
Portland State University
PDXScholar
Computer Science Faculty Publications and
Presentations Computer Science

2015

The Expression Problem, Gracefully
Andrew P. Black
Portland State University, black@cs.pdx.edu

Let us know how access to this document benefits you.
Follow this and additional works at: http://pdxscholar.library.pdx.edu/compsci_fac

Part of the Programming Languages and Compilers Commons

This Post-Print is brought to you for free and open access. It has been accepted for inclusion in Computer Science Faculty Publications and
Presentations by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Citation Details
Black, Andrew P., "The Expression Problem, Gracefully" (2015). Computer Science Faculty Publications and Presentations. Paper 139.
http://pdxscholar.library.pdx.edu/compsci_fac/139

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PDXScholar

https://core.ac.uk/display/37775405?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/compsci?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=http://pdxscholar.library.pdx.edu/compsci_fac/139
http://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/compsci_fac/139?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu


Andrew P. Black — The Expression Problem, Gracefully

The Expression Problem, Gracefully

Andrew P. Black
Portland State University

black@cs.pdx.edu

Abstract
The “Expression Problem” was brought to prominence
by Wadler in 1998. It is widely regarded as illustrating
that the two mainstream approaches to data abstraction —
procedural abstraction and type abstraction — are comple-
mentary, with the strengths of one being the weaknesses of
the other. Despite an extensive literature, the origin of the
problem remains ill-understood. I show that the core prob-
lem is in fact the use of global constants, and demonstrate
that an important aspect of the problem goes away when
Java is replaced by a language like Grace, which eliminates
them.

Keywords data abstraction, algebraic data types, rows and
columns, procedural abstraction, objects, expression prob-
lem, extensibility.

1. Introduction
The Expression problem was given that name by Wadler
in 1998 [9], and demonstrates the importance of a catchy
name in securing the immortality of publication. Wadler did
not claim to have invented the problem; on the contrary,
he pointed out that it had already been widely discussed,
notably by Krishnamurthi, Felleisen, and Friedman in an
ECOOP paper published earlier that year [5]. Oliveira and
Cook’s later ECOOP paper [6] opens by declaring that

The “expression problem” (EP) [4, 7, 9] is now a
classical problem in programming languages. It refers
to the difficulty of writing data abstractions that can
be easily extended with both new operations and new
data variants.

It does not take much study of the voluminous literature on
the expression problem to realize why it has proven so diffi-

[Copyright notice will appear here once ’preprint’ option is removed.]

cult to solve: the problem is over-constrained, in the sense
that the problem statement itself rules out any possibility
of a perfect solution. The various published solutions fill a
three-dimensional space. Two dimensions are frequently dis-
cussed and compared. The first is the set of features offered
by the implementation language (classes, class extensions,
generic types, algebraic data, etc.); the second is the pattern
employed by the programmer (abstract factory, visitor, ob-
ject algebra, etc.). The third dimension, in contrast, is hardly
mentioned: which of the constraints the authors choose to
loosen to obtain a solution. To understand what these con-
straints are, we need to examine the problem in more detail.

2. The Problem
As described by Krishnamurthi, Felleisen, and Friedman [5],
the expression problem considers a representation of some
composite heterogeneous recursive structure, such as the ex-
pression tree of a programming language. There are opera-
tions (also called “tools”) on those structural elements, for
example, code generation, or pretty-printing. We want to be
able to extend this structure in two orthogonal dimensions:
– the data dimension, in which we might add new variants

to the composite data, for example, representations of new
programming language statements, and

– the operation dimension, in which we might add new op-
erations, such as interpretation.

Krishnamurthi, Felleisen, and Friedman’s original constraint
was that “ideally, these extensions should not require any
changes to existing code”. Wadler added the constraint
of static type safety (e.g., no casts), and strengthened no
changes to existing code to no recompilation of existing
code. Torgersen, in his comprehensive survey of the problem
and its solution using generics [8], observes that “existing
code” includes not only the implementation of the expres-
sion tree, but also the creation code — the code responsible
for creating instances of the structure — and the client code,
which sends messages to those instances.

3. The Solutions
In a paper of this length, we cannot even survey the extensive
literature on solving the expression problem. Instead, we
will examine four interesting points in the solution space.

