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 Technology Trajectory Mapping using Data Envelopment Analysis 

: The Ex-ante use of Disruptive Innovation Theory on Flat Panel Technologies 

Dong-Joon Lim*, Timothy R. Anderson 

Dept. of Engineering and Technology Management, Portland State University, Portland, USA 

 

Abstract- In this paper, we propose a technology trajectory mapping approach using Data Envelopment Analysis 

(DEA) that scrutinizes technology progress patterns from multidimensional perspectives. Literature reviews on 

technology trajectory mappings have revealed that it is imperative to identify key performance measures that can 

represent different value propositions and then apply them to the investigation of technology systems in order to 

capture indications of the future disruption. The proposed approach provides a flexibility not only to take multiple 

characteristics of technology systems into account but also to deal with various tradeoffs among technology 

attributes by imposing weight restrictions in the DEA model. The application of this approach to the flat panel 

technologies is provided to give a strategic insight for the players involved. 

 

1. Introduction 

Technological forecasting methods can be classified as either exploratory or normative by 

whether they extend present trends (exploratory) or look backward from a desired future to 

determine the developments needed to achieve it (normative) (Porter et al. 2011). The correct 

assessment of future environment and of the corresponding goals, requirements, and human 

desires can be better made when exploratory and normative components are joined in an iterative 

feedback cycle (Jantsch 1967). Here, it is crucial to have an accurate understanding of the 

technological inertia we have today so that exploratory methods extend the progress while 

normative methods determine how much the speed of such progress need to be adjusted. 

However, as technology systems become sophisticated, the rate of change varies more 

significantly, being affected by the maturity levels of component technologies (Lim et al. 2014). 
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This structural complexity makes today’s forecasting even more challenging, which leads to the 

question: which set of attributes have the disruptive potential to be scaled up (or down) in the 

future? 

Technology frontier analysis has been used in several ways to consider this 

multidimensional and combinatorial characteristics of technology systems (Gu and Kusiak 1993; 

Hazelrigg 1996; Martino 1993). The simplest form is the planar frontier model (or hyper-plane 

method) suggested by Alexander and Nelson (Alexander and Nelson 1973). Although this 

approach has an advantage of a simple implementation based on multiple regression analysis, a 

fitted functional form of the frontier based on a linearity assumption disallows to consider 

dynamic tradeoffs among technology attributes. As a non-linear frontier model, Dodson 

proposed an ellipsoid frontier formation (Dodson 1985). This model attempts to fit the 

technology frontier into a priori functional form from which tradeoffs among attributes can be 

explained. However, ellipsoid frontier model requires that the rate of one technical capability 

being relinquished for the advancement of the others rely on the predefined functional form 

rather than the nature of data at hand. Dodson’s choice of an ellipsoid shape is analytically sound 

for the representation of a strictly convex surface but may not always be representative. 

Moreover, this model doesn’t provide a time dependent measure to estimate the future state of 

the technology frontier. To tackle this issue, Danner suggested the iso-time frontier using Multi-

Dimensional Growth Models (MDGM) (Danner 2006). In this approach, the frontier surface is 

formed by a composite relationship between time and technological characteristics. Therefore, 

the frontier can be navigated to project multiple characteristics into the future (Cole 2009).  

Possibly the greatest limitation to the utility of MDGM is the requirement that all dimensions of 

technical capability integrated must be statistically independent. This presupposes that the time 

required to advance each attribute towards corresponding upper limit can be linearly combined to 
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explain the technology systems’ growth rate. However, the higher the complexity of technology 

systems under evaluation is, the more individual growth rates are likely to be interrelated hence 

generated iso-time frontier without consideration on concurrent advancement would not provide 

an accurate picture of the feasible combinations of technical capabilities.  

To overcome the disadvantages of the aforementioned methods, this study proposes an 

approach that can be used as a composite measure of technical capabilities as well as a tool for 

investigating rate of changes that enables to project the current technology frontier into the future. 

 

2. Literature review on technology trajectory mapping 

Mapping performance of technology over time can be helpful to identify potential disruptive 

technologies as well as to examine the maturity of incumbent technologies. Clayton Christensen 

and Michael Overdorf explained the theory of disruptive innovation by suggesting that “graph 

the trajectories of performance improvement demanded in the market versus the performance 

improvement supplied by the technology… Such charts are the best method I know for 

identifying disruptive technologies (C. M. Christensen and Overdorf 2000).” 

