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Abstract 

For a number of reasons—congestion, public health, greenhouse gas emissions, 

energy use, demographic shifts, and community livability to name a few—the importance 

of walking and bicycling as transportation options will only continue to increase. 

Currently, policy interest and infrastructure funding for nonmotorized modes far outstrip 

our ability to model bike and walk travel. To ensure scarce resources are used most 

effectively, accurate models sensitive to key policy variables are needed to support long-

range planning and project evaluation, and to continue adding to our growing 

understanding of key factors driving walk and bike behavior. This research attempts to 

synthesize and advance the state of the art in trip-based, nonmotorized mode choice 

modeling.  

Over the past fifteen years, efforts to model the decision to walk or bike on a 

given trip have been hampered by the lack of a comprehensive behavioral framework and 

inconsistency in measurement scales and model specification. This project develops a 

mode choice behavioral framework that acknowledges the importance of attributes along 

the specific walk and bike routes that travelers are likely to consider, in addition to more 

traditional area-based measures of travel environments. The proposed framework is 

applied to a revealed preference, GPS-based travel dataset collected from 2010-2013 in 

Portland, Oregon. Measurement of nonmotorized trip distance, built environment, tour-

level variables, and attitudinal attributes as well as mode availability are explicitly 

addressed. Route and mode choice models are specified using discrete choice techniques, 
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and predicted walking and bicycling routes are tested as inputs to various mode choice 

models.  

Results suggest strong potential for predicted route measures to enhance walk and 

bicycle mode choice modeling. Findings also support the specific notion that bicycle and 

pedestrian infrastructure contribute not only to route choice but also to the choice of 

whether to bike or walk. For decisions to bicycle, availability of low-traffic routes may be 

particularly important to women. Model results further indicate that land use and built 

environments around trip ends and a person’s home still have important effects on 

nonmotorized travel when controlling for route quality. Both route and area travel 

environment impacts are mostly robust to the inclusion of residential self-selection 

variables, consistent with the idea that built environment differences matter even for 

households that choose to live in a walkable or bikeable neighborhood. The combination 

of area and route-based built environment measures alongside trip context, 

sociodemographic, and attitudinal attributes provides a new perspective on nonmotorized 

travel behavior relevant to both policy and practice. 
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Introduction 

Over the past twenty-five years, bicycle and pedestrian travel have enjoyed 

increasing policy support. From 1992-2009, federal funding for walking and biking rose 

from less than 0.25% to 2% of the total transportation budget (FHWA, 2010b). In 

addition, the 1998 Transportation and Equity Act for the 21st Century (TEA-21) 

mandated that both pedestrian and bicycle access be considered in long-range regional 

transportation plans (FHWA, 2008). A nationwide combined bike and walk mode share 

of 15 percent has been set as a federal policy goal (FHWA, 2008). Some local agencies 

have set even more ambitious goals. For example, Portland, Oregon’s 2030 Bicycle 

Master Plan sets a bike mode share target of 15 percent by 2020 and 25 percent by 2030 

(Portland Bureau of Transportation, 2010). The Federal Highway Administration 

(FHWA, 2010b) noted that in addition to ongoing traffic congestion and air quality 

concerns, increased cycling and walking also have the potential to positively affect a raft 

of 21st century issues: public health, greenhouse gas emissions and energy use, aging 

populations, and community livability. Given the outcomes at stake, it seems unlikely 

that the push toward improvements for cycling and walking will subside any time soon. 

Predicting nonmotorized travel with travel demand models has lagged behind 

policy and funding support, although consideration of bike and walk travel has become 

more common in recent years. Two reviews of the state of the practice conducted in the 

late 1990s found weak empirical foundations, incomplete theory, few efforts even to 

begin integration into regional models, and mostly ad hoc methods (Porter, Suhrbier, & 

Schwartz, 1999; Replogle, 1997). A decade later, the Committee for Determination of the 

State of the Practice in Metropolitan Area Travel Forecasting (2007) found that more 
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than half of large Metropolitan Planning Organizations (MPOs) were including walk 

and/or bike choices in mode choice models (“few” medium MPOs and “almost no” small 

MPOs were doing so). An even more recent survey by Singleton and Clifton (2013) 

reported that two-thirds of the 48 largest MPOs included non-motorized modes in their 

regional models (although less than half differentiated bike and walk). No MPO reported 

developing a pedestrian route choice or assignment model, however. Since that time, 

SFCTA (San Francisco) has announced plans to incorporate predicted walk routes in their 

regional travel model in the future (Bomberg, Zorn, & Sall, 2013). Kuzmyak et al. (2014) 

provides an updated overview of the state of the practice and notes considerable interest 

in better integrating nonmotorized travel in travel demand models.  

The academic literature has also seen some progress in modeling nonmotorized 

mode choice; however, most work has not considered regional modeling needs. Instead, 

models have been constructed to answer specific research questions related to the built 

environment, children’s school travel, or public health. 

Models to date have rarely included route-level infrastructure measures, even 

though a large portion of federal funding for nonmotorized travel goes to improve 

walking and biking travel networks. For example, about 80 percent of the $100 million 

Nonmotorized Transportation Pilot Program (NTPP) had been spent to improve or 

expand on-street and off-street infrastructure (FHWA, 2010a). Even the few models that 

are sensitive to nonmotorized infrastructure improvements consider the impact only along 

shortest path routes or in diluted form as part of larger area aggregates. Given a new bike 

lane connecting point A and point B, only one existing study out of over twenty reviewed 
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(Chapter 1) could predict a meaningful change in the competitiveness of cycling for a trip 

from A to B. 

Finally, bicycle and pedestrian mode choice has been considered primarily using a 

trip-based approach. In this framework, choice decisions are made independently from 

one stop to the next. Meanwhile, the transition from trip-based, four-step models dating 

to the 1960s toward more advanced tour-based activity models is already underway. The 

Committee for Determination of the State of the Practice in Metropolitan Area Travel 

Forecasting (2007) found that 38 percent of large MPOs and 24 percent of all MPOs 

already were considering moving to the next generation models in the near-term. 

Promising reduced aggregation and stronger behavioral foundations, activity-based 

models offer potential advantages for nonmotorized modeling. For that potential to be 

realized, however, bicycle and pedestrian modeling has some catching up to do. 

This research attempted to tie together the threads of existing bicycle and 

pedestrian mode choice modeling with the emerging area of walk and bike route choice 

modeling to create a new mode choice framework that better incorporated nonmotorized 

alternatives. The goal was a choice framework that is behaviorally realistic, policy 

sensitive, and feasible to implement in regional models. A key modification to existing 

models was the incorporation of predicted walk and bike routes within the mode choice 

decision process. In addition, questions of appropriate measurement scale and model 

specification for nonmotorized modes were addressed. Finally, consideration was given 

to tour-level variables in the context of nonmotorized travel. 
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Trip-level mode choice in the context of more complex tours was the focus of this 

study. Much existing work on built environment and public health policy impacts has 

focused on more aggregate outcome measures such as total number of walk or bike trips 

taken by individuals or groups. To develop a behavioral framework, however, the most 

disaggregate decision units—trips and tours by individuals—seemed most appropriate.  

The mode choice modeling framework developed was tested using a revealed 

preference family activity and travel dataset collected from 2010 to 2013 in Portland, 

Oregon. The dataset included detailed Global Positioning System (GPS) travel data and a 

rich set of household and person-level characteristics that aided in developing the 

proposed framework. Importantly, the levels of bicycling and walking in the sample were 

great enough to allow meaningful inferences about each of these modes of interest. 

Although it was acknowledged that the unique sample would not necessarily generalize 

to other populations, the model framework itself was developed with broader applications 

in mind. 

This research sought to contribute to the existing trip-level nonmotorized travel 

demand modeling literature primarily in the following ways: 

 Use GPS-based travel data to develop a mode choice model without supporting 

travel diaries. 

 Develop a route choice model for utilitarian pedestrian travel using revealed 

preference GPS data. 

 Construct a mode choice modeling framework that incorporates predicted walk 

and bike routes to represent the relevant travel environment for a trip. 

 Compare the use of area versus route-based mode choice factors. 
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 Compare the impacts of specific bicycle infrastructure on decisions of where to 

bike versus decisions of whether to bike for specific trips, including testing for 

interaction effects with gender. 

 

The remainder of the dissertation is organized as follows. Chapter 1 presents a 

survey of nonmotorized mode choice modeling literature. In Chapter 2, I develop and 

operationalize a behavioral framework for modeling mode choice by modifying and 

extending existing trip-based travel demand modeling methods. Chapter 3 then describes 

the GPS test dataset, how it was processed into trips, routes, and tours, and overviews the 

supplementary survey data collected on common destinations, socio-demographics, and 

residential self-selection. Chapter 4 describes the development and adoption of pedestrian 

and cyclist route choice models. In Chapter 5, I apply the new mode choice framework to 

the GPS travel data, and report on the estimation of a series of mode choice models 

including a numerical example applied to a hypothetical policy change. Chapter 6 

discusses initial findings, limitations, and promising areas for future research to improve, 

extend, and apply this work to both regional travel demand modeling and continued 

academic inquiry. 

 



1 

  

1  Literature Review 

Overview of Nonmotorized Mode Choice Modeling 

Most existing efforts to model walk and bike mode choice have focused on one of 

three primary research questions:  

 How do land-use and the built environment affect (usually adult) travel? 

 What factors determine children’s travel mode to school? 

 How can we integrate bike and walk travel into regional mode choice models? 

 

Each question can be further divided by the aggregation of actors and trips in the 

analysis. Aggregate models consider the total results of many actors taking many trips. 

The units of analysis in an aggregate study might be neighborhoods, school zones, cities, 

regions, or nations. Disaggregating the actors into households or individuals leads to what 

this paper will term “disaggregate actor” models. Reducing the unit of analysis to 

individual trips results in “disaggregate trip” models. Previous reviews on this topic have 

not done a good job distinguishing the two disaggregate types, but the distinction is 

important. Table 1 provides some examples by topic and scale. 

This review considers disaggregate trip mode choice studies that have explicitly 

modeled walk and/or bike travel as alternatives and have included attributes from at least 

one of the following categories: built environment, attitudes, and tours. Modeling 

individual decisions allows for more behaviorally realistic models and attenuates risks of 

ecological fallacy. Using the trip or tour as unit of analysis also allows for more detailed 

spatial and temporal explanatory variables. The resolution and extent of relevant travel 

environment attributes is a particular focus of this study, since, as previous research has 
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noted, nonmotorized trips tend to cover relatively small distances and might be 

influenced by smaller scale phenomena (Moudon & Lee, 2003). Modeling bike and walk 

options as alternatives to other modes fits with existing regional modeling 

Table 1 Examples of Mode Choice Model Questions by Topic and Aggregation Level 

 Scale   

Focus Aggregate Disaggregate Actor Disaggregate Trip 

Built 

environment 

Does neighborhood 

density affect the 

proportion of walk trips 

by neighborhood 

residents? 

Does density around a 

residence affect the 

share of walk trips taken 

by that household? 

Does density at a trip’s 

origin or destination 

affect the likelihood that 

a person walks on the 

trip? 

School travel Does sidewalk coverage 

in a school zone affect 

the share of students that 

walk to school? 

Does sidewalk coverage 

between home and 

school change the 

probability that a child 

walks to school? 

Does weather affect 

whether a child walks to 

school on a given trip? 

Regional 

modeling 

Does the proportion of 

college students in a 

region affect bike mode 

share? 

Does student status 

affect the proportion of 

trips an individual takes 

by bike? 

Does student status 

change the odds that a 

person will bike on a 

given trip? 

 

practice and the dominant microeconomic theory of travel choice behavior.  

With those criteria in mind, peer reviewed articles and technical reports were 

screened mainly from reviews covering each of the three major research themes 

identified: built environment (Badoe & Miller, 2000; Ewing & Cervero, 2010; Handy, 

Boarnet, Ewing, & Killingsworth, 2002),  school travel (Davison, Werder, & Lawson, 

2008; Pont, Ziviani, Wadley, Bennett, & Abbott, 2009), and nonmotorized regional 

modeling (Porter et al., 1999). Online research databases were also consulted to uncover 

more recent articles. Table 2 provides a summary of the articles reviewed.  
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The remainder of this section considers how existing studies have addressed key 

nonmotorized modeling issues including: measuring time/distance, built environment, 

trip/tour variables, and attitudes; determining bike and walk availability; and, specifying 

the choice model structure. 

4

7

8

10

11

18

19

22

22

Route Environment

Tour

Attitudes

Cost

Mode availability

Trip context

Areal Environment

Time/Distance

Sociodemographic

Figure 1 Attribute types found in existing disaggregate trip studies reviewed, 1998-2015, n = 24 
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Table 2 Selected Disaggregate Trip and Tour Nonmotorized Mode Choice Research 

Authors Date Loc. 

Di-

ary 

Fo-

cus1 Age 

Modes
2 

n 

bike 

n 

walk 

Pur-

pose3 

Mod-

els4 

Time 

Dist Cost 

Are

-al 

Env 

Rou

-te 

Env 

Soc-

Dem 

Atti-

tudes 

Tr-

ip 

To-

ur 

Av-

ail 

This 

Research 

2015 Port-

land, 

OR 

N RM Ad-

ult 

W,B, 

A,T 

1501 1419 Any MNL X 5 X X X X X X X 

Akar et al. 2013 Col-

umbus, 

OH 

N Oth 18+ W,B,A

,T 

159 233 HBCol MNL X  X  X X X   

Bergman 

et al. 

2011 Oregon N Oth 18+ W,B,A

,T 

n/a TAcc MNL 

NL 

X X X X X X X  X 

Black et 

al. 

2001 UK N ST <12 W,A 0 1202 HBSch BL X    X X    

Bradley & 

Bowman 

2005 Sacra-

mento 

Y RM All W,B,A

,T 

196 538 HBW 

HBS 

HBN

WWO

W 

NL X X X  X  X X X 

Cervero & 

Duncan 

2003 San 

Fran-

cisco 

Y BE All W,B,A

/T 

118 980 HBN

WNH

NW 

BL X  X  X  X  X 

DiGuisep-

pi et al. 

1998 Lon-

don 

N ST 6-

10 

W,A 0 2294 HBSch BL X    X X X   

Ermagun 

& Samimi 

2014 Tehran N ST 12-

17 

W,A, 

SB,T 

0 n/a HBSch NL X X X  X X X   

Ewing et 

al. 

2004 Gaines

-ville 

FL 

Y ST <16 W,B,A

,SB 

24 32 HBSch MNL 

NL 

X  X  X    X 
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Authors Date Loc. 

Di-

ary 

Fo-

cus1 Age 

Modes
2 

n 

bike 

n 

walk 

Pur-

pose3 

Mod-

els4 

Time 

Dist Cost 

Are

-al 

Env 

Rou

-te 

Env 

Soc-

Dem 

Atti-

tudes 

Tr-

ip 

To-

ur 

Av-

ail 

This 

Research 

2015 Port-

land, 

OR 

N RM Ad-

ult 

W,B, 

A,T 

1501 1419 Any MNL X 5 X X X X X X X 

Frank et 

al. 

2008 Seattle Y BE n/a W,B,A

,T 

187 706 HBW 

HBN

WWO

W 

MNL X X X  X  X X X 

Kockel-

man 

2007 San 

Fran-

cisco 

Y BE 19+ W/B, 

A/T 

5212 Any BL X  X  X     

Lin & 

Chang 

2009 Taipei N ST 6-

12 

W,A,T

, 

Moto 

132 HBSch NL X  X X X  X X  

McMillan 2007 Cali-

fornia 

N ST 8-

11 

W/B,A n/a HBSch BL X  X  X X    

Miller et 

al. 

2005 Tor-

onto 

Y RM All W,A,T 0 1202 HBW 

HBN

WWO

W 

SIM X X     X X X 

Piatkow-

ski & 

Marshall 

2015 Denver N BE Ad-

ult 

B n/a n/a HBW BL X  X  X X X   

Rajamani 

et al. 

2003 Oregon Y BE All W,B,A

,T 

28 143 HBN

W 

MNL X X X  X  X  X 

Reilly & 

Landis 

2002 San 

Fran-

cisco 

Y BE All W,A,T n/a HBN

W 

MNL   X  X  X   
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Authors Date Loc. 

Di-

ary 

Fo-

cus1 Age 

Modes
2 

n 

bike 

n 

walk 

Pur-

pose3 

Mod-

els4 

Time 

Dist Cost 

Are

-al 

Env 

Rou

-te 

Env 

Soc-

Dem 

Atti-

tudes 

Tr-

ip 

To-

ur 

Av-

ail 

This 

Research 

2015 Port-

land, 

OR 

N RM Ad-

ult 

W,B, 

A,T 

1501 1419 Any MNL X 5 X X X X X X X 

Rodríguez 

& Joo 

2004 Chapel 

Hill 

N BE 17+ W,B,A

,T 

59 88 HBW/

HBCol 

MNL 

NL 

HEV 

X X X X X   X X 

Roorda et 

al. 

2009 Tor-

onto 

Y RM 11+ W,B,A

,T,SB, 

TX* 

696 1953 Any SIM X X X  X  X X X 

Sanein-

ejad et al. 

2012 Tor-

onto 

Y Oth

er 

17+ W,B,A

,T 

612 2087 HBW MNL X X X  X  X  X 

Schloss-

berg et al. 

2006 Oregon N ST 11-

14 

W,B,A

/SB 

29 86 HBSch BL X   X   X   

Schwanen 

& Mokh-

tarian 

2005 San 

Fran-

cisco 

N BE 18+ W/B,A

,T 

35 HBW MNL     X X    

Soltani & 

Allan 

2006 Ade-

laide 

Aus-

tralia 

Y BE All W/B,A

,T 

295 Any MNL X  X  X  X X  

Yarla-

gadda & 

Srinivas-

an 

2008 San 

Fran-

cisco 

Y ST <18 W,B,A

,T,SB 

220 1265 HBSch MNL X  X  X  X  X 

Zhang 2004 Boston Y BE 17+ W/B,A

,T 

168 HBW 

HBN

W 

MNL X X X  X  X   



 

 

  

7
 

Authors Date Loc. 

Di-

ary 

Fo-

cus1 Age 

Modes
2 

n 

bike 

n 

walk 

Pur-

pose3 

Mod-

els4 

Time 

Dist Cost 

Are

-al 

Env 

Rou

-te 

Env 

Soc-

Dem 

Atti-

tudes 

Tr-

ip 

To-

ur 

Av-

ail 

This 

Research 

2015 Port-

land, 

OR 

N RM Ad-

ult 

W,B, 

A,T 

1501 1419 Any MNL X 5 X X X X X X X 

1 BE = Built Environment, ST = School Travel, RM = Regional Modeling 

2 W = Walk, B = Bike, A = Auto, T = Transit, SB = School Bus, TX = Taxi, slash indicates combined modes (e.g. W/B = Walk/Bike combined) 

3 TAcc = Transit Access, HBSch = Home-Based School, HBW = Home-Based Work, HBS = Home-Based Social/Recreational, HBNW = Home-Based 

Non-Work, WOW = Work Other Work, NHNW = Non-Home Non-Work, HBCol = Home-Based College 

4 MNL = Multinomial Logit, NL = Nested Logit, BL = Binary Logit, SIM = Simulation, HEV = Heteroscedastic Extreme Value,  

5 Proxies for parking cost with parking charge area in central city 
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Variable Measurement 

Nonmotorized travel takes place on different transportation networks and at 

different speeds than motorized travel. Pedestrians and cyclists are also more exposed to 

the travel environment between origin and destination. Models incorporating these travel 

modes therefore require different and often more detailed datasets than are typical for 

auto and transit travel. 

Time and distance. Nonmotorized distance has been measured using zonal 

network distance, geometric approximation, point to point shortest path, and self-reported 

distance. Zone-based shortest path distances from regional travel model outputs have 

been used by some studies (Ewing, Schroeer, & Greene, 2004; Rajamani, Bhat, Handy, 

Knaap, & Song, 2003; Zhang, 2004).1 Depending on zone size and how intrazonal 

distances are calculated, aggregation to zones may result in poor distance estimates for 

short trips. Euclidean (Kockelman, 1997; Miller, Roorda, & Carrasco, 2005) and 

Manhattan (Roorda, Passmore, & Miller, 2009; Saneinejad, Roorda, & Kennedy, 2012) 

geometric approximations have also been used. These network-free methods are simple 

to calculate, but they are insensitive to differences or changes in street and trail layouts. 

Solving origin to destination distance along the shortest network path solves the latter 

issue (Akar, Fischer, & Namgung, 2013; Bergman, Gliebe, & Strathman, 2011; 

Rodríguez & Joo, 2004; Schlossberg, Greene, Phillips, Johnson, & Parker, 2007). The 

assumption that nonmotorized users will use the shortest route is questionable; for 

                                                 
1 Zone-based measurements assign all potential trip ends within each zone to a single point, termed the 

zone’s centroid. The distance between any two points in different zones is the network distance between the 

zones’ centroids. Trips starting and ending in a single zone would have an implied distance of zero such 

that rules of thumb have to be applied. For example, Portland Metro has used 0.73 times the distance to the 

nearest neighboring zone to approximate intrazonal distance. 
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instance, Broach, Gliebe, and Dill (2012) observed utility cycling trips and reported that 

half exceeded the shortest path distance by at least 10%. Finally, self-reported bike or 

walk distance has been used, mostly in school travel studies (Black, Collins, & Snell, 

2001; DiGuiseppi, Roberts, Li, & Allen, 1998; Ermagun & Samimi, 2015; Lin & Chang, 

2010; McMillan, 2007). Reported distance has the advantage of potentially measuring the 

actual route considered; however, it is probably not practical to collect as part of regional 

travel surveys. Respondents would need to supply expected travel times for each mode on 

every trip taken. 

Distance is often converted to walk or bike travel time, most often by applying a 

constant speed assumption across the sample. Assumed speeds ranged from 2.5 to 3.1 

miles per hour (4-5 km/h) for walk and 9 to 12.4 miles per hour (14.5-20 km/h) for bike 

in the studies surveyed here (Bergman et al., 2011; Ewing et al., 2004; Rajamani et al., 

2003; Rodríguez & Joo, 2004; Roorda et al., 2009; Saneinejad et al., 2012; Zhang, 2004). 

Only two tried adjusting speeds to reflect socio-demographic or environmental factors. 

Zhang (2004) used an ad hoc age adjustment factor for individuals over and under 30 

years old. Rodríguez & Joo (2004) included time adjustment variables calculated from 

the slope along the shortest path route. Many delay factors were also embedded in the 

utility-weighted distance used by Bergman et al. (2011) to estimate bike travel time. 

The relatively short distances covered by many nonmotorized trips make 

aggregate, zonal distance measures less reliable. At the same time, distances need to be 

consistent across travel modes. The relative importance of these conflicting goals has not 

been tested in existing work. 
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Cost. Nonmotorized modes are typically assumed to have no monetary marginal 

cost. Surprisingly, over half of reviewed studies either extended this assumption to auto 

and transit travel or found that motorized mode costs were not significant model 

variables. A number of studies included transit fares (Bradley & Bowman, 2006; Frank, 

Bradley, Kavage, Chapman, & Lawton, 2008; Miller et al., 2005; Rajamani et al., 2003; 

Rodríguez & Joo, 2004; Roorda et al., 2009; Saneinejad et al., 2012; Zhang, 2004). Fuel, 

parking, and/or toll costs were specified for auto trips (Frank et al., 2008; Rajamani et al., 

2003; Rodríguez & Joo, 2004; Roorda et al., 2009; Saneinejad et al., 2012; Zhang, 2004). 

Built Environment. This paper follows Handy, Boarnet, Ewing, and 

Killingsworth (2002) and includes under the built environment umbrella urban design, 

land-use, and transportation infrastructure.2 Disaggregate trip mode choice models have 

with few exceptions focused on built environments at one or both trip ends. This seems a 

reasonable approach for enclosed, motorized modes for which the intermediate, “line 

haul” portion of the trip is accounted for more or less completely by time and money 

costs. For walking or biking, however, ignoring the immediate environment along the 

travel route itself is more troubling. Relative to drivers and passengers, pedestrians and 

cyclists are much more exposed to the built environment experienced between a given 

origin and destination pair. Figure 2 presents the methods that have been used to capture 

trip-level built environment attributes, graphically highlighting some potential 

shortcomings. 

                                                 
2 Handy et al. (2002) also include dynamic transportation features in the built environment (e.g. traffic 

volume, transit frequency), but these are instead considered as “trip” variables here. 
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Table 3 lists built environment variables from existing mode choice studies by 

measurement scale. Reflecting a lack of consensus, only one variable has been measured 

at the same scale in different studies (intersection density in combined origin and 

destination zones). Land-use and urban design attributes have been measured most 

commonly within quarter mile to one mile straight line buffers around origins and 

destinations. The implied theoretical link is not particularly intuitive between trip mode 

choice and land-use/design patterns some distance from the traveled route once trip 

distance, cost, and socioeconomic characteristics are controlled for. Measurement of 

transportation system attributes has been fairly evenly split between origin and 

destination buffers and measures along shortest or reported routes. Measuring linear 

infrastructure such as bike lanes with areal measures (miles of bike lane per unit area) 

Zone-based: Aggregate built 

environment into irregular 

zones around trip origin and 

destination (may not cover 

entire trip).

Buffer: Aggregate built 

environment into 

circular or network-

based polygon buffers 

around trip origin and 

destination (may not 

cover entire trip).

Route: Measure built 

environment around or 

along shortest path or 

actual (reported) path 

(shortest path may not 

correspond to actual 

path; reported path may 

not correspond to actual 

path for all modes).

Actual route                          Measurement area                   Origin/destination       

Figure 2 Different approaches to measuring trip-level built environment 
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leads to some unusual interpretations. For example, it would suggest that each bike lane 

within a given area equally affects the decision to bike, regardless of whether or not a 

bike lane is useful for a given trip. 

Five existing studies have considered route-level built environment factors for 

walk or bike travel. Routes have been defined in three ways: 1) shortest path, 2) self-

reported route by usual travel mode, and 3) reported route child would walk/bike to 

school. Rodríguez and Joo (Rodríguez & Joo, 2004) calculated the percentage of 

sidewalks, slope time cost, and off-street path time savings along shortest path routes 

from respondents’ homes to the University of North Carolina-Chapel Hill. This method 

ignores attributes along alternative routes, relying heavily on the assumption that walk 

and bike trips always will use the shortest path. Schlossberg et al. (2007) measured 

several variables within a quarter-mile corridor around the shortest route from home to 

school: intersection density, dead-end density, major road crossing, and railroad crossing. 

