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A two-hydrophone range and bearing localization algorithm
with performance analysis
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John S. Allen III
Department of Mechanical Engineering, University of Hawai’i-Manoa, 2540 Dole Street, Holmes Hall 302,
Honolulu, Hawaii 96822

(Received 18 April 2014; revised 7 October 2014; accepted 5 January 2015)

An automated, passive algorithm for detecting and localizing small boats using two hydrophones

mounted on the seabed is outlined. This extends previous work by Gebbie et al. [(2013). J. Acoust.

Soc. Am. 134, EL77�EL83] in which a similar two-hydrophone approach is used to produce an

ambiguity surface of likely target locations leveraging multipath analysis and knowledge of the

local bathymetry. The work presented here improves upon the prior approach using particle filtering

to automate detection and localization processing. A detailed analysis has also been conducted to

determine the conditions and limits under which the improved approach can be expected to yield

accurate range and unambiguous bearing information. Experimental results in 12 m of water allow

for a comparison of different separation distances between hydrophones, and the Bayesian

Cram�er-Rao lower bound is used to extrapolate the performance expected in 120 m water. This

work demonstrates the conditions under which a low cost, passive, sparse array of hydrophones can

provide a meaningful small boat detection and localization capability.
VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4906835]

[SED] Pages: 1586–1597

I. INTRODUCTION

Passive acoustic methods have been shown to be a via-

ble approach for small boat localization (Bruno et al., 2010).

These methods have some advantages over shore-based

RADAR, infrared, and optical systems in that they are more

robust to inclement weather and have the ability to be

deployed in remote locations. They also have less impact on

marine life than active sonar methods, and are also less

susceptible to the effects of clutter. It was recently shown in

Gebbie et al. (2013) that two bottom-mounted hydrophones

constitute a simple yet favorable geometry for small boat

localization, in that bathymetric variations can be leveraged

to improve range localization and break the left�right ambi-

guity. This article describes an improved ambiguity surface

function, and also provides a performance analysis to deter-

mine the conditions and limits under which these capabilities

can be realized. Additional experimental data is used to

assess the effect of hydrophone separation distance, and to

validate the performance analysis. The manual processing of

correlogram striations employed in the prior approach is

replaced with an automated particle filter design, without

any loss of overall algorithm generality.

The small boat localization technique described in this

article is based on measuring and processing multipath time

delays. This approach has been the subject of recent work in

the field of marine mammal bioacoustics. It has been shown

that certain species of whales, which use broadband clicks

for echolocation, can be localized by measuring the time

delay between the direct and bottom or surface-reflected

multipaths to estimate range and depth (Aubauer et al.,
2000; Nosal and Frazer, 2006). Multipath arrivals are the

sequence of echoes of a target’s radiated sound, a result of

waves reflecting from the surface and seabed in different

sequences before reaching the receiver. Since whale

clicks are typically noisy pulses of a short duration

(Weirathmueller et al., 2013), the delay between the direct

and multipath arrivals can be discerned directly from the

received time series (Thode, 2004). Tiemann et al. (2006)

showed that by using bathymetry to pre-compute expected

arrival times, full three dimensional (3D) localization could

be performed from a single hydrophone. Each arrival corre-

sponds to an eigenray, which is a unique acoustic path

between a source and a receiver. For natural variations in

bathymetry, if the animal is at a certain range and depth

along one bearing, then the relative travel times of the eigen-

rays differ from those that would be observed if the animal

were at the same range and depth along another bearing.

Unlike whale clicks, boat noise is distributed continu-

ously in time, so the same measurement methodology does

not directly apply. With boat noise, multipath arrivals over-

lap in time obscuring individual arrivals and their relative

arrival times. The generalized correlation algorithm (Carter

and Knapp, 1976) is a method of gathering the energy in

broadband noise and compressing it into a single broadband

pulse. The difficulty that arises with using noise correlation

is that it produces peaks for all combinations of multipath

a)Author to whom correspondence should be addressed. Electronic mail:

siderius@pdx.edu
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arrivals. The problem becomes more tractable if the relative

delays between the multipath arrivals are large, which can

be realized by placing the hydrophones directly on the

seabed.

The method outlined in Gebbie et al. (2013) was a proof

of concept that employed a manual analysis of the correlo-

gram. With a particle filter (Ristic et al., 2004) that automati-

cally processes the correlogram, systematic improvements

are sought that allow for greater automation. The experimen-

tal data allowed for different hydrophone separations, and

this is used to validate the performance characterization of

the left�right disambiguation capability.

The rest of this article is organized in the following

manner. The physics of multipath in shallow water, as it per-

tains to this work, is described in Sec. II. The processing

algorithm is presented in Sec. III along with an explanation

of how the left�right disambiguation capability operates.

Experimental results from roughly 12 m of water are then

reported in Sec. IV. Last, a discussion of the possible per-

formance bounds that might be expected in deeper water is

given in Sec. V, and this is computed for different hydro-

phone separation distances giving theoretical insight into

how that parameter affects performance.

II. MULTIPATH STRUCTURE IN SHALLOW WATER

This section outlines how boat noise propagation

through a shallow water waveguide produces the passive

acoustic observations that serve as the input to the localiza-

tion algorithm described later. The geometry of this problem

is illustrated in Figs. 1(a) and 1(b). It shows two bottom-

mounted hydrophones and a source (target) on the surface.

The top two diagrammatic plots in Fig. 2 show the received

time series, r1(t) and r2(t). The bottom plot shows their

cross-correlation, C1,2(s). The source waveform is repre-

sented as a single pulse for illustration purposes, however a

boat’s signature is continuous broadband noise. Thus r1(t)
and r2(t) signals would appear as noise, obscuring the clean

separation between multipath arrivals. However, this does

not affect C1,2(s) because the noise is compressed into a

short-duration pulse through the cross-correlation operation.

Environmental factors such as bottom loss and rough-surface

scattering serve to decorrelate high-order eigenrays, whereas

low-order eigenrays often retain enough coherence to appear

as stable features in C1,2(s); therefore, only the first-order

multipath arrival is used.

