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The Effectiveness of Sanitary Inspections as a Risk Assessment Tool for Thermotolerant
Coliform Bacteria Contamination of Rural Drinking Water: A Review of Data
from West Bengal, India

Christian Snoad," Corey Nagel,? Animesh Bhattacharya,® and Evan Thomas'**

'DelAgua Health, The OId Dairy, Marlborough, Wiltshire, United Kingdom; 2OHSU/PSU School of Public Health, Oregon Health and Science

University, Portland, Oregon; 3West Bengal Public Health Engineering Department, Kolkata, India; “Department of Mechanical and Materials
Engineering, Portland State University, Portland, Oregon

Abstract. The use of sanitary inspections combined with periodic water quality testing has been recommended
in some cases as screening tools for fecal contamination. We conducted sanitary inspections and tested for
thermotolerant coliforms (TTCs), a fecal indicator bacteria, among 7,317 unique water sources in West Bengal,
India. Our results indicate that the sanitary inspection score has poor ability to identify TTC-contaminated sources.
Among deep and shallow hand pumps, the area under curve (AUC) for prediction of TTC > 0 was 0.58 (95% confi-
dence interval [CI] = 0.53-0.61) and 0.58 (95% CI = 0.54-0.62), respectively, indicating that the sanitary inspection
score was only marginally better than chance in discriminating between contaminated and uncontaminated sources
of this type. A slightly higher AUC value of 0.64 (95% CI=0.57-0.71) was observed when the sanitary inspection
score was used for prediction of TTC > 0 among the gravity-fed piped sources. Among unprotected springs (AUC =
0.48, 95% CI = 0.38-0.55) and unprotected dug wells (AUC = 0.41, 95% CI = 0.20-0.66), the sanitary inspection
score performed more poorly than chance in discriminating between sites with TTC < 1 and TTC > 0. Aggregating
over all source types, the sensitivity (true positive rate) of a high/very high sanitary inspection score for TTC contami-
nation (TTC > 1 CFU/100 mL) was 29.4% and the specificity (true negative rate) was 77.9%, resulting in substantial
misclassification of the sites when using the established risk categories. These findings suggest that sanitary surveys

are inappropriate screening tools for identifying TTC contamination at water points.

INTRODUCTION

Water-related diseases continue to constitute a signifi-
cant health burden globally and in rural India.” A strong
association between thermotolerant coliforms (TTCs), a fecal
indicator bacteria (FIB), and diarrhea disease has been iden-
tified in the literature.*® In India, national regulations stipulate
that all rural drinking water sources should be tested twice
per year for FIB, with sanitary inspections (Sls) conducted
at the same time as sample collection.

First introduced in 1991 and published in the World
Health Organization (WHO) monitoring guidelines in 1993,
Sls have become a common component of global water
quality surveillance programs.®® They were developed to
provide a rudimentary comparable method for quantifying
risk factors that can contribute to microbiological contami-
nation of water sources. Sls include a simple visual assess-
ment of typically around 10 risk factor questions, specific
to the source type, which are answered with yes or no
responses. Each risk factor question is weighted equally.®
The sum of all the questions answered “yes” is the sanitary
inspection score (SIS). The higher the SIS value the higher
the category of risk. The SIS and FIB results can be
grouped into risk categories and combined on a risk priori-
tization matrix.®'® An example of risk prioritization matrix
is shown in Supplemental Table 1. In this example, values
that fall within red blocks may be prioritized at a higher level
by remediation authorities. Sanitary Inspections may be
adapted to local contexts” such as modifying the minimum
distance to a latrine based on local lithological conditions. "

*Address correspondence to Evan Thomas, Portland State
University, 1930 SW 4th Ave., Suite 400, Portland, OR 97201.
E-mail: evan.thomas@pdx.edu
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In some cases, sanitary surveys have been presented as
useful in predicting the presence of FIB contamination,
including in guidance provided by the WHO, stating, “It is
possible to assess the likelihood of fecal contamination of
water sources by a sanitary survey. This is often more valu-
able than bacteriological testing alone, because a sanitary
survey makes it possible to see what needs to be done to
protect the water source, and because fecal contamination
may vary, so a water sample only represents the quality of
the water at the time it was collected.”