The authors termed this corridor a “walking zone,” although it was used for bike trips as 

well. The shortest path corridor method has the advantage of potentially capturing 

features of alternate routes near the shortest path at the expense of potential aggregation 

errors. Lin and Chang (2010) considered built environment variables along the reported 

travel route by a child’s usual school travel mode. For each direction along the reported 

route, the authors calculated sidewalk coverage, shade tree density, number of 

intersections, slope, and building density. Walk was the only nonmotorized option 

considered in the model. A potential shortcoming of this technique is that a single route 
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Table 3 Built Environment Measures Used in Nonmotorized Mode Choice Models 

Land-use Measures 

accessibility network distance to nearest commercial (O1) 

30 minute walk network distance buffer (O) 

TAZ1 (D1) 

detached housing 1/4 mi buffer (O) 

1 mi buffer (O) 

job density TAZ (D) 

TAZ (O) 

1 mi buffer (D) 

1 mi buffer (O) 

5 mi buffer (O) 

land-use mix 1/4 mi buffer (Home) 

1/4 mi buffer (O) 

1/4 mi buffer (School) 

1/2 mi buffer (O) 

1 mi buffer (D) 

1 mi buffer (O) 

1 km network buffer (O) 

census block split at arterial (Home) 

Li1 (Home) 

mean over 0.8 km buffers for each developed hectare in census tract (D) 

mean over 0.8 km buffers for each developed hectare in census tract (O) 

TAZ (D) 

TAZ (O) 

park area per housing unit census block split at arterial (Home) 

parking spaces transit station (D) 

population density 1 mi buffer (D) 

1 mi buffer (O) 

TAZ (D) 

TAZ (O) 

TAZ (O+D) 

school zone 
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Table 3 (continued) 

retail FAR 1 km network buffer (D) 

1 km network buffer (O) 

Transportation system Measures 

intersection density 1/8 mi shortest path buffer 

1/4 mi buffer (O) 

1 km network buffer (O) 

TAZ (O+D) [2 studies] 

intersections reported route 

cul-de-sacs/dead-ends census block split at arterial (Home) 

TAZ (O) 

railroad crossing 1/8 mi shortest path buffer 

major street crossing 1/8 mi shortest path buffer 

off-street paths shortest network path 

½ mi (Home) 

slope point elevation (O,D) 

reported route 

shortest network path  

local street density reported route 

bike lanes 1/4 mi buffer (Home) 

TAZ (O+D) 

sidewalks 1/4 mi buffer (School) 

reported route 

shortest network path 

TAZ (O+D) 

arterial street proportion TAZ (O+D) 

perceived traffic speed reported route 

composite utility least-cost route 

Urban design Measures 

block size Li1 (Home) 

building density reported route 
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Table 3 (continued) 

cyclist environment factor neighborhood (Home) 

housing windows facing 

street 

1/4 mi buffer (School) 

housing age 1/4 mi buffer (O) 

1/2 mi buffer (O) 

pedestrian environment 

factor 

neighborhood (Home) 

ped/bike factor 1 mi buffer (D) 

1 mi buffer (O) 

street trees reported route 

TAZ (O+D) 

1O = origin, D = destination, TAZ = Traffic Analysis Zone, Li = basic administrative unit of Taiwan 

 

was provided for all travel modes. This assumes that respondents would not consider 

mode-specific routes. McMillan (2007) gathered data on parents’ perceived traffic speeds 

along the route their child would walk and bike to school. This improves on reported 

route by usual mode, but it still leaves the question of whether walk and bike routes 

would be identical. Furthermore, parents whose children do not walk or bike to school 

might be less knowledgeable about the best routes by those modes. Finally, Bergman et 

al. (2011) calculated a utility-weighted distance along a predicted least-cost path for bike 

trips based on an existing bike route choice model from Broach et al. (2009). The 

composite utility included route-level measures of slope, bike facilities, traffic, and 

intersection types. 

To date, little consensus has formed around the correct scale to measure built 

environment variables for nonmotorized travel. The majority of studies have used zonal 

and origin/destination buffers. These measures might be too coarse to capture the 
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reduced-scale travel environments experienced by cyclists and pedestrians. A handful of 

studies have calculated more precise route-level measures of built environment—

especially urban design and transportation infrastructure components. Choosing the 

appropriate routes to measure is a key issue. 

Trip context and tour attributes. Trip context variables are defined as attributes 

that can change value for different instances of a trip, or those that place the trip into 

context beyond the built environment or personal characteristics of the traveler. For 

example, the same trip may be taken on a weekend or weekday, and trip purpose 

establishes a different choice context for otherwise similar trips. Tours define a series of 

connected trips. A tour variable is defined here as any attribute derived from related 

sequences of trips. For instance, the distance from a child’s school to a parent’s 

workplace would be a tour-level variable. 

Among trip variables, purpose has been the most commonly measured attribute. 

Some studies have chosen to estimate separate models by purpose (Bradley & Bowman, 

2006; Frank et al., 2008; Zhang, 2004). Others have included trip purpose as an 

additional mode-specific constant (Cervero & Duncan, 2003; Miller et al., 2005; 

Rajamani et al., 2003; Reilly & Landis, 2002; Roorda et al., 2009). School trips are single 

purpose by definition; however, differentiating between from-school and to-school travel 

appears to be important for predicting walk trips, demonstrating the power of context in 

decision making (DiGuiseppi et al., 1998; Lin & Chang, 2010; Schlossberg et al., 2007; 

Yarlagadda & Srinivasan, 2008). Other trip variables have included weekend/weekday 

(Cervero & Duncan, 2003; Reilly & Landis, 2002; Soltani & Allan, 2006), peak/off-peak 
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(Roorda et al., 2009; Saneinejad et al., 2012), day/night (Cervero & Duncan, 2003), and 

weather variation (Saneinejad et al., 2012).  

True tour-based models consider joint mode choice across related trips. Four 

studies have explicitly considered nonmotorized travel in tour models (Bradley & 

Bowman, 2006; Frank et al., 2008; Miller et al., 2005; Roorda et al., 2009). In addition, 

Yarlagadda and Srinivasan (2008) considered the joint choice of to-school and from-

school travel mode and found significant differences from the naïve assumption that each 

direction could be viewed as an independent trip.  

As an intermediate step toward complex tour-based models, some authors have 

included tour-level variables in otherwise trip-based models. Rodríguez and Joo (2004) 

modeled trips to a college campus. For the bike alternative, they included the maximum 

slope delay in either direction such that having to climb a steep hill on the return trip 

would affect the choice of biking to campus. Lin & Chang (2010), in a model of school 

travel, included a variable capturing whether the child’s school was near a parent’s 

commute route. Soltani & Allen (2006) included an estimate of the potential number of 

stops each mode would permit between a given origin and destination. 

Attitudes and self-selection. Traveler attitudes rarely have been captured by 

travel surveys; however, there has been some concern that apparent effects of built 

environments on travel behavior actually reflect underlying attitudes about travel 

(Committee on Physical Activity, Health, Transportation, 2005). Self-selection refers to 

the concept that households might choose to locate where travel options best fit pre-

existing household attitudes and preferences. Thus, neighborhood built environment 
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might simply reflect who lives there instead of actually impacting travel behavior. Since 

controlled experiments are difficult in an urban environment, measuring and controlling 

for residential self-selection, travel, and related attitudes might be the best we can do. 

A handful of nonmotorized mode choice studies have included some attitudinal 

variables. DiGuiseppi et al. (1998) asked caregivers’ opinions on perceived danger from 

traffic and crime, relating these attitudes to the child’s school mode choice. McMillan 

(2007) asked parents how important it was that their children interact with others and 

whether they considered driving generally more convenient than other modes. As 

expected, importance of interaction increased the odds of nonmotorized travel to school, 

while pro-driving views decreased them. Schwanen and Mokhtarian (2005) asked a series 

of attitudinal items and developed summary factors such as pro-density, adventure 

seeker, travel freedom, pro-environment, frustration factor, and status seeker. In addition, 

they classified respondents by how well their attitudes about density matched their 

neighborhood. They found some evidence of self-selection effects for commute mode 

choice. Piatkowski and Marshall (2015) used a two-stage approach, first segmenting 

cyclists by willingness to cycle regularly, and then modeling the effects of attitudes and 

other variables separately for the two groups. Akar et al. (2013) found significant effects 

on bicycling to a college campus of attitudes toward gas prices, the sense of having travel 

options, and feeling safe biking on campus after dark. As that study demonstrates, often 

the line between perceptions and attitudes is a blurred one. 

To the extent self-selection exists, it seems likely that it would relate most 

strongly to areal measures of built environment near respondents’ homes. Route level 
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measures for specific trips, and areal measures at destination ends would likely be less 

correlated with household travel attitudes. To date, only McMillan’s (2007) school travel 

study has combined attitudes with route and destination built environment attributes. 

Included were route-level perceived traffic speed along with sidewalk coverage, percent 

of residential windows facing the street, and land-use mix within a quarter mile of school. 

The built environment variables were significant predictors of mode choice even when 

controlling for parent attitudes and social/cultural norms. Measuring built environment at 

the smaller scales of route and destination might help to disentangle neighborhood choice 

from built environment effects on travel. For example, a pro-bike household may locate 

in a generally bike friendly neighborhood; however, specific trips will still vary in terms 

of the environment along the way. Measuring the built environment only at the 

neighborhood scale may be too coarse to pick up potentially important differences. 

Sociodemographic variables. Excluding studies of children’s school travel, 

which are less relevant to the adult travel models developed here, a handful of 

sociodemographic variables have been consistently identified as significant predictors of 

bike and walk travel. Gender, car ownership, and age were found to be significant factors 

in a majority of existing models, while income, age, and race were less often reported to 

have significant effects. Most of the time sociodemographic attributes were specified as 

having the same impact on bike and walk travel, though when tested independently, 

gender was more often correlated with decisions to bike. One study specified a full 

gender segmentation model but did not report whether differences were significant (Akar 

et al., 2013).   
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Travel Mode Availability 

 Discrete choice models commonly used in mode choice studies require the joint 

specification of a choice set.3 The choice set contains the alternatives actually considered 

by the decision maker. Mis-specified choice sets can lead to inconsistent model 

estimation and faulty conclusions about relationships between variables (Ben-Akiva & 

Boccara, 1995). Getting the choice set right is particularly important when walk and bike 

alternatives are included in models because each mode’s availability is closely related to 

a key model variable: distance/time. For example, assuming that walk and bike are 

available for all trips, regardless of distance, would likely bias distance coefficients for 

these modes. 

  

Table 4 Bike (B) and Walk (W) Availability Distance Thresholds 

Type Distance 

Universal 

choice set 

Always available (B, W) 

Rule of thumb 1.8 mi (W), 7.2 mi (B) 

3 mi (W), 12 mi (B) 

4 mi (W) 

5 mi (W,B) 

6 mi (W,B) 

10 mi (W), 30mi (B) 

Sample-based 3 mi (W), 8 mi (B) [85th & 95th percentiles] 

4.8-8.1 mi (B) [95th, 97th, 98th percentiles by purpose] 

maximum sampled distances 

Tour-based bike on tour 

                                                 
3 Or, more accurately, a set of possible choice sets and each particular set’s probability (Manski, 1977). In 

practice, a single choice set is usually chosen deterministically in some ad hoc fashion for each case, or else 

the universal choice set is assumed the relevant one for all cases. 
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As summarized in Table 4, existing work has used four techniques to specify 

availability: universal choice set (all modes always available), rule of thumb distance 

thresholds, sample-based time/distance thresholds, and tour-based availability. A 

surprising number of studies have assumed that nonmotorized modes are always 

available (Akar et al., 2013; Black et al., 2001; DiGuiseppi et al., 1998; Ermagun & 

Samimi, 2015; Kockelman, 1997; Lin & Chang, 2010; McMillan, 2007; Reilly & Landis, 

2002; Schlossberg et al., 2007; Schwanen & Mokhtarian, 2005; Soltani & Allan, 2006). 

In school travel studies of public elementary schools, this assumption may be reasonable 

(DiGuiseppi et al., 1998; McMillan, 2007). In other cases, however, assuming the 

universal set is likely to bias parameter estimates significantly.  

Several studies used rules of thumb to hopefully reduce bias (Bradley & Bowman, 

2006; Cervero & Duncan, 2003; Ewing et al., 2004; Rodríguez & Joo, 2004; Saneinejad 

et al., 2012; Yarlagadda & Srinivasan, 2008). Some rule of thumb distances seem too 

long to be of much use, however; for instance, Bradley and Bowman (2006) consider 

walk and bike to be available as long as distance is less than ten and thirty miles, 

respectively.  

More behaviorally defensible are sample-based thresholds. Bergman et al. (2011) 

used the 85th percentile observed walk distance (3 mi) and the 95th percentile observed 

bike distance (8 mi) to eliminate nonmotorized modes from consideration. Roorda et al. 

(2009) incorporated maximum sampled thresholds for walk availability that varied by trip 

purpose: 13 km for work trips, 12 km for school trips, and 8km for other trips. Rajamani 

et al. (2003) specified the maximum sampled distance for both walk and bike trips as 
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availability thresholds. Finally, tour-level variables can inform trip-level bike mode 

availability since bikes, like cars, usually need to be brought from home (Roorda et al., 

2009). This represents a key advantage for tour models in estimating bike mode choice, 

although public bicycle sharing systems are eroding the logic behind deterministic rules. 

A person could leave home without a bike only to pick one up at a bike share station 

along the way.   

Bike ownership data rarely has been collected as part of a modeling effort, but 

like auto ownership for driving, it is likely a key factor in whether cycling is considered 

an option. Yarlagadda & Srinivasan (2008) used bike ownership as an availability 

criterion along with a rule of thumb distance threshold. Cervero & Duncan (2003) 

collected bike ownership data but curiously chose not to use the information to limit 

choice sets. 

Overall, in most existing work, bike and walk availability either has been ignored 

or handled with questionable rules of thumb. Availability thresholds have ranged from 

1.8 to 10 miles for walk and from 5 to 30 miles for bike. Bike ownership data and tour-

level variables seem like potential ways to improve bike availability specification. 

Lacking additional data, observed distance distributions seem like the next best option. 

Mode Choice Model Structure 

All of the reviewed studies modeled mode choice as a random utility 

maximization problem and used maximum likelihood techniques to estimate parameters 

(Ben-Akiva & Boccara, 1995; McFadden, 1973). The majority of studies estimated 

binomial logit (BL) or multinomial logit (MNL) models. MNL is the more appropriate 
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model when more than two alternatives are available. Logit models are popular primarily 

because their properties are well understood, and they are relatively easy to estimate; 

however, they depend on the assumption that errors are independent and identically 

distributed (IID) across alternatives and cases (Ben-Akiva & Lerman, 1985). If 

alternatives or groups of observations share some unobserved attributes, then model 

estimates will be biased. A number of studies tested more flexible model structures to 

account for non-IID errors. 

The nested logit (NL) model allows for groups of alternatives to share unobserved 

variation and therefore to be closer competitors (Ben-Akiva & Lerman, 1985). Among 

the seven studies that tested NL model structures, three rejected them in favor of the 

simpler MNL specifications (Ewing et al., 2004; Saneinejad et al., 2012; Schwanen & 

Mokhtarian, 2005). This suggests, among other things, that bike and walk modes are not 

necessarily closer substitutes for one another than for motorized modes. Bergman et al. 

(2011) specified a nesting structure for transit access mode choice (bike/walk and 

auto/transit) that outperformed the MNL model. Bradley and Bowman (2006) specified 

NL models with nonmotorized nests for tour mode choice. They reported success with 

this structure for all purposes except work-based trips. Rodríguez and Joo (2004) 

specified a nesting structure that grouped bike with auto in a “personal vehicle” nest. The 

NL model did not improve model fit, but the correlation structure was significant and 

valid. Lin and Chang (2010) took a unique approach, estimating an NL model of school 

mode choice with nests for independent (without parent) and dependent travel. They did 

not report an MNL specification, but the nesting structure appeared to be valid and 
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significant. Ermagun and Samimi (2015) specified a three-level nesting structure and 

reported relatively small but significant differences in some cross-elasticities. 

Nested logit models relax the IID assumption between nests but still rely on IID 

errors within nests. Rodríguez and Joo (2004) tested an unusual heteroskedastic extreme 

value (HEV) specification that constrained alternative specific standard deviations to be 

equal within a nesting structure. The HEV model as usually applied allows each 

alternative’s error variance to differ, but as applied the result was just a restricted version 

of the NL model. Yarlagadda and Srinivasan (2008) specified an interesting joint MNL 

model of from-school/to-school mode choice. Since assuming IID errors across from/to 

mode pairs was questionable, they reported testing various mixed logit (MMNL) 

structures. In the end, the MMNL models were rejected and the more restrictive joint 

MNL form was retained. Miller et al. (2005) and Roorda et al. (2009) estimated linked 

tour and trip mode choice models using simulated log-likelihoods. The authors argued 

that complexity of tour-based models would not have fit well within a traditional discrete 

choice framework. Frank et al. (2008) circumvented this challenge by modeling only the 

main mode of each tour and ignoring individual trip modes.  

In addition to unobserved correlation between different modes, error correlation 

among individuals or groups of individuals is also possible. Existing nonmotorized mode 

choice models have relied on socioeconomic characteristics to capture heterogeneity 

among travelers. Furthermore, models to date have considered heterogeneity across 

groups in terms of preferences for specific modes. Another possibility is that different 

groups or individuals vary in how they value specific attributes of modes. For example, 



 

25 

 

women may not have a bias against biking, as is often reported, but could instead be less 

willing to trade off time or have a lower tolerance for biking in heavy traffic. Models that 

allow for unobserved heterogeneity such as the random parameter logit (RPL) and latent 

class model (LCM) are natural extensions to existing work. 

In terms of model specification, existing work suggests that more flexible error 

structures than MNL might not be necessary. There is, however, considerable scope for 

exploring more nuanced testing of group or individual heterogeneity in nonmotorized 

choice models. Tour-based models could require simulation-based modeling to model 

trip-level mode choices.  
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2  Conceptual Model 

Theoretical Framework 

Vernez Moudon and Lee (2003) divided determinants of walking and cycling into 

three parts: intra- and inter-personal factors, environmental factors, and trip 

characteristics. The authors further conceptualized measures of walking and bicycling 

environments into three components: the specific trip origin and destination, 

characteristics of the chosen route, and characteristics of the area where the trip occurs. 

Not explicitly addressed was how to measure route quality when a chosen route is either 

not observed (e.g. in common travel diary data) or not available (e.g. the walking or 

cycling route that would have been used by a person who drove). The framework 

developed here incorporates the three determinant factors and adopts the three 

components of walking and cycling environments while making the route component 

explicit. What were referred to as origin and destination variables in the existing 

framework (Moudon & Lee, 2003) are here labeled trip context attributes to further 

distinguish them from area measures around origins and destinations.  

Figure 3 outlines the proposed behavioral framework for modeling nonmotorized 

mode choice. The decision structure synthesizes existing research and extends it by 

incorporating predicted walk and bike routes as inputs to mode choice. It is hypothesized 

that in addition to other factors, cyclists and pedestrians will be sensitive to conditions 

along specific, considered routes for each mode. Some existing studies have included 

variables along or around a route, but those studies have assumed shortest paths or else 

have relied on reported routes. Shortest paths are behaviorally questionable,  
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Figure 3 Proposed mode choice framework 

 

especially for bike trips, and reported routes are not usually available in large-scale travel 

surveys. Only Bergman et al. (2011) have used predicted paths and then only for bike 

travel. They applied a route choice model developed by Broach et al. (2009). 

Based on random utility maximization from economic consumer choice theory, 

the framework assumes that travelers of various types weigh travel options based on the 

attributes of each mode and the context of the choice situation (Ben-Akiva & Lerman, 

1985; McFadden, 1973). Socioeconomic status and traveler attitudes, trip context, tour 
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attributes, time and cost, and the built environment around trip ends and routes all are 

posited to affect mode availability and mode choice directly. In addition, attributes of the 

household, traveler, and trip context may interact with (i.e. moderate) tour, origin-

destination, and route-level variables as well. The same variables can moderate network 

attributes’ impact on route choice for walk and bike trips. Shortest paths and predicted 

route choices determine which portions of travel networks are considered for each mode.  

The proposed framework was developed as a first step and as a testing 

environment and therefore relies on some additional simplifying assumptions to ensure 

tractability. First, mode choice decisions are assumed to be made independently from 

given destination choice decisions. This is the standard assumption in traditional four-

step mode choice models, but joint models and destination conditional on mode 

specifications have shown promise (Newman & Bernardin, 2010). Where tours are 

considered, it is further assumed that the entire sequence of trips is determined 

exogenously. Mode choice decisions at one stage only affect mode availability at later 

stages.  

Second, the framework assumes that travelers have complete information about 

available routes and route attributes for walk and bike trips and use that information to 

mentally calculate an optimal route. In reality, information access may vary across 

decision-makers, and even given information, they may choose a simpler heuristic to 

consider routes for a mode choice decision.  

Third, estimation of the route and mode choice models is sequential, implying that 

choosing considered routes precedes and is independent of choosing a mode.  
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Finally, it is assumed that all framework variables and choice situations are 

independent of one another. In reality, built environment might affect attitudes and even 

socioeconomics (e.g. car/bike ownership) to some degree. Mode choice habits also might 

affect attitudes. Travelers might fall into a pattern of choosing a certain mode or exhibit 

variety seeking behavior. Each of these possibilities would be interesting to explore in 

future research but would substantially complicate the modeling framework.  

As indicated in Figure 3, route choice is treated as the outcome of an exogenous 

choice process determined by network attributes, traveler characteristics, and trip context. 

This permits an additional level of preference heterogeneity. The optimal bike or walk 

route for a given origin-destination pair could differ across travelers or trip context, 

resulting in different routes entering the mode choice model for different groups or in 

different contexts.  

This two-level heterogeneity property could have some interesting consequences 

for policy analysis. As an example, imagine group “A” cyclists have a strong route 

choice preference for low-traffic streets, while group “B” cyclists are less sensitive to 

traffic levels. Both groups have a strong mode choice preference for bike lanes. Group 

“A” cyclists would be less likely to consider a high-traffic route with a new bike lane, 

and thus the new facility might impact mode choice only among group “B” cyclists. A 

similar policy response could occur based on trip context (e.g. purpose, time of day, child 

on trip) as well. In general, the proposed framework suggests that new infrastructure 

projects would only impact nonmotorized mode choice if the projects result in routes that 
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are attractive relative to existing alternatives. Thus, the choice structure implicitly 

recognizes diminishing marginal utility for projects near competing routes. 

Operational Framework 

The theoretical framework was operationalized as shown in Figure 4 to fit the 

scope of this initial research and the data readily available for model specification. All 

components were retained, though with different degrees of complexity. In particular, 

tradeoffs had to be made between non-motorized and motorized components and also 

built environment versus attitudes and sociodemographics. Generating point to point auto 

and transit travel times and costs at the resolution required was judged beyond the scope 

of this research. Access and egress distance, for transit, travel to and within the central 

city analysis district, for autos, and shortest path distances for both modes were used as 

proxies for parking, travel time, and other costs.  

Travel attitudes likely have complex relationships with route and area-based built 

environments, the focus of this research. I decided to focus only on reported residential 

self-selection as an attitudinal predictor.  

Sociodemographic variability was limited in the test data available, since 

participants were all families with children in Portland’s residential North and East sides. 

Variables were limited to household car ownership and gender.  

Finally, although data were generated by a two-cohort panel, travel data were 

pooled for analysis with the exception of a time period effect for mode choice to control 

for underlying time trends or seasonal variations.    



 

31 

 

  

Figure 4 Operationalizing the proposed mode choice framework 
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3  Data Description and General Methodology 

To test the mode choice framework, several secondary datasets were obtained and 

processed for analysis. Data sources are summarized in Table 5. 

Table 5 Data Sources 

Source Years Description 

City of Portland 2005 Interpolated traffic volumes for all local streets 

City of Portland Nov 2010 GIS1 sidewalks, crosswalk markings, medians, 

and curbs 

City of Portland 2010-2013 GIS Bicycle facilities by installation date 

Family Activity Study 2010-2013 (Jul-

Nov, 2010/12, 

May-Jul, 2011/13) 

Two 5-day, person-based, 4-second interval GPS 

travel surveys and hip-mounted accelerometer 

data for 499 adults in 333 Portland, Oregon 

households 

Family Activity Study 2010-2011 Survey questionnaires including household and 

person sociodemographic, household common 

destination addresses, and household residential 

self-selection items 

Portland Metro 2012 GIS travel network of all local streets, multi-use 

paths, and trails, including bicycle facilities 

Portland Regional Land 

Information System (RLIS) 

May 2012 GIS parcel-based land use classifications and 

building footprints, public transit network 

Portland State University 

Department of Geography 

n/a Digital Elevation Model (DEM) based on 1m 

LIDAR data 

US Census (Decennial) 2010 Population and housing units by Census Block 

1 Geographic Information System 

GPS Travel and Traveler Data 

The primary travel data used in the study were collected for 499 adults in 333 

households in Portland, Oregon. Nineteen neighborhood street corridors were identified 

in the largely flat, gridded, residential areas east of downtown Portland. Eight of the 

corridors were scheduled to receive bicycle boulevard treatments about one year after the 

site was recruited for the study, but the households were unaware that the study was 
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focused on bicycling behavior. Bike boulevards, sometimes called neighborhood 

greenways, are mostly quiet, residential streets that prioritize walking and, especially, 

bicycling using traffic calming, diversion of motor vehicles, pavement markings, and 

signage. Further details about the study’s design and primary motivations are available 

elsewhere (Dill, McNeil, Broach, & Ma, 2014). 

Recruitment. All non-vacant households within 1000 feet (305m) of the corridor 

street received a flyer on their doorstep or by mail, and eligible families self-selected into 

the study. Eligibility required at least one adult and one child aged 5-17 willing to 

participate, but for this research the child data was used only to identify when a child was 

on a trip with an adult. Each participating member had to have a working bicycle 

available for use and no physical limitations preventing active travel. Participants would 

agree to answer two rounds of survey questionnaires and collect two rounds of 5-day 

GPS and accelerometer data over a 2-year period. Families were offered $75 as an 

incentive for each round of successful data collection. 

