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Abstract: This letter applies trans-dimensional Bayesian geoacoustic
inversion to quantify the uncertainty due to model selection when invert-
ing bottom-loss data derived from wind-driven ambient-noise measure-
ments. A partition model is used to represent the seabed, in which the
number of layers, their thicknesses, and acoustic parameters are
unknowns to be determined from the data. Exploration of the parameter
space is implemented using the Metropolis–Hastings algorithm with par-
allel tempering, whereas jumps between parameterizations are controlled
by a reversible-jump Markov chain Monte Carlo algorithm. Sediment
uncertainty profiles from inversion of simulated and experimental data
are presented.
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1. Introduction

The acoustic study of seabed layering structure and composition has relied heavily on
active-source techniques, although methods using naturally occurring noise1,2 and
man-made sources of opportunity3–5 have been suggested. From these passive techni-
ques, inversion of wind-driven ambient noise recorded at a vertical linear array (VLA)
requires only simple hardware and deployment procedures, it has minimal environmen-
tal impact, and its generating mechanism is ubiquitous in the ocean,1,6,7 making this
technique suitable for exploring large geographic areas. A compelling demonstration of
the seabed layering information carried by ambient noise is the passive fathometer,6

which has been shown to image seabed layering in terms of the time of arrival of
acoustic reflections from sub-bottom layers. Significant research has been conducted to
improve the passive fathometer’s resolution of sub-bottom layers by adaptive array
processing techniques,6 whereas analytical work has been carried out to understand the
impact of discrete interferers.8 Postprocessing of passive fathometer seabed images has
been proposed using a particle filter9 to extract the depth and the strength of acoustic
reflectors, which generates sequential data from which other geoacoustic parameters
could be estimated.

Unlike the passive fathometer, the aim of this work is full parameter and
uncertainty estimation, including layer thicknesses (i.e., a true depth passive fathome-
ter), sound speeds, densities, and attenuations by applying Bayesian inversion to the
bottom-loss (BL) estimated from the ambient noise. The contribution of this letter is
twofold: First, it compares the results of geoacoustic inversion using wind-driven

a)Author to whom correspondence should be addressed.
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ambient noise and active-source data for a realistic simulated environment with
smooth variations in sound speed and density. Second, the impact on parameter uncer-
tainties due to limited knowledge about appropriate parameterization of the environ-
ment is quantified.

Estimating uncertainty due to model selection is a challenging task, particu-
larly for the highly nonlinear problems commonly found in geoacoustic inversion. The
results obtained rely on the degree of understanding about the physical process that
generates the observed data d. Knowledge of this process allows the formulation of
mathematical models with enough complexity to faithfully capture the structure
observed in measured data. Comparison between models Ik from a set of K candidates
can be based on estimating the Bayesian evidence4,10 given by the conditional probabil-
ity PðdjIkÞ. Although evidence-based model selection has the potential to reduce pa-
rameter bias and improve the estimation of parameter uncertainties11 it does not
account for the uncertainty due to the choice of model parameterization, as inversions
are carried out at fixed parameterizations Ik for k¼ 1 ,…, K. To address this, the most
general method for data-driven model selection is to estimate the posterior probability
density (PPD) from which uncertainties, parameter correlations, and other statistical
quantities can be obtained. In this letter, trans-dimensional (trans-D) inversion11,12

with parallel tempering13 is used for geoacoustic parameter estimation from BL data
derived from ambient-noise measurements at a VLA in shallow water. The trans-D
method is a general framework for data-driven inversion, with previous application to
analysis of Earth’s subsurface elastic properties,14 inversion of active-source spherical
reflection coefficient data,11 and matched-field geoacoustic inversion.13 In the trans-D
formulation, data and prior information determine the geoacoustic parameters and
uncertainties, and also provide a parsimonious parameterization (i.e., the number of
parameters used in an inversion are consistent with data and prior information).

To gain insight into the algorithm’s performance, the trans-D inversion is first
applied to simulated data from a realistic seabed, and then to measured data from the
MAPEX 2000 experiment.1 The results are compared to previous work7 that utilized
the Bayesian information criterion15 (BIC) for fixed-dimensional inversion.

