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ABSTRACT: This report represents part of a recent effort to summarize the state of
knowledge of prospective elementary teachers’ (PTs’) mathematics content knowledge and
the development thereof. Extensive reviews of the research literature were conducted by a
recent PME-NA Working Group across various content areas. This report focuses on whole
number and operations. Research in this area is scarce. What we do know from the
literature is that PTs’ knowledge of whole number and operations is insufficient and in
need of improvement. PTs reason about whole numbers and operations in ways that are
tied to the standard algorithms. At the same time, they are hard-pressed to explain why
these algorithms work. PTs tend to overgeneralize about operations and to overlook
important distinctions. Some of the research reviewed helps us to understand the nuances
of PTs’ conceptions and can help to inform instruction. Further research is needed to

(a) better understand PTs’ conceptions when they enter our programs, and (b) better
understand how PTs’ conceptions develop.
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Introduction

Consider a prospective elementary teacher (PT) solving 527 - 135, using the
standard algorithm and explaining regrouping as follows:

You put a 1 over next to the number and that gives you 10....1don’t get how the 1

can become a 10. One and 10 are two different numbers. How can you subtract 1

from here and then add 10 over here? Where did the other 9 come from?
This PT clearly followed the correct procedure and arrived at the correct answer, but she
was not able to provide an explanation for why this solution method results in a correct
answer. Figure 1 shows her written work.

1527

-135
292

Figure 1. A PT’s explanation of regrouping in 527 - 135 (Thanheiser, 2009, p. 251).

Now consider another PT’s reflection describing her inability to explain regrouping:

[ learned [at the beginning of my elementary mathematics methods class] that there
was a lot more to the concept [of number and place value] than [ was aware of. [ am
able to use math effectively in my everyday life, such as balancing my checkbook,
but when I was presented with questions as to why I carry out such procedures as
carrying! and borrowing in addition and subtraction, I was stuck. I could not explain
why I followed any of these procedures or rules. I just knew how to do them. This
came as a huge shock to me considering [ did well in most of my math classes. I felt
terrible that I could not explain simple addition and subtraction.

Both of these PTs have determined that they want to teach children, yet at this point
neither of them would be able to conceptually help an elementary-aged child make sense of

why regrouping works when using the standard algorithms taught in the United States.

" Note that students in the United States often term regrouping in the context of addition
carrying and regrouping in the context of subtraction borrowing.
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Moreover, solving a problem using the algorithms is not sufficient knowledge for teaching
mathematics to children. In the United States, the National Council of Teachers of
Mathematics (NCTM, 2000a) and the Common Core State Standards for Mathematics
(CCSSM) (National Governors Association Center for Best Practices, Council of Chief State
School Officers, 2010) call for children to develop a conceptual understanding (Hiebert &
Lefevre, 1986) of the mathematics they encounter. Procedural fluency is one of several
aspects of being mathematically proficient (National Research Council, 2001); the other
four aspects are conceptual understanding, strategic competence, adaptive reasoning, and
productive disposition. In order to be equipped to support students’ development of
mathematical proficiency, inservice teachers and PTs also need such an understanding of
mathematics. Researchers have highlighted the need for teachers to have a deep and
multifaceted understanding of the mathematics they teach (Hill, Ball, & Schilling, 2008; Ma,
1999). Less clear, however, is how improvement in teachers’ knowledge can be
accomplished.

At the core of elementary school mathematics is the teaching of number concepts
and operations. NCTM (2000a) stressed that all pre K-12 students should “[a] understand
numbers, ways of representing numbers, relationships among numbers, and number
systems; [b] understand the meanings of operations and how they relate to one another;
[and c] compute fluently and make reasonable estimates” (p. 32). A conceptual
understanding of number and operations underlies learning of all future mathematics and
other STEM subjects. “Number pervades all areas of mathematics. The other four Content
Standards [other than Number and Operations] as well as all five Process Standards are

grounded in number” (NCTM, 2000b, 11). In the CCSSM, “Number and Operation in Base



Thanbeiser et al., p. 220

Ten” is one of the focal domains in each grade from K through 5, followed by “The Number
System” in Grades 6-8 and “Number and Quantity” in high school.

Even with this strong focus on number throughout the K-12 curriculum, children in
the United States and other countries “experience considerable difficulty constructing
appropriate number concepts of multidigit numeration and appropriate procedures for
multidigit arithmetic” (Verschaffel, Greer, & De Corte, 2007, p. 565). Rather than
developing desirable number concepts and strategies, children often learn standard
algorithms, which they view as involving concatenated single digits, rather than numbers of
ones, tens, and hundreds (Fuson et al., 1997).

Research has also shown that elementary teachers and PTs in the United States and
Australia continue to lack a conceptual understanding in this important area (Ball, 1988;
Ma, 1999; Southwell & Penglase, 2005; Thanheiser, 2009, 2010). To be in a position to help
PTs develop more sophisticated conceptions, mathematics educators need to (a)
understand the conceptions with which PTs enter our classrooms, so that we can build on
those conceptions (Bransford, Brown, & Cocking, 1999); and (b) understand how those
conceptions can develop. As the authors of The Mathematical Education of Teachers stated,
“The key to turning even poorly prepared prospective elementary teachers into
mathematical thinkers is to work from what they do know” (Conference Board of the
Mathematical Sciences [CBMS], 2001, p. 17). In order to work from what PTs know, we
must first find out what they know.

In our summary work, we examined the current knowledge in the field of
mathematics education concerning PTs’ conceptions of whole numbers and operations and

the development thereof. We present a summary of the research in three parts:
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1. A Historical Look, which represents a summary of the research literature prior to
1998.
2. A Current Perspective, based on research articles published between 1998 and
2011.
3. AView of the Horizon, based on 2012 journal articles, as well as 2011 and 2012
proceedings of the International Group for Psychology of Mathematics Education
(PME) and North American Chapter of the International Group for Psychology of
Mathematics Education (PME-NA).
Methods
The authors met as part of a larger Working Group (see introductory article to this
Special Issue) focusing on summarizing the current knowledge of the field on PTs’ content
knowledge and the development thereof. The larger Working Group set the parameters for
the search in general. In this section, we describe the methods that pertain to this
particular article. We began by searching the ERIC database for combinations of the
following search terms: prospective, preservice, or pre-service with any of whole number,
operation, place value, multidigit, algorithm, or number sense.? Each combination of search
terms was entered into the ERIC database. We searched separately for articles published
prior to 1998 and for articles published from 1998 to 2011 in order to get an overview of
the research that occurred during those periods.
All results were checked for a focus on PTs’ content knowledge of whole numbers

and operations. We read the title and abstract to determine whether each paper fit our

2 Other search terms, e.g., elementary education and whole number, yielded no additional
relevant results.
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criteria. If the title and abstract did not suffice to make a determination of fit, then we read
the whole paper. We included all papers that met the following criteria:

e Focused on our target group of PTs.

— We also included prospective middle school teachers because some
certification programs focus on K-8, and not all countries follow the same
school system. We excluded papers focusing on prospective high school
teachers.

— We included papers focusing on both pre- and inservice teachers (i.e., mixed
groups) but excluded papers focusing only on inservice teachers.

e Focused on content knowledge of whole numbers and operations. We included
papers that did not exclusively focus on whole numbers and operations, but we
focused our summaries of these on the findings that speak to PTs’ conceptions of
whole numbers and operations. We excluded papers that focused on beliefs or
general content knowledge.

e Published research studies in peer-reviewed research journals. Our larger
Working Group (Thanheiser et al., 2010) identified 23 journals to include in our
reviews for the section focusing on the years 1998-2011 (i.e., A Current
Perspective). (See introductory article to this Special Issue for more details).