Since receiver 1 is farther from the source than receiver

2, both peaks in r1(t) are shifted later in time to account for

the additional travel time. The term, s0 denotes the time

delay between direct arrivals, and s6 are the delays between

the direct arrival at one receiver with the multipath arrival at

the other receiver. In C1,2(s), the strongest peak is in the cen-

ter, with an absolute offset at s0, and is used to constrain the

ambiguity surface to a hyperbola on the surface. A correla-

tion peak between just the multipath arrivals is not shown in

C1,2(s) because it shows up on the time axis close to s0, and

is often hidden by the direct correlation. This makes meas-

uring that time delay difficult, but information contained in

the multipath-only correlation is included in the Bayesian

Cram�er-Rao lower bound (CRLB) calculation, described

later in Sec. V. As the target initially moves into the far field

of the hydrophone pair, s– and sþ start to converge but are

sufficiently large that the flanking peaks are distinct from the

center peak. This separation eventually vanishes in the dis-

tant far field. Bathymetric variations affect only sþ and s–

because the lengths of reflected eigenrays depend on the

depth at the location of the bottom reflection.

Let tn,d and tn,m be the travel times along each eigenray

to the nth receiver for direct and multipath rays, respectively.

The absolute time delays are defined as

FIG. 1. (Color online) (a) A top-down view of the geometry. (b) A side

view of the geometry.

FIG. 2. (Color online) Diagrammatic plots of the relative multipath arrival

times in Fig. 1. The top two plots are the time series at each receiver, and

the bottom is their cross-correlation. For a source of continuous boat noise

(instead of the pulse) the rn(t) would appear as noise, but the C(s) would still

exhibit the same peaks due to correlations between arrivals.
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s0 ¼ t1;d � t2;d; (1)

sþ ¼ t1;m � t2;d; (2)

s� ¼ t1;d � t2;m: (3)

Assuming a constant sound speed c, the ray travel times to

the nth receiver can be written in terms of the target range

Rn, receiver depth Dn, and seabed reflection depth Bn as

tn;d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

n þ D2
n

c

r
; (4)

tn;m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

n þ Dn þ 2Bnð Þ2

c

s
: (5)

The ranges to each hydrophone Rn can be written in terms of

the range R to the midpoint between the receivers, the spac-

ing between the hydrophones L, and the target bearing h
using the law of cosines

R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ðL=2Þ2 þ RL sin h

q
; (6)

R2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ðL=2Þ2 � RL sin h

q
: (7)

These equations describe the relationship between the meas-

ured time delays and the range and bearing of the target,

which are used in the CRLB simulation presented in Sec. V.

A. Cross-correlation and cross-spectrum

The time delays between arrivals contain the informa-

tion needed for target localization, but these quantities are

only observable in the second order statistics of the received

signals. While time delay information is contained in both

the auto- and cross-spectra, only the cross-spectra is used as

an observation since it contains the time delay of the direct

arrivals, which is strongly informative of bearing. However,

both auto- and cross- spectra are used in Sec. V to compute

the Bayesian CRLB.

Only the first two arrivals at each receiver are needed

to estimate the range and bearing. Although later arrivals

also contain this information, they are limited by lower

levels and increased decorrelation due to additional rough

surface reflections and greater path lengths. As such, the

received time series at each receiver is modeled with the

first two arrivals and additive uncorrelated Gaussian noise,

n(t). Multipaths beyond the first two arrivals are treated

as uncorrelated noise at each receiver that contributes to

n(t). The source waveform is modeled as Gaussian noise

represented by s(t). The received waveforms are thus

defined as

r1ðtÞ ¼ sðt� t1;dÞ þ bsðt� t1;mÞ þ n1ðtÞ; (8)

r2ðtÞ ¼ sðt� t2;dÞ þ bsðt� t2;mÞ þ n2ðtÞ; (9)

in which b represents the additional amount of propagation

loss relative to the first arrival, is real-valued in the range

(�1,1), and does not vary with time. The same b is used in

both Eqs. (8) and (9) based on the assumptions that the

hydrophone spacing is small relative to the target range

implying that the ray grazing angles on the seabed are simi-

lar, and that the composition of the seabed is locally homo-

geneous in the vicinity of the two reflection points. Phase

changes due to boundary reflections are not modeled as this

information is later discarded using the envelope operation.

The Fourier transform at each receiver is

Y1ðxÞ ¼ SðxÞe�iwt1;d þ bSðxÞe�ixt1;m þ N1ðxÞ; (10)

Y2ðxÞ ¼ SðxÞe�ixt2;d þ bSðxÞe�ixt2;m þ N2ðxÞ: (11)

Henceforth, we drop the explicit dependence on x.
Cross-correlation consists of holding one signal constant

while sliding the other signal on the time axis, multiplying,

and integrating. The fixed signal is referred to here as the

“correlated” signal, and the sliding signal as the “reference”

signal. Let r1 be the correlated signal and r2 be the reference

signal. The cross-spectrum is computed by multiplying the

correlated spectrum by the complex conjugate of the refer-

ence spectrum,

C1;2 ¼E½Y1Y�2 �
¼ jSj2e�ixðt1;d�t2;dÞ þ jSj2b2e�ixðt1;m�t2;mÞ

þjSj2be�ixðt1;m�t2;dÞ þ jSj2be�ixðt1;d�t2;mÞ; (12)

in which E[] is the expected value operator, and * denotes

complex conjugation. The second term is the correlation of

multipath arrivals on each receiver, which is effectively

obscured by the correlation of direct arrivals (first term).

This is due to the same time delay for the second term

having a lower amplitude due to b2.

For a finite bandwidth signal with a flat spectrum, each

exponential term will appear in the time domain as a sinc

function. For a baseband signal of bandwidth b, the sinc

function is defined as sin(2pbt)/(2pbt). If b were complex

and had a constant phase with respect to frequency, as might

be the case with sub-critical bottom reflections from a

single-layer seabed, this would cause skewing of the sinc

function such that the maximal value would not align exactly

with the time delay. The envelope operation is thus applied

to produce positive valued peaks having a maximal value at

the time delay, which simplifies time delay estimation. The

envelope of an arbitrary signal x(t) is computed by

jxðtÞ þ H½xðtÞ�j, in which H is the Hilbert transform. This is

equivalent to computing the inverse Fourier transform of

only the positive frequencies, followed by taking an absolute

value and multiplying by a factor of 2.