Trajectory mapping has been employed in a wide range of applications. The most famous 

application of a trajectory map may be the hard disk drive case from Christensen’s original work 

(C. M. Christensen 1993). He used disk capacity as a performance axis and interpreted the 

dynamics of industry that smaller disks have replaced bigger ones improving their capacities 

over time. Schmidt later extended Christensen’s work by classifying the disk drive case as a low-

end encroachment that eventually diffused upward to the high-end (Schmidt 2011). Martinelli 

conducted patent analysis in the telecommunication switching industry to find out seven 

generations of technological advances from the different paradigmatic trajectories (Martinelli 

2012). Kassicieh and Rahal also adopted patent publication as a performance measure in search 
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of potential disruptive technologies in therapeutics (Kassicieh and Rahal 2007). Phaal et al. 

proposed a framework that has been tested by developing more than 25 diverse ‘emergence 

maps,’ analogous to trajectory map, of historical industrial evolution, building confidence that 

the framework might be applicable to current and future emergence (Phaal et al. 2011). Keller 

and Hüsig analyzed Google’s web-based office application to see if it can pose a disruptive 

threat to incumbent technologies, namely Microsoft’s desktop office application (Keller and 

Hüsig 2009). Barberá-Tomás and Consoli tried to identify potential disruptive innovation in 

medical industry, especially on artificial disc, by counting the number of granted patent over 

time (Barberá-Tomás and Consoli 2012). Husig et al. (2005) conducted one of rare ex ante 

analyses that mapped out trajectories of both the incumbent technology and a potential disruptive 

technology (Husig, Hipp, and Dowling 2005). They made a forecast based on trajectory map that 

Wireless Local Area Network (W-LAN) technologies would not be disruptive for incumbent 

mobile communications network operators in Germany. This is because the average growth rate 

of the bandwidth supplied by W-LAN had been overshooting the average growth rate of the 

bandwidth requirements of all customer groups. 

There are a few studies that used composite performance measures to draw the technology 

trajectories. Adamson plotted R2 values from the multiple regression analysis on the trajectory 

map to investigate the fuel cell vehicle industry (Adamson 2005). The results showed that 

subcompact vehicle’s R2 values were increasing over time while compact vehicles’ were 

decreasing. The author interpreted that the technological advancement of subcompact vehicle 

was becoming similar to that of compact vehicle. This study has significant implications for 

identifying key drivers of technology progress using the trajectory map. Letchumanan and 

Kodama mapped out the correlation between Revealed Comparative Advantage (RCA), which is 

generally used to measure the export competitiveness of a product from a particular country in 
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terms of world market share, and R&D intensity to examine who was making the most disruptive 

advancement at a national level (Letchumanan and Kodama 2000). Even though Koh and Magee 

didn’t utilize any function to develop composite performance measures, their research has a 

significance as they took different trade-offs into consideration to draw a trajectory map (Koh 

and Magee 2006). Their results suggested that some new information transformation 

embodiment such as a quantum or optical computing might continue the trends given the fact 

that information transformation technologies have shown a steady progress. 

Table 1 summarizes 40 studies from 1997 to 2012 that have used trajectory map to identify 

disruptive alternatives including technology, product, and service. The majority of the studies 

adopted a single performance measure and simply connected time series data points, indicated as 

data accumulation, to draw the trajectory map. 

A trajectory map should take multiple perspectives into account not to miss potential 

disruptive indications. This involves predicting what performance the market will demand along 

various dimensions and what performance levels will be able to supply (Danneels 2004). It is 

often recognized that new technologies would not always be superior to the prior one as well as 

performance disruption, i.e. intersection between trajectories, could occur from the technology 

that had been crossed in the past (Sood and Tellis 2005). Many ex post case studies have shown 

that disruptions have happened from an entirely new type of performance measure that hadn’t 

been considered. This implies that current performance measure may be no longer capable of 

capturing advancement in a new direction. Therefore, it is crucial to examine not only which 

performance measures are playing a major role in current progress but also which alternate 

technologies show disruptive potential with respect to the emerging performance measures. 
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Table 1 Summary of literatures on the technology trajectory mapping 

Author (year) Application area Performance measure Plotting method 

Walsh (2004) Microsystems Critical dimension Growth curve 
Keller & Hüsig (2009) Office application Number of operations Data accumulation 

Martinelli (2012) Telecommunication Patent citation Data accumulation 
Phaal et al. (2011) S&T based industry Sales Data accumulation 

Padgett & Mulvey (2007) Brokerage market Level of service integration Data accumulation 
X. Huang & Sošić (2010) General industry Capacity & Price Data accumulation 

Kaslow (2004) Vaccine Efficacy Data accumulation 
Kassicieh & Rahal (2007) Therapeutics Patent publication Patent mapping 

Christensen (1997) Disk drive Capacity Data accumulation 
Schmidt (2011) Disk drive Part-worth Data accumulation 
Rao et al. (2006) P2P and VoIP Data transfer Data accumulation 

Bradley (2009) 
Medical operation 

(MRgFUS1) 
Noninvasiveness Data accumulation 

Lucas & Goh (2009) Photography Price, convenience, etc. Data accumulation 
Madjdi & Hüsig (2011) W-LAN Active Hotspot ratio Data accumulation 

Husig et al. (2005) W-LAN Data rates Data accumulation 
Walsh et al. (2005) Silicon industry Number of firms Data accumulation 
Figueiredo (2010) Forestry industry Novelty & complexity level Data accumulation 

Caulkins et al. (2011) General industry Market connection Skiba curve 
Adamson (2005) Fuel cell vehicle Utility coefficient values Data accumulation 