The section focusing on the years prior to 1998 (i.e., A Historical Look) followed the

same methods. For the section looking forward (i.e., A View of the Horizon), we followed the
same methods starting in 2012 for journal articles. We also searched the 2011 and 2012
proceedings of the annual conferences of PME and PME-NA for relevant papers. It was our

assumption that new research is more likely to be presented at conferences since there is a
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time delay between conducting research and publishing papers. For this search, we read all
paper titles in the relevant category. For example, Chapter 6 of the 2012 PME-NA
proceedings focuses on “Teacher Education and Knowledge—Preservice.” We read all
paper titles in this chapter to identify candidates to include in our review, based on the
same criteria for article content as described above.

Once the research articles were identified, we read each to make a final
determination of whether it should be included in the review. Questions and disagreements
were discussed and resolved. In the end, we identified a total of 28 articles that were
relevant to our search—26 peer-reviewed journal articles and 2 conference proceedings.
The pre-1998 historical search identified 7 relevant peer-reviewed journal articles. The
1998-2011 article search identified 18 relevant peer-reviewed journal articles. The search
for A View of the Horizon yielded 1 relevant peer-reviewed journal article and 2 peer-
reviewed conference proceedings. We then read and summarized each of the three groups
of articles.

Within the groups of articles belonging to A Historical Look and A Current
Perspective, we identified categories to help organize our summaries of the literature.
These categories were not decided a priori; rather, they emerged in the course of our
review through a process of constant comparative analysis (Strauss & Corbin, 1998). These
analyses were focused within the group of articles and were influenced by the number and
nature of the articles in the group. A Historical Look consists of seven articles, almost all of
which focus on multiplication and division. This being the case, we made fine-grained
distinctions regarding what content knowledge was investigated (e.g., understanding of the

long-division algorithm). As a result, in some cases, there is only one article per category.
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The articles belonging to A Current Perspective are more abundant and cover a
broader range of topics than those belonging to A Historical Look. The grain size and focus
of our categories reflect this. For example, PTs’ reasoning about alternative algorithms or
nonstandard strategies is broader than the categories identified in A Historical Look, and it
includes four articles. The categories in A Current Perspective reflect the broadening range
of recent research related to PTs’ content knowledge. For example, PTs’ reasoning about
alternative algorithms or nonstandard strategies was not a focus of any of the articles in A
Historical Look.

With only three articles in the section A View of the Horizon, it did not make sense to
categorize them. We simply summarized each article.

Results and Discussion

We first present A Historical Look, which represents a summary of the research
literature prior to 1998. Next, we present A Current Perspective, based on research articles
published between 1998 and 2011. Finally, we present A View of the Horizon, based on
2011 and 2012 PME and PME-NA proceedings and one article.

A Historical Look

What was known about PTs’ understanding of whole numbers and operations prior
to 19987 It is important to look at articles published prior to 1998 in order to understand
the history of research in this area. It enables us to characterize the state of the field prior
to our current perspective. This review is based on research articles published in
mathematics education journals before 1998. Only seven such research articles were

found. A summary of articles is included in Table 1.
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What was known relates primarily to multiplication and division. In particular, the
following five categories were identified:

1. PTs’ reasoning about division story problems (Simon, 1993; Tirosh & Graeber,
1991; Vest, 1978).

2. PTs’ reasoning about the properties of multiplication and division (Graeber,
Tirosh, & Glover, 1989; Tirosh & Graeber, 1989).

3. PTs’ understanding of the long-division algorithm (Simon, 1993).

4, PTs’ understanding of divisibility and multiplicative structure (Zazkis &
Campbell, 1996).

5. PTs’ conceptions of zero (Wheeler, 1983).

Below, we report the results of our literature review. The results are organized

according to the categories listed above.



Table 1
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Articles Written Prior to 1998 Dealing With PTs’ Knowledge of Whole Numbers and Operation

Authors Year Number of PTs’ Level  Country Methodology
PTs Studied
Graeber, 1989 129 PTs Content or USA Survey for 129
Tirosh, & Methods Interview for 33 of the 129
Glover course PTs were asked to solve
story problems for
multiplication and division
Tirosh & 1991 80 PTs Content USA Survey; PTs were asked to
Graeber course (a) write expressions to
match given story problems,
(b) write story problems
corresponding to given
division expressions
Tirosh & 1989 136 PTs Content or USA Survey; PTs were explicitly
Graeber Methods asked for misconceptions
course about multiplication and
division and then asked to
solve problems
Simon 1993 33 PTs Methods USA Open response written
course instrument for 33 PTs and
interviews for 8 of the PTs -
PTs were asked to write
story problems for division
and make sense of long
division
Wheeler & 1983 52 PTs Methods USA Survey and interviews
Feghali course
Vest 1978 87 PTs Content USA Survey; PTs were asked to
course write story problems for
division
Zazkis & 1996 21 PTs Content USA Interviews; The authors used
Campbell course a variety of tasks related to

elementary number theory
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PTs’ reasoning about division story problems. Three studies investigated PTs’
reasoning about the relationship between division and story problems. Studies by Vest
(1978), Simon (1993), and Tirosh and Graeber (1991) all relate to PTs’ reasoning about
partitive and quotitive division story problems. Partitive problems involve the forming of
equal-sized groups. In these story problems, a total amount or number of things is given,
along with a desired number of equal groups. The question is how much or how many
things should go in each group. Quotitive problems involve a predetermined group size. A
total amount or number of things is given, along with a group size. The question that
results from these situations is how many such groups can be formed. For example, in a
context of children sharing candies, a partitive problem would give a total number of
candies and a number of children and ask how many candies each child would receive,
given that the candies are to be shared fairly. In the same context, a quotitive problem
would give a number of candies that each child should receive and ask how many children
can receive candy. It is important for children to be able to explore partitive and quotitive
problems and to see both as related to the division operation (Carpenter, Fennema, Franke,
Levi, & Empson, 1999).3 For this reason, it is just as important for PTs as it is for practicing
teachers (Carpenter, Fennema, Peterson, & Carey, 1988) to make sense of these problem
types and to be able to clearly distinguish between them.

Vest (1978) surveyed 87 PTs enrolled in a content course in the southern part of the
United States to investigate their preferences for the type of division story problem,

partitive or quotitive.* When asked to write a division story problem, 59 of 87 PTs wrote a

3 Carpenter et al. used the language “partitive” and “measurement” problems.
4 Vest used the language “partitioning” and “measurement” problems.
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partitive problem, while only 6 of 87 wrote a quotitive problem. The remaining 22
responses were categorized as “Other.” In another task, participants were given a page
from an elementary textbook, in which whole-number division was introduced through
measurement situations, which are quotitive in nature. Participants were asked to write a
story problem that they would use to introduce that page. Again, participants favored
partitive problems. Of the 89 participants who responded to this task, 62 wrote a partitive
division story problem, while only 12 wrote a quotitive problem. This is a striking finding.
It does not merely show that PTs preferred partitive problems in general; it shows that
they would inappropriately choose partitive problems to introduce a lesson on quotitive
division.

The above results might indicate that PTs simply do not see a difference between
partitive and quotitive problems. However, Vest (1978) found that the same PTs were able
to distinguish between problems of the two types. Given the simple instruction to label
problems according to whether they asked “How many sets?” or “How many in each set?”
the study participants categorized an average of 95.4% of story problems correctly. The
PTs also did not express an explicit preference for one type of problem over the other.
Nonetheless, when PTs were asked to produce their own story problems, partitive
problems were overwhelmingly more common. PTs’ apparent preference for partitive
problems is a concern because they will need to support their students in coming to relate
to division to both partitive and quotitive problems.

A study of Simon (1993) corroborated Vest’s (1978) findings. Simon’s study
involved 33 PTs enrolled in a methods course in the United States. When asked to write

division story problems involving given numbers, the majority of the participants also
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wrote problems that reflected a partitive, rather than quotitive, meaning of division.
Specifically, 74% of the problems created were partitive, and only 17% were quotitive.
Simon found that most participants were able to relate partitive story problems to division
of whole numbers. On the other hand, the quotitive meaning was more elusive. Many
assumed the partitive meaning and had difficulty when it did not fit well.

