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An early and more limited version of this paper that provided only the variable returns to scale model and one application was 
presented at the Portland International Conference on the Management of Engineering and Technology [4] 

Abstract 

Technology Forecasting using Data Envelopment Analysis (TFDEA) provides an effective means to 

forecast technological capability over time without the burden of fixed a priori weighting schemes.  However, 

there are situations where result reproduction can be a challenge as first pointed out in a previous 

Technological Forecasting and Social Change article [11]. When using a commonly used extension of 

TFDEA, there are circumstances where multiple optimal solutions can complicate analysis. This paper 

addresses this issue through extending the TFDEA model in a manner consistent with common Data 

Envelopment Analysis (DEA) techniques. The extension is then demonstrated using datasets from previous 

publications on fighter jet and commercial airplane technology where the issue of multiple optima has been 

observed. The results indicate that traditional TFDEA may generate varying forecasts depending on the 

software used, which can be dealt with by introducing a secondary objective function. Therefore, researchers 

should explicitly state which secondary objective function they are using for the TFDEA applications. 
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Introduction 

As frontier analysis methods become popular in modern benchmarking studies, their emphasis on 

taking advantage of extreme data points has been widely used in the technological forecasting field as well. 

Technology Forecasting using Data Envelopment Analysis (TFDEA), which falls under this category, has 

been applied to various areas covering public sectors (U.S. fighter jet development [11] and worldwide 

wireless protocol adoption [13,16]) as well as cutting edge industries including microprocessor [3], 

commercial airplane [15], and flat panel [17] since the first introduction in PICMET ’01 [4]. 

TFDEA application has spread and it is actively being examined by researchers worldwide. Kim et al. 

[14] proposed a resampling technique using Constrained Canonical Correlation Analysis (CCCA) that could 

make more reliable forecasts for battle tank development. Durmusoglu and Dereli [10] introduced a modified 

TFDEA model that can employ a dynamic Rate of Change (RoC) by fitting a cubic regression into the RoC 

calculation. Tudorie [20] applied TFDEA to capture the technological progress and future performance of the 

Electric Vehicle (EV) technologies. It was found that Battery Electric Vehicles (BEV) showed relatively more 

accurate forecast than the Hybrid Electric Vehicle (HEV). Shin [19] proposed a hybrid TFDEA model with a 

growth curve in an attempt to take the maturity level of each technology attribute into account. Cole [6], in his 

dissertation, compared TFDEA with a hyper-plane model and multi-dimensional growth model (MDGM) to 

develop an integrated projection model for battery technology. He found that the TFDEA results to be less 

biased and yield more normally distributed residuals than the other two forecasting methods. 

However, the issue of multiple optima can occur in DEA-related models primarily due to the issue of 

degeneracy in linear programming. The envelopment form of the traditional DEA model can result in non-

unique or weakly efficient targets of performance in the envelopment model, which is typically resolved by 

introducing a secondary phase of slack maximization [1]. Similarly, the two-step procedure is used to identify 

weights associated with a full dimensional efficient facet (FDEF) in the multiplier model [7]. An extension of 
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DEA termed cross-efficiency or cross-evaluation is similarly affected by multiple optima, and a formal 

examination and resolution of the issue was developed by Doyle and Green [9]. 

Likewise, it was determined by Inman, Anderson, and Harmon (subsequently referred to as IAH) in 

Technological Forecasting and Social Change, vol.73, no.9 [11] that a variation of TFDEA can at times result 

in non-unique solutions and cause difficulty with reproducing calculations in certain cases. That is, different 

forecast results may be obtained from traditional TFDEA depending, for instance, on the software used. IAH 

illustrated the issue and recommended that this be addressed in future work. This paper aims to address this 

issue and extend the methodology as inspired by a common DEA technique to resolve the issue of non-unique 

solutions. 

 

Explanation of Dynamic Frontier Year 

The original implementation of TFDEA [3] used a static frontier year based on the year at which the 

analysis was conducted.  Later, Inman [12] introduced the concept, referred to here as a dynamic frontier year, 

that uses a combination of dates associated with the products defining the frontier. To illustrate this point, the 

following example of four products released in three different years is illustrated in Figure 1.  The fourth 

product, d, is a set of specifications for a product with an expected release date of 2013.   