2. Inversion method

Bayes’ theorem gives the PPD as11

Pðmk; IkjdÞ ¼
Pðdjmk; IkÞPðmkjIkÞPðIkÞ

PðdÞ ; (1)

where mk (defined in the following) is a vector containing the geoacoustic parameters
to be estimated, and P(Ik) and PðmkjIkÞ are the prior distributions of the parameteriza-
tion and corresponding parameters, respectively. The likelihood function Pðdjmk; IkÞ is
defined here based on the assumption of Gaussian-distributed residuals d� d(mk) as

Pðdjmk; IkÞ ¼
1

ð2pÞN=2jCd j1=2
exp � 1

2
ðd� dðmkÞÞTC�1

d ðd� dðmkÞÞ
� �

; (2)

where d(mk) is a realization of the forward model and Cd is the covariance matrix of
the residuals.

The PPD is sampled by a reversible-jump Markov chain Monte Carlo
(rjMCMC) algorithm, which uses a generalized Metropolis–Hasting criterion to
accept/reject candidate models mk. Note that the length of mk is determined here by
the number of sediment layers, related to the corresponding parameterization Ik. In
this formulation, the inversion parameter space spans multiple subspaces that can vary
in dimension, which is referred to as a trans-dimensional space. Details of the sampling
algorithm have been fully described elsewhere.11,13
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To provide a more complete search over the parameter space, parallel tempering13

is applied by running several interacting Markov chains at different sampling tempera-
tures. Chains at high temperature explore large regions of the parameter space {mk, Ik}
and avoid becoming trapped in local maxima of the PPD. Chains at unit temperature
explore local regions in detail, providing unbiased samples of the PPD. The advantage of
parallel tempering is evident in sampling multimodal distributions where several families
of models can fit the data, as observed in the simulated example presented in this letter.
Parallel tempering also improves the acceptance rate (i.e., the number of accepted models
relative to the total number of models generated while sampling the PPD) for trans-D
jumps, resulting in a more efficient sampling of the PPD.13

In this work a partition model with k interfaces is used for the seabed. The
vector

mk ¼ ½c1 q1 a1 h1 � � � ckþ1 qkþ1 akþ1 SNR1 SNR2 � � � SNRF �T (3)

contains the sound speeds cl, densities ql, attenuations al, and layer thicknesses hl for
each of the kþ 1 layers in the partition (the last layer is a half-space). The signal-to-
noise ratio (SNR) parameters account for the strength of the wind-driven ambient-
noise data (i.e., the useful signal) versus other unwanted sources of noise and are
included as parameters to be estimated from the data at F frequencies. As in previous
work,7 the marginal PPD of SNRs corresponding to simulated data are centered
around the true (known) values used to generate the simulated data (not shown). In
the case of experimental data, the SNRs depend on unknown factors,7 such as the
frequency-dependent sensitivity of the array elements, sensor pre-amplifiers, and accu-
racy of the recording system. Therefore, the estimated values should not be used to
infer the wind speed.

Sediments with features such as depth-dependent parameter gradients are rep-
resented by a series of layers. The forward model7 d(mk) is based on a ray representa-
tion of the ambient-noise field developed by Harrison,16 and considers the distortion to
the seabed reflection coefficient caused by beamforming when estimating the BL.

3. Results

In this section, marginal probability profiles for the estimated sound speed, density,
attenuation, and layering structure of the seabed are presented. The input to the inver-
sion algorithm is the frequency- and angle-dependent BL, computed from the (simu-
lated or experimental) ambient-noise field as the ratio of upward-to-downward energy
fluxes.1,7 In all cases the water column is 130 m deep with a sound-speed profile with a
thermocline beginning at a depth of 45 m, as measured during the MAPEX-2000
experiment.7 The VLA consists of N¼ 32 elements spaced by 0.5 m, with the shallow-
est element at a depth of 88 m.

Inversion of experimental wind-driven ambient noise data can be affected by
the presence of discrete interferers (e.g., ships), which violate the assumption of a large
(infinite) layer of surface sources. It was shown8 that arrivals from discrete interferers
with no more than one seabed reflection can obscure the seabed response given by the
passive fathometer, although the impact of steeper arrivals (undergoing multiple boun-
ces off the seabed) is reduced. This justifies omission of discrete interferers in the model
used for inversion, as long as data at shallow grazing angles are not included. To mini-
mize the potential harmful impact of distant shipping noise in the case of experimental
data, in this letter the BL input to the trans-D algorithm is taken over 20 equally
spaced angles from 14� to 90�, as inspection of the beamformer output [see Fig. 5(a) of
Ref. 1] suggests that data arriving at shallower angles might be contaminated by dis-
tant shipping noise.

