wafers are included in the final set of matched

test pairs. On the other hand, in the union scenario, test pairs which meet the

requirements on any one of the training wafers are included in the final set of

matched test pairs. Figure 3.5 shows the two different scenarios to choose the final

set of matched test pairs for two wafers in the training set. For strategies involving

only one wafer, the training data set for both the scenarios are equal.
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Figure 3.5: Final set of Matched Test Pairs - a) Intersection scenario b) Union
scenario

For both the scenarios, matched test pairs that fall into two general classes are

considered for test removal. Matched test pairs that fall into Class 1 are homo-

geneous matched test pairs (T1i,T2i). In other words, these test pairs consist of

the same test executed at different temperatures. Matched test pairs that fall into

Class 2 are heterogeneous test pairs, i.e. i6=j. In addition, Class 2 requires the

tests bin failing die in identical soft bins. This constraint means the two tests are

evaluating similar parts of the die and because the parts are mixed-signal, the tests

have similar input and output.

Once the final set of matched test pairs is determined, the test removal limits for

each matched test pair is determined. This is described in the following section.

3.5 Test Removal Limits

This section describes the process involved in setting the test removal limits for the

TRC once the candidate matched test pairs are discovered. The method involved
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is demonstrated by using the matched test pair (T1i,T2i).

Figure 3.6: Scatter plot of the joint distribution of test responses of die at Insert1
(x-axis) and Insert2 (y-axis) and containing the data-sheet and test removal limits.
The points used in this plot are synthetic data points

Figure 3.6 shows the joint distribution of the matched test pair (T1i,T2j). Each

point (x,y) on this scatterplot represents a single die from the training data set.

The x-value represents the die’s response to the Insert1 test T1i and the y-value

represents the die’s response to the Insert2 test T2j. The points used in this plot

are synthetic data points. The test removal limits are shown as vertical dashed

lines. The datasheet limits are shown as horizontal solid lines. The setting of the

test removal limits follows a three step procedure:

1. All passing die in the training set are collected within the T2j data-sheet

limits. The die passing the test T2j are in the area spanned by the vertical
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arrow in the scatter plot above.

2. The unique test responses for the sample die within the area spanned by

the vertical arrows are collected. The unique test responses are considered

to make the choice of test removal limits insensitive to the response of a

particular die.

3. The T1i test removal limits are the 5% and 95% quantiles of these die.

Figure 3.7: Histogram plot with the X-axis representing the unique test response
of test T1i and the Y-axis representing the die count. The vertical dashed limits
are the 5th and 95th quantile limits for test removal.

Figure 3.7 shows the vertical TRC limits set for T1i. The X-axis is the unique

responses of test T1i and the Y-axis is the die count for each unique test response.

The dies within the vertical limits exploit the strong correlation between the two
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tests to bypass T2j in the Insert2 test flow. Dies outside the vertical limits have

to be retested at T2j. This method is followed for every matched test pair. The

matched test pairs and the set of limits for each pair complete the process of

training.

Once the final set of matched test pairs are discovered and the TRC limits are set

for each matched test pair, the adaptive test flow is designed. The adaptive test

flow with the TRC is discussed in detail in the next section.

3.6 Adaptive Test Flow

This section briefly describes the adaptive test flow which incorporates the TRC

for the matched test pairs. Figure 3.8 shows the two insertion adaptive test flow

highlighting a test that uses a TRC (Figure 3.8b) and another test that does not

use the TRC (Figure 3.8c). Each test is represented by a queue and server model

discussed in detail in Chapter 2. The queue contains the dies scheduled for the

corresponding test. The server tests each die input from the queue. The output of

each test is a vector of responses for the dies tested by the server. Dies flow from

left to right following the arrows.

31



Figure 3.8: a) Test Flow for Insert1 and Insert2 respectively. b) and c) Expanded
view of the test flow at Insert2 indicating a test that contains a TRC and a test
that does not. The green arrows indicate the flow of passing die and the red arrows
indicate the flow of failing die.

The left half of Figure 3.8a is a reduced Insert1 full test flow indicating only three

tests T1i, T1u and T1j. Each test consists of a queue with a buffer and a server

labeled appropriately. Passing die flow from the buffer of the current test to the

buffer of the next test in the test flow. The test flow is a SoF design and hence,

failing die are removed from the test flow as indicated by the red arrow.

The right half of Figure 3.8a is a reduced test flow at Insert2 that includes the TRC

for tests that are part of the matched test pair set. The TRC is test specific and

used only for tests that are part of matched test pairs such as (T1i,T2j). The TRC

statistical screen schedules the flow at the T2j of each matched test pair (T1i,T2j).