Conceptually, TFDEA estimates RoC and then uses this momentum to forecast future products.  The 

dynamic frontier year can be illustrated by examining product d.  It is a 2013 product that is compared to 

products a, b, and c from 2011 and earlier. Given technological progress, d should outperform these earlier 

products.  Product d’s performance is projected to the state of the art surface from current products, namely, a, 

b, and c. This projected point is labeled d(Target).  In an output-oriented model, with a single input (perhaps 

manufacturing cost) and a single output (such as a performance proxy), it is easy to visualize the projection 

and measure the values. This is simply the ratio of the heights of the vertical lines.  One would characterize 
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the output-oriented efficiency of product d to be examined at the current time of the forecast, 

6.0
10

6

2013

)Target(


d

dC
d Y

Y
 . This indicates that the best convex combination of comparison for d using earlier 

products performs only 60% as well as d.  Conversely, d is 6.13
5

6.
1   times better than the target based 

on earlier technology. 

 

 

Figure 1.  Illustrative Example of TFDEA with Multiple Optima 

 

Next, let us extend the example by assuming that products had been improving in the past by 15% a 

year.  Therefore, the average RoC is 1.15 (  =1.15).   

Now product d’s specifications may be used to forecast the expected release date based upon the 

average RoC.  Given the RoC,   =1.15, and the amount by which it surpasses current technologies of 6.1 , it 

is a straightforward calculation to find the number of years by which it exceeds the current state of the art:   
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n15.16.1  .  Taking the natural logarithm of both sides results in      15.1ln15.1ln6.1ln nn   and then 

    3.65515.1ln6.1ln n  years.  This indicates that, based on past trends, one should expect 3.655 years of 

advancement to achieve the performance level of d. 

When using the original static frontier year concept, the 3.655 years would be relative to the date of 

the forecast being made, 2011, resulting in an expected release of product d to be in 2014.655, or about a year 

and a half after the product’s expected release date of 2013.  This indicates that it is an aggressive set of 

specifications, and if it reaches the market on time and with current specifications, is likely to be better than 

competitors.  On the other hand, there may be significant technical risk since it requires exceeding the past 

technological advancement. 

 

Potential for Multiple Optima 

The dynamic frontier concept recognizes that target points may be composed of products from 

different years, and it may not be appropriate to assume that the current time period is the basis for the best 

way of estimating the year of the target. In the example provided, is 2011 really the best estimate of the age of 

the technologies that d is being compared against?  Product d is being compared against some combination of 

the three products a, b, and c, all from different years.  If it is being compared against just a and c, then the 

weighted average of the years is approximately 2010.4, which gives a forecasted date of about 2014. 

On the other hand, product d’s target could be equally well formed from a combination of products b 

and c.  In this case, the weighted average of the years of release would be closer to b’s release date, let us say 

about 2008.5, resulting in a forecasted release of about 2012. 

Not only are there two potential dynamic frontier year targets of 2008.5 and 2010.4 resulting in 

different forecasts, combinations of products a and b could be used simultaneously with varying contributions 
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from c to result in an infinite number of combinations between 2008.5 and 2010.4.  Each of the alternate 

solutions would result in either a different RoC for past product or a different forecasted year of release for 

future product, which causes difficulty in replicating results.  This phenomenon was found for five of the 

fighter jets and nine of the commercial airplanes.   

Conceptually, it is simple to resolve the issue of multiple optima by providing a secondary objective 

function.  The first objective function is to calculate the performance relative to the state of the art surface for 

each product.  The secondary objective function is to select either the minimum or the maximum target year.  

An unambiguous resolution to this issue of multiple optima requires greater mathematical formalism, which 

will be provided in the following section.  

 

TFDEA Formulation 

To simplify management of results and to be consistent with current implementations, the TFDEA 

formulation can be written as a single, larger, linear program in the following manner as shown by (1)-(7).  It 

rewrites the series of smaller linear programs as one large linear program.  First, DEA problems with n 

decision making units, DMUs, typically require n separate linear programs but these can be combined into a 

single, larger linear program.  This is done by adding a subscript, k, to each of the variables, summing all the 

objective functions, and incorporating all of the constraints.   

In TFDEA, we need an efficiency score at the time of release and against what is assumed to be the 

current time (or the period at which the frontier is considered frozen).  These are denoted by an R or C 

respectively.   