Belis-Bergouignan et al. (2004) Organic compound Environmental performance Data accumulation 

Ho (2011) General industry (Taiwan) 
Technology sources and 

innovation drivers 
Data accumulation 

Werfel & Jaffe (2012) 
Smoking cessation 

products 
Patent Reduced form model 

No & Park (2010) Nano-biotechnology Patent Data accumulation 

Letchumanan & Kodama (2000) 
General industry 

 (High-tech) 
Correlation between Exports 

and R&D intensity 
Data accumulation 

Spanos & Voudouris (2009) 
Manufacturing SMEs 

(Greek) 
AMT2 Data accumulation 

Frenken & Leydesdorff (2000) Civil aircraft 
Diffusion rate 

(Entropy statistics) 
Data accumulation 

Watanabe et al. (2009) Printers Sales and price 
Technology price 

function 

Hobo et al. (2006) 
Service oriented 

manufacturing industry 
Sales, income, employees, and 

productivity 
Data accumulation 

Watanabe et al. (2005) 
Electrical machinery 

(Japan) 
Marginal productivity Data accumulation 

S.-H. Chen et al. (2012) Smart grid Average age Data accumulation 
Epicoco (2012) Semiconductor Devices per chip Data accumulation 

Funk (2005) Mobile phone Mobile subscribers Data accumulation 
Raven (2006) Renewable energy Energy production(TJ/yr) Data accumulation 

Castellacci (2008) 
Manufacturing and service 

industries 
Labor productivity Data accumulation 

Kash & Rycoft (2000) Radiation therapy Capability Growth curve 

Arqué-Castells (2012) 
General industry 

(Spain) 
Patent Poisson model 

W.-J. Kim et al. (2005) DRAM 
DRAM shipment and Memory 

density 
Data accumulation 

C.-Y. Lee et al. (2008) Home networking (Korea) Units of new household/year Data accumulation 
Koh & Magee (2006) Information technology Megabits Data accumulation 

Barberá-Tomás & Consoli 
(2012) 

Artificial disc Patent Data accumulation 
1: MR-guided Focused Ultrasound 
2: Advanced Manufacturing Technology 
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3. Methodology 

To supply insight into the approach we are proposing, this section introduces Technology 

Forecasting using Data Envelopment Analysis (TFDEA.) The DEA model, which underlies 

TFDEA, is unique in that it allows each Decision Making Unit (DMU) to freely choose its own 

weighting scheme, and as such, the efficiency measure will show it in the best possible light 

(Charnes, Cooper, and Rhodes 1978; Fried, Lovell, and Schmidt 2008). This flexible weighting 

characteristic has shown practical advantages in a wide range of applications especially when the 

assessment involves complex tradeoffs that are difficult to model as a universal set of weights 

(Lim, Anderson, and Kim 2012). When the application area calls for limits on relative weights, 

upper or lower bounds of weights can also be implemented by imposing weight restrictions 

(Dyson and Thanassoulis 1988; R G Thompson et al. 1986; Russell G Thompson et al. 1990; 

Wong and Beasley 1990).  

Based on the strengths of DEA, TFDEA has been used in a number of forecasting 

applications since the first introduction in PICMET ’01 (Anderson, Hollingsworth, and Inman 

2001; Cole 2009; Lim, Anderson, and Shott 2014; Tudorie 2012). Figure 1 shows the TFDEA 

rate of change (RoC) calculation process with AR-I (Assurance Region type 1) weight 

restrictions implementation in a multiplier model (R G Thompson et al. 1986). Specifically, the 

variable ݃௞
௧೑ serves as the objective function and represents the weighted sum of inputs using the 

most favorable set of weights, ݒ௜,  ௙. Since each reference setݐ ݇ at time period	௥, for technologyݑ

only includes technologies that had been released up to ݐ௙ , ݃௞
௧೑  indicates how superior (or 

efficient) the technology ݇ is at the time of release. The effective year, ݐ௞
௘௙௙, is determined by 

calculation of (1) to specify a weighted average of the old technologies that technology k is being 
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compared against. Note that the benchmarking parameter,	ߣ௝,௞, is obtained from the envelopment 

model and calculation of (1) can be simplified as (2) in the case of VRS.  

௞ݐ
௘௙௙ ൌ

∑ ௝ݐ ∙ ௝,௞௝ߣ

∑ ௝,௞௝ߣ
,			∀݇													ሺ1ሻ 

௞ݐ
௘௙௙ ൌ෍ݐ௝ ∙ ௝,௞ߣ

௝

,			∀݇												ሺ2ሻ 

The RoC,	ߛ௞
௧೑  may then be calculated taking all DMUs that were efficient at the time of 

release, ݃௞
௧ೖ ൌ 1 , but were superseded by technology at time ݐ௙ , ݃௞

௧೑ ൐ 1 . For a more 

comprehensive treatment of TFDEA, the interested reader is referred to earlier studies (Inman 

2004; Lim, Anderson, and Inman 2014). 