Tirosh and Graeber (1991) investigated the effect of division problem type (e.g.,
partitive or quotitive) on PTs’ performance. They surveyed 80 PTs who were enrolled in
either a content or methods course for elementary education majors in the southeastern
United States. When asked to write expressions to match given story problems, the
participants were less successful on quotitive than on partitive problems. The PTs also
performed worse on problems in which the divisor was greater than the dividend. Both
effects were statistically significant. When asked to write story problems corresponding to
given division expressions, when the divisor was a whole number, the majority of
participants wrote a partitive division problem that correctly matched the given
expression. There were three such items. The percentage of correct partitive story
problems ranged from 63 to 78%. Only 1 to 3% of correct responses were quotitive
problems. Given an expression in which the divisor was not a whole number (e.g., 4 + 0.5),
participants did not attempt to write a partitive problem, and only 44% correctly wrote a
quotitive story problem. Tirosh and Graeber concluded, “Many preservice teachers are
familiar with the partitive interpretation of division but have limited access to the
measurement [quotitive] interpretation” (p. 162).

PTs’ reasoning about properties of multiplication and division. One study

focused on understanding properties of multiplication and division. Graeber, Tirosh, and
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Glover (1989) documented PTs’ misconceptions related to these properties. The
researchers surveyed 129 PTs who were enrolled in either a content or methods course for
elementary education majors in the southeastern United States. They then interviewed 33
of these PTs. The authors found that the PTs had difficulty with story problems in which
multiplication did not “make bigger” or division did not “make smaller.” For example, they
performed worse when solving multiplication tasks if the multiplier was a decimal, rather
than a whole number. When solving story problems, which required them to determine the
appropriate operation to use, participants’ choices were often influenced by the relative
sizes of the given numbers, as opposed to the relationships between quantities. For
example, on the four given multiplication story problems that had a decimal operator less
than 1, more than 25% of the PTs incorrectly wrote a division expression, rather than a
multiplication expression (Graeber et al.,, 1989). Explicit, incorrect beliefs about division
were more common. In interviews with 33 of the PTs, Graeber et al. found that 22 of them
reversed the roles of dividend and divisor when given story problems in which the divisor
was greater than the dividend. The authors reported, “All 22 claimed that in division the
larger number should be divided by the smaller number” (p. 99).

Tirosh and Graeber (1989) surveyed 136 PTs enrolled in either a content or
methods course for elementary education majors in the United States. When asked directly,
87% of the PTs in the study responded correctly to questions concerning whether a
product would always be greater than the factors (Tirosh & Graeber, 1989). However, in
practice, many of the PTs reasoned in ways that evinced the influence of the belief that
multiplication makes bigger. In response to a set of four survey questions regarding the

properties of division, 72% of participants answered at least one of the True/False
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questions incorrectly. For example, 52 (i.e., 38%) of the participants who responded to the
statement “In division problems, the quotient must be less than the dividend” incorrectly
answered that the statement was true.

The misconceptions of multiplication and division that were identified concerned
problems involving rational numbers. PTs’ generalizations that multiplication makes bigger
and division makes smaller hold true for whole numbers, except in the special cases
involving 0 and 1. So, PTs’ reasoning about multiplication and division seem to be strongly
connected to their experiences with whole numbers. In the whole-number domain, their
reasoning is essentially correct. Thus, if we restrict our view to reasoning about whole-
number operations, PTs may appear to be equipped to support students’ learning.
However, children’s learning of mathematics in the early grades should prepare them for
continued learning as they mature. If PTs’ overgeneralize about multiplication and division,
their future students may make the same overgeneralizations and face the same difficulties
as PTs when it comes to operations involving rational numbers.

PTs’ understanding of the long-division algorithm. Simon’s (1993) study
involving 33 PTs investigated their understand of the long-division algorithm. Given a
dividend and divisor and a calculator to use, 76% of participants were unable to find the
remainder. The PTs also had difficulty explaining the meaning of the remainder in a
division calculation. Many of them related the remainder to a fraction or decimal in
inappropriate ways. They knew the long-division algorithm but were unable to explain its
steps conceptually, and their justifications appealed to the procedure itself. Simon reported
that participants were unable to connect a meaning of division with symbolic

representations of division calculations, regardless of whether the calculations were
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performed by long division or with a calculator. Simon characterized “prospective teachers’
mathematical knowledge as procedural and sparsely connected” (p. 252).

PTs’ understanding of divisibility and multiplicative structure. One study, by
Zazkis and Campbell (1996), investigated PTs’ understanding of divisibility and the
multiplicative structure of natural numbers. This study involved 21 PTs enrolled in a
mathematics content course in the United States. The authors used a variety of tasks
related to elementary number theory in interviews with the PTs. They found that the PTs
tended to reason about divisibility procedurally, in terms of performing the division
operation itself, rather than on the basis of multiplicative composition of number. The
authors reported, “A minority (6 out of 21) of the participants in this study group were able
to consistently discuss and demonstrate an understanding of divisibility as a property of, or
relation between, natural numbers” (p. 546).

Given M = 33 x 52 x 7 and asked whether M was divisible by 7, participants thought
that they needed to compute M and then divide by 7 to find out. The researchers observed
that the PTs tended to be unsure of claims regarding divisibility in the absence of a specific
quotient. For instance, even if a PT thought that M was divisible by 7, he or she was
uncomfortable making such a claim without knowing what M divided by 7 actually equaled.
The PTs also made reference to and use of divisibility rules, which were sometimes
misremembered or misapplied, and they had difficulty reasoning about divisibility without
the use of such rules. Participants also had difficulty in generating numbers with desired
properties; they tended to guess and check, rather than to construct numbers in ways that

would guarantee those properties.
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PTs’ conceptions of zero. One study reported on PTs' understanding of zero and of
division by zero. The study, by Wheeler and Feghali (1983), involved 52 PTs enrolled in a
methods course in the United States. The authors investigated the PTs’ conceptions of zero,
using a written instrument and individual interviews. The authors report that the PTs did
not have an adequate understanding of zero. Most of the participants incorrectly answered
items of the form a + b, where b = 0. Most said that 0 + 0 = 0. In a classification task
involving some cards with various images on them and some cards that were blank, most
PTs rejected using blank cards as a category for classification. The participants were
interested in the attributes of the images on the cards, and they viewed blank cards as
being without attributes, rather than as having the attribute of being blank. The PTs
described zero in a variety of ways, including as (a) a symbol, (b) a number, and
(c) nothing. When asked directly whether zero was a number, most said that it was, but
15% of the participants disagreed. For example, one PT said, “Zero is not a number because
it has no value” (p. 152).

Summary of the historical look. Our database search revealed seven research
articles published in mathematics education journals prior to 1998 that addressed PTs’
conceptions of whole numbers and operations. According to these reports, PTs favor the
partitive over the quotitive meaning of division. They are more likely to write partitive
story problems, except when the divisor is not a whole number (Simon, 1993; Tirosh &
Graeber, 1991; Vest, 1978). PTs can recognize the difference between partitive and
quotitive story problems, and they can find the solutions to problems of both types (Tirosh
& Graeber, 1991; Vest, 1978); however, they perform worse on quotitive problems, and

they perform worse on problems in which the divisor is greater than the dividend (Tirosh
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& Graeber, 1991). When asked to make their beliefs about the properties of multiplication
explicit, PTs tend to respond correctly (e.g., to indicate the multiplication does not always
“make bigger”). However, their responses to various tasks reflect the influence of
overgeneralizations about multiplication (Tirosh & Graeber, 1989).

When it comes to division, PTs often explicitly make incorrect claims, such as that
the divisor must be less than the dividend (Graeber et al., 1989). In addition, PTs bring a
range of procedural and conceptual knowledge to bear on division-related tasks; however,
their knowledge of division is disconnected (Simon, 1993). Their understanding of the
long-division algorithm tends to be procedural, and they have difficulty relating that
procedure to real-world situations. PTs also reason procedurally about divisibility and
often feel the need to perform calculations in order to answer questions regarding
divisibility (Zazkis & Campbell, 1996). PTs have limited conceptions of zero. Some do not
regard it as a legitimate number, and many PTs answer questions involving division by
zero incorrectly.