To be presented at MASPEGHI 2015 1 2015/6/8



3.1 Smalltalk
Smalltalk systems solve the expression problem very neatly,
by allowing modules to both add new classes, and to add
features to existing classes. Ruby has the same property. The
Smalltalk language itself does not have a concept of module,
but every Smalltalk system does, and the ANSI Standard [1]
specifies an “Interchange Format” intended for communicat-
ing modules between Smalltalk implementations.

Modules can contain class definitions, but can also con-
tain method definitions and class re-definitions, which can
be used to add methods and instance variables to existing
classes. Thus, it is simple to extend a representation in the
data dimension by writing a module that defines a new class,
and equally simple to extend a representation in the oper-
ation dimension by writing a module that adds a method to
each of the classes representing the variants of the composite
structure.

This solution meets two out of the three constraints. First,
no existing code need be changed — with the obvious excep-
tion that there must be some changes in the creation code to
allow the new structural variants to be created, and in the
client code so that the new tools can be employed. Second,
independent compilation is preserved: Smalltalk compiles
each method separately, so adding individual methods poses
no difficulty. Of course, it fails to meet Wadler’s constraint
of static typing: Smalltalk does not have a static type system.

It is instructive to ask why this solution works: what prop-
erty of Smalltalk makes it possible? It does not depend on
Smalltalk running in an image or on meta-programming, al-
though these techniques are certainly used in the implemen-
tation. The critical properties are that modules and classes
are orthogonal, and that classes are named by global vari-
ables, not global constants. Thus, the loading of a new mod-
ule can change the meaning of a class name.

Notice that there is nothing fundamental that stops this
process from working with static typing — if we assume
that all changes are extensions that create subtypes. (Clearly,
deleting methods from existing objects would not be type-
safe, but the expression problem is concerned with exten-
sion, not deletion.)

3.2 The Java Family of Languages
In Java as originally defined, the expression problem was
unsolvable. Extension in the data dimension was easily
achieved by a package that added a new class implementing
a new kind of tree node, but extension in the operation di-
mension was more problematic. One might attempt to create
new subclasses of all of the existing classes, each extend-
ing its superclass with the new operation. This fails for two
reasons. The reason most discussed in the literature — and
indeed the motivation for Wadler’s original note and his in-
troduction of the pun “expression problem” — is the limited
expressivity of Java’s type system: a limitation that GJ set
out to remedy.

To understand the problem, imagine that the original tree
contained (among others) a class Sum, representing a sum
expression, with instance variables left and right, and that
the only operation initially implemented by Sum and its sib-
lings is pretty. The types assigned to these instance variables
would naturally include only the pretty operation. To add an
eval operation, we subclass Sum to create EvaluableSum,
which adds an eval method, the body of which contains

{ return left.eval() + right.eval() }
Unfortunately, this won’t type-check, because the static
types of left and right are too restrictive. If we assume that the
creation code uniformly instantiates the evaluable subtypes,
then left and right will indeed contain evaluable objects, but
Java’s type system loses this information.

The basic idea behind the fix is to make the type of
the instance variables a parameter. Then, without chang-
ing the source code, their declared type can be changed.
Torgersen [8] works through the details using Java Gener-
ics. Unfortunately, the intricacies of Java’s type system —
F-bounding the parametric types, and then creating fixpoint
subclasses to instantiate them — forces him to observe “that
the initial simplicity of the . . . approach has disappeared”.

In spite of all of this, the Java “solutions” fail for a second,
completely different reason: they require us to change the
original code. Although the machinery of type parameters
may spare us from having to change the code in the base
classes, no type machinery can spare us from changing the
creation code. Why is this? In a normal Java program the
creation code will create instances of the various classes of
expression by applying the new operator to the global name
of the class. The structure of the Java language says that we
can’t rebind that name to something else, and the restrictions
of the expression problem say that we can’t change the code
in the expression classes.

It is the thesis of this paper that this is a major problem.
The creation code is not something insignificant: in a com-
piler, for example, the “creation code” is the whole of the
parser. A “solution” to the expression problem that requires
that we edit every AST-node creation statement in the parser
just because we have added a new optimization pass is no
solution. In practice, this problem can be mitigated by the
clever use of Java’s import statement, which can be used to
introduce short names to stand in for the global names of
the base classes, but redefining these short names still re-
quires recompilation of the creation code, thus violating one
of Wadler’s requirements for a solution.

