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Abstract 

Recent water scarcities across the southwestern U.S. with severe effects on the living 

environment inspire the development of new methodologies to achieve reliable drought 

forecasting in seasonal scale. Reliable forecast of hydrologic variables, in general, is a 

preliminary requirement for appropriate planning of water resources and developing 

effective allocation policies. This study aims at developing new techniques with specific 

probabilistic features to improve the reliability of hydrologic forecasts, particularly the 

drought forecasts. The drought status in the future is determined by certain hydrologic 

variables that are basically estimated by the hydrologic models with rather simple to 

complex structures. Since the predictions of hydrologic models are prone to different 

sources of uncertainties, there have been several techniques examined during past several 

years which generally attempt to combine the predictions of single (multiple) hydrologic 

models to generate an ensemble of hydrologic forecasts addressing the inherent 

uncertainties. However, the imperfect structure of hydrologic models usually lead to 

systematic bias of hydrologic predictions that further appears in the forecast ensembles. 

This study proposes a post-processing method that is applied to the raw forecast of 

hydrologic variables and can develop the entire distribution of forecast around the initial 

single-value prediction. To establish the probability density function (PDF) of the 

forecast, a group of multivariate distribution functions, the so-called copula functions, are 

incorporated in the post-processing procedure. The performance of the new post-

processing technique is tested on 2500 hypothetical case studies and the streamflow 

forecast of Sprague River Basin in southern Oregon. Verified by some deterministic and 
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probabilistic verification measures, the method of Quantile Mapping as a traditional post-

processing technique cannot generate the qualified forecasts as comparing with the 

copula-based method.  

The post-processing technique is then expanded to exclusively study the drought 

forecasts across the different spatial and temporal scales. In the proposed drought 

forecasting model, the drought status in the future is evaluated based on the drought 

status of the past seasons while the correlations between the drought variables of 

consecutive seasons are preserved by copula functions. The main benefit of the new 

forecast model is its probabilistic features in analyzing future droughts. It develops 

conditional probability of drought status in the forecast season and generates the PDF and 

cumulative distribution function (CDF) of future droughts given the past status. The 

conditional PDF can return the highest probable drought in the future along with an 

assessment of the uncertainty around that value. Using the conditional CDF for forecast 

season, the model can generate the maps of drought status across the basin with particular 

chance of occurrence in the future. In a different analysis of the conditional CDF 

developed for the forecast season, the chance of a particular drought in the forecast 

period can be approximated given the drought status of earlier seasons. 

The forecast methodology developed in this study shows promising results in 

hydrologic forecasts and its particular probabilistic features are inspiring for future 

studies.  
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1. Introduction 

1.1  Uncertainties in Hydrologic Forecasts 

Estimating the future status of random variables such as hydrological and hydro-

meteorological variables is prone to various uncertainties. There are three main sources 

of uncertainties in hydrologic forecasts; climatology, model structure and parameters, and 

initial conditions at the forecast date (Fig. 1). Several techniques have been studied 

during the past decades to address different sources of uncertainties in estimating the 

hydrologic variables in the forecast period.  

An ensemble of forecast trajectories is generally generated to capture total forecast 

uncertainty due to several sources of uncertainties (Olsson and Lindstrom, 2008; Wood 

and Lettenmaier, 2008; Moradkhani and Sorooshian, 2008; DeChant and Moradkhani, 

2011; Parrish et al., 2012; Moradkhani et al., 2012). In generating the ensemble of 

forecasts, different methodologies may be employed. In hydrologic applications with the 

lack of knowledge about future climate conditions, the sampling of historical 

meteorological data can provide a range of possible future climate condition used for 

generating the ensemble hydrologic forecasts (McEnery et al., 2005; Wood and 

Lettenmaier, 2008). The so-called Ensemble Streamflow Prediction (ESP; Twedt et al., 

1977; and Day, 1985) model has been used by the National  

Weather Service River Forecast Centers (NWS-RFC) for more than 30 years to 

address the uncertainties of climate data in the future river flows. Briefly, an ESP 

incorporates the observed meteorology of a historical time period in the forecast period to 

reflect the unseen future climate in estimated streamflow. The hydrologic model is driven 
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by the historical climatology during a spinup period before the forecast date. Beginning 

from the forecast date, the model is forced by the resampled historical meteorology to 

produce an ensemble of hydrologic forecasts. Since the resampled climate data 

reasonably reflects the uncertainty of the unseen future meteorology, the generated ESP 

is assumed to properly model the uncertainty of future hydrology caused by unknown 

climatology. To improve forecast skills, some studies generate ESPs from meteorological 

forecast ensembles made by numerical weather prediction models (Clark and Hay, 2004; 

Roulin and Vannitsem, 2005; Thirel et al., 2008; Li et al., 2009). In some recent studies, 

forecast reliability was increased by combining the ESP with data assimilation (DeChant 

and Moradkhani, 2011) or weighting ESP traces according to climate signals (Najafi et 

al., 2012). 

Forecast uncertainty is partially referred to the structure and parameterization of the 

prediction model (Fig. 1). A hydrologic model is a simplified representation of the 

complicated physical process within a hydrologic system. Obviously, the assumptions in 

Climate 
Observation 

Hydrologic 
Model 

Initial Condition (IC) 

Climate Forecast 

Hydrologic 
Model 

Hydrologic 
Forecast 

Historical (Spin-Up) 
period 

Forecast Period 

Figure 1: Diagram of hydrologic forecast procedure along with the three different sources of 

uncertainties including IC, climatology, and the structure and parameter of hydrologic model. 
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model conceptualization and numerical structure make it difficult to accurately and 

precisely simulate every single process in a hydrologic model. Hence, a part of 

uncertainties in hydrologic predictions stems from the model structure, parameterization, 

and spatial discretization of physical processes. To overcome the overconfidence of 

relying on the predictions of a single model, there has been developed different 

techniques to average several model predictions and take the most advantage of different 

models. Model-averaging techniques vary in mathematical complexities; however, they 

are all similarly supported by the concept of linear combination of different models. 

Some model-averaging techniques such as equal weights, Granger-Ramanathan 

averaging (Granger and Ramanathan, 1984), Bates-Granger averaging (Bates and 

Granger, 1969), AIC and BIC-based model averaging (Buckland et al. 1997; Burnham 

and Anderson 2002; Hansen, 2008) take the linear average of the deterministic outputs 

and produce a combined single-value forecast (Diks and Vrugt, 2010). Despite the 

satisfactory performance of these model-averaging techniques, Hoeting et al. (1999) 

argued that the weights would not properly reflect the strength of single models and 

recommended the use of Bayesian Model Averaging (BMA) to calculate the model 

weights. In BMA technique, the weights are calculated upon the model performance and 

likelihood of predicting the observation in the past. The BMA output is a probabilistic 

forecast instead of a deterministic forecast; i.e. it transforms the single-value forecasts to 

probabilistic forecast. Raftery et al. (2005) applied BMA in developing the predictive pdf 

of an ensemble of meteorological forecasts. Since then, there has been extensive 

application of BMA in hydrologic forecasts (Duan et al., 2007; Vrugt and Robinson, 
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2007; Ajami et al., 2007; Rojas et al, 2008). In a climate change impact study, Najafi et 

al. (2011) used the BMA framework to incorporate the outputs of different hydrologic 

models forced by a group of Global Circulation Models (GCMs). Parrish et al. (2012) 

integrated the sequential data assimilation and BMA technique to relax the fix 

distribution assumption in developing the predictive pdf.   

To address the uncertainty of initial conditions (ICs) at the forecast date, Wood and 

Lettenmaier (2008) proposed Reverse-ESP approach vs the regular ESP method. In the 

RevESP method, the resampled historical climatology is applied to the spinup period up 

to the forecast date to generate an ensemble of ICs that are each paired with assumingly 

perfect observations of the future climate. Their results indicated that the impact of 

uncertain ICs on the forecast quality is related to the forecast date, lead time, and the area 

of study. In a recent study, DeChant and Moradkhani (2011) employed the data 

assimilation method as a flexible and statistically defensible procedure to quantify the 

initial condition uncertainty by obtaining the probability distribution function (PDF) of 

state variables at the time of forecast and then used those for generating ESPs. 

1.2  Post-processing of Hydrologic Forecasts 

Incorporating different sources of uncertainty into the hydrologic forecasts would 

be appealing when the deterministic forecasts from hydrologic models are primarily 

reliable and unbiased. In spite of the significant efforts on the calibration of hydrologic 

models during the past decades, they are still subject to errors and systematic biases that 

affect the forecast quality in small to large extents. Hence, the post-processing of model 

forecasts is necessary to ensure that forecasts are unbiased and fairly reliable and have the 
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proper dispersion. Several techniques have been tried to accomplish this, which are 

reviewed below. In an initial study, Smith et al. (1992) assumed constant errors 

multiplied by the monthly simulations generated from a particular forcing regardless of 

the initial conditions at the forecast date. The multiplied error was estimated by historical 

simulations and observations. Among several post-processing methods, the conventional 

Quantile Mapping (QM) technique has been frequently applied in different studies 

(Hashino et al., 2006; Wood and Lettenmaier, 2006; Biagorria et al., 2007; Piani et al., 

2010; among others). With this method, a transfer function is used to map the quantiles of 

simulated forecasts to the corresponding quantiles of the observations based on the 

cumulative distribution functions (CDFs) of simulations and observations developed for a 

historical period. The observation and simulation CDFs may be estimated by either 

empirical CDFs or parametric distributions fitted to historical data (Ines and Hansen, 

2006; Piani et al., 2010). A major drawback of this method, however, is that it does not 

maintain the pairing of corresponding simulated and observed flows. To restrict the 

shortcoming of QM technique, Madadgar and Moradkhani (2011) generated several ESPs 

for various analysis periods prior to the forecast period. Several simulation CDFs were 

produced for the simulations associated with each historical forcing implemented on the 

analysis periods; which are then used for bias correction of the forecast trajectory 

corresponding to that particular forcing. Bias correction of forecasts with particular CDFs 

produced specifically for each forcing data reduces the forcing uncertainty of QM 

method. Despite the extensive applications of QM, several other techniques have been 

developed and tested to overcome the limitations of QM technique. Candille et al. (2010) 
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applied a bias correction method with the so called “on the fly” scheme (Cui et al, 2008) 

updating and correcting the ensemble bias over time. In their study, the multi ensemble, 

from the so called North American Ensemble Forecast System (NAEFS) comprising 

National Centers for Environmental Prediction (NCEP) and Meteorological Service of 

Canada (MSC) ensembles, is bias corrected through individual on-the-fly analysis 

scheme for each model of ESP. Their method is only applied to the variables with 

normally distributed errors like temperature and wind vector components. In another 

study, Djalalova et al. (2010) used the Kalman-Filter (KF; Kalman, 1960) method 

(Brookner, 1998) to estimate the bias from air quality forecasts. KF is a sequential data 

assimilation method that integrates the observed variables characterizing the state of a 

system into the model. Observations are assimilated as they become available over time.  

A perfect post-processing method would estimate the observed variable given the 

forecast at any time. In stochastic context, this is equivalent to find the most likely value 

of the probability distribution of the observed variable. Post-processing is mathematically 

indicated by approximating the conditional probability distribution of the observed 

variable given the forecast generated by hydrologic model. To do so, the joint probability 

of the observations and simulations should first be estimated. The bivariate normal 

distribution is usually applied to develop the join distributions (Schaake et al., 2007; 

Zhao et al., 2011; Todini, 2008). Assigning bivariate normal distribution for the joint 

distribution requires the normally distributed observations and simulations. Since the 

marginal distributions of hydrologic variables such as streamflow are hardly found to be 

normal, a transformation of non-normal variables (X and Y) to the standard normal 
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variables (U and V) would be required. Brown and Seo (2010), however, argued that 

back and forth transformation from the Gaussian space can invalidate the optimality of 

estimated parameters of the conditional probability distribution. They discussed the 

drawbacks of fitting parametric distributions to the observations and simulations and 

proposed a non-parametric post-processor analogous to indicator co-Kriging in 

geostatistics (Isaaks and Srivastava, 1989). They also discussed that, according to the 

aggregate effect of various physical processes on meteorological and hydrological 

variables, the joint behavior of their observations and simulations is not usually well-

fitted to any parametric distributions. Instead, they proposed a non-parametric method 

based on Bayesian optimal linear estimation of indicator variables as described by 

Schweppe (1973). The proposed conditional probability is estimated as the non-

exceedance probability of a discrete threshold of the observed variable (

stagefloodcgecx aa  ..; ) given the forecast of the jth ensemble member (zj). To 

capture the accurate shape of conditional probability, a large number of thresholds should 

be defined for the observed variable. A shortcoming of this technique, however, is its 

inability to specify the conditional probability of a certain observed value given the 

forecast. In fact, using the non-parametric probability does not allow the conditional 

probability to be estimated at a particular threshold but rather enables the approximation 

of the conditional probability of either exceeding or non-exceeding the thresholds. 

Furthermore, the size of the forecast ensemble is an effective factor in the accurate 

estimation of the non-parametric conditional probability. Thus, for an accurate estimation 

of the expectation operator, a relatively large number of forecast members is required. 
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An alternative approach for the post-processing of hydrologic forecasts is to apply a 

group of multivariable probability functions, the so-called copula functions, to develop 

the conditional probabilities of observed variable given forecast value. Unlike the most of 

multivariate functions, copulas do not make any restriction on the type of marginal 

distributions. Moreover, using copula functions make it possible to estimate the 

conditional probability of the observed variable at any particular forecast value. 

Furthermore, as discussed later, the copula functions bind the marginal CDFs; thus, the 

unknown and complicated relationships in hydrological processes do not hinder fitting 

the multivariable joint distribution to the observed and forecast variables.  

1.3  Hydrologic Drought Forecast 

Reliable forecast of the hydrologic extreme events plays a significant role in 

developing appropriate policies to allocate the available water resources among the 

different users. Although several studies have proposed promising methods to improve 

hydrologic forecasts, the observed effects of climate change on floods and droughts 

across different regions of the globe highlights the needs for more sophisticated methods 

in predicting extreme events (Mishra and Singh, 2010; Moradkhani et al., 2010; 

Halmstad et al., 2012; Risley et al., 2011; Madadgar and Moradkhani, 2013; Najafi et al., 

2012).   

Drought is a recurrent extreme event that roots in the shortage of precipitation over an 

extended period of time, resulting in water scarcity. Droughts events have strong impacts 

on the water supply and water quality; society and public health; crop production and 

agriculture; plants, wild fires, and living environments. Compared to other natural 
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disasters, droughts are “creeping disasters” with small to severe damages. As reported by 

Federal Emergency Management Agency (1995), the annual drought losses for the 

United States are estimated at $6–8 billion. Only in 2002, the western U.S. drought costs 

exceeded $10B (National climate Data Center, 2003). Several recent efforts have 

attempted to enhance forecast accuracy, mitigation policies, and damage estimate of 

drought events in the globe, specifically in the United States. The Drought Impact 

Reporter (DIR), launched by National Drought Mitigation Center (NDMC), is a 

comprehensive database reporting damages caused by recent droughts within the United 

States. Reported by North America Drought Monitor of National Oceanic and 

Atmospheric Administration’s (NOAA) National Climate Data Center (NCDC), droughts 

with an estimated damage of over 100 billion dollars (Lott and Ross, 2000) have been 

among the costliest natural disasters in the U.S. since 1980. Lott and Ross (2006) 

estimated drought and heat wave induced damages to the U.S. economy at $174 billion, 

between 1980 and 2005. In 2012, more than 70% of the United States was under drought 

conditions ranging from abnormally dry to exceptional droughts (Showstack, 2012). 

Besides the U.S., almost all the continents throughout the globe have been affected by 

various drought phenomena during the recent decades (Mishra and Singh, 2010). Large 

areas in South, Central, and North America, Europe, Asia, Africa, and Australia have 

been affected by large scale droughts in recent years (Mishra and Singh, 2010). 

Although there is not a universal definition of drought, in the most general sense, 

drought can be defined with different disciplinary perspectives, namely, meteorological, 

agricultural, hydrological, and socioeconomic droughts (National Drought Mitigation 
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Center; http://www.drought.unl.edu/whatis/concept.htm). Different types of drought are 

closely related and they interact with each other (Dingman 1994). The cycle of different 

droughts usually starts with meteorological drought when the amount of precipitation 

received over a time period falls below the associated average amount. Below-average 

precipitation causes insufficient soil moisture, runoff, and water supply which leads to 

agricultural and hydrological droughts. Hydrological droughts and streamflow shortage 

would decrease the inflow to hydropower reservoirs causing small energy production and 

socioeconomic droughts.  