First, there are three important data components.  The release date for product k is defined as tk. The 

ith input or “structural characteristics” of product k is Xi,k.  Similarly, Yr,k is the rth output or functional 

characteristic of product k.   
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The variable, R
k , measures the amount by which product k is surpassed by the technology available at 

the time of release for product k.  This time is denoted as tk. A value, 0.1R
k , indicates that product k is state 

of the art at the time product k is released.  A value of 0.1R
k  then indicates the amount by which all of the 

outputs of product k must be increased in order to be state of the art at the time of its release. 

Similarly, C
k  measures the performance of product k relative to the state of the art at the fixed time T.  

For example, a value of 5.1C
k  indicates that the product is being outperformed by products available at 

time T by 50%.  Conversely, a value of 8.0C
k  indicates that the state of the art available at time T only 

performs 80% as well as product k. 

The objective function (1) is a sum of the maximum of each of the 2n linear programs.  Each of these 

linear programs is essentially a standard output-oriented, variable returns to scale (VRS), envelopment DEA 
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model.  Given that all the variables are continuous and the modest number of variables and constraints, a 

single large problem can be solved very quickly with modern optimization software and computer hardware.  

The VRS is enforced by (2).  It requires each product, k, when it is evaluated, to be compared against a 

construction of other products that sums to one.  In other words, it cannot be compared against a much larger 

product, j, which is simply rescaled to a much smaller size.  For example, if product five was much larger than 

product k, we might see a result of ,1.0, h
kj for say j=5 and 0, h

kj  for all other j. The VRS disallows this 

simple rescaling.  The VRS constraint was incorporated into DEA by Banker, Charnes, and Cooper and is 

widely used in many DEA applications [5]. 

The input for each product k’s evaluation is considered by constraint (3).  This constraint ensures that 

for each evaluation (at time of release-R and at time of current horizon-C), the input used by the target is less 

than or equal to the amount actually used by product k as denoted by Xi,k.  It should be noted that in IAH, a 

constant value of one was used as the only input 1,1 jX
 
for all fighter jet j. 

The next constraint, (4), relates outputs achievable by the combination of products indicated by the 

variables  to be greater than or equal to the level of outputs achieved by product k, multiplied by . This 

constraint makes the direct linkage with the objective function components, . 

This is followed by a constraint (5) that says the at-time of release evaluation of product k can only be 

done by looking at products that were released at the same time product k was released or earlier. This is 

enforced by setting all multipliers, R
kj , , to be zero for any product j that was released after k was released: 

tj>tk. 

Constraint (6) performs the same role of limiting which products can be used for evaluation but 

instead uses the analysis time period of T to limit where the products can be drawn for evaluation.  These 

constraints say that products after time period T cannot be used for evaluating the target.  In the case of the 
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fighter jet application of IAH, T=1960 corresponded to the position of the analyst only using data of released 

planes up to and including 1960 in order to forecast subsequent aircraft. 

Non-negativity of the variables is enforced in (7). 

Having solved the above linear program, the various values of  and  can then be used to arrive at 

estimates of rates of change, γ.  First, though, the dynamic frontier year model, introduced in Inman [12] and 

used in IAH, also requires the calculation of the frontier year used for evaluating each of the product k’s 

evaluations.  These were defined as tk,eff in IAH.   

 

Calculating Rate of Change 

For the purpose of this paper, we will redefine tk,eff  as h
kE , to eliminate ambiguity.  The corresponding 

equation (8) is consistent with IAH. 
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In the case of VRS, the denominator of (8) will always be equal to one due to constraint (2).  

Therefore, the calculation in (8) simplifies under VRS to be simply the following. 

 

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n

j

h
kjj

h
k CRhktE

1
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The rates of change may then be calculated by taking all products that were efficient at the time of 

release, 1R
k , but were superseded by technology at time T, 1C

k .  The periodic RoC needed to supersede 

each product is then calculated as the following. 
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The issue of multiple optima arises due to different possible values of  resulting in the same objective 

function values, .  The different values of  result in different possible effective times Ek, which can create 

different estimates of the corresponding γk values. Therefore, the problem caused by multiple optima can be 

resolved by modifying the objective function (1) to determine a unique value of Ek. 
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The parameter   is a non-Archimedean infinitesimal, which is greater than zero but smaller than any 

finite positive value.  The non-Archimedean infinitesimal is commonly used in DEA models [8] to do a slack 

maximization. It is imperative that   not be approximated with a finite value. Some early DEA 

implementations made the mistake of using finite approximations such as 610   which resulted in 

numerical errors [2]. The actual implementation is to use a two-stage preemptive linear programming 

approach where in the first phase, the objective is the same as in (1), simply maximize all the values of .  