3.3 Grace
Grace is a new object-based language that a small group of
academics have been developing since 2010 [2]. Its target
audience is novice programmers who are learning the essen-
tials of object-oriented programming. The following features
of Grace are relevant to the expression problem:

To be presented at MASPEGHI 2015 2 2015/6/8



module "exp_base"
dialect "staticTypes"

2

type Value = Object
4 type Exp = { eval −> Value }

6 factory method lit(i:Number) −> Exp {
method x −> Number { i }

8 method eval −> Value { x }
}

10 factory method sum(a:Exp, b:Exp) −> Exp {
method l −> Exp { a }

12 method r −> Exp { b }
method eval −> Value { l.eval + r.eval }

14 }
// Demonstration:

16 def threePlusFour:Exp = sum(lit 3, lit 4)
print "{threePlusFour} = {threePlusFour.eval}"

18 // prints: an object = 7

Figure 1: The exp_base module in Grace: the base code that
we will extend.

1. there are no global variables;
2. modules, implemented as files, become objects at runtime;
3. within a module, Grace is block-structured; and
4. modules are imported under a name chosen by the client.
If you would like to run the examples that follow yourself,
you can do so in your web browser (Chrome or Firefox) at
http://www.cs.pdx.edu/~grace/minigrace/exp. The code
is at http://www.cs.pdx.edu/~grace/minigrace/expProb/.

Figure 1 shows a minimal version of a module defin-
ing basic expressions in Grace; the code is based on that of
Oliveira and Cook [6], but simplified into idiomatic Grace.
(The original code is in the appendix, together with an expla-
nation of the changes.) The ruled box indicates a file, which
is compiled into a module object containing the features de-
fined therein. Grace treats the file as if it were bracketed by
object { ... }; the expression object { ... } is an object con-
structor, which manufactures a new object each time it is
executed.

In this case, the module object contains two types, from
the declarations on lines 3 and 4, and two methods, from
the declarations on lines 6–14. (The definition on line 16
is not visible outside the module.) A factory method is a
method that creates and returns a new object that contains
the features in the factory method’s body. In other words,
factory method m { ... } is equivalent to

method m {
object { ... }

}

So, for example, the factory method sum (which corresponds
to Oliveira and Cook’s add) creates a new object with meth-
ods l, r and eval.

module "exp_and_pretty"
dialect "staticTypes"

2 import "exp_base" as baseExp
type Exp = baseExp.Exp & type { pretty −> String }

4

factory method lit(i:Number) −> Exp {
6 inherits baseExp.lit(i)

method pretty { x.asString }
8 }

factory method sum(a:Exp, b:Exp) −> Exp {
10 inherits baseExp.sum(a, b)

method pretty { "{l.pretty} + {r.pretty}" }
12 }

// Demonstration:
14 def threePlusFour:Exp = sum(lit 3, lit 4)

print "{threePlusFour.pretty} = {threePlusFour.eval}"
16 // prints: 3 + 4 = 7

Figure 2: The exp+pretty module, which extends exp with a
method pretty.

Line 16 and 7 demonstrate the use of these expressions.
Notice that attempting to print threePlusFour outputs an
object. This is the result of the default asString method of
sum objects.

One other feature of Grace is important for our discus-
sion: the code implementing the module does not give the
module a name. This is left to the clients of the module, who
can choose any name they like.

Figure 2 shows an extension to exp_base in the operations
dimension — the dimension that is “difficult” for object-
oriented languages. The import statement on line 2 gives
the name baseExp to the module object from Figure 1. The
module exp_and_pretty adds a pretty method (correspond-
ing to Oliveira and Cook’s print) to both of the variants of
the composite. Notice that the type Exp in this module is a
subtype of Exp in the exp_base module. Because of this, the
requests of pretty on line 11 are not well-typed, because the
methods l and r return baseExp.Exp, which has no method
pretty.