The b2 term in Eq. (12) is often hidden by the first term

(correlation of direct arrivals) such that the envelope of the

cross correlation time series consists of three pulses. A use-

ful way to approximate these pulses is with a Gaussian func-

tion, for which the width and offset are easily modulated,

and is defined as

gðx; a; rÞ¢e�ð1=2Þðx�a=rÞ2 : (13)
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The cross correlation time series is then approximated as

C1;2ðsÞ � gðs; s0; rÞ þ bgðs; s�; rÞ þ bgðs; sþ; rÞ (14)

in which the time axis is x¼ s, and the pulse offsets occur at

a � {s0, s–, sþ}. The width of each pulse depends on the

signal bandwidth b, and since the variable r specifies the

half-width of the Gaussian, it is defined as

r¢
1

2b
: (15)

Equation (14) is an important relationship in that the time

offset of the three peaks contain information about the target

range and bearing.

The auto-spectrum for each receiver is defined as

C1;1 ¼E½Y1Y�1 � ¼ jSj
2f1þ jbj2

þ2jbj cos½xðt1;m � t1;dÞ � hb�g þ jN1j2 (16)

with a similar definition for C2,2. This is required later in the

calculation of the range CRLB in Sec. V. Note that unlike

the cross spectrum, the auto spectrum includes the noise

term. Section III describes the methodology for processing

the acoustic data into a localization.

III. LOCALIZATION ALGORITHM

The localization algorithm consists of the following

parts: the extraction of multipath time delays, the ray model,

and the ambiguity function. The first step processes the

acoustic data, the second step runs the model at discretized

points on the surface, and the third step combines them into

an ambiguity surface that yields the localization.

A. Acoustic processing

The measured cross-correlation function, C(s), is

obtained from raw data by the following procedure. A snap-

shot of data is obtained from the channels; the time span of

this data constitutes the total averaging time and should be

short enough so that the effects of target motion are negligi-

ble. Overlapping segments are formed within the snapshot

using the weighted overlapping segment averaging method

(Carter et al., 1980). Segments are windowed using a Hann

function, then zero-padded to twice the original length to

avoid wrapping effects of the discrete Fourier transform

(DFT). Time windowing provides better spectral estimates at

the expense of a small amount of frequency resolution. The

cross-spectrum is computed for each segment by multiplying

the spectra of one channel with the complex-conjugate of

the other, followed by a bandpass filter. The average for the

snapshot is computed across all segments. The resulting

cross-spectrum is pre-whitened. Pre-whitening preserves

phase information while enforcing a flat power spectrum and

is defined as X(x)/jX(x)j for an input spectrum X(x), and is

based on the phase transform (PHAT) algorithm (Knapp and

Carter, 1976). This prevents loud tonal components that may

stand out in the target’s acoustic signature from corrupting

C(s). Last, this is brought back into the time domain with the

inverse DFT while simultaneously taking the envelope.

A correlogram is then formed by stacking C(s) from

each snapshot vertically such that s is on the horizontal axis

and the absolute time of each snapshot is on the vertical axis.

Viewed in this manner, striation lines appear that correspond

to the correlations of individual arrivals as they evolve over

time. The center striation, which has an offset of s0 at a

given snapshot, is often the strongest as it corresponds to

correlations of the direct arrivals on each hydrophone. The

nearest flanking striations are the multipath arrival at one

hydrophone correlating with the direct arrival at the other

hydrophone, and have offsets s6 for a given snapshot.

A sequential importance resampling (SIR) particle filter

(Ristic et al., 2004) is then used to extract the striation

offsets from the correlogram. The output of the tracker are

the measured values s0, s–, and sþ at each snapshot. The

details of the tracker construction are given in the Appendix.

B. Ray model processing

In the second stage of processing, predictions of eigen-

ray propagation-time differences, �s0ðxÞ, �s�ðxÞ, and �sþðxÞ,
are computed for each possible (Easting, Westing) target

position, x. A ray tracer, such as described in Jensen et al.
(2011), can be used to compute the travel time of the direct

and bottom-surface eigenrays between each receiver and

each point x on the surface. An eigenray between a point on

the surface and a receiver on the seabed in a region of vary-

ing bathymetry could involve a path that is not confined to a

vertical plane due to three dimensional seabed variations.

While this could be done in three dimensions, a simpler N-

by-2D approach is used here. A N-by-2D ray model invokes

a 2D ray tracer separately along N radial lines for each

receiver, and the bathymetry is interpolated along each radial

line. This flattens the problem to two dimensions, range and

depth, and a single ray fan starting at the receiver can be

used to determine the eigenrays for all points along the radial

which greatly reduces computational complexity. The �s0ðxÞ,
�s�ðxÞ, and �sþðxÞ at each radial point can then be gridded

using a technique such as Delaunay triangulation (de Berg,

2008). A constant water sound speed profile (SSP) is adopted

in this analysis, but the technique can be readily applied to

environments having a varying SSP. The choice of constant

SSP is based on the experiment described in Sec. IV, which

was close to isovelocity.

C. Ambiguity surface for target location

In the last stage of processing, the measured time delays

are matched against modeled time delays computed at regular

points on the surface. An ideal ambiguity function would be

a delta function at the true target location, but in practice the

aim is to maximize the value at the true target location rela-

tive to all other locations. At the true target location, the error

between the predicted time delays and the measured time

delays will be minimized, provided the model is sufficiently

accurate. It is important to point out that all three delay errors

that are minimized together at this point: js0 � �s0ðxÞj,
jsþ � �sþðxÞj, and js� � �s�ðxÞj. When js0 � �s0ðxÞj is at a
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minimum, this corresponds to a hyperbola on the x plane.

When the other two are also at a minimum, this corresponds

to a range at some distance down one leg of the hyperbola.

However, since the hyperbola has two legs, this also corre-

sponds to a “false” target position on the other leg. The false

target position may retain a greater amount of overall error

due to bathymetric variations.