Using Census (ACS 5-year, 2011) counts of families with children 6-17 within 

each study site, we estimated a recruitment rate of only 3.2%. While low, the estimate 

likely understates the true rate somewhat, since some households would have had only 

children aged 0-4. Still, the rate was lower than a broadly comparable study in the Puget 

Sound Region, which reported a 6% initial recruitment rate (Vernez Moudon et al., 

2009). We attributed the low rate to a combination of strict eligibility requirements, 

relatively low incentive, demanding data collection, and a two-year commitment from 

families with busy schedules. 
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Initially, each cohort was scheduled to collect travel and activity data one year 

apart. Due to delays in completing the bike boulevard treatments, cohorts collected two 

years apart. Cohort 1 collected travel data for five consecutive days from July-November, 

2010, and then again during the same months in 2012. Cohort 2 collected during April-

July, 2011, and then again over the same months in 2013. Each collection were scheduled 

to include at least one weekend day. 

Representativeness. Table 6 provides comparisons with both the broader 

Portland population and the population within block groups overlapping the study site 

boundaries. Multnomah County’s boundary is nearly identical to the city boundary. The 

study sites generally reflected the characteristics of families in the city as a whole. 

Compared with other family households with children, study participants had similar 

incomes and gender splits, were more likely to identify as non-Hispanic white, and were 

much less likely to rent their residence. A larger share of participants had college degrees 

than the population 25 years and older. Relative to all Portland households, participating 

households had a slightly higher number of vehicles, but compared with other multiple 

person households, the rate of zero-car households was lower. Some of the differences 

may reflect a bias toward participating in the specific study or research in general. 

Table 7 compares trips within the city of Portland from the full GPS based travel 

dataset to the same subset of trips in the most recent traditional regional travel survey,  

intended to be representative of travel in the Portland region. Relative to the regional 

survey, the GPS sample included smaller shares of walk and transit trips and larger shares 

of bicycle and auto trips. Restricting the regional survey sample to households with  
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Table 6 Study Participants and Broader Population 

Measure Participating 

Households 

Multnomah 

County1,2 

Study Area 

Block Groups2,3 

Median Annual Family 

Income 

$50,000-

$75,000 

$57,143 $58,4587 

% Female Adults 62.4% 58.7% 52.2% 

% Female Children 47.9% 49.0% 48.1% 

% Married Couple 

Families 

58.5% 64.6% 68.9% 

% White, Non-Hispanic 

Adults 

84.9% 68.7% 71.4% 

% Renters 19.2% 37.8% 40.4% 

% Four-year college 

degree or higher 

59.8% 37.5%4 34.1%4 

Vehicles per household 1.7 1.55 1.55 

% Zero car households 4.2% 6.3%6 - 

Median adult age 41.0 35.4 - 

1 Census ACS 5-year, 2010 

2 households with children under 18, unless noted 

3 Census ACS 5-year, 2011 

4 population 25 years or older, all households 

5 all households 

6 households with more than one person 

7 family households (two or more related individuals) 

 

children, GPS sample walk and auto mode shares were comparable to the representative 

survey (within 10%). Transit share was still considerably lower (-48%), and bike share 

was higher (+84%) in the GPS survey. Only those able to bike and with access to a 

bicycle were included in the GPS sample, so the higher rate of cycling was expected.  

Since the transit mode imputation success rate was relatively high (89%, Appendix A), it 

appears that the GPS sample might have underrepresented transit users. Shortest path  
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Table 7 Comparison of GPS and Regional Survey Travel Data 

Item 

Family 

Activity 

Study 

(2010-2013) 

Regional 

Travel 

Survey 

(2011)1 

Regional 

Travel 

Survey-

Households 

w/ children 

GPS points (4s interval) 18,620,392 -  

GPS trip stages (single-mode 

trip segments) 

55,741 -  

GPS Trips 38,402 -  

Trips  

(within city of Portland) 

30,885 17,304 8,165 

walk 

…number 

…share 

…GPS distance (mi) 

…shortest path distance (mi) 

                

7,515     

24.3%         

0.40             

0.32                

                

5,095     

29.5%        

-              

0.33  

                

2,150       

26.4%         

-              

0.37  

bike 

…number 

…share 

…GPS distance 

…shortest path distance 

                

3,125     

10.1%        

1.60             

1.31                

                

982     

5.7%           

-              

2.10   

                

451       

5.5%           

-              

1.93   

auto 

…number 

…share 

…avg. GPS distance 

…avg. shortest path distance 

             

19,329     

62.6%        

3.29             

2.56                

             

9,698     

57.0%        

-              

3.00             

             

4,943     

60.8%         

-             

2.87                         

transit2 

…number 

…share 

…GPS distance 

…shortest path distance 

                  

811          

2.6%        

2.97             

2.49                

                  

1,299          

7.5%          

-              

3.03 

                  

405          

5.0%           

-              

3.16 

other 

…number 

…share 

                  

105          

0.3% 

                  

230          

1.3% 

                  

180          

2.2% 

1 Oregon Travel and Activity Survey; for comparability, only trips by city of 

Portland residents within the city boundaries were included. Applying 

regional sampling weights had only small effects on the results, and since the 

weights were not intended for subsamples, unweighted statistics are 

presented.  

2 Bus, light rail (MAX), streetcar, and aerial tram 
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distances were lower in the GPS sample across all modes. Without further information, it 

was difficult to distinguish to what extent this represented true sample differences versus  

differences in trip definitions or omissions. Shorter average differences are consistent 

with previous findings that traditional travel diaries tend to miss shorter distance trips 

(Stopher, FitzGerald, & Xu, 2007). 

Trip and tour data. GPS derived travel data is mapped by mode in Figure 5 and 

summarized in Figure 5. The 18.6 million raw GPS points, consisting of time and 

location stamps at four-second intervals, were transformed into trip stages (single-mode 

trip segments) and trips by adapting existing GPS processing algorithms (Schuessler & 

Axhausen, 2009b). Trip stages were then assigned a most likely travel mode by choosing 

the highest probability mode after applying a mode choice prediction model, described in 

Appendix A, to the processed GPS and accelerometer data. A subsample of GPS trips 

was used for mode choice modeling (Chapter 5).  

Low probability modes (maximum < 0.4) were randomly checked by hand in a 

GIS to catch any systematic errors in the method. One problem identified was boat trips 

in the local rivers falsely identified as bicycling due to similar speed and activity levels. 

These water trip stages were eliminated by flagging all trips with more than 80% of GPS 

points over water, and then manually flagging the 70 trip stages that were actually on 

water.  
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Figure 5 GPS data geographic extent for (a) walk, (b) bike, (c) auto, and (d) transit 

 

Once modes were assigned to trip stages, a multiple hypothesis map matching 

technique was adapted from existing work and applied to all bicycle and pedestrian trips 

(Schuessler & Axhausen, 2009a). Map matching is the process of assigning a series of 

N

(a) (b)

(c) (d)
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GPS points to network links (street segments between intersection nodes). The multiple 

hypothesis method makes use of network topology to ensure that only feasible routes are  

chosen, in contrast to proximity-based algorithms that may match to nonsense routes (e.g. 

jumping back and forth between the lower and upper decks of a bridge). Modifications 

included handling short stretches of off-network travel, since walking and even cycling 

trips often made use of informal cut through paths in parks, plazas, shopping centers, 

campuses, and other locations despite an extremely detailed travel network. The 

algorithm was amended so that it could find its way around obstacles and pick up the 

trace on the other side. I found through experimentation that u-turns in the GPS data were 

much more common for walking trips than I had previously dealt with in bicycle travel, 

and procedures had to be added to ignore them; otherwise such movements can easily 

derail the map matching logic, which relies on sequential, least cost paths through the 

network. 

Trips were assigned a primary mode based on the longest distance trip leg. Tours 

were constructed by splitting trip chains each time a trip ended within 200 meters (656 ft) 

of home or the travel day ended (2:00 A.M. the following morning, to catch late night 

returns). All analysis was restricted to travel within the city of Portland, although the data 

extended farther, and different analyses used different subsamples of the data, described 

here in the appropriate sections. 

I also imputed joint household travel. Not all households had full participation in 

the study; for others, only a subset of household members enrolled. Children under 5 or 

over 16 when the study began were ineligible, as were adults with physical limitations 
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restricting walking and cycling and those without access to a bicycle. Others simply 

chose not to participate. Overall, 41% of households included all members, 39% were 

missing one or more adults, 36% were missing one or more children, and 6% of 

households did not provide data on missing participants. Since each household had at 

least two participants, there was always a possibility of joint travel despite the incomplete 

data. Joint travel was assumed at the trip stage level when more than half of paired GPS 

points were within 4 seconds and 50 meters of each other.  

While traditional travel diaries have their own demonstrated biases, it should be 

noted that the deterministic trip, trip end, and route identification, as well as the 

probabilistic mode prediction methods, are each subject to unknown error rates. 

It was hoped that by following existing methodological standards and validating new 

methods as much as possible, results would remain consistent with actual travel despite 

the data’s imperfections.  

Where travel data processing errors did occur, I could at least speculate on the 

likely modeling impacts. Raw GPS data were divided into discrete trips, travel between 

an activity origin and destination, based on dwell time and GPS point density calculations 

adapted from Schuessler and Axhausen (2009b). In some cases, trips might have been 

split before a destination was reached (e.g. an exceptionally long delay in traffic or 

stopping to answer a mobile phone call). In others, trips might have failed to split when 

an activity was too brief to meet the time or density thresholds (e.g. dropping off library 

books or picking up a waiting passenger). Trip spitting errors were expected to have only 

minor impacts on model results. In mode choice modeling, trip definition errors were 
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further mitigated by including tour (linked trip) distances as well as trip distance, so that 

even if a trip were split into two segments, the total distance still would factor in mode 

choice. Trip purpose was imputed based on a provided list of common destinations, 

resulting in potential confounding between a destination being commonly visited and the 

specific trip purpose. In modeling mode choice, I partially addressed this issue by testing 

control variables reflecting “any common destination,” regardless of purpose, but they 

were in all cases insignificant. Nevertheless, the purpose results are best interpreted as 

trips to specific classes of common locations rather than true purpose measures. Map 

matching of GPS points to GIS travel networks was subject to data limitations. In 

particular, informal shortcuts through parks and other spaces were not included in 

modeling, though they may well impact pedestrian and cycling route or mode choice. 

Future work might consider ways to include at least the portion of these route alternatives 

through public spaces. Finally, the imputation of travel mode itself was subject to errors 

(Appendix A). External validation suggested that bicycling detection errors were most 

likely to be of Type II (i.e. false negative, an actual bicycle trip stage is coded as another 

mode, primarily walking), while assigned walk errors were more likely to be of Type I 

(i.e. false positive, a non-walk trip stage is treated as walking, primarily bicycle and auto 

travel). The result of mode imputation errors would be to assign preferences for attributes 

to the wrong mode. Assigning (mostly very low speed) bicycle trip preferences to 

walking did not seem particularly troubling, while applying actual auto preferences to 

walk travel did seem problematic. Mitigating the trip stage errors, each trip was assigned 

only a primary mode, so that an error on any one stage did not necessarily result in a trip 
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mode assignment error. Efforts should continue to improve the imputation of travel mode 

from GPS data.    

Household and traveler data. Both household and individual survey 

questionnaires were distributed three times as part of the study. Except to correct missing 

data that was assumed to be mostly static (e.g. gender) and in rare cases to update 

residential self-selection responses after a move, only the initial year’s data were used for 

each cohort. Participants were instructed to answer household-related questions jointly, 

and I assumed that responses applied equally to all family members.  

Missing data for household vehicles per licensed driver were replaced with the 

sample mean, since I had no reason to expect non-response bias by vehicle ownership 

(there was instruction to note if zero vehicles were owned). I was less confident in 

imputing missing data for residential self-selection importance ratings, since it seems 

reasonable that those who had not considered walking and biking when choosing a home, 

or participants confused by the concept, might also be more likely to skip those items. 

These cases were treated as missing in all analysis requiring the self-selection responses. 

GIS Built Environment Data 

In addition to the survey data, a database of Geographic Information System 

(GIS) measures was populated using data provided mainly by city and regional 

government agencies as shown in Table 5. 

Time consistency of data. Because travel took place over a 4-year period, ideally 

built environment data likely to change over that time interval would be updated at least 

annually, but that was not always feasible. Data availability and resource constraints 
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forced decisions on which data could reasonably be treated as dynamic and which to treat 

as fixed. On-street bicycle facility and multi-use path variables were known to have 

changed considerably during the study’s timeframe and were also a key focus of the 

research and framework. Therefore, the base 2012 travel network provided by Portland 

Metro was updated with annual construction data from the City of Portland for 2010-

2013 to construct year by year GIS layers of bike facility locations. Stop signs, traffic 

signals, and pedestrian signals related to the eight project sites near participants were 

updated by hand based on project drawings.  

Household buffer variables that included bike facilities were calculated for each 

of the four years of data, and the correct year’s value was applied based on the year of the 

trip in calculating trip end buffer attributes. Other attributes were measured in a year as 

close as possible to the midpoint of data collection, and generally at least within the data 

span. An exception was traffic volume, which is only interpolated to local streets 

irregularly, the last time in 2005. A colleague performed a statistical comparison between 

the 2005 data and updated data from 2008-2012 at 51 locations and reported a correlation 

of 0.99 with mean error of just +200 vehicles per day, well below the level of precision 

specified in my models (A. Bigazzi, personal communication, December 19, 2013). 

Roadway slope and block face variable calculations. Special techniques were 

developed to calculate roadway slope from a digital elevation model (DEM) based on 1 

meter (3.28 ft) resolution LIDAR4 data and to calculate linear block face (versus areal) 

built environment and land use measures. Figure 6 provides a graphical representation of 

                                                 
4 LIDAR is a technology used to scan and map terrain at very high resolution.  
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the slope and block face calculations. For each street segment, elevation was measured 

from each endpoint to the other and in each direction at 10 meter (32.8 ft) intervals or 

less. Point elevations were then used to calculate gross elevation gain and loss in each 

direction. Finally, the gain measured in one direction was averaged with the measured 

loss in the opposite direction and vice versa, to account for the different measurement 

points in each direction. The method was adapted slightly from one developed at Portland 

Metro. Bridge roadway elevations were constructed manually by overlaying the DEM 

and aerial photos of the bridge structures, and applying a similar technique.  

 

roadway curb sidewalk buildings

5 m

10 m

(a)

(b)

Figure 6 (a) Automated GIS street audit at 5m intervals and (b) Calculating gross 

elevation gain and loss along segment at 10m intervals (shown in one direction only) 
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An automated, GIS street audit method was developed for measuring feature 

distributions and other attributes (e.g. proportion commercial frontage or sidewalk 

widths) linearly along street segments. The concept derived from a manual audit 

methodology developed by Park (2008). For each street segment, scan lines were 

generated at 5 meter (16 ft) intervals extending perpendicularly 30 meters (100 ft) to 

either side of the street centerline. The intersections of the scan lines with curbs, 

sidewalks, buildings, and land parcels were used to sample the block features over each 5 

meter interval on either side of the street. By measuring at street level rather than from 

the air, I hoped to better represent the environments experienced by people walking and 

biking. While many of the more detailed measures (street width, sidewalk width, building 

setbacks, enclosure, skyline height) were not ultimately used in this initial research, I 

have plans to use them in future extensions to provide region-wide bicycle and, 

especially, pedestrian micro-scale built environment measures.  

Random utility maximization and the logit model 

The modeling framework presented in Chapter 2 assumes that individuals make 

route and mode choice selections that maximize the overall utility (satisfaction) derived 

from each choice. Utility is specified as a function of attributes of the alternatives. Some 

attributes are either unobservable or not fully measureable by the analyst, and so the 

utility of each alternative in a given choice situation is random: 

 𝑼𝒊 = 𝒇(𝑽𝒊 + 𝒆𝒊) (1) 
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where UI is the utility of alternative i, V is the observed component, and e is the 

unobserved or error component. Observed utility is most commonly specified as a sum of 

products of unobserved linear parameters and observed attributes: 

 𝑉𝑖𝑡 =∑𝐁𝐗𝐢𝐭 (2) 

 

where B is a vector of linear parameters and Xit is a vector of attribute values for 

alternative i and choice situation t. Since individuals are assumed to choose the 

alternative with highest utility, the probability of choosing an alternative is just the joint 

probability that the alternative’s utility exceeds that of all other alternatives. Assuming 

that ei is independently and identically (IID) Gumbel (type I extreme value) distributed 

leads to the multinomial logit (MNL) with choice probabilities: 

 

 
𝑃𝑖𝑡 =

𝑒𝑉𝑖𝑡

∑ 𝑒𝑉𝑖𝑡𝑖
 (3) 

 

The IID error assumption poses two potential problems for the current project. 

First, alternatives are assumed to have no correlation among unobserved attributes. In 

route choice sets, some alternatives are likely to physically overlap and thus would 

almost certainly share unobserved characteristics along those portions. In mode choice 

models, some alternatives may share unobserved attributes (e.g. both bike and walk 

require physical exertion and expose travelers to the elements).  
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Second, in the MNL specification, the parameter vector B is fixed across 

individuals and choice situations. If sensitivity to certain attributes actually varies among 

the population, more flexible model forms may be required. Significant heterogeneity due 

to unobserved individual attributes might also suggest more flexible forms. The panel 

nature of the data also poses challenges for the simple error structure.  

On the other hand, the MNL model is simpler to specify and interpret. It has also 

been shown to be surprisingly robust to violations in assumptions. Given that the analysis 

here was an exploratory test of a new mode choice framework, and that the specific 

results were not intended to be applied directly to modeling generalized choice problems, 

I chose to retain the basic MNL structure, addressing the most obvious problems of route 

overlap and, to some degree, panel effects, and otherwise specifying sociodemographic 

and trip context interactions to allow for basic preference heterogeneity within the 

systematic portion of utility. Future applications will relax the IID assumptions and 

compare to this preliminary work. 
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4  Route Choice Models 

In order to predict most likely walk and bicycle routes for each trip, route choice 

models are needed to specify the utility of alternative paths through a travel network from 

each trip origin to destination, even when walk, bike or neither are the chosen alternative. 

This chapter describes the development of a pedestrian route choice model using walk 

trips from the Family Activity Study GPS dataset, and the re-estimation of an existing 

bicycle route choice model with bike trips from the Family Activity Study. 

Pedestrian Route Choice Model 

While several recent cyclist route choice models have been estimated from GPS, 

there has been less activity on modeling route choice for pedestrian utility travel. Most 

pedestrian studies have instead focused on simulating aggregate flows and dynamic 

pedestrian movements in response to crowding and evacuation scenarios. Those studies 

were not considered relevant to the current problem, but a review may be found in 

Antonini et al. (2006). Only two studies were found that had developed models suitable 

for generating predicted routes, but while these studies provided useful information, the 

relatively small samples of adolescent girls (Rodríguez et al., 2015) and walking trips in 

very dense cities (Guo & Loo, 2013) seemed unlikely to be readily transferable to the 

sample of adults in Portland. There have, however, been a number of studies over the 

years that provided me with ideas about what pedestrians value, and whether their 

decision making process was reducible to a discrete choice problem at all. 

Relevant existing work. Verlander and Heydecker (1997) compared a sample of 

walk trips in an urban area of the UK to shortest paths. They reported that 75% of walk 

trips followed the shortest available route, suggesting that distance is a potentially near-
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deterministic factor for many walk trips. They also suggested two potential choice set 

generation techniques for walk trips: K-shortest routes and K-dissimilar routes. No choice 

model was estimated.  

Seneviratne and Morrall (1985) examined walk trips in downtown Calgary and 

also found distance to be the primary route choice factor, but crossings, crowding, 

attractions, weather protection, pollution, and safety were also found to be important. 

Importance of factors was found to vary by trip purpose.  

A survey of Jerusalem pedestrians found distance, “convenience,” scenery, and 

habit to be the most important stated factors in walk route choice (Bovy & Stern, 1990).  

Agrawal, Schlossberg, and Irvin (2008) collected stated route preferences and 

recalled routes from morning commuters at five rail stations in San Francisco and 

Portland, Oregon. Minimizing distance was the dominant factor, while traffic safety, 

crossing delays, sidewalk condition, route attractiveness, and presence of other 

pedestrians were also rated important factors by a majority of respondents. Women were 

considerably more likely than men to rate safety as important.  

Borst et al. (2009) considered walk route choice among elderly residents of three 

Dutch urban districts. Unlike previous studies, they found that their elderly sample chose 

the shortest path only 20% of the time. They used an ad hoc iterative fitting method to 

match link counts by adjusting stochastic link friction factors. Audited, link-level built 

environment variables were then regressed on the best fitting friction factors. A number 

of factors were found to impact link choice: pavement (+), slopes/stairs (-), green strips (-
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), front gardens (+), blind walls (-), litter (-), first floor dwellings (+), shops (+), parks (-), 

traffic volume (+), and segment length (+). 

Rodríguez et al. (2015) developed a discrete choice-based model based on GPS 

and travel diary data collected by 303 adolescent girls in San Diego, California and 

Minneapolis, Minnesota. The branch and bound heuristic technique developed by Prato  

and Bekhor (2006) was used to identify all alternatives to chosen routes that met a set of 

logic conditions specified by the authors. Manual audits were performed to gather built 

environment information on all street segments along both chosen and alternative routes. 

This method was feasible due to the relatively small number of trips recorded (n=112) 

and a low average number of alternative routes, about three per trip. Separate route 

models were estimated for each sample location using a Path Size Logit (PSL) model 

form that accounts for overlap between route alternatives. Distance (-), proportion 

greenway (multi-use path, +), presence of traffic lights (+), proportion of route with 

medians (-), abandoned buildings (+), parks (+), food establishments (+), destinations 

index (+), and a safety index (+) were each found to be significant at the 5% level in at 

least one location. The authors noted the potential confounding effects of pedestrian 

amenities such as sidewalks, public transit stops, pedestrian signals and destinations often 

being located near detracting features like high traffic roads and temporarily abandoned 

buildings in busy districts.   

 Guo et al. (2013) developed pedestrian route choice models for two sub-samples 

of pedestrians in specific neighborhoods of Hong Kong and New York City. A total of 

321 pedestrians were interviewed during an intercept survey, and each marked their 
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current walking route on a paper map, which was later digitized. Both utilitarian and 

recreational walking trips were included in the model. A combination of in-person audits, 

GIS data, and Google Street View audits were used to construct route attributes. In New 

York City, 5-minute manual vehicle traffic counts were performed due to the lack of 

volume data available for local streets. To generate alternative routes, the authors used a 

modified labeling approach similar to one used in Broach et al. (2011) to generate bicycle 

route alternatives, though without the calibration step. In the combined model, route 

distance (-), percentage retail frontage (+), and percentage open space (+) are all found to 

be significant route choice factors at 5-percent significance level. 

Data selection. Walking trip stages from the Family Activity Study GPS Travel 

dataset were the units of analysis, where a trip stage was a single-mode segment of a trip 

(e.g. walking to access transit, or simply walking from origin to destination). Only trip 

stages where walking or transit was the primary mode were considered. For the 

remainder of the description, trip will be used interchangeably with stage for readability. 

Walking trips were screened by distance, directness, and use of the travel network 

to fit the theory of utility maximization chosen for modeling. Only trips of at least 400m 

(0.25 mi, or about 2-5 blocks in the study area) were retained. Trips traveling more than 

three times the straight-line distance were considered likely to be recreational or loop 

trips and were not used in this analysis. Statistics for sampled routes are provided in 

Table 8. 

Next, despite a detailed pedestrian network that included off-street paths, some 

walking trips still included sections of off-network travel. For those cases, if the off-
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network segment occurred at the start or end of a trip (e.g. leaving a campus or park), the 

off-network segments were simply clipped; otherwise, the trip was rejected. Finally, 

where u-turns occurred in the data, I clipped the u-turn if the remaining route was still 

logical (e.g. a short jog up and back on a side street).  

Table 8 Walk Trip Stage Sample and Alternative Route Characteristics 

Attribute Chosen Alternative 

number of walk trip stages 1167 - 

number of individuals 283 - 

mean distance 876 m  

(0.54 mi) 

1651 m  

(1.03 mi) 

walk as primary mode 95.5 % - 

transit as primary mode 4.5 % - 

trips by females 72.4 % - 

travel on streets with complete sidewalks 

(both sides) 

80.9 % 78.4 % 

travel on off-street paths 4.2 % 3.4 % 

travel with another household member 

(imputed) 

10.2 % - 

mean distinct alternatives - 16.8 

  

The data comprised a panel with two time periods and multiple trips for most 

individuals. The average number of trips per person was low (4.1), however, and the 

maximum number of eligible walk trips for an individual was just 25 (2% of the total). 

Given the relatively even distribution of trips and the fact that data were collected on all 

travel covering both weekdays and weekends, I did not expect panel effects to be 

particularly worrisome. 

Challenges peculiar to walking data. Determining side of street and street crossing 

behavior was a challenge. Even after filtering, the GPS data were not always precise 
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enough to accurately determine on which side of the street someone is traveling. In 

addition, when street side in unknown, pedestrians have at least two crossing options 

available at each intersection. Tree canopy, urban canyons, and variation in how a 

Figure 7  Pedestrian crossing rules: GPS points could not reliably determine side of street. The 

walk trip beginning at lower left above would have been assumed to use the crosswalk at SE 

Umatilla St. (by rule 1, see text) and a crosswalk at SE 15th Ave. and SE Tacoma St. (by rule 2). 
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person-based GPS device is worn can all degrade signals such that they wobble back and 

forth across centerlines. Figure 7 provides an example of how the following crossing 

rules were applied: 

 Rule 1: Pedestrians passing straight through an intersection were assumed to 

have made use of the qualitatively most protected crossing to either side of the 

street or any midblock crossings on streets entering the intersection.  

 Rule 2: If a turn sequence occurred that necessitated a crossing (e.g. left then 

right, or right then left), pedestrians were assumed to have crossed only once 

and to have used the qualitatively most protected crossing available between 

the two turns. 

 The crossing protection hierarchy assigned was: traffic signal > crosswalk 

with median > crosswalk > crossing with none of these treatments. 