Drought events are detected by particular indices in each category. Among several 

indices, the following ones are frequently used in the literature: Palmer Drought Severity 

Index (PDSI; Palmer 1965), Crop Moisture Index (CMI; Palmer, 1968), Soil Moisture 

Drought Index (SMDI; Hollinger et al., 1993), Vegetation Condition Index (VCI; Liu and 

Kogan, 1996), Surface Water Supply Index (SWSI; Shafer and Dezman, 1982), 

Standardized Precipitation Index (SPI; McKee et al., 1993 and 1995), and Reclamation 

Drought Index (RDI; Weghorst, 1996). Based on the concept behind SPI formulation, 

Nalbantis (2008) introduced Streamflow Drought Index (SDI) to evaluate hydrological 

droughts using cumulative streamflow volumes of a basin. Shukla and Wood (2008) 

developed the Standardized Runoff Index (SRI) by replacing the observed streamflow 

volumes in SDI with the simulated runoff obtained from a hydrological model. Fleig et 

al. (2010) introduced Regional Drought Area Index (RDSI) based on daily streamflow to 

represent the drought affected area in north-western Europe. To capture the correlation of 

http://www.drought.unl.edu/whatis/concept.htm
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hydrological variables, Kao and Govindaraju (2010) developed Joint Deficit Index (JDI) 

to address the joint behavior of precipitation and streamflow in a same index.  

According to the limited sources of manageable water and the population growth rate, 

the quality and quantity of supplied water are highly affected by ongoing droughts across 

different regions over the globe. The NOAA-NCDC reported year 2012 as the warmest 

year on record for the United States where the average temperatures of the contiguous 

United States were F2.3 above that of the 20
th

 century. According to the U.S. Drought 

Monitor, more than 70% of the contiguous United States experienced some level of dry 

spells which extended to the next year and approximately 58% of the contiguous United 

States was under drought conditions as of January 29, 2013. Streamflow forecast of the 

spring and summer of 2013 predicts below normal conditions for many major rivers in 

the Western U.S., including the Colorado and the Rio Grande. Where the ongoing 

droughts in the North America and many other regions across the globe are referred to 

the climate change and global warming effects (Trenberth, 2011; Peterson et al., 2012), 

the frequency of droughts in the future is likely to increase, rather than decrease 

(Sheffield and Wood, 2008; Dai, 2011). However, since drought is a slowly developed 

phenomenon, there might be a chance to mitigate drought impacts if the events are 

forecasted within an appropriate timeframe. The reliable forecast of the hydrologic status 

of a region in the future has a significant role in efficient planning of available water 

resources, and helps water supply systems to survive in enduring droughts.  

Among different issues that have been examined in drought studies during the past 

decades, drought forecasting and accurate estimation of onset and likelihood of future 

http://link.springer.com/search?facet-author=%22Kevin+E.+Trenberth%22
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droughts have been focused in recent years. In an earlier study, Karl et al. (1987) 

evaluated the probability of receiving sufficient amount of precipitation to recover from 

an ongoing drought over a particular period of time. They rewrote the PDSI formula and 

utilized the unconditional gamma distribution to obtain the probabilities of future 

droughts. The limitation, however, was using an unconditional distribution- ignoring the 

dependency and auto-correlation of precipitation in time- to obtain the probabilities. 

Lohani and Laganathan (1997) used a non-homogeneous Markov chain model to 

generate the transition probability matrix of drought states.  In another study, the Markov 

chain model was employed to evaluate drought transition probabilities, persistence, 

duration, and frequency within six categories of different severities (Steinemann, 2003). 

Some other studies used the stochastic renewal models, stochastic autoregressive models, 

and Artificial Neural Networks (ANN) to estimate different characteristics of future 

droughts and low-flow periods (Kendall and Dracup, 1992; Loaiciga and Leipnik, 1996; 

Mishra and Desai, 2005 and 2006; Barros and Bowden, 2008). However, the 

autoregressive and neural network models were later questioned by Hwang and Carbone 

(2009) due to limiting the forecasts into the deterministic estimate of the mean drought 

status. Recently, Özger et al. (2012) developed a wavelet and fuzzy logic combination 

model for long-lead drought forecasting. The technique was found to outperform fuzzy 

logic, ANN, or coupled wavelet and fuzzy logic models, yet prior to an application it 

needs a significant work to find the appropriate independent predictors, which strongly 

affect the forecast. Without using any frequency-analysis methods, Cancelliere et al. 

(2007) derived the transition probabilities matrix by revising the statistics underlying the 
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SPI series. They also questioned the validity of Markov chain model in forming the 

transition probability matrix for forecasting SPI values. However, two major limitations 

of their study are: (a) there are promising approaches like copula functions, as discussed 

later, for frequency analyses of drought status that look promising and avoid 

overwhelming procedures to analytically derive the transition probability matrix from the 

index formulas; (b) to reduce the computational burden, they assumed that aggregated 

monthly precipitations are uncorrelated and normally distributed variables whereas this is 

not a valid assumption specifically when the method is expanded to other hydrologic 

variables like streamflow. Some other studies took advantage of seasonal climate 

forecasts to predict the future droughts. Carbone and Dow (2005) and Hwang and 

Carbone (2009) incorporated the seasonal forecast products of NOAA Climate Prediction 

Center (CPC) with historical climate records to address the uncertainties of future 

droughts. However, Steinemann (2006) argued the poor interpretation of forecast 

probability and uncertainty information supported by CPC seasonal precipitation 

outlooks by the water managers despite the potential of CPC products in drought 

forecasting.  

While a number of studies have focused on the accurate forecast of future droughts, it 

is still required to work on the forecast methods and develop the probabilistic features of 

future droughts. The current methods lack to fully support the probabilistic distribution of 

future droughts while the dependencies of correlated variables are also preserved. The 

conditional probabilities of future droughts given the past drought status of a region 

needs further analysis of the joint behavior of dependent variables. For this purpose, the 
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powerful mathematical functions such as copulas are potential tools in establishing the 

forecast models with conditional probabilistic features. Such forecast models would be 

able to reflect the water availability of the past in the future status of droughts.  
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2. Copulas 

2.1  Mathematical Background 

Copulas are joint cumulative distribution functions of n univariate marginal 

distributions being uniform on the interval [0, 1], i.e.    1,01,0: nC (Joe, 1997; Nelsen, 

1999). Supported by Sklar’s Theorem (Sklar, 1959), copula functions can express a 

multivariate distribution,  nxxxF ...,,, 21
, as follows: 

          nnXXXn uuuCxFxFxFCxxxF
n

...,,,...,,,...,,, 212121 21


 

   nnn uUuUuuC  ,...,Pr,..., 111  

(1) 

where, C  refers to the Cumulative Distribution Function (CDF) of copula; and

 iX xF
i

 is the marginal distribution of the thi variable, which is denoted by variable 
iu in 

the cdf of copula.  According to the 2
nd

 line of Eq. 1, copulas return the multivariate joint 

probability of random variables. 

A copula should satisfy the “boundary” and “increasing” conditions defined as 

follows: 

 Boundary conditions 

1)     iuifC i ,00u ; i.e. there is at least one component of u  where 

0iu ,   is the null set.   

2)    ijuuuifuC ji  1,u ; i.e. all components of u  are equal to 1 

except iu .   
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 Increasing condition 

The probability of any n-dimensional hypercube in the unit hypercube is non-

negative:  

    100,...,,...,1... 211
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where in 2D copula, the conditions are simplified to: 

 Boundary conditions 

3)     0,00, 21  uCuC   

4)     2211 ,1,1, uuCuuC   

 Increasing condition 

        222112112211211221112212 ,,,, uuanduuforuuCuuCuuCuuC   

The derivative of an absolutely continuous cdf of copula returns the pdf of copula,

 nuuc ,...,1 , as follows: 

 
n

n

n

n
uu

uuC
uuc






...

)...,,(
,...,

1

1
1  (2) 

The pdf of copula can be used to determine the joint probability density function of a 

set of random variables,  nxxx ...,,, 21
. The product of the pdf of copula and the marginal 

density function of each variable returns the joint probability density function of the 

entire group of variables: 
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n

i iXnn xfuucxxf
i111 )(,...,...,,  (3) 

The main advantage of copula application is to use separate marginal distributions of 

random variables while at the same time their inherent correlations are reflected. Except 

for the correlations, no other unknown relations and complications among the dependent 

variables are used in the process of developing the joint distribution function via the 

copula functions (Eq. 3).  

2.2  Elliptical and Archimedean Copulas 

Copulas are categorized into several families. The Elliptical and Archimedean 

copulas (Embrechts et al., 2003; Nelsen, 1999) are the two most applied copulas in 

different fields of science and engineering.  

Elliptical copulas can reflect all pair-wise correlations among the variables with any 

level of correlation; however, they are only able to model the group of variables with a 

positive-definite correlation matrix (Johnson, 1970). It is statistically proved that a 

covariance matrix is positive-definite matrix unless one variable is an exact linear 

combination of the others. Therefore, to ensure the application of the Elliptical family of 

copulas in real applications, correlation matrix is defined in forms of the covariance 

matrix. Moreover, this family of copulas does not have a closed form expression. 

Unlike Elliptical copulas, the Archimedean copulas have closed form expressions but 

do not preserve all pair-wise correlations for problems with more than two variables. 

Archimedean copulas are divided into symmetric and asymmetric functions; Gumbel and 

Clayton copulas are from the asymmetric group, and the Frank copula is from the 
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symmetric group. The Gumbel copula in asymmetric division has been shown to properly 

fit to hydrological variables (Dupuis, 2007; Zhang and Singh, 2007; Serinaldi and 

Grimaldi, 2007; Wong et al., 2010; Madadgar and Moradkhani, 2013). Table 1 

summarizes the different Elliptical and Archimedean copula functions with the dimension 

of 2n .  

Extension of Archimedean copulas to high dimensional problems with more than two 

variables has the serious limitation of preserving all pair-wise dependencies running 

among the variables. Nested copulas are usually attempted to build the multivariate 

Archimedean copulas; however, they still lack to model all dependency levels among 

variables. Moreover, nested copulas are only valid for positively correlated variables. To 

overcome such drawbacks of Archimedean copulas, Kao and Govindaraju (2008) applied 

Plackett family of copulas to trivariate analysis of extreme rainfall events. However, the 

sensitivity of Plackett family of copulas to the parameter estimation methods and the 

analytical approaches to verify the presumed conditions to use this family of copula 

needs further studies and evaluations (Kao and Govindaraju, 2008).  
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Table 1: Summary of Elliptical and Archimedean copula functions with n=2 

Copula Function Support 
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correlation coefficient or Kendal’s tau correlation are usually used to 
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2.3 Goodness of Fit Tests 

Copula applications start with finding a copula function that appropriately fit the 

marginal distribution of random variables. To select a copula function fitting a particular 

dataset better than other alternatives, various methods may be applied as the goodness-of-

fit (GOF) tests. The simplest method is a visual comparison between the empirical copula 

and the theoretical copula. The scatterplot would follow the line 1:1 if the theoretical 

copula perfectly fit the empirical copula. Nevertheless, to compare different copulas 

fitted to the same set of data, it is more reliable to use the GOF test statistics instead of a 

mere visual inspection. A mathematical GOF test for copula functions may be based on 

the distance between the empirical copula and the parametric copula under the null 

hypothesis (H0). Genest and Rémillard (2008) implemented a bootstrapping process to 

obtain the Cramér-von Mises (Eq. 4) and Kolmogorov-Smirnov statistics as the measures 

of distance between the empirical and parametric copulas. There are some other test 

statistics analogues to the Cramér-von Mises and Kolmogorov-Smirnov statistics which 

are based on Kendall’s transform (Genest et al., 2006; Savu and Trede, 2008) and 

Rosenblatt’s transform (Rosenblatt, 1952). Recently, the extended version of the 

Kullback-Leibler Information Criterion (KLIC) developed by Diks et al. (2010) has been 

applied in copula selection (Weiß, 2011), but the results showed that the criterion does 

not perform better than GOF test statistics in detecting the best copula fitted to the data. 

On the other hand, some studies show that the GOF test statistics based on the empirical 

copula outperform the others (Genest et al., 2009; Berg, 2009). Therefore, this study 
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proceeds with the GOF test statistic based upon the empirical process with the following 

definition for Cramér-von Mises statistic: 

    
u

uu nnn dCCS
2

 (4) 

where, Sn is Cramér-von Mises statistic and nC  is expressed as: 

 
n

CCnC nn   (5) 

where 
nC  is the empirical copula with a sample size of n, and 

n
C  is the parametric 

copula estimated for a sample size of n . Genest et al. (2009) elaborated on a parametric 

bootstrap procedure to find the p-value of the test via Monte Carlo sampling. Since the 

null hypothesis of the test is that the parametric copula fits the data (
n

CCH n :0 ), p-

values greater than the significance level    means the null hypothesis is accepted, 

otherwise, it is rejected. Therefore, among a group of copulas, the one with the greatest p-

value (and the smallest 
nS ) is preferred. 

Several methods have been applied to estimate the parameters of copula functions; 

Exact Maximum Likelihood (EML) (Dupuis, 2007), Inference Functions for Margins 

(IFM) (Joe, 1997, Dupuis, 2007; Wong et. al, 2010), and Canonical Maximum 

Likelihood (CML) (Genest et al., 1995; Cherubini et al., 2004; Serinaldi and Grimaldi, 

2007). This study uses IFM to estimate the parameters of both copula functions. IFM is a 

two-step approach: in the first step the Maximum Likelihood Estimation (MLE) is 

applied to estimate the parameters of univariate marginal distributions  î  and in the 
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second step the copula parameters    are found using MLE and 
î obtained in the first 

step: 

        



n

i

nnnθ β|xF...,,β|xF,β|xFCθL
1

222111
ˆˆˆln  (6) 

where  .L is the log-likelihood function to be maximized.  

The method of Maximum Likelihood Estimation (MLE) is used to estimate the 

parameters of the marginal distributions. Then, the best marginal distribution is found 

upon the results of Kolmogorov-Smirnov (K-S; Kolmogorov, 1933; Massey, 1951) test 

and the Akaike Information Criterion (AIC; Akaike, 1974) test. The K-S test statistic (D) 

measures the maximum distance of the empirical CDF to the CDF of the reference 

distribution: 

    xGxFMaxD 
 (7) 

where F(x) and G(x) are the empirical and reference CDFs respectively. The null 

hypothesis (H0) of the K-S test states that the data set belongs to the reference 

distribution.  

The AIC test statistic is defined as follows: 

)ln(22 LKAIC   
(8) 

where; K is the number of parameters of the marginal distribution, and L is the 

maximized value of the likelihood function of the candidate distribution.  

While the K-S test evaluates the appropriateness of a particular distribution fitting a 

given dataset, the AIC test can find the best alternative in a group of distributions. Hence, 

neither one is conclusive by itself to find the best choice in the group. The 
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appropriateness of a distribution should be first accepted by the K-S test. The K-S test 

returns the p-value, which should be greater than the significance level of   to accept the 

null hypothesis. Under the null hypothesis, the dataset is assumed to come from the 

reference distribution.  If the goodness of a particular distribution is approved by the K-S 

test, then its superiority to other alternative distributions is evaluated by the AIC test, 

where the distribution with the smallest AIC value is assumed to be the best choice 

among others.  
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3. Post-processing of Hydrologic Forecasts
1
 

Different sources of uncertainties are included in the hydrological and hydro-

meteorological forecasts. Lack of knowledge about the future climatology, model 

structure and parameters, and initial conditions at the forecast date are three sources of 

uncertainties in hydrological forecasts. Several techniques such as Ensemble Streamflow 

Prediction (ESP; Twedt et al., 1977; and Day, 1985) and model averaging (e.g. Bayesian 

Model Averaging (BMA); Raftery et al., 2005) techniques have been practiced during the 

past several years to address the uncertainties in hydrologic forecasts. To successfully 

incorporate different sources of uncertainty into the hydrologic forecasts, the 

deterministic forecasts from hydrologic models should be post-processed to become 

reliable and unbiased. Despite qualified calibration methods in estimating the parameters 

of hydrologic models, there are still different errors and systematic bias in hydrologic 

forecasts that influence the forecast reliability and appropriate dispersion of forecast 

ensemble.  