However, existing literature have identified a poor statisti-
cal correlation between sanitary survey score and presence
of FIB such as TTC.%>'2 Previous studies have analyzed the
effectiveness of Sls using varying methods. Some studies
have looked at the relationship between the overall SIS and
FIB concentration.'®™'® Others have analyzed the relation-
ship between individual Sl risk questions and FIB concen-
tration using logistic regression.'®® Further studies applied
the multivariate analysis sanitary hazard index to prioritize
remedial actions and assessed the resulting impact.”'” Of
the studies that assessed the relationship between the over-
all SIS and FIB, only one, using a sample size of nine wells,
found a statistically significant association.’* Other studies
found either no or weak associations using either linear
regression, odds ratio (OR) or Spearman’s rank.'213:1°

Notably, no study to date has specifically evaluated the
discriminatory performance of the Sl as a method to screen
water sources for potential fecal contamination as mea-
sured by TTC. The distinction between statistical associ-
ation and predictive performance is an important one,
because the presence of a statistically significant rela-
tionship does not guarantee that the measure will prove
useful in discriminating between cases with and without
the target outcome. Therefore, in addition to examining the
statistical association between the results of the S| and
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microbiological testing, this study assesses the accuracy
of the Sl to identify TTC-contaminated water sources.

MATERIALS AND METHODS

DelAgua Health, a UK-based social enterprise, was
contracted by the West Bengal Public Health Engineering
Department (WBPHED) to coordinate and manage the test-
ing of 7,317 unique water sources as part of the State’s
annual routine testing program. The project involved testing
for 14 parameters, conducting Sls and creating onsite com-
munity awareness. All the data used in this analysis were
collected by this project.

Testing was carried out by 18 operators selected and
provided by the WBPHED, 13 from PHED laboratories and
5 from laboratories run by nongovernmental organizations.
In addition, DelAgua Health provided three mobile labora-
tory technicians for extra field support. All 21 operators were
trained in conducting Sls and microbiological analysis. Of
the operators, 20 hold relevant degree-level qualifications.

Target area. In support of a state-wide annual testing
routine, water quality laboratories were operated in 18 dis-
tricts in West Bengal, India. Each district tested at least
400 water sources within a 6-month period. The exact
locations and water points to be tested were selected by
the district PHED executive engineer, assistant engineer,
and chemist. The area selected targeted villages that had
not yet been tested within the annual testing program, thus
forming a crude convenience sample. Figure 1 shows in
blue the administrative blocks in West Bengal where testing
was conducted. Darker shading approximates the block-
level density of water points tested.

Sanitary surveys. The Sl forms used for the program
were provided by the Government of India Uniform Drinking
Water Quality Monitoring Protocol (UDWQMP).'® A different
S| form, each with yes/no questions, was used for each
of the water source types (Supplemental Table 2). Water
source type was determined by the test operator, in line
with the UDWQMP guidelines. As there is no formal consis-
tent definition to determine whether a hand pump is deep
or shallow, this was determined by the test operator based
on their local knowledge and asking the local community.

The Sls were conducted on-site before collecting a sam-
ple for microbiological analysis. The forms were filled out
directly into a smartphone form application designed by
DelAgua through an enhanced commercial version of the
Open Data Kit (ODK) (www.doforms.com). The form pre-
sented to the user loaded automatically depending on the
type of water source selected.

Microbiological analysis. The TTCs were used as the
FIB and are recognized by the Indian standard methods
as an acceptable alternative to testing for Escherichia coli
directly.’® It has been reported that in nontropical climates
at least 95% of TTC are E. coli.82° However, in tropical
environments, TTC may originate from non-fecal sources or
multiply within certain tropical waters, thus overestimating
the fecal contamination risk in some cases.?%2°

The analysis of TTC bacteria was carried out using the
Indian standard membrane filtration method with membrane
lauryl sulfate broth growth media.'® The number of colony
forming units (CFU) was enumerated by counting the yellow
colonies after an incubation at 44 + 0.5°C for 16—18 hours.

Y

Ficure 1. Water point locations tested in West Bengal adminis-
trative blocks.

Incubation was performed in a DelAgua brand dual incuba-
tor portable test kit, with one incubator calibrated to 37 +
0.5°C and the other to 44 + 0.5°C. The samples were col-
lected in line with Indian standards, but modified for a
2-minute initial purging for hand pumps. Each mobile labo-
ratory system was equipped with cool bags and ice packs.
Where freezing of ice packs was not possible, samples
were kept in cool bags and processed as soon as possi-
ble. The samples were processed and incubation started
between 2 and 7 hours from sample collection. Each labo-
ratory conducted standard sterilization methods for sample
bottles and reusable aluminum plates, using either an auto-
clave or pressure cooker with heating plate.

A stack blank testing was conducted each day for each
bottle of growth media used to verify that it had not become
contaminated, as demonstrated by a color change on an
incubated wetted media pad. A manifold blank testing, car-
ried out with 100 mL of distilled water filtered through a filter
paper, was targeted to be carried out as a negative control
for 100% of samples before sample filtration to confirm suc-
cessful sterilization of the filtration manifold. A duplicate split
sample approach was used for 14% of samples to assess
operator and process precision and provide a positive con-
trol. A duplicate set of plates were considered normal, if the
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second plates count was within a 95% confidence limit of
the first, assuming a Poisson distribution of bacteria in the
water." Of the duplicate tests, 98% were considered normal.
Further positive controls through E. coli testing and nega-
tive controls with Enterobacter aerogenes species were not
conducted as part of this program.