Figure 3.8b and 3.8c are the expanded views of the Insert2 test flow for passing
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die highlighting two tests T2j and T2u respectively. T2j is part of the matched

test pair (T1i, T2j) and eligible for a reduced test flow and hence contains a TRC

queue scheduler. T2u is not a member of a matched test pair and not eligible for

an adaptive test flow and hence does not contain a TRC queue scheduler. The

TRC functions by the following three steps:

1. For each matched test pair (T1i,T2j), a die’s T1i test response is combined

with T1i’s training limits to make a pass/fail prediction at T2j. This step is

denoted by the TRC diamond.

2. If the TRC predicts a die to pass the test T2j, the bypasses the queue for

T2j. This is denoted by the arrow originating from the bottom of the TRC

diamond.

3. For each die that bypasses a test T2j due to predicted pass by the TRC, its

test time decreases.

The steps are repeated as many times as there are matched test pairs. The location

of the TRC in the test flow is dependent on the matched test pairs discovered

during training. The limits for each TRC is unique to the matched test pair. For

unmatched tests which do not include a TRC, such as T2u, all passing die reaching

the queue are tested.

Designing the adaptive test flow involves two steps in training - selection of matched

test pairs (T1i,T2j) and setting the test removal limits. The TRC is trained by

performing a full test flow on a training set as discussed in Section 1.4. The next

chapter discusses seven different strategies to select the training set.
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Chapter 4

Training Strategies

This chapter describes the seven training strategies used to train the Test Removal

Classifier (TRC). They span the range of likely strategies in production environ-

ments. Each strategy is wafer based and uses data from Stop-on-First-Fail (SoF)

production lots. The wafers that contribute to the training set are tested with the

Full Test Flow (FTF) at both insertions. The training data is stored in a data

buffer discussed in detail in Chapter 2. The first three training strategies include

effects from within the lot under test (LUT). The final two training strategies are

included for contrast and comparison of the first four training strategies. Training

strategies which include multiple wafers in the training data set are implemented in

both the intersection and the union scenarios as discussed in the previous chapter.

4.1 Window Training Strategy

Windowing is a common strategy. A sample window acts as a low pass filter

on the incoming material to dampen the effects of any single value. Used across

the production lots, the window training strategy is a low pass filter for broad

product/process effects. In other words, it acts as a low pass filter to dampen the

effects of a rogue training wafer. The effects in the context of this strategy refer

to the consistency in the choice of matched test pairs. This strategy selects test

pairs that are consistently matched within the training set for test removal by the

TRC.
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The window training strategy consists of a data buffer which holds the training

data of a set of N training wafers, where N is the buffer size. The buffer can be

implemented in a number of ways. The FIFO implementation is chosen to dampen

the process effects from the most recent production lots. The buffer consists of

single training wafers each from (N-1) previously tested lots and a training wafer

from the Lot under Test (LUT). For a new LUT, the oldest training wafer in the

buffer is replaced with a single training wafer from the current LUT. The revised

buffer is reanalyzed for matched test pairs and TRC limits. The buffer size in this

thesis is set to N=5 wafers.

Figure 4.1 shows the occupancy of the training set buffer when the LUT is changed

from Lot 5 to Lot 6 and finally to Lot 7. It is assumed that testing is completed

for Lots 1-4. In this figure, L1 W1 refers to the first fully tested wafer from Lot

1; L2 W1 refers to the first fully tested wafer from Lot 2 and so on. The wafers

are highlighted in the buffer - the darkest shade being the wafer that was most

recently included in the buffer and the lightest shade being the wafer that was

least recently included in the wafer. The arrows indicate the direction of flow of

the wafers’ test data into and out of the buffer respectively. The highlighted wafer

of the LUT refers to the fully tested wafer that is in the buffer. For a new LUT,

the least recently included wafer is cleared from the buffer and replaced with a

fully tested wafer from the LUT. For example, when test flow changes from Lot

5 to Lot 6, the training wafer from Lot 1, L1 W1, is replaced with a fully tested

wafer from Lot 6, L6 W1. The same process repeats while transitioning from Lot

6 to Lot 7 and so on.
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Figure 4.1: Timeline showing the occupancy of the training set buffer for the
window training strategy as test flow moves from sample lot 5 to sample lot 6 and
finally to sample lot 7. The highlighted wafers are the fully tested wafers used in
the FIFO buffer.

This strategy designed for the intersection scenario is similar to the dynamic part

average testing (DPAT) [7]. Dies with parameters that are within specification but

not within the normal distribution are inked out by the DPAT. In the same way,

test pairs which are matched for all the wafers within the buffer are only considered

by the TRC for test removal by this strategy. If a test pair is not matched for even

one of the wafers in the buffer, it is “inked” out.