Thus, in order to constrain the ambiguity function to

produce a large value at the true target position, it is con-

structed as the product of three Gaussians. Using Eq. (13),

UðxÞ¢ g½s0;�s0ðxÞ; r�
� g½sþ;�sþðxÞ; r� � g½s�;�s�ðxÞ; r�: (17)

The first term constrains the target location to the hyperbola

determined by the direct arrivals. The latter two terms are

maximized at the true target range, and possibly the false

target range. Values of U(x) are in the range (0, 1] and are

interpreted as yielding information about the relative

certainty of the target being at a particular location, x, on the

water surface.

D. Left2right disambiguation

An interesting feature of the ambiguity surface defined

in Eq. (17) is that in addition to estimating the target range

and bearing, it can also predict (with some uncertainty)

which “side” of the array the target is on. This predictive

capability is manifest as a taller peak in the ambiguity sur-

face on the “true” side of the array (the side of the array

where the target is actually located). This happens naturally

in some situations by virtue of the construction of Eq. (17),

and in those situations no further processing steps are

required.

Consider a single snapshot of acoustic data that is short

enough to reasonably ignore target motion. The bathymetry

is varied such that depths on one side of the array differ from

the corresponding “mirror” points on the other side of the

array. This difference affects propagation which causes the

multipath travel times to differ. Equation (17) will reveal an

ambiguity surface with two peaks, one on “true” side and

one on the “false” side. The height of these peaks depends

on error between modeled and measured time delays for

each set of arrivals on each side. These errors are random

variables based on the inherent uncertainty in measuring

time delays with the generalized cross correlator (Carter and

Knapp, 1976). Errors due to environmental uncertainty are

ignored in this section, and the environment is assumed to be

perfectly characterized.

On the true side, there exists a possible target position

on the surface for which these random variables will be nor-

mally distributed with zero mean, i.e., the true target posi-

tion. However, such a position does not necessarily exist on

the false side, implying that some of the means will deviate

from zero. The first term of Eq. (17) constrains the ambiguity

surface to a hyperbola based on the delay between direct

arrivals. This is oriented with a leg extending onto each side

of the array. Conceptually, sliding along the hyperbola on

the true side, at some point the multipath delays will exactly

match the modeled predictions (no environmental uncer-

tainty) at the true target range. However, on the false side,

the multipath delays may become close, but do not perfectly

match the modeled predictions at the false target range. This

small amount of error, if it exists, is amplified by Eq. (17)

and is often sufficient to produce a taller peak on the true

side.

Let point xt be the location of the peak on the true side,

and xf be the tallest peak on the false side. Ultimately, the

question being asked is what is the probability that the peak

on the true side is taller than the peak on the false side? This

quantity is expressed as

Pt¢P½UðxtÞ > Uðxf Þ�: (18)

Let

aa
b¢½sa � �saðxbÞ�2;

a 2 f0;�;þg
b 2 ft; fg:

(19)

Combining the terms of Eq. (17), it can be shown that Eq.

(18) is equivalent to

Pt ¼ P½a0
t þ aþt þ a�t < a0

f þ aþf þ a�f �: (20)

On each side of this inequality note that the measured values

(sa) are normally distributed random variables. On the true

side, their means equal the corresponding predictions �sa, so

sa � �saðxtÞ are zero-mean normally distributed random

variables. However, on the false side, there may be some

error between the mean of sa and the prediction �sa, leading

to sa � �saðxf Þ being normally distributed random variables

but possibly having a non-zero mean.

Since each aa
t is the square of a normal random variable,

they are each v2
k distributed with k¼ 1 degrees of freedom.

Added together, the left side of the inequality (the three aa
t ’s)

form a v2
k random variable with k¼ 3 degrees of freedom.

On the right side, the aa
f random variables are the product of

normal random variables that have the same variance, but do

not necessarily have zero mean, so these have non-central

v2
k;j distributions (Zelen and Severo, 1972). Since

a0
t þ aþt þ a�t � v2

k and a0
f þ aþf þ a�f � v2

k;j; (21)

then

Pt ¼ P½v2
3 < v2

3;j�: (22)

The parameter j is the non-centrality parameter defined as

j ¼
X
8a

sa � �sa xfð Þ
rsa

� �2

; (23)

so the probability Pt depends entirely on j. The parameter

rsa
is the standard deviation of sa, and depends on the accu-

racy with which the time delay can be measured. This rela-

tionship between central and non-central v2 distributions is

shown in Fig. 3. Equation (22) can be rearranged as the dis-

tribution of the difference between two random variables,
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which can be computed by correlating their respective distri-

bution functions, or alternatively conjugate-multiplying their

characteristic functions. When j¼ 0, the non-central v2
k;j

converges to a central v2
k and the probability that one is less

than the other is 0.5, which would imply there is no time

delay error on the false side making it indistinguishable from

the true side. Note that Eq. (23) indicates that the accumula-

tion of normalized squared time delay errors on the false

side determine the array side prediction performance.

1. Simulation

Consider an environment with a planar but not flat ba-

thymetry. The plane has a constant slope such that one side

of the array is deeper than the other. The ability to break the

left�right ambiguity is based on one side having different

multipath characteristics than the other, so the gradient

vector cannot be perfectly parallel to array. Rather, it is the

component of the gradient that is perpendicular to the array

that is relevant. This is important because it says that to

determine which side of the array the target is located, sen-

sors deployed on a slope should be placed along bathymetric

contours as opposed to an uphill�downhill arrangement.

With an uphill�downhill arrangement, the bathymetry along

the true and false legs of the hyperbola are identical, which

eliminates differences in the multipath that are critical to this

capability. In this simulation, the gradient vector is perpen-

dicular to the array, and the sensors are on the bottom in

120 m of water. The simulation places the target on the

deeper side at 1 km range at a bearing of 45�. The sound

speed in the water is assumed to be constant with boundary

reflections that are lossless.

In this case the environment is completely known, so

the measured time delays are solely the result of correlating

Gaussian noise signals in the presence of additive Gaussian

noise. Hahn and Tretter (1973) derived the CRLB for the

variance of the time delay in this scenario. Knapp and Carter

(1976) further showed that this bound is reached with the

generalized cross correlation algorithm, which is the same

method used here. If the signal and noise have flat spectra in

the band [fmin, fmax] (using positive frequencies only), then

this bound is specified as

r2 ¼ 3fs 1þ 2 SNRð Þ½ �
4pN f 3

max � f 3
min

� �
SNRð Þ2

; (24)

where N is the number of samples, fs is the sample rate, and

SNR is the signal to noise ratio. The values used in the simula-

tion are fs¼ 102 400 Hz, N¼ 4096, fmin¼ 0 Hz, fmax¼ 3000 Hz,

and SNR¼ 10 dB.