Test results were recorded into the custom smartphone
application and photos of the plates were taken. The
data were transmitted to a secure server via the cellular
data networks and processed and displayed on a project
website dashboard. The incoming results were checked
daily by the program manager and data analyst including
verifying plate counts.

Data analysis method. Results of the S| conducted
at each water source were scored to yield the SIS and
sites were assigned a SIS risk category. Each “yes” answer
scored a 1, and each “no” a 0. A total score indicated a
SIS risk category. On a 10-question survey, categories are
assigned as low risk (0—2), intermediate risk (3—5), high risk
(6-8), very high risk (9—10), an established WHO scoring
criteria.’® The number and nature of survey questions dif-
fered between water source type (Supplemental Table 2). In
the case of surveys with 8, 9, and 11 questions, we propor-
tioned the scoring to match the 10-question structure. Raw
TTC counts were collapsed into categories based on WHO
guidelines: < 1 CFU/100 mL—in conformity with WHO
guidelines (A category, Supplemental Table 1), 1-10 CFU/
100 mL—Ilow risk (B), 11-100 CFU/100 mL—intermediate
risk (C), 101-1,000 CFU/100 mL—high risk (D), > 1,000 CFU/
100 mL—uvery high risk (E). The results of the Sl and micro-
biological testing were combined using the WHO risk pri-
oritization matrix to calculate each site’s prioritization for
remedial action. An example of risk prioritization matrix is
shown in Supplemental Table 1.'°

Logistic regression was used to test the association
between the results of the Sl and the probability of site TTC
contamination. We dichotomized the raw TTC count to create
three binary indicators of TTC contamination: TTC < 1 CFU/
100 mL versus TTC > 0 CFU/100 mL, TTC < 10 CFU/100 mL
versus TTC > 10 CFU/100 mL, and TTC < 100 CFU/100 mL
versus TTC > 100. We regressed each of these binary indica-
tors against the raw SIS to examine whether any observed
associations varied in relation to the magnitude of TTC con-
tamination. Separate models were fitted for each water
point type. We also fit bivariate logistic regression models
to assess the association of each Sl item with site contami-
nation. The parameter estimates from fitted models were
exponentiated to yield ORs. Significance tests and 95%
confidence intervals (Cls) were calculated using robust
standard errors to account for village-level clustering.

Next, we evaluated the discriminatory ability of the SI
when used as a method of screening water points for TTC
contamination. An effective screening method should have
both high sensitivity and high specificity to predict the tar-
get condition.?* In this study, sensitivity, also referred to as
the true positive rate, quantifies the ability of the Sl to cor-
rectly identify a contaminated water point. It was calculated
as TP/(TP + FN), where TP are true positives (the number of
contaminated water points with a SIS at or above a pre-
specified threshold) and FN are false negatives (the number
of contaminated water points with a SIS below that same
threshold). Specificity, or true negative rate, on the other

hand, provides a metric of the ability of the Sl to correctly
identify an uncontaminated water point. It was calculated
as TN/(TN + FP), where TN are true negatives (the number
of uncontaminated water points with an SIS below a pre-
specified threshold) and FP are false positives (the number
of uncontaminated water points with a SIS at or above that
same threshold).

In a screening test with a range of possible scores, the
sensitivity and specificity are dependent on the cut point
chosen to distinguish cases with the condition from cases
without the condition. The standard method of evaluating
the overall discriminatory ability of a continuous screening
test is the receiver operator characteristic (ROC) curve. An
ROC curve plots the true positive rate (sensitivity) against
the false positive rate (1 specificity) for each possible cut
point (e.g., for each possible SIS) over the response range
of a given screening test. The area under the ROC curve
(AUC) provides a global metric of the measure’s accuracy
in predicting the outcome. An AUC of 1.0 indicates perfect
prediction, whereas an AUC of 0.5 indicates a screening test
that is no better than chance.?* In addition, ROC curves are
useful in identifying the specific threshold value of a screen-
ing test that maximizes sensitivity and specificity.