This strategy can also be considered similar to stratified random sampling [15]

where the population of wafers is divided into strata called lots and the training

set consists of one random training wafer selected from each stratum. The concept

of stratified random sampling is constant to a training wafer and not a random

sample from the lot.
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4.2 Accumulate Training Strategy

The accumulate training strategy is a different version of the window training

strategy. For this strategy, the first N fully tested wafers from the current LUT

accumulate in the buffer. Once the buffer is full, the training data is analysed for

matched test pairs and test removal limits for the TRC. To ease comparison, the

size of the buffer is set to N=5.

Figure 4.2 shows the occupancy of the training set buffer when the LUT is changed

from Lot 5 to Lot 6 and finally to Lot 7. It is assumed that testing is completed

for Lots 1-4. In this figure, L5 W1 refers to the first fully tested wafer from Lot 5;

L5 W2 refers to the second fully tested wafer from Lot 5 and so on. The double

arrow indicates the flow of the highlighted wafers’ test data from the LUT into

and out of the buffer respectively. This figure clearly depicts the use of multiple

wafers from the LUT in contrast to a single wafer used in the window training

strategy. Unlike the window strategy, all the wafers in the buffer are highlighted

by the same shade of gray because they are included from the same LUT. Once

Lot 5 has been tested, the buffer is cleared and populated with fully tested wafers

from Lot 6 as shown. The same process repeats while transitioning from Lot 6 to

Lot 7 and so on.
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Figure 4.2: Timeline showing the occupancy of the training set buffer for the
accumulate training strategy as test flow moves from sample lot 5 to sample lot 6
and finally to sample lot 7. The highlighted wafers are the fully tested wafers used
in the FIFO buffer.

This strategy differs from the window training strategy in two aspects. First,

the buffer does not consist of any training wafers from the previously tested lots.

Second, for a new LUT, the buffer is cleared and filled with training data of N fully

tested wafers from the current LUT. Hence, this strategy requires more testing of

the LUT than the window training strategy. The accumulate training strategy can

be considered to be low-pass filter with the emphasis on dampening the effect of a

rogue training wafer within the LUT.

Unlike the window training strategy, this strategy is not similar to stratified ran-

dom sampling for the following reason. Considering the population of dies from

the LUT to be divided into strata called wafers, all the dies from the first five

wafers of the lot are chosen and no dies from the remaining wafers of the lot are

chosen. This is a violation of the rule of stratified random sampling where equal

random samples must be chosen from all the strata.
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4.3 Single LUT Wafer Training Strategy

The single LUT wafer training strategy uses a single wafer from the lot under

test. For a new LUT, the training wafer in the buffer is replaced with a fully

tested wafer from the current LUT. The single LUT wafer training strategy can be

considered to be a special case of the accumulate training strategy with the buffer

size set to N=1. With one wafer from the LUT, this strategy also overlaps with the

window training strategy without the low-pass filtering from the previous tested

lots. Hence, this strategy provides an assessment of the benefits of the addition of

a low-pass filter within the LUT or across lots.

Figure 4.3 shows the occupancy of the training set buffer when the LUT is changed

from Lot 5 to Lot 6 and finally to Lot 7. It is assumed that testing is completed for

Lots 1-4. The figure shows that while moving to a new LUT, the buffer is cleared

and filled with a fully tested wafer from the LUT.

Figure 4.3: Timeline showing the occupancy of the training set buffer for the single
LUT wafer training strategy as test flow moves from sample lot 5 to sample lot 6
and finally to sample lot 7. The highlighted wafers are the fully tested wafers used
in the FIFO buffer.
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4.4 Dual Lot and Single Lot Training Strategy

The dual lot training strategy uses two training wafers, one from each of two

previously tested lots. The single lot training strategy on the other hand uses a

training wafer from only one previously tested lot. Figure 4.4a and 4.4b show the

occupancy of the training set buffer for the dual lot training strategy and single

lot training strategy respectively when the LUT is changed from Lot 5 to Lot 6

and finally to Lot 7. It is assumed that testing is completed for Lots 1-4. From

the figure, it is observed that these strategies do not contain any wafers from the

current LUT and differ from the window and the accumulate training strategies.

Figure 4.4: Timeline showing the occupancy of the training set buffer for the a)
dual lot training strategy and b) single lot training strategy as test flow moves
from sample lot 5 to sample lot 6 and finally to sample lot 7.

These two strategies are based on the common practice of test characterization.

Test characterization assumes that a fixed sample of some appropriate size reflects

the statistics of the product’s response to process variation. Many machine learning

test data tools are based on selecting a characterization data set for training.

For such strategies to function, two requirements need to be met. First, dies
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from other lots are suitable representatives of the dies in the LUT. Second, rogue

events or process excursions in the training data or the LUT are captured by other

components of the test flow.