Reflections on the historical look. The pre-1998 research literature characterized
PTs’ knowledge as inadequate and partially incorrect. Descriptions emphasized PTs’
limited understandings and reliance on procedures. PTs were described as holding
misconceptions, which led, at least some of the time, to incorrect answers. We learn from
these reports that PTs’ knowledge of whole numbers and operations—especially
multiplication and division—was in need of improvement. At the same time, this research
literature is limited in its guidance regarding how to support PTs to develop more
sophisticated mathematical understandings. The reports provide snapshots of PTs’ content

knowledge, and these descriptions do not emphasize ways in which PTs may be able to
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build on what they know to improve their understanding of whole numbers and
operations.

The historical look also leaves us with many unanswered questions regarding
specific content knowledge that was not addressed. The literature focused on
multiplication and division and did not address addition or subtraction. It did not address
PTs conceptions of whole numbers themselves. In particular, their understanding of place
value was not explored. Also, researchers did not report on PTs’ understanding of number
theory beyond divisibility. For instance, PTs’ reasoning about oddness and evenness were
not directly addressed. Perhaps the most noteworthy finding is simply how little the field
knew about PTs’ knowledge of whole numbers and operations prior to 1998.

A Current Perspective

With number being such a pervasive topic in elementary school mathematics,
surprisingly few papers have focused on PTs’ conceptions of whole numbers and
operations. Our search for research literature on PTs’ understanding of whole numbers and

operations, spanning the time from 1998 to 2011, resulted in 18 articles (see Table 2).
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Articles Written About PTs’ Understanding of Whole Numbers and Operations,
Spanning the Time From 1998 to 2011

Authors Year  Numberof  PTs’ Level Country Methodology
PTs Studied
Chapman 2007 20PTs Content Canada Group tasks that allowed the
course PTs to reflect on the
operations in order to
develop a deeper
understanding
Crespo & 2006 32 PTs Methods Canada/ Taskinvolving division
Nicol course USA
Glidden 2008 381 PTs Content USA Tasks involving the order of
course operations
Green, Piel, & 2008 53/39 PTs Child Canada/  Survey
Flowers Development USA
course
Kaasila, 2010 269 PTs Math Finland Task involving
Pehkonen, & Education nontraditionally posed
Hellinen course division problem
Liljedahl, 2007 90 PTs Content Tasks using a computer-
Chernoff, & course based microworld
Zazkis
Harkness & 2008 71PTs Content USA Case study of a student
Thomas course sharing an invented
algorithm
Lo, Grant, & 2008 38 PTs Content USA Video of class sessions
Flowers course
McClain 2003 24 PTs Methods USA Survey
course
Menon 2003 77 PTs Methods USA Set of tasks involving two-
course digit multiplication

(continued)
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Authors Year  Numberof  PTs’ Level Country  Methodology
PTs Studied
Menon 2004 142 PTs Methods USA 10-item number sense test
course
Menon 2009 64 PTs Methods USA Survey
course
Thanheiser 2009 15PTs Content USA Interviews
course
Thanheiser 2010 33 PTs Methods USA Survey and interviews
course
Tsao 2005 12 PTs Content USA Interviews
course
Yackel, 2007 45 PTs Content USA Video of class sessions
Underwood, course
& Elias
Yang 2007 15PTs Taiwan Interviews
Zazkis 2005 116 PTs Content Canada Task involving prime
course numbers

Of the research papers reviewed, the following five categories emerged:

1. PTs’ conceptions of number and the development thereof (McClain, 2003;

Thanheiser, 2009, 2010; Yackel, Underwood, & Elias, 2007).

2. PTs’ reasoning about alternative algorithms or nonstandard strategies

(Harkness & Thomas, 2008; Kaasila, Pehkonen, & Hellinen, 2010; Lo, Grant, &

Flowers, 2008; Menon, 2003, 2009).

3. PTs’ number sense (Menon, 2004; Tsao, 2005; Yang, 2007; Zazkis, 2005).
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4. PTs’ conceptions of arithmetic operations and order of operations (Chapman,
2007; Crespo & Nicol, 2006; Glidden, 2008).

5. Addressing PTs’ misconceptions through the use of manipulatives or computer
microworlds (Green, Piel, & Flowers, 2008; Liljedahl, Chernoff, & Zazkis, 2007).

Below, we report the results of our literature review. The results are organized
according to the categories listed above.

PTs’ conceptions of number and the development thereof. Two research studies
focused on PTs’ conceptions of number (Thanheiser, 2009, 2010) and two research studies
focused on the development thereof (McClain, 2003; Yackel et al., 2007). Thanheiser
(2009) interviewed 15 PTs in the United States before their first content course for
teachers. The interview data allowed for the identification and categorization of PTs’
conceptions of multidigit whole numbers into four major groups: thinking in terms of
(a) reference units, (b) groups of ones, (c) concatenated-digits plus, and (d) concatenated-
digits only. See Table 3 for the definition and distribution of the conceptions among the PTs
in that study.

Thanheiser (2009) found that two thirds of the PTs in that study saw the digits in a
number incorrectly in terms of ones, at least some of the time. This conception prohibits
the PTs from making sense of regrouping. And while the groups-of-ones conception is a
correct conception, it also limits what a PT will be able to explain. While PTs may be able to
correctly explain the regrouped 1 in Figure 1 as 100 ones, they may struggle to explain that
the 1 represents 10 tens and thus combined with the 2 tens represents 12 tens. Thus, while

five of the PTs held a correct conception, only three of those five held a conception that
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enabled them to explain all aspects of regrouping, including why we “make the 1 a 10”

when we move it over.

Table 3

Definition and Distribution of Conceptions in the Context of the Standard Algorithm
for the 15 U.S. PTs in Thanheiser’s (2009) Study (p. 263)

Conception # of PTs

Reference units. PTs with this conception reliably5 conceive of the reference units 3
for each digit and relate reference units to one another, seeing the 3 in 389 as 3

hundreds or 30 tens or 300 ones, the 8 as 8 tens or 80 ones, and the 9 as 9 ones. They

can reconceive of 1 hundred as 10 tens, and so on.

Groups of ones. PTs with this conception reliably conceive of all digits correctly in 2
terms of groups of ones (389 as 300 ones, 80 ones, and 9 ones) but not in terms of
reference units; they do not relate reference units (e.g., 10 tens to 1 hundred).

Concatenated-digits plus. PTs with this conception conceive of at least one digit as 7
an incorrect unit type, at least on occasion. They struggle when relating values of
the digits to one another (e.g., in 389, 3 is 300 ones but the 8 is only 8 ones).

Concatenated-digits only. PTs holding this conception conceive of all digits in terms 3
of ones (e.g., 548 as 5 ones, 4 ones, and 8 ones).

Thanheiser (2009) also examined PTs’ conceptions in various contexts. One of these
contexts was a time task. PTs were given an artifact of children’s mathematical thinking in
which the child had incorrectly applied the standard subtraction algorithm in a time
context (see Figure 2). Of the 15 PTs in the study, 9 initially thought that the child’s
application of the standard algorithm was correct. Eight of those 9 PTs eventually changed

their mind after calculating the time difference another way. However, only 8 of the 15 PTs

5 Reliably in these definitions means that after the PTs were first able to draw on a conception in
their explanations in a context, they continued to do so in that context.
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were able to explain why the application of this algorithm was incorrect (i.e., regrouping

100 rather than 60) and alter the algorithm to make it work for a time situation.

Last week, in a third-grade classroom, the children were given the following problem:

You were on a train that left Los Angeles at 2:53 p.m. and arrived in Phoenix at
7:08 p.m. How long were you on the train?