Using the raw SIS, we grouped water points by type and
constructed ROC curves for each of the binary FIB cut points
described earlier (TTC > 0, TTC > 10, and TTC > 100).
We used a semi-parametric approach to calculate the AUC
and estimated pointwise 95% Cls for the ROC curve using
bootstrap resampling (5,000 replications).?®> We accounted
for village-level clustering in the resampling procedure. In
addition, we calculated the sensitivity and specificity, with
corresponding bootstrap 95% Cls, of a “high-risk” SIS to
identify sites with contamination levels exceeding each of
the binary FIB cut points. Finally, we tested whether the
discriminatory ability of the S| could be improved by remov-
ing items that were not significantly associated with site
contamination in bivariate analyses and reverse coding
items when the observed association was in the opposite
direction from that specified in the original SI form. We
recalculated the AUC for each comparison using this
revised scoring, and recalculated the sensitivity (true posi-
tive rate) and specificity (true negative rate) of a high-risk
score, defined as positive responses to at least 50% of
inspection items (consistent with WHO categorization). To
assess for potential bias in the point estimate of the AUC
related to the choice of estimation method (semi-parametric
versus nonparametric), we repeated all ROC analyses using
nonparametric estimation methods and compared the AUC
estimates.?®>2° In each case, the semi-parametric AUC esti-
mate was within two percentage points of the correspond-
ing nonparametric estimate, indicating that there was no
bias in AUC results related to our choice of estimator. All
statistical analyses were conducted using Stata 14 (Stata
Corporation, College Station, TX).

RESULTS

A total of 7,317 water sources were tested by the project.
Stack and/or manifold blank testing indicated that 48 sites
had contaminated test samples and results from these sites
were discarded. In addition, 27 of the water sources con-
sisted of various uncommon source types and were not
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TasLE 1
Sanitary inspection, microbiological testing, and WHO risk prioritization by source type

Deep hand pump Shallow hand pump Unprotected spring Gravity-fed piped Unprotected dug well Total
(N =5,126) (N =1,347) (N = 381) (N = 356) (N =32 (N =7,242)

Sanitary inspection®

Low risk, N (%) 2,148 (41.9) 190 (14.1) 175 (45.9) 326 (91.6) 21 (65.6) 2,860 (39.5)

Intermediate risk, N (%) 1,999 (39.0) 428 (31.8) 206 (54.1) 26 (7.3) 6 (18.8) 2,665 (36.8)

High risk, N (%) 899 (17.5) 612 (45.4) 0(0) 4(1.1) 4 (12.5) 1,519 (21.0)

Very high risk, N (%) 80 (1.6) 117 (8.7) 0(0) 0(0) 1(3.1) 198 (2.73)
TTC

<1,N (%) 4,029 (78.6) 1,107 (82.2) 225 (59.1) 265 (74.4) 12 (37.5) 5,638 (77.9)

1-10, N (%) 646 (12.6) 37 (2.8) 31 (8.1) 34 (9.6) 1(3.1) 749 (10.3)

11-100, N (%) 219 (4.3) 89 (6.6) 51 (13.4) 27 (7.6) 7 (21.9) 393 (5.4)

101-1,000, N (%) 171 (3.3) 43 (3.2) 56 (14.7) 23 (6.5) 6 (18.8) 299 (4.1)

> 1,000, N (%) 61 (1.2) 71 (5.3) 18 (4.7) 7 (2.0) 6 (18.8) 163 (2.3)
WHO risk prioritization

No action (%) 11 6 0 39 16 11

Low action (%) 55 26 67 42 6 49

Higher action (%) 28 37 14 12 28 28

Urgent action (%) 6 31 19 7 50 12

TTC = thermotolerant coliforms; WHO = World Health Organization.

*On a 10-question survey, categories are assigned as low risk (0—2), intermediate risk (3—5), high risk (6—8), very high risk (9—10), an established WHO scoring criteria.’® The number
and nature of survey questions differed between water source type (Supplementary Material B). In the case of surveys with 8, 9, and 11 questions, we proportioned the scoring to match the

10-question structure.

included in the analysis. This yielded a final sample of
7,242 water points, of which 5,126 were deep hand pumps,
1,347 were shallow hand pumps, 381 were unprotected
springs, 356 were piped supplies, and 32 were unprotected
dug wells.

Sl of the water points resulted in 23.7% being categorized
as high/very high risk of TTC contamination based on the
established SIS threshold (Table 1). The results of the Sls var-
ied considerably across water source types. Shallow hand
pumps had the highest proportion of sites that were deemed
high/very high risk (54.1%), followed by deep hand pumps
(19.1%) and unprotected wells (15.6%). Notably, no unpro-
tected springs had SISs indicative of high/very high risk of
contamination. Gravity-fed piped sources had the highest
proportion of sites (91.6%) with SISs in the low-risk category.

Microbiological testing (Table 1) revealed that 22.1% of
sites had evidence of TTC contamination (TTC > 0 CFU/
100 mL). About 11.8% of sites had TTC counts greater
than 10 CFU/100 mL and 6.4% had TTC counts > 100 CFU/
100 mL. The protected source types had the lower rates of
TTC contamination compared with the unprotected source
types. The lowest prevalence of TTC contamination (17.8%)
was found among shallow hand pumps, notable given the
high proportion of shallow hand pumps with SISs in the
high/very high-risk category. Of the protected source types,
the highest proportion of TTC-contaminated sites was
among the gravity-fed piped sources (25.6%). The propor-
tion of TTC-contaminated sites among unprotected springs
was 40.9%, none of which had SIS at or exceeding the

high-risk threshold. The highest prevalence of TTC contam-
ination was found among unprotected dug wells (62.5%),
also notable given the low number of sites of this type with
high/very high-risk SISs (15.6%).