4.5 Special Case Training Strategies

The special case training strategies are the random training strategy and the zero

training strategy. The zero training strategy takes a contrarian view of rank corre-

lation. The zero training strategy randomly selects without replacement test pairs

that are distinctly not matched in rank correlation. In other words, this strategy

selects test pairs with rank correlation |tau| ≤ 0.05. The random training strategy,

on the other hand, ignores rank correlation and randomly selects without replace-

ment a predetermined number of test pairs from all possible test pairs in the pool.

Unlike the zero training strategy, the random training strategy includes test pairs

across the entire range of rank correlation represented. Randomly selected test

pairs may also include some of the matched test pairs (For example |τij| ≥ 0.6)

used in the other strategies. Typically, the average rank correlation for the random

training strategy of all test pairs used is |τavg| ≥ 0.1.

Random and zero test pairs are input to the TRC and it follows the same procedure

as do the previously described strategies. These two strategies are included for

contrast and comparison of the more plausible training strategies described earlier.

This concludes the discussion of the different training strategies. To summarize,

training involves the following steps:

� Select the training set depending on the choice of training strategy as dis-

cussed in this chapter.
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� Select either the intersection or the union scenario for the training strategy

as discussed in Section 3.3. For strategies involving only one training wafers,

both the scenarios correspond to the same training set.

� Select the final set of matched test pairs from the data set based on the preset

rank threshold as discussed in Section 3.4. For example, choose final set of

matched test pairs which satisfy the condition |τ | ≥ 0.6.

� For each matched test pair, set the test removal limits as discussed in Sec-

tion 3.5.

� Install the TRC with the test removal limits for each matched test pair as

shown in Figure 3.8.

The next chapter compares the training strategies based on the performance of the

TRC. The performance is evaluated using figures of merit which are discussed in

detail in the next chapter.
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Chapter 5

Results using Production Data

This chapter discusses the figures-of-merit (FOM) used in the study followed by

the results obtained when each of the seven training strategies, described in the

previous chapter, were used to train the TRC, discussed in Chapter 3. The results

are expressed in terms of the FOM described in detail in Section 5.2. But first,

the section below discusses the classification of die in order to clearly establish the

figures of merit.

5.1 Classification of Die

Figure 5.1 shows a scatter plot containing the joint distribution of test responses

T1i and T2j at Insert1 and Insert2 respectively. The scatter plot is divided into 9

sub-areas, defined by the Test Removal Limits (dashed lines) and the Data-sheet

Pass/Fail limits (solid lines). The die that fall into the area between the solid lines

pass the test T2j at Insert2. The die that fall into the area between dashed lines

are predicted to pass test T2j at Insert2 by the TRC.
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Figure 5.1: Classification of die based on the TRC limits(dashed lines) and the
Datasheet limits(solid lines)

The sub-area labeled PS consists of Pass Screen dies. These dies are predicted to

be passes at T2j and if they were tested, they would pass T2j. On the other hand,

the dies that fall into the sub-area labeled ES, called the Escape Screen dies, are

predicted to pass at T2j but if they were tested, they would fail at T2j. The escape

screens are test escapes.

The sub-area labeled CS consists of Correct Screen dies. These dies are predicted

to fail at T2j and after testing at T2j, they indeed fail. The dies in the sub-area

labeled OS, called the Over Screen dies, are predicted to pass at T2j but once they

are tested, these dies pass at T2j. These dies contribute to the yield loss and are

missed opportunities for test removal.
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5.2 Figures of Merit

This section describes the figures of merit used in the thesis. The figures of merit

can be expressed in terms of three indicator variables Rjd, Bjd and Zjd.

� Rjd describes the per die test outcomes in the production. Rjd = 1 indicates

that the die d passes test T2j and Rjd = 0 indicates that the die d fails test

T2j.

� Bjd describes the results of TRC prediction and scheduling for the matched

test pairs. Bjd = 1 indicates that die d was not inserted in the test queue of

test T2j and Bjd = 0 indicates that die d was inserted into the test queue of

test T2j.

� Zjd is an indicator variable to select the dies tested in production by the test

T2j in the matched test pair. Zjd = 1 indicates that die d has a pass/fail

record for test T2j in the production data. On the other hand, Zjd = 0

indicates that the die d is not tested by test T2j because this die has failed

and been removed by a test earlier in the test flow. Recall that the production

data is a Stop-on-First-Fail.

The FOM use four sums for the four types of die in the regions PS, OS, CS and

ES as described in the previous section.

Pass Screen (PS) This sum counts the die which are not scheduled by test T2j and

which the die would have passed had test T2j been executed. This count reflects

the TRC correctly predicting the T2j passes.
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Over Screen (OS) This sum counts the dies which are queued by the TRC to be

tested by test T2j and which the die passes the scheduled test. This count reflects

the TRC incorrectly predicting T2j fail but recovered from yield-loss because the

dies pass T2j when executed.