I believe that this problem can be solved using SelfType,
in a manner similar to that employed in Bruce’s LOOJ [3].
The basic idea would be to change the type annotations on
methods l and r in Figure 1 from Exp to SelfType, where
SelfType denotes the declared type of the current object,
here Exp. When baseExp.sum is inherited (on line 10 of
Figure 2), the return types of the inherited methods l and r
would still be SelfType, and this would again be interpreted
to mean the declared type of the current object, now the
enhanced type Exp declared on line 3 of Figure 2. However,
the design of Grace’s type-system is not yet mature enough
for me to assert that this idea actually works out once all of
the details are taken into account.

The extension in the data dimension is shown in Fig-
ure 3. This is straightforward, as we would expect for the

To be presented at MASPEGHI 2015 3 2015/6/8

http://www.cs.pdx.edu/~grace/minigrace/exp
http://www.cs.pdx.edu/~grace/minigrace/expProb/


module "exp_and_pretty_and_bool"
dialect "staticTypes"

2 import "exp_and_pretty" as baseExp
type Exp = baseExp.Exp

4 type Value = Object

6 method sum(l:Exp, r:Exp) −> Exp { baseExp.sum(l, r) }
method lit(x:Number) −> Exp { baseExp.lit(x) }

8

factory method bool(b:Boolean) −> Exp {
10 method x −> Boolean { b }

method eval −> Value { x }
12 method pretty −> String { b.asString }

}
14 factory method iff(c:Exp, t:Exp, f:Exp) −> Exp {

method eval −> Value {
16 if (c.eval) then { t.eval } else { f.eval }

}
18 method pretty −> String {

"if ({c.pretty}) then {t.pretty} else {f.pretty}"
20 }

}
22

def e3plus4:Exp = sum(lit 3, lit 4)
24 def e2plus6:Exp = sum(lit 2, lit 6)

def ett:Exp = bool(true)
26 def ifExpr:Exp = iff(ett, e3plus4, e2plus6)

print "{ifExpr.pretty} = {ifExpr.eval}"
28 // prints: if (true) then 3 + 4 else 2 + 6 = 7

Figure 3: The exp+pretty+bool module, which extends the
module exp+pretty with a new data variant for booleans.

“easy” dimension. Lines 3–7 give local (unqualified) names
to features imported from baseExp. The factory method bool
(line 9) defines the data variant for boolean literals, and the
factory method iff (line 14) defines the data variant for if-
then-else expressions. Here there is no typing problem, be-
cause the types baseExp and Exp are identical, and Grace
uses structural, rather than nominal, types.

What of the creation code — can this be reused? The
absence of global constants from Grace makes it fairly easy
to do so. Modules that create instances of the composite
structure must contain a statement like

import "exp_base" as exp

If this is changed to
import "exp_and_pretty_and_bool" as exp

then the balance of the creation code can be re-purposed
without change. If we wish to strictly observe the require-
ment not to change the source code, then an alternative
(which we will not follow here) is to rename the source files.
In either case, the module must be recompiled.

3.4 Object Algebras
Oliveira and Cook addressed the issues of complex paramet-
ric types and the reusability of creation code using Object

module "objectAlgebra"
2 dialect "staticTypes"

import "exp_base" as exp
4 type Exp = exp.Exp

6 // define the Object Algebra machinery
type IntAlg<A> = {

8 lit(x:Number) −> A
sum(e1:A, e2:A) −> A

10 }
factory method intFactory −> IntAlg<Exp> {

12 method lit(x:Number) −> Exp { exp.lit(x) }
method sum(a:Exp, b:Exp) −> Exp { exp.sum(a, b) }

14 }
method mk3Plus4<A>(v:IntAlg<A>) −> A {

16 v.sum(v.lit(3), v.lit(4))
}

18 // compare the above with the normal expression:
// def e3Plus4:Exp = sum(lit 3, lit 4)

20

// add pretty−printing to expressions "retroactively"
22 type Pretty = { pretty −> String }

factory method prettyFactory −> IntAlg<Pretty> {
24 factory method lit(x:Number) {

method pretty −> String { x.asString }
26 }

factory method sum(a:Pretty, b:Pretty) {
28 method pretty −> String { "{a.pretty} + {b.pretty}" }

}
30 }

32 // demonstration
def x = mk3Plus4(intFactory)

34 // print "{x.pretty} = {x.eval}"
// fails: no method 'pretty' in object x

36 def s = mk3Plus4(prettyFactory)
// print "{s.pretty} = {s.eval}"

38 // fails: no method 'eval' in object s
print "{s.pretty} = {x.eval}"

40 // prints: 3 + 4 = 7

Figure 4: The objectAlgebra module, which is a translation
of Oliveira and Cook’s solution to the expression problem.