The results of logistic regression models of the associa-
tion between the raw SIS and the presence of TTC are
presented in Table 2. We observed significant associations
between the SIS and the probability of a TTC count > 0
among deep hand pumps (OR = 1.16, 95% CI = 1.10-1.22),
shallow hand pumps (OR = 1.11, 95% CI = 1.04-1.19),
and gravity-fed piped supplies (OR = 1.46, 95% CI = 1.18—
1.80). There was no significant relationship between the
SIS and a TTC count of > 0 among unprotected springs
(OR = 0.96, 95% CI = 0.67—1.39) or unprotected dug wells
(OR =0.92, 95% CI = 0.69-1.21). There were no significant
associations between raw SIS and the probability of a TTC
count > 10 or TTC > 100 for any of the water source types.

The association between each Sl item and the probability
of site contamination is presented in Supplemental Table 2.
Across the water source types, the SI among deep hand
pumps yielded the greatest number of significant items,
with eight of the nine items significantly associated with
a TTC count > 0. Of these items, five were consistently
associated with site contamination across the specified
TTC thresholds (TTC >10, TTC >100, see Supplemental
Table 2, deep hand pumps HP1, HP2, HP4, HP5, and HP6).
Unexpectedly, the two items regarding the proximity and
location of latrines were negatively associated with the like-
lihood of site contamination. We observed reduced odds of

TaBLE 2
Logistic regression of water source contamination on sanitary inspection score by water source type

TTC >0 TTC > 10 TTC > 100
Source type OR (95% CI) P value OR (95% Cl) P value OR (95% Cl) P value
Deep hand pump 1.16 (1.10-1.22) < 0.001 1.09 (0.99-1.20) 0.087 0.99 (0.85-1.16) 0.931
Shallow hand pump 1.11 (1.04-1.19) 0.003 1.06 (0.99-1.14) 0.093 1.07 (0.98-1.18) 0.127
Unprotected spring 0.96 (0.67—1.39) 0.846 0.99 (0.64-1.54) 0.969 0.86 (0.66-1.13) 0.289
Gravity-fed piped supply 1.46 (1.18-1.80) < 0.001 1.15 (0.92—1.43) 0.219 1.06 (0.78—1.46) 0.709
Unprotected dug well 0.92 (0.69-1.21) 0.534 0.87 (0.67-1.11) 0.261 0.823 (0.62—1.10) 0.182

Cl = confidence interval; OR = odds ratio; TTC = thermotolerant coliforms.
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Ficure 2. Receiver operator characteristic curves and area
under the curve (AUC) values for prediction of thermotolerant coli-
forms (TTC) contamination using the sanitary inspection score for
each water source type for TTC > 0. The dashed line (AUC = 0.5)
represents a non-discriminating test; that is, one that performs no
better than chance. Values above dashed line indicate better than
chance predictive ability and below line indicate worse than
chance.

contamination (TTC > 0) among sites with a latrine within
10 m (OR = 0.65, 95% CI = 0.045-0.093, P = 0.018) and
with a latrine on higher ground (OR = 0.59, 95% CI = 0.41—
0.84, P = 0.001). These associations were significant across
contamination thresholds. Among shallow hand pumps, six
of the nine hand pump items were associated with signifi-
cantly greater odds of the site having a TTC count > 0.
There was no observed association between the size of the
cement floor around the well or the proximity or location of
the nearest latrine and having a TTC count > 0. Only three
of the survey items (cracks or defects on the cement floor,
ponding on the cement floor, and priming required during
the dry season) were significantly associated with a TTC
count > 10 among shallow hand pumps, and no item was
significantly associated with a TTC > 100.

Among piped supplies, two of the 10 Sl items were asso-
ciated with site TTC > 0. Sites with unchlorinated water in
the reservoir (OR = 2.32, 95% CI = 1.13-4.76, P = 0.22) or
with < 0.2 ppm free residual chlorine in the principal distri-
bution pipes (OR = 2.41, 95% Cl = 1.28-4.54, P = 0.006)
had more than twice the odds of TTC > 0. Unchlorinated
reservoir water was not significantly related with TTC > 10
or TTC > 100. Low levels of residual chlorine in the principal
distribution pipes were more strongly associated with
higher thresholds of site contamination. We were unable to
model the association between the item querying leaks in
the distribution system and TTC contamination, as there
was only one positive response to this item, although we
note that microbial testing at this site did indicate the pres-
ence of TTC contamination.