3.1  Ensemble Streamflow Prediction (ESP) 

A number of methods are available for quantification of uncertainty in land surface 

modeling. Each method takes one of two forms: Ensemble based products based on 

Monte Carlo experiments (Wood and Lettenmaier, 2006) or fitted probability functions to 

a set of data (Moradkhani and Meier, 2010). Both methods provide a means for 

generating probabilistic estimates of desired land surface variables, and have both been 

                                                           
1
 The scientific content of this chapter has been published in J. Hydrological Processes: 

Madadgar, S., Moradkhani, H., and D. Garen (2012), Towards Improved Post-processing of Hydrologic 

Forecast Ensembles, J. Hydrol. Process., doi: 10.1002/hyp.9562. 
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widely used in hydrologic forecasting. To address the uncertainties of climate data in the 

future river flows, the National Weather Service River Forecast Centers (NWS-RFC) has 

been used the ESP technique for more than 30 years. An ESP reflects the uncertainty of 

unseen future climate by incorporating the historical meteorology in the forecast period. 

The observed historical climate drives the hydrologic model during a spin-up period 

before the forecast date and the hydrological state at the forecast date is determined. 

Beginning from the forecast date, the hydrologic model is forced by the resampled 

historical meteorology and an ensemble of hydrologic forecasts is generated accordingly. 

The assumption behind the resampling approach is that the resampled climate of the 

historical period can reflect the uncertainty of unseen future climate; and hence, the ESP 

produced for a hydrologic variable (e.g. streamflow) can represent the uncertainty 

associated with the climatology. Figure 2 shows the application of ESP technique to 

represent the uncertainty in river flow forecast. Each ensemble member is corresponding 

to a climate realization resampled from the historical period. The resampled climate of 

the historical time should be from the same duration as the forecast period. The 

uncertainty bound around the hydrologic forecast at any time is determined from the 

upper and lower limit of the ESP.  
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In a recent study, Najafi et al. (2012) assigned a particular weight to each ESP 

member according to the climate signals and improved the forecast reliability. The 

weighted ESP members performed better than the raw ESP. Some other studies have 

replaced the resampling process from the historical meteorology with the meteorological 

forecast ensembles made by numerical weather prediction models and improved forecast 

skills (Clark and Hay, 2004; Roulin and Vannitsem, 2005; Thirel et al., 2008; Li et al., 

2009).  

3.2  Conventional Quantile Mapping (QM)  

Quantile Mapping is a statistical technique and most popular post-processing method 

in hydrologic forecasting that adjusts model forecasts based upon the cumulative 

distribution functions (CDFs) of historical observations and model simulations. In the 

QM approach, the forecast quantile at a given time is found from the simulation CDF, 

and the corresponding observed quantile is taken from the observation CDF to adjust the 

forecast (Fig. 3). So, if the model simulations and observations are ranked, the ranks of 

the post-processed forecasts and raw forecasts are the same. The approach was primarily 
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Figure 2: Schematic of ESP reflecting the climate uncertainty by resampling the historical climate. 
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designed to remove bias from forecasts; however, its outcome is not always appropriate 

and may degrade rather than improve the raw forecast under some circumstances. A 

major drawback of this approach is that the pairing associations between individual 

simulated and observed values is not preserved, the two CDFs being constructed 

independently from each other, so this connection is not constantly represented 

(Madadgar et al., 2012). 

 

Figure 3: Schematic of Quantile Mapping technique in post-processing (bias correction) of original 

forecasts 

Therefore, QM may be also called a “blind-matching” approach (Madadgar et al., 

2012) that sometimes degrades the results; and in some circumstances, as shown in 

Figure 4, the adjusted simulated values may deviate even further from the observations 

than the unadjusted simulated values. As seen in Figure 4, at t = 3, the bias corrected 

simulation after QM does not get closer to the corresponding observation but rather 

moves further away from the observation, creating an even larger error. In other words, 

the direction of the desired move (towards the observation) is opposite from the 

adjustment move (by QM application). However, unlike the improper adjustment at t=3, 

the original forecast at t = 7 moves towards the observed value, and then QM at this point 
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has a positive effect. A large number of points with adjustments in the opposite direction 

of what is desired may lead to the overall deficiency of the QM method. 

 

Figure 4: Failure or success of QM method caused by blind-matching procedure. 

3.3  New Index for Analyzing the Post-processing Methods; Failure Ratio 

Using the historical observations and model simulations, a new measure (γ), called 

Failure Ratio, is proposed to predict the overall performance of the post-processing 

methods like QM technique (Madadgar et al., 2012): 
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where, to  and ty are the observation and simulation, respectively, at time t ; tx  is the 

QM-adjusted simulation at time t ; OF and YF  are the CDF of observations and 

simulations, respectively; T  is the number of time steps in the analysis (historical) 

period; and I(.) is the Indicator function defined as follows: 
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The proposed index, γ, hereinafter called failure ratio of quantile mapping, is the 

fraction of time steps during the analysis period when βt is negative or greater than 2. 

Indeed, γ represents the frequency of simulated values being degraded after QM 

application, varying between 0 and 1. The term β calculates the ratio of the difference 

between the simulated and adjusted values to the difference between the simulated and 

observed values (elaborated later) and it can take any real number in  . Since 

observations are not available for the forecast time period, the QM technique is employed 

for the analysis period to adjust the simulations and derive γ to predict the performance of 

QM in forecast mode. It is noted that in the QM technique, the behavior of the entire 

system is assumed to be similar in both the analysis and forecast periods, which is 

equivalent to having identical CDFs in these two periods. 

In case of a river flow forecast, β maps the non-negative values of ty , to , and tx to a 

real number  ;     ,,0:
3

 . In perfect adjustments, t is equal to 1, meaning 

that the adjusted forecast exactly equals the observation. Any time that the simulation 

change is not towards the observation, i.e. the movements are not in the same direction, 

t would be negative (Fig. 5). Additionally, if both changes have the same direction 

whereas    tttt yoyx  , t   may become greater than 2. Data point b in Fig. 5 

shows the situation where both moves are in the same direction but the  tt yx   is more 

than twice the  tt yo  . As can be seen, the absolute error after such an adjustment 
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would be greater than the absolute error before the adjustment. Furthermore, as seen in 

data point a, the opposite direction of movement causes a larger error regardless of the 

amount of move. Therefore, t  values smaller than zero or greater than 2 are associated 

with the data points where the QM method does not perform effectively. And, according 

to Eq. 9, γ (failure index) reflects the frequency of such data points in the analysis period 

in which the QM technique would have a negative impact on them. 

Hence, small values of γ states that the QM technique has been ineffective at only a 

small number of data points, and as the value of γ increases, more and more data points 

are negatively affected by the QM method. Therefore, efficient performance of the QM 

should be accompanied by a small value of γ in Eq. 9.  

 

Figure 5: Schematic of data points with a) β < 0, and b) β > 2 

For more clarification on   as the main component of the failure index, two different 

cases are shown in Fig. 6 (Madadgar et al., 2012). Simulation and observation time series 
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are fitted to lognormal distributions in each case with different parameter values. The first 

row of the plots shows associated CDFs, and the second row shows their PDFs. Case A 

represents a situation where simulated values are very different from the observed values, 

that is, there is little to no overlap between the simulation and observation ranges as seen 

in the PDF plots. In such circumstances, moving from the simulated value to the adjusted 

value is in the same direction as moving from the simulated value to the observed value 

regardless of where it is located in the range of observations.    is therefore always 

positive, and QM is an effective approach unless   exceeds 2 in too many points. Cases 

with CDFs located close to each other probably have more frequent points with β > 2. 

Case B shows a situation where an overlap of simulated and observed values occurs. As 

depicted in the CDF plot, depending on where a simulated value is located, the direction 

of movement to the adjusted value differs; it may be either towards the corresponding 

observation or in the opposite direction. Therefore, both positive and negative signs are 

possible for  . Moreover, β > 2 may also occur frequently in such cases. Hence, QM 

usually functions effectively in cases with distant CDFs and very small or no overlapped 

PDFs. However, it is more likely that the QM fails where the CDFs are close or the PDFs 

are largely overlapped. This makes intuitive sense. Despite the deficiency in the QM 

technique by not accounting for the pairing between individual simulated and observed 

values, it can still be helpful in correcting gross differences between simulated and 

observed values.  However, when the two distributions are relatively close, as would be 

the case for a well-calibrated hydrologic model, this deficiency in the QM technique 

becomes more significant and the technique may fail. 
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Figure 6: Impact of relative position of simulation and observation CDFs on the performance of the QM 

adjustments: Case A with distant CDFs is more likely to be well-adjusted by QM method comparing to 

Case B with close CDFs 

3.4  Post-processing by Copula Functions 

Post-processing of forecasts is mathematically equivalent to estimate the most likely 

observation given the raw forecast. Such value would be found from the conditional 

probability distribution of the observed variable given forecast. Since the observed and 

forecast variables form a Direct Acyclic Graph (DAG), their probabilistic queries can be 

represented within a Bayesian network. Briefly, a DAG represents a set of variables in a 

direct ordering without any direct circuits and the hydrologic forecasts and observations 

can be fitted in a DAG. Interested readers are encouraged to study Thulasiraman and 

Swamy (1992) for more detailed descriptions about DAG.  
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In a Bayesian network, the joint probability density function of the set of random 

variables in vector x  is written as the product of individual density functions conditional 

on their parent variables (Russell and Peter, 2009):  

    )|(...,, )(1 ipai

i

n xfxxff xx 


  
(13) 

where )(ipax is the subset of x  representing the parent variables of ix . If x  consists 

two variables (let’s say the observed and forecast variables), Eq. 13 is simplified to: 

       12121 |., xxfxfxxff x  (14) 

From Eq. 14, the conditional probabilities can be written as: 
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An intense analytical effort is required to directly model the joint behavior of the 

variables in Eq. 15 and obtain the joint probability density function in the right-hand side 

of the equation, specifically if the variables are more than only two variables. By the help 

of copula functions in estimating the joint pdf (Eq. 3), the conditional pdf (Eq. 15) can be 

decomposed to a simpler form as: 
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For the forecast post-processing, 2x  and 1x  are referred to the observed and forecast 

variables, respectively; and 2u  and 1u are the corresponding marginal distributions. The 

copula density function -  .,.c - is obtained from an analysis period before the forecast 

date.  
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Conditional pdf from Eq. 16 is an estimation of the uncertainty around the forecast 

value; while, its highest probable value (mode of pdf) can be taken as the single-value 

post-processed value. Given the forecast at any time step, a particular conditional 

probability can be estimated with the mode value ( x ) found as follows (Madadgar et al., 

2012):  

        tyottttx ofuucyofwhereyof
tt

,|;|maxarg   (17) 

where; argmax returns the value of x  that maximizes the argument in the brackets-

 tt yof | , ty and to are the forecast and observation at time t .  

To obtain the conditional PDF of Eq. 17 and extract its mode, we suggest Monte 

Carlo sampling from the copula density function-  
tt yo uuc , , where 

tyu is computed for 

the forecast at time t . Then, 
tyu is fixed at time t  and 

tou varies for different samples. 

Proceeding the Monte Carlo sampling leads to form the conditional PDF-  tt yof | whose 

mode is the most probable observation given the forecast at time t . Figure 7 visualizes 

the PDF of a copula and the marginal distribution at 8.01 u , )8.0,( 12 uuc .  
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Figure 7: Schematic of a copula pdf with marginal distribution of U2 shown by the solid line. 

 

3.5  Application of Post-processing Methods 

The QM and copula-based post-processing methods described in earlier sections are 

evaluated by hypothetical and real case studies. In the hypothetical case study, forecasts 

and observations are sampled from separate parametric distributions, and then each post-

processing method is applied to adjust the raw ESPs. In the real case study, the 

streamflow forecasts for a river basin in southern Oregon, USA are post-processed to 

obtain the adjusted ESPs. 

3.5.1 Hypothetical Case Studies 

To evaluate the performance of each post-processing method and explore the 
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simulation and observations by an appropriate t-copula. Simulations and observations of 

each case have a level of dependency and correlation with each other; nevertheless, the 

simulations and observations in a single case are produced totally independent from those 

of another case. Gamma and Lognormal distributions with 30 different parameter sets are 

used to randomly sample the forecasts and observations of 2500 cases. Following steps 

are taken to form the hypothetical case studies: 

1. N=1, case number  

2. Form the data series for the analysis period 

a.  Sample from a parametric distribution (D1) for 1000 times to build the simulation 

timeseries. D1 is either Gamma or Lognormal distribution. 

b. Sample from either Gamma or Lognormal distribution (D2) for 1000 times to 

build the observation timeseries. 

3. Find a bivariate t-copula to join the marginal distributions fitted to the simulations 

and observations generated in steps (2-a) and (2-b). 

4. Generate datasets for the forecast period 

a. Sample from a D1 (step 2-a) for 12 times to build the forecast timeseries. Forecast 

lead-time is set as 12. 

b. Repeat step (4-a) for 50 times to make a forecast ensemble with 50 traces.  

c. Sample from a D2 (step 2-b) for 12 times to build the observation timeseries. 

5. Post-process the forecast ensemble obtained in step (4-a) by either copula-based or 

QM method. 

6. N=N+1  
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7. If N≤2500, then go to 2. Else, terminate! 

In step (4-c), the real-time observations in forecast period are sampled from the 

observation distribution function used at step (2-b). The observations of the forecast 

period enable a performance evaluation of the post-processing methods. Table 2 

summarizes the list of verification measures to evaluate the performance of each method. 

Point-wise performance measures are utilized in evaluating the deterministic forecast 

(ensemble mean), while the probabilistic measures are used to assess the performance of 

the forecast ensembles. Figure 8 shows the results of the QM technique against the 

copula-based post-processor (Madadgar et al., 2012). Probability of success in Figure 8 is 

the probability that the post-processing method performs successfully with respect to the 

associated metric for different values of the failure index (γ). γ is computed for the 

analysis period of each case, and then cases with a given value of γ are taken out from the 

pool of 2500 cases. Therefore, for each metric of interest, cases with successful 

performance are counted to compute the probability of success. Success is defined upon 

the metric value, that is, if implementation of the post-processing method improves the 

metric score towards its perfect value as noted in Table 2, then the method is considered 

as successful for that metric. Figure 8 shows that as γ increases, the probability of success 

strictly declines in the first three metrics (MAE, NSE, and RPSS) when QM is in use. 

Given the definition of γ in Eq. 9, if the post-processing method constantly degrades the 

forecasts, γ becomes greater and approaches 1. In such circumstances, the QM method 

may not be able to improve the forecasts owing to its inherent blind-matching nature 

where the adjustments are merely dependent on the quantile values. Evidently, the 
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probability of success in the QM method is dependent on the γ value, whereas this is not 

the case for the copula-based post-processing method. The main reason of insensitivity of 

copula-based method to the failure index value is its ability to model the joint behavior of 

the simulations and observations unlike the QM method with inherent blind-matching 

approach. In other words, the copula approach is able to perform effectively even in cases 

with a large failure index. Generally, the copula approach is more likely to succeed than 

the QM method in the first three metrics. Other metrics in Figure 8 (α, ε, and π) are the 

supportive quantitative scores derived from the predictive quantile-quantile (QQ) plot 

(Laio and Tamea, 2007; Thyer et al., 2009), which compares the empirical CDF of the 

probability of observations (  tt oP  in Table 2) using the forecast ensemble at each time t

(CDF of the probabilities) against the CDF of a uniform distribution. For a perfect 

forecast ensemble, the empirical CDF of the p values is consistent with the CDF of the 

uniform distribution on the interval [0,1]. The metrics α and ε assess the reliability of 

forecasts, and π indicates the resolution (precision, sharpness) of the forecast ensemble. 

According to Thyer et al. (2009), as the area between the empirical CDF of the 

observations’s p values and the CDF of the uniform distribution in the predictive QQ plot 

becomes larger, the value of α decreases towards zero. Results indicate that for γ ≤ 0.7, 

the post-processing methods perform closely, while for large γ values, the QM method is 

more successful than the copula-based method for the α measure. The subplot of the ε 

metric illustrates that the copula method is more effective than the QM method 

(regardless of γ value) to envelop observations after post-processing of the forecasts. In 

other words, fewer observations fall outside the range of the forecast ensemble after post-
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processing by the copula approach. The resolution (π), also called sharpness, states that 

adjustment by QM leads to greater resolution (precision). However, comparison of 

sharpness may not be a meaningful approach when the employed methods do not 

primarily perform equally in the α and ε metrics. Assuming that precision has lower 

priority than reliability, given similar forecast reliabilities, the method with greater 

resolution (lower uncertainty) is preferred; otherwise, the method with higher resolution 

does not reveal any superiority.  