One student solved the problem as follows:

ye-1o8
—-2:53
4: 55

He explained, “I took the 3 from the &; thatis 5. Then I couldn’t take the 5 from the 0,
so I borrowed 1 from the 7 and put it by the zero. Then I took 5 from 10; that’s 5. Then
I took 2 from 6, and that's 4.”

Figure 2. Time task (Thanheiser, 2009, p. 259).

In a different task, PTs were asked to relate hundreds and millions (i.e., how many
hundreds are in a million?) and in that context were asked to relate tens and hundreds (i.e.,
10 tens are a hundred) and hundreds and thousands (i.e., 10 hundreds are a thousand). Six
of the 15 PTs, at least in some instances, claimed that 100 x 100 = 1,000. Thanheiser (2009)
explained this mistake as possibly being based on an overgeneralization of the pattern
10x 10 =100 (e.g., multiply a reference unit by itself to get the next larger one) resulting in
100 x 100 = 1,000. Thanheiser also noted that this notion would make it hard to see the
regularity in our base-ten number system. In summary, Thanheiser found that PTs who
held one of the concatenated-digits conceptions struggled when asked to explain why
things worked, whereas PTs who held one of the correct conceptions were able to explain
these things. This was true in the context of the standard algorithms, as well as in alternate

contexts.



TME, vol. 11, no. 2, p. 241

In a follow-up study, Thanheiser (2010) surveyed 33 PTs enrolled in a math
methods course in the United States. In this investigation of PTs’ interpretations of
regrouped digits, Thanheiser (a) replicated the earlier results that most PTs held one of the
concatenated-digits conceptions, even at the end of their teacher education programs; and
(b) refined the concatenated-digits plus conception into three further categories:

1. Regrouped digits are consistently explained as 10, regardless of whether it is in

the context of addition or subtraction.

2. Regrouped digits are explained consistently depending on context (i.e., 10 in

subtraction, 1 in addition, or vice versa).

3. Changed interpretations of the regrouped digit depending on the question posed

(i.e., regrouped 1 in the tens’ place in the context of addition as 10 or 1 in
different tasks).
In this study, only 3 of 33 PTs were able to correctly explain the values of the regrouped
digits in both addition and subtraction contexts. Of the remaining 30 PTs, 5 saw the values
of all regrouped digits as 1, consistent with the concatenated-digits conception. The
distribution of the remaining 25 PTs who fell into the concatenated-digits-plus category

can be seen in Table 4.
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Table 4

Conceptions of the 33 PTs in the Context of Standard Algorithms (Detailed)
in Thanheiser (2010)

Conception Across Addition and Subtraction Tasks Number of PTs
One of the two correct conceptions (reference units or groups of ones) 3
Concatenated digits plus 25

Refined conception:

— Regrouped digits consistently explained as 10 (regardless of
whether it is in the context of addition or subtraction)
(7 PTs)

— Regrouped digits explained consistently depending on
context (i.e., 10 in subtraction, 1 in addition or vice versa)
(10 PTs)

— Changed interpretations of the regrouped digit depending on
the question posed (i.e., regrouped 1 in the ten’s place in the
context of addition as 10 or 1 in different tasks)

(8 PTs)

Concatenated digits only 5

A surprising result in Thanheiser’s (2010) study was that eight PTs changed their
explanation of the regrouped digits from one problem to the next. While they would
interpret the regrouped 1 as 10 or 1 in one addition problem, they would interpret it
differently in another (see Figure 3). For example, PTs may interpret the circled 1 in the
first problem in Figure 3 as 1, but the circled 1 in the second problem in Figure 3 as 10,
thus changing how they interpret the regrouped digit in the tens’ place in the context of

addition.
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2%
38

+475 4
864 297

Figure 3. Comparing regrouped digits in the tens’ place in the context of addition
(Thanheiser, 2010, p. 249).

Two studies focused on the development of PTs’ conceptions of place value
(McClain, 2003; Yackel et al., 2007). Both studies examined the PTs’ development of
conceptions by working with them in a context involving an alternate base (base eight).
McClain (2003) asked 24 PTs enrolled in the second of two methods courses in the United
States to work in the Candy Factory context (Cobb, Yackel, & Wood, 1992), in which eight
candies were packed into a roll of candies and eight rolls were packed into a box of candies.
While McClain asked PTs to work in the context of boxes, rolls, and pieces of candies, she
did not ask PTs to use base-eight notation. In earlier work, she had found that the PTs were
distracted by being asked to use base-eight notation and focused more on that than on the
mathematics of quantifying, adding, and subtracting numbers. With the Candy Factory
context, McClain found that PTs initially focused on pictures to represent numbers but then
invented a notational form using B for boxes, R for rolls and P for pieces. McClain focused
on grouping and regrouping to help the PTs understand place value and the multiplicative
structure of the system. At the end of the sequence, PTs were asked to buy or sell candies to
help them understand addition and subtraction. McClain found that PTs invented
“nontraditional yet personally meaningful algorithms for addition and subtraction to
symbolize their activity” (p. 298). The goal of this sequence was to help PTs develop a

reference-units conception (cf. Thanheiser, 2009) and thus see a box not just as a box, but
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simultaneously as eight rolls, as well as 64 candies, and then draw on that number concept
to develop algorithms and a deeper understanding of the numbers and of the algorithms.

McClain (2003) examined the development of PTs’ conceptions and compared it to
the development of children’s conceptions of base ten. She found that the PTs’ development
mirrored that of children. She stated, “This finding also has broader implications—that the
broad base of research conducted in elementary classrooms can feed forward to inform
efforts at supporting the development of PTs’ content knowledge” (p. 301). As a result, PTs
also came to the realization that in order to teach for conceptual understanding, they
themselves would need to possess this type of understanding.

Yackel, Underwood, and Elias (2007) also used the Candy Factory context in base
eight with 45 PTs in a content course in the United States. They examined how PTs learned
to count in base eight and used that as an underpinning for operating on numbers in base
eight. In contrast to McClain (2003), Yackel et al. did use base-eight language (e.g., they
named a unit of eight as “one-e”). They spent a considerable amount of time in counting to
lay the foundations for operating on numbers. One of their foci was to help PTs coordinate
units of different rank (i.e., develop reference-units conceptions). They point out that the
focus on counting not only helped the PTs make sense of the counting sequence and how it
is learned by children, but it also helped the PTs make sense of early arithmetic. They note
that it is often surprising to PTs as well as teacher educators how much sense making can
happen in early arithmetic.

PTs’ reasoning about alternative algorithms or nonstandard strategies. Five
studies focused on exploring PTs’ reasoning about alternative algorithms (Harkness &

Thomas, 2008; Kaasila et al., 2010; Lo et al., 2008; Menon, 2003, 2009). Harkness and
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Thomas (2008) worked with 71 PTs in three sections of a freshmen content course in the
United States. They reported that PTs’ understanding of invented algorithms is more
procedural than conceptual. The PTs were presented with a case study of a student sharing
an invented algorithm in front of her class and being told by her teacher that it is incorrect
(Corwin, 1989). Then the PTs were asked to explore the validity of the invented algorithm
(see Figure 4). Only 7 of 71 PTs were able to explain why the invented algorithm works. An
additional 15 PTs showed some understanding but were not able to give a complete
explanation. The remaining 49 PTs drew on procedural understanding to give explanations.
For example, they used arguments such as that the 10 from the upper line was moved to

the lower line.

34 34
x23 x23
102 92
680 690
782 782

*‘Downwards” “Upwards”

Figure 4. Standard downwards and invented upwards algorithms (Harkness & Thomas,
2008, p. 129).

While the PTs struggled to make sense of the upwards method, they still empathized
with the student in the case, either by relating to similar experiences in their past,
highlighting that their current class allows alternative methods, or hoping that they will be
able to allow for alternative methods in their own future classrooms. The PTs also
disagreed with the teachers’ choices in the case. Finally, the PTs highlighted how impressed

they were by the child in the case. In addition, Harkness and Thomas found that it was
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difficult to get PTs to attend to the details of the mathematics; if they expected PTs to write
about the mathematics, the authors needed to explicitly ask them to do so.