The simulation is based on image theory. Since the

seabed is a plane, the target is reflected over it to its image

position. The receivers are then reflected over the surface to

their image positions. Multipath time delays between the

source and each receiver are computed using the distance

between the image source and the image receivers. The am-

biguity surface, Eq. (17), is computed on the shallow side to

determine the location of false target. The false target posi-

tion corresponds to a set of time delays that are close to, but

do not necessarily match those of the true target position.

These time delay errors exist for both direct-with-direct

and direct-with-multipath correlations. From these errors,

Eq. (23) is invoked along with Eq. (24) to determine j,
which maps directly to a probability value that specifies

whether the peak at the true target position will be taller.

The results of this simulation are shown in Fig. 4 for varia-

tions in the seabed slope and receiver separation.

As the seabed becomes more sloped, the left�right dis-

ambiguation capability increases. Conversely, a flat seabed

eliminates the unique propagation characteristics from each

side of the array, which removes the left�right disambigua-

tion capability. Consequently, the probability of choosing

FIG. 3. Probability that v2
k is less than a non-central v2

k;j as a function of j
for k¼ 3.

FIG. 4. (a) Probability of choosing the true side for different perpendicular

seabed slopes. (b) Same method for varying phone separation.
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the correct side reduces to 0.5. The same behavior is

observed for the separation distance between receivers. As

the receivers become closer together, even on a sloped

seabed, the multipath rays from the target to each receiver

become increasingly similar. Namely, the points on the

seabed from which reflections occur start to converge, and

the relative difference between pairs of rays on each side of

the array correspondingly decreases. This suppresses the

left�right disambiguation capability.

IV. SHALLOW WATER EXPERIMENT

Passive acoustic signals were collected in August 2011

by a moored horizontal line array (HLA) at the Kilo Nalu

Nearshore Reef Observatory (Gebbie et al., 2011). The ob-

servatory provided power and ethernet connectivity via an

undersea cable running approximately 0.4 km from shore to

a fixed underwater station deployed in roughly 12 m of

water. The station was located about 1 km southeast

of Honolulu Harbor, a commercial port. Only two elements

of the HLA, spaced 11 m apart, were used in this study. The

array was configured with a sample rate of 102.4 kHz, 24-bit

dynamic range, 300 Hz low-cut filter, and 110 dB anti-

aliasing filter set at 46.4 kHz. The hydrophones (HTI-92-

WB) had a sensitivity of �160 dB re 1 V/lPa.

A rigid-hulled small boat with a single outboard engine

was used as a target, and a handheld GPS device recorded its

location. Time stamps in the GPS data and recorded acoustic

data allowed for coarse-grained synchronization (on the

order of 1 s) between the two sets of data. The boat executed

several different maneuvers including driving in circles

around the array deployment site. Spectral analysis indicated

that the boat radiated noise in the 0�10 kHz band with the

bulk of the energy below 3 kHz.

Bathymetry information for the local area was obtained

from the SHOALS LIDAR bathymetry database at the

University of Hawai’i (University of Hawai’i at Manoa,

Costal Geology Group, 2012) which was ungridded data

having roughly 1 m resolution. Grab samples near the

deployment site indicated the seabed was composed of me-

dium/coarse sand. The bathymetry, hydrophone locations,

and track of the boat are shown in Fig. 5(a). The bathymetry

and hydrophone locations were used to compute the direct

and bottom-surface eigenrays for a grid of points on the

surface.

A. Results

A correlogram is shown in Fig. 5(b) in which multipath

effects are evident. The strong, center striation is the correla-

tion of direct arrivals. This is supported by the fact that as

the target circles around the array, this striation stays

between 611 m, which are the limits for the correlation lag

distance for the configured hydrophone spacing of 11 m. The

multipath-with-direct correlations are visible as “shadow”

striations that run adjacent to the main striation. All these

striation lines were automatically traced using a SIR particle

filter (see the Appendix) and are shown in Fig. 5(c). Shadow

striations from higher-order eigenrays are also faintly visible

throughout the entire run, but are not used in this processing.

A comparison of localization using only the direct arriv-

als [corresponding to using just the first term of Eq. (17)]

with all three arrivals [all terms of Eq. (17)] is shown in

Figs. 6(a) and 6(b). The effects of using a flat seabed versus

FIG. 5. (Color online) (a) Bathymetry

and GPS boat track. The solid line

shows the track of the small boat with

a counter-clockwise trajectory. The

“þ” annotations indicate array element

locations. (b) Correlogram showing 10

log10jC(s)j2 for consecutive snapshots,

plotted with 30 dB of dynamic range,

and with s converted to wave travel

distance. (c) Striation lines for s0 and

s6 output by the SIR particle filter.

FIG. 6. (Color online) Comparison of ambiguity surfaces, U(x), for a single snapshot showing the effect of utilizing multipath and bathymetry information.

Plots are normalized to unit volume to show the relative concentration of target location certainty. (a) A hyperbolic ambiguity is associated with only using the

first term of Eq. (17). (b) Inclusion of multipath [the latter two terms of Eq. (17)] and the assumption of a flat seabed cause the hyperbola to collapse to a single

range, but a left�right ambiguity remains. (c) Using actual bathymetry improves the range estimate of the peak near the true target and also allocates a greater

amount of target location certainty. Contour lines are shown at 2.5 m intervals. In (b) and (c), the hyperbola defined by s0 is shown.
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actual bathymetry are shown in Figs. 6(b) and 6(c), in which

the peak near true target location is amplified with respect to

the false target location. The full ambiguity function, U(x),

is shown for several snapshots throughout the boat track in

Fig. 7(a) for an 11 m spacing. The same processing was

applied to phones separated by 2 m for the same times, and

the results are shown in Fig. 7(b). These surfaces are the

summation of individual ambiguity functions over a

sequence of snapshots. Two things are evident with the

shorter separation: Each peak is less sharply defined in bear-

ing due to the smaller aperture, and the false peaks on the

near side are more prominent indicating a decrease in the

left�right disambiguation capability. Poorer bearing resolu-

tion for shorter array lengths is consistent with the theoreti-

cal behavior described in Sec. V. The image data in Figs. 6

and 7 were post-processed with a 2-D Hann filter to aid

visualization of narrow features. Range errors at the start of

the tracks in Figs. 7(a) and 7(b) correspond to the SIR parti-

cle filter locking onto the striation lines.