Correct Screen (CS) - This sum counts the die the TRC schedules the dies for test

T2j and which failed T2j when executed. This count reflects the TRC correctly

predicting T2j fail.

Escape Screen (ES) This sum counts the die which are not scheduled by the TRC

to be tested by T2j but would have failed had the test been executed. This count

reflects the TRC incorrectly predicting T2j pass and contributes to a failure at a

later test insertion which would be more expensive to test.

The equations below express these sums in terms of the three indicator variables

as described earlier. The counts are summed over the total number of tests j and

total number of die d.

PS =
∑
j

∑
d

Bjd ·Rjd · Zjd (5.1)

OS =
∑
j

∑
d

(1−Bjd) ·Rjd · Zjd (5.2)

CS =
∑
j

∑
d

(1−Bjd) · (1−Rjd) · Zjd (5.3)

ES =
∑
j

∑
d

Bjd · (1−Rjd) · Zjd (5.4)

The FOM are used to compare the results from different training strategies on the

TRC use of matched test pairs. The FOM are mainly of concern to two engineers
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involved in the test flow - product engineer and the test engineer.

5.2.1 Product Engineering Figures of Merit

The FOM described in this section are of primary concern to the product engineer.

The main goal of the product engineer is to ensure that there are no test escapes

transferred to the downstream insertion because it would be more expensive to

test and filter them out. The following three FOM are of interest to the product

engineer.

Correct Screen PV

The Correct Screen PV measures the predictive value of TRC fails. This FOM

is the fraction of failing dies which would be screened by the TRC to the total

number of failing dies which should be screened.

CorrectScreenPV =
CS

CS + ES
(5.5)

High values of this FOM reflect the success rate of the TRC in correctly identifying

the failing dies. On the other hand, low values of this FOM indicate low success

rate of the TRC in identifying failing dies and hence, a more expensive downstream

test.

Pass Screen PV

The Pass Screen PV measures the predictive value of the TRC passes. This FOM

is the fraction of dies which are correctly predicted to be passes by the TRC to
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the total number of passing dies.

PassScreenPV =
PS

PS +OS
(5.6)

High values of this FOM indicates that the die which TRC bypasses the test T2j

queue have a high probability of passing the test had the test been executed. This

reflects the success rate of the TRC to obtain test removal without adding cost to

the downstream package test.

Escape Screen Best Estimate - 50% UCL

Upper confidence limits are computed to provide test engineers with a broader

sense of TRC performance based on the sample size. The TRC interpretation

of the UCL is as follows. Assuming the observed value correct screen PV is the

population average, and then with subsequent use, fifty out of every 100 uses the

test engineer observes a sample correct screen PV greater than the reported 50%

UCL. The 50% confidence level reflects the Best Estimate of population average.

The UCL Fraction is reported in terms of Devices per million (DPM). The UCL is

computed using standard methods. UCL depends on the selected confidence level

and the sample size. In the tables reported in Section 5.3, the sample size varies

with the strategy used because some LUT die are used to train the TRC.

5.2.2 Test Engineering Figures of Merit

The other engineer involved in the adaptive test flow is the test engineer. The

figures of merit described in this section are of primary concern to the test engineer.

The main goal of the test engineer is in the reduction of the test time.
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Matched Test Pairs Count

This figure of merit indicates the number of matched test pairs (T1i, T2j) discovered

during training. The matched test pairs discovered provides a simple metric for

gauging the effects of different training strategies. Recall that the matched test

pairs discovered is restricted to homogeneous test pairs (Class 1 matched test pairs)

and heterogeneous test pairs that fall into identical soft bins (Class 2 matched test

pairs). Matched test pairs that do not fall into these categories are not considered.

Average Tests Bypassed

The average tests removed is computed by multiplying the matched test pairs

discovered by the average number of test queues a die bypasses. This figure of

merit tracks the success of the matched test pair selection process. Averages close

to the matched test pairs discovered means that the training provided the TRC a

set of matched test pairs which are frequently used in test removal.

5.3 Production Data Set

The TRC was evaluated using a production test data set for a small mixed-signal

design. The data set is the output from wafer production testing. The production

tests included a room temperature insertion (Insert1) and a high temperature

insertion (Insert2). In the evaluation, single site testing is assumed. The test

times for each test were not available and each test is assumed to take unit time

to be executed per die.

Wafers from six production lots were included in the data and a total of ∼750K

dies. The number of wafers in each lot varied from a low of 9 to a maximum of
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22. For the study, the lots were numbered from 1 to 6. Lot 6 was selected as the

Lot Under Test (LUT) for TRC performance evaluation for the different training

strategies. A total of 59797 dies were available for evaluation in the LUT. For

three of the training strategies, data from the LUT used in training varied from a

minimum of one wafer to a maximum of five wafers. The table reports the number

of dies (and corresponding wafers) used in training and in evaluation from the LUT

respectively.