Generating alternative routes. I used a stochastic, random walk-based method 

developed by Frejinger et al. (2009) to generate up to twenty alternatives to the chosen 

path. Choice set generation is a heavily-studied area within route choice modeling (Prato, 

2009). Choice sets can be specified deterministically or using a random process. My 

colleagues and I had developed a deterministic technique based on optimizing certain 

attributes along each alternative to estimate a cyclist route choice model (Broach et al., 

2011), and a similar method has been applied to pedestrian route choice (Guo & Loo, 

2013). However, in that case we had a better idea—including a survey of stated 

preferences—of the factors important to cyclists along routes. The pedestrian route 

choice literature is sparse and uncertain by comparison. The random walk method 

assumes only that distance is important, and unlike competing stochastic methods, 

selection probabilities are known and can be corrected for in modeling (Frejinger et al., 

2009). A more recent method avoids the choice set generation problem entirely, and may 
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be preferable, but it was not ready to share at the time of this analysis (Fosgerau, 

Frejinger, & Karlstrom, 2013). The random walk around a shortest path was applied as 

follows: 

 Define the origin (O) and destination (D) as the nearest points on network links. 

 Define the universal choice set as all possible paths between O and D such that: 

o No node is traversed twice (acyclic). 

o No u-turns are needed. 

o The path does not exceed three times the shortest network path 

between O and D. 

o The path does not pass by the destination link. 

 For each of twenty iterations: 

o Including the origin, randomly select the next outgoing link i (from 

node v to w) from the set of all valid outgoing links M using the 

probability formula in Equation 1, where SP is calculated as the 

shortest valid path given links already traversed. 

o If a dead end is encountered, restart up to ten times before giving up 

on that iteration. 

o Through trial and error, we set b1 equal to 5 and b2 equal to 1. This 

provided a reasonable balance between generating a variety of 

alternatives and oversampling relatively direct routes. 
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Table 8 describes characteristics of the observed and sampled alternative routes. 

The randomly generated paths were nearly twice as long on average as the chosen path; 

however, the model weights shorter, more likely paths more heavily, so that the 

coefficient estimates should have remained unbiased. Only ten trips had to be discarded 

because no alternative was generated by the random walk. 

Pedestrian environment and trip-related variables. I hypothesized that 

pedestrians would be sensitive to attributes both along (e.g. sidewalks) and adjacent to 

(e.g. land use) potential walking routes. GIS network, elevation, and land use data were 

used to calculate variables at the link level that were then aggregated to form route 

measures. 

Relevant adjacent environment variables were calculated for both sides of each 

street segment and then averaged. An automated GIS-based audit method, described in 

Chapter 3, was used to capture attributes including commercial and other land-use 

frontages, sidewalk coverage, and enclosure to test in the model. In addition, a few trip 

context attributes such as weekend/weekday, joint travel with other participating family 

members, and walk as transit access mode were assembled. It should be noted that the 

joint travel measures were known to be limited, since we only had information about 

other family members who were participating in the study. Table 9 provides a list of 

variables considered in model development.  
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Table 9 Pedestrian Route and Trip Variables 

Name Description 

distance (m) route distance in meters 

turns intersection angle at least 30 degrees onto street with different 

name 

steep upslope (m) distance along links with average upslope of at least 10 percent  

substandard street (m) distance along links classified as unpaved or alleys 

busy street (m) distance along streets with collector or higher classification 

(approximately 10,000+ vehicles per day)  

traveling together another family member on trip (child or adult) 

neighborhood commercial (m) proportion commercial frontage (average of both sides) along 

collector and minor arterial streets (average 10,000-13,000 

vehicles per day) times street distance  

unsignalized arterial crossings number of arterial (average 13,000-23,000 vehicles per day) 

crossings with no signal (auto or pedestrian)  

unmarked collector crossings number of collector (average 10,000 cars per day) crossings with 

no marked crosswalk or signal 

additional variables tested segmentation by gender, transit access trip, weekend, parks, 

paths, residential streets, downslope, missing sidewalk, median 

refuges, enclosure, pre-1946 buildings  

 

Behavioral theory and model form. One may argue that, when walking, people 

choose their path at random, solely due to habit, or even dynamically from decision point 

to decision point. I chose instead to consider that pedestrians might not differ so 

drastically from travelers using other modes. The model form adopted assumes that 

pedestrians choose a route before traveling by selecting the bundle of route attributes that 

maximizes their utility given the options available. I argued that pedestrians, like other 

travelers, were likely willing to make tradeoffs among the bundles of attributes. For 

example, they might go out of their way to avoid a difficult crossing, or to walk along a 

more interesting street at the cost of slightly more distance walked. 

Based on the assumption of utility maximizing behavior, I used a discrete choice 

modeling framework, in which individuals choose from among a discrete number of 
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alternatives, in this case a set of possible paths from origin to destination (Ben-Akiva & 

Lerman, 1985). Following Frejinger et al. (2009), I used an expanded path-size logit 

model. This model modifies the common multinomial logit model to account for overlap 

among path alternatives and corrects for the importance sampling alternative generation 

technique described in the previous section. The model form is shown in Equation 5 and 

the expanded path size formulation in Equation 6. 

 

Pr(𝑖|𝐶𝑛) =
𝑒
𝜇(𝑉𝑖𝑛+ln(𝐸𝑃𝑆𝑖𝑛))+ln(

𝑘𝑖𝑛
𝑞(𝑖)

)

∑ 𝑒
𝜇(𝑉𝑗𝑛+ln(𝐸𝑃𝑆𝑖𝑛))+ln(

𝑘𝑗𝑛
𝑞(𝑗)

)
𝑗∈𝐶𝑛

 

 

where 𝐶𝑛 is the choice set for choice situation n 

𝜇 is the usual logit scale term 

V is the systematic portion of utility 

EPS is the expanded path size factor (see Equation 3) 

𝑘𝑖𝑛 is the number of times alternative i is randomly drawn (+1 

if chosen   

    alternative, which is always included) 

q(i) is the selection probability, calculated as the product of 

each link choice  

    probability in the random draws 

 

(5) 

 

 
𝐸𝑃𝑆𝑖𝑛 = ∑

𝐿𝑎
𝐿𝑖

1

∑ 𝛿𝑎𝑗𝛷𝑗𝑛𝑗∈𝐶𝑛𝑎𝜖Г𝑖

 

 

Г𝑖 is the set of links in path i 

𝐿𝑎 is the length of link a 

𝐿𝑖 is the length of path i 

𝛿𝑎𝑗is 1 if path a contains link j, 0 otherwise 

𝛷𝑗𝑛 is 1 if path j is the chosen path or is expected to be      

drawn at least once 

 

(6) 

 

Results. Results of the final model explaining the choice of the observed routes 

over plausible alternatives are shown in Table 10. Many intermediate models were 

estimated, and likelihood ratio tests were conducted to determine whether coefficients 

should be retained, combined, or dropped. In general, I was pleased with the model’s 
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ability to explain the data. Overall model fit was strongly significant, signs were as 

expected, and the specification did not seem to be overly sensitive to small specification 

changes. The expanded path size parameter was positive and significant and appeared to 

slightly improve estimation efficiency when compared with the normal path size term. 

Coefficients in logit models cannot be compared directly beyond sign and 

significance. One useful tool to interpret model results is the relative willingness to trade 

off against other attributes, defined by the marginal rate of substitution. Elasticities 

provide the expected change in probability for a small change in each variable, given the 

variable values in each choice situation. Marginal rates of substitution provide a better 

idea of the potential effect size of each attribute relative to another. Table 11 presents 

marginal rates of substitution relative to distance for each significant attribute. 

Distance, steep upslope, and substandard streets all had significant effects on 

route choice. Steep upslopes of 10% are perceived as twice as costly as travel on less 

steep ground. Lower grade thresholds were tested along with various downslope 

variables. None were found to be significant. It is interesting if not unexpected that 

pedestrians are not nearly as sensitive to slopes as cyclists, who previous work has found  

to avoid upslopes as low as 2% (Broach et al., 2012).Due to data limitations, it was 

difficult to separate alleyways from unpaved streets, and so the two were combined. 

These were prevalent in the study areas. By definition, neither of these substandard street 

types has sidewalks, and this fact likely masked any independent correlation between 

sidewalks and route choice. The model suggests an alley or unpaved street added about 

50% to perceived distance.  
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In contrast to findings from cycling studies, I did not find a benefit to off street 

paths separate from possible distance savings. It should be noted that I selected walk trips 

to exclude likely recreational walking travel, and paths may well be attractive options for 

such trips. 

Table 10 Path-size Logit Walk Route Choice Results 

Attribute coeff t-stat1 

distance (m) -0.015 -28.4 

turns -0.809 -20.2 

steep upslope (m) -0.015 -2.43 

substandard street (m) -0.008 -6.01 

busy street (m) -0.002 -5.12 

distance * traveling together (m) -0.013 -3.19 

neighborhood commercial (m) 0.004 3.70 

unsignalized arterial crossings -1.090 -4.35 

unmarked collector crossings -0.419 -2.71 

ln(EPS) 0.128 5.53 

Log-likelihood (Null) -2,919  

Log-likelihood (Model) -1,047  

Adjusted Pseudo R^2 0.638  

Num. Walk Trip Stages 1,167  

1all coefficient estimates significant at the 5% level, standard t-tests 

 

Crossing busy streets without aids significantly reduced the utility of a route. To 

avoid an additional unsignalized arterial crossing, a pedestrian would be willing to go 

over 70 meters (230 ft) farther via an alternate path. Though significant, this only 

represents about one Portland block. According to the model, signalized crossings would 

need to be quite frequent to be useful to the average pedestrian. Walkers were also 

willing to deviate somewhat to avoid crossing collector streets (average AADT around 
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10,000) without at least a painted crosswalk. To what extent these intersection crossing 

attributes reflect disutility due to delay, perceived safety, or some other factor could not 

be determined from the analysis here but would be an interesting topic for future work. 

Table 11 Distance equivalent (Marginal Rate of 

Substitution) for attributes 

 

Attribute 

Distance 

Equivalent 

Per additional…  

turn +54 m 

unsignalized arterial crossing +73 m 

collector crossing w/o marked 

crosswalk 
+28 m 

Change in perceived distance along…  

ten percent upslope +99 % 

unpaved or alleyway +51 % 

busy street (collector or larger) +14 % 

neighborhood commercial −28 % 

Increase in detour cost…  

traveling with another family member +85 % 

 

Even after controlling for the intersection crossing effects just described, each additional 

turn along a route was equivalent to about 50 meters (164ft) distance, or about one-half to 

three-quarters of a typical Portland block. Turns are not likely to be a delay factor for 

pedestrians as they are for cyclists and motorized travelers. I propose that the cost of 

turns might be in terms of cognitive wayfinding cost; a route with fewer turns is simpler 

to navigate. Another possibility suggested to me is that people walking might choose a 

preferred “line haul” street and prefer to stay on it until they need to turn toward their 

destination. It is also feasible that the turn finding is at least in part an artifact of the 

alternative route generation technique. Future work could compare models estimated 
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using different methods to generate alternative walking routes and check the sensitivity of 

the turn finding. 

Only two adjacent environment factors were found to be significant in pedestrian 

route choice. Neighborhood commercial corridors, defined as the proportion of 

commercial frontage along minor arterial and collector streets, were attractive to people 

walking, perhaps because of increased street activity or possibly because of the 

opportunity to make an unplanned stop. Walking distance on those streets was perceived 

as up to 28% less costly than a similar non-commercial street. Commercial districts on 

major arterials did not attract pedestrians passing through. Routes adjacent to busy streets 

(collector or greater) added the equivalent of 14% more distance. I found no significant 

difference among the classes of heavily trafficked adjacent streets. I was unable to obtain 

suitable measures of tree canopy and other street amenities but hope to test these in the 

future. 

The only trip-level attribute significant in the final model was travel with another 

household member. Imputation and limitations of my joint travel measure are described 

in Chapter 3. Compared to traveling without them, willingness to detour declined sharply. 

This was equally true whether the companion was a child or another adult. Trip purpose 

had not yet been imputed when this part of the analysis was completed, and the might 

have reflected a difference in common trip purposes when walking with someone else; 

for instance, walking with a child to school or walking with a partner to get lunch. There 

may also be other reasons that joint trips place a higher importance on time regardless of 

purpose. While joint travel behavior is usually not represented in trip-based models at this 
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level of detail, newer activity-based travel demand models such as Portland Metro’s 

DASH often contain joint travel sub-models (Gliebe & Kim, 2010). 

Discussion. The successful estimation of a walk route choice model for a large 

sample of varied adult walk trips builds on recent related work (Guo & Loo, 2013; 

Rodríguez et al., 2015) with smaller samples and children in support of treating walk 

travel as utility maximizing behavior, at least for utilitarian travel. Pedestrians were 

sensitive to attributes of the pedestrian network, intersection crossing aids, and elements 

of the street and block face environment. They were willing to go out of their way to use 

more attractive facilities, but their tolerance for detours is limited, perhaps more so even 

than for cyclists. Crossing aids must be densely placed along major streets to be useful. 

Neighborhood-scale commercial streets might serve as both attractive destinations and 

walking routes. Alleyways and unpaved streets did not seem to be working well for 

pedestrians, who only were predicted to use them if the distance savings was quite large. 

Only extremely steep terrain was perceived as a barrier, and then only in the uphill 

direction, although this result may not hold for all populations. Finally, I found that those 

traveling jointly with another household member may prefer more direct routes than solo 

travelers, a potentially useful finding to investigate further within detailed, activity-based 

models. 

A number of factors hypothesized to be influential in pedestrian route choice were 

insignificant in the analyzed sample of trips. I tested for differences in female pedestrian 

preferences in terms of distance, adjacent street types, crossing aids, and joint travel but 

found no evidence of gender-based preference heterogeneity. Counter to expectations, 
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there was no significant increase in sensitivity to distance when walking as part of a 

transit trip (n = 53) or on weekends (n = 386). Street width was too closely correlated 

with traffic volumes to include in the model separately, and other measures of local 

design along routes, such as measures of enclosure and proportion of pre-1946 buildings 

were not significant predictors. Local design measures may need to be aggregated in 

some way other than simply averaging them over a route, but this is left for future 

research. Finally, it was surprising that tested interactions between various route 

attributes and walking with one or more children were insignificant. I had expected those 

walking with a child to be more sensitive to traffic levels, difficult crossings, and perhaps 

adjacent commercial land uses that might make the pedestrian environment feel less safe 

or predictable. Because trip purpose information was not available, I would speculate that 

time pressure might be more important than safety perception on some common trips 

with children, such as going to school or other activities, while more flexible purposes 

might have shown the hypothesized additional willingness to detour. 

Bicyclist Route Choice 

Ideally, both route choice models could have been developed from travel data 

separate from trips used for mode choice analysis to avoid potential endogeneity issues. 

That the participant households in the Family Activity Study were chosen specifically 

because they were located more than 1/4 mile from existing bicycle boulevards—a 

potentially important factor in route choice—created an additional concern.  

For walking route choice, no suitable existing models were available, nor was a 

suitable exogenous dataset available. For cyclist route choice, a candidate route choice 
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model did exist. With colleagues, I had previously developed a model of revealed 

preference route choice from a sample of GPS-based bicycling trips also recorded in 

Portland, Oregon (Broach et al., 2012). I was concerned, though, that the difference in 

samples might make transferring the model to the current sample unrealistic.  

The existing route choice model was estimated from data gathered in 2007 as part 

of the Bicycle GPS Study (Dill, 2009). Some participants were drawn from a broader 

random sample of the region, but most were recruited via non-random sampling 

strategies including media promotion. Female cyclists were purposefully oversampled, 

and since it was important to gather sufficient data, frequent cyclists were targeted. 

Among cyclists in the Bike GPS study, 84% reported riding 7 days or more per month 

during the summer, and 68% reported riding 7 or more days even during Portland’s rainy 

winter months. Among Family Activity Study cyclists and non-cyclists, in contrast, 46% 

reported riding 7 or more days a month in summer, and just 19% reported riding that 

often in winter. Thirty-two percent identified themselves as “interested, but concerned” 

about cycling in Portland. There had also been substantial changes in the bicycle network 

since 2007. 

 In order to get a sense of the transferability of route choice behavior between the 

two samples, I estimated a route choice model using the earlier methodology and the new 

data. Full model results are provided in Appendix B alongside the original model 

estimates. Figure 8 compares predicted marginal rates of substitution (rates at which 

cyclists were willing to trade off more or less distance for other attributes) from route 
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choice models estimated with the different datasets. Missing bars indicate non-significant 

parameter estimates in the relevant model (α = 0.05).  

The consistency between model results was encouraging. Almost all of the 

parameters agree both in significance and direction, and the effect sizes of most factors 

were reasonably similar. Compared with the earlier results, the sample of cyclists used in 

this research were sensitive to lower levels of mixed vehicle traffic (~5-10,000 vehicles 

per day), less sensitive to bridge facilities, less sensitive to certain turning movements 

across moderate traffic, and showed a small but significant residual preference for on-

street bike lanes after controlling for traffic volumes. They also revealed a small but 

significant counterintuitive preference for increased stop sign density along routes, 

possibly reflecting a preference for low-speed, quiet residential streets not adequately 

captured by other variables. Overall, I felt the existing route choice model would produce 

paths that reasonably represented the current sample’s preferences, thus avoiding 

potential endogeneity issues. Testing the sensitivity of mode choice model estimates to 

the route choice model specification would be an interesting topic for future research. 

 



 

 

 

6
7
 

 

off-street path

bike boulevard

bike lane (>5k/day)
any street (>5k/day)

moderate (10-20k/day) traffic, no 
bike lane

heavy (20-30k/day) traffic, no 
bike lane

very heavy (30k/day) traffic, no 
bike lane

upslope 2-4%

upslope 4-6%

bridge w/ 
separated path

bridge w/ path

bridge w/ bike lane
stop sign

traffic signal

turn

crossing light (5-10k/day) traffic, 
no signal

crossing moderate (10-20k/day) 
traffic, no signalcrossing heavy (20k/day) traffic, 

no signal
left turn across moderate 

(10-20k/day) traffic, no signal
left turn across heavy (20k/day) 

traffic, no signal

-120 -100 -80 -60 -40 -20 0 20 40 60 80 100

FAS BikeGPS

% less % more

Figure 8 Calculated compensating variations in terms of distance for various bicyclist route choice attributes 
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5  Mode Choice Models 

The walking and bicycling route choice models outlined in Chapter 4 were 

combined with the Family Activity Study GPS travel and questionnaire data along with a 

set of generated area-based measures to assemble a dataset capable of applying the mode 

choice framework developed in Chapter 2. A series of multinomial logit (MNL) mode 

choice models were developed to test the framework, comparing route and area-based 

travel and built environment measures and examining what the data sample and 

framework could reveal about nonmotorized mode choice. 

Data Processing Methods 

Mode choice dataset and case selection. Mode choice data came from the 

Family Activity Study GPS travel data described in Chapter 3. Only primary trip mode, 

defined as the mode used on the longest distance leg of a trip, was considered. Although 

both child and adult travel were recorded, only adult travel is examined in this study, with 

the exception of variables relating to having another household member on the trip. 

Simple home-based trip chains had been constructed in order to incorporate some 

tour-level variables, such as total distance, number of stops, and bi-directional slope. 

Each tour started either at home or at the start of the travel day (2:00 A.M.), and ended 

either with a return trip home, or at the end of the travel day (2:00 A.M. the following 

day). For trip-based work, simple home to home tours seemed appropriate to capture the 

most relevant information for mode choice decisions.  

The full dataset included 22,445 adult trips. To match the primary research 

motivation, nonmotorized travel behavior, I limited trips to distances over which those 
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modes would be competitive by dropping any trip with an all network shortest path 

distance greater than the 99th percentile shortest path for observed cycling trips, 7 miles 

(11.3 km). I also chose to exclude trips flagged as loop trips (thought likely to be 

recreational), those that were part of known cycling or walking events (e.g. Sunday 

Parkways or Providence Bridge Pedal), those with a mode other than walk, bike, auto, 

and transit (e.g. run, watercraft), those extending beyond the city of Portland GIS 

database, and very short trips with traveled GPS distance less than one quarter mile (402 

m). The final analysis set consisted of 13,261 trips, about 59% of the full sample of adult 

trips.  

Having a working bicycle and being able to ride were study recruitment criteria, 

and cycling was considered available for all analyzed trips, as were transit and auto, 

while walking was available based on shortest path trip distance. All households lived 

within one-half mile of a public transit line, although of course some origins and 

destinations were farther away, up to 3.9 miles from the nearest transit stop. Since biking 

or even driving were available access modes, I elected to consider transit an available 

mode for all trips. Walking was considered available for any trip with a shortest path less 

than the 99th percentile observed shortest path for walk trips, 2.35 miles (3.8 km, 64% of 

trips). Shortest path distances were based on the full network, including streets and paths 

open only to bicycle and walk travel. The use of universal shortest paths allowed for 

separating simple origin-destination proximity effects from detour effects related to 

mode-specific network quality. Table 12 describes attributes appearing in the final model 

specifications. 
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Table 13 compares the mode choice GPS data subset to comparable regional 

survey data (for comparison with the full datasets see Table 7). The GPS data included 

smaller shares of walking and transit trips, and larger shares of bicycling and auto trips. 

Shortest path trip distances were similar across surveys for walking and driving, while 

bicycle and transit trips were shorter on average in the GPS sample. 

Table 12 Mode Choice Variable Descriptions 

Name Description Mean1 Min Max 

cohort 1, year 2 First study cohort, second year (2012) 0.27 0 1 

constant Mode-specific constants 1.00 1 1 

Trip Context     

commute Direct trip home to work or work to 

home 

0.04 0 1 

grocery Either trip end within 200m of self-

identified grocery store 

0.07 0 1 

school Either trip end within 200m of self-

identified child’s school 

0.11 0 1 

work Either trip end within 200m of self-

identified household work location 

0.05 0 1 

weekend Saturday or Sunday 0.32 0 1 

central city, one end One trip end in central city analysis 

district 

0.13 0 1 

central city, both ends Both trip ends in central city analysis 

district 

0.02 0 1 

rivcross * male Major river crossing * Male 0.04 0 1 

ln(miles_sp) Log of shortest path miles along full 

travel network 

0.44 -1.39 1.95 

ln(tour_miles_sp) Log of tour shortest path miles along full 

travel network 

1.56 -1.38 3.68 

tour stops 

 

 

Number of stops between leaving or 

returning home2 

4.00 1 26 
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Table 12 (continued)     

Name Description Mean1 Min Max 

ln(transit stop to dest.) Log of shortest path meters along 

bike/ped network from nearest transit 

stop to destination 

4.84 0.00 8.74 

ln(transit stop to orig.) Log of shortest path meters along 

bike/ped network from trip origin to 

nearest transit stop 

4.78 0.00 8.73 

Sociodemographics     

cars per driver3 Household cars per licensed driver 0.93 0.00 3.00 

female Self-identified female 0.67 0 1 

zero car household Household with no motor vehicles 0 1 0.03 

Areal transportation infrastructure4    

bike blvd. miles 

1/2mi_od * female5 

Miles of bike boulevard * Female (trip 

ends) 

0.48 0.00 3.20 

bike blvd. miles 1/2mi_h 

* female5 

Miles of bike boulevard * Female (home) 0.42 0.00 2.70 

com. miles 1/2mi_od Miles of secondary arterial (~10-20,000 

vehicles per day) and higher order streets  

(~20,000-30,000) vehicles per day) 

weighted by proportion commercial 

block faces 

3.00 0.01 17.00 

bike lane miles 1/2mi_od 

* male 

Miles of on-street, striped bike lanes * 

Male 

0.30 0.00 2.93 

local street miles 

1/2mi_od 

Miles of local streets, lower order than 

collector (~0-5,000 vehicles per day) 

16.60 0.02 22.40 

local street miles 

1/2mi_od * with other 

Local street miles * Other household 

member on trip (adult or child) 

2.86 0.00 21.80 

nbh. com. miles 1/2mi_ 

od 

Miles of collector class streets (~5-

10,000 vehicles per day) weighted by 

proportion commercial block faces 

(neighborhood commercial); e.g. a 1/4 

mile block that is half commercial 

frontage would equal 1/8 mile nbhcom 

0.66 0.00 4.10 

path miles 1/2mi_od 

 

Miles of off-street local and regional 

multi-use paths 

0.48 0.00 4.56 

prop. swlk. 1/2mi_od Proportion of streets with complete 

sidewalks (not counting off-street paths 

or alleys) 

0.77 0.14 0.98 
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Table 12 (continued)     

Name Description Mean1 Min Max 

prop. vol. 5k 1/2mi_od * 

female 

Proportion of streets with traffic volumes 

between from 5,000-10,000 vehicles per 

day * Female 

0.05 0.00 0.31 

prop. vol. 10k 1/2mi_od 

* female 

Proportion of streets with traffic volumes 

between from 10,000-20,000 vehicles per 

day * Female 

0.05 0.00 0.95 

prop. vol. 20k 1/2mi_od Proportion of streets with traffic volumes 

20,000 vehicles per day or higher 

0.04 0.00 0.95 

reg. path miles 1/2mi_od Miles of regionally significant off-street 

multi-use paths (e.g. rails to trails, 

commuter paths) 

0.23 0.00 3.45 

tour prop. slp. 2% 

1/2mi_od6 

Proportion streets and paths along tour 

with average slope (up or down) from 2-

4% 

0.17 0.00 0.53 

tour prop. slp. 4% 

1/2mi_od6 

Proportion streets and paths along tour 

with average slope (up or down) 4% or 

more 

0.07 0.00 0.61 

xwalks per mi. 1/2mi_od Marked crosswalks (at traffic signals or 

elsewhere) per street mile 

2.77 0.23 20.50 

Predicted routes     

com. miles Miles of commercial street frontage 

along route, any type of street 

0.29 0.00 1.84 

left turn unsg. 10k per 

mi. 