To take advantage of parallel computing, the PPD is sampled using seven in-
dependent Monte Carlo processes, where each process consists of eight interacting
rjMCMC chains at different sampling temperatures ranging from T¼ 1 to 3.5. The
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results shown in this section are computed from the seven chains at T¼ 1, and conver-
gence was judged by the stationarity of these chains (i.e., absence of trends in the like-
lihood and convergence of the chains to similar distributions). In all inversions, P(Ik)
consists of a discrete uniform distribution for k¼ 1–25, whereas PðmkjIkÞ uses priors
based on experimental laboratory measurements7,17 of sound speed and intrinsic
attenuation versus density given by

cþl ¼ 1529:4 1:7 � 0:98
ql

1000
þ 0:38

ql

1000

� �2
� �

;

c�l ¼ 1529:4 1:6 � 0:98
ql

1000
þ 0:34

ql

1000

� �2
� �

;

aþl ¼ 1:5294ð0:003 32e0:0025ql þ 0:1Þ;
a�l ¼ 0;

(4)

where [c�l , cþl ] and [a�l , aþl ] are the upper and lower bounds for sound speed and
attenuation, respectively, for a given density ql 2 ½1250; 2050� kg/m3.

3.1 Simulation

To gain insight into the performance of the trans-D approach in a complex environ-
ment, a simulated seabed with a total depth of 4 m was constructed using measurements
of sound speed and density from cores extracted on the Malta Plateau.11 Properties
from these cores were partitioned into 120 layers of varying thickness to provide true
sediment profiles with fine structure below the resolving power of BL data. Previous
work11 using this simulated environment has been carried out in the context of plane-
wave reflection-coefficient inversion for active-source measurements. In this work the
wavenumber-integration model OASES18 was used to compute the simulated ambient-
noise field at the array. The wind speed (which determines the strength of the noise field)
was taken to be 15 kn. Beamforming was performed to estimate the BL at eight frequen-
cies from 300 to 1400 Hz, shown in Fig. 1(a). For this simulation, white Gaussian noise

Fig. 1. (Color online) (a) Simulated BL data (dots) and 95% credibility intervals for data prediction computed
from the sampled PPD (solid lines) and from the secondary PPD mode (dashed lines). (b) Marginal probability
profiles for geoacoustic parameters, with true profiles indicated by dashed lines. (c) Marginal probability distri-
bution of the parameterization, PðIk jdÞ.
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with standard deviation rf ¼ 0.5 dB was added to the BL, and rf at each frequency was
treated as an unknown sampled implicitly in the inversion11 (i.e., the matrix Cd is assumed
diagonal with an unknown element r2

f at each frequency). Figure 1(b) shows the marginal
PPD profiles for geoacoustic parameters along with the true sediment profiles. At most
depths, the support of the marginal PPDs concentrates around the true parameters, indi-
cating good agreement. As in previous work,11 layer discontinuities represent smooth tran-
sitions in sound speed, density, and attenuation, resulting in models of lower complexity
than the original simulated environment. One important observation is that more structure
was resolved by using controlled-source data than with ambient-noise data: The first case
yielded models with 6–11 layers (see Fig. 4 in Ref. 11), whereas the passive data suggests
models with 4–7 layers as shown in Fig. 1(c). This decrease in resolution is likely related to
the smearing effect of beamforming when preprocessing the ambient-noise field, reducing
the data information content.

An interesting feature in Fig. 1(b) is the bimodal structure observed in the sound
speed and the density over the top 1.5 m of sediment, where the dominant mode has a
first interface at �0.65 m depth and ignores the pronounced gradient in density of the
true model, whereas the secondary mode seems to be driven by this gradient and inserts
an interface at �0.25 m depth. This secondary mode has been isolated in Fig. 2(a) by
using only the samples for which the top acoustic interface is at depths below 0.3 m. In
this case, the inversion seems strongly driven by the surface density gradient, while devi-
ating from the true density for depths >0.3 m. The parameterization for the secondary
mode is dominated by models with four to five layers [Fig. 2(b)].