Training Used in Used in
Strategy Training Evaluation

LUT Wafer(Die) LUT Wafer(Die)

Window 6688(1) 53109(8)
Accumulate 33382(5) 26415(4)
Single LUT 6705(1) 53092(8)
Dual Lot 0(0) 59797(9)
Single Lot 0(0) 59797(9)

Table 5.1: Dies (and corresponding wafers) used in training and in evaluation
respectively from the LUT for each of the training strategies

Each row of Table 5.1 corresponds to a training strategy. The first column reports

the number of dies used in training from the LUT and the second column reports

the number of dies used in evaluation from the LUT. Among these strategies,

the accumulate training strategy has the largest training set from the LUT which

corresponds to the smallest evaluation data set from the LUT. This shows that

there is a large test time overhead involved in the training phase of this training

strategy. On the other hand, the dual and single lot training strategies do not use

any dies from the LUT in the training data set. Hence, all 9 wafers from the LUT

can take advantage of the adaptive test flow and contribute to a reduced test time.

The special case training strategies are not included in this table because they do
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not involve any training.

5.4 Results

This section reports the TRC performance results for each of the training strategies.

Tables 5.2 and 5.3 report the test engineering FOM and product engineering FOM

for the LUT respectively. The results are reported for both the intersection and

the union scenarios discussed in Chapter 3. Each row in these tables corresponds

to a training strategy sorted in the same order in each table for easy comparison.

Intersection Union
Training Matched Avg. Tests Matched Avg. Tests
Strategy Test Pair Bypassed Test Pair Bypassed

Count (per die) Count (per die)

Window 43 36 136 121
Accumulate 58 46 126 107
Single LUT 79 64 79 64
Dual Lot 63 53 87 74
Single Lot 73 52 73 52
Random* 63 52 101 69

Zero* 63 54 101 69

Table 5.2: Test engineering FOM for the intersection and the union scenarios
respectively

Table 5.2 reports the test engineering FOM for the training strategies. The first

two columns are the results for the intersection scenario and the final two columns

are the results for the union scenario. The special case training strategies are

denoted by an asterisk because they do not involve training. In such a case, the

matched test pair count is chosen to be the average of the matched test pair counts

of the other strategies.
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The variation in the matched test pairs for each strategy signifies that the per-

formance of the TRC is dependent on the choice of training. This variation is

observed to be independent of the choice of scenario. The matched test pair count

in the union scenario is higher when compared to the intersection scenario for

strategies that use multiple training wafers. This is due to the fact that the in-

tersection scenario chooses test pairs that are matched for all the training wafers

in the training set whereas the union scenario chooses test pairs that are matched

for any one of the training wafers in the training set. However, for strategies that

use only a single training wafer, such as single lot and single LUT, the number of

matched test pairs are the same for both the scenarios.

The matched test pair counts for the window and accumulate training strategies

is lower than the remaining strategies in the intersection scenario. The fact that

the average tests bypassed count is close to the matched test pair count suggests

that even though a smaller subset of matched test pairs are discovered during

training, they are effectively utilized in the adaptive test flow. The results also show

that the utilization of matched test pairs for the special case training strategies

is comparable to the utilization of matched test pairs for the single and dual lot

training strategies. This result questions the need for rank correlation in training

which can be clarified by Table 5.3.

Table 5.3 reports the product engineering FOM results for the training strate-

gies. The first three columns report the FOM results for the intersection scenario

whereas the last three columns report the FOM results for the union scenario.
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Intersection Union
Training Correct Pass Escape Correct Pass Escape
Strategy Screen Screen Screen Best Screen Screen Screen Best

PV PV Estimate(DPM) PV PV Estimate(DPM)

Window 0.95 0.84 50 0.91 0.89 88

Accumulate 1.00 0.78 26 0.95 0.85 64

Single LUT 0.89 0.82 107 0.89 0.82 107

Dual Lot 0.94 0.84 61 0.94 0.85 61

Single Lot 0.94 0.77 61 0.94 0.77 61

Random 0.88 0.68 95 0.71 0.68 245

Zero 0.83 0.68 145 0.71 0.68 262

Table 5.3: Product engineering FOM for the intersection and the union scenarios
respectively

The effect of matching with the union or the intersection scenario can be under-

stood by the value of the correct screen PV and the DPM levels in Table 5.3. The

decrease in correct screen PV which translates to increase in escape screens would

add test costs by forcing such die to be screened at a later and more expensive

insertion or more critically released to the customer and lowering product quality.

Strategies that use one or more wafers from the LUT have higher correct screen

PV when compared to the other strategies and this is consistent in either scenario

- intersection or union. The accumulate strategy has a correct screen PV value of

‘1.00’. This is due to the large training set from the LUT as reported in Table 5.1.