 

 

Figure 1 TFDEA RoC calculation process with AR-I implementation 
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4. Trajectory mapping on flat panel industry 

To illustrate the use of the methodology presented in this paper, we provide an example of 

trajectory mappings that is applied to the flat panel industry to examine technology progresses 

from various perspectives. 

4.1. Dataset 

Lim, Runde, and Anderson investigated the technology advancement of Liquid Crystal 

Display (LCD) to forecast future state of the arts (SOAs) specifications (Lim, Runde, and 

Anderson 2013). This study examined 389 LCD panels with five characteristics that were 

determined from a group of LCD technologists. As a follow up study, the dataset has been 

updated to include 442 LCD panels and 29 Organic Light Emitting Diode (OLED) panels that 

have been introduced from 1998 to 2012 (see Table 2 for the summary of data). Variables 

included for this study are as follows: 

 Company / Name (text): manufacturer and name of panel 

 Backlight (text): illuminating source 

 Year (year):year of release 

 Screen Size (inches): diagonal length 

 Bezel Size (millimeters): length from the outside shell to the beginning of the active 

area  

 Weight (kilograms) 

 Resolution (pixels): horizontal times vertical resolution 

 Contrast Ratio (ratio): the ratio of luminance of brightness 0 to 100% energized 

pixel(s) 
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 Viewing Angle (degrees): the maximum horizontal angle at which a display can be 

viewed 

 Response Time (milliseconds): amount of time a pixel takes to go from one value to 

another 

 Energy Consumption (watts): sum of panel and lamp power consumptions in 

maximum brightness condition 

 Brightness (cd/m2): candela per square meter, equivalent to Nit or lux 

 

Table 2 Dataset summary 

Screen Type LCD 
OLED Total 

Backlight CCFL RGBLED WLED 

No. of Products(Manufacturers) 260 (25) 21 (6) 87 (11) 28(5) 396 (29) 

Years 1998~2012 2004~2012 2008~2012 2007~2012 1997~2012 

Average Size 

(inches) 
37.59 20.31 39.34 6.49 34.86 

Average Weight 
(kilograms) 

13.44 2.47 11.62 1.62 11.57 

Average Resolution 
(pixels) 

2.05 million 2.28 million 2.23 million 0.47 million 2.00 million 

Average Contrast Ratio 
(ratio) 

1,939.73:1 777.62:1 1,872.41:1 226,250.00:1 17,558.15:1 

Average Viewing Angle 
(degrees) 

172.72 167.43 174.85 168.71 172.68 

Average Response Time 
(milliseconds) 

8.79 14.85 6.11 0.22 7.90 

Average Energy Consumption 
(watts) 

188.98 40.46 176.20 14.73 165.28 

Average Brightness 
(cd/m2) 

456.46 264.76 425.98 188.75 420.46 

 

4.2. Analysis 

The analysis was performed using the software developed by Lim and Anderson (2012). To 

facilitate the implementation of weight restrictions in an output oriented model, a constant 1 was 

used for an input and eight variables (screen size, weight, resolution, contrast ratio, viewing 

angle, response time, energy consumption, and brightness) were used as outputs for the model. 



11 
 

Since outputs need to be goods where increasing values are considered better, reciprocals of 

weight, response time, and energy consumption were used for the analysis (Cooper 2001; Färe 

and Grosskopf 2000). The VRS was used because both increasing and decreasing panel sizes 

cause major challenges. The frontier year was fixed as 2012 so that the technology progress was 

examined throughout the timeframe in the dataset. 

Figure 2 illustrates technology trajectories of four representative panels: CCFL (Cold-

Cathode Fluorescent Lamps) backlit LCD, RGBLED (Red-Green-Blue LED) backlit LCD, 

WLED (White LED) backlit LCD, and OLED. Solid (dotted) lines indicate trajectories of the 

level of top (average) performing panels in each year against the frontier year of 2012. Therefore, 

performance level of 100% indicates that the panel has a performance good enough to be 

identified as a state-of-the-art (SOA) in 2012. A performance level higher than 100% denotes 

super-efficiency from the DEA model which can show how superior each panel is to the SOA. 

For example, the first CCFL backlit LCD panel, ViewSonic VP140 in 1998, shows an efficiency 

score of 1.783191 which indicates that this panel should have produced at least 78% more of 

each output to be competitive with state of the art panels. In other words, the performance level 

of this panel is 56.08% (1/1.783) of the SOA frontier in 2012.  

The trajectory of CCFL backlit LCD shows a continuous improvement over time. 