V. DISCUSSION

This section examines the theoretical limits on how

accurately the target range can be determined in water

depths that are on the order of hundreds of meters, typical of

many continental shelves. It also addresses the issue of range

estimation sensitivity to hydrophone separation distance.

Over the past several decades, many studies have investi-

gated the performance limits of algorithms for localizing

noise-producing targets. This has mainly been done by deriv-

ing and calculating the CRLB for the target location. The

CRLB represents the lowest achievable variance of an

unbiased estimator, and conceptually operates by computing

the amount of information passed from a set of hidden

parameters (i.e., the source location) to the set of observed

parameters (i.e., received waveforms). These bounds hold

under the assumption that only the hidden parameters are

random, and all other parameters are deterministic.

Friedlander (1988) used this to compute the range and depth

accuracy of a submerged source from two vertically aligned

receivers using the direct arrival and a single multipath

arrival.

Van Trees (1968) expanded on the CRLB to also handle

non-deterministic parameters, in a formulation often referred

to as the Bayesian CRLB. The term “Bayesian” is used to

indicate that prior information about these random parame-

ters is being used. This was the basis for the study by

Hamilton and Schultheiss (1993) which examined the

performance impact of having imperfect knowledge of the

bathymetry by treating the depth of reflections from

the seabed as normally distributed random variables. In the

analysis presented here, a two-hydrophone geometry is

adopted, similar to Friedlander (1988), but the Bayesian

CRLB approach of Hamilton and Schultheiss (1993) is

applied while treating several additional parameters as non-

deterministic. This more accurately represents the imperfect

knowledge typically available in a real deployment scenario.

The experiment described in Sec. IV was in 12 m of

water, however, it is of interest to evaluate whether sufficient

information exists for the effective use of this technique in

deeper water. This is addressed later in this section via a sim-

ulation. Further, the CRLB formulation provides a useful

means of evaluating performance sensitivity to individual

system parameters, and this is used to estimate performance

sensitivity to the effects of hydrophone separation distance,

again via simulation.

A. CRLB problem formulation

In a localization problem, the CRLB places a lower

bound on how accurately the location can be estimated based

on how much information about the location exists in the

observed data. As the amount of information about a hidden

location parameters increases, the variance with which they

can be estimated decreases, and vice-versa. In fact, the defi-

nition of the CRLB is that it is the inverse of the Fisher infor-

mation matrix. The i, j element of the Fisher information

matrix is defined as

JDi;j
¼ E

@ log p yjnið Þ
@ni

@ log p yjnj

� �
@nj

" #
; (25)

in which p(yjn) is the conditional probability density func-

tion of an observed quantity y given a hidden parameter n.

The basis for this analysis starts with an article by

Friedlander (1988), in which the target range and depth

CRLB were derived. In that scenario, Gaussian noise is emit-

ted by a submerged source and travels along two paths to a

pair of vertically arranged receivers. One path is direct and

the other reflected. Propagation delays are specified as a

FIG. 7. (Color online) Summation of a ambiguity surfaces, U(x), over a sequence of snapshots comparing two array lengths, (a) L¼ 11 m, (b) L¼ 2 m. The

boat is moving in a circle around the array, and the data shown here is when it is on the south side. The camera is pointed mainly southward. The longer array

length leads to better left�right disambiguation and better resolution in bearing. Within a few cycles, the particle filter locks onto the striation lines.
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function of source range and depth, and are considered the

hidden parameters. Instead of applying Eq. (25) directly,

Whittle’s theorem [Whittle (1953), Theorem 9] is invoked

to compute the Fisher information matrix by integrating a

kernel based on the cross spectral density matrix and its

derivatives over a band of frequencies. In that formulation,

the i,j element of the Fisher information matrix is

JDi;j
¼ N

2pfs

ðxmax

xmin

tr
@C

@ni

C�1 @C

@nj

C�1

" #
dx; (26)

in which tr is the trace operator, [xmin, xmax] is the signal

frequency band, ni and nj are parameters (e.g., range, bear-

ing), N is the number of samples, and fs is the sample rate.

The term C is the cross spectral density matrix for which

C1,1 and C2,2 are described by Eq. (16), and C1,2 is defined

by Eq. (12). Note that C2;1 ¼ C�1;2. All the parameters

(the n’s) are assumed to be hidden. Parameters that are deter-

ministic are simply used in the calculation of C and the

derivatives of C with respect to the hidden parameters. In

Friedlander (1988), the environment is deterministic, and the

only hidden parameters are the target range and depth.

The Fisher information divides parameters into two

categories: those for which no prior information is available

and those that are known exactly. Obviously, not all prob-

lems can be defined in this way. However, Van Trees (1968)

proposed a “Bayesian” version of the CRLB, often referred

to simply as the Bayesian CRLB, that allowed a hidden

parameter to have some (but not necessarily perfect) prior

information. Hamilton and Schultheiss (1993) used this for-

mulation to determine the CRLB for a target’s range, but

treated the depth of the multipath reflection from the seabed

as a hidden parameter having a finite prior variance.

The Bayesian “prior” information about the variances of

the parameters is specified in the matrix

JP ¼ diag½varðn1Þ�1; varðn2Þ�1;…; varðnNÞ�1�; (27)

in which diag puts elements on the main diagonal, and

var(n) is the variance of n. The total Fisher information

matrix is then

JT ¼ JD þ JP; (28)

and the lower bounds on the variances of the individual

parameters fall on the main diagonal of

Bayesian CRLB ¼ J�1
T : (29)

At the extremes, an infinite prior variance implies no prior

information about that parameter exists, which drives that

element of JP to zero thus increasing the CRLB. Conversely,

a small variance for the prior implies accurate knowledge of

a parameter, thus increasing the value in JP and decreasing

the CRLB. Intuitively, as more prior information about a

parameter is included (corresponding to a larger value some-

where on the diagonal of JP), that parameter, and potentially

other parameters as well, can be estimated with a smaller

variance corresponding to an overall smaller CRLB.