Algebras [6]. Their basic idea is to abstract over the creation
of the composite structure: rather than actually building the
tree for an expression, they instead define a method that will
build the tree on demand. This “tree maker” method is pa-
rameterized by the factory method that will build the tree
nodes with necessary operations. Object Algebras rely on
parametric types, but not on self types or F-bounds.

Figure 4 shows Oliveira and Cook’s code translated into
Grace. The module objectAlgebra shows extension in the op-
eration dimension. Lines 11–17 abstract over the base code
imported on line 2. The factory method intFactory encapsu-
lates all of the data variants: it constructs an “algebra” with
a method for each of the data variants in the base. Method

To be presented at MASPEGHI 2015 4 2015/6/8



mk3Plus4 on line 16 is a “lifting” of the normal expres-
sion construction code (given in the comment on line 19);
to actually build an expression tree, it is necessary to ap-
ply mk3Plus4 to a suitable object algebra. On line 33, it is
applied to intFactory; the resulting structure x has lit nodes
and sum nodes that understand just the eval method. Con-
sequently, they don’t understand pretty, as suggested by the
comments on lines 34 and 35.

The extension to pretty-printing is shown in lines 23–
30, which define a second object algebra, prettyFactory; on
line 36 it is used to build an expression tree. As suggested
by the comments on lines 37 and 38, this tree comprises
nodes that understand just the pretty method. Consequently,
attempts to eval it will fail. However, once we have built both
the evaluable tree x and the pretty-printable tree s, we can
achieve our goal by using each for its intended purpose, as
shown on line 39.

Of course, it is possible to create an algebra with more
than one operation, and in practice programmers will proba-
bly do so. But the extensibility of object algebras comes by
adding new operations in new algebras; an individual algebra
is no easier to extend than the class that it subsumes.

Extension in the data dimension is straightforward but
verbose. In addition to defining the new variant structures
bool and iff, it is also necessary to define a new algebra type
that extends IntAlg with factory methods for the new variants,
and two more object algebra factories: intBoolFactory as
an extension of intFactory, and intBoolPrettyFactory as an
extension of prettyFactory. The details can be found in the
original article [6].

In a theoretical sense, using object algebras to defer con-
struction of the expression tree does allow the creation code
to be reused. But in practice, programmers will not write
their creation code using object algebras unless they are ex-
pecting to have to extend their code. Thus, I do not be-
lieve that object algebras provide for unanticipated exten-
sion. They achieve reuse only at the cost of requiring pre-
planning. Moreover, the cost is large: because a different
tree is built for each operation, operations that update the
tree must be simulated by simulating a store.

4. Independent Extensibility
An additional requirement is sometimes imposed on the
expression problem: independent extensibility [10]. One of
the referees of this article wrote:

In real life, a much more common scenario than Fig. 1
followed by Fig. 2 followed by Fig. 3 would be like
this. Some party A defines exp_and_pretty. Another
party B independently defines exp_and_bool. A third
party C finds those and wants to combine them to
exp_and_pretty_and_bool. This should be possible so
that C need only define pretty for bool (in addition
to importing the two previous modules). Can Grace
handle that?

The answer is yes; the solution can be found in the
independentExtensability subdirectory at the previously-
referenced URL. However, the Grace solution is not fully
general: it works only when parties A and B happen to
make their extensions in orthogonal dimensions, A adding
a new operation and B adding new data. This is because
Grace uses inheritance to add extensions in the operation di-
mension, and composition to add them in the data dimen-
sion. If both A and B added new operations, then combin-
ing them would require some form of multiple inheritance,
which Grace presently lacks.