Samsung’s 570DX introduced in 2007 was identified as the top performing CCFL backlit LCD 

with super-efficiency of 0.660749, that is, performance level of 151.3% compared to the SOA 

frontier. Note that post-2007 CCFL backlit LCDs are also considered to be SOA products-just 

not as outstanding as the 570DX. This special panel was intended to be a Digital Information 

Display (DID) that ensures superior performance even in the outdoor environments; full HD 

1080p with 2.07 million pixels in total, 5000:1 contrast ratio in dynamic mode, 8ms response 

time, 178 degree viewing angle, and brightness of 600 cd/m2 across the large (57″) screen. 
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Figure 2 Trajectory map (unrestricted model) 

 

The LED backlit LCDs began to be introduced to the market in 2004. The first RGBLED 

backlit panel, AUO M230UW01 V0, made a debut with a performance level similar to CCFLs in 

2004 (95.15%). However, RGBLED backlit LCDs have not shown a distinct superiority over 

CCFL backlit LCDs. In contrast, WLED backlit LCDs have posed a threat to CCFLs since their 

first release in 2008. Table 3 summarizes the distinct features of top performing CCFL and 

WLED backlit LCDs from 2009 to 2011. It can be seen that WLED backlit LCDs were 

successful outperforming CCFLs with large screen, high contrast ratio and brightness. 

The trajectory of OLED panels was identified to be ‘highly outstanding.’ This can be 

attributed to several unique characteristics of OLED displays. First of all, OLEDs are able to 

directly emit light rather than relying on a backlight. This enables OLED to display deeper black 

levels and therefore very high contrast ratios, a minimum of 105:1, whereas similar sized LCD 

panels are almost two orders of magnitude lower (see Table 3 ranging from 1000:1 to 2000:1.) 
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Additionally, OLED’s self-emitting feature makes it possible for OLED panels to reduce power 

consumption while LCDs consume energy even when displaying black color. OLED panels also 

have a response time less than 0.1ms which is almost 1,000 times faster than typical LCD panels. 

Consequently, these extreme features placed OLED panels on the SOA frontier. 

 

Table 3 State of the art CCFL/WLED backlit LCDs from 2009 to 2011 (unrestricted model) 

Co. Name Year Backlight 
Size 

(Inches) 
Contrast Ratio 

(ratio) 
Brightness 

(cd/m2) 
DEA Score 

(%) 

Sharp LK636R3LZ1x 2009 CCFL 63.3 1300 350 106.67* 

LG LM300WQ5-SLA1 2010 CCFL 30 1000 370 99.98 

LG LM240WU7-SLB3 2011 CCFL 24 1000 400 99.94 

Samsung LTI700HD02 2009 WLED 70 2000 2000 138.80* 

Samsung LTM270HT03 2010 WLED 27 1000 300 103.38* 

Berise BR720D20 2011 WLED 72 1100 2000 125.59* 
*: Super-efficiency score 

 

Once the efficiency measurement is completed, TFDEA calculates a rate of change (RoC) 

which shows how much overall performance has improved enough to create the new technology 

frontier. In this sense, the average RoC of each technology can serve as an indication for future 

technological disruption. It should also be noted here that average RoC doesn’t necessarily 

represent the overall slope of trajectories since the rate of change is calculated based on the 

frontier levels against the frontier year of 2012. That being said, inferior technologies to the 

previous year are presented on the trajectory map to show the technology progress pattern, 

however, they are excluded from the rate of change calculation since they didn’t contribute to the 

evolution of the state of the art frontier.  

Table 4 presents average RoC of four panels. The CCFL backlit LCD’s average RoC is 

found to be 1.037864 which means efficiency score of SOA CCFLs have been increased by 3.8% 
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every year from 1998 to 2012. This may be interpreted that outputs of the CCFLs have been 

improving by 3.8% annually. The advancement of OLED technology shows the fastest progress 

of 4.7%. This again supports the disruptive potential of OLED panels in the future coupled with 

current superior level of performances. 

 

Table 4 Average Rate of Change of four panels (unrestricted model) 

CCFL backlit LCD RGBLED backlit LCD WLED backlit LCD OLED 

1.037864 1.012439 1.011571 1.046848 

 

We now turn to our approach using restricted models. As previously noted, a dynamic 

weighting scheme can explain various possibilities of tradeoffs between inputs and outputs in 

DEA model. However, DEA studies often suffer from occurrence of unrealistic weight solutions 

and this becomes a motivation for applying the weight restrictions (Allen and Thanassoulis 

2004). In our previous example, it was possible for the model to identify SOA products if panels 

had extreme characteristics in any attribute(s) that might not be key factors to be a better panel. 

Sony’s OLED XEL-1, for example, had the highest DEA score of 203.99. This panel stands out 

against others because of the overwhelming contrast ratio (106:1) despite the fact that it may not 

be an appropriate panel for home TV use due to its very small size (11″) and low resolution 

(518,400 pixels) which is far below the HDTV requirements. The XEL-1 received its high score 

by placing a high weight on contrast ratio and disregarding important outputs on which it was 

very weak. 

Imposing weight restrictions prevents key attributes from being omitted from the assessment 

and reflects a prior view into the assessment to ensure that tradeoffs in the DEA model are in line 

with practical knowledge. This has an implication in trajectory mapping that different progress 
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patterns can be identified under the imposed conditions such as more significance was put on 

certain attribute(s) than others. These what-if analyses on trajectory mapping may also be useful 

when one tries to identify disruptive technologies for different market segments where 

customer’s value propositions vary. 