As a brief summary of the hypothetical-case results, the multivariate copula-based 

post-processor performs considerably better than the QM method in the point-wise 

measures. For the RPSS metric among the probabilistic measures, the copula procedure is 

again evaluated as a much better method than QM. The predictive uncertainty is also 

more reliable in encompassing observations when the multivariate copula-based post-

processor is in use. Moreover, unlike the QM method, performance of the multivariate 

post-processor is generally insensitive to the failure index of the analysis period. Using 

the QM method, the predictability of the forecast ensemble is not effectively improved in 

cases with large γ values, illustrating the drawback of the blind-matching procedure that 

corresponds to the same quantiles of simulation and observation CDFs. 

3.5.2 Hydrological Forecast Case Study 

The Sprague River basin, with a drainage area of approximately 24100 km , is a sub-

basin of the Upper Klamath River basin located in southern Oregon and northern 

California, USA (Fig. 9). The Sprague River valley is enclosed by forested mountain 

ridges and includes large marshes, meadows, and irrigated pastures. A large proportion of 
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irrigation water demand is supplied by river flow, and the rest is pumped from local 

wells. A major environmental concern in the Sprague River basin is the water quality, 

which directly impacts fish and wildlife habitat throughout the Upper Klamath basin as 

reported by Klamath Basin Ecosystem Foundation (2007). Some flow conditions 

interrupt fish passage through the Sprague River, which necessitates accurate forecast for 

better understanding of flow conditions in coming seasons. The Sprague River is also a 

major tributary to Upper Klamath Lake, an important and highly contested water body 

used for irrigation water supply, hydropower generation, and fish habitat.  

The U.S. Geological Survey (USGS) Precipitation-Runoff Modeling System (PRMS; 

Leavesley et al., 1983), a distributed parameter hydrologic model, is applied to 

streamflow forecast of the Sprague River basin. Daily temperature and precipitation 

observations drive PRMS to predict the daily flow of the basin. Two different sources 

provide the climate records: the NWS Cooperative Network (COOP), and the NRCS 

Snow Telemetry (SNOTEL) network of weather stations.  
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Table 2: Performance metrics to evaluate the employed bias correction methods 

Performance 

Measure 

Mathematical 

Representation 
Terminology Description 

Mean Absolute 
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uniform distribution  1,0U   
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ensemble predictions at 
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of ensemble predictions at 

time  t  

Probabilistic metric, a 

measure of precision of 

ensemble predictions. 

Greater values indicate 

less precision (larger 

uncertainty) of forecasts. 

 a
 Nash and Sutcliffe (1970) 

b
 Wilks (1995) 

c
 Renard et al. (2010) 
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Figure 8: Probability of success against γ for point-wise (MAE and NSE) and probabilistic performance 

measures (RPSS, α, ε, π) in QM and copula-based post-processing methods. Probability of success is 

obtained with respect to the associated metric for different values of the failure index. 

PRMS is a modular deterministic, distributed-parameter, physical-process watershed 

model that simulates the hydrologic response of a watershed to the combined effect of 

precipitation, climate, and land use. The inherent algorithms can represent each physical 

process or empirical relation among different hydrologic components. The model can 

simulate the response to normal and extreme climate events including sudden storms and 

extreme dry conditions. The model setup evaluates the changes in water-balance 

relations, streamflow regimes, soil-water relations, and ground-water recharge. PRMS 

simulates the hydrologic processes of a watershed using a series of reservoirs with 
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different capacities that are interconnected to each other (Fig. 10). Each reservoir passes 

and/or stores the in- and out- fluxes to simulate the flow, evapotranspiration, and 

sublimation. Parameters of the model can be calibrated manually by an expert or the 

optimization algorithms. This study uses the Shuffled Complex Evolution (SCE) global 

search algorithm (Duan et al., 1994) within the multiple-objective stepwise calibration 

(LUCA) (Hay and Umemoto, 2006) framework. Interested readers are encouraged to 

study the relevant references for more details about the calibration algorithms. 

 

Figure 9: Sprague River Basin, a sub-basin of Upper Klamath River Basin in southern OR and northern CA 

Copula application starts with fitting appropriate marginal distributions to the 

variables to be post-processed. Monthly flow observations and model simulations of 

Sprague River basin outflow are each fitted to eight distributions, including Gamma, 

Generalized Extreme Value (GEV), Lognormal, Gaussian, Generalized Pareto (GP), 

Weibull, Gumbel, and Exponential distributions. Several forecast periods starting from 
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different months (Jan, Feb, Mar) of 2001-2003 are analyzed for the post-processing 

application. The forecast lead time is fixed at 6 months and the total of 9 forecast periods 

are chosen as Jan-Jun, Feb-Jul, and Mar-Aug for each of the three years from 2001 to 

2003. The marginal distributions are separately fitted to historical observations and model 

simulations in the analysis periods. The historical period from 1980 to 2000 is used to set 

the analysis periods associated with each forecast period. The analysis periods are then 

taken as Jan-Jul, Feb-Jul, and Mar-Aug of 1980-2000. The histograms of monthly 

averaged PRMS simulations and river flow observations for the analysis period of Feb-

Jul in 1980-2000 and the fitted distributions are shown in Figures 11 and 12 (Madadgar et 

al., 2012). The parameters of the marginal distributions are estimated by the Maximum 

Likelihood Estimation (MLE) method. From visual inspection, most theoretical 

distributions except Gaussian and Gumbel are well-fitted to PRMS simulations. It seems 

hard, however, to find a suitable distribution to fit flow observations properly, with only 

the GEV and Lognormal distributions looking suitable. Table 3 lists the statistics used for 

evaluation of the theoretical marginal distributions. The K-S test (Eq. 7) is used to verify 

the appropriateness of the marginal distributions.  
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Figure 10: Schematic of the reservoirs and their connections in PRMS. 

In Table 3, the acceptable marginal distributions with the significance level of 

05.0 are shown in bold fonts. Gaussian and Gumbel distributions are not suitable 

choices for simulated flows for any of the three analysis periods, while the other 

distributions fit more or less well. On the contrary, almost none of the distributions 

except GEV properly fit the observed flows. These results have been visually verified in 

Figures 8 and 9 for the analysis period of Feb-Jul, 1980-2000. Furthermore, for the Jan-

Jun analysis period, the Lognormal distribution is the second-most suitable choice for the 

observed flow. However, the GEV distribution is the best candidate for the observations 
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of any analysis period; hence, for the copula application, the GEV distribution is 

hereinafter coupled with the marginal distributions of the simulated flows.  

 

Figure 11: Flow histogram against marginal distribution fitted to monthly averaged PRMS simulations in 

the analysis period of Feb-Jul, 1980-2000. 
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Figure 12: Flow histogram against marginal distribution fitted to monthly averaged river flow observations 

during the analysis period of Feb-Jul, 1980-2000. 

The Elliptical and Archimedean families of copulas (Table 1) are applied to join the 

marginal distributions of historical monthly observations and model simulations during 

each analysis period (Jan-Jun, Feb-Jul, and Mar-Aug of 1980-2000). The Cramér-von 

Mises statistic (Eq. 4) is applied to verify which copula joins the marginal distributions 

better than others. In a group of copulas, the one with the greatest p-value (and smallest 

nS ) is a better choice to join the marginal distributions. 
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Table 3: K-S test statistics of fitting different distributions to the simulated and observed flows during 

different analysis periods in 1980-2000 

 

Jan-Jun Feb-Jul Mar-Aug 

D 
P-

value 

Hypothesis 

Test 
D 

P-

value 

Hypothesis 

Test 
D P-value 

Hypothesis 

Test 

Simulated 

flow 

   
   

   

Gamma 0.08 0.25 Accept 0.07 0.39 Accept 0.07 0.44 Accept 

GEV 0.08 0.25 Accept 0.09 0.22 Accept 0.07 0.40 Accept 

Logn 0.11 0.07 Accept 0.10 0.10 Accept 0.08 0.27 Accept 

Gaus 0.13 0.01 Reject 0.18 0.03 Reject 0.12 0.03 Reject 

GP 0.08 0.22 Accept 0.06 0.64 Accept 0.06 0.64 Accept 

Wbl 0.08 0.20 Accept 0.08 0.31 Accept 0.07 0.40 Accept 

Gumbel 0.22 
2.2E-

6 
Reject 0.21 

5.8E-

6 
Reject 0.21 3.2E-6 Reject 

Exp 0.07 0.47 Accept 0.08 0.29 Accept 0.08 0.25 Accept 

Observed 

flow 

   
      

Gamma 0.13 0.01 Reject 0.15 0.01 Reject 0.16 0.002 Reject 

GEV 0.08 0.32 Accept 0.06 0.24 Accept 0.08 0.25 Accept 

Logn 0.10 0.13 Accept 0.14 0.03 Reject 0.13 0.01 Reject 

Gaus 0.18 
1.3E-

3 
Reject 0.22 

5.2E-

5 
Reject 0.21 3.4E-6 Reject 

GP 0.18 
1.6E-

4 
Reject 0.24 

3.2E-

5 
Reject 0.21 7.1E-6 Reject 

Wbl 0.14 9E-3 Reject 0.18 0.006 Reject 0.16 0.001 Reject 

Gumbel 0.21 
4.4E-

6 
Reject 0.29 

1.4E-

6 
Reject 0.23 3.7E-7 Reject 

Exp 0.24 
1.3E-

7 
Reject 0.27 

9.6E-

9 
Reject 0.28 

3.7E-

10 
Reject 

 

As described earlier, three analysis periods having their specific marginal 

distributions are tested in this study. Elliptical and Archimedean copulas are fitted to the 

simulations and observations of each analysis period; the nS  statistic and corresponding 

p-values of testing the null hypothesis (
n

CCH n :0 ) are summarized in Table 4. Results 

are the mean value of Cramér-von Mises statistic ( nS ) and corresponding p-value when a 
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given copula is applied to different combinations of marginal distributions. As discussed 

earlier, GEV is selected for observed flows and Gamma, GEV, Lognormal, GP, Weibull, 

and Exponential distributions are selected for simulated flows. The p-values are 

computed using a parametric bootstrap procedure with N=1000 replications and a 

significance level of α=0.01. In each case, the copula function with the smallest nS  (Eq. 

4) and the largest p-value is preferred; hence among the copula functions, the Frank 

copula is the best choice for the Jan-Jun and Feb-Jul periods, whereas the Gumbel copula 

is the best for the Mar-Aug period. However, the Clayton copula function is the worst 

choice for any analysis period.  

Table 4: Results of GOF test for copula selection in each analysis period. Values of Cramér-von Mises 

statistic (Sn) are presented along with the corresponding p-value in parentheses. Statistics of the best fitted 

copuls are bolded. 

Analysis Period 

 

Copula Function 

Jan-Jun Feb-Jul Mar-Aug 

Gaussian 0.0232  

(0.0664) 

0.0292 

 (0.0255) 

0.0550  

(0.0005) 

t 0.0330  

(0.0055) 

0.0406  

(0.0025) 

0.0653  

(0.0005) 

Gumbel 0.0242  

(0.0644) 

0.0299  

(0.0315) 
0.0383  

(0.0135) 

Clayton 0.2173  

(0.0005) 

0.2316  

(0.0005) 

0.3239  

(0.0005) 

Frank 0.0217  

(0.0794) 

0.0257 

(0.0415) 

0.0521  

(0.0025) 

 

After fitting the appropriate copula to the univariate marginal distributions of the 

associated analysis period, the conditional pdf of observation given the forecast is 

estimated to implement the post-processing of each forecast ensemble (Eq. 17). To 
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evaluate the performance of the post-processing methods, several 6-month hindcast 

periods within three target years (2001, 2002, and 2003) are tested. As explained earlier, 

three hindcast periods are chosen in each target year: Jan-Jun, Feb-Jul, and Mar-Aug. 

Note that post-processing is applied to monthly averaged flows of each forecast period. 

Using the same performance metrics applied to the hypothetical case studies (Table 2), 

the performance of post-processing methods on the streamflow forecasts of the Sprague 

River basin are shown in Figures 13-15 (Madadgar et al., 2012). The QM and copula 

post-processing techniques are both used to adjust the hind-casts predicted by PRMS. 

The initial hydrologic states of the basin at the hindcast date are obtained by running the 

PRMS model in the spinup period. To implement the multivariate copula-based post-

processor, the selected copula function (see Table 4) is applied to all (six) possible 

combinations of marginal distributions that are best fitted to the simulated and observed 

flows in the analysis period (see Table 3). The results of copula application in Figures 13-

15 are associated with the average metric value over all the combinations of marginal 

distributions. Prior to the QM application, the ability of QM to improve forecasts would 

be predicted from the value of γ estimated for the analysis period. The failure index for 

Jan-Jun, Feb-Jul, and Mar-Aug analysis periods through 1980-2000 is respectively found 

as 0.32, 0.29, and 0.28. Thus, according to Figure 8, it is not expected that QM would 

produce encouraging results for any of the analysis periods. 
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Figure 13: Comparing the performance of post-processing methods in adjusting the monthly streamflow 

hindcast starting from different forecast dates in 2003. The forecast period of each forecast ensemble is 6 

months. 
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Figure 14: Comparing the performance of post-processing methods in adjusting the monthly streamflow 

hindcast starting from different forecast dates in 2002. The forecast period of each forecast ensemble is 6 

months. 
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Figure 15: Comparing the performance of post-processing methods in adjusting the monthly streamflow 

hindcast starting from different forecast dates in 2001. The forecast period of each forecast ensemble is 6 

months. 
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As shown in Figures 13-15, the QM method is not effective in improving the forecast 

ensemble with respect to the point-wise measures; MAE and NSE show the general 

failure of QM in reducing the error of the mean forecast. The copula post-processor, 

however, performs better than the QM method, and it adjusts the forecast ensemble closer 

to the observations except for the Mar-Aug forecast period of 2003. For the Jan-Jun and 

Feb-Jul forecast periods in any of the target years, the copula function performs 

significantly better than the original forecast and the QM method. Regarding the RPSS 

metric, QM generally fails to improve forecast traces, and it even worsens the quality of 

original forecasts in almost all forecast periods. Failure of the QM method is also 

predictable according to the γ values found for different analysis periods. Copula 

application, on the other hand, is consistently the prominent method for the Jan-Jun and 

Feb-Jul forecast periods. As the forecast starting date moves towards spring, the 

performance of multivariate post-processing gets closer to that of the original forecast; 

however, it is still better than the QM results. The reliability metric derived from a QQ-

plot, α, shows that QM adjustments are not reliable compared to original forecasts, while 

the proposed copula method performs better than the original forecasts. Regarding the 

reliability metric ε, none of the employed methods is constantly effective in improving 

forecasts. The value of ε reflects the adequacy of the ensemble spread to encompass all 

the observations during the forecast period. Generally, neither QM nor copula-based 

methods are able to adjust the original forecasts so as to embrace all the observations 

within the ensemble range. The next metric (π) measures the precision (sharpness) of the 

ensemble. The sharpness of the adjusted ensemble after QM application is higher than the 
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original forecast ensemble; however, the reliability of QM corrections is less than the 

others. The subplots of ε and π indicate that a large sharpness of the forecast ensemble 

after copula application is at the expense of missing some observations to be inside the 

ensemble spread, implying overconfidence of the ensemble prediction. The QM method, 

on the other hand, results in better ensemble sharpness (precision) than that of the 

original forecast; however, as long as a specific method is steadily proved to be 

unreliable, comparing its precision with other methods is rather trivial and misleading. In 

other words, if an “inaccurate” forecast ensemble has high “precision”, it cannot be 

accredited as a preferred forecast. Therefore, the evaluation of methods with respect to 

the sharpness metric should be done by first ensuring a satisfactory reliability of the 

methods. 

For better understanding of the performance of the post-processing methods proposed 

in this study, the ensemble range and mean forecasts of monthly flow volumes for the 

forecast periods in 2002 are shown in Figure 16. As can be seen, the mean forecast after 

copula post-processor is close to the observation for all three observation periods while 

after QM application, the mean forecasts go even further away from the observed 

volumes. The MAE and NSE results shown in Figure 14 verify the close distance 

between the observations and the mean forecast after copula-based post-processing. 