Whittle’s theorem, Eq. (26), requires second-order

derivatives of the cross spectral density matrix with respect

to the parameters. For this reason, constant sound speeds are

assumed throughout much of the literature since relation-

ships between the water sound velocity profile and the

observed relative ray travel times are difficult to determine

analytically. For simplicity, a constant sound velocity profile

is adopted here and used to show what affect treating other

parameters as uncertain has on range localization accuracy.

The derivatives of C are taken for all pairs of the parameters

R, h, L, D1, D2, B1, B2, b, and c, such that JD is a 9� 9 ma-

trix. These derivatives are computed analytically using a

symbolic math engine (MathWorks, 2013) and used directly

in the simulation described in Sec. V B. The individual equa-

tions that make up JD are large, and the details are not partic-

ularly germane so are omitted here. Many other works have

presented explicit derivations [e.g., Friedlander (1988);

Hamilton and Schultheiss (1993)], and the method presented

here follows essentially the same procedure.

B. Simulation in 120 m water

In this simulation, the Bayesian CRLB for range (speci-

fied as rR) and bearing (specified as rh) are computed as a

function of the true target range. This is done for long and

short hydrophone separation distances in order to examine

performance sensitivity to this parameter. The hydrophone

separation is also modeled to have a small amount of error,

as would be the case if the hydrophones were mounted on a

taut cable. The seabed is assumed to be roughly flat with

some minor variations in composition, and the depth of the

receivers also has a slight amount of error. The water has a

constant sound speed, but there is some uncertainty in the

exact speed. In Eq. (26), N¼ 4096, fs¼ 102.4 kHz, [xmin,

xmax] ¼ 2p[0, 3000]. The source level emits 130 dB and the

noise level is 60 dB. As the target range increases, the signal

to noise ratio (SNR) at the receiver decreases. The parameter

values (ln) for the simulation are given in Table I, along

with the Bayesian priors (rn). Range (R) and bearing (h) are

the parameters under investigation, and so their infinite pri-

ors cause their entries in JP to be zero.

The Bayesian CRLB for range (R) and bearing (h) are

shown in Figs. 8(a) and 8(b), respectively, for both hydro-

phone separations (L). As the target moves farther from the

array, the lower bound on range estimation variance

increases, which corresponds to the direct and multipath

TABLE I. Hidden parameters for CRLB calculation.

Parameter (n) Value (ln) Bayesian prior (rn)

R 100� 1500 m 1
h 45� 1
L 11, 2 m 0.02 m

D1 120 m 2 m

D2 120 m 2 m

B1 120 m 10 m

B2 120 m 10 m

b �0.9 0.01

c 1530 m/s 5 m/s
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eigenray travel times converging, and therefore containing

less information about the target range. The lines for the 2 m

and 11 m hydrophone separations essentially overlap, indi-

cating that hydrophone separation does not affect the lower

bound on range variance. However, it does have a significant

impact on the bearing estimation, rh, shown in Fig. 8(b), as

expected. The increase in bearing CRLB at closer ranges are

due to the uncertainty in the receiver depths.

VI. CONCLUSION

This article presents a simple technique for localizing a

small boat using multipath arrivals recorded on two bottom-

mounted hydrophones. The conditions under which this

approach can be expected to perform well are also deter-

mined. Wider hydrophone separation distances provide

better bearing accuracy, but yield no improvement in range

accuracy. Bathymetric variations affect multipath arrival

times, a fact that can be exploited to break the left�right am-

biguity on sloped seabeds. To expose this capability, array

elements should be placed along contours of the bathymetry,

rather than in an uphill-downhill arrangement. It was also

determined that left�right disambiguation improves with

wider hydrophone separation distances, and with greater

seabed slope. Placing the hydrophones on the seabed has the

advantage of maximizing the time separation between multi-

path arrivals, which facilitates automated extraction from a

correlogram. Experimental results demonstrate operation in

12 m of water, but simulations suggest that the technique

may work in deeper water on the order of hundreds of

meters.

One application for this technique might be monitoring

small boat traffic in shallow water regions with relatively

minimal deployment complexity and equipment. A factor

that is likely to impact performance of this technique is error

in the vertical water sound speed profile. This is because

refraction effects become more pronounced at greater

ranges, leading to greater error in the time delay prediction,

and therefore decreased ranging accuracy. If uncertainty in

the sound velocity profile is included in the Fisher informa-

tion matrix, this would lead to a larger Bayesian CRLB. One

possible method of evaluating this might be to replace the

analytic partial derivatives with numeric methods, but this

approach may require substantially greater computational

resources.

ACKNOWLEDGMENTS

The authors gratefully acknowledge support for this

research by the Office of Naval Research Ocean Acoustics

Program. J.S.A. acknowledges support from the Department

of Homeland Security under award 2008-ST-061-ML0001.

We thank Portland State University for helping fund the

equipment. We also thank Tom Monroe of High Tech, Inc.,

Reid McCargar, Grant Pusey, and Bill Stevens of Metron,

Inc.

APPENDIX: STRIATION EXTRACTION PARTICLE
FILTERING

This appendix describes the sequential Bayesian filter-

ing methodology used to extract striation lines from a corre-

logram. The striation lines correspond to correlations of

different pairs of arrivals at opposite hydrophones. As can be

seen in the correlogram in Fig. 5(b), a prominent center

striation line is flanked by two weaker striations. The center

striation is caused by the direct arrival correlating with the

direct arrival at the opposite hydrophone, and the flanking

striations are due to a direct arrival at one hydrophone corre-

lating with a multipath arrival at the opposite hydrophone.

The offset of all three striations on the time delay (horizon-

tal) axis at each time step (vertical axis) is the desired output.

The extraction is divided into two trackers; the first tracks

the center striation, which is then fed to the second tracker

that tracks both flanking striations.