To illustrate restricted models, we applied two different weight restrictions to represent 

perspectives of ‘casual home users’ and ‘technical artists.’ The casual home users were assumed 

to pay more attention to screen size, resolution, viewing angle, brightness, and power 

consumption. This was implemented such that more weights were assigned to those attributes 

than others when panels were evaluated as seen in (3). Note the outputs were rescaled by 

dividing each panel’s output value by the mean of that output in the full dataset. This is a 

commonly used transformation (Talluri and Yoon 2000) and was done prior to weight 

restrictions. Note that the dual approach is also possible using production trade-offs in the 

envelopment model (Podinovski and Bouzdine-Chameeva 2013). 

 

௥∈஼ு௎೎ݑ ൑  			,௥∈஼ு௎ݑ

,ݎ∀ ܷܪܥ ൌ ሼܵܿ݊݁݁ݎ	݁ݖ݅ݏ, ,݊݋݅ݐݑ݈݋ݏܴ݁ ,݈݁݃݊ܽ	݃݊݅ݓܸ݁݅ ,ݏݏ݁݊ݐ݄݃݅ݎܤ  ሺ3ሻ				ሽ݊݋݅ݐ݌݉ݑݏ݊݋ܿ	ݎ݁ݓ݋ܲ

 

The restricted model result for casual home users is shown in the Fig. 3. Unlike the 

unrestricted model, CCFL backlit LCDs now show higher performance compared to the other 

technologies. This is because CCFL backlit LCDs perform well on the specifications favored by 

casual home users. Indeed, manufacturers have been producing larger CCFL backlit panels with 

high resolutions, wider viewing angles, and brighter colors based on improving production 

processes. On the other hand, the relative weaknesses of CCFLs such as weight and response 

time are less important for casual home users which also assist CCFL panels’ score more highly. 
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This is consistent with the success of the CCFL panels in the home HDTV television market 

through 2010. 

 

 

Figure 3 Trajectory map for casual home users restricted model 1) 

 

Figure 3 is consistent with the unrestricted model that WLED backlit LCDs have recently 

become a threat to CCFLs. Table 5 summarizes distinct features of top performing CCFL and 

WLED backlit panels from 2010 to 2012. One can see that WLED backlit panels have been 

scaling up the screen size with high resolutions and improving response time dramatically. As a 

result, the comparative advantages of CCFLs in large size screens with respectable resolutions 

have been finally superseded by WLED backlit LCD in 2012. 

The difference between the unrestricted and restricted models becomes more obvious when 

comparing trajectories of OLEDs. Although OLED panels inherently have excellent contrast 

ratios, response times, and energy consumption, manufacturers have introduced relatively 
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smaller screen sizes (~24.5″), lower resolutions (~2megapixel) and brightness (~550cm/m2) due 

to their target markets and mass production barriers (Park et al. 2012). Since the restricted model 

prioritized attributes for casual home users, OLED panel’s advantages did not overcome their 

weaknesses. Note that those disadvantages had been overcome by other extreme features in the 

unrestricted model as previously discussed. Consequently, the bounded model penalized OLED 

panels that any model couldn’t reach to the SOA frontier. 

 

Table 5 State of the art CCFL/WLED backlit LCDs from 2010 to 2012 (restricted model 1) 

Co. Name Year Backlight 
Size 

(Inches) 
Resolution 

(Megapixel) 
Resp. Time 

(ms) 
DEA Score 

(%) 

LG LD470WUB-SCA1 2010 CCFL 47 2.1 5 89.40 

ChimeiInnolux V520H1-L05 2011 CCFL 52 2.1 9 100.13* 

ChimeiInnolux V320BJ3-L01 2012 CCFL 31.5 1.0 9 100.00* 

CMO M236H3-LA2 2010 WLED 23.6 2.1 6.5 75.71 

Berise BR720D20 2011 WLED 72 2.1 8.5 97.69 

LG LC840EQD-SEF1 2012 WLED 84 8.3 1.5 101.18* 

*: Super-efficiency score 

 

Table 6 presents average RoCs of this restricted model. Not surprisingly, the WLED backlit 

LCDs have shown the fastest rate of change, 2.7%, even within a short time period. This 

reconfirms that WLED backlit LCDs are posing a disruptive threat on CCFL backlit LCDs with 

fast technological advancement as well as competitive level of performances in the casual home 

user market. In contrast, the average RoC of OLED becomes lower than the unrestricted model. 

This indicates that OLED panels need to increase the screen size, pixels, and brightness to be 

accepted by casual home users. 
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Table 6 Average Rate of Change of four panels (restricted model 1) 

CCFL backlit LCD RGBLED backlit LCD WLED backlit LCD OLED 

1.019215 1.019824 1.027056 1.011052 

 

Turning to an assessment from a different perspective, one may assume that technical artists 

would pay more attention to pixel density (i.e. pixels per inch: PPI), contrast ratio, and response 

time. This can be reflected in the model using weight restrictions such that greater weights were 

to be attached to those attributes when panels were compared one another. This is shown in (4). 