Multimodal behavior can result from nonlinearity of the inverse problem (i.e.,
be real) or from ineffective sampling of the PPD (an artifact of the algorithm). In this
work, the marginal PPDs for each of the seven independent chains used to generate
Fig. 1(a) all exhibited the same bimodal structure, suggesting that the secondary mode
is not the result of poor mixing when exploring the parameter space. This can also be
observed by examining the likelihood chain in Fig. 2(c), where the dots and crosses
correspond to samples of the main and the secondary mode, respectively. The right
subpanel shows the histogram for each case, indicating large overlap between the likeli-
hood of both modes of the PPD. The likelihood of the secondary mode has lower
mean, which is expected since Fig. 2(a) is not as good representation of the true envi-
ronment as Fig. 1(b). Nevertheless, both modes fit the data well, as evidenced by the
95% highest probability density credibility intervals in Fig. 1(a), which contain most
data points in both cases.

Fig. 2. (Color online) Analysis of the secondary mode in Fig. 1(a), for which the top acoustic interface is at
depth �0.25 m: (a) Marginal probability profiles; (b) PðIk jdÞ; (c) Log of the PPD for samples of the main mode
(dots) and the secondary mode (crosses). For display purposes only every 100th sample from the rjMCMC
chain is plotted. The subpanel to the right shows the histogram corresponding to the main mode (solid) and the
secondary mode (dashed).
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3.2 Experimental data

Trans-D inversion was also applied to ambient-noise data collected at a moored VLA
during the MAPEX 2000 experiment.1 Previous work using the BIC approach to
model selection7 yielded a three-layer sediment profile in good agreement with core
samples of sound speed and density from the region, shown in Fig. 3(a). These results
were also in agreement with inversions using an active-source technique based on a sin-
gle hydrophone and towed source.19 Figure 3(b) shows the marginal PPDs obtained
from the trans-D approach, which resulted in larger uncertainties indicated by wider
support of the marginal PPDs. For this inversion, the covariance matrix Cd was
obtained from Fig. 7 in Ref. 7. Underestimation of the parameter uncertainties using
the BIC can be explained as a result of applying a point estimate for parameterization
selection. With the trans-D approach, the parameterization is treated as a random vari-
able with its own distribution determined by the information content of the data [Fig.
3(c)]. This distribution impacts geoacoustic parameter estimation by increasing the cor-
responding uncertainties and providing more meaningful estimates. For this particular
data set, PðIkjdÞ indicates a high probability for models with three layers (as found
with the BIC study), but it also assigns nonzero probabilities to models with four and
five layers.

4. Summary and discussion

The trans-D method for model selection was applied to BL data estimated from the
wind-driven ambient-noise field in a shallow-water waveguide. Algorithm performance
was examined using passive (ambient-noise) data and compared to results from previous
studies using active (controlled-source) data. For uniform comparison, the study was
carried out with data at the same frequencies, except for 1600 Hz in Ref. 11, which was
reduced to 1400 Hz to be below the design frequency of the array used in this work. The
marginal PPDs obtained by the passive method have similar characteristics as those
from active data (see Fig. 5 in Ref. 11), with good agreement of the sound speed and
density with respect to the true profiles. In particular, the depths of interfaces of high
acoustic contrast are consistent for both (passive and active) techniques.

Two main discrepancies between passive and active approaches were found:
first, the passive study reveals a smaller number of layers (a decrease in depth resolu-
tion of geoacoustic features), likely caused by smearing of the seabed reflection coeffi-
cient through beamforming. If higher resolution was required, data could be collected
with a larger aperture array to mitigate this smearing. Second, the PPD in the passive
study has a bimodal structure, in which the main mode provides an overall fit to the
true environment, whereas the secondary mode is driven by the near-surface density
gradient. This was not the case in the active study, in which the only mode observed in
the PPD includes this density gradient.

Fig. 3. (Color online) Marginal probability profiles from experimental BL for (a) BIC approach from Ref. 7
and (b) trans-D approach. The dots are experimental measurements of sound speed and density from core sam-
ples taken at a location �400 m from the array. (c) Marginal probability for the parameterization, PðIk jdÞ.
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Application of the trans-D method to experimental data improved previous
results in which model selection was addressed using a point estimate based on the
BIC. The trans-D inversion gave marginal PPDs with wider support, which translates
in more conservative (and realistic) estimates of geoacoustic parameter uncertainties.
With this particular data set the trans-D results are not drastically different from the
BIC-based results, as the data strongly support models consisting of three layers.
Nevertheless, the trans-D method could play a major role with data that support a
wider range of parameterizations.
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