Moreover, reliable and precise forecast after copula post-processor as expected from the 

probabilistic measures in Figure 14 are reflected in the ensemble ranges. Also from 

Figure 16, it can be seen that the error spread reduces significantly by the application of 

copula post-processor with the exception of few occasions where the observed volume 
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falls outside the ensemble range after copula post-processing. The overall conclusion 

from Figure 16 is that the QM method is not an effective method to adjust the original 

forecasts while the multivariate copula-based post-processor is a more effective method 

that can be used operationally.  

In general, a well-fitted copula function to the marginal distribution is a better choice 

than the QM method (especially in cases with large γ). The results shown in Figures 13-

16 also illustrate that the evaluation of different methods should not be merely based on 

the probabilistic metrics; they may be misleading if not being compared along with the 

point-wise measures.  
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Figure 16: Comparison of the ensemble range before and after post-processing for three forecast periods in 

2002 starting from a) Jan, b) Feb, and c) Mar, with the solid lines representing the monthly observations. 

Corresponding ESP mean are shown in subplots d-f. 
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4. Probabilistic Forecast of Seasonal Droughts
2
 

Appropriate planning of water resources needs accurate knowledge about the 

accessible water in the future. Drought is a water-stress phenomenon that slowly 

develops across a region and affects the living environments from different aspects. The 

evident impacts of global warming and climate change on hydrologic extreme events 

make the accurate hydrologic forecast as a serious demand for the management and 

operation sectors. The reliable forecasts of hydrologic variables by the multivariate 

copula-based technique as discussed in the previous chapter inspires the extension of the 

proposed methodology to the drought forecasting problems with a new probabilistic 

outlook.  

4.1  Methodology 

Copula functions are proposed for drought forecasting. Despite the admiration of 

copulas in probability theory and statistics, they have yet to be effectively applied in 

probabilistic forecast of drought events, except few studies in determining drought 

characteristic. As discussed earlier, copulas can model the joint behavior of correlated 

and dependent variables such as hydrologic variables.  

Similar to many other hydrologic states, the drought status of a location at a particular 

time is affected by its earlier status with rather short or long gap. Since streamflow is the 

                                                           
2
 The scientific content of this chapter has been published or is under peer review: 

Madadgar, S., and H. Moradkhani (2013), A Bayesian Framework for Probabilistic Seasonal Drought 

Forecasting, J. Hydrometeorology, doi:10.1175/JHM-D-13-010.1, in press. 

Madadgar, S., and H. Moradkhani, Spatio-Temporal Drought Forecast within Bayesian Networks, J. 

Hydrology, in review. 
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main factor in hydrologic droughts, the accurate modeling of future streamflow is 

essential to predict the future droughts. Upon the correlation of streamflow at a given 

time with a limited extent of its past observations, the Bayesian framework as discussed 

earlier can be utilized to reflect the sequential behavior of drought conditions within a 

probabilistic analysis on streamflow variable (Madadgar and Moradkhani, 2013). If it is 

assumed that the forecast variable is correlated to the variables with a lag-time equal to

1n , Eq. 16 would give us the conditional density function of the forecast variable at 

time nt given all the past observations: 
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If 2n , streamflow at any time would be only conditional on its previous value; and 

the conditional density function (Eq. 18) would be simplified as follows (Madadgar and 

Moradkhani, 2013): 
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If streamflow dependency is reasonably extended to its two previous time steps, the 

conditional pdf turns to the following form (Madadgar and Moradkhani, 2013):  
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(20) 

This study aims at forecasting seasonal droughts conditional on the drought status of 

the past seasons with highest correlations. As shown later for the study basin; the target 

season is correlated the most to its previous season; however, its correlation to the second 
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earlier season (two prior seasons) is not insignificant to ignore. Thus, Eq. 19 and 20 are 

applied to practice the probabilistic drought analysis of the target season given the 

drought status of either one or two past seasons. 

4.2 Case Study and Data 

The Gunnison River Basin is one of the headwater sub-basins of the Colorado River 

Basin, located in the southwestern United States (Fig. 17). The Colorado River Basin, 

with an approximate drainage area of 640,000
2km , is divided into upper and lower 

portions, and encompasses parts of seven States: WY, CO, UT, NV, CA, NM, and AZ. 

The Gunnison River Basin includes seven sub-basins with a total drainage area of 5,400 

2km  at the conjunction of two upstream reaches: the Tomichi Creek and the Gunnison. 

Streamflow observations of the upstream reaches immediately before the basin outlet at 

USGS 09119000 (Tomichi Creek River) and USGS 09114500 (Gunnison River) are 

accumulated to use as the basin’s total outflow at any time.   

 

CO

WY

AZ
NM

UT
NV

CA

Upper
Colorado
RB

Lower
Colorado
RB

Figure 17: Gunnison River Basin, a sub-basin of the Colorado River Basin in southwestern United States. 
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The Gunnison river basin is a snowmelt dominated watershed. According to the 

drought summary by Western Water Assessment (WWA) and NIDIS released in July 

2012 (WWA and NIDIS, 2012), depletion of the snowpack and the early meltout in the 

spring of 2012 caused the below-average flow in April-July of 2012. During the past 118 

years, 2012 was 2nd warmest year on record in the state of Colorado. Regarding the 

inflows to Lake Powell, which reflects the runoff of the entire Upper Colorado River 

Basin, the water year 2012 was the 4th driest year in the past century. The intense 

drought of 2012 (comparable with the drought of 2002 across the region) in the states of 

Colorado, Utah, and Wyoming caused insufficient water supply, poor pasture and crop 

conditions, and region-wide wildfires. However, in general, the region has been 

undergoing various droughts since 2000, with the most intense drought occurring in 

2002. Thus, accurate forecast of future droughts is significant for reliable planning and 

management of available water resources across this area.  

4.3  Drought Indices 

Droughts may occur in different phases of hydrologic cycle. Water movement 

through the hydrologic cycle is generally slow phenomenon, except for quick mass-

transfer events like sudden storms. It happens that in a specific time window some 

hydrologic variables (e.g., soil moisture) experience a level of drought while some others 

(e.g., streamflow or water availability) do not undergo any identifiable drought 

categories. Therefore, drought status would appear differently upon the target hydrologic 

variable. To assess the drought status of a region, many drought indicators have been 

developed each using different hydrologic variables. The Palmer Drought Severity Index 
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(PDSI; Palmer, 1965), Standardized Precipitation Index (SPI; McKee et al., 1993), Crop 

Moisture Index (CMI; Palmer, 1968), Surface Water Supply Index (SWSI; Shafer and 

Dezman, 1982), and Vegetation Condition Index (VCI; Liu and Kogan, 1996) are among 

the most applied indices to characterize different drought types. Though all of these 

indices are widely used, each one focuses on particular hydrologic variables and has its 

own specific strengths and weaknesses.  

This study adopts the definition of the meteorological drought index, SPI, for 

streamflow variable (Standardized Streamflow Index; SSI) to characterize the 

hydrological droughts at a particular river section. In drought studies, the indicators 

defined similar to SPI are generally called Standardized Indices (SI), which are able to 

capture the anomalies from the average moisture status of a region regarding the drought 

variable in use. An SI may utilize hydrologic variables other than precipitation (as in SPI) 

such as streamflow, snowpack, soil moisture, etc (McKee et al., 1993). The severity of 

droughts characterized by SI is usually identified by the U.S. Drought Monitor 

classification scheme as summarized in Table 5. The five drought categories (D0-D4) in 

dry periods are defined upon certain probability thresholds. The more severe droughts are 

associated with less probable categories (e.g. D4). Indeed, the SI drought indicators are 

normal variates; and hence, the smaller values of drought indicator are in accordance with 

more severe and less probable droughts. The SSI=-0.5 is a threshold to separate the dry 

periods from the wet (normal) periods; however, the variation in water availability during 

a time horizon results in a dynamic transition either between dry and wet spells, or among 

various drought categories. To calculate the SSI as defined in this study, the monthly 
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flow at a particular river section ( iyry , ) are aggregated starting from month m  of the year 

yr  for the time-window of length k  ( kmyrX ,, ). Then, the marginal CDF of the 

aggregated flows is obtained as kmyru ,, to transform the aggregated flow to the 

standardized normal variable. Hence, the SSI is the inverse normal variate of kmyru ,,  

(Madadgar and Moradkhani, 2013): 
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According to Eq. 21, separate distributions fit the aggregated flows with different 

starting months. This definition of SSI preserves the seasonality effect; otherwise, if the 

marginal distribution fitted to the entire series of the aggregated flows, the seasonal flow 

pattern would be disregarded.  

Table 5: Drought classification used by the U.S. Drought Monitor. 

The U.S. Drought 

Monitor Category 
Drought severity SI value 

D0 Abnormally Dry -0.5 to -0.7 

D1 Moderate Drought -0.8 to -1.2 

D2 Severe Drought -1.3 to -1.5 

D3 Extreme Drought -1.6 to -1.9 

D4 Exceptional Drought -2.0 or less 

 

To study the spatial variation of hydrologic droughts, streamflow should be replaced 

by generated runoff across the basin. Note that streamflow at a particular river section is 

the accumulated flow generated across the entire area of the basin and have been routed 
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to that section. This study uses the Standardized Runoff Index (SRI; Shukla and Wood, 

2008) to evaluate the spatial variation of hydrologic droughts. The basin should be 

divided to some hypothetical spatial units, each of which responses similarly to 

hydrologic excitements throughout their area. SRI is the SSI defined for each unit; hence, 

streamflow in Eq. 21 should be replaced by runoff to reflect the anomalies of surface 

runoff generated at each unit ( s ) from its corresponding average value: 












1

,,,

,,,,

,,

1

,,

)(

)(

,,

km

mi

s

iyr

s

kmyr

s

kmyrX

s

kmyr

s

kmyr

s

kmyr

yX

XFu

u=SRI

s
kmyr



 

(22) 

where, s

kmyru ,,  is the probability of accumulated surface runoff of the spatial unit s  in 

year yr  over k  months starting from month m ; (.)F is the marginal distribution of 

aggregated runoff ( s

kmyrX ,, ); and sy(.)  is the monthly runoff of the spatial unit s . 

Therefore, SRI calculation starts with fitting an appropriate marginal distribution to the 

aggregated surface runoff over k  months and computing the standardized normal 

variable for each aggregated runoff volume. Separate marginal distributions should fit the 

accumulated runoff beginning from different months to obtain the SRI variation over 

time for each spatial unit. Once the SRI is estimated for each spatial unit, the drought 

status of each unit can be determined similar to SSI from Table 5. 

4.4  Analysis of Historical Droughts 

Water supply in GRB is highly dependent on the snowmelt generated from the higher 

elevation areas. Decreased high elevation snowpack has caused droughts with of varying 
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intensities in Upper CRB during recent decades, while the most severe one occurred in 

2002. Recently, snowpack depletion and early meltout in spring 2012 caused a 

widespread drought in the states of Colorado, Utah, and Wyoming (reported by Western 

Water Assessment (WWA) and National Integrated Drought Information System 

(NIDIS), July 2012). The below-average flow in April-July of 2012 triggered poor 

pasture and crop conditions, and region-wide wildfires. Despite the low inflow in 2012, 

the carryover of local reservoirs from the past couple of wet years (2010-2011) could 

mitigate the drought impact on the water supply throughout the region. Spring of 2012 

was the nd2  warmest spring on record in the state of Colorado and the th4  driest spring in 

Upper CRB since 1900. Continued warm and dry climate increases the probability of 

contiguous droughts over the region, thus affecting the irrigation and crop production. As 

reported by NOAA’s National Climate Data Center (NOAA, March 2013), the regions 

across the Central Plains and Mountain West have already received the below-average 

precipitation during winter 2013, and are likely to have another dry summer for the 

second year in a row. While the recent droughts might be the signature of global warming 

impacts on extreme events across the world, the reliable drought forecast across the CRB 

seems to be essential for planning and managing the available water in future. 

4.4.1 Streamflow Record 

To study the historical droughts of the Gunnison River Basin (GRB), the gage 

observations of the upstream reaches immediately before the basin outlet at USGS 

09119000 (Tomichi Creek River) and USGS 09114500 (Gunnison River) are 

accumulated to use as the basin’s total outflow at any time. SSI as defined by Eq. 21 is 
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applied to the basin outflow to detect and analyze the drought status of the basin in 

respect with stremaflow. As described earlier, kmyrX ,, in Eq. 21 is the accumulated 

monthly flow over k  months starting from month m  of the year yr . For the seasonal 

drought forecast, monthly flow volumes are aggregated over a sequence of 3 months (

3k ), and then a set of distributions is tested to find the best marginal distribution fitted 

to the aggregated flows. Streamflow record during 1950-1990 is contributed to find the 

marginal distributions and establish the forecast model and the rest (1990-2011) is used 

for verification purposes. The following seven distributions are tested as the marginal 

distributions: Gamma, Generalized Extreme Value (GEV), Lognormal, Gaussian, 

Weibull, Gumbel, and Exponential distributions. The method of MLE is used to estimate 

the parameters of each distribution, and the best distribution fitted the seasonal flows is 

found by the K-S test (Eq. 7) and the AIC statistics (Eq. 8). Table 6 summarizes the AIC 

and the p-value associated with the K-S test for different distributions fitted to the 

seasonal flow volumes in the training period of 1950 to 1990. The best distributions, with 

the smallest AIC and the p-values greater than the significance level, 05.0 , are shown 

in bold. Either gamma or lognormal distribution is found to be the best fit to the seasonal 

flow volumes. Fig. 18 illustrates the marginal distributions against the histogram of the 

seasonal flow volumes ( 12...,,1,3,, mX myr ).  

Using the marginal distributions found upon the aggregated flow during the training 

period (1950-1990), the SSI with k=3 is calculated for the entire analysis period (1950-

2011) as plotted in Fig.19 (Madadgar and Moradkhani, 2013). Using the U.S. Drought 

Monitor categories (Table 5), 5.0SSI  is taken as a threshold to separate the dry and 
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wet conditions, and the shaded areas in Fig. 19 illustrate the dry periods with 5.0SSI . 

As seen, that the Gunnison River Basin has been exposed to various droughts since 1950. 

During sixty-one years of the analysis period, the drought of 2002 was the most sever 

“exceptional” drought (D4; 0.2SSI ). Drought persistency is also obvious in Fig. 19. 

Evidently, several droughts frequently occurred in 1950s and 1960s; and the drought of 

2000 continued for five years in spite of the earlier long wet period from 1995 to 2000. 

To easily follow the temporal sequence of seasonal droughts in Fig. 19, the matrix plot in 

Fig. 20 shows the status of dry spells for each season. Each cell of the matrix represents 

the drought status of a particular season in the year, and as shown, several dry periods 

occurred during the 1950s and 1960s, especially in the falls and winters (Oct-Nov-Dec 

and Jan-Feb-Mar). General evidence of the matrix plot is that the droughts have been 

more evenly distributed in the springs and summers than in the falls and winters of the 

analysis period (Madadgar and Moradkhani, 2013).  

A backward calculation in the SSI formula would give us the range of seasonal flow 

within each drought category used by the U.S. Drought Monitor (Table 5). The bar chart 

in Fig. 21 shows the range of flow volume within each drought category D0-D4. From 

this figure, the seasonal pattern is evidently captured as expected from the SSI definition 

(Eq. 21). The high-flow season shows more variability in the required amount of water to 

transition to a different category. In other words, the same class of drought is likely to 

persist within a high-flow season (e.g. the spring) if the seasonal flow does not change 

significantly. Moreover, while a particular seasonal flow (e.g. 90 KAF) is defined as an 

absolutely wet condition in winter (Jan-Feb-Mar or Feb-Mar-Apr periods), the same 
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amount of flow might lead to an exceptional drought condition (D4) in spring (e.g. Apr-

May-Jun and May-Jun-Jul periods). This is the seasonality issue reflected in drought 

definition which identifies the high dependency of drought status on the time of the year 

(Madadgar and Moradkhani, 2013).  

Table 6: The AIC and the p-value of the K-S test found for different distributions fitted to the seasonal flow 

volumes starting from different months over a sequence of 3 months. The numbers in the parentheses are 

the p-values. The statistics of the best distributions are presented in bold. 