5. Conclusion
Wadler’s interest in the expression problem was based on
his search for expressive type systems. But, typing aside,
the problem gives us insights into the dangers of global
constants. It is not just Java’s type system that is problematic;
even more fundamental is Java’s use of a global namespace
for classes, and the fact that classes are immutable. This
means that it is impossible to reuse creation code written in
the “normal” way, in which objects are created by newing a
class. In contrast, Grace’s lack of a global namespace means
that all creation code must be written relative to a local name,
which can later be re-defined. Thus, Grace permits extension
without pre-planning.

Acknowledgments
I thank Jeremy Gibbons, Kim Bruce and the anonymous
referees for their comments on this material, which have
helped to improve the presentation substantially.

References
[1] ANSI. Draft American National Standard for Information

Systems — Programming Languages — Smalltalk. ANSI, Dec.
1997. Revision 1.9.

[2] A. P. Black, K. B. Bruce, M. Homer, and J. Noble. Grace:
the absence of (inessential) difficulty. In Onward! ’12: Pro-
ceedings 12th SIGPLAN Symp. on New Ideas in Programming
and Reflections on Software, pages 85–98, New York, NY,
2012. ACM. URL http://doi.acm.org/10.1145/2384592.
2384601.

[3] K. B. Bruce. Some challenging typing issues in object-
oriented languages. Electr. Notes Theor. Comput. Sci.,
82(7):1–29, 2003. . URL http://dx.doi.org/10.1016/
S1571-0661(04)80799-0.

[4] W. Cook. Object-oriented programming versus abstract
data types. In J. W. de Bakker, W. d. Roever, and
G. Rozenberg, editors, Proceedings REX Workshop/School
on the Foundations of Object-Oriented Languages, vol-
ume 489 of LNCS, pages 151–178. Springer Verlag,
1991. URL http://www.cs.utexas.edu/users/wcook/
papers/OOPvsADT/CookOOPvsADT90.pdf.

[5] S. Krishnamurthi, M. Felleisen, and D. P. Friedman. Synthe-
sizing object-oriented and functional design to promote re-
use. In E. Jul, editor, ECOOP’98 — Object-Oriented Pro-

To be presented at MASPEGHI 2015 5 2015/6/8

http://doi.acm.org/10.1145/2384592.2384601
http://doi.acm.org/10.1145/2384592.2384601
http://dx.doi.org/10.1016/S1571-0661(04)80799-0
http://dx.doi.org/10.1016/S1571-0661(04)80799-0
http://www.cs.utexas.edu/users/wcook/papers/OOPvsADT/ CookOOPvsADT90.pdf
http://www.cs.utexas.edu/users/wcook/papers/OOPvsADT/ CookOOPvsADT90.pdf


gramming, volume 1445 of Lecture Notes in Computer Sci-
ence, pages 91–113. Springer, 1998. ISBN 978-3-540-64737-
9. . URL http://dx.doi.org/10.1007/BFb0054088.

[6] B. C. d. S. Oliveira and W. R. Cook. Extensibility for
the masses. In J. Noble, editor, ECOOP 2012 — Object-
Oriented Programming, volume 7313 of Lecture Notes in
Computer Science, pages 2–27. Springer Berlin Heidelberg,
2012. ISBN 978-3-642-31056-0. . URL http://dx.doi.org/
10.1007/978-3-642-31057-7_2.

[7] J. C. Reynolds. User-defined types and procedural data struc-
tures as complementary approaches to data abstraction. In
S. A. Schuman, editor, Conference on New Directions in Al-
gorithmic Languages, pages 157–168, Munich, Germany, Au-

gust 1975. IFIP Working Group 2.1 on Algol, INRIA.

[8] M. Torgersen. The Expression Problem revisited — four new
solutions using generics. In In Proceedings of the 18th Eu-
ropean Conference on Object-Oriented Programming, pages
123–143. Springer-Verlag, 2004.

[9] P. Wadler. The expression problem. Discussion on the Java
Genericity mailing list, Nov 1998. URL homepages.inf.ed.
ac.uk/wadler/papers/expression/expression.txt.

[10] M. Zenger and M. Odersky. Independently extensible solu-
tions to the expression problem. Technical Report IC/2004/33,
EPFL, March 2004. URL http://scala.epfl.ch/docu/related.
html.