 

௥∈்஺೎ݑ ൑  ,௥∈்஺ݑ

,ݎ∀ ܣܶ ൌ ሼܲܲܫ, ,݋݅ݐܽݎ	ݐݏܽݎݐ݊݋ܥ  ሺ4ሻ															ሽ݁݉݅ݐ	݁ݏ݊݋݌ݏܴ݁

 

This restricted model indicated that top performing WLED backlit LCDs have exceeded the 

performance level of CCFLs since 2009 (see Fig. 4.) Even though the CCFL backlit LCD LC-

19D45U is still SOA since its release in 2007 and has a higher performance than other backlit 

LCDs, post-2007 CCFLs haven’t performed as well as the WLEDs, largely due to contrast ratio 

and response time. This could be interpreted as a sign of disruption for CCFL backlit panel 

targeting technical user groups. 
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Figure 4 Trajectory map for technical artists (restricted model 2) 

 

Under the second restricted model with preferences for the technical artists, the OLED 

panels are shown to be the strongest performing LCD panels. Specifically, the top performing 

OLED panel, CHIMEL P0430WQLA-T, surpassed the level of the top performing CCFL panel, 

Sharp LC-19D45U, in 2008. In addition, the top performing OLED panel, Sony PVM-740, 

became superior to top performing WLED panel, Berise BR650D15, in 2011. Table 7 

summarizes the capabilities of those panels. Obviously, the top performing OLED panels have 

superior performance on the attributes that were valued by the technical artists’ model. 
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Table 7 State of the art CCFL/WLED/OLED panels in 2007, 2008 and 2011 (restricted model 2) 

Co. Name Year 
Backlight 
(or Panel) 

Pixel Density 
(PPI) 

Contrast Ratio 
(ratio) 

Resp. Time 
(ms) 

DEA Score 
(%) 

Sharp LC-19D45U 2007 CCFL 26.86 1,500 6 110.57* 

CHIMEL P0430WQLA-T 2008 OLED 128.30 10,000 0.05 112.22* 

Berise BR650D15 2011 WLED 34.15 5,000 5.5 99.83 

Sony PVM-740 2011 OLED 172.10 1,000,000 0.01 124.21* 
*: Super-efficiency score 

 

The average RoCs from this bounded model are presented in Table 8. One can expect fierce 

competition between WLED backlit LCD and OLED for the time being with their fast rates of 

change and current outstanding levels of performance. In particular, OLED’s 12.6% annual 

progress may pose a major threat to LCD panels in the technical users’ market over coming years. 

 

Table 8 Average Rate of Change of four panels (restricted model 2) 

CCFL backlit LCD RGBLED backlit LCD WLED backlit LCD OLED 

1.024467 1.019296 1.059148 1.126141 

 

5. Discussion 

Few researchers have proposed the predictive approach of the disruptive innovation theory 

considering multidimensional aspects of technology systems. Schmidt suggested using part-

worth curves in search of low-end encroachment (Schmidt 2011). Paap and Katz provided 

general guidance for ex ante identification of future disruption drivers (Paap and Katz 2004). 

Several authors have suggested using extant methods for technological forecasting to assess 

potential disruptive technologies (Danneels 2004; Yu and Hang 2010). Govindarajan and 

Kopalle argued that capturing firm’s willingness to cannibalize could be a sign of ex ante 
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prediction of disruptive innovation (Govindarajan and Kopalle 2006). Doering and Parayre 

presented a technology assessment procedure that iterates among searching, scoping, evaluating, 

and committing (Doering and Roch 2000). The main idea of these approaches is that the 

disruptive characteristic can be found by investigating technology systems from various possible 

angles, some of which might be secondary performance metrics where the disruptive potential 

may exist. Nevertheless, how to actually calibrate the path of technological changes has not 

received extensive attention in innovation strategy literature.  

The approach proposed in this study provides a flexible measurement system to investigate 

the level of performance from multidimensional perspectives over time. In our example, the first 

restricted model that focused more on structural characteristics identified that CCFL backlit 

LCDs have shown steady technological advancement but are now being challenged by WLED 

backlit LCDs while OLED panels are struggling to ramp up panel sizes. The second restricted 

model, that highlighted functional characteristics, showed that top performing OLED panels 

have already surpassed the performance level of CCFL as well as WLED backlit LCDs. This is 

an example of a premise of disruptive innovation theory that the OLED is a new technology 

initially underperformed the dominant one along certain dimensions in market but was superior 

on other dimensions and, as time goes on, meets the demand of incumbent markets and could 

dethrone prior ones. In this regard, our approach makes it possible for practitioners to scrutinize 

various aspects of technology progress by exploring different tradeoffs among the attributes. 