Dist.  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Gamma 
495 

(.85) 

579 

(.96) 
716 

(.34) 

789 

(.70) 

810 

(.79) 

781 

(.65) 

705 

(.41) 
621 

(.96) 

562 

(.52) 

531 

(.79) 

498 

(.82) 

476 

(.78) 

GEV 
496 

(.85) 

580 

(.93) 

718 

(.47) 

791 

(.60) 

812 

(.84) 

780 

(.78) 

701 

(.91) 

623 

(.96) 

563 

(.68) 

532 

(.75) 

499 

(.95) 

477 

(.87) 

Logn 
494 

(.91) 

578 

(.95) 

717 

(.64) 

792 

(.61) 

812 

(.87) 
779 

(.64) 

701 

(.77) 

623 

(.97) 
561 

(.73) 

530 

(.80) 

497 

(.94) 

475 

(.90) 

Gaus 
501 

(.45) 

585 

(.51) 

725 

(.04) 

794 

(.13) 

821 

(.22) 

799 

(.14) 

727 

(.09) 

625 

(.57) 

566 

(.25) 

536 

(.39) 

502 

(.44) 

481 

(.42) 

Weibull 
506 

(.28) 

586 

(.49) 

720 

(.10) 

790 

(.30) 

813 

(.56) 

788 

(.26) 

718 

(.19) 

627 

(.51) 

568 

(.29) 

538 

(.34) 

506 

(.26) 

486 

(.22) 

Gumbel 
526 

(.06) 

607 

(.09) 

746 

(.01) 

813 

(.04) 

845 

(.06) 

834 

(.01) 

769 

(.00) 

644 

(.09) 

583 

(.15) 

552 

(.15) 

521 

(.06) 

503 

(.05) 

Exp 

623 

(2E-

11) 

680 

(2E-

10) 

779 

(3E-

07) 

843 

(3E-

06) 

856 

(1E-

06) 

831 

(3E-

07) 

768 

(3E-

08) 

723 

(4E-

10) 

675 

(2E-

11) 

648 

(2E-

11) 

625 

(2E-

11) 

607 

(7E-

12) 
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Figure 18: Histogram against the best fitted distribution of the aggregated flow volumes over a sequence of 

3 months during the training period of 1950-1990. 

Figure 19: The SSI3 (SSI with k=3 in Eq. 11) timeseries during the analysis period. The line  separates the 

dry and wet periods. 
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Figure 20: Matrix plot of seasonal droughts indicating the sequence of droughts during the analysis period. 

 

 

Figure 21: Seasonal flow volumes classified into different drought categories. 
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variation of hydrologic droughts across the basin needs the basin to be divided into some 

spatial units, each studied separately for hydrologic responses and drought variables.  

PRMS is used to estimate the runoff volume generated across the study area of GRB. 

To apply PRMS, the basin should be partitioned into several Hydrologic Response Units 

(HRUs) each with various parameters to be calibrated. The predicted runoff in each HRU 

is the output of a series of conceptual reservoirs including impervious zone, soil zone, 

subsurface, and groundwater reservoirs. The final outflow of the basin is the total routed 

runoffs of all the HRUs that reach the basin outlet at the same time. The HRUs for GRB 

are set as the grid cells shown in Fig. 22. There are 37 grid cells across the basin with 12 

by 12 
2km resolution (1/8

th
 degree). 

 

Figure 22: Gunnison River Basin located in southwestern United States with 37 spatial units with the size 

of 1/8
th

 degree (~12 km resolution). 
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Therefore, the total 37 HRUs are contributed to model the basin outflow during the 

modeling period from 1979 to 2011. For the hydrologic modeling of the basin, PRMS 

requires the daily maximum and minimum temperature, and precipitation for each HRU. 

The Inverse Distance Squared Weighting (IDSW) method is used to spatially distribute 

the daily records of a group of SNOTEL and COOP stations among the HRUs. In IDSW, 

the interpolation weights are calculated proportional to the squared inverse distance of the 

HRUs to the measuring sites. Hence, the measurement sites share more information with 

the nearby HRUs. Parameters of the hydrologic model are calibrated by Shuffled 

Complex Evolution (SCE) global search algorithm (Duan et al., 1994) with the objective 

function of maximizing the Nash Sutcliffe Efficiency (NSE) over the daily record of the 

basin outflow: 
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 (23) 

where, 
t

obs

t

sim yy and are the modeled and observed streamflow at time t , respectively; 

2

obsy is the variance of observations; and T  is the length of observation record.  

Model parameters are calibrated and validated over the periods of 1979-1989 and 

1989-2011 respectively with the associated NSEs equal to 0.7 and 0.72. According to 

these measures, the model performance seems reliable where the runoff at different 

HRUs can be assumed acceptable. Since the actual runoff is not measurable, this study 

relies on the simulated runoff by PRMS for sake of drought assessment.  
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To show the PRMS performance, Fig. 23a plots the modeled against the measured 

daily outflow of the basin for the entire period of 1979 to 2011. As seen, the estimated 

flow is similar to observed flow specifically in low-flow seasons. The interquartile range 

of monthly mean streamflow during 1979-2011 is shown in Fig. 23b. Generally, the peak 

flows occur in June and the low-flow season begins in July when the hydrograph starts 

descending. Furthermore, the model can capture the low flows better than the high flows. 

The main reason can be attributed to the elevation of the highest available station whose 

measurements are used as climate input to PRMS. The highest station is located at the 

elevation of 3523m while the highest elevation of the basin is 4221m. For a snow-

dominated basin like GRB, where the snowmelt plays a significant role in the basin 

outflow, missing the climate data of elevated areas can cause under-estimating the high 

flows (Fig. 23a-b). In this regard, a recent study by Jung et al., (2012) showed the high 

sensitivity of the hydrologic models’ performance to their parameters in snow-dominated 

basins. 
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Figure 23: Comparison of the measured and simulated outflow of the GRB during 1979 to 2011 in the form 

of a) daily timeseries, and b) Interquartile range of monthly mean streamflow. 

To implement the drought analysis, SRI (Eq. 22) is calculated for transferred, 

accumulated surface runoff generated at each grid cell across the basin. Surface runoff is 

accumulated over 6 months starting from each 12 months of a year, and the best fitted 

10/01/1979 10/01/1983 10/01/1987 10/01/1991 10/01/1995 10/01/1999 10/01/2003 10/01/2007 09/30/2011

2,000

4,000

6,000

8,000

10,000

12,000

ValidationCalibration

 B
a
s
in

 O
u

tf
lo

w
 [

c
fs

]

 

 

Measured

Simulated

0

500

1000

1500

2000

2500

3000

3500

4000

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

 M
o

n
th

ly
 F

lo
w

 [
c
fs

]

Measured

Simulated

(a) 

(b) 



75 
 

marginal distributions are found, afterwards. Fig. 24 shows drought condition of the basin 

given the surface runoff at each HRU in January (on the left) and July (on the right) of 

2000 thru 2005. Drought categories (D4 to Normal status) in each HRU are determined 

according to the SRI value. As seen, the drought of 2002 encompasses the entire basin. 

Generally, July runoff predictions of 2000-2005 indicate stronger droughts than their 

respective January runoff predictions, despite the larger monthly mean streamflow in 

Julies (Fig. 23b). Since drought events over a particular time window are defined relative 

to the average condition of that time window, droughts in high-flow seasons might have 

totally different characteristics than droughts in low-flow seasons. The drought maps in 

Fig. 24 also indicate that the SRI acquired from estimated runoff by PRMS capture the 

drought events during 2000-2005 which also shown in Fig. 19.  

4.5 Probabilistic Drought Forecasting 

Drought is an evolving extreme event that occurs over a given period of time. 

Drought status of a region at any time depends on the water availability (precipitation, 

soil moisture, runoff, etc), within the past few months or seasons. In other words, water 

availability in the past plays a significant role in future drought status. Since drought-

related variables (e.g. runoff, streamflow, drought indices, etc.) are statistically dependent 

on their past status, they can be expressed within the Bayesian networks as described 

earlier (Eq. 19 and 20).  

In the following sections, the probabilistic forecast of future droughts are studied 

separately for the streamflow at the GRB outlet and the runoff volume generated at each 

grid cell of Fig. 22. In the former case, the status of future droughts is estimated for the 
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entire study area upon the streamflow forecast at a given section of the river basin (the 

outlet); while in the latter case, the runoff forecast for each grid cell is used to estimate 

the spatial variation of future droughts across the basin.  

 

Figure 24: Droughts in GRB during the past years, a) SSI with respect to the observed streamflow at the 

basin outlet. The line SSI=-0.5 is the threshold to separate the dry and wet periods, b) spatial variation of 

drought events throughout the basin. The drought maps are shown for January (on the left) and July (on the 

right) for each year. 
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4.5.1 Basin Outflow 

Basin outflow is chosen as the forecast variable for drought study in this section. The 

spring total flow (Apr-May-Jun) is taken as the forecast variable, and the predictor 

variable is determined based on the correlation and dependencies of spring flow with the 

prior seasonal flows. Figure 25 shows the autocorrelation between the transferred spring 

flow and the total flow of the prior seasons. The seasonal flows are transferred by the 

marginal distributions found in earlier sections (Table 6 and Fig. 18). As seen, the 

transformed spring flow has the highest correlation with the transformed winter flow 

(Jan-Feb-Mar) among the other seasons of the year. Yet, the correlation between the 

seasonal flow of spring and fall or even summer is not insignificant; and the analysis of 

spring flow should be established upon either one season (winter) or two seasons (winter 

and fall) earlier. Therefore, two different Bayesian networks are applied to study the 

conditional probabilities of spring flow. In the first network, the spring flow is assumed 

to be only dependent on the winter flow and hence the drought forecasting is conducted 

within Eq. 19. The second network adds the impact of fall status on spring drought and it 

considers the seasonal flow of both past winter and fall in drought forecasting of spring 

season (Eq. 20). However, given the greater correlation between the spring and winter 

flow, it is expected that the winter influences the spring flow more than the fall.   
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Figure 25: The autocorrelation of the transformed spring flow (Apr-May-Jun) to the prior 3-month flows. 

The moving window locates no further than the previous year spring season (Apr-May-Jun). The big circles 

are associated with the transformed seasonal flows before spring (winter, fall, and summer). 

4.5.1.1  First-Order Conditional Forecast  

 In the first-order conditional forecast, the spring drought is assumed to depend only 

on its past winter flow (Madadgar and Moradkhani, 2013). Thus, Eq. 19 applies to 

drought forecasting where 
2t

x and 
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x  represent the seasonal flow of the spring and winter, 

respectively, and u  denotes the corresponding probabilities from associated marginal 

distributions. To implement the probabilistic forecast analysis, an appropriate bivariate 

copula function should join the marginal distributions of the spring and winter seasonal 

flow. The best marginal distributions fitted the observed flow of each season during the 

training period (1950-1990) are the same as those found earlier (see Table 6 and Fig. 18). 

Archimedean and Elliptical families of copula functions (Table 1) are used to join the 
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greatest p-value (greater than the significance level as well) is selected as the best copula. 

In this study, the significance level is set to 05.0 and the p-values are obtained by the 

parametric bootstrapping procedure with 1000 replications. As summarized in Table 7, 

the Gaussian copula with the smallest nS  and the greatest p-value is the best choice 

among others. 

Table 7: Statistics of the GOF test to find the best copula joining the marginal variables of seasonal flows in 

Eq. 19 and 20 (
3t

u ,
2t

u  , and 
1t

u ). The 
3t

u , 
2t

u , and 
1t

u refer the marginal variables of spring, winter, and 

fall flows, respectively. The Cramér-von Mises statistic ( nS ) and the corresponding p-value are presented 

in each case. The results for the superior copulas are shown in bold. 

Copula 
S  p-value 

3t
u , 

2t
u  

2t
u , 

1t
u

 3t
u , 

2t
u , 

1t
u  

3t
u , 

2t
u  

2t
u , 

1t
u

 3t
u , 

2t
u , 

1t
u  

Gaussian 0.038 0.023 0.034 0.057 0.312 0.256 

t 0.040 0.028 0.046 0.038 0.180 0.122 

Gumbel 0.044 0.030 0.059 0.028 0.132 0.043 

Clayton 0.059 0.076 0.083 0.028 0.009 0.018 

 

After picking the best-fitted copula for the data, several probabilistic analyses of 

drought status in spring season can be conducted using Eq. 19. In such an analysis, one 

might be interested in spring-flow distribution conditional upon a given winter drought 

status in winter. In this case, the winter drought conditions might be fixed at the very 

transition point of drought categories, where a drought status turns to another. Fig. 26 

shows the distribution of spring flow (Apr-May-Jun) conditional on the drought status in 

winter (Jan-Feb-Mar) (Madadgar and Moradkhani, 2013). Each curve represents the 

probability distribution function (PDF) associated with a particular drought status in 
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winter (D0-D4). The analysis is narrowed down to the fixed drought conditions in winter. 

According to the drought PDFs, as the winter flow increases, which is equivalent to less 

intense drought in winter, the spring drought is expected to be less intense as well. For 

example, if a D4 drought occurred in winter, the spring drought-status is likely to be 

more intense than if a D0 winter-drought occurred. Moreover, when an intense drought is 

experienced in winter, the distribution of spring flow is rather narrow around its mode. 

For instance, the PDF associated with D0 winter-droughts is wider than the PDF 

associated with the D4 winter-drought. This leads to a larger range of spring flow given 

the D0 drought-status in winter, as compared to the D4 winter-drought.  

 

Figure 26: Distribution of seasonal flow in the spring given the drought status in winter. Each PDF is in 

accordance with a particular winter drought-status. 

To expand the results and demonstrate the usefulness of this approach, the conditional 

probability of drought in spring season, given the drought condition in winter, is shown in 
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a same plot, the probability distributions are scaled between 0 and 1; where 1 (the red 

shade) represents the most probable spring flow (mode of the PDF), hence drought 

condition, given the flow magnitude (i.e., hydrologic drought condition) in winter. 

Similarly, the areas with more yellowish shade represent the tails of the spring-flow PDF 

given the winter flow. Therefore, the red shade closely surrounds the mode of the PDFs; 

hence, the associated range of spring flow is more likely to happen if the given winter 

flow is observed. The scatterplot of the spring flow against the winter flow during the 

entire analysis period, 1950-2011, is also shown in the x-y range of Fig. 27. The 

scatterplot is showing both training (1950-1990) and validation (1990-2011) periods. As 

seen, the red area (most likely situations given the winter flow) captures almost the entire 

scatterplot which approves the reliable performance of the forecast methodology in both 

training and validation phases. The range of seasonal flows is split by the dashed lines, 

for both winter and spring, to illustrate the range of seasonal flows corresponding to 

various drought conditions, in each season. Fig. 27 helps to find out the most likely 

drought status in spring, given the winter flow, by simply looking at the dark regions. 

Given D4 drought in winter, for instance, the spring drought-status is most likely to be 

D4, D3, or D2 depending on the exact value of the winter flow. As another example, if a 

D2 drought occurs in winter, the spring drought-status will likely be located in either D1 

or D0 spans. Visual inspection of Fig. 26 also verifies that the PDF of the spring flow is 

narrower within the D1 and D0 spans, given the winter drought of type D2. Hence, Fig. 

26 is a limited version of Fig. 27 where only a few conditional PDFs are illustrated.  
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Figure 27: Conditional PDF of spring flow given the winter flow. The conditional PDFs are scaled between 

0 and 1 for visualization purposes. The shade level in each pixel indicates its conditional probability 

density. The circles show the spring flow volume against the winter flow volume during the analysis period 

of 1950-2011. The dash lines identify the range of either winter or spring seasonal flow within each 

drought category. 

While the conditional PDFs of spring flow, given the winter flow, are shown in Figs. 