To be presented at MASPEGHI 2015 6 2015/6/8

http://dx.doi.org/10.1007/BFb0054088
http://dx.doi.org/10.1007/978-3-642-31057-7_2
http://dx.doi.org/10.1007/978-3-642-31057-7_2
homepages.inf.ed.ac.uk/wadler/papers/expression/ expression.txt
homepages.inf.ed.ac.uk/wadler/papers/expression/ expression.txt
http://scala.epfl.ch/docu/related.html
http://scala.epfl.ch/docu/related.html


A. Oliveira and Cook’s Code
I stated in Section 3.3 that the Grace code in the body of the
paper was based on the Java code of Oliveira and Cook, but
simplified. This appendix explains the simplifications and
why I made them.

Figure 5 is Oliveira and Cook’s original code [6, p.5].
For ease of comparison, Figure 6 is a copy of Figure 1 from
page 3 (but with new line numbers). Lines 1–6 of Figure 5
define a type Value used to represent the value of an expres-
sion, and two classes that implement it. This is necessary in
Java because int and bool have no common supertype. No-
tice that the implementations of VInt and VBool, although not
shown, must fail if an attempt is made to get a value of the
wrong type — for example, to getBool from a VInt. Note also
that if the set of possible kinds of value is extended, say by
adding String-valued expressions, then this code will have to
be edited. Writing in Grace, where everything is an Object,
it seems to be more natural to define the type Value to be the
Grace type Object (Fig 6, line 29). This simplifies the code
of the examples at the cost of a slightly poorer diagnostic
message if the programmer mistakes one kind of expression
for another.

interface Value {
2 Integer getInt();

Boolean getBool();
4 }

class VInt implements Value {...}
6 class VBool implements Value {...}

8 interface Exp {
Value eval();

10 }
class Lit implements Exp {

12 int x;
public Lit(int x) {

14 this.x = x;
}

16 public Value eval() {
return new VInt(x);

18 }}
class Add implements Exp {

20 Exp l, r;
public Add(Exp l, Exp r) {

22 this.l = l; this.r = r;
}

24 public Value eval() {
return new VInt(l.eval().getInt() + r.eval().getInt());

26 }}

Figure 5: The part of Oliveira and Cook’s code correspond-
ing to Figure 6.

Lines 8–10 define the type Exp, and correspond exactly
to line 30 of the Grace code. Lines 11–18 of Figure 5 define
the class Lit of integer literals; this corresponds in a fairly
obvious way to the Grace factory method lit on lines 32–35
of Figure 6. The convention in Grace is to use lower-case
names for classes and capitalized names for types. Methods
are public by default in Grace, so there is no need to annotate
them; return is implicit at the end of a method, so I omitted
the return keyword. The Java “constructor” on lines 13–15
of Figure 5 is replaced in Grace by the factory method itself;
moreover, there is no need to explicitly define a field x or to
assign the parameter i of the factory method to it, because
the parameter is itself accessible to the manufactured object.
For this reason, it was necessary to choose a different name
for the parameter. Type information is optional in Grace, but
to parallel the Java code, I have annotated the methods with
their return types (shown after the −> symbols).

Similarly, the Java class Add on lines 19–26 corresponds
quite closely to the Grace factory method sum on lines 36–
40. The Grace code uses two methods l and r to access the
operands, rather than public fields.

dialect "staticTypes"
28

type Value = Object
30 type Exp = { eval −> Value }

32 factory method lit(i:Number) −> Exp {
method x −> Number { i }

34 method eval −> Value { x }
}

36 factory method sum(a:Exp, b:Exp) −> Exp {
method l −> Exp { a }

38 method r −> Exp { b }
method eval −> Value { l.eval + r.eval }

40 }
// Demonstration:

42 def threePlusFour:Exp = sum(lit 3, lit 4)
print "{threePlusFour} = {threePlusFour.eval}"

44 // prints: an object = 7

Figure 6: The Grace module exp_base (a copy of Figure 1).

To be presented at MASPEGHI 2015 7 2015/6/8


	Portland State University
	PDXScholar
	2015

	The Expression Problem, Gracefully
	Andrew P. Black
	Let us know how access to this document benefits you.
	Citation Details


	Introduction
	The Problem
	The Solutions
	Smalltalk
	The Java Family of Languages
	Grace
	Object Algebras

	Independent Extensibility
	Conclusion
	Oliveira and Cook's Code