Two of the eight factors included in the Sl of unprotected
springs had no positive responses (latrine upstream of the
spring and contaminant silt or animal excreta observed in
the spring box). In addition, all the three sites observed to
have unsanitary overflow pipes had TTC > 10, preventing
calculation of ORs for contamination thresholds TTC > 0 and
TTC > 10. Of the remaining five items with estimable odds
ratios, none were associated with TTC >0 or TTC >10. An
unsanitary overflow pipe was associated with significantly
greater odds (OR = 8.5, 95% Cl = 2.06-35.13, P = 0.003) of
TTC > 100, as was an absent or nonfunctional surface
water diversion ditch (OR = 2.57, 95% CI = 1.3-5.09, P =
0.007). Surprisingly, unfenced sites were significantly less
likely than fenced sites to have TTC > 100 (OR = 0.58, 95%
Cl =0.37-0.91, P = 0.019).

Among dug wells, there were no sites with positive
responses for the items “Is the nearest latrine on higher
ground?” or “Are there cracks/defects in the cement floor?”
None of the items were significantly associated with TTC
contamination at any of the defined thresholds.

The ROC curves of the SIS predicting TTC contamination
are shown in Figures 2—4. Across source types and TTC
contamination thresholds, the SIS was, at best, a poor pre-
dictor of site contamination. Among deep and shallow hand
pumps, the AUC for prediction of TTC > 0 was 0.58 (95%
Cl = 0.53-0.61) and 0.58 (95% CI| = 0.54-0.62), respec-
tively, indicating that the SIS was only marginally better
than chance in discriminating between contaminated and
uncontaminated sources of this type. A slightly higher AUC
value of 0.64 (95% CI = 0.57-0.71) was observed when the

TTC>10

True-positive rate (sensitivity)

— Handpump-deep (AUC = 0.53)
— Handpump-shallow (AUC = 0.53)
— Unprotected spring (AUC = 0.48)
— Gravity-fed piped (AUC = 0.54)
Unprotected dug well (AUC = 0.38)
0 2 4 6 B i

False-positive rate (1-specificity)

Ficure 3. Receiver operator characteristic curves and area
under the curve (AUC) values for prediction of thermotolerant coli-
forms (TTC) contamination using the sanitary inspection score for
each water source type for TTC > 10. The dashed line (AUC = 0.5)
represents a non-discriminating test; that is, one that performs no
better than chance. Values above dashed line indicate better than
chance predictive ability and below line indicate worse than
chance.
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TTC>100

True-positive rate (sensitivity)

— Handpump-deep (AUC = 0.47)
— Handpump-shallow (AUC = 0.54)
— Unprotected spring (AUC = 0.46)
— Gravity-fed piped (AUC = 0.55)

Unprotected dug well (AUC = 0.35)
T T T T T T T T T T T
0 2 4 ] 8 1

False-positive rate (1-specificity)

Ficure 4. Receiver operator characteristic curves and area
under the curve (AUC) values for prediction of thermotolerant coli-
forms (TTC) contamination using the sanitary inspection score for
each water source type for TTC > 100. The dashed line (AUC = 0.5)
represents a non-discriminating test; that is, one that performs no
better than chance. Values above dashed line indicate better than
chance predictive ability and below line indicate worse than
chance.

SIS was used for prediction of TTC > 0 among the gravity-
fed piped sources. Among unprotected springs (AUC =
0.48, 95% CIl = 0.38-0.55) and unprotected dug wells
(AUC = 0.41, 95% CI = 0.20-0.66), the SIS performed more
poorly than chance in discriminating between sites with
TTC < 1 and TTC > 0. Across source types, the perfor-
mance of the SIS decreased when attempting to identify
sites with greater levels of contamination (Table 3).

Using the established SIS categorization for each source
type survey, the performance of a high/very high SIS to
screen for TTC contamination is presented in Table 4.
Aggregating over all source types, the sensitivity of a high/
very high risk SIS indicating a true positive rate for sites
with TTC > 0 was 29.4% (95% Cl = 23.4-34.5), whereas
the specificity was 77.9% (95% CI = 74.5-80.1). The per-
formance varied considerably by source type. For all source
types but shallow hand pumps, the sensitivity was less than
30%, indicating that more than two-thirds of contami-

nated sites had SISs indicating low/intermediate risk. No
unprotected spring received a high/very high SIS, although
40.9% of unprotected springs had TTC > 0. Similarly, only
three of the 91 gravity-fed piped sources with TTC > 0 had
high/very high SISs, resulting in a sensitivity of 3.3 (95%
Cl = 0.9-8.3). Among shallow hand pumps, the sensitivity
was 66.3% (58.5-73.6), but this was accompanied by a
specificity of 48.5% (42.5-54.6). Consistent with the results
of the ROC analysis, there were only modest differences in
sensitivity (true positive rate) and specificity (true negative
rate) at higher levels of TTC contamination.