In contrast to a widely held belief that technological evolution follows a distinct pattern 

(Utterback 1996), several empirical studies have proven that technological performance 

generally does not follow a priori functional forms such as S-curves (Sood and Tellis 2005; 

Tellis 2006). Likewise, disruptive innovation theory illustrated by parallel straight lines is rarely 

seen in practice (Cohan 2010). In fact, the path of technological change seems largely random; 
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neither linear nor monotonic. The salient question is then whether the technology will be good 

enough to be adopted by a given tier of the market (C. M. Christensen 2006). The market 

demand can be met not only by sustaining improvement of low-end technologies but by 

repositioning of high-end technologies. The dynamics of technology, therefore, need to be 

investigated by focusing on current levels of technological capability with respect to the market 

demand rather than cumulative growth levels (Modis 2007). It is interesting to note here that 

there are two definitions of ‘state-of-the-art’ that are usually conflated. One refers to ‘the most 

advanced state’ and the other refers to ‘the most recent state’ (Oxford English Dictionary 2010). 

One can argue that both technological evolution and disruptive innovation predicates their 

theories on the former definition since they don’t take current levels, which might not be the 

most advanced state, into consideration. 

The approach presented in this paper addresses the importance of measuring current levels 

of technological capabilities to identify both low-end and high-end disruptive potentials. This is 

depicted in Fig.5. Technology A serves as a high-end technology and it has a spin-off design, 

technology A’, to target low-end market niche whereas technology B used to serve as a low-end 

technology but its current performance is able to meet the demand of high-end market. This 

figure can be viewed as disruptive innovation patterns based on raw level of technologies as seen 

from the trajectory of spin-off technology A’. 

Now let’s consider the technology adoption decision at time	ݐ. High-end customers will 

have found out that both high-end product ஺ܲଵ, ୅ܲ’ଶ and a product that was once regarded as a 

low-end,	 ஻ܲଶ, can meet their demand and could adopt ஻ܲଶ, which is the traditional case of low-

end disruption. 
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On the other hand, low-end customers will have found out that both product ஻ܲଵ and product 

୅ܲ’ଷ can satisfy their demand and be swayed by the discounted price of	 ஻ܲଵversus premium for 

୅ܲ’ଷ. This, so-called, high-end disruption (or strategy) is frequently observed in today’s business 

including Digital Video Recorder (DVR), IP telephony, BMW, Miele, and NetJets (Constantiou, 

Papazafeiropoulou, and Dwivedi 2009; Kameda 2004; Van Orden, van der Rhee, and Schmidt 

2011). However, this type of disruption that a technology once regarded as an upper level 

technology could pose a disruptive threat on the low-end market is not captured when the 

evolution of technology is examined by only looking at accumulated level of technological 

capabilities.  

 

 

Figure 5 Trajectory map based on raw capability of technologies 
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6. Limitations and future research directions 

Although a time series application of DEA can provide various managerial insights, there 

are several limitations coming from its inherent nature. First, a DEA measure is by definition an 

equiproportional ratio of how the DMU being assessed can either reduce its inputs or augment its 

outputs to reach its virtual target (Charnes, Cooper, and Rhodes 1978; Farrell 1957). This radial 

efficiency score may not account for all sources of inefficiency by having input and/or output 

slacks that are not reflected in the collective proportion.  

As pointed out by one of the reviewers, using a constant 1 as an input makes the efficiency 

measure confined to be an assessment of aggregated outputs (Collier, Johnson, and Ruggiero 

2011). This further renders the input constraints to be a convexity constraint however this 

doesn’t affect our model since an output-oriented VRS (Seiford and Zhu 1998) was initially 

assumed for the flat panel displays . It should also be noted here that a similar approach can 

employ AR-II type of weight restrictions when output augmentation without detriment to 

multiple inputs are concerned. 

Based on aforementioned limitations, future work could consider:  

 Non-radial distance measure for estimating the frontier with consideration of the furthest 

target (Tone 2001), closest target (Portela, Borges, and Thanassoulis 2003), or target 

located in predefined direction (Grosskopf 2006); 

 Capturing intermittent RoC and/or RoC from non-dominating technologies to make a 

stochastic forecast; 

 Tracking demand trajectories in various market segments so that replacement of 

incumbents can actually be estimated along with technology trajectories; 
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 Choice of appropriate parameters for weight restrictions that can better represent value 

propositions of both extant and potential market segments. This includes determining 

how much certain attributes should be valued than others as well as how much maximum 

(or minimum) weight can be assigned to certain attributes. 

 

7. Conclusion 

In this paper, we have proposed a technology trajectory mapping approach using TFDEA 

that scrutinizes technology progress patterns from multidimensional perspectives. Literature 

reviews on technology trajectory mapping approaches have revealed that it is imperative to 

identify key performance measures that can represent various value propositions and then apply 

them to the investigation of technology systems in order to capture indications of disruptions. 

The proposed approach provides a flexibility not only to take multiple characteristics of 

technology systems into account but to deal with various tradeoffs between technology attributes 

by imposing weight restrictions in the DEA model. The empirical illustration of this approach 

applied to the flat panel technologies has shown that WLED backlit LCDs are surpassing the 

performance level of CCFL backlit LCDs while OLED panels have a disruptive potential with 

excellence in screen performances, albeit small scale yet, that is observed in another performance 

measure. This reconfirms one of disruptive innovation premises that the new technology started 

below the prior one in performance on the primary dimension but was superior on a secondary 

one. 
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