26-27, the probability of various droughts occurring in spring is not evaluated to this 

extent. In this study, the following expression is used to analyze the probability of spring 

droughts: 

)|(1)|(
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(24) 

where 
iDx  is the spring flow causing a iD  drought-status. Eq. 24 gives the probability 

of spring flow exceeding the thresholds defined for a particular drought status ( iD ), 

while the winter flow is observed (
1t

x ). Fig. 28 shows the exceedance probability of 

spring flow (
iDt xX 

2
) given the winter flow (

1t
x ) (Madadgar and Moradkhani, 2013). 
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For instance, if the flow magnitude of 35 KAF (a D2 drought) occurs in winter, the 

probability of spring drought having a D0 or wetter status would be 0.44. Likewise, this 

probability would be equal to 0.57, 0.77, 0.85, and 0.93 for D1, D2, D3, and D4 drought 

conditions. The curve for the D0 drought (the lowest one) gives the probability of spring 

flow leading to a D0 or wetter condition. Hence, this plot is useful in drought mitigation 

planning and decision making where the probability of dry-period termination is of 

interest. The probability of terminating the dry-periods with severities other than D0 (D4, 

D3, D2, or D1) can be also obtained using Fig. 28. Moreover, as either curve approaches 

1, the difference between the exceedance probabilities decreases. This is in agreement 

with the fact that less-dry springs are anticipated when the winter flow increases, 

presuming that the correlation of spring flow with earlier seasonal flows dramatically 

decreases beyond the previous winter.  
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Figure 28: The conditional probability of spring flow (given the winter flow) exceeding particular threshold 

associated with the drought status of Di. 

To provide an operational insight towards the developed forecast methodology, the 

presented technique is compared with ESP technique as described in previous chapter. 
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drought events in the Gunnison River Basin, the duration of 1980-1990 is taken as the 

spinup period and the ESPs are generated starting from the Jan. 1st of each year during 

1990 to 2011 with a lead time of 6 months. Therefore, each ESP is built for the period of 

Jan-Jun of each year; where, the PRMS is driven with the resampled meteorology of Jan 

to Jun from each year in the entire period (1980-2011) -except the year that the ESP is 

generated for.  

To compare the forecast results of the presented method with ESP, Fig. 29 is 

developed showing the 90% predictive uncertainty bound of the retrospective forecasts 

within the validation period (1990-2011) (Madadgar and Moradkhani, 2013). As seen, 

there are only few spring seasons with drought conditions during 1990-2011. The 

uncertainty bound for the copula method is the limited representation of Fig. 27 where, 

given any winter flow, only the 5% and 95% bounds of the PDFs are shown. Unlike the 

copula-based forecast, the uncertainty bound of the ESP forecasts do not change 

smoothly as the winter flow increases. The uncertainty bound gradually expands in the 

copula-based forecasts while it does not follow a particular trend for the ESP approach. 

To ensure the validity of the generated ESPs, the PRMS simulations are plotted vs the 

observations in Fig. 30. As seen, PRMS performs quite reasonably in simulating the 3-

monthly flows implying that the generated ESPs (shown in Fig. 29) are reliable to 

compare with copula-based forecasts. According to Fig. 29, the significance of the 

copula-based forecast model over the ESP approach is that the generated uncertainty 

bound is reasonably large to encompass the observations showing a discernible trend 

against the increase in winter flow. Moreover, according to the expected values of 
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forecasts, the performance of copula-based method is seen to be slightly better than the 

ESP forecasts.   

 

Figure 29: Seasonal flow forecast using the developed method vs the ESP forecasts generated by PRMS. 

Flow forecasts are corresponding to the validation period (1990-2011). 
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Figure 30: Observations vs PRMS simulations of 3-monthly flows beginning from each calendar month 

during 1980-2011. 

4.5.1.2  Second-Order Conditional Forecast  

Given the correlation of spring flow to the past winter and fall seasons (Fig. 25), the 

spring droughts might be analyzed using the second-order conditional probabilities (Eq. 
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bivariate copula as well. The parameters of copulas are found within the same training 

period as used before (1950-1990).  

Eq. 20 returns the second-order conditional pdf of spring flow given the winter and 

fall observations. Fig. 31 shows the conditional pdfs of spring flow given various 

droughts in the past seasons (Madadgar and Moradkhani, 2013). In Fig. 31a, the fall 

drought is fixed at D4 and the winter drought varies from D0 to D4. Similar to Fig. 26, 

the modes of pdfs move towards smaller spring flows as the winter drought becomes 

more intense. The very little difference between Fig. 31a and Fig. 26 indicates that the 

fall status does not have noticeable impact on the spring drought. This fact is approved 

with Fig. 31b as well where, for a given winter drought (D4), even a big change in fall 

status (D0 to D4) does not make a significant change in spring status. As seen, the pdfs in 

Fig. 31b are clustered together and are quite similar to the pdf associated with D4 drought 

in Fig. 26 and Fig. 31a. This is an evidence of high influence of winter status on the 

spring drought. In Fig. 31a and b, all the pdfs are conditional on a particular drought (D4) 

fixed for either fall or winter. Fig. 31c displays the effect of any possible variation in 

winter and fall status on the spring drought. The pdfs are associated with two situations 

(D0 and D4) for either fall or winter. While the fall status is fixed at D0 (circle markers), 

the spring drought would change rather significantly upon the magnitude of change in 

winter status. In opposite, if the winter status is fixed at a particular drought, e.g. D0 

(solid markers), the spring status does not considerably change with even a big change in 

fall status. Hence, the spring drought is found to be more sensitive to the winter status 
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than the fall status which approves practicing the reduced-dimension form of the forecast 

model (denoted as the first-order conditional forecast).  
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Figure 31: Distribution of spring flow given the drought status of a) Di in winter and D4 in fall, b) D4 in 

winter and Di in fall, c) D0 to D4 in winter and/or in fall. 

Another outlook to the spring drought would be the exceedance probability of spring 

flow given the winter and fall observations. This is equivalent to the probabilities 

developed in Fig. 28 with the exception that both fall and winter flows are used and 

therefore the two dimensional plot of Fig. 28 turns to a 3D plot (Fig. 32). Given the 

seasonal flow of winter and fall, Fig. 32 illustrates the conditional probability of spring 

drought being equal or wetter than Di. For example, the probability layer associated with 

D0 (the lowest one) gives the probability of spring flow exceeding the threshold for D0 

drought. Similar to Fig. 28, as the winter or fall flow increases, the probability layers 

approach 1 and get close together. This is a valid observation since the high-flow winters 

and falls are usually followed by wet rather than dry springs. Furthermore, for a particular 

drought status, the probabilities change more quickly by winter-flow variations than fall-

flow variations. Given a particular winter flow and variable fall flow, the probabilities do 
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not change as significant as if the fall flow was fixed and the winter flow varied. This is 

consistent with the outcomes of Fig. 31 where the winter flow was found to have stronger 

impact on the spring status than the fall flow.  

 

Figure 32: The conditional probability of spring flow (given the winter and fall flow) exceeding particular 

threshold associated with the drought status of Di. Each layer represents the exceeding probability of a 

particular drought in spring. 

The seasonal flow hindcast during the validation period (1990-2011) is shown in Fig. 

33 (Madadgar and Moradkhani, 2013). This plot is the 3D version of Fig. 29 where the 

conditional forecast of spring flow is upon the past winter and fall seasonal flows. The 

mesh grids show the uncertainty bound of spring flow generated by copula model. 

Similar to Fig. 29, the uncertainty bound associated with copula model gradually expands 

as the winter and/or fall flow increase and it also captures the observed spring flows 

during the validation period. Furthermore, the variation of uncertainty bound is more 
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dependent on the variation of winter flow than the fall flow as earlier approved by Fig. 31 

and Fig. 32. This is the reason that the hindcasts of Fig. 29 and Fig. 33 are very similar.  

 

Figure 33: Performance of the copula model vs the ESP approach in spring flow hindcast given the 

observed flow of past winter and fall. The mesh grids show the 5-95% uncertainty bound of spring flow 

generated by copula model. The observations are corresponding to the validation period (1990-2011). 

4.5.2 Runoff across the Basin 

Surface runoff generated across the basin is considered as drought variable in this 

section. As described earlier, the PRMS watershed model is used to estimate the runoff 

volume at each grid cell throughout the basin (Fig. 22). The drought index, SRI (Eq. 22), 

is used to forecast the drought status upon the estimated surface runoff at each grid cell. 

SRI with k=6 is utilized for drought analysis, where the runoff volume at each grid cell 

should be accumulated over 6 months. To develop the conditional probabilities, the 

drought status of a forecast season is assumed to be dependent on the status of the last 



93 
 

adjacent season. This assumption is in agreement with the results of the last section too. 

Therefore, Eq. 19 is used for drought forecasting where 
1t

x and 
2t

x  are defined as the 

runoff volume accumulated over 6 months, beginning from the predictor month 1t and the 

forecast month 2t , respectively. As explained later, the predictor month is set to January 

and the forecast month is set to July, with a 6-month accumulation window (i.e. Jan-Jun, 

and Jul-Dec, respectively). A lapse of 6 months is fit between the predictor and forecast 

months to avoid an overlap of the accumulation periods.  

4.5.2.1  Correlation Analysis and Copula Fitting  

Basically, a conditional forecast model performs better with highly- rather than 

lowly-correlated forecast and predictor variables. To find the predictor and forecast 

months with reasonable dependency in associated accumulated runoffs, a correlation 

analysis is examined is this section. Surface runoff of each grid cell (HRU) across the 

basin is accumulated over six months, beginning from different months (Jan-Dec) during 

32 years from 1979 to 2011. Table 8 shows the correlation results for possible pairs of 

forecast and predictor periods. For each HRU, the accumulated runoff over six months 

are transformed to the unit interval [0, 1] by the associated marginal distributions, and 

then the Pearson correlation coefficient is obtained for any possible pair of transformed 

variable: 

 

YX

YX

YXCov




,
, 

 

(25) 
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where, X and Y are the transformed accumulated runoff over six months beginning 

from months 1m and 2m . The transformed variables, X and Y , are identical to s

kmu ,., 1
and 

s

kmu ,., 2
in Eq. 22 for the spatial unit s . A correlation matrix is then obtained for each 

spatial unit (HRU). Table 8 summarizes the 10, 50, and 90 percentiles of correlation 

coefficients over all HRUs. For instance, the correlation coefficient of 0.44 in row Jan 

and column Jun in 10% matrix means that the correlation coefficient of 10% of the HRUs 

is less than 0.44 for the transformed accumulated runoff beginning from months Jan and 

Jun. The correlation coefficient for the same months increase to 0.9 and 0.95 for 50 and 

90 percent of the HRUs, respectively, which indicates a rather high correlation for these 

particular months. According to the window size of six months for accumulated runoff, 

the forecast month should be located later than six months from the predictor month. 

Otherwise, the accumulation period beginning from the forecast month would have some 

overlap with the accumulation period beginning from the predictor month. For predictor 

months of Jan to Jun, the forecast month with 6-month lag is issued at some time in the 

same year (upper triangle of Table 8). However, for the predictor months of Jul to Dec, 

the forecast month locates in the next coming year (lower triangle). As seen, the 

correlation matrix of Table 8 is not symmetric; e.g. correlation coefficients of Jan/Jul and 

Jul/Jan are not equal. In the Jan/Jul case, Jan is the predictor month and the correlation 

coefficient with Jul would be 0.87 in the 50% table. Otherwise, if Jul is chosen as the 

predictor month (Jul/Jan case), the correlation coefficient significantly decreases to 0.04. 

In general, the numbers in lower triangle of Table 8 are smaller than those in upper 

triangle. The reason should be explored in the coherence of monthly runoff for 
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consecutive months. As shown in Fig. 23b, the outflow of the basin is much larger during 

April-July than the rest of the year. Therefore, if some high-flow months fit in a 6-month 

accumulation period, the aggregated runoff would suddenly increase, and the 

corresponding marginal probability would move towards the tail of the distribution. 

According to the influence of high-flows in increasing the accumulated runoff, a high 

correlation is guaranteed if the high flows in the accumulation window for predictor 

month are followed by the high flows in accumulation window for the forecast month. In 

other words, the high flows should occur in consecutive months when the predictor and 

forecast windows are connected adjacently. Looking at Fig. 23b, the predictor month of 

Jan, which includes Apr-May-Jun in its accumulation window, is followed by the high 

flows of July and Aug (of the same year) for the accumulation window, beginning from 

July as the forecast month. Hence, the high flows should be from consecutive months to 

expect a high correlation. This is the reason that the upper triangle of the correlation 

matrix has greater values than the lower triangle (Table 8). In Jul/Jan case, the high flows 

in predictor period (Jul and Aug) are not followed by the high flows in the forecast period 

(Apr, May, Jun of the next year) and a low correlation is thus expected for that case. 

Summaries of 10, 50, and 90 percent of correlation coefficients over all HRUs indicate 

that the most correlated predictor and forecast months are Jan and Jul, respectively. The 

correlation coefficient decays for later predictor months, and in general, the winter 

months (Jan, Feb, Mar) show high correlation with the summer months (Jul, Aug, Sep). 

Thus, Jan is selected as the predictor month and Jul is set to be the forecast month to 

evaluate our forecast technique in the remainder of this paper.  



96 
 

The primary assignment to develop the conditional probabilities as defined in Eq. 19 

is to find a copula function to appropriately join the marginal distributions of correlated 

and dependent variables. The marginal distributions are chosen from the set of 

alternatives as: Gamma, Generalized Extreme Value, Lognormal, Gaussian, Weibull, 

Gumbel, and Exponential distributions. The K-S test and AIC test statistics (Eq. 7-8) are 

used to find the best fitted distribution to accumulated runoff volumes. For each HRU, a 

separate copula is required to join the marginal distributions of the accumulated runoff 

during the predictor and forecast periods (Jan-Jun and Jul-Dec). Thus, each HRU is 

assigned a particular copula function, set as the best fit from those listed in Table 1. The 

Cramér-von Mises (Eq. 4) statistic is applied in choosing the best copula from the set of 

Elliptical and Archimedean copulas. 

4.5.2.2 Drought Forecasting Products  

One advantage of the forecast model defined by Eq. 19 is the ability to estimate the 

forecast uncertainty via the conditional pdfs. Using the conditional pdf obtained from Eq. 

19, the uncertainty of runoff at each grid cell can be estimated for the forecast period. 

Surface runoff at each grid cell can be shown by a particular uncertainty bound around 

the pdf mean (median), rather than a single deterministic value. Fig. 34 shows forecast 

uncertainty for the runoff produced in a few HRUs across the basin during the hind-cast 

period from 1980 to 2010. Note that the forecast variable is called as the hindcast variable 

during a historical time period. The predictor month is Jan followed by the forecast 

month, Jul. Observed runoff (solid black dots) during the hindcast period is estimated by 

the deterministic PRMS and the forecast runoff is shown within the 5-95% uncertainty 
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bound around the pdf median (dash line). As seen, the uncertainty bound fairly 

encompasses the observed runoff of associated HRUs and the median of forecast pdf 

(dash line) generally passes through the observations. The uncertainty bound is found to 

be rather large (small) for high flows (low flows), which is quite reasonable due to the 

heteroscedastic nature of streamflow. 
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Table 8: Summary of 10, 50, and 90 percentiles of correlation coefficients over all HRUs. In each HRU, the 

Pearson’s correlation coefficient is estimated for each pair of accumulated runoff (with a particular starting 

month) having been transformed to the unit interval [0, 1]. The grey cells are associated with the forecast 

months being six months later than each predictor month in the first column on the left. 