We achieved little improvement in discriminatory ability of
the SI among hand pumps and unprotected springs when
the scoring was limited to the subset of items observed to
have statistically significant associations with source quality
(Supplemental Table 3). The notable exception was among
gravity-fed piped supplies. The single Sl item that was
significantly associated with TTC > 10 and TTC > 100, the
presence of < 0.2 ppm free residual chlorine in the principal
distribution pipes, displayed better ability than the full Sl to
identify sites with moderate (AUC = 0.66 versus 0.54) and
high (AUC = 0.78 versus 0.55) contamination.

DISCUSSION

The use of Sls has been recommended by the WHO as a
simple and cost-effective method of identifying microbio-
logical risks to water quality, although the evidence to
support this recommendation has been mixed. This study
of 7,242 water points in West Bengal found that the SIS
showed poor ability to identify TTC-contaminated sources.
This finding was consistent across the five source types
represented in the study population and largely invariant to
increasing the threshold for defining sites as contaminated.
For hand pumps and gravity-fed piped supplies, ROC analy-
sis revealed that the SIS was marginally better than chance
in predicting whether water points were TTC contaminated.
Among unprotected springs and unprotected dug wells,
the SIS performed worse than chance at predicting TTC
contamination whether it was defined as a TTC count of
>0, > 10, or > 100 CFU/100 mL.

Aggregating over all source types, the sensitivity (true
positive rate) of a high/very high SIS for TTC contamina-
tion (TTC > 0 CFU/100 mL) was 29.4% and the specificity
(true negative rate) was 77.9%. This resulted in substantial
misclassification of the sites when using the established
risk categories for the SIS. For every water point with con-
firmed TTC contamination that was correctly labeled as
high risk based on the SIS, 2.6 contaminated sites had a
score below the high-risk threshold. Similarly, for every

TaBLE 3
Area under the curve by water source type and TTC count threshold

TTIC>0

Source type

AUC (95% CI)

Deep hand pump

Shallow hand pump
Unprotected spring
Gravity-fed piped supplies
Unprotected dug well

0.58 (0.53-0.61)
0.58 (0.54-0.63)
0.48 (0.38-0.55)
0.64 (0.57-0.71)
0.41 (0.20-0.66)

TTC > 10 TTC > 100
AUC (95% Cl) AUC (95% Cl)
0.53 (0.46 —0.59) 0.47 (0.37-0.58)
0.53 (0.48-0.57) 0.54 (0.47-0.59)
0.48 (0.37-0.56) 0.46 (0.38-0.53)
0.54 (0.48-0.64) 0.55 (0.44-0.69)
0.38 (0.22-0.60) 0.35 (0.17-0.50)

AUC = area under curve; Cl = confidence interval; TTC = thermotolerant coliforms.
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TaBLE 4
Sensitivity (true positive rate) of a high/very high sanitary inspection score

Sensitivity %
(true positive rate)
5% CI

Specificity %
(true negative rate)

Source type True positive, N (%)  True negative, N (%)
TTC >0
Deep hand pump 306 (6.0) 3,356 (65.5)
Shallow hand pump 159 (11.8) 537 (39.9)
Unprotected Spring 0(0) 225 (59.1)
Gravity-fed piped supplies 3(0.8) 264 (74.2)
Unprotected dug well 3 (9.4) 10 (31.3)
All source types 471 (6.5) 4,392 (60.7)
TTC > 10
Deep hand pump 128 (2.5) 3,824 (74.6)
Shallow hand pump 129 (9.6) 544 (40.4)
Unprotected spring 0(0) 256 (67.2)
Gravity-fed piped supplies 2 (0.6) 297 (83.4)
Unprotected dug well 2 (6.3) 10 (31.3)
All source types 261 (3.6) 4,931 (68.1)
TTC > 100
Deep hand pump 56 (1.1) 3,971 (77.5)
Shallow hand pump 76 (5.6) 580 (43.1)
Unprotected spring 0 307 (80.6)
Gravity-fed piped supplies 1(0.3) 323 (90.7)
Unprotected dug well 0 (0.00) 15 (46.9)
All source types 133 (1.8) 5,196 (71.8)