The second phase then holds all the variables  fixed and minimizes the sum of the effective years, R
kE  and 

C
kE   (or equivalently by maximizing negative R

kE  and C
kE ). 

Minimizing the effective years: R
kE  and C

kE  has the interpretation of always saying that when there 

are multiple ways of forming a target on the frontier peer for product k’s with the same distance to the frontier 

(efficiency), use the combination of products that would have the earliest possible effective date (weighted 

average of product release dates). 

Note that, in case of non-VRS model, calculation of (8) would render the objective function to no 

longer be linear. For computational purposes, the same general secondary goal of minimizing effective years 
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can also be pursued by subtracting the denominator of (8) in the objective function as seen in (12). While this 

substitution is not technically a numerical approximation, it is generally consistent with minimizing effective 

year and has the advantage of remaining linear. 
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Rather than minimizing effective dates, maximizing the effective dates would also result in a unique 

solution for rates of change.  The corresponding objective function is given in (13).   
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Likewise, in the case of non-VRS models, the same transformation can be made as seen in (14). 
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In either case of minimizing or maximizing the sum of effective years, the set of equations (8) 

calculating h
kE  is done using the result of the linear program. 
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Re-examining U.S. Fighter Jet Development 

The above formulations address the problem of non-unique solution in the VRS TFDEA models.  The 

following section provides numerical results demonstrating this on the fighter jet dataset from Martino [18] 

used by IAH [11] which used four outputs: maximum Mach, mean flying time between failure, payload, and 

range of BVR missiles with a constant one as an input and a VRS dynamic frontier year.  

 

 Maximize E Minimize E 

k Model 
Date of 
Release 

R
k  

C
k  Effective Date 

Rate of 
Change 

Forecasted 
Release Date 

Effective Date 
Rate of 
Change 

Forecasted Release 
Date 

1 F80 1944 1 1.679899 1957.178 1.04015  1957.178 1.04015  

2 F84 1946 1 1.962264 1958.151 1.057045  1958.151 1.057045  

3 F86 1947 1 1.732124 1957.294 1.054818  1957.294 1.054818  

4 F89 1949 1 1.2 1956 1.026388  1956 1.026388  

5 F94 1950 1 1.915759 1955.573 1.123729  1955.573 1.123729  

6 F100 1953 1 1.405405 1956.162 1.113629  1956.162 1.113629  

7* F101 1954 1 1 1956   1953.5   

8* F102 1953 1 1 1956   1953   

9* F104 1954 1 1 1956   1954   

10 F106 1955 1 1 1955   1955   

11 F8 1956 1 1 1956   1956   

12 F5A 1959 1 1 1959   1959   

13 F4E 1967 1 0.585938 1956.07  1964.049 1956.07  1964.049 

14* F14 1971 1 0.2 1956  1980.022 1953  1977.022 

15* F5E 1971 1 0.2 1956  1980.022 1954  1978.022 

16 F15 1972 1 0.3 1956  1973.97 1956  1973.97 

17 F16 1974 1.0753 0.328518 1955.197  1971.811 1955.197  1971.811 

18 F18 1978 1 0.262238 1956.378  1976.356 1956.378  1976.356 

19 F20 1982 1 0.241935 1956.581  1977.762 1956.581  1977.762 

 

Table 1: Fighter jet results be secondary objective functions used (* indicates fighter jets with multiple optima 

solutions) 
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A couple of interesting points should be noted from the results. Running separate analyses with both 

secondary objective functions (minimizing and maximizing the effective dates) will determine if there are 

alternate solutions that can affect the solution. Therefore, it is noted that IAH found both cases of multiple 

optima: F14 and F5E that affected the result in their forecasts.  

In addition, three cases: F101, F102, and F104 were identified to have alternate effective dates though 

they are not affecting the RoC. This is because they didn’t show technological advancement between their 

introductions and frontier year of 1960. As previously discussed, effective dates determine the time span to 

calculate the RoC from past technologies as well as the reference point of forecast for future technologies. 