 
Forecast month of the same year 

 
10% Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

P
re

d
ic

to
r 

m
o

n
th

 

Jan 1 0.90 0.75 0.73 0.64 0.44 0.43 0.29 0.00 -0.02 -0.13 -0.29 

Feb -0.24 1 0.93 0.85 0.79 0.77 0.58 0.30 0.00 -0.03 -0.11 -0.28 

Mar -0.26 -0.25 1 0.97 0.91 0.84 0.71 0.46 0.17 0.08 -0.13 -0.29 

Apr -0.26 -0.25 -0.21 1 0.90 0.89 0.73 0.50 0.17 0.09 -0.12 -0.29 

May -0.21 -0.22 -0.21 -0.20 1 0.94 0.82 0.59 0.24 0.08 -0.12 -0.25 

Jun -0.18 -0.18 -0.17 -0.15 -0.17 1 0.92 0.68 0.28 0.14 -0.07 -0.21 

Jul -0.18 -0.17 -0.17 -0.16 -0.18 -0.17 1 0.81 0.39 0.09 -0.08 -0.20 

Aug -0.10 -0.11 -0.10 -0.11 -0.12 -0.12 -0.13 1 0.45 0.17 -0.02 -0.12 

Sep -0.07 -0.07 -0.10 -0.08 -0.08 -0.08 -0.09 -0.11 1 0.50 -0.01 -0.06 

Oct -0.12 -0.12 -0.13 -0.15 -0.15 -0.12 -0.20 -0.27 -0.26 1 0.06 -0.07 

Nov -0.21 -0.33 -0.39 -0.42 -0.52 -0.50 -0.41 -0.34 -0.30 -0.31 1 0.32 

Dec 0.41 0.14 -0.02 -0.04 -0.13 -0.24 -0.15 -0.08 -0.17 -0.13 -0.12 1 

 

50% 

P
re

d
ic

to
r 

m
o

n
th

 

Jan 1 1.00 0.98 0.97 0.91 0.90 0.87 0.80 0.62 0.39 0.11 -0.04 

Feb 0.00 1 1.00 0.99 0.95 0.93 0.91 0.85 0.67 0.45 0.10 -0.05 

Mar 0.02 0.00 1 1.00 0.97 0.94 0.92 0.87 0.68 0.45 0.09 -0.03 

Apr 0.05 0.04 -0.02 1 0.97 0.95 0.93 0.86 0.68 0.43 0.10 -0.02 

May 0.03 0.04 0.04 0.01 1 0.98 0.94 0.87 0.69 0.44 0.10 -0.02 

Jun 0.04 0.04 0.05 0.05 0.08 1 0.97 0.89 0.74 0.40 0.14 0.00 

Jul 0.04 0.02 0.04 0.03 0.04 0.05 1 0.93 0.69 0.46 0.13 0.01 

Aug 0.05 0.03 0.05 0.05 0.07 0.09 0.11 1 0.79 0.50 0.15 0.03 

Sep 0.12 0.09 0.05 0.05 0.05 0.08 0.07 0.08 1 0.73 0.20 0.12 

Oct 0.08 0.04 0.02 0.01 0.05 -0.01 -0.02 -0.02 0.01 1 0.32 0.09 

Nov 0.44 0.40 0.37 0.36 0.27 0.37 0.29 0.15 -0.03 -0.02 1 0.55 

Dec 0.95 0.94 0.89 0.87 0.82 0.80 0.64 0.54 0.33 0.24 0.11 1 

 
90% 

P
re

d
ic

to
r 

m
o

n
th

 

Jan 1 1.00 1.00 1.00 0.96 0.95 0.94 0.90 0.82 0.67 0.37 0.27 

Feb 0.25 1 1.00 1.00 0.97 0.96 0.95 0.92 0.85 0.76 0.41 0.27 

Mar 0.24 0.23 1 1.00 0.98 0.97 0.96 0.92 0.87 0.78 0.41 0.24 

Apr 0.25 0.23 0.20 1 0.99 0.98 0.96 0.94 0.87 0.79 0.42 0.24 

May 0.17 0.18 0.16 0.15 1 0.99 0.98 0.96 0.91 0.82 0.42 0.24 

Jun 0.20 0.19 0.20 0.18 0.21 1 0.99 0.97 0.92 0.83 0.41 0.18 

Jul 0.20 0.19 0.19 0.20 0.21 0.25 1 0.99 0.95 0.88 0.46 0.21 

Aug 0.21 0.20 0.21 0.19 0.23 0.25 0.25 1 0.98 0.94 0.51 0.25 

Sep 0.30 0.27 0.23 0.24 0.26 0.26 0.27 0.21 1 0.98 0.53 0.35 

Oct 0.48 0.36 0.32 0.30 0.24 0.26 0.19 0.15 0.20 1 0.70 0.43 

Nov 0.98 0.96 0.87 0.88 0.83 0.82 0.73 0.54 0.25 0.19 1 0.92 

Dec 1.00 1.00 0.99 0.99 0.94 0.93 0.92 0.88 0.73 0.45 0.27 1 

  
Forecast month of the next year 
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Figure 34: Runoff volume accumulated over Jul-Dec estimated by the forecast model for a few HRUs 

across GRB in the hindcast period (1980-2010). The hindcast is shown within the 5-95% uncertainty bound 

along with the corresponding observations (black dots); the dash line is showing the median of the 

conditional pdf. 
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In the probabilistic predictions, the probability of a particular future drought can be 

estimated conditional on the past drought status. In other words, the question is to find 

the probability of a specific drought at time 1t , given the status of time t . Another 

feature of probabilistic prediction is the identification of the future drought state 

associated with a particular probability. This alternative asks for the future drought at 

time 1t  associated with a specific probability. In earlier sections, the conditional pdf 

and cdf of future droughts (Fig. 26-28 and Fig. 31-32) are developed based on the basin 

outflow. Fig. 35 shows the two possible cases described above; where 2X  and 1X  are the 

drought-related variables in the future and in the past, respectively. The probability of 

future drought given a particular drought in an earlier time ( 11 xX  ) is equal to the area 

under the conditional pdf, )|( 112 xXXf  . Given 1X , the former case (explained earlier) 

asks for the probability )|( 1122 xXxXP   of a particular 2x , while the latter asks for 

the 2X  associated with a particular )|( 112 xXXP  . Thus, a probability map of future 

droughts at each HRU, across the basin, using the runoff variable at each cell (Fig. 36) 

can be produces, as well as the runoff map with particular chance of occurrence in the 

forecast period (Fig. 37). 
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Figure 35: Schematic of the conditional probability of variable 2X  given 1X . In this paper, either the 

probability of a particular drought or the drought status associated with a particular probability for a future 

time is analyzed. 

Fig. 36 displays the matrix of probability maps in the forecast month. It shows the 

probability of drought status being equally wet or wetter than a particular drought status 

in the forecast month (July), given the drought status in the predictor month (Jan). These 

probability maps are identical to the first case explained earlier, where the conditional 

probability is estimated for a particular future drought, given the condition in the past. 

The estimated probability at each HRU is equal to the area under the associated curve of 

conditional pdf as illustrated in Fig. 35. In Fig. 36, all possible pairs of drought status for 

the predictor and forecast months are evaluated. The label of each row (column) is 

associated with the drought status in the predictor (forecast) month. As the status in Jan 

gets drier (moves towards D4), the probability of rather intense dry conditions in next Jul 

increases. In other words, the probability of drought condition in Jul being equally wet or 

wetter than a particular dry status decreases as the Jan drought becomes more severe. For 

example, the drought state of D2 or any wetter states (D1, D0, Normal) in Jul is more 

likely if the past Jan experienced normal/wet condition rather than D4 (compare the maps 

in [row=1, col=4] and [row=6, col=4] ). Such probabilistic maps are useful to 
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approximate the chance associated with each drought status in the future upon the 

observation of the past drought status. They are also helpful in estimating the chance of 

drought recovery (normal/wet condition) in the forecast period.  

 

Figure 36: Probability maps that are estimated for drought status in the forecast month (Jul) being equally 

wet or wetter than a particular condition, where the status of the predicting month (Jan) is given. The label 

of each row (column) is associated with the drought status of the predicting (forecast) month. 
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The next alternative, as discussed earlier, is to estimate the runoff volume at each 

HRU with a specific probability of occurrence. This is similar to find 2X  associated with 

a particular probability )|( 112 xXXP  in Fig. 35. Given the drought status of predictor 

month (Jan), the variation of runoff across the basin with particular probabilities (0.25, 

0.5, and 0.75) in the forecast month (July) is shown in Fig. 37. Row labels show the 

drought status of Jan. As seen, for a particular drought status in Jan, the non-exceedance 

probability is higher for larger runoff volumes in July. For example, the runoff volume in 

July increases as the non-exceedance probability increases from 0.5 to 0.75. Furthermore, 

for a same non-exceedance probability, a larger volume of runoff is expected in July, as 

the intensity of drought status in the predictor month (Jan) reduces. For clarification 

purposes, it should be noted again that the runoff in July refers to the accumulated runoff 

over six months, beginning from July. Analysis similar to what presented in Fig. 37 helps 

water managers to find out what runoff volumes are expected across the basin with a 

specific chance of occurrence; and therefore they can regulate their policies upon the 

runoff volumes associated with the particular probabilities they apply in their planning.  
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Figure 37: Maps of runoff volume in the forecast month (Jul) associated with different non-exceedance 

probabilities. Row labels show the drought status of the predicting month (Jan). 
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5. Summary and Conclusion 

Improving the hydrologic forecasts with more reliability and less uncertainty has been 

the main focus of this study. Appropriate policies to allocate the available water resources 

among the different users need reliable forecast of the future status of available water. 

Climatology, the structure and parameters of hydrologic models, initial conditions at the 

forecast date are the main sources of uncertainties in hydrologic forecasts. A variety of 

techniques have been examined during the past several years to incorporate the different 

sources of uncertainty into the hydrologic forecasts. Depending on the source(s) of 

uncertainty to be addressed, the single value forecasts of the hydrologic models are 

usually combined and an ensemble of forecasts is generated. Regardless the employed 

technique, the forecast ensemble represents the uncertainty of forecasts raised from the 

associated source(s).  However, if the raw forecast of the hydrologic model is highly 

biased or unreliable, addressing the uncertainty sources would not be appealing in 

improving the forecasts; and the raw forecasts might be even degraded under some 

circumstances.  

5.1  Post-processing of Hydrologic Forecasts 

The first theme of this study was involved in the post-processing of streamflow 

forecasts. In spite of the significant efforts on the calibration of hydrologic models during 

the past decades, they are still subject to errors and systematic biases that affect the 

forecast quality in small to large extents. Hence, the post-processing of model forecasts is 

necessary to ensure that forecasts are unbiased and fairly reliable and have the proper 

dispersion. Mathematically, post-processing is to approximate the most likely observation 
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given the forecast which is identical to find the mode of the conditional probability 

distribution of the observed variable given the forecast.  

A potential post-processing technique should preserve the correlations and joint 

behavior between the observed and forecast variables. Since the conditional probabilities 

of these correlated variables can be defined with Bayesian networks, a group of 

multivariate distribution functions called copula were applied to the post-processing of 

forecasts. Unlike the most of multivariate functions, copulas do not make any restriction 

on the type of marginal distributions. Using copula functions make it possible to estimate 

the conditional probability of the observed variable at any particular forecast value. Using 

the marginal distribution of the variables, the original forecasts should be first transferred 

into their particular probability space and then copulas are applied to establish the joint 

distribution of transferred variables. Hence, the unknown connections between the 

hydrologic variables arisen from the complicated relationships in hydrological processes 

cannot limit developing the multivariate joint distribution function.  

In 2500 hypothetical case studies, the proposed multivariate copula-based post-

processor generally outperformed the traditional Quantile Mapping technique. Since QM 

is frequently used in different hydrologic applications, the shortcomings of this statistical 

technique were explained in detail and an auxiliary index, the so called failure index ( ), 

was introduced to predict the overall performance of QM or any other post-processing 

methods from an analysis period before the forecast period. The failure index is a 

measure of consistency between the post-processed forecasts and corresponding 

observations; it varies between 0 and 1, with 0  for perfect post-processing. The 
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forecast skill of QM shows that this statistical technique is not always successful in 

improving initial forecast trajectories. Testing 2500 hypothetical case studies indicates 

that the performance of the QM technique constantly degrades as   increases. Post-

processing of a real case study was also tested. Using a distributed parameter hydrologic 

model, PRMS, several ensembles of monthly streamflow forecasts of the Sprague River 

basin in southern Oregon were generated with a forecast horizon of 6 months. Unlike the 

QM, the forecast skill of the post-processed ensembles was effectively improved when 

the multivariate post-processor was applied. The performance metrics indicated that QM 

was the dominated technique; however, weak performance of the QM technique was 

predictable from the failure ratio of the analysis period ( 3.0 ). Superiority of a 

multivariate copula-based method in considering the joint behavior of forecast and 

observed variables was evidently demonstrated in the post-processing results. Further 

improvement of postprocessing may be achieved by combining the strengths of Bayesian 

multimodeling (Duan et al., 2007; Parrish et al., 2012) and copula function. 

5.2  Probabilistic Drought Forecasting 

After improving the hydrologic forecast by means of post-processing, drought 

forecasting was exclusively examined in this study. Since frequent droughts have recently 

affected the southwestern U.S. with different water issues, reliable forecast of future 

droughts are essential for this region of the United States. The historical records across 

the Colorado River Basin denote the water year 2012 as the th4 driest year of the region in 

the past century (since 1904), with consequences like insufficient water supply, poor 

pasture and crop conditions, and region-wide wildfires. Whereas the recent droughts of 
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CRB might be referred to the worldwide impacts of global warming on extreme events, 

accurate estimation of ongoing droughts across the region is crucial for future planning 

and managements of water resources in the area. The spatio-temporal variation of future 

droughts across the Gunnison River Basin, one of the headwater sub-basins of the Upper 

Colorado River Basin, was examined within a new drought forecasting methodology.  

The proposed forecast model develops the probabilistic characteristics of future 

droughts using copula functions applied to the Bayesian networks. Similar to the forecast 

and observed variables in the post-processing of model forecasts, drought status of 

consecutive seasons forms a Bayesian network of variables; where their connections can 

be explained by copula functions. The outstanding feature of the proposed model is that it 

pictures the future drought status of a region (D4, D3, …, D1, Normal) given the drought 

status of the predictor season(s). Without any need to an initial guess of the forecast 

variable by hydrologic models, the forecast model predicts the future droughts via the 

copula functions. Drought forecasting was implemented for the river flow at a particular 

section of the river basin (the outlet) and also for the runoff volume generated at grid 

cells across the basin. The Standardized Streamflow Index (SSI) and Standardized Runoff 

Index (SRI) were used to analyze and forecast the hydrologic droughts related to the 

streamflow and runoff, respectively.  

The main advantage of the proposed forecast methodology is its probabilistic 

features. It can develop the conditional probability density function (PDF) and 

cumulative distribution function (CDF) of future droughts given the drought status of past 

season(s). The most and least probable droughts during the forecast season as well as the 
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uncertainty of future droughts around the likely status can be acquired from the 

conditional PDFs. Unlike the conventional methods, the new technique is able to estimate 

the uncertainties of future droughts without incorporating the uncertainties of 

meteorological forcing and hydrologic models in the forecast model. The width of 

estimated uncertainty bound was larger for the high flows, which would reflect the 

greater uncertainty in high flows than the low flows. The results of the proposed forecast 

model are in agreement with the real-time observations of the hindcast period for the 

Gunnison River Basin. As a product of the conditional CDFs, the chance of a particular 

drought in the forecast period is approximated given the drought status of the earlier 

period(s). According to the results, the more intense droughts are expected in the forecast 

season as the previous season gets drier. In other words, the probability of dry status in 

the forecast period increases as the predictor period undergoes intensive dry conditions. 

The probabilistic maps are also useful to approximate the chance of drought recovery 

(normal/wet condition) in the forecast period, given the drought status observed in the 

predictor period. Another outcome of the conditional CDFs produced by the forecast 

model was the estimation of drought variable with a particular chance of occurrence. 

These products along with similar analyses within this forecast methodology would help 

the water managers and decision makers to regulate their policies according to the 

uncertainties in the future droughts. 

The proposed technique only requires the knowledge about the predictor and forecast 

variables to establish the forecast model communicating between them. Although it is a 

purely statistical forecast model, the parameter estimation of copula function and 
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marginal distributions is totally based on the joint behavior of the predictor and forecast 

variables in the past. Given the basics of copula modeling, correlation and dependency 

are the essential components of the conditional forecast methodologies; whereas without 

dependent variables, the conditional forecast would not be meaningful.  

The forecast methodology developed in this study shows promises in generating 

various products using its probabilistic features. With the application of copula functions, 

the proposed methodology can generate useful products in estimating the spatial variation 

of future droughts. Further enhancement of probabilistic forecasts by accounting for 

hydrologic initial condition at the time of forecast is possible. In light of advances in the 

area of ensemble data assimilation (Moradkhani et al., 2005a&b; Moradkhani and 

Sorooshian, 2008) the uncertainty in hydrologic initial condition can be characterized 

(DeChant and Moradkhani, 2011a) and these information may be used as another 

correlated variable in statistical drought forecasting using Copula functions. Recent 

advances in data assimilation by means of particle filter Markov Chain Monte Carlo 

(MCMC) as elaborated by Moradkhani et al., (2012) allows for more reliable 

quantification of uncertainty and characterization of initial condition. Soil moisture and 

snow as the main state variables representing the initial condition have successfully been 

estimated using data assimilation (Moradkhani, 2008; DeChant and Moradkhani, 2011b; 

Leisenring and Moradkhani, 2012). The proposed probabilistic approach helps the 

decision makers to develop drought mitigation plans and policies with an appropriate 

insight towards the future drought status. 
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