Unsignalized left turns per mile from 

street with 10,000 plus vehicles per day 

0.16 0.00 4.00 

nbh. com. miles Miles of collector class streets along 

route (~5-10,000 vehicles per day) 

weighted by proportion commercial 

block faces (neighborhood commercial) 

0.08 0.00 1.18 

path miles Miles of local and regional multi-use 

paths along predicted walk route 

0.02 0 2.04 

prop. blvd. * female5 Proportion of route with bike boulevard * 

Female 

0.05 0.00 0.99 

prop. reg. mu. path Proportion of route with off-street 

regional multi-use path 

0.03 0.00 1.00 

prop. vol. 5k * female Proportion of route along streets with 

5,000-10,000 vehicles per day, with or 

without on-street bike lanes * Female 

0.11 0.00 1.00 
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Table 12 (continued)     

Name Description Mean1 Min Max 

prop. vol. 10k * female Proportion of route along streets with 

10,000-20,000 vehicles per day, with or 

without on-street bike lanes * Female 

0.11 0.00 1.00 

prop. vol. 20k * female Proportion of route along streets with 

20,000 or more vehicles per day, with or 

without on-street bike lanes 

0.07 0.00 1.00 

ratio to SP ratio of predicted route length to shortest 

path 

1.09 1.00 9.04 

ratio to SP * with other ratio of predicted route length to shortest 

path * Other household member on any 

stage of trip (adult or child) 

0.20 0.00 1.23 

swlk. miss. miles7 miles of missing sidewalk along route 0.16 0.00 1.87 

tour prop. upslp. 2%6 proportion of segment lengths along 

entire tour route with average upslope 

from 2-4 percent 

0.07 0.00 0.81 

tour prop. upslp. 4%6 proportion of segment lengths along 

entire tour route with average upslope 4 

percent or more 

0.03 0.00 0.47 

unsg. art. xing number of secondary or primary arterial 

crossings along route without traffic or 

pedestrian signal control 

0.30 0 6 

Land Use4     

entropy 1/4mi_h Land use entropy (0-1) using three 

categories: residential, commercial, and 

all other (home); calculated as                 

–sum(K*ln(K))/ln(length(K)), where K is 

vector of land use proportions 

0.26 0.06 0.66 

entropy 1/4mi_od Land use entropy (0-1) using three 

categories: residential, commercial, and 

all other (trip ends); calculated as            

–sum(K*ln(K))/ln(length(K)), where K is 

vector of land use proportions 

0.37 0.00 0.98 

FAR 1/2mi_od Mean floor area ratio calculated as 

building area / parcel area 

0.04 0.00 0.37 

isect. 4-way ratio 

1/2mi_h 

Ratio of four-way intersections to all 

intersections, excluding alleyways 

(home) 

0.44 0.05 0.77 
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Table 12 (continued)     

Name Description Mean1 Min Max 

isect. 4-way ratio 

1/2mi_od 

Ratio of four-way intersections to all 

intersections, excluding alleyways (trip 

ends) 

0.42 0.00 0.80 

Self-selection8     

biking nbh. self-select Household importance of good biking 

neighborhood when looking for current 

home, from “not at all important” to 

“extremely important” (1-5) 

3.79 1 5 

walking nbh. self-select Household importance of good walking 

neighborhood when looking for current 

home, from “not at all important” to 

“extremely important” (1-5) 

4.17 1 5 

1 Statistics calculated over all trips included in the analysis. Statistics provided are accurate for the 

sample in Models 1-4. Model 5 had a slightly smaller valid sample due to missing self-selection data. 

2 Travel days assumed to span 2:00 A.M. to 2:00 A.M. the following day; tours that have not returned 

home by 2:00 AM are clipped at that point and re-start the following day. 

3 Data for driver’s licenses and household vehicles were missing for 7 households out of 333. Mean 

values for cars per license were substituted for these cases. 

4 _od indicates the averaged value within circular buffers of given radii at each trip end, origin and 

destination; for tour variables, it is the average of all trip ends on the tour. _h indicates the value within 

a circular buffer of given radius around the traveler’s home, regardless of the origin and destination of 

the trip and tour. 

5 Bike boulevards, sometimes called neighborhood greenways, are mostly quiet, residential streets that 

prioritize walking and, especially bicycling with traffic calming, diversion of motor vehicles, pavement 

markings, and signage.      

6 Average upslope and downslope for each segment are calculated separately as the sum of elevation 

gain and loss divided by segment length, where elevation change is measured as the net change over 

each 10 meter (32.8 ft) interval along a segment.    

7 Sidewalks were measured using a GIS algorithm and compared with curb length along both sides of 

each street, so that any proportion of sidewalk completeness from 0-1 is possible for each street 

segment, and missing sidewalk can be up to twice the street segment length, accounting for both sides. 

8 Due to missing data, statistics for self-selection variables reflect reduced sample used for Mode 

Choice Model 5. 
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Table 13 GPS Mode Choice Dataset Compared with Regional Travel Survey 

Item 

Family 

Activity 

Study 

(2010-

2013) 

Regional 

Travel 

Survey 

(2011)1 

Regional 

Travel 

Survey-

Households 

w/ children 

Trips (within city of Portland) 13,261 10,834 4,279 

walk 

…number 

…share 

…shortest path distance (mi) 

                

1,419     

10.7%         

0.53                

                

1,783     

16.5%                      

0.56  

                

655       

15.3%                       

0.56  

bike 

…number 

…share 

…shortest path distance 

                

1,501     

11.3%                     

1.72                

                

799     

7.4%                         

2.31   

                

319       

7.5%                         

2.27   

auto 

…number 

…share 

…avg. shortest path distance 

             

9,957     

75.1%                   

2.44                

                  

7,145 

65.9%                      

2.54             

             

3,035     

70.9%                     

2.47                         

transit2 

…number 

…share 

…shortest path distance 

                  

384          

2.9%                     

2.27                

                  

1,107          

10.2%                        

2.96 

                  

270          

6.3%                         

3.33 

1 Oregon Travel and Activity Survey; distance thresholds applied as in GPS 

data. Applying regional sampling weights had only small effects on the 

results, and since the weights were not intended for subsamples, unweighted 

statistics are presented.  

2 Bus, light rail (MAX), streetcar, and aerial tram 

 

Trip Context Measures. Each trip end was checked against a geocoded list of 

participant supplied common destinations to impute purpose to some degree.5 A trip end 

within 200 meters (656 ft) of a common location was assigned a purpose based on that 

origin or destination. The distance threshold was taken from a study of common 

destinations based on a sub-sample of the same dataset used in this research (Dill & 

                                                 
5 Common destination categories besides home were: work, child’s school, and grocery store. 
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Broach, 2014). A hierarchy was used to handle cases where multiple common 

destinations fall within 200 m of a trip end: Home > Work > School > Grocery.  

A special category was created for direct trips in either direction between home. 

and work and termed a commute trip. This follows from finding such trips to have unique 

impacts on travel behavior in previous work on bicyclist route choice (Broach et al., 

2012). Such trips are more likely to be taken at fixed times and repeated frequently.  

Returning home was not considered as a common destination, since it is assumed 

that the place where an activity has just occurred (now the trip origin) has a greater 

impact on mode choice than the fact that one is going home. It is possible that returning 

home does have an impact 

within a multimodal travel day; 

for instance, one might need to 

get a private car or bike back 

home at the end of a trip chain. 

Two central city 

variables capture trips that start, 

end, or stay within the central 

city analysis district as defined 

by the local Metropolitan 

Planning Organization (MPO). I  

included these variables 

primarily to proxy for parking cost and travel speed, which were not readily available at 

Figure 9 Central city analysis district, metered parking, 

and bike accessible river crossings in Portland 
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the small scale required. As shown in Figure 9, the central city district includes most of 

the metered parking in Portland. The area also covers the Downtown Transit Mall where 

many bus and all light rail lines converge and have additional roadway and signal 

priority. Most of the central district is a tight grid of one-way, often congested streets, 

with traffic lights timed to keep speeds low and protect pedestrians. One versus two 

downtown trip ends were considered separately based on the hypothesis that moving a 

car within downtown would require an additional parking search, possibly incur an 

additional charge, and likely not be significantly faster than competing modes. 

Figure 9 also displays six of the eight bike accessible Willamette River crossings 

in relation to the central city area. Two additional crossings existed, one to the north and 

one to the south, at the time of the study. A new transit and nonmotorized bridge, Tilikum 

Crossing, was not yet constructed during the data collection period.  

My treatment of distance differed somewhat from common practice and 

highlights one advantage of using predicted routes rather than shortest paths. I 

hypothesized that distance would have two effects on walk and bike mode choice 

decisions: 1) a proximity effect captured by the shortest network path between origin and 

destination, and 2) an excess distance effect captured by the ratio of the least cost, 

predicted path to the shortest path (e.g. a ratio of 1.5 would indicate a typical cyclist 

might have to go 50% out of their way if they cycled on this trip). The first effect is 

commonly captured in mode choice models and represents the fact that human powered 

transportation modes are slower and require effort in proportion to distance and so 

compete less well as distance increases. The second effect is not generally captured and 
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represents a sort of summary measure of network quality. An ideal connection would 

provide a cyclist or pedestrian with their preferred route along the shortest path. As they 

are forced to detour in search of better routes, the less competitive a mode becomes, all 

else equal. Shortest path distance is fixed across modes to capture just the proximity 

effect of mode competition. 

Panel Effects. The travel data used were generated by two unbalanced panels 

with each recording data across two time periods. Some participants naturally recorded 

more trips in each time period such that their preferences are overrepresented in the 

model. There might also be differences between time periods in each cohort or even 

underlying trends in mode preferences progressing across all four time periods. 

Controlling for person-specific effects in non-linear discrete choice models is more 

difficult than in linear modeling frameworks. Fixed effects cannot be used with the 

multinomial logit (MNL) model alongside other person-specific variables such as 

sociodemographics or home-based built environment measures and leads to identification 

issues. Random effects are possible but require more complex model forms such as 

Mixed Multinomial Logit (MMNL) with the associated specification, estimation, and 

interpretation complexities that come with them. 

An alternative, if the main concern is representativeness, is applying weights to 

the individuals based on number of trips taken. This was done by Hood et al. (2011) to 

address a highly unbalanced volunteer smartphone sample for route choice modeling. The 

panel used here showed reasonable balance, with the most frequent traveler having taken 

just 0.8% of trips (while comprising 0.2% of the sample). Mean trip frequency was 
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within two trips of the median. In other words, there did not appear to be a person or 

group of people whose preferences would seriously bias the model. 

It was initially tempting to at least exclude trips repeated between the same origin 

and destination, since these would seem to add no new information while potentially 

biasing sample preferences. However, identifying a repeated trip requires specifying 

some threshold distance, since GPS trip ends are not perfectly precise like geocoded 

addresses. And, what about the same trip repeated in a different context, say on a 

weekend instead of a weekday, or with another person along instead of alone? These do 

add new information, even if mode choice does not change. Finally, if I deleted repeated 

trips only when mode choice stayed fixed, I would only be shifting the preference bias to 

multimodal travelers. In the end, I decided to acknowledge the limitation of the 

individual-specific panel effects but estimate the model with all trips having equal 

weight. 

Potential time trends were more troubling, since Portland was actively pursuing 

policies to increase walk and bike travel over the collection period, and the sample 

selection had been related to areas specifically slated to receive improved street designs. 

Furthermore, since each cohort collected within about a three month window, there were 

potential period effects due to weather differences and construction projects on key 

facilities, particularly for cycling. Non-random attrition and survey fatigue might also 

influence both cohorts in the second year. For these reasons, I decided to control for 

panel period effects by testing for an overall second period trend and individual cohort 

second year trends.   
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Area-Based Measures. Area-based built environment and land use attributes 

were calculated using simple circular buffers around each trip origin and destination as 

well as each geocoded home location. Based on the lack of consensus for optimal buffer 

size, a range of distances were specified for testing: 1/8 mile (200 m), 1/4 mile (400 m), 

1/2 mile (800 m), and 1 mile (1600 m). For both walking and cycling, the 1/2 mile (800 

m) buffers consistently outperformed the others regardless of the attribute measured. 

Network-based shortest path buffers were considered, but the close correlation of 

network buffer size to street connectivity and barriers resulted in some odd effects that 

would have made interpretation more difficult. Areas with high street connectivity tend to 

be overrepresented in network buffers, inflating values for features correlated with 

connectivity such as density. For example, a neighborhood with a small section of dense 

streets and the rest mostly inaccessible (e.g. water, park, golf course) will have most of its 

buffer in the dense, gridded area. Conversely, an area with many private or semi-private 

ways missing from the travel network, such as a commercial or university campus, may 

not be included in a network buffer, but may actually be a dense area and add to land use 

diversity. For these reasons, and because the issue of connectivity is already controlled 

for with network-based shortest and predicted paths, network buffers were rejected in 

favor of simple circular buffers.  

Sidewalks and marked crosswalk data were only available within Portland city 

limits. Some buffered trip ends, however, extended beyond the boundary. For these 

variables, a second set of buffers was created following the boundary. Since counts and 
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sums would be deflated in the smaller areas, sidewalk and crosswalk attributes were 

normalized by city street miles for use in modeling.  

In total, over 114,000 trip end buffers and over 5,000 household buffers were 

intersected with 33 spatial built environment variables. Because of the large size of the 

intersecting data features, the technique used for each calculation had to weigh the 

importance of precision against the processing time, which for some attributes could 

stretch to multiple days on a desktop workstation. Linear travel infrastructure attributes 

were judged to benefit the most from precision, so they were intersected exactly with 

buffers, rather than allowed to dangle over the edge of a buffer area. Street, path, and 

block face attributes were weighted by the length of the clipped feature. Census blocks 

and tax lot parcels, on the other hand, were reduced to centroids and tallied as counts, 

instead of intersecting areas. This greatly reduced processing time, and the idea that each 

parcel counts once regardless of size matches the concept of access to opportunities for 

nonmotorized travel, rather than access to square footage. 

 Two attributes, sidewalk coverage and commercial land use share by street type, 

were available from the block face street profiles developed as part of the pedestrian 

route choice models and described more completely in Chapters 3 and 4. The block face 

scans used an automated GIS method to take a cross section of the street and adjacent 

infrastructure, buildings, and land use every 5 meters (32.8ft) and summarized to street 

segment level. In each case, the block face measures outperformed the areal measures of 

the same attributes, suggesting some promise for the method going forward. Many other 

variables were calculated by the block face scans (e.g. sidewalk width, skyline height, 
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building setbacks, building age, enclosure etc.), but the high degree of correlation 

suggested factor analysis or some other data reduction technique that was beyond the 

scope of this research. 

 I tested a number of variants of land use intensity, diversity, and overall design, 

and model results consistently found some versions superior to others, so that only three 

appear in the final models. For intensity, reliable employment data was not easily 

available at an appropriately small scale, and among alternatives floor-area ratio (FAR) 

consistently outperformed variants of residential population density. For diversity, a 

three-class land use entropy measure (residential, commercial, and all other) 

outperformed a four-class version (splitting residential into single and multi-family), and 

proportion of commercial block faces by street type explained more than either for walk 

choice.    

Following the literature, I initially tested origin and destination buffers separately; 

however, there is a logical problem when attempting to differentiate trip ends for all daily 

travel. Each destination becomes the origin for the next trip in sequence, and each 

original origin, usually home, becomes the final destination for a tour or travel day. Since 

each location’s buffer measurements are nearly identical between trips, there is too much 

correlation across cases to reliably identify a model with origin and destination measures. 

This paradox also makes interpretation difficult, given the linkages between trips. A more 

complex, tour-based model would be needed to examine differences between origin and 

destination factors across sequences of related trips. For a trip-based solution to the 

problem, I simply averaged origin and destination trip ends for all trips. Since only 
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differences in attributes matter in discrete choice models, the moderation effect on 

extreme values should not matter. 

Bike route generation 

To generate potential bike routes, I adapted a route choice model developed by 

Broach et al. (Broach et al., 2012), after first replicating the model with the sample of 

bike trips used in this research to check for transferability between the different samples. 

The replication effort is described in Chapter 4 and Appendix B. The model distinguished 

between commute (defined by as any direct trip between home and work in either 

direction) and non-commute travel, but no other trip or person characteristics were found 

to be significant predictors. 

The original path-size logit route choice model included a non-linear distance 

term, and most variables depend on the total length of the route. This made it impossible 

to use the utility function directly to generate a link-based cost-minimizing path between 

an origin-destination pair for which the final route distance is unknown. Broach et al. 

(Broach et al., 2012) also provided marginal rates of substitution (MRS, i.e. the rate at 

which one is willing to trade off changes in one attribute for changes in another), but 

these still require that the path distance be known a priori.  

In order to circumvent the problem of undefined route length, I first calculated the 

shortest path, and then used that distance in place of the actual route distance. This 

preserved the substitution rates between all distance-normalized variables in the model 

(e.g. if a cyclist were willing to go up to 20% farther to avoid a busy street, the method 
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would select an alternate route on quiet streets as long as the detour were 20% or less, 

and the same for point-based intersection variables, etc.).  

Two bridge facility attributes were included in the route choice model that were 

not distance based, and the MRS for those attributes will only be preserved exactly in the 

adapted method if the alternative is the shortest path. As the competing route alternative 

increases in length from the shortest path, the MRS for bicycle-accommodating bridges 

will be biased downward (i.e. the method will underestimate willingness to detour). The 

downward bias is reasonably small over most likely ranges of route detours, at most -4%  

when an alternative is 10% longer than the shortest path and -15% for an alternative 50% 

longer.  

Table 14 provides the cost function components for the least cost path selection, 

all based on the marginal rates of substitution provided in Broach et al. (2012) and 

included in Appendix B. Distance was set to 1.0 divided by the shortest path distance, for 

convenience. Dijkstra’s algorithm was applied to the network to generate a single least-

cost path between origin and destination. Where trips did not start or end at an 

intersection node, they were joined to the nearest location on a network link, and the 

distance and cost of that link was pro-rated based on the starting or ending position along 

the segment. 
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Table 14 Adapted Cost Function Parameters for Generating Least Cost Bike Paths 

Attribute Non-

commute 

Commute 

Divided by shortest path distance   

Distance 1.000 1.000 

Turns 0.074 0.042 

Distance with upslope 2-4 % 0.723 0.371 

Distance with upslope 4-6 % 2.904 1.230 

Distance with upslope >= 6 % 11.066 3.239 

Traffic signal exc. right turns 0.036 0.021 

Stop sign (/mi) 0.009 0.005 

Left turn, unsig., AADT 10-20k1 0.162 0.091 

Left turn, unsig., AADT 20k+  0.431 0.231 

Unsig. cross AADT >= 10k right turn  0.067 0.038 

Unsig. cross AADT 5-10k exc. right turn  0.072 0.041 

Unsig. cross AADT 10-20k exc. right turn   0.104 0.059 

Unsig. cross AADT 20k+ exc. right turn  0.617 0.322 

Prop. bike boulevard -0.179 -0.108 

Prop. bike path -0.260 -0.160 

Prop. AADT 10-20k w/o bike lane 0.223 0.368 

Prop. AADT 20-30k w/o bike lane 1.373 1.400 

Prop. AADT 30k+ w/o bike lane 6.194 7.157 

Not divided by shortest path distance   

Bridge w/ bike lane 0.282 0.156 

Bridge w/ sep. bike facility 0.814 0.414 

1 AADT=Average Annual Daily Traffic   
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Walk Route Generation 

I used the pedestrian route choice model described in Chapter 4 to generate least-

cost pedestrian paths. Since the parameters of the model were linear and did not depend 

on route length, the inverse of the parameters could be applied directly to generate a 

single maximum utility (least cost) path using Dijkstra’s algorithm.  

The route choice model was developed using the same dataset used in the mode 

choice component of this project. While not ideal, I do not believe this represents a 

substantial problem for my objectives here. The worry would be that it introduces some 

endogeneity into our modeling, since the route choices generated were developed from 

the same trips included in the mode choice model. An offsetting advantage is the lack of 

need to worry about the route choice model generalizing to our sample. Future work will 

apply the method to an external mode choice sample. 

Mode Choice Model Development 

Based on the assumption of utility maximizing behavior, I specified the familiar 

multinomial logit (MNL) model form to predict the probability of choosing each of four 

modes (walk, bike, auto, or transit). I followed standard practice in developing each 

model, using hypothesis tests to choose between competing model specifications, 

dropping insignificant variables (with certain noted exceptions for clarity in comparing 

models), and constraining related parameters that did not meet the specified significance 

level (α = 0.05). 

The five mode choice specifications are summarized in Table 15. Model 1 includes only 

trip context variables. Model 2 adds areal measures of transportation infrastructure. 

Model 3 replaces areal measures with attributes calculated along the predicted maximum 
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utility routes for walking and cycling. In Models 2 and 3, I was careful to provide 

comparable measures of each attribute in the area and route specifications so that the 

model results could be meaningfully compared. Model 4 adds density, diversity, and 

design land-use and built environment variables, as well as measures of transportation 

infrastructure around a traveler’s home. Model 5 adds measures of residential self-

selection. Table 16-Table 20 present full results of each model, with the added sets of 

attributes listed first. 
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Table 15 Mode Choice Models Summary 

 Constants 

Only 

Model 1 

Trip 

Context 

Model 2 

Areal 

Infra-

structure 

Model 3 

Predicted 

Routes 

Model 4 

Land Use 

+ Routes 

Model 51         

+ self-

selection 

N param. 

estimated 

3 27 40 38 48 51 

n trips 13,261 13,261 13,261 13,261 13,261 12,981 

LL(Null) -17007.4 -17007.4 -17007.4 -17007.4 -17007.4 -16652.9 

LL(Model) -9972.6 -7854.0 -7695.7 -7624.7 -7511.1 -7187.2 

pseudo-R2 

adjusted 

0.413 0.537 0.547 0.549 0.556 0.565 

likelihood ratio test chi-

square stat from left2 

4237.2 388.6 - 227.2 - 

non-nested hypothesis test 

z-stat from left2 

- - -8.5 - - 

mean predicted probability of chosen mode as percent…3   

…walk 16.7 %4 41.0 % 43.5 % 43.9 % 44.1 % 44.6 % 

…bike 11.1 % 18.1 % 19.4 % 19.8 % 20.9 % 23.4 % 

…auto 76.0 % 81.6 % 81.9 % 81.9 % 82.2 % 82.6 % 

…transit 2.9 % 17.0 % 16.9 % 16.5 % 17.8 % 17.7 % 

…overall 60.2 % 68.2 % 68.9 % 68.9 % 69.3 % 70.0 % 

1 Self-selection responses were missing for some households; statistical tests cannot be performed since 

samples differ. 

2 For each test performed, the earlier model can be rejected as the true model at the α=0.01 significance 

level. 

3 Mean predicted probability represents the expected portion of mode choices correctly identified (in-

sample) by applying the modeled probabilities case by case. Due to the non-linear nature of logit 

models, order matters, so relative contributions to predictive power cannot be compared meaningfully 

as variables are added. 