Menon (2003) reported on PTs’ responses to a set of tasks involving two-digit
multiplication. A total of 77 PTs in two sections of a methods course in the United States
were shown three different ways of performing two-digit multiplication. The PTs
responded to each task individually and then discussed their ideas in small groups of four
or five students. The first task concerned the standard algorithm as it relates to partial
products. The partial products in 65 x 34 were mislabeled, not taking place value into
account, to draw the conclusion that the product consisted of 3 groups of 65 plus 4 groups
of 65. PTs were asked whether they agreed with the description of the partial products. The
instructor then pointed out that 34 x 65 represented 34 groups of 65, so that 27 groups of
65 had not been accounted for. PTs were asked to respond. The author reported that, when
responding individually, 39% of PTs said that nothing was missing from the product.

In Menon’s (2003) second task, 65 x 34 was computed from left to right. That is, the
work showed 1,950 (i.e., the product of 30 and 65) on the first row and 260 (i.e., the
product of 4 and 65) on the second row. PTs were asked whether this alternative method
would work, and why or why not. The author reported that only 52% of PTs gave a correct
explanation.

The third task involved yet another way of computing the same product. Three
partial products were shown: 1,820, 240, and 150 (i.e.,, (4 x 5) + (30 x 60), 4 x 60, and
30 x 5). PTs were shown only the computed partial products. They were asked to
determine the origins of these, to decide whether or not this algorithm was generalizable,

and to justify their answers. The author reported that only 39% of the participants
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produced a correct explanation. The author noted that the frequencies of correct responses
from groups of PTs were considerably greater than for individuals. Thus, discussing the
ideas in groups often led to a correct group response.

In another study, Menon (2009) surveyed PTs to investigate their understanding of
multidigit multiplication. A written instrument was administered to 64 PTs enrolled in a
middle school mathematics methods course in the United States. The author found that
95% of the PTs correctly computed 456 x 78. However, only 75% were able to write a
correct word problem corresponding to this computation. The author gives two examples
of incorrect responses. One was a division, rather than multiplication, story problem. The
other showed lack of awareness of the distinct roles of multiplier and multiplicand: “There
are 456 pencils, and 78 erasers in the classroom. If we multiply the 456 pencils and the 78
erasers, how many pencils and erasers will we have in total?” (p. 3). This PT seemed to
rather directly translate the computation to a story involving pencils and erasers without
taking into account what it would mean to multiply pencils by erasers. Evidently, the PT
had in mind a meaning for multiplication as finding a total number of things, but the PT did
not provide a rate in the story, and as a result the suggested multiplication was nonsensical.
The vast majority (86%) of the PTs’ explanations for the algorithm were largely procedural,
and their ideas for helping a child learn to compute the product were likewise mostly
procedural (72%). Menon described the PTs in this study as generally displaying the kind
of understanding of multiplication that was required of them as students, noting that this
understanding is inadequate for teaching multidigit multiplication.

Lo, Grant, and Flowers (2008) worked with 38 PTs enrolled in a content course in

the United States. The authors found that the PTs’ ability to develop and justify reasoning
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strategies for multiplication develops slowly and presents several challenges. In their
study, they describe a four-day lesson designed to help PTs develop a deeper
understanding of multiplication. The researchers focused on both the development of and
the justification of reasoning strategies. They found PTs struggled with both. Lo et al.
hypothesize that the PTs struggled with the development of reasoning strategies because
(a) the PTs lacked the multiplicative structure, and (b) the PTs lacked the understanding
that there is more to a multiplication problem than finding the answer. One of the tasks
they used was to ask students to multiply 24 x 38 by starting with 20 x 40 = 800 and
adjusting the result. Lo et al. argue that PTs struggle with justifications for four reasons:

1. The PTs think justification is a description of the steps.

2. The PTs think justification is drawing a picture.

3. The PTs struggled in relating the picture to their reasoning, especially with the

area model.

4. The PTs struggled coordinating the equal groups interpretation with their

strategy.

Lo et al. (2008) also found that PTs struggled in recognizing the difference between
procedural and conceptual descriptions of solutions to multiplication problems. It was not
clear whether PTs needed more time or different kinds of experiences to continue to
develop their understandings. As a result, the researchers suggest more research be
conducted to investigate this. They also emphasized that we need to highlight the
“ineffectiveness of memorizing and applying rules/procedures without understanding why

they work” (p. 20).
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Kaasila, Pehkonen, and Hellinen (2010) examined PTs’® understanding of a
nontraditionally posed division problem. The participants were 269 Finnish PTs enrolled
in a mathematics education course. The problem that the researchers posed was, “We
know that 498 + 6 = 83. How could you conclude from this relationship without using long-
division algorithm what 491 + 6 = is?” (p. 247). According to the authors, “This problem
especially measures conceptual understanding, adaptive reasoning, and procedural
fluency” (p. 247). Kaasila et al. found that 45% of the PTs were able to produce complete or
almost correct solutions, and 30% produced complete and correct solutions. Of those PTs
who answered correctly, almost all drew on both subtraction and division in their
reasoning. Kaasila et al. (2010) identified four difficulties that the remaining 70% of the
PTs had:

(1) staying on the integer level (difficulties especially in conceptual understanding),

(2) inability to handle the remainder of the division (difficulties especially in

procedural fluency), (3) difficulties in understanding the relationships between

different operations (problems especially in conceptual understanding), and

(4) inadequate reasoning strategies (difficulties especially in adaptive reasoning).

(p- 257)

PTs’ number sense. Four studies focused on number sense (Menon, 2004; Tsao,
2005; Yang, 2007; Zazkis, 2005). Tsao (2005) and Yang (2007) both found that PTs,
especially the ones who struggled, relied on procedures rather than using number sense to
solve problems. Tsao’s study involved PTs enrolled in six sections of a mathematics content
course in the United States. He found that the PTs were not ready to be immersed into a

curriculum that reflects the vision of less emphasis on paper-and-pencil computation and

more emphasis on number sense and mental arithmetic, as described in the NCTM

6 They also examined secondary students; however, in this report we leave out that part of the
study.
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Standards. Tsao compared six randomly selected high-ability PTs (scoring in the top 10%
on a 25-item number sense test) and six randomly selected low-ability PTs (scoring in the
bottom 10%). The data indicate that the high-ability students were more successful on
each type of number sense item than the low-ability students. The items were intended to
assess five components of number sense—number magnitude, use of benchmarks,
decomposition/recomposition, relative effect of operations on numbers, and flexibility with
numbers and operations. Compared to high-ability students, the low-ability students in this
study (a) tended to use rule-based methods more frequently when answering interview
items; and (b) preferred the use of standard, written computation algorithms rather than
the use of “number sense based” strategies. The high-ability students tended to use
benchmarks and to apply “number sense based” knowledge. Results also indicate that
items including fractions were more difficult than whole number and decimal items for
both groups of students.

Yang (2007) interviewed 15 PTs from a university in southern Taiwan. He examined
strategies used by PTs when responding to number sense-related items. Yang defines
number sense as consisting of the following four categories: (a) understanding the
meanings of numbers, operations, and their relationships; (b) recognizing relative number
size; (c) judging the reasonableness of a computational result by using strategies of
estimation; and (d) developing and using benchmarks appropriately. Yang found that for
each category, about two thirds of participants relied on rule-based methods to answer the
questions. Thus, PTs, especially those in the low-ability group, tended to reason

procedurally.
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Menon (2004) worked with 142 PTs in four sections of a methods course in the
United States. The PTs took a 10-item multiple-choice test designed to measure their
number sense. The test consisted of items intended to measure their ability to (a) make
mathematical judgments, (b) develop useful and effective strategies for numerical
situations, and (c) understand number and operations related to fractions and decimals.” A
student would be considered having number sense only if he or she provided both a correct
response and a correct explanation to an item. Menon stated that a majority of the PTs
were able to make mathematical judgments by being aware of the mathematical context
while not blindly perform computations. However, Menon also noted that many of the PTs
were unable to provide explanations describing the relationship between the numbers
used to arrive at a solution.