Hence, the issue of multiple optima can affect RoCs and/or forecast results. Fighter jet case is an example in 

which forecast results are affected by differing reference points of forecast without being influenced by 

alternate RoCs. 

While not related to the specific issue of multiple optima, the F16 was interesting.  It was found to be 

efficient at the time of the forecast being made, T=1960, but not at the time of release, 1974.  This indicates 

that while it surpassed the performance of pre-1960 fighter jets ( 1328518.016 C
F ), by the time it was 

released in 1974, the four post-1960 fighter jets advanced the state of the art surface such that the F16 was not 

considered state of the art at time of release ( 10753.116 R
F ).   

Table 2 provides numerical results calculated using three different linear programming engines, 

Xpress-MP, GLPK, and lpSolveAPI consisting of three cases: a base case without a secondary objective 

function and then cases of minimizing and maximizing the sum of effective dates. It shows that a variety of 

solutions are obtained with different mean absolute deviations depending upon the software used and the 

presence of a secondary objective function. In the absence of a way to differentiate them, each is equally 

correct. It is important to note that the use of one of the secondary objective functions eliminates the issue of 
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different software providing different solutions. This is critical for researchers to be able to replicate the 

results.   

 

 Secondary Objective Used 

 None Maximize Sum of E Minimize Sum of E 

LP 

Engines 

Xpress-MP 4.005272 4.433844 3.719558 

GLPK 3.862410 4.433844 3.719558 

lpSolveAPI 3.862415 4.433844 3.719558 

 

Table 2:  Mean absolute deviation comparison of forecasts for post-1960 fighter jets by secondary objective 

function used. 

 

In this application, the post-1960 fighter jets are best forecasted by minimizing the sum of effective 

dates.  This secondary objective function results in the lowest mean absolute deviation of 3.719558 regardless 

of linear programming engine used. This indicates that one can expect 3.7 years of forecasting error using this 

model in fighter jet development planning.   
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Re-examining Commercial Airplane Development 

This section provides another numerical result from secondary objective on the commercial airplane 

dataset from Lamb, Anderson and Daim [15] (subsequently referred to as LAD) which used five outputs: 

travel range, passenger capacity, passenger fuel efficiency, maximum speed, and cruising speed with a 

constant one as input and a VRS dynamic frontier year. 

 