4
 equal to mode shares for constants only model 
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Table 16 Mode Choice Model 1 Trip Context (MNL coefficients with t-stats in parentheses)1 

Variable Walk Bike Auto Transit 

cohort 1, year 2 -0.20  (-2.44) -0.40  (-6.23)a   -0.40  (-6.23)a 

constant -0.98  (-9.32) 0.19  (1.86) ‡   2.46  (8.89) 

Trip Context         

commute   1.36  (12.4)b   1.36  (12.4)b 

grocery -0.58  (-5.84)c -0.58  (-5.84)c    

school 0.76  (7.75) 0.25  (2.74)     

work 0.44  (3.76)d 0.44  (3.76)d     

weekend 0.23  (2.87) -0.17  (-2.85)e   -0.17  (-2.85)e 

central city, one end     -0.70  (-9.14)   

central city, both ends   -1.56  (-11.0)f -1.56  (-11.0)f  

rivcross * male   1.09  (8.44)     

ln(miles_sp) -2.13  (-29.0) -0.75  (-15.3)     

ln(tour_miles_sp) -0.68  (-17.3) -0.27  (-6.23)g   -0.27  (-6.23)g 

tour stops   -0.13  (-7.19)   0.09  (4.65) 

ln(transit stop to dest.)       -0.49  (-11.7) 

ln(transit stop to orig.)       -0.73  (-18.9) 

Sociodemographics         

cars per driver     0.76  (10.4)   

female   -0.51  (-8.37)     

zero car household 0.71  (4.44)     1.45  (8.30) 

% cases mode available 63.9% 100% 100% 100% 

Log-likelihood (Null) -17007.4    

Log-likelihood (Model) -7854.0    

Pseudo-R2 Adjusted 0.535    

Num. parameters est. 31    

Number of trips 13261    
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Table 16 (continued) 

1 Parameter estimates significant at the α=0.05 level unless noted otherwise 

‡ Significant at the α=0.10 level 

a-g Equality constrained parameters, no significant difference (α=0.05) 

 

Table 17 Mode Choice Model 2 Areal Bicycle and Pedestrian Infrastructure (MNL coefficients with t-

stats in parentheses)1 

Variable Walk Bike Auto Transit 

cohort 1, year 2 -0.24  (-2.77) -0.47  (-7.05)a   -0.47  (-7.05)a 

constant -1.53  (-7.12) -1.49  (-4.56)   2.55  (9.21) 

Areal transportation 

infrastructure 

        

blvd. miles 1/2mi_od * 

female 

  0.30  (4.38)     

com. miles 1/2mi_od -0.27  (-7.09)b       

com. miles 1/2mi_od -0.27  (-7.09)b       

local street miles 1/2mi_od   0.10  (5.77)     

local street miles 1/2mi_od * 

with other 

-0.06  (-10.2)       

nbh. com. miles 1/2mi_ od 0.46  (3.22)c       

nbh. com. miles 1/2mi_ od 0.46  (3.22)c       

path miles 1/2mi_od 0.35  (4.66)       

reg. path miles 1/2mi_od   0.65  (8.03)     

prop. swlk. 1/2mi_od  0.75  (3.15)       

prop. swlk. 1/2mi_od         

prop. vol. 5k 1/2mi_od * 

female 

  -0.04  (-0.04)†     

prop. vol. 10k 1/2mi_od * 

female 

  -4.55  (-4.34)d     

prop. vol. 20k 1/2mi_od   -4.55  (-4.34)d     

tour prop. slp. 2% 1/2mi_od   1.04  (2.62)     

tour prop. slp. 4% 1/2mi_od   -1.20  (-1.90) ‡     
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Table 17 (continued) 

Variable Walk Bike Auto Transit 

path miles 1/2mi_od 0.34  (4.58)    

prop. swlk_1/2mi_od 0.49  (2.15)    

prop. vol. 5k 1/2mi_od * 

female 

 -0.13  (-0.12) †   

prop. vol. 10k 1/2mi_od * 

female 

 -4.67  (-3.13)   

prop. vol. 20k 1/2mi_od  -5.16  (-3.68)   

reg. path miles 1/2mi_od  0.63  (7.32)   

tour prop. slp. 2% 1/2mi_od6  1.12  (2.81)   

tour prop. slp. 4% 1/2mi_od6  -0.90  (-1.42) †   

xwalkspermile_1/2mi_od 0.18  (4.11)    

Trip Context         

commute   1.35  (12.1)e   1.35  (12.1)e 

grocery -0.58  (-5.82)f -0.58  (-5.82)f     

school 0.80  (8.02) 0.17  (1.82) d     

work 0.36  (2.93)g 0.36  (2.93)g     

weekend 0.33  (3.98) -0.20  (-3.18)h   -0.20  (-3.18)h 

central city, one end     -0.63  (-7.62)   

central city, both ends   -1.24  (-6.47)i -1.24  (-6.47)i   

rivcross * male   0.83  (5.92)     

ln(miles_sp) -2.16  (-28.6) -0.70  (-14.0)     

ln(tour_miles_sp) -0.70  (-16.4) -0.28  (-6.31)j   -0.28  (-6.31)j 

tour stops   -0.12  (-6.57)   0.10  (4.86) 

ln(transit stop to dest.)       -0.49  (-11.9) 

Sociodemographics         

cars per driver     0.76  (10.1)   

female   -0.43  (-3.63)     

zero car household 0.95  (5.61)     1.39  (7.92) 

% cases mode available 63.9% 100% 100% 100% 



 

92 

 

Table 17 (continued) 

Log-likelihood (Null) -17007.4    

Log-likelihood (Model) -7659.7    

Pseudo-R2 adjusted 0.537    

Number of parameters 40    

Number of trips 13261    

1 Parameter estimates significant at the α=0.05 level unless noted otherwise 

‡ Significant at the α=0.10 level 

† Not significant at the α=0.10 level 

a-j Equality constrained parameters, no significant difference (α=0.05) 

 

Table 18 Mode Choice Model 3 Predicted Bicyclist and Pedestrian Routes (MNL coefficients with t-

stats in parentheses)1 

 Walk Bike Auto Transit 

cohort 1, year 2 -0.26  (-3.05) -0.48  (-7.27)c   -0.48  (-7.27)c 

constant -0.40  (-3.06) 1.74  (11.5)   2.50  (9.06) 

Predicted routes         

com. miles -1.56  (-5.64)    

nbh. com. miles 1.80  (4.42)    

L. turn unsg. 10k per mi.   -0.27  (-3.52)     

path miles 2.72 (7.63)    

prop. blvd. * female   0.78  (3.58)     

prop. reg. mu. path   1.29  (4.12)     

prop. vol. 5k * female   -0.75  (-5.09)a     

prop. vol. 10k * female   -0.75  (-5.09)a     

prop. vol. 20k * female   -2.26  (-7.62)     

ratio to SP   -1.10  (-11.2)b     

ratio to SP * with other -1.10  (-11.2)b       

swlk. miss. miles -1.40  (-4.18)       
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Table 18 (continued)     

Variable Walk Bike Auto Transit 

tour prop. upslp. 2%   -1.48  (-2.83)     

tour prop. upslp. 4%   -4.69  (-4.39)     

unsg. art. xing -0.42  (-4.28)    

Trip Context         

commute   1.36  (12.3)d   1.36  (12.3)d 

grocery -0.52  (-5.22)e -0.52  (-5.22)e     

school 0.68  (6.95)       

work         

weekend 0.29  (3.52) -0.20  (-3.26)f   -0.20  (-3.26)f 

central city, one end     -0.67  (-8.65)   

central city, both ends   -1.60  (-10.8)g -1.60  (-10.8)g   

rivcross * male         

ln(miles_sp) -1.91  (-21.0) -0.73  (-14.5)     

ln(tour_miles_sp) -0.66  (-16.2) -0.26  (-5.83)h   -0.26  (-5.83)h 

tour stops   -0.12  (-6.78)   0.09  (4.59) 

ln(transit stop to dest.)       -0.49  (-11.7) 

ln(transit stop to orig.)       -0.73  (-18.9) 

Socio-demographics         

cars per driver     0.78  (10.5)   

female   -0.36  (-4.68)     

zero car household 1.18 (8.69)i   1.18 (8.69)i 

% cases mode available 63.9% 100% 100% 100% 

Log-likelihood (Null) -17007.4    

Log-likelihood (Model) -7624.7    

Pseudo-R2 adjusted 0.549    

Num. parameters est. 38    

Number of trips 13,261    

1 Parameter estimates significant at the α=0.05 level unless noted otherwise 

a-h Equality constrained parameters, no significant difference (α=0.05) 
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Table 19 Mode Choice Model 4 Areal Infrastructure, Land Use, and Route Attributes (MNL 

coefficients with t-stats in parentheses)1 

Variable Walk Bike Auto Transit 

cohort 1, year 2 -0.43  (-7.55)a -0.43  (-7.55) a   -0.43  (-7.55) a 

constant -0.58  (-4.19) -0.00  (-0.01) †   1.23  (3.61) 

Area Infrastructure     

blvd. miles 1/2mi_h * female   0.13  (3.31)b     

bike lane miles 1/2mi_od * 

male 

  0.13  (3.31)b     

reg. path miles 1/2mi_h * 

female 

  0.29  (2.83)     

Area Land Use     

entropy 3-class 1/4mi_h       2.27  (5.00) 

entropy 3-class 1/4mi_od       1.18  (2.89) 

floor area ratio 1/2mi_od 5.88  (4.89)   -2.68  (-2.97)  

isect. 4-way ratio 2_h   1.12  (3.66)     

isect. 4-way ratio 1/2mi_od   1.79  (4.94)     

Predicted Routes     

com. miles -1.78  (-6.12)       

nbh. com. miles 1.82  (4.39)       

L. turn unsg. 10k per mi.   -0.23  (-2.99)     

path_miles 2.58 (7.08)    

prop. blvd. * female   0.66  (2.98)     

prop. reg. mu. path   1.64  (4.94)     

prop. vol. 5k * female   -0.76  (-5.06)c     

prop. vol. 10k * female   -0.76  (-5.06)c     

prop. vol. 20k   -1.19  (-3.81)     

ratio to SP   -1.08  (-10.9)d     

ratio to SP * with other -1.08  (-10.9)d       

swlk. miss. miles -1.54  (-4.44)e       
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Table 19 (continued)     

Variable Walk Bike Auto Transit 

tour prop. upslp. 2%   -1.54  (-2.86)e     

tour prop. upslp. 4%   -5.79  (-5.28)     

unsg. art. xing -0.40  (-4.00)       

Trip Context     

commute   1.41  (12.0)   0.98  (3.66) 

grocery -0.50  (-5.03)f -0.50  (-5.03)f     

school 0.72  (7.00) 0.22  (2.33)     

work 0.39 (3.18)g  0.39 (3.18)g       

weekend 0.30  (3.65) -0.18  (-2.82)h   -0.18  (-2.82)h 

central city, one end     -0.39  (-4.27)   

central city, both ends   -0.66  (-3.19)i -0.66  (-3.19)i   

rivcross * male   0.92 (6.30)     

ln(miles_sp) -1.82  (-19.8) -0.67  (-12.9)     

ln(tour_miles_sp) -0.71  (-16.8) -0.28  (-6.20)j   -0.28  (-6.20)j 

tour stops   -0.10  (-5.75)   0.09  (4.34) 

ln(transit stop to dest.)       -0.48  (-11.5) 

ln(transit stop to orig.)       -0.71  (-18.1) 

Sociodemographics         

cars per driver     0.69  (8.29)   

female   -0.39  (-4.85)     

zero car household 1.24  (8.06)k 0.57  (3.14)   1.24  (8.06)k 

% cases mode available 63.9% 100% 100% 100% 

Log-likelihood (Null) -17007.4    

Log-likelihood (Model) -7511.1    

Pseudo-R2 adjusted 0.558    

Num. parameters est. 48    

Number of trips 13261    
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Table 19 (continued) 

1 Parameter estimates significant at the α=0.05 level unless noted otherwise 

† Not significant at the 10 percent level 

a-k Equality constrained parameters, no significant difference (α=0.05) 

 

Table 20 Mode Choice Model 5 Areal Infrastructure, Land Use, Route Attributes, and Self-Selection 

(MNL coefficients with t-stats in parentheses)1 

Variable Walk Bike Auto Transit 

cohort 1, year 2 -0.42  (-7.30)a -0.42  (-7.30)a   -0.42  (-7.30)a 

constant -1.99  (-8.15) -1.88  (-7.49)   1.93  (4.63) 

Residential Self-Selection         

biking nbh. self-select   0.54  (15.3)     

walking nbh. self-select 0.30  (6.92)     -0.16  (-3.04) 

Area Infrastructure     

blvd. miles 1/2mi_h * female   0.14  (3.31)b     

bike lane miles 1/2mi_od * 

male 

  0.14  (3.31)b     

reg. path miles 1/2mi_h * 

female 

  0.26  (2.48)     

Area Land Use     

entropy 3-class 1/4mi_h       2.10  (4.50) 

entropy 3-class 1/4mi_od       1.04  (2.52) 

floor area ratio 1/2mi_od 5.58  (4.56)   -1.99  (-2.17)   

isect. 4-way ratio 2_h   0.19  (0.59) †     

isect. 4-way ratio 1/2mi_od   1.79  (4.81)     

Predicted Routes     

com. miles -1.65  (-5.60)       

nbh. com. miles 1.84  (4.40)       

L. turn unsg. 10k per mi.   -0.24  (-3.03)     

path miles 2.49  (6.73)       
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Table 20 (continued)     

Variable Walk Bike Auto Transit 

prop. blvd. * female   0.63  (2.74)     

prop. reg. mu. path   1.58  (4.61)     

prop. vol. 5k * female   -0.71  (-4.62)c     

prop. vol. 10k * female   -0.71  (-4.62)c     

prop. vol. 20k   -0.98  (-3.05)     

ratio to shortest path   -1.08  (-10.7)d     

ratio to SP * with other -1.08  (-10.7)d       

swlk. miss. miles -1.22  (-3.46)       

tour prop. upslp. 2%   -1.42  (-2.56)     

tour prop. upslp. 4%   -5.25  (-4.78)     

unsg. art. xing -0.38  (-3.81)       

Trip Context         

commute   1.52  (12.1)   0.99  (3.71) 

grocery -0.51  (-5.05)e -0.51  (-5.05)e     

school 0.73  (7.09) 0.24  (2.47)     

work 0.49  (3.90)f 0.49  (3.90)f     

weekend 0.28  (3.28) -0.19  (-3.01)g   -0.19  (-3.01)g 

central city, one end     -0.45  (-4.89)   

central city, both ends   -0.76  (-3.63)h -0.76  (-3.63)h   

rivcross * male   0.93  (6.18)     

ln(miles_sp) -1.88  (-20.0) -0.68  (-12.7)     

ln(tour_miles_sp) -0.71  (-16.6) -0.26  (-5.59)i   -0.26  (-5.59)i 

tour stops   -0.11  (-5.98)   0.09  (4.26) 

ln(transit stop to dest.)       -0.48  (-11.3) 

ln(transit stop to orig.)       -0.72  (-17.9) 

Sociodemographics         

cars per driver     0.62  (7.44)   

female   -0.37  (-4.49)     
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Table 20 (continued)     

Variable Walk Bike Auto Transit 

 zero car household 1.28  (8.26)j 0.64  (3.36)   1.28  (8.26)j 

% cases mode available 64.0% 100% 100% 100% 

Log-likelihood (Null) -17007.4    

Log-likelihood (Model) -7187.2    

Pseudo-R2 adjusted 0.565    

Num. parameters est. 51    

Number of trips 12981    

1 Parameter estimates significant at the α=0.05 level unless noted otherwise 

† Not significant at the α=0.10 level 

a-j Equality constrained parameters, no significant difference (α=0.05) 

 

As shown in Table 15, each subsequent model except Model 5 was used to test 

the hypothesis that the previous specification represents the true model. The preferred 

statistical test for nested model hypotheses (i.e. one model represents a restricted version 

of another) is the likelihood ratio test (LRT). The LRT generates an approximately chi-

square distributed statistic for the null hypothesis of equivalence between restricted and 

unrestricted versions of the same model. The test statistic is calculated as: 

 𝐷 = −2(𝐿𝐿(𝑅) − 𝐿𝐿(𝑈)) ~ 𝜒2 (7) 

 

where LL is the likelihood value at the estimated parameters, R is the restricted model, 

and U the unrestricted model (Ben-Akiva & Lerman, 1985). When neither model can be 

cast as a restricted version of the other, as in the case of Models 2 and 3, an adjusted rho-

square test statistic or Akaike Likelihood Ratio Index (LRI) can be used to calculate a z-

statistic as: 
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 z = −[−2((�̅�2
2 − �̅�1

2) ∗ 𝐿𝐿(0)) + (𝐾2 − 𝐾1)]
1/2) (8) 

 

where z is a standard normal variate, �̅�2 = 1 −
𝐿𝐿(𝐁)−𝐾

𝐿𝐿(0)
, LL(0) is the log likelihood with 

no coefficients, LL(B) is the log likelihood with estimated coefficients, and K is the 

number of model parameters estimated (Ben-Akiva & Lerman, 1985; Ben-Akiva & 

Swait, 1986; Koppelman & Bhat, 2006). The test statistic indicates the (asymptotic) 

probability that the observed difference �̅�2
2 − �̅�1

2 would occur under the null hypothesis 

that model 1 was the true model. 

 Using either the LRT, or the LRI as appropriate, Models 2-4 each reject the 

preceding specification. That Model 3 with route-based measures rejects Model 2 with 

area-based measures is consistent with the hypothesis that measuring walking and biking 

travel environments along likely routes provides better information than measuring 

around trips ends. That Model 4 rejects Model 3 indicates that there is additional, 

independent information contained in areal measures of land use around trip origins and 

destinations, and also contained in bike infrastructure around a person’s home, regardless 

of where a specific trip takes place. While Model 5’s addition of self-selection variables 

appears to improve model fit based on the adjusted fit statistic, the improvement cannot 

be meaningfully compared to prior models, since missing data resulted in a different 

sample. 

 Overall, there is considerable consistency across models in terms of trip context 

variables as additional information is added. Trip purpose, proximity, cost and time 

proxies, weekday/weekend, and sociodemographics contribute predictably to mode 
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choice, particularly walking and biking, as information about the specific trip built 

environment is added. The remainder of this section describes results by variable group. 

Because MNL coefficients are not readily interpreted beyond sign and significance, much 

of the discussion refers to various predicted effects calculations provided in Table 21.  

Table 21 Expected Attribute Effects on Walk and Bike for Selected Attributes Based on Model 4 

 

Point 

Elasticity 

Point 

Elasticity 

(when 

present) 

%Chg. 

Prob. For 

Unit 

Change 

MRS 

Detour 

(equiv. chg. 

detour 

ratio)1 

Bike     

cohort 1, year 2   -35.8%  

Area Infrastructure     

blvd. miles 1/2mi_h * female 0.04 0.11  -0.12 

bike lane miles 1/2mi_od * male 0.04 0.12  -0.12 

reg. path miles 1/2mi_h * female 0.02 0.23  -0.27 

Area Land Use     

isect. 4-way ratio 2_h 0.44   -1.04 

isect. 4-way ratio 1/2mi_od 0.67   -1.66 

Predicted Routes     

L. turn unsg. 10k per mi.   -19.6% 0.21 

prop. blvd. * female 0.03 0.15  -0.61 

prop. reg. mu. path 0.04 0.22  -1.52 

prop. vol. 5k * female -0.05 -0.16  0.70 

prop. vol. 10k * female -0.04 -0.14  0.70 

prop. vol. 20k -0.04 -0.11  1.10 

ratio to SP -0.92   1.00 

tour prop. upslp. 2% -0.08 -0.10  1.43 

tour prop. upslp. 4% -0.10 -0.13  5.36 
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Table 21 (continued)     

 

Point 

Elasticity 

Point 

Elasticity 

(when 

present) 

%Chg. 

Prob. For 

Unit 

Change 

MRS 

Detour 

(equiv. chg. 

detour 

ratio)1 

Trip Context     

commute   214.0%  

grocery   -37.9%  

school   20.8%  

work   40.0%  

weekend   -15.2%  

central city, one end2   32.1%  

central city, both ends   -45.7%  

rivcross * male   116.4%  

ln(miles_sp) -0.53    

ln(tour_miles_sp) -0.22    

tour stops   -9.7%  

Sociodemographics     

cars per driver2   -64.1%  

female   -37.5%  

zero car household   63.3%  

Walk     

cohort 1, year 2   -33.8%  

Predicted Routes     

com. miles -0.14 -0.18   

nbh. com. miles 0.05 0.14   

path miles 0.04 0.23   

ratio to SP * with other -0.08 -0.75   

swlk. miss. miles -0.08 -0.09   

unsg. art. xing   -31.1%  
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Table 21 (continued)     

 

Point 

Elasticity 

Point 

Elasticity 

(when 

present) 

%Chg. 

Prob. For 

Unit 

Change 

MRS 

Detour 

(equiv. chg. 

detour 

ratio)1 

Area Land Use     

floor area ratio 1/2mi_od 0.12    

Trip Context     

Grocery   -36.2%  

school   76.2%  

work   37.5%  

weekend   26.5%  

central city, both ends   52.1%  

ln(miles_sp) -1.00    

ln(tour_miles_sp) -0.39    

Sociodemographics     

cars per driver2   -55.1%  

zero car household   168.5%  

1 Marginal rate of substitution, detour for attribute (e.g. a unit change in miles of bike path within 1/2 

mile of home for women is equivalent to a -0.27 change in detour ratio, or a change from 1.27 to 1.0) 

2 Cross elasticity, auto     

 

Elasticities provide the expected percent change in probability of choosing a 

mode for a percent change in a given attribute. They are a useful measure for continuous 

variables of how much a given attribute impacted the odds of selecting a mode given the 

choice context in the sample. I follow Hensher et al.’s (2005) recommendation and 

calculate the probability-weighted sample enumeration elasticities, which weights each 

case-level elasticity by the predicted choice probability of a given alternative. Rare 

attributes (e.g. bike paths or steep slopes) will be deflated in elasticity calculations 
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because where an attribute is zero, the elasticity for that case will also be zero. For that 

reason, I also provide an average probability-weighted elasticity calculated only for cases 

where the attribute is present (e.g. only for cases where a bike path is available for at least 

part of a trip). 

For non-continuous variables, point elasticities are difficult to interpret, since a 

1% change in a variable like “weekend day” is not very meaningful. For those variables, I 

calculated the average probability change for a unit increase in the attribute. To ensure 

calculations remained within the range of the sample, for an attribute greater than the 

minimum value, I subtracted one and measured the probability change from the new 

value to the original value. For cases where the attribute was already at the minimum 

sample value, I increased the value by one, calculating the probability change between 

the original value and the increased value. 

Also included are marginal rates of substitution (MRS) for select variables with 

regard to the detour ratio between the predicted and shortest path route. The MRS 

provides the ratio at which a decision maker would be indifferent to trading off one 

attribute for another. MRS provides a better approximation of the relative value of 

different features in a hypothetical choice situation or policy scenario versus elasticities, 

which focus on the features that contributed most to a specific set of observed choices. 

The next section discusses model results by variable group. 

Mode Choice Results by Attribute Group 

Distance. For cycling trips, there were clear effects of both proximity and excess 

distance. A 1% increase in shortest path distance or the detour ratio decreased cycling 
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probability by about 0.5% and 0.9%, respectively. Having to go out of their way was 

about 1.8x as costly as having to pedal farther in deciding whether to ride. For walking, 

as might be expected, the proximity effect dominates, with a 1% increase in shortest route 

distance decreasing the odds of walking by an equal amount. Mirroring findings in the 

pedestrian route choice model, there was a significant excess distance effect when 

walking with another household member but not when walking alone.  

Transit access and egress distances are likewise important. Each 1% increase in 

distance at the origin end yields about a -0.6% change in transit probability, and a 1% 

increase in distance from stop to destination results in a -0.4% change. The higher weight 

on access to stops from an origin was significant and consistent across models. Perhaps 

the extra distance on the origin end adds to the uncertainty of catching a bus or train, 

while the destination has no schedule pressures.  

Purpose. For the most part, trip purpose has similar predicted effects on cycling 

and walking. School and work-based trips increase the odds of choosing a nonmotorized 

mode, while it is less attractive to grocery shop on foot or by bike, all else equal. Even  

controlling for related factors such as traveling to the central city, direct commutes 

attracted cycling trips more than any other purpose. For a given trip, a person was more 

than three times as likely to bike if the trip ends were home and work. Direct commutes 

were also attractive for transit travel. 

Other trip context attributes. Trips into or out of the central city increased the 

chance of using any non-auto mode. Since the central city in the models captures both a 

parking charge area and congestion on downtown streets, the two likely impacts cannot 
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be disentangled. Travel within the central city made walking and transit even more 

attractive; however, cycling was surprisingly no more competitive than driving for travel 

between downtown locations. The finding is consistent with bicycle commuting behavior, 

since many downtown commuters have off-street storage for their bikes. Getting the bike 

out for a midday errand would require the extra hassle of first retrieving it from a bike 

room or similar. There may also be theft concerns locking bikes on the street in the 

central district. Another possibility is that while the routes into and out of downtown 

Portland have received much policy attention over the years, the downtown core itself has 

received noticeably less. While the infrastructure variables should control for these 

differences to some degree, the relatively wide, high volume streets in the one-way grid 

downtown may be a barrier to less confident cyclists. A more positive spin might be that 

the ease of getting around the core by transit and walking simply erodes any advantages 

of cycling. 

Men were more than twice as likely to bike on trips that cross one of the 

Willamette River bridges that connect downtown to the east side of Portland (compared 

to all trips not crossing one of the bridges?). Women, on the other hand, are no more 

likely to bike on such trips. While many of the bridges have bicycle accommodations—

multi-use paths or bike lanes—the result suggests that they may not go far enough to 

make all cyclists feel safe on river crossings. This is something that warrants further 

investigation, and in light of this finding, it will be particularly interesting to see how 

Portland’s newest bridge, designed exclusively for nonmotorized and transit use, fares in 

attracting female cyclists. 
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The data sample studied showed pronounced weekend mode shifts. Taking the 

same trip on a weekend versus a weekday increases the chance of walking by about 27% 

but decreases the probability of biking or riding transit by about 15% and 17%, 

respectively. One possibility for this is that people would have preferred to walk for more 

of their travel, but time constraints, likely more prevalent on weekdays, made walking 

impractical for many weekday trips. Trip purposes not captured here, such as 

social/recreational, dining out, and non-grocery shopping trips, might have been more 

common on weekends, and perhaps better served in some cases by walking or driving 

instead of transit and cycling. Finally, transit typically runs less frequently on weekends, 

reducing its attractiveness.    

Tour variables. While the mode choice models were all trip-based, some tour-

level variables were significant predictors of trip mode. Tour distance had about 40% as 

large an estimated impact on walking and biking probabilities as trip distance. A 1% 

increase in tour distance decreases the chance of walking or biking by about 0.4% and 

0.2%, respectively. The odds of transit travel also diminishes with tour distance, while 

trip distance has no significant effect, likely reflecting the added costs of transfers and 

trip planning on more complex transit trip chains. 

The number of stops on a tour has been used as a measure of potential travel 

complexity (Soltani & Allan, 2006). As expected, as tour complexity increased, cycling 

became less and less attractive. Each additional stop decreased probability by about 10%. 

Unlike walking, each stop generally requires locking and unlocking a bike, and as the trip 

chain grows, so does the burden of finding suitable cycling routes and carrying things 
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picked up along the way. The finding that the number of tour stops would increase the 

odds of a transit trip was less expected. One possibility is that Portland’s public transit 

agency, TriMet, uses time-based fares, offering unlimited transfers until the fare expires. 

Another possibility is noise in the GPS data processing. If a transfer took long enough 

and did not involve much walking, it could have been incorrectly flagged as an 

intervening activity. 

Tour slope variables were borrowed from bicycle mode choice specifications in 

Rodríguez and Joo (2004), and they outperformed trip-level slope attributes, which only 

capture the current trip direction. Many downhill bike trips will include an uphill return. 

Public bike share or improved transit-bike integration could potentially reduce this effect. 

Grades of 2% and greater, as they are for route choice, were powerful deterrents to 

cycling when present. Based on the marginal rate of substitution, just 10% of a tour 

climbing up such hills reduced the odds of cycling by the same amount as a 14% detour 

from the shortest path. 

Trip end infrastructure. Model 2 specifies a range of area-based infrastructure 

attributes meant to capture the quality of walking and cycling conditions. Since those 

area-based measures were mostly displaced by better fitting route-level attributes, I will 

not describe them in detail here, instead referring interested readers to Table 17. It is 

worth highlighting that of the trip end buffers tested, from 1/8 to 1 mile in radius, 1/2 

mile versions consistently outperformed other sizes for predicting walk and bike travel. 

Since Model 2 was mainly intended for comparison to Model 3, the “best” insignificant 

versions of various route measures were left in the model for presentation purposes. 
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Removing those parameters did not change the results of the model rejection test. In a 

few cases, even significant parameter estimates were unintuitive in Model 2. As an 

example, moderate slopes at the tour-level positively affected the probability of cycling. 

This likely reflects the inclusion of irrelevant sloped areas in the buffer calculations. For 

example, there are steep slopes all along the Alameda Ridge in northeast Portland, but 

cyclists rarely need to traverse it. Such results aside, the area-based parameters generally 

agreed fairly closely with the route-based measures, suggesting that it is still useful to 

measure specific infrastructure as well as land-use even when network analysis is 

infeasible. The numeric example later in this chapter provides a stronger reason not to 

rely on area measures alone: poor sensitivity to network changes.   