Zazkis (2005) worked with 116 PTs enrolled in a content course for elementary
teacher certification in Canada. After a unit on elementary number theory, the PTs were
posed the question whether the product of 151 x 157 was a prime number. Incorrect
responses included: (a) two prime numbers multiplied together would result in another
prime; (b) the last digit of 23,707 is 7, so the product is prime; and (c) the sum of the digits
equals 19 and 19 is prime. Furthermore, Zazkis indicated that although 74 of the PTs
correctly identified that the product was a composite number, only 52 of them were able to
justify their reasoning using the definition of a prime or composite number. Zazkis
summarized that the underlying feature of these shortcomings was PTs not understanding

that the product of two whole numbers will have more than two factors.

7 We include only whole number items.
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PTs’ conceptions of arithmetic operations and order of operations. Three
studies focused on understanding of operations (Chapman, 2007; Crespo & Nicol, 2006;
Glidden, 2008). Chapman (2007) examined 20 PTs’ understanding of arithmetic operations.
The PTs were enrolled in an elementary mathematics content course in Canada. The PTs’
initial knowledge of arithmetic operations was “inadequate to teach conceptually and in
depth” (p. 347). The PTs’ initial knowledge was based upon “procedural understanding of
both the mathematical and semantic structure of a problem” (p. 347). Often PTs thought
there was only one way to represent an operation. Chapman devised three group tasks that
allowed the PTs to reflect on the operations in order to develop a deeper understanding.
The first group task asked PTs to create word problems similar to given word problems
and to compare different kinds of word problems. See Figure 5 for Part 1 of the task. After
they worked on these problems individually, the PTs worked in groups to discuss their
answers and then were asked to collaboratively create word problems that reflected the

meaning for each of the four operations and then reflect on those.

PART 1:

1. Create an original word problem for an elementary grade. Reflect on and describe what you thought about
to create the problem.

2. Create a word problem that is similar to the following problem.

Golf balls come in packs of 4. A carton holds 25 packs. Marie, the owner of a sporting goods store, ordered
1600 golf balls. How many cartons did Marie order?

Reflect on and describe what you thought about to create the problem.

3. Compare and contrast this golf balls problem to the following problem:

Jerry, a new elementary school teacher, wants his students to sit in groups on the carpet section of the
classroom floor for certain activities. After doing some investigating, he found that the carpet area was
144 square feet and decided to allocate 6 square feet for one student. How many groups will Jerry be ahle
to form if he wants 3 students in a group?

Figure 5. Part 1 of Chapman’s (2007) task (p. 343).
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The second group task asked PTs to examine a given list of word problems
representing various situations for each operation and asked them to analyze the word
problems by modeling solutions and to reflect on similarities and differences. The third
group task asked PTs to compare and contrast the problems given in the first group task, to
create their own problems, to review an elementary textbook, and to choose one of the
operations to create a lesson plan. The tasks were deemed effective as they allowed PTs to
have:

e ‘“relevant, practical, and meaningful examples and possibilities for thinking

about the concepts”

e “allowed for simulation of real-world situations”

e “promoted reflection and discourse”

e “facilitated new understandings of familiar concepts.” (p. 384)

Crespo and Nicol (2006) focused on understanding division by zero. They examined
32 PTs enrolled in two methods courses (18 in course A in Canada, 14 in course B in the
United States). In course A, PTs watched videos of children who stated that5 + 0 = 0. In
course B, PTs reacted to written artifacts stating the same thing. The authors’ stated reason
for changing from video to written artifacts was to eliminate distractors from the
mathematics, such as PTs focusing on the child’s emotional state or the interviewer’s
actions. Crespo and Nicol found that initially almost all PTs in both courses thought that
5+ 0 = 0. They stated “the preservice teachers’ initial understandings of 0 and division by 0
were founded more on rule-based and flawed reasoning than on well-reasoned
mathematical explanations and that they lacked the experience and inclination to

understand or appreciate different ideas and approaches to this topic” (p. 94). Examining
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the artifacts and discussing them helped the PTs make sense of division by zero, and at the
end of the study, only two PTs remained who thought 5 + 0 = 0. The authors also noted that
division by zero is often overlooked in prospective teacher education, and with such a high
number of PTs entering with incorrect conceptions, we should include this topic into our
courses.

Glidden (2008) focused on order of operations and found that PTs in a mathematics
content course in the United States held superficial knowledge of the order of operations.
He found that many PTs who performed multiplication before addition—correctly followed
the order of operations—also performed addition before subtraction and multiplication
before division. He hypothesized that they take the mnemonic PEMDAS (i.e., “Please Excuse
My Dear Aunt Sally”) too literally. He also showed that almost 80% of the PTs used the
incorrect order of operations to execute -32.

Addressing PTs’ misconceptions through the use of manipulatives or
computer microworlds. One paper focused on addressing PTs’ misconceptions with the
use of manipulatives (Green et al., 2008), and one paper focused on addressing
understanding of factors, multiples, and primes using a computer microworld (Liljedahl
etal, 2007). Green et al. worked with two sets of PTs in the context of a child development
course. There were 53 PTs in the first study, which was conducted in Canada, and 39 PTs in
the second study, which was conducted in the United States. Green et al. explored the use of
manipulatives and found that manipulative-based instruction resulted in statistically
significant decreases in arithmetic misconceptions and statistically significant increases in
knowledge of the basic arithmetic operations. The authors reported that the use of

manipulatives can effectively reverse most arithmetic misconceptions of PTs and that the
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same activities used to reverse misconceptions can also improve the accuracy and depth of
arithmetic knowledge. Thus, they conclude, manipulatives can and should be used
effectively in PT classrooms.

Liljedahl et al. (2007) worked with 90 PTs enrolled in a content course. The authors
engaged the PTs in tasks using a computer-based microworld called Number Worlds to
encourage them to reason in new ways about basic concepts in elementary number theory.
The microworld represents sets of numbers in grids. The user can determine the set to be
represented and can also change the dimensions of the grid. The researchers stated that
“about one-half” of the 90 PTs spent time in the computer lab using Number Worlds, and
17 of those who used Number Worlds participated in follow-up interviews. The authors
reported that the PTs who used Number Worlds “thickened” their understandings of
factors, multiples, and primes. They described new connections that the PTs made based on
the visual representation of the microworld. The PTs noticed patterns that related to their
previous understandings of factors, multiples, and primes, such as occurrences of multiples
at regular intervals. They also developed new understandings that were grounded in visual
features of the microworld, such as patterns in the distribution of primes.

Summary of the current perspective. Our review revealed the following five
categories of current research examining PTs’ content knowledge of whole numbers and
operations: (a) PTs’ understanding of whole-number concepts, and the development
thereof; (b) PTs’ reasoning about alternative algorithms or nonstandard strategies; (c) PTs’
number sense; (d) PTs’ conceptions of arithmetic operations and the order of operations;
and (e) addressing PTs’ misconceptions through the use of manipulatives or computer

microworlds.
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Many PTs realize that they need to understand mathematics conceptually in order
to teach their future students for conceptual understanding (McClain, 2003). However, PTs
tend to approach tasks procedurally because they lack the conceptual understanding
required to do otherwise. For example, many PTs exhibit unsophisticated conceptions of
digits in whole numbers, which then limits their understanding of regrouping when adding
or subtracting (Thanheiser, 2009, 2010). Similarly with multiplication, PTs have difficulty
explaining why algorithms work, and their reasoning is not easily improved (Lo et al.,
2008). PTs may not recognize the difference between a procedural and conceptual
description of a solution (Lo et al., 2008). Related to these difficulties is the finding that PTs
tend rely on procedures, rather than make use of number sense (Menon, 2004; Tsao, 2005;
Yang, 2007). Many PTs are unable to describe relationships between numbers to arrive at a
solution efficiently (Menon, 2004). Furthermore, many PTs experience difficulty
understanding zero (Crespo & Nicol, 2006), and they have superficial understanding of the
order of operations (Glidden, 2008). Overall, PTs, especially the ones who struggled, relied
heavily on procedural knowledge.