Given their ability to handle nonlinear problems, parti-

cle filters have been applied previously to the problem of

acoustically tracking objects in space using multipath (Ward

et al., 2003), and to directly analyze features of received

data (Jain and Michalopoulou, 2011; Michalopoulou and

Jain, 2012). The approach taken here is more akin to the

latter by focusing on extracting time delays from the passive

acoustic data. Sequential Importance Resampling (SIR) is

among the simplest of the particle filter formulations (Ristic

et al., 2004). In the tracking context, a sequence of observa-

tions are fed to the tracker to estimate hidden state variables

at discrete time steps, denoted by k. State estimates at the

FIG. 8. (a) Bayesian CRLB for range estimation as a function of true range.

Dashed and solid lines representing two phone separations essentially over-

lap indicating that this factor does not impact range resolution. (b) For com-

parison, the same metric is applied to bearing estimation, in which the

dashed and solid lines show significant deviations, which indicates bearing

resolution decreases as the phone separation decreases.
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previous time step, k� 1, are used to refine the probability at

the current time step, giving this formulation its “Bayesian”

nature.

In this context, the observations are the cross correlation

at each time step, Ck¼Ck(s) [Eq. (14) shows a noise-free

measurement], and the state variables are the time delays, sk.

Bold typeface indicates variables may be multidimensional.

The prediction of the current state’s (sk) probability distribu-

tion from a previous state’s (sk-1) probability distribution is

computed according to

pðskjC1:k�1Þ ¼
ð

pðskjsk�1Þpðsk�1jC1:k�1Þdsk�1 (A1)

in which C1:k-1¼C1, C2,…, Ck-1. Conceptually, this is based

on a Markov state-space model in which the probability of

the next state depends only on the previous state,

pðskjs1:k�1Þ ¼ pðskjsk�1Þ: (A2)

To incorporate a new measurement Ck, the state is updated

as

pðskjC1:kÞ/ pðCkjskÞpðskjC1:k�1Þ; (A3)

for which the right hand side is then normalized to integrate

to one. It is useful to think of p(CkCsk) as a function of sk

that is parameterized by an actual (i.e., non-random) obser-

vation Ck. Due to the proportionality relationship in

Eq. (A3), this expression can be represented as a likelihood

function that need not integrate to one

LðskjCkÞ/ pðCkjskÞ: (A4)

Particle filters approximate the probability distributions

as a sum of weighted delta functions,

pðskjC1:kÞ �
XN

i¼1

widðsk � si
kÞ; (A5)

for which si
k is the ith particle and wi is its weight, and N is

the number of particles. The weights collectively sum to

one, and provide a means to draw samples from a distribu-

tion other than p(skjCk), for which there is often no closed

form solution. This other distribution is called the impor-

tance density, and in the SIR algorithm is defined as the

posterior probability distribution at the previous time step,

p(sk-1jC1:k-1).

Particle degeneracy happens when a significant portion

of the particle weights become very small. These particles

are essentially lost as they do not contribute meaningfully to

the probability distribution. Resampling is used to re-draw

the samples from regions of state space having greater prob-

ability density. This method follows from Ristic et al.
(2004).

The first particle filter extracts the center striation using a

random-walk state model defined as s0k
¼ s0k�1

þ t, in which

t � Nð0; r2
s0
Þ. It utilizes the one Gaussian from Eq. (17) that

corresponds to the center striation. The log-likelihood function

is thus defined as

log Lðs0k
jCkÞ ¼

ð1
�1

CkðsÞgðs; s0k
; rÞds: (A6)

Taking advantage of the fact that the center striation is

often the strongest, all the particles are initialized at the

first time step to the offset of the tallest peak in the first

observation.

The second particle filter outputs s�k
and sþk

by making

use of the two remaining Gaussians in Eq. (17) that corre-

spond to the flanking striations. Tracking the flanking stria-

tions is a different problem than tracking the center striation

because the multipath physics cause them to behave differ-

ently. The center striation is based primarily on the target

bearing, but the flanking striations are highly dependent on

each other and on the center striation. Specifically, the flank-

ing striations are roughly parallel to each other and to the

center striation, and each is offset from the center striation

by opposite but roughly equal amounts. To exploit this

behavior, the estimate of s0k
that is output by the first tracker

is taken as an input to the second tracker. Instead of tracking

s�k
and sþk

directly, the distance between the center and left

striation is tracked with one auxiliary variable (f1) and the

additional amount of distance on the opposite side of the

center striation is tracked with another (f2).

The output at time k is then

s�k
¼ s0k

� f1k
; sþk

¼ s0k
þ f1k

þ f2k
: (A7)

The advantage of this construction is it enforces the behav-

ioral pattern while minimizing the tracker complexity by

employing a simple random-walk model for f1 and f2.

Note that the quantity f2k
captures the slight multipath path

differences between each hydrophone, so it essentially

contains the information that allows for left� right disam-

biguation. The state update is ½fnk
¼ fnk�1

þ wn�n2f1;2g, in

which ½wn � Nð0; r2
fn
Þ�n2f1;2g such that r2

f2
< r2

f1
. The log-

likelihood function is defined as

log Lðs�k
; sþk
jCk; s0k

Þ ¼
ð1
�1

CkðsÞ½gðs; s�k
; rÞ

þ gðs; sþk
; rÞ�ds: (A8)

Particles in this tracker are initialized to be uniformly dis-

tributed within the possible range of multipath delay val-

ues thereby not making any assumptions about the starting

range of the target. The upper bound of f1 occurs when the

target is directly overhead and the lower bound is based on

the target bandwidth [see Eq. (15)]. The lower bound of f2

is zero, and the upper bound needs to be large enough

to capture the possible difference between the depths of

the two seabed reflection points, and is generally smaller

than f1.

To obtain point estimates from each posterior proba-

bility distribution, a Gaussian kernel smoother is applied

to the particles to estimate the maximum a priori (MAP)

value. The output of the tracker after both filters are the

measured values s0k
, s�k, and sþk at each time interval k. In

Sec. IV, the parameters were set to N¼ 500, rs0
¼ 0:413

ms, rf1
¼ 0:098 ms, and rf2

¼ 0:001 ms.
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