Model 4 included area based infrastructure and land use measures alongside 

predicted route variables. The results were intriguing and are taken up at greater length in 

the discussion in Chapter 6. Especially for decisions to bike, having infrastructure around 

one’s home appeared to be an important factor, but which specific infrastructure matters 

is split across genders. For women, a 10% increase in miles of bicycle boulevards or off-

street paths within a half-mile of home increases the chance of biking on any trip by 1.1% 

and 2.3%, respectively. This is an example of when the elasticity when present is more 

appropriate, since the majority of households had neither boulevards nor bike paths 

nearby. For men, bike lanes near home had a similar impact on cycling, with a 10% 

increase in bike lane miles expected to shift biking odds on any trip by 1.2%, when bike 

lanes were present. For walking, land-use intensity, as measured by floor area ratio, at 

trip ends encouraged walk travel.  
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Well-connected street grids, as measured by the ratio of all intersections that are 

4-way within either a 1/2 mile of home or of trip ends, were strong predictors of cycling 

in the model. The effect of a more connected grid equaled or exceeded that of even 

proximity or route directness.   

The fact that land use intensity impacted only walking relative to other modes, 

instead of, for example, simply reducing the utility of driving, suggests that there was 

something specifically about walking between denser places that offered an advantage 

over even cycling and transit, even after controlling for pedestrian amenities like 

sidewalks, crossing aids, and proximity. 

Finally, land-use mix, measured by the entropy of residential, commercial, and 

other uses within 1/4 mile of home or of trip ends, were significant factors in transit use. 

The result matched earlier findings by Cervero (1996), who surmised that mixed uses 

near stops level the playing field for transit riders that otherwise find it difficult to 

compete with driving when wanting to combine other errands with commutes. Smaller, 

1/4 mile buffers fit better in this case, further supporting the idea that mixed uses need to 

be in close proximity to stops to be useful. 

Predicted route attributes. Route measures along the single, predicted highest 

utility path included infrastructure attributes and interactions between infrastructure and 

adjacent land-use. A gender split was again evident for cycling infrastructure variables, as 

it was for area-based measures. Among women, traffic volumes from 5,000-20,000 

vehicles per day reduced the odds of cycling, regardless of whether striped bike lanes 

were present. Bicycle boulevards, on the other hand, increased the probability that 
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women would bike considerably, the equivalent of reducing route detour by 61%. A 10% 

increase in the portion of a route that uses a boulevard raised the probability of a woman 

choosing to bike on that trip by 1.5%, when bike boulevards were present along the way.  

For both men and women, routes along off-street bike paths were strongly 

attractive, equivalent to a 2.5x reduction in route detour, or 2.2% for each 10% rise in the 

proportion following a path, when paths were present. At high levels of traffic, men and 

women’s preferences converged, and they were equally discouraged from cycling when 

facing streets with 20,000 vehicles a day or more, with or without a bike lane. A host of 

intersection variables was found to be important for cyclist route choice, but only the 

most difficult maneuvers factored in mode choice. Left turns across moderate to heavy 

traffic and without a traffic signal reduced the chance of cycling on a trip by about 20% 

for each additional such crossing encountered per mile.  

No gender differences were evident in route factors predicting walking mode 

choice. For every 10% increase in missing sidewalk along route, walking probability fell 

by about 1%. Similar to results for cycling, only the most onerous crossings seemed to 

factor in pedestrian mode choice. Each arterial crossing without a traffic or pedestrian 

signal reduced walk choice probability by 31%.  

Modeling suggested that the nuanced relationship between walking and 

commercial streets extended to mode choice as well as route choice for pedestrians. 

Commercial land use along a route in general had a negative impact on the odds of 

walking. This could be linked to higher motor vehicle activity levels, especially in and 

out of commercial driveways, or it could simply be that people walking prefer quieter 
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streets until they arrive at their ultimate destination. Commercial development on smaller 

streets, which I labeled as neighborhood commercial here, exactly offset the negative 

general impact of commercial land use along a route, essentially leaving it not preferred, 

but equally attractive compared with a quiet residential street. This is an area of 

investigation that might benefit from a specification that allows for heterogeneous 

preferences. There may well be a group that enjoys commercial, and another that prefers 

walking through areas not quite as bustling. Finally, off-street paths encouraged people to 

walk to destinations even though recreational trips were excluded, though interestingly 

paths did not factor in route choice for pedestrians.  

Sociodemographics. As expected from existing work, even after controlling for 

perhaps the largest set of factors to date, women were considerably less likely to bike 

than men in otherwise identical circumstances. Increases in cars per licensed driver left 

all non-auto modes less likely alternatives. Zero car households (n=14) in the study were 

most likely to fill their transportation gap with walking and transit, and to a lesser extent 

cycling. 

Attitudes. Model 5 introduced two residential self-selection variables into the 

model structure. Due to missing data, Model 5 was not strictly comparable to the other 

models; however, the importance of attitudes was clear from the results. All else equal, 

including the area measures around a household’s residence, those who chose a 

neighborhood for its good biking qualities were more likely to bike (around 39% more 

likely for a unit increase on the 5-point scale) on any given trip. Those choosing their 

neighborhood for walkability were more likely to walk (about 21% for a one-point 
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increase) on given trip but less likely to use transit, perhaps because they have more of 

what they need within walking distance. Counter to expectations, only one home area 

environment variable, network connectivity, was crowded out by the addition of self-

selection attributes. 

Numeric example. A simple example demonstrates how using predicted routes 

instead of areal measures improves model sensitivity when policy is focused, as it often 

is, on specific corridors. Consider the case of an origin currently connected to a 

destination two miles away by an on-street bike lane along a busy arterial (20,000 or 

more vehicles per day). Planners are considering improving the connection by developing 

a bike boulevard along quieter streets parallel to the arterial. The new boulevard would 

allow cyclists to avoid the higher traffic street, but where the bike lane follows the 

shortest path, the new boulevard route would be 2.2 miles long, requiring cyclists to 

detour about 10% out of their way.  

The mode choice models developed in this chapter can provide predictions for 

scenarios like the given one. For Model 2, before the change, 0.5 miles of bike lane fall 

within each trip end half-mile buffer, there are no existing bike boulevards, all other areal 

measures are set to their average values, the terrain is flat, the trip is outside the central 

city, and it will not cross the river. For a simple tour from home to destination and back 

again (so that the tour is 4 miles long with 1 stop), and for none of the special purposes 

included in the model (e.g. perhaps a non-grocery shopping trip or social-recreational 

trip), Model 2 predicts that the odds of cycling for each leg of the two mile trip are 1.7% 

for men and 1.3% for women. The gender gap reflects both the positive impact of area 
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bike lanes for men and the generally lower probability for women choosing to bike, all 

else equal. Adding the hypothetical bike boulevard affects the predicted outcome only 

due to the new 0.5 miles of boulevard that would fall within each trip end buffer. This 

change results in no predicted increase in the propensity for men to cycle on the given 

trip, since they are insensitive to area boulevards, and a small rise from 1.3% to 1.5% for 

women. 

With similar assumptions as used for Model 2, and also assuming that the bike 

lane is currently the predicted route, Model 3 predicts the chance of cycling as 3.1% for 

men and 2.1% for women. In this case the gender gap reflects only the general downward 

bias for women choosing to cycle, since men and women were equally averse to riding in 

a bike lane alongside heavy traffic in the route-based mode choice model. Adding the 

bike boulevard option would shift the predicted route from the bike lane to the boulevard, 

reflecting the fact that cyclists value the new facility more than the 10% additional 

distance (Broach, Gliebe, & Dill 2012, Appendix B). The predicted route change would 

shift the probability of cycling via changes in three attributes: the shift away from a 

heavy traffic route (positive for men and women), the shift onto a bike boulevard 

(positive for women), and the increased detour (negative for both). The net result in this 

case is strongly positive, with the chance of cycling for the trip increasing from 3.1% to 

21.5% for men, and from 2.1% to 30.1% for women. In this case, the predicted effect of 

moving bike traffic off of the high traffic street easily outweighs the required detour, and 

the presence of a bike boulevard for the entire route reverses the gender gap for the 

hypothetical trip. 
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6  Discussion 

The primary motivation for this research was to develop and a new method that 

uses predicted pedestrian and cyclist routes, and the features along them, to predict the 

choice of whether to walk or bike on a given trip. I argued that measuring large areas 

around trip ends, as is most commonly done, seemed like an inefficient way to measure 

travel environments, that these aggregate measures likely measure much that is irrelevant 

at the trip level, while potentially diluting or missing what is actually important. 

Statistical comparisons of matched area and route-based models supported those 

hypotheses. In the tested sample of data, a pair of representative routes averaging 1.1 

miles (1.8 km) for pedestrians and 2.4 miles (3.8 km) for cyclists provided significantly 

more information about mode choice decisions than areal summaries of, on average, 46 

miles (74 km) of streets and paths within trip end buffers. Particular routes captured 

walking and bicycling environments with surprising efficiency.   

Furthermore, I argued that there was a fundamental mismatch between areal 

measures and common nonmotorized policies aimed at making strategic investments 

along specific routes and corridors, or between specific origins and destinations. Portland 

recently constructed a new transit, bicycle, and pedestrian bridge, Tilikum Crossing, that 

links predominately residential areas east of the Willamette River with a large regional 

employment, health care, and education cluster on the west side. Before the new bridge, 

any cyclist traveling north faced a mile-long detour to reach a bridge with reasonable 

accommodation (the bridges farther south are high traffic with narrow sidewalks on just 

one side). Using a mode choice model based on areal measures, the new bridge would 

have either no predicted effect on choice outcomes, if the bridge fell outside of the trip 
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end buffers, or a diluted effect from the marginal addition of multiuse paths on the bridge 

itself to the area as a whole. The area-based framework has no way to properly weight the 

usefulness of a specific route connection. Using a route-based framework, the predicted 

cycling and pedestrian routes would shift to the new bridge for many predicted trips, and 

route attributes and detour measures would reflect the new, improved path. Increased 

sensitivity to marginal route improvements is a key feature of the predicted route-based 

mode choice framework developed in this research. 

Other advantages of the proposed approach include more compelling tests of 

facility-level impacts on walk and bike decisions and an allowance for tradeoffs between 

various attributes impacting mode choice. When route-level attributes are measured 

within larger areas (e.g. total miles of bike lane), the connection between trip-level 

decisions and the built environment is less clear. How is it that miles of bike lane would 

impact a decision to bike when the facilities do not connect an origin and destination? In 

that case, the measurement of bike lanes per area might just be serving as a proxy for 

other features that increase the propensity to bike. In contrast, adding the condition that a 

bike lane must connect an origin and destination within a reasonable detour makes the 

test of a specific facility’s impact on behavior more convincing. In addition, the 

embedded random utility framework allows for walking and bicycling suitability 

measures that allow tradeoffs among network attributes. Unlike all or nothing approaches 

to measuring network connectivity such as bicycle level of stress, which rates route 

quality based on the worst single segment (Mekuria, Furth, & Nixon, 2012), the method 

developed here weights positive and negative factors along the entire route. For example, 
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a bicycle route mainly along attractive off-street paths but with a brief, high-stress (high 

disutility) stretch along a busy roadway. The level of stress route quality would be 

determined entirely by the short, high traffic stretch, while the predicted route method 

introduced in this research would weigh the positive impact of off-street paths against the 

negative impact of the busy stretch, resulting in a network quality measure somewhere 

between the two. The predicted route method could be extended from route to network-

level quality scores in future research and its ability to predict walking and bicycling 

behavior compared with level of stress and other existing approaches. 

While route-based measures have certain advantages, the mode choice modeling 

exercise also indicated that trip end infrastructure measures and land use in a person’s 

home neighborhood provide complementary information about decisions to bike and 

walk. An unforeseen result of specifying route-based travel infrastructure attributes was 

their greater independence from traditional density, diversity, and design land use 

measures. That allowed for an identifiable model incorporating both specific route 

attributes, trip end land use measures, and home neighborhood areal infrastructure and 

land use variables. That model outperformed models using only areal or only route 

measures, controlling for trip context. This result is at least consistent with the possibility 

of land use and infrastructure effects on the formation of walk and bike habits and 

perhaps also lower entry barriers. Traveling or living in more walkable or bikeable areas 

might increase the odds of walking and biking for other trips, forming habits that increase 

the chance of walking or biking for a specific trip regardless of its route quality. For 

bicycling, which arguably has a higher cost of entry than walking for many due to safety 
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perceptions, having lower traffic-stress options near home, including off-street paths, 

bike boulevards, and a well-connected local street grid, might reduce this entrance barrier 

and increase the probability of cycling on other trips. Each of these interpretations of the 

findings is speculative, and there are other possible explanations, including simply living 

near other cyclists (Wang, Akar, & Guldmann, 2015), but the implications are intriguing 

enough to warrant further efforts to identify the source of the residual area-based 

correlations. 

 A second major aim of the research was to compare the impact of route-level 

attributes on choices of where to walk and bike versus decisions of whether to walk and 

bike. Generally speaking, findings showed that most of the important factors influencing 

route choice also impacted mode choice, particularly in the case of bicycling.  

For bicycling, low traffic-stress bike infrastructure, including bicycle boulevards 

and off-street paths, increases both the attractiveness of a route and the odds that a person 

will bicycle on a given trip in the first place. The same is true for more direct routes, 

routes with fewer moderate and steep hills, and routes with fewer difficult turning 

movements at major street intersections. There were also key differences between factors 

in route choice—for those that have already chosen to ride—and the choice of whether to 

bike in the first place. Most striking was the gender gap in preferences for lower traffic 

routes and specific bicycle infrastructure.  

Route choice models developed both in this research and earlier projects with 

colleagues had found no significant interactions between gender and route preferences. 

This was surprising, given the United States’ well-known gender gap in cycling. Mode 
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choice models, however, revealed significant gender gaps in decisions to cycle for 

specific trips. Women were deterred by even moderate levels of traffic, as low as 5,000 

vehicles per day; while for men, the choice to cycle was not affected until traffic levels 

reached relatively high volumes of 20,000 vehicles per day or more. And, while both men 

and women are willing to go out of their way to use low-stress bicycle boulevards when 

available, only women were more likely to cycle when boulevards connected origins and 

destinations.  

Evidence also suggested a gender difference in cycling across the Willamette 

River, which separates Portland’s downtown core from the largely residential east side. 

While men were more than twice as likely to cycle on cross-river trips, perhaps because 

of time and cost advantages of cycling into downtown, women were no more likely to 

ride on such trips, suggesting that some factor might be offsetting the advantages for 

them. Possibilities include the perceived inadequacy of cycling infrastructure downtown, 

on the bridge crossings themselves, or some other factor beyond those controlled for in 

the models. Even after accounting for these specific preference differences between 

genders and trip context, route, and built environments, women were around 38% less 

likely to cycle. Lack of access to low traffic-stress routes explains part of the gender gap 

in cycling, and for specific trips, bicycle boulevards can even close or eliminate the gap, 

but there is still a statistical bias against women cycling that we do not completely 

understand. Possible avenues for exploration include gender-specific attitudes toward 

cycling, and household role differences that may impose time or other constraints that 

make cycling less attractive. 
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The value of simple, striped on-street bike lanes adjacent to parking, road 

shoulders, or curbs was another aspect on which route and mode choice results differed. 

In route choice models, bike lanes had the effect of offsetting adjacent vehicle traffic 

volumes. Cyclists were indifferent toward using a high traffic street with bike lane or an 

otherwise similar, parallel low traffic street. In decisions of whether to bike, however, 

bike lanes were found to have no significant direct impact. They do not offset the 

negative impact of low to moderate adjacent traffic volumes, for women, or the negative 

impact of high traffic streets for both genders (men were insensitive to low and moderate 

traffic volumes). Results are consistent with that notion that bike lanes are useful to 

cyclists but unlikely to induce people to ride. In this context, it will be fascinating to 

study the newer generation of protected bike lanes now appearing around the US.  

 For walking, comparisons were more limited due in part to pedestrian route 

choice modeling being in an earlier stage of development, both in this research and in the 

literature, but some consistent factors were identified. Subpar walking facilities showed 

slightly different but consistently negative correlation with the choice of route and 

whether to walk. Having to cross a busy arterial street without a traffic or pedestrian 

signal was a significant deterrent in both route and mode choice. Unpaved streets and 

alleyways, in route choice modeling, were mirrored by a slightly different attribute, 

missing sidewalks, in mode choice, but I surmise that both reflect similar incomplete 

street environments that discourage walking.  

There is an interesting, complex relationship between walking choice and 

commercial streets. In decisions of where to walk, commercial districts along smaller 
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streets (minor arterials or neighborhood collectors) were attractive, and pedestrians were 

willing to walk out of their way to use them, while similar non-commercial streets were 

avoided. For the choice of whether to walk, only arterial commercial districts reduced the 

odds of walking, while neighborhood commercial districts and busy non-commercial 

streets were neutral. More nuanced measures may be needed to more fully understand the 

relationship between walking, traffic, and commercial design, and for now I can only say 

that neighborhood-scale commercial on lower order streets appeals to those already 

walking but is unlikely to draw additional walking trips unless it brings attractive 

destinations closer to travelers, reducing trip distance. 

The pedestrian route choice model did not find that people were willing to walk 

out of their way to use an off-street path, given a low-traffic street alternative. The 

presence of paths along predicted routes, however, did have a positive influence on 

choosing to walk. It appears that although not willing to go much out of their way to use 

them, people are more likely to walk if a path happens to be on the way. 

While attitudinal measures were limited to residential self-selection into walkable 

and bikeable neighborhoods, this research is one of the first to test self-selection effects 

on mode choice at the trip level, with controls for the route and area-level factors that 

comprise such neighborhoods. Participants were asked to rate the importance of choosing 

“a good biking neighborhood” or a “good walking neighborhood” when looking for their 

current home. The self-selection effect was found to hold up under such controls, 

increasing the probability of cycling by 39% and the chance of walking by 21% for a 

one-point increase on the five-point scale. While these impacts are substantial, they do 
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fall within the effect range of many other attributes in the mode choice model, consistent 

with the idea that attitudes are important but far from the only thing that matters.  

Including self-selection in the mode choice model crowded out some of the 

explanatory power of the area-based built environment measures, but route-level features 

were largely unaffected. This suggests that route quality has an impact on walking and 

biking rates that is independent of residential self-selection effects. Those that placed 

importance on living in a good walking neighborhood were less likely to use transit, a 

somewhat counterintuitive finding, given the importance of walking as a transit access 

mode. One possibility is that it reflects a tradeoff between better transit access—in 

Portland often along arterials or near freeways—and more walkable neighborhoods. 

While only suggestive, it is worth exploring further to understand if some opportunities 

are being missed to provide better transit service or better connections to existing service 

in walkable places outside of the downtown core.  

A final aim was to test the practicality of incorporating predicted walk and bike 

routes into a model structure similar to existing, trip based regional travel demand 

models. With one important caveat, the model form developed and tested in this research 

could be implemented within many regional modeling frameworks immediately. In fact, 

an early version of the bicycling portion has been incorporated Portland Metro’s trip-

based regional modeling system. A key remaining hurdle is at what spatial scale to apply 

the predicted routes. In this research, a predicted walk or bike route only represented the 

travel environment between a single origin and destination pair for a single prospective 

trip. A regional model typically operates on a zone-based system, and having a single 
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route represent all potential walk or bike trips by all travelers between two zones is 

problematic, to say nothing of how to handle trips that start and end in a single zone. It 

would also undercut one of the modeling framework’s notable advantages, sensitivity to 

route improvements, since a route-level improvement would only affect mode choice to 

the extent it improved the specific connection between zone centroids. In the long-run, 

improving spatial resolution for all modes may be the solution. In the interim, I would 

suggest fixing shortest path distance to the traditional zone-based measure but then 

sampling a number of origin and destination pairs between and within zones, averaging 

over predicted routes to estimate expected route quality for a given zone pair or 

intrazonal area. 

There are other limitations both to the conceptual framework and the specific 

application presented here to bear in mind. Throughout, I have mentioned various 

shortcomings and workarounds for coercing what are really sequences of trips—trip 

chains or tours—into a trip by trip choice process. Partly, this was a necessary 

simplification to develop and test a new modeling technique; after all, models of tour-

based walk and bike route choice to my knowledge do not yet exist, so I am not sure how 

one would go about predicting such routes other than falling back to individual trips. If I 

included a variable for previous mode in the mode choice models estimated here, I expect 

I would find that it explained a large portion of mode choice likelihood. Much of the 

mode choice decision is made when leaving the house in the morning, and this 

phenomenon is commonly captured via mode availability in tour-based models. There is 

a sense that this kind of travel behavior thinking may already be losing relevance as the 
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next mode choice becomes less fixed to the last. In many cities, car sharing, bike sharing, 

and ride sharing mean that I could drive to work (in a shared car), bike to lunch (on a 

shared bike), take transit to a restaurant, and walk home—a nightmare for a tour-based 

model, but no problem in a trip-based framework.6 

In addition to assuming independence of individual trip mode choice, another 

simplification in the conceptual framework is treating trip generation and distribution (the 

destination) as exogenous to the mode choice process. It is more likely that, to some 

degree, people make decisions to travel at all, and if so to where, with a chosen mode 

already in mind. This is the difference between the hypothetical base of models in this 

research, “I’m going to this particular place, what mode should I use, considering the 

route?” and, “I’d like to walk to some place, where shall I go?” Parallel work by others, 

including some of my own colleagues, is working to better understand how specific types 

of places produce and attract nonmotorized trips. It will be useful at some point to better 

integrate these modeling steps for walk and bike travel. 

 A final pair of limitations to discuss, not with the framework but the application 

presented here, is the limited treatment of motorized modes in the mode choice models, 

and the specific travel sample used. To the extent important variables of auto and transit 

utility were omitted in the models, estimates of the remaining parameters would be 

inconsistent, and the interpretations provided suspect. That the majority of estimated 

effects were consistent with existing travel behavior theory and research, and that many 

                                                 
6 Although, my use of tour-level variables would become problematic, since things like slope are less 

relevant when one can coast downhill on a bike share bike and take some other mode home. There is also 

the problem of forming expected tours to calculate the tour level variables—here, they were taken as given 

from the observed travel data. 
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mode choice effects were consistent with route choice effects were taken as signs that the 

omitted variable bias was not too great. It will be interesting in future work to examine 

the sensitivity of these estimates to more complete transit and auto specifications. 

 The sample used for estimation in this research is not necessarily generalizable to 

other populations and geographies. The sample of families was self-selected into a study 

confined to specific street corridors in predominately single family, residential 

neighborhoods with well-connected street grids, mostly complete sidewalks, and 

generally at least basic bicycle accommodation. While the route and mode preferences of 

families with children under 16 might not reflect precisely those of the larger population, 

they are an important travel demographic, accounting for nearly half of all trips nationally 

(NHTS, 2009). I look forward to testing the framework in other settings and with 

different populations. There is nothing inherent in the developed framework that would 

limit broader application. 

 Implicit in much of travel demand theory is Tobler’s so-called first law of 

geography, “[E]verything is related to everything else, but near things are more related 

than distant things” (Tobler, 1970, p. 236). For people walking and biking, nothing is 

nearer than the particular routes that they use. In thinking about decisions to walk and 

bike, then, it only makes sense to incorporate our best approximation of those routes. 

This research presented a means of doing so, using walk and bike route choice models to 

generate predicted routes traversing the specific travel environment someone might 

consider, along with other factors, in choosing how to travel. Calculated sensitivities to 

various route-level factors were shown to be useful predictors of mode choice, adding 



 

125 

 

significant information even after controlling for trip context, sociodemographics, area-

based built environment, and residential self-selection. Tools, methods, and frameworks 

were developed to aid in replicating the research elsewhere using increasingly common 

GPS travel data. I hope that this contribution might, in some small way, help to uncover 

what motivates bicycling and walking, and how policy might better encourage 

sustainable travel choices to the benefit of urban places. 
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Appendix A  GPS Travel Data Mode Imputation Model 

For a number of reasons, interest in augmenting or even replacing traditional 

diary-based household travel surveys with Global Positioning System (GPS) data has 

been growing over the past decade. Promises of reduced cost and respondent burden, 

greater detail, and feasibility of longer-term data collection are certainly attractive. This 

optimism about the future of travel data is tempered mainly by the burden of processing 

and questions about accuracy. Unlike a travel diary, a GPS data file is only a record of 

movements in space and time. Trip ends, purposes, and travel modes must be imputed in 

some way, and, while much progress and innovation has occurred, there are still no 

standards for processing the raw data. When comparing research results across studies, it 

is important to know whether apparent differences reflect underlying behavioral 

distinctions or simply different methods of data processing. 

This paper proposes a new method for imputing travel mode from raw data, one 

important aspect of GPS data processing. While examining data from a GPS-based travel 

study our research team was conducting, we became concerned that existing methods 

were not detecting mode as accurately as we would like. Particularly concerning was the 

fact that bicycling, a focus of the study, appeared to be especially poorly predicted.  

Using a unique dataset collected as part of a larger study in Portland, Oregon, I 

develop and test a multinomial logit (MNL) mode imputation model using GPS and 

accelerometer data. The MNL model is already well-known in travel demand modeling 

circles, and it has some appealing advantages in this application in terms of transferability 

and integration with other models. Initial results show that the MNL models developed 

here can predict urban travel modes—including bicycling—with a fairly high degree of 

accuracy, although as with any new method, there remains room for improvement. It is 

my hope that the relatively simple and familiar methodology will encourage replication 

and refinement within the larger research and practice community. 

Existing Work 

A number of other researchers have grappled with the problem of GPS mode 

imputation. Lawson et al. provide a recent review (2010). The majority of studies have 

used very small convenience samples and exploratory, heuristic classification techniques. 

These methods generally establish a hierarchy of rules based on test data and expert 

judgment. Trips are then deterministically binned by mode with implied 100 percent 

certainty. Without diminishing the importance of all work in the area at this stage of 

development, this review focuses on studies with larger, more representative samples 

and/or application of systematic, statistical models. 

Fuzzy logic. One step up in complexity from hierarchical rule-based methods are 

fuzzy logic techniques. Instead of hard cutoffs, boundaries (e.g. between walking and 

biking speed) are represented as overlapping. A series of such rules can be applied, and 

then aggregated based on a membership criterion such as the maximum value of the 

lowest-scoring rule. The result is a mode assignment and a membership score. This score 

does not have a natural interpretation beyond higher values representing more certainty. 
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Another potential drawback is that the rules and fuzzy ranges must all be specified 

exactly beforehand. There is no model estimation beyond trial and error, and thus the 

results are largely tied to the skill of the fuzzy rules’ architects. Tsui and Shalaby applied 

fuzzy rules to 109 GPS trips in Toronto, Canada (2006). Average and 95th percentile 

speeds, median acceleration, and data quality were used to form the rules. When bus or 

bike membership values were at least 0.4, a binary variable capturing whether the GPS 

track followed a GIS transit route was applied in a hierarchical manner. They reported an 

overall success rate of 91 to 94 percent, and cycling was predicted correctly from 72 to 

86 percent of the time.  