Reflection on the current perspective. More research articles concerning PTs’
knowledge of whole numbers and operations appeared between 1998 and 2011 than
appeared prior to 1998. However, much remains to be learned about PTs’ mathematical
thinking in this area. As exemplified by the thinking of two PTs described in the
introduction of this paper, researchers have found that PTs rely on memorized procedures
involving whole numbers and operations. In addition, many PTs struggle to conceptually
explain why the procedures work. Some research has examined how mathematics

educators can help PTs develop more sophisticated conceptions, but there is still much
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work to do for the mathematics education community to better understand how PTs’
conceptions develop and how this development can be facilitated.

We note that several of the current research papers dealt with PTs’ conceptions
and/or the development thereof. This may suggest that mathematics educators are moving
away from a focus on snapshot studies explicating what PTs do and do not know and
toward attempting to understand PTs’ conceptions and how their knowledge develops. The
papers on alternative algorithms and nonstandard strategies address the need to help PTs
develop the ability to make sense of children’s mathematical thinking so that they will be
prepared to do more than present standard procedures to their students. The papers on
number sense show that PTs who exhibit better number sense are more able to make
conceptual sense of problems. Thus, there is a need to promote PTs’ number sense
development. The papers on using manipulatives and computer microworlds identify tools
that can help PTs make sense of mathematics. In the spirit of working from what PTs know
(CBMS, 2001), these articles contribute to the literature on PTs’ knowledge of whole
numbers and operations. Thus, the current literature helps mathematics educators to be
better equipped to support PTs’ learning. However, many open questions remain.

A View of the Horizon

Our review of journal articles published in 2012 and papers from PME and PME-NA

proceedings for conference years 2011 and 2012 yielded only three relevant results (see

Table 5).
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Table 5

Articles Published in 2012 and PME/PME-NA Proceedings From 2011 and 2012
Dealing With PTs’ Knowledge of Whole Numbers and Operation

Authors Year Number of PTs’ Level  Country Methodology
PTs Studied

Feldman 2012 59 PTs Content USA Pre/post interviews with 6
course PTs regarding their
understanding of number
theory, as well as pre/post
surveys of 59 PTs

Thanheiser 2012 1PT Content USA Two interviews in which one
course PT was asked to reason
about and justify addition
and subtraction algorithms
in different bases

Whitacre & 2012 7 PTs Content USA Interviews in which PTs

Nickerson course were asked to perform
mental computation and to
justify their strategies

Thanheiser (2012) offers a case study of a PT’s understanding of regrouping. The PT
seemed to hold all the essential knowledge pieces needed to give a conceptual explanation
for regrouping but was unable to do so. Thanheiser hypothesized that this may be due to
the PT’s lack of strategic knowledge (i.e., knowing when to draw on a piece of information).
This point highlights the need to attend not only to conceptual understanding but also to
strategic knowledge in PT content courses.

Whitacre and Nickerson (2012) report on PTs’ reasoning in the area of whole-
number mental computation. Building on the work of Yang (2007) that focused on the
strategies that PTs tend to use, Whitacre and Nickerson investigated the mathematical

justifications that U.S. PTs offer when using nonstandard mental computation strategies.
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The authors describe PTs’ justifications for both valid and invalid strategies. They draw
distinctions between the mathematical ideas involved in the various justifications in order
to clarify how PTs’ strategies make sense to the PTs themselves. This analysis sheds light
on PTs’ reasoning when using nonstandard mental computation strategies.

In particular, Whitacre and Nickerson (2012) report the mathematical ideas used in
PTs’ justifications for four nonstandard addition strategies and four nonstandard
subtraction strategies. This includes justifications for valid and invalid versions of
subtrahend compensation. For example, two PTs computed 125 - 49 mentally to find the
amount that a vendor would profit if he bought an item for $49 and then sold it for $125.
Both PTs rounded 49 to 50, and both knew that 125 - 50 equaled 75. However, their
thinking differed when it came to how to compensate for the initial rounding move. Trina
reasoned that she should add 1 to 75 because by adding 1 to 49 she had “pretended [the
vendor] used more money than he did,” thus decreasing his profit. By contrast, Natalie
reasoned that she had added 1 to “the problem” and now had to subtract 1 from the
problem in order to compensate (p. 779). Thus, Trina distinguished the roles of minuend
and subtrahend, and this enabled her to determine how to compensate correctly. By not
making this distinction, Natalie drew the incorrect conclusion regarding how to
compensate. These fine-grained distinctions in PTs’ justifications reveal the reasoning
underlying their strategies.

The only other report concerning PTs’ knowledge of whole numbers and operations
was a paper of Feldman (2012). Feldman gave a poster presentation, so the information in
the proceedings paper is quite limited. He studied PTs’ developing understanding of

number theory during instruction on number theory in a mathematics content course in
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the United States. Feldman used action-process-object-schema theory (Dubinsky, 1991) to
analyze participants’ interview responses and describe transitions between levels of
understanding. He also mentions quantitative data that points to changes in PTs’
understanding of number theory.

Summary of the view of the horizon. Although only three papers appeared in
2012 journals and recent PME and PME-NA proceedings, these reports do point to
promising directions for research related to PTs’ knowledge of whole numbers and
operations. Each report involves analyses that move beyond pointing out deficits in PTs’
content knowledge. Instead, these papers concern understanding PTs’ reasoning in depth
and studying the development of that reasoning. The report of Whitacre and Nickerson
(2012) derives from Whitacre’s (2012) dissertation, which focuses on PTs’ number sense
development. Note that in this work we did not search for or review dissertations. In the
coming years, we hope that relevant dissertations, such as the works of Roy (2008) and
others, will lead to valuable contributions to the research literature concerning PTs’
knowledge of whole numbers and operations and the development thereof.

Conclusion

We have summarized research literature concerning PTs’ knowledge of whole
numbers and operations in A Historical Look, A Current Perspective, and A View of the
Horizon. Taking a step back to view the history of this research literature, we see a
progression. Not only has more research been done and more learned in this area, but
there is also evidence of a shift in emphasis. We know that there are inadequacies in PTs’
knowledge, and these are cause for concern. Recently, researchers have become more

interested in investigating the nuances of PTs’ conceptions and the further development of
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their conceptions. We see the emphasis on deficits and misconceptions giving way to
insightful characterizations of how PTs reason when doing mathematics and how they can
make use of what they know as they develop more sophisticated conceptions. We are
optimistic about the future of research on PTs’ knowledge of whole numbers and
operations because the kind of research being done has the potential to illuminate our
understanding of PTs’ mathematical thinking and to better equip mathematics teacher
educators to help PTs make sense of mathematics in new ways.

We conclude with a few suggestions regarding directions for future research:

e There is a need for more research like that of Thanheiser (2009, 2010) that
provides insightful characterizations of PTs’ conceptions, rather than
evaluations of PTs’ knowledge that emphasize what they do not know. Such
findings can help mathematics teacher educators to better understand PTs’
thinking and to envision how PTs’ conceptions can develop over time.

e There is a need for more work like that of McClain (2003) and Yackel et al.
(2007) that moves beyond snapshot studies of content knowledge to document
PTs’ learning process in an illuminating manner. Such studies have the potential
to advance the field both theoretically and practically by helping mathematics
teacher educators to better understand how to support productive learning in
courses for PTs.

These and other suggestions are discussed in greater detail in “Mathematical

Content Knowledge for Teaching Elementary Mathematics: What Do We Know, What Do

We Not Know, and Where Do We Go?” in this Special Issue.
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