The window strategy which uses only one wafer from the LUT in the training set

has a correct screen pv value comparable to that of the accumulate strategy.

The importance of including the UCL is best seen by the comparison of strategies

which use rank correlation with strategies that do not use rank correlation in the

selection of matched test pairs. For strategies using rank correlation, the UCL is

significantly lower than the special case training strategies which do not use rank

correlation. Hence, even though the utilization of matched test pairs for special
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case training strategies is comparable to dual and single lot strategies as seen in

Table 5.2, the use of rank correlation in training ensures that there is a better

judgement of the die that can bypass the matched test pairs in the adaptive test

flow.

The UCL of the single LUT training strategy is higher than the other two training

strategies that include the effects of the LUT because the single LUT training

strategy does not include the low pass effects of either the LUT, as in the case of

the accumulate training strategy, or the low pass effects of the previous lots, as in

the case of the window training strategy.

Tables 5.4 and 5.5 show the escape screen die generated per wafer by the TRC for

the intersection and the union scenario respectively. For comparison, the random

strategy reveals that there is an escape screen die on almost every wafer and the

utilization of the matched test pairs is considerably lower.

Random Strategy Window Strategy

Wafer No. of Correct Escape Avg. Test Correct Escape Avg. Test
ID Die Screen Screen Bypassed Screen Screen Bypassed

5 6705 4 0 51 6 0 39

6 6677 4 1 51 5 0 38

7 6660 4 0 53 4 0 38

8 6659 4 1 55 7 0 32

9 6641 4 0 53 4 0 35

11 6616 4 0 55 6 0 32

12 6653 4 1 50 5 1 36

13 6498 4 1 53 4 1 38

Totals 53109 32 4 52 41 2 36

Table 5.4: TRC performance comparison by wafer for the random and window
training strategies - intersection scenario
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Random Strategy Window Strategy

Wafer No. of Correct Escape Avg. Test Correct Escape Avg. Test
ID Die Screen Screen Bypassed Screen Screen Bypassed

5 6705 3 3 86 6 0 129

6 6677 4 1 87 5 0 126

7 6660 3 1 88 4 0 125

8 6659 4 4 90 7 1 118

9 6641 4 0 88 4 0 123

11 6616 4 2 90 6 0 119

12 6653 4 1 82 5 1 123

13 6498 4 1 87 4 2 125

Totals 53109 30 13 87 41 4 123

Table 5.5: TRC performance comparison by wafer for the random and window
training strategies - union scenario

Figure 5.2: Training tests fraction of die cumulative probability vs fraction of TRC
bypassed tests for the Intersection scenario
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Figure 5.3: Training tests fraction of die cumulative probability vs fraction of TRC
bypassed tests for the Union scenario

Figures 5.2 to 5.5 compare the utilization of the test pairs for the intersection and

union scenarios respectively. The data is plotted for four training strategies as

indicated. The training strategies are color coded for ease of comparison. The

difference between the window and single lot training strategies points again the

need to include the effects of the current LUT. The single lot strategy selected

the matched test pairs from a single training wafer of an entirely different lot.

However, as the data indicates, the matched test pairs are used inefficiently. The

effect is more clearly seen in Figures 5.4 and 5.5.
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Figure 5.4: PDF of the Fraction of die bypassed by the TRC for tests T2j for the

Intersection scenario

Figures 5.4 and 5.5 show the PDF of matched test pair utilization for each

training strategy for the intersection and the union scenarios respectively. Note

the difference in the right tails of the PDFs. For the window and the accumulate

training strategies, the fraction of the matched test pairs grows and hits a hard wall

of the maximum number. On the other hand, for the single and dual lot training

strategies, the matched test pair fraction peaks well short of the maximum and

trails off to an insignificant number of die at the maximum. This shows that

strategies that include filtering schemes have a better utilization of matched test

pairs.
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Figure 5.5: PDF of the Fraction of die bypassed by the TRC for tests T2j for the

Union scenario

5.5 Cross Validation of the Training Strategies

This section reports the TRC matched test pair selection and use for a cross

validation study of the training strategies. For each run of the cross validation,

a different set of training wafers are selected as per the rules set by the training

strategy. This method is followed for each of the five training strategies.

Figure 5.6 summarizes the TRC selection and use of matched test pairs. The inter-

vals report the range of maximum test pairs and their use for different selections

of training wafers. The intervals in red (circle) are reported for the union sce-

nario and the intervals in black (square) are reported for the intersection scenario.

Since single lot and single LUT wafer training strategies have a single wafer in the
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training set, they are indicated by intervals in blue (triangle).