 Maximize E Minimize E 

k Model 
Date of 
Release 

R
k  

C
k  

Effective 
Date 

Rate of 
Change 

Forecasted 
Release 

Date 

Effective 
Date 

Rate of 
Change 

Forecasted 
Release 

Date 

1* DC8-55 1965 1 1.036782 1994.447 1.001227  1987.184 1.001630  

2 DC8-62 1966 1 1.012435 1989 1.000537  1989.000 1.000537  

3* 747-100 1969 1 1.010078 2001.643 1.000307  1984.786 1.000635  

4* 747-200 1971 1 1.010078 2001.643 1.000327  1985.446 1.000694  

5* DC10-30 1972 1.018338 1.036782 1993.863   1987.379   

6* DC10-40 1973 1.018338 1.036782 1993.863   1987.379   

7* L1011-TriStar 500 1979 1 1.011211 1995.353 1.000682  1986.882 1.001415  

8* 747-300 1983 1 1 1991.348   1983.000   

9 767-200ER 1984 1.016489 1.046803 1998.970   1998.970   

10 767-300ER 1988 1 1.033580 2003.539 1.002128  2003.539 1.002128  

11 747-400 1989 1 1 1989   1989.000   

12 MD-11 1990 1.017806 1.032138 1995.059   1995.059   

13 A330-300 1993 1 1 1993   1993.000   

14 A340-200 1993 1 1.029601 1999.282 1.004655  1999.282 1.004655  

15 A340-300 1993 1 1.024546 2003.678 1.002274  2003.678 1.002274  

16 MD-11ER 1996 1.016926 1.030304 1995.889   1995.889   

17 777-200ER 1997 1 1.009587 1995.828   1995.828   

18* 777-300 1998 1.011211 1.011211 2001.041   1984.986   

19* A330-200 1998 1.036782 1.036782 1993.733   1986.199   

20 A340-600 2002 1 1.006869 2004.330 1.002942  2004.330 1.002942  

21 A340-500 2003 1 1.014706 2006.196 1.004579  2006.196 1.004579  

22 777-300ER 2004 1 1 2004   2004.000   

23 777-200LR 2006 1 1 2006   2006.000   

24 A380-800 2007 1 1 2007   2007.000   

25 787-8 Dreamliner 2010 1 0.989973 2003.293  2008.425 2003.293  2007.988 

26 747-8 2011 1 0.975083 2001.877  2014.725 2001.877  2013.631 

27 787-9 Dreamliner 2013 1 0.956494 2001.638  2024.287 2001.638  2022.359 

28 A350-900 2013 1 0.959307 2000.536  2021.690 2000.536  2019.889 

Table 3: Commercial airplane results by secondary objective functions used. (* indicates airplanes with 

multiple optima solutions) 
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Unlike the fighter jet case, the multiple optima issue here is affecting the RoC calculation which then 

causes alternate forecasted release dates. In other words, different effective dates only occur in pre-2008 

airplanes that the model results in diverged estimates of RoCs, which eventually leads to different forecasts in 

post-2008 airplanes. As in the earlier fighter jet case, airplanes that were not the state of the art when they 

were released: DC10-30, DC10-40, 777-300, and A330-200 are not taken into consideration with regard to the 

RoC calculation. Likewise, an airplane which has been on the state of the art frontier since its release: 747-

300 is not affecting RoC calculation because it doesn’t show the technological progress within timeframe. 

Therefore, multiple optima are captured in those airplanes but do not affect the results. 

Although post-2008 airplanes don’t suffer from multiple optima, the forecasted release dates vary due 

to the alternate RoCs identified from multiple optima of pre-2008 airplanes. That is, the commercial airplane 

case is an example in which forecast results are affected by differing RoCs without being influenced by 

alternate reference points. 

It should also be noted that LAD included the 777-200ER in calculating the RoC since it was one of 

the state of the arts at the time of release ( 1200777 
R

ER ) and was surpassed by the state of the art in 2007 

( 1009587.1200777 
C

ER ). However, its effective date ( 828.1995200777 
C

ERE ) turned out to be earlier than its 

release date (t777-200ER = 1997), which resulted in RoC less than 1 ( 991894.0200777 
C

ER ). This attenuated the 

average RoC and, consequently, caused worse results than the other model presented in the paper. This 

numerical issue is outside the scope of the current paper and will be the subject of future research. 

Table 4, in the same manner, provides numerical results calculated using three different linear 

programming engines with and without secondary objective function. It can be seen here again that results 

vary depending on the software used without secondary objective function. The results from LAD correspond 

to the Maximize the Sum of Effective Dates. 
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In this application, however, the post-2008 commercial airplanes are best forecasted by minimizing the 

sum of effective dates.  This secondary objective function results in the lowest mean absolute deviation of 

5.223051. 

 Secondary Objective Used 

 None Maximize Sum of E Minimize Sum of E 

LP 

Engines 

Xpress-MP 5.615992 6.319297 5.223051 

GLPK 6.319126 6.319297 5.223051 

lpSolveAPI 5.586473 6.319297 5.223051 

 

Table 4:  Mean absolute deviation comparison of forecasts for post-2007 commercial airplanes by secondary 

objective function used. 

 

Conclusion 

This paper addresses a key issue that must be considered in any TFDEA application that uses a 

dynamic frontier year approach by way of a secondary objective function to differentiate between multiple 

optima.  Researchers should explicitly state which secondary objective function they are using.  Not using a 

secondary objective function may result in difficulty reproducing results.  

In theory, multiple optima occur either due to weakly efficient technology or due to efficient but not 

an extreme technology. However, characteristics of those two types of technologies have not received 

extensive attention. This suggests a direction of future research that could explore the conditions and 

frequency of multiple optima whereby unique technology clusters may be classified. In addition, current 

results for both cases indicated that minimizing the effective year provided more accurate results, but this is 

insufficient to give a general advice recommending minimizing over maximizing. Therefore, it is worthwhile 

to investigate additional cases to compare characteristics of secondary objectives. Finally, non-VRS 
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applications that render the objective function non-linear need to be tested to validate the performance of 

linear approximation program. 
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