Schuessler and Axhausen applied a similar method minus the transit network 

component to a sample of nearly 5,000 Swiss participants (2009b). An additional check 

was made based on the reasonableness of predicted mode chains. No actual trip data was 

available to test prediction success, but aggregate shares were compared to Swiss national 

travel survey data. Auto and, to a lesser extent, bike travel appeared to be overestimated 

at the expense of public transit trips. Lawson et al. (2010) adapted (Schuessler & 

Axhausen, 2009b) to a 101 trip database in New York City. They reported a relatively 

poor success rate of 67 percent, attributed to the difficulty of distinguishing bus and auto 

travel in dense traffic. Cycling was not included as a travel mode. 

Neural and Bayesian networks. Neural networks and Bayesian belief networks 

have also been proposed and tested for mode imputation. Gonzalez et al. developed a 

neural network application to impute travel mode from mobile phone GPS tracks (2010). 

They included average and maximum speeds and acceleration, as well as measures of 

how frequently speed and heading changed over time and distance. The algorithm was 

applied to a 114 trip dataset in Tampa, Florida and recorded an overall success rate of 91 

percent. Bike travel was not included. Lawson et al. (2010) adapted (Gonzalez et al., 

2010) to their small New York City dataset, and reported an 84 percent success rate, 

lowest for auto and bus modes.  

Moiseeva et al. presented the first application of a Bayesian network to the mode 

imputation problem and applied their TraceAnnotater system to a sample of 1,554 trips 

from residents of Eindhoven, The Netherlands (2010). An extensive list of variables was 

specified: average, maximum and standard deviation of speeds; average and maximum 

acceleration; distance per time period; GPS accuracy measures; GIS railway proximity; 

and car and bike ownership. Initial results were promising with an overall success rate of 

92 percent. Cycling was least accurately predicted at a still high 85.5 percent. The mode 

imputation algorithm itself is just one component of the TraceAnnotater system.  

Both neural and Bayesian networks are “learning” models that can adapt both 

their parameters and structure to fit new data without researcher input. In this way they 

may be more transferable, since the algorithm is never fixed. Neural networks, however, 

lack easily interpretable prediction measures for individual observations. Bayesian 

networks are built on conditional probabilities, but it is not clear whether overall 

probabilities can reasonably be calculated. Both methods require considerable time and 

processing power to set up. 
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Discriminant analysis & accelerometer data. Perhaps closest to the present 

work in method, Troped et al. used discriminant analysis to impute mode from a small, 

29 trip test dataset in Boston (2008). Since the focus was public health instead of travel, 

walking, jogging, and biking were done on a recreational path, while only driving was 

done in an on-street environment. The study was the first to combine GPS data with 

accelerometers for mode imputation. Median activity counts, median recorded steps, and 

median GPS speed were included in the final model. Results suggested that the two 

accelerometer variables alone were sufficient, with the GPS speed improving results only 

marginally.  

It is unclear how these results might transfer to on-street travel. As a classification 

method, discriminant analysis is similar to the multinomial logit (MNL) model and 

posterior mode probabilities can be calculated. 

Additions to the literature. The remainder of this paper develops the first MNL 

model of mode imputation, adding a well-established statistical technique to the 

literature. In addition, I extend work on combining GPS and accelerometer data, more 

commonly used in health research, by considering its application to urban, on-street 

travel. Models are developed from the largest North American dataset used for mode 

imputation in the literature, and one which includes both children and adults. 

Objectives 

My primary objective was to test the feasibility of a multinomial logit (MNL) 

model for completely automated mode imputation. A special focus was given to correctly 

identifying urban bicycle trips, a task our research team have found to be difficult in 

ongoing research. Many existing mode imputation datasets derive from Europe, where 

cycling tends to be slower and more separated from general traffic. This would tend to 

make imputing cycling trips easier. To our knowledge, these models have not been tested 

on US cycling trips. 

A secondary objective is to test the relative importance of GPS, GIS transit 

network, accelerometer, and socio-demographic variables for mode imputation. Each 

additional layer adds cost and complexity, and it is important to know what the relative 

benefits are for mode prediction. 

Finally, I try to provide enough information that our methods can be easily 

replicated elsewhere. An advantage of the MNL model is that software and expertise is 

already common within the travel demand modeling community. It is our hope that this 

low entry barrier will encourage others to test and refine the model, pushing the field 

toward some agreement in this critical area of GPS data processing. 

The remaining sections describe the data and methodology employed, discuss the 

model results, and conclude with considerations for the course of future development and 

testing. 
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Data and Methodology 

Data drawn from larger study. The data used in this study were collected in 

2012 in Portland, Oregon as part of the second phase of an ongoing longitudinal study on 

family travel and physical activity. In the larger study, 975 participants from 323 

households are collecting 5 consecutive days of person-based GPS (GlobalSat DG-100) 

and accelerometer (Actigraph GT3X) data during two different study phases. GPS points 

are recorded once every 4 seconds as long as a speed greater than 1 mile per hour (1.6 

km/h) is detected. Hip-based acceleration forces in 3 dimensions are recorded constantly 

and aggregated to 15 second intervals, or epochs. In addition, survey questionnaires 

capture demographic data for the household and each participant. No travel diaries are 

kept by participants. 

Validation data collection. In order to test our data processing accuracy, during 

the second phase of data collection, participants in a subsample of households were 

invited by email to provide recalled mode and purpose for up to 20 recently recorded 

trips. The initial household response rate was 40 percent for the supplemental survey. A 

total of 926 trips by 80 participants were available for initial model development. 

A website allowed participants to view up to 20 trips one at a time using a Google 

Maps interface as shown in Figure 10 Web-based survey for mode and purpose recall. In 

addition to the trip segment start/end points and GPS track, date, weekday, and start/end 

times are provided to aid recall. Related trip segments were also displayed (e.g. the 

walking segment after a transit trip), but potentially leading details such as average speed 

or activity level were left out to avoid bias. The map was “live” and could be panned, 

zoomed, and switched among road map, satellite, and street view (Google’s street level 

imagery). No complaints were received, and a number of participants left comments that 

they enjoyed the activity. 
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Figure 10 Web-based survey for mode and purpose recall 

 

 

In order to maximize useful variation, we stratified the sample of trips for each 

person by speed, acceleration, transit network adjacency, and recorded activity level. 

Using thresholds from existing literature, previously collected Portland cycling GPS data, 

and the research team’s judgment, we oversampled trips with data profiles that we 

thought fit walking, cycling, and transit travel. We also oversampled trips with profiles 

that had conflicting patterns or fell at the edge of cutoffs used in other studies. In order to 

reduce the effect of data noise at trip ends, we drew first from trips of at least 5 minutes, 

drawing shorter trips only when fewer than 20 long trips were available. 
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The recall sample used for model development included 398 trip segments made 

by children aged 5-17 and 528 by adults. While the sample was self-selected, we do not 

feel in general that differences between the sample and larger population are likely to be 

important for mode imputation. There are, however, certain demographics such as young 

college students and the elderly who are missing from the larger sample, and it is possible 

that their GPS and accelerometer patterns could differ for certain modes (e.g. by cycling 

or walking speed). 

Data processing. In addition to recalled mode, the trip-level statistics shown in 

Table 1 were calculated from GPS, accelerometer and GIS transit network data. Raw 

GPS data were first partitioned into single-mode trip stages using existing methods that 

assume a mode change must include a walking stage (Schuessler & Axhausen, 2009b; 

Tsui & Shalaby, 2006). Trip segments were then joined to the best matching single transit 

route using a map matching technique developed by Schuessler and Axhausen (2009a). 

 

Table 22 Mode Imputation Variable Descriptions 

Name Source Description Mean Std. 
Dev. 

Min Max 

95th acceleration GPS 
95th percentile acceleration 

(m/s2) 
0.98 0.50 0.05 2.05 

95th acceleration^2 GPS 
95th percentile acceleration 

squared 
1.22 0.88 0.00 4.18 

95th speed GPS 95th percentile speed (m/s) 13.9 8.39 0.94 34.5 

95th speed^2 GPS 
95th percentile speed 

squared 
263 251 0.88 1191 

CV speed GPS 
speed coefficient of 

variation (m/s) 
0.47 0.16 0.05 1.31 

mean distance to 

transit route match 
GIS 

average distance from gps 

points to closest single 

transit route match (1000m) 

3.47 1.30 0.00 4.00 

median speed GPS median speed (m/s) 8.68 6.09 0.49 30.4 

pcount ACC 

median 1-minute count1 

total (axis 3: perpendicular 

to travel) (/1000) 

0.42 0.70 0.00 4.76 

pcount^2 ACC 

median 1-minute count1 

total squared (axis 3: 

perpendicular to travel) 

0.66 1.86 0.00 22.7 

vcount ACC 

median 1-minute count1 

total  (axis1: vertical) 

(/1000) 

0.57 1.13 0.00 7.26 

1 a count is a measure of directional force over time; one count = 0.01664 g/sec/count where g is the 

gravitational constant 
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 Although it has not been used in this application before, I felt the multinomial 

logit (MNL) model was well-suited to the application of mode imputation. First, its 

statistical properties are well established (Ben-Akiva & Lerman, 1985; Train, 2009). 

Second, it requires only that the model structure be specified. Threshold and fuzzy logic 

models, by contrast, also require the researcher to specify value ranges and relative 

weights for each variable, adding to the potential for bias and limiting transferability. 

Third, an MNL model’s mode predictions have an easily interpreted measurement unit: 

the probability that a predicted mode is the true one. The predicted probabilities could be 

useful for reporting standard cutoffs for observations (e.g. “cases for which the mode 

probability was >=60% were retained”, etc.) or for incorporating as observation weights 

in more sophisticated models. Finally, MNL models have a long tradition in travel 

demand modeling, and estimation software and expertise already exists widely within the 

field. 

 In this context the MNL model maximizes the likelihood that the reported modes 

would have been predicted by the model. The modeled probability that a trip segment s 

was by mode m is given by: 

 

 
-Pr(𝑚)𝑠 =

exp(𝑉𝑚,𝑠)

∑ exp(𝑉𝑚,𝑠)𝑀
𝑚

 (9) 

  

where the observed utility Vm,s of each mode is a linear-in-parameters function of trip 

segment attributes (Ben-Akiva & Lerman, 1985). Since the sampling strategy was 

exogenous (i.e. without knowledge of the actual travel modes), no adjustment was 

necessary in MNL model estimation (Ben-Akiva & Lerman, 1985). 

Model Development and Findings 

Three MNL models were developed, representing incremental increases in data 

collection and processing cost. One of the objectives was to determine the marginal 

benefit of additional data and processing for mode imputation. Model 1 uses only GPS 

data. A model form like this could be used with minimal post-processing and does not 

require any GIS, survey, or accelerometer data. Model 2 adds a transit network 

correspondence variable that requires matching GPS data to a transit network. Model 3 

adds accelerometer data, requiring an additional device and processing software. I also 

tested for effects by age but found no significant differences. 

Recognizing that the GPS, accelerometer, map matching, and recalled mode were 

each subject to error, I attempted to identify questionable observations. Standard practice 

was followed to examine outliers based on low predicted probabilities in initial model 

runs (Ben-Akiva & Lerman, 1985). I inspected each observation with a predicted 

probability below 0.05 and made a judgment call based on the data. Seventeen 

observations were removed as outliers that likely resulted from data errors (e.g. recalled 

walk but average speed was 20 mi/h [32km/h], recalled transit but trip did not follow 
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transit network, or recalled drive but trip was partly on a separated bike path). Models 

were then re-estimated with the spurious observations removed.  

For each model, utility functions were estimated relative to walk as the base 

mode. Variables are defined in Table 1. Model results are shown in Table 2, prediction 

success is presented in Table 3, and predicted probability distributions are displayed in 

Figure 2. 

Model 1 (GPS data only). Model 1 included only speed-related variables from 

GPS data. Median speed and 95th percentile speed were found to fit the reported data 

better than average and maximum speed. Acceleration and the coefficient of variation in 

speed also proved to be useful predictors for some modes. It should be noted that speeds 

below 1 mile per hour (1.6 km/h) were not recorded such that time spent stopped during 

an active trip stage is effectively ignored in our data.  

Overall model fit was encouraging, but there was considerable variability in mean 

probability of choice by mode, a measure of the odds of selecting the chosen mode 

averaged over all cases. Auto (93.5%) and walk (84%) trip stages were predicted well. 

Bicycle trips had an expected prediction success rate of just 68.5%, with 

misclassifications split between walk and auto. On the high end, bike speeds overlap with 

auto speeds in urban conditions, and, on the low end, very slow biking—as one might do 

with a young child—overlaps with walking speed. Transit trips could not be 

distinguished from auto trips using only speed data. The sample of transit trips was small 

(n=22), and I was unable to consider bus and rail separately in this initial effort. 

Model 2 (GPS + GIS transit network). Model 2 added a measure of 

correspondence with the transit network. GPS points were matched to single transit lines, 

and the minimum average distance to the line was included as a transit predictor. Overall 

model fit improved significantly, and transit prediction average probability improved 

sharply (4.5% to 54.5%). If it were sufficient to distinguish among walk, bike, and 

motorized modes, GPS data alone might be adequate, but if transit and auto travel needed 

to be treated separately joining data to a GIS transit network appears to be essential. 

Model 3 (GPS + GIS transit network + accelerometer data). Model 3 

incorporated data from accelerometers worn on the hip. Two of the three axes were found 

to be useful for mode detection. Vertical accelerometer counts are commonly associated 
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Table 23 MNL Model Results 

Base = Walk 

Model 1 

GPS only 

Model 2 

+GIS transit network 

Model 3 

+Accelerometer 

 coeff. t-stat coeff. t-stat coeff. t-stat 

Bicycle       

constant -6.1 -9.9 -5.9 -10.0 -6.4 -6.3 

median speed 4.2 8.6 4.1 8.7 3.7 7.2 

median speed^2 -0.3 -5.6 -0.3 -6.2 -0.2 -5.3 

95th speed -0.5 -3.1 -0.4 -3.2 -0.5 -2.7 

vertical intensity     -2.3 -3.1 

vector magnitude      3.6 4.6 

vector magnitude^2     -0.5 -3.0 

Auto       

constant -4.9 -9.2 -4.3 -10.0 -2.3 -4.2 

median speed 1.3 4.5 0.9 4.9 0.7 4.3 

95th acceleration 3.6 4.3 3.8 5.5 2.6 3.6 

vertical intensity     -0.9 -3.5 

Transit**       

constant -7.0 -4.7 -3.1 -2.5 -1.5 -1.2* 

median speed 1.4 4.6     

95th acceleration 2.4 2.1     

95th speed   1.0 5.9 0.8 4.9 

Coefficient of variation 

in speed 3.5 1.8*     

Mean distance to transit 

route match    -0.2 -4.2 -0.2 -3.9 

vertical intensity     -0.9 -3.5 

LogL (constants) -741  -741  -741  

LogL (model) -207  -187  -158  

McFadden R^2 0.72  0.75  0.79  

N 926  926  926  

* All coefficient estimates significant at p<0.05 unless noted with asterisk. 

** Transit considered only when trip start and end within 1km (0.6mi) of a single transit line. 
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Table 24 MNL Model Mean Probability of Recalled Travel Mode 

 

with ambulatory activity; thus, the negative values for bike and auto relative to walk are 

to be expected. No relationship was found for transit, perhaps because transit passengers 

may be either seated or standing. Accelerometer values perpendicular to travel direction 

enter the bike model as an initially positive factor that gradually diminishes, becoming 

negative at high levels. I investigated this effect, and found that, particularly riding at low 

speeds, the accelerometers tend to record very low vertical values but increasing 

perpendicular values. Presumably this is due to balance “wobble” at low speeds. In any 

case, while the accelerometer data showed only modest effects on overall model fit, 

prediction of bike travel improved considerably (68.5 to 74.2%). Accelerometers show 

promise for distinguishing urban bike trips in conjunction with GPS data. 

Age differences. I hypothesized that children’s travel behavior might differ from 

adults. Specifically, I thought that children might bicycle at lower speeds and might move 

around more energetically while using any modes, perhaps manifesting as higher 

accelerometer readings. The sample was partitioned into three age groups: 5-10, 11-16, 

and adult. Model specifications were tested with interaction terms between bike speed 

and age and between accelerometer counts and age. Surprisingly, segmenting by age had 

a negligible impact on parameter estimates, suggesting that child and adult speed and 

activity patterns were practically indistinguishable in our sample.   

External Validation 

After collecting an additional 534 trips via the web survey, I applied Model 3 as 

an out of sample prediction test. The highest probability choice was selected 

deterministically, as would be done for the data used in the main study. Results are 

shown in Table 25 Out of Sample Validation (Model 3). Mode identification success 

rates ranged from 79% (bike) to 97% for driving, with an overall success rate of 94%. 

Errors for bike identification were all Type II (false negative), while errors for walk 

identification were mostly Type I (false positive). Manual inspection of errors suggested 

that many of the bicycle trips incorrectly identified as walking were cases of walking a 

bike or else riding very slowly, perhaps with children or on a sidewalk.  

 

 

(percent) 

Model 1 

GPS only 

Model 2 

+Transit network 

Model 3 

+Accelerometer n 

Walk 84.0 84.0 86.0 150 

Bicycle 68.5 68.5 74.2 89 

Auto 93.5 94.9 95.3 665 

Transit 4.5 54.5 54.5 22 

All modes 87.5 89.6 90.8 926 
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Table 25 Out of Sample Validation (Model 3) 

 

Conclusion and Future Directions 

In order for GPS data to useful for travel demand modeling without supplemental travel 

diaries, we must be able to consistently identify characteristics of the recorded travel such 

as mode, destination, and purpose. In order to identify travel mode for the mode choice 

framework used in this research, I developed multinomial logit (MNL) models for 

imputing travel mode from GPS, GIS, and accelerometer data. Three models were 

developed, each reflecting an incremental increase in data and processing cost. Using 

only GPS data, motorized and non-motorized travel could be distinguished with fairly 

high accuracy, walk from bicycle with reasonable accuracy, and transit from auto travel 

not at all. With the addition of transit network data, transit mode could be predicted in 

more than half of cases. Adding accelerometer data to proxy for activity intensity 

improved overall prediction modestly but considerably enhanced identification of bike 

trips. Segmenting by age did not significantly affect the results. 

This exercise marks the first use of logit modeling for travel mode imputation. It 

is argued that logit models have a number of potential advantages over competing 

methods such as threshold cutoffs, fuzzy logic, and neural and Bayesian networks. In 

particular, prediction values have an easy to understand scale and meaning—

probability—which lends itself more easily to setting reporting standards. In addition, the 

predicted probabilities may be useful as observation weights when estimating models 

with imputed data, such that more certain observations carry greater estimation weight. 

This will be an interesting direction for future research. 

Though our unique sample and local conditions may limit the direct 

transferability of the MNL models developed, they are ready to be replicated with any 

combination of GPS and accelerometer data in other locations. The extended data set 

allowed testing of the model’s out of sample prediction performance, and results were 

encouraging.  

 Walk Bike Auto Transit Total Detection 

Walk 82 0 3 1 86 95 % 

Bike 11 66 7 0 84 79 % 

Auto 9 0 337 0 346 97 % 

Transit 0 0 2 16 18 89 % 

Total 102 66 349 17 534  

Precision  80 % 100 % 97 % 94 %  94 % 
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Appendix B  Bicyclist Route Choice Re-estimation Results 

Results from Broach et al.’s (2012) bicyclist route choice model were compared 

with the Family Activity Study (FAS) data used in this research. The aim was to decide 

whether the existing model could be used to represent likely routes for the current sample 

and updated network. Primary concerns were that the original sample collected in 2007 as 

part of the Bike GPS Study was made up mainly of avid, year round cyclists, most of 

whom signed up for the study specifically because they were frequent riders. The FAS 

sample, on the other hand, was made up of families with children, and while all had a 

bicycle to use, self-reported cycling frequencies were much lower, and they did not need 

to be a current rider or even interested in cycling to participate. 

Model Estimation and Comparison 

Following the earlier study, I used the same calibrated labeling method to 

generate alternatives (Broach et al., 2011). After choice sets were established, I used the 

same Path-size Logit form to estimate a route choice model. Starting from the earlier 

specification, I proceeded to test variations, using the usual method of t-tests of parameter 

significance and Likelihood Ratio Tests to accept or reject more parsimonious model 

versions. 

 The final model is shown in Table 26, side-by-side with the original model. In 

general, the similarity of results is striking, though there are a few differences. Most 

notably, there was no clear commute preference segment as there had been in the earlier 

model. This was somewhat expected, since commute trips (defined as direct trips 

between home and work or vice versa, were considerably rarer in the FAS cycling data 

(4% of trips vs. nearly 30% in the original dataset). Other differences included stop signs 

(negative in original, positive in FAS), sensitivity to lower traffic volumes, and a weak 

but significant residual value of striped, on-street bike lanes, after subtracting the traffic 

effect. There was also a relative lack of bridge crossing data, and since no cyclist used a 

bridge with bike lane, that parameter could not be estimated. Alleyways had been added 

to the travel network since the original work, and a parameter had to be added to account 

for the strong aversion cyclists have toward using them. A similar result was found in the 

Pedestrian route choice model developed in Chapter 4. Alleyways do not seem to be 

useful to people walking and biking in Portland.   
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Table 26 Route Choice Model Estimation Comparison 

 (Broach et al., 2012) FAS 

Variable coeff. t-stat coeff. t-stat 

Ln(distance) -5.22 -10.9 -5.68 -14.6 

Ln(distance) * commute -3.76 -5.14   

Turns (/mi) -0.37 -15.4 -0.35 -18.2 

Prop. upslope 2-4 % -2.85 -4.57 -2.46 -3.52 

Prop. upslope 4-6 % -7.11 -6.11 -8.43 -5.61 

Prop. upslope >= 6 % -13.0 -8.57 -9.71 -3.96 

Traffic signal exc. right turns (/mi) -0.19 -5.73 -0.15 -3.06 

Stop sign (/mi) -0.05 -2.10 0.05 1.88‡ 

Left turn, unsig., AADT 10-20k (/mi) -0.78 -4.19   

Left turn, unsig., AADT 20k+ (/mi) -1.87 -4.70 -0.94 -3.63 

Unsig. cross AADT >= 10k right turn (/mi) -0.34 -2.32 -0.77 -6.03 

Unsig. cross AADT 5-10k exc. right turn (/mi) -0.36 -5.39 -0.30 -4.08 

Unsig. cross AADT 10-20k exc. right turn (/mi)  -0.52 -5.39 -0.91 -8.92 

Unsig. cross AADT 20k+ exc. right turn (/mi) -2.51 -11.5 -1.39 -8.07 

BETA_prop_bike_lane, AADT 5k+   1.24 3.83 

Prop. bike boulevard 1.03 5.17 1.27 5.30 

Prop. bike path 1.57 4.64 1.89 2.90 

Prop. AADT 5k+   -1.03 -3.53 

Prop. AADT 10-20k w/o bike lane -1.05 -3.02 -2.19 -4.30 

Prop. AADT 10-20k w/o bike lane * commute -1.77 -2.28   

Prop. AADT 20-30k w/o bike lane -4.51 -6.04 -4.10 -6.05 

Prop. AADT 20-30k w/o bike lane * commute -3.37 -2.24   

Prop. AADT 30k+ w/o bike lane -10.3 -4.67   

Prop. AADT 30k+ w/o bike lane * commute -8.59 -1.96   

Bridge w/ bike lane 1.81 -4.71   

Bridge w/ sep. bike facility 3.11 -4.96 0.84 3.21 

BETA_prop_alley   -21.0 -11.4 

Ln(path size) 1.81 20.8 1.12 17.6 

Number of observations  1,449  1388 

Null log-likelihood  -4058.7  -3548.9 

Final log-likelihood  -3020.0  -2670.3 
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Table 26 (continued)     

Rho-square  0.256  0.248 

1 Parameter estimates significant at the α=0.05 level unless noted otherwise 

‡ Significant at the α=0.10 level 

† Not significant at the α=0.10 level 

 

Another way to compare is via relative effect sizes of the two parameter sets. 

Table 27 allows for comparison. Given that the sampling strategies were different, the 

travel network is constantly being updated, both digitally and in reality, and that the data 

were collected 3-6 years apart, I found the consistency of most parameters to be a 

pleasant surprise. Based on this work, I chose to adopt the original model to generate 

routes for the FAS sample used in this research. 

 

Table 27 Relative attribute values (unit change) 

 

 Distance value (equiv. % dist) 

 (Broach et al., 2012) FAS 

Attribute 

Non-

commute Commute All trips 

Turns (/mi) 7.4 4.2 6.4 

Prop. upslope 2-4 % 72.3 37.1 54.2 

Prop. upslope 4-6 % 290.4 120.3 341.1 

Prop. upslope >= 6 % 1106.6 323.9 452.6 

    

Traffic signal exc. right turns (/mi) 3.6 2.1 2.7 

Stop sign (/mi) 0.9 0.5 -0.01 

Left turn, unsig., AADT 10-20k (/mi) 16.2 9.1 0 

Left turn, unsig., AADT 20k+ (/mi) 43.1 23.1 18.0 

    

Unsig. cross AADT >= 10k right turn (/mi) 6.7 3.8 0 

Unsig. cross AADT 5-10k exc. right turn (/mi) 7.2 4.1 0 

Unsig. cross AADT 10-20k exc. right turn (/mi)  10.4 5.9 17.3 

Unsig. cross AADT 20k+ exc. right turn (/mi) 61.7 32.2 27.7 

Prop. bike lane, AADT 5k+    -3.6 

Prop. bike boulevard -17.9 -10.8 -20.0 

Prop. bike path -26.0 -16.0 -28.3 

Prop. AADT 5k+   19.9 
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Table 27 (continued) 

 

  

 Distance value (equiv. % dist) 

 (Broach et al., 2012) FAS 

Attribute 

Non-

commute Commute All trips 

Bridge w/ bike lane -29.3 -18.2 0 

Bridge w/ sep. bike facility -44.9 -29.2 -13.7 
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