Figure 5.6: TRC test pair training and bypass performance per strategy

Even though the maximum number of tests removed is lower than the other strate-

gies, the stability of the window training strategy is notable for both matched test

pair selection and their use. The effects of the low pass filter are evident for the

window training strategy and the accumulate training strategy. The figure also

indicates that the low pass filtering action with N=5 is substantially better than

the smaller N=2 as in the case of the dual lot strategy.
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5.6 TRC Performance Dependence on Threshold

This section discusses the TRC performance dependence on the Kendall’s τ rank

correlation threshold. The dependence is studied by evaluating two contrasting

FOM across the range of Kendall’s |τ | threshold.

Figure 5.7: FOM versus τ threshold plots for the four different training strategies.
The blue hollow circles and the red solid circles represent average tests bypassed
and the correct screen PV respectively. The blue solid line and the red dashed line
represent the target goals for the average tests bypassed and the correct screen PV
respectively.
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Figure 5.7 compares two contrasting FOM, the average tests bypassed and the

correct screen PV plotted as a function of the threshold set for the selection of

the matched test pairs (labeled “Value of tau”), for the four different training

strategies. The FOM are evaluated for an LUT consisting of 25 wafers. The

average tests bypassed is plotted in blue with hollow circles and the correct screen

PV is plotted in red with solid circles. The contrasting nature of these two figures

of merit is evident from the figure. For achieving a higher correct screen PV, the

average tests bypassed is low and vice versa. The intervals report the range of the

FOM for the different selection of the training wafers. The high variation observed

for the single and dual lot strategies in Figure 5.6 is also observed in Figure 5.7.

Another observation to be made is the variation in the correct screen PV for the

accumulate training strategy. This is due to the larger sample size of the training

data set.

Each FOM is of concern to a particular engineer involved in the testing phase. The

average tests bypassed is of concern to the test engineer whose primary goal is the

reduction of the test time. On the other hand, the correct screen PV is of concern to

the product engineer whose primary goal is to make sure there are no test escapes

transferred to a more expensive downstream insertion. These engineers need to

achieve some target goals. The red dashed line and the blue solid line represent

the target goals set for the correct screen PV and the average tests bypassed

respectively. Both the engineers work towards achieving their respective target

goals and set the threshold for the selection of the matched test pairs accordingly.

A compromise in the choice of this threshold has to be made to ensure that the

target goals are met for both the concerned engineers. This is highlighted by the

61



grey box in 5.7. This box is called the Region of Compromise (ROC). The right

boundary of the ROC is set by the target goal for the average tests bypassed and

the left boundary is set by the target goal for the correct screen PV. As seen from

the plots, the right boundary is almost equal for all the training strategies. On the

other hand, the left boundary varies from one strategy to the other.

The similarity of the right boundary reflects the consistency in the selection and

use of matched test pairs and the similarity in the performance of the TRC for the

four training strategies at high values of τ as seen in Figure 5.7. At higher values

of τ , the performance of the TRC is independent of the choice of training strategy.

The price to be paid is the inability to meet the target goal for the average tests

bypassed.

The difference in the left boundary is due to the use of these matched test pairs.

This is highlighted by the variation in the correct screen PV with the choice of

training strategy. Recall that the correct screen PV is a measure of the ability of

the TRC to correctly screen a failing die. This variation of the correct screen PV

is dependent on the limits set by training for the identification of failing die by the

TRC. At lower values of τ , the performance of the TRC is sensitive to the choice

of the training strategy.

The seven different training strategies, described in Chapter 4, were compared

based on the performance of the TRC in this chapter. The next chapter discusses

some conclusions from the study and scope of future work in the study.
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Chapter 6

Conclusion and Future Work

This chapter briefly discusses the conclusions derived from the study and ends the

discussion with the scope for future work in the study.

6.1 Conclusions

The application of machine learning tools is well established. The study compared

the TRC performance with five different training strategies. The effectiveness

of the TRC was further assessed by adding special case strategies. The results

highlight three main conclusions from this study:

� Stable predictions are found by designing a filtering scheme through sampling

of old, recent and new data into the training. The results of the cross vali-

dation study in Figure 5.6 supports this conclusion. The TRC matched test

pair selection and use was stable for strategies that used low pass filtering

such as the window and accumulate training strategies.

� The dependence of TRC performance on training is reduced to a single pa-

rameter - the rank correlation threshold. This is highlighted by Figure 5.6.

The TRC performance dependence on the training strategy varies with the

choice of rank correlation threshold. For high values of τ , the performance of

the classifier was independent of the choice of training strategy whereas for

lower values of τ , the performance of the classifier depended on the choice of

the training strategy.
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� The TRC performance for special case training strategies demonstrates the

significance of rank correlation in training.

6.2 Future Work

The dependence of machine learning on training is studied at wafer sort in this

thesis. This study can be extended from wafer sort to final test, including packaging

and burn-in testing. Additionally, this thesis is focused on single-site testing. This

study could also be explored for multisite testing.
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