False positive, N (%)  False negative, N (%) (95% Cl) (95% Cl)
3 (13.1) 791 (15.4) 7.9 (21.9-34.0) 83.3 (79.5-86.6)
0 (42.3) 1 (6.0) 6.3 (58.5-73.6) 48.5 (42.5-54.6)
0 (0) 156 (40.9) 0 (n/a) 100 (n/a)
1(0.3) 8 (24.7) 3.3 (0.9-8.3) 99.6 (99.2-99.7)
2 (6.3) 7 (53.1) 15.0 (4.8-30.0)  83.3 (63.6-92.9)
3 (15.7) 1 246 (17.2) 29.4 (23.4-34.5) 77.9 (74.5-80.1)
851 (16.6) 323 (6.3) 8.4 (20.7-36.3) 81.8 (77.4-85.3)
600 (44.5) 74 (5.5) 3 6 (55.6-71.1) 47.6 (41.3-53.7)
0 (0) 125 (32.8) 0 (n/a) 100 (n/a)
2 (0.6) 55 (15.5) 3.5(1.2-9.8) 99.3 (98.2-99.7)
3(9.4) 17 (53.1) 10 53 (4.6-23.8)  76.9 (46.2-92.9)
1,456 (20.1) 594 (8.2) 0.5 (24.2-37.0) 77.2 (73.5-80.4)
923 (18.0) 176 (3.4) 4.1 (15.2-33.5) 81.1 (76.7-84.7)
653 (48.5) 38 (2.8) 6.7 (55.2-77.2) 47.0 (41.3-53.1)
0 74 (19.4) 0 (n/a) 100 (n/a)
3(0.8) 29 (8.2) 3.3 (1.5-7.4) 99.1 (97.7-99.7)
5 (15.6) 12 (37.5) 0 (n/a) 75.0 (57.9-90.9)
1,584 (21.9) 329 (4.6) 28.8 (21.2-37.1) 76.6 (73.0-80.0)

Cl = confidence interval; TTC = thermotolerant coliforms.

contaminated site with a high-risk SIS, there were 2.4 uncon-
taminated sites that were also labeled as high risk.

Although there were only minimal differences in the AUC
values between the five water source types represented in
the study sample, the accuracy of a high/very high SIS
differed considerably across source types. For example,
the highest sensitivity (true positive rate, 66.3%) of a high/
very high score for any TTC contamination (TTC > 0 CFU/
100 mL) was observed among shallow hand pumps, although
this was accompanied by a false positive rate of 51.5%.
Among deep hand pumps, the sensitivity of a high/very
high score was reduced to 27.9%, albeit with a reduction in
the rate of false positives to 16.7%. Of the 91 gravity-fed
piped sources that had confirmed TTC contamination, only
three had high/very high SISs (sensitivity = 3.3%) and none
of the unprotected springs were classified as high/very
high risk, although 41% had confirmed TTC contamination.
Notably, inspection of the ROC curves for all source types
failed to identify a SIS cut point that could be used to clas-
sify contaminated sites with both high sensitivity and high
specificity, reflecting the poor separation in the distribution
of SISs between sites with and without TTC contamination.
These results may suggest that the sanitary survey ques-
tions are not sufficient for identifying contamination risk at
these source types.

It should be noted that we observed statistically signifi-
cant associations between the SIS and the presence of
TTC contamination (TTC > 0 CFU/100 mL) among three of
the five source types included in the study sample (deep
and shallow hand pumps and gravity-fed supplies). Given
the poor performance of the Sl to accurately discriminate
between contaminated and uncontaminated sites, this find-
ing may appear counterintuitive. However, it simply reflects
the often unappreciated limitation of statistical measures of
association to assess predictive performance.?’ Pepe and
others?® have described the relationship between odds ratios
and discriminatory accuracy and have shown that screening
tools with adequate discrimination must have observed odds

ratios far larger than those seen in this study (or indeed in
most epidemiological studies). This underscores the need
to use appropriate analytic methods to evaluate the accu-
racy of measures intended for screening purposes.

This study has important limitations that warrant mention.
First, microbiological testing was only conducted at a single
time point for each water point, concurrent with the SI.
Thus, this study was unable to capture temporal variation
in water quality or examine whether high SIS resulted in
increased risk of contamination over time. In addition, a sin-
gle TTC sample at a water point may not identify contami-
nation in soil, sand, or biofiims, nor does it account for
microbial deactivation from chlorine or other disinfection
that may not address all TTC contamination. We also
acknowledge that concentrations of TTC are known to vary
by orders of magnitude between samples at the same water
points,?® including between and during weather events
and changes wherein runoff can dramatically impact TTC
concentrations.'®'* Future studies may consider collecting
several water samples at separate times from each water
point. However, the results of this study are consistent with
the majority of previous studies that found no association
between the SIS and likelihood of microbiological contami-
nation. Second, the small sample size for unprotected dug
wells (N = 32) limits the generalizability of the findings for
this source type. Finally, we were not able to test for the
presence of specific organisms, such as E. coli. Previous
studies have suggested that E. coli is a more reliable indi-
cator of pathogenic contamination of water sources than
TTC.%° However, TTC is widely used in many settings
and is recognized by the Indian standard methods as an
acceptable indicator of fecal contamination.®

Although common sense suggests that visually identi-
fying contamination risks is an important component of
efforts to ensure water quality and reduce waterborne
disease, we found that the SIS had poor predictive per-
formance for identifying water points with microbiological
contamination. These results suggest that the SI, as it is
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most commonly implemented, is an ineffective strategy of
screening water points for targeted microbiological testing
or remediation.
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