
Portland State University
PDXScholar
Computer Science Faculty Publications and
Presentations Computer Science

2015

Default Rules in Functional Logic Programs
Sergio Antoy
Portland State University, antoys@pdx.edu

Michael Hanus
Institut fûr Informatik

Let us know how access to this document benefits you.
Follow this and additional works at: http://pdxscholar.library.pdx.edu/compsci_fac

Part of the Computer Sciences Commons

This Presentation is brought to you for free and open access. It has been accepted for inclusion in Computer Science Faculty Publications and
Presentations by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Citation Details
Antoy, Sergio and Hanus, Michael, "Default Rules in Functional Logic Programs" (2015). Computer Science Faculty Publications and
Presentations. 136.
http://pdxscholar.library.pdx.edu/compsci_fac/136

http://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/compsci?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=http://pdxscholar.library.pdx.edu/compsci_fac/136
http://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/compsci_fac/136?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu

Default Rules in Functional Logic Programs⋆

– Extended Abstract –

Sergio Antoy1 Michael Hanus2

1 Computer Science Dept., Portland State University, Oregon, U.S.A.
antoy@cs.pdx.edu

2 Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany.
mh@informatik.uni-kiel.de

Abstract. In functional logic programs, rules are applicable indepen-
dently of textual order, i.e., any rule can potentially be used to evaluate
an expression. This is similar to logic languages and opposite to func-
tional languages, e.g., Haskell enforces a strict sequential interpretation
of rules. However, in some situations it is convenient to express alterna-
tives by means of compact default rules. Although default rules are often
used in functional programs, the non-deterministic nature of functional
logic programs does not allow to directly transfer this concept from func-
tional to functional logic languages in a meaningful way. In this paper
we propose a new concept of default rules for Curry that supports a
programming style similar to functional programming while preserving
the core properties of functional logic programming, i.e., completeness,
non-determinism, and logic-oriented uses of functions. We discuss the
basic concept and sketch an initial implementation of it which exploits
advanced features of functional logic languages.

1 Motivation

Functional logic languages combine the most important features of functional
and logic programming in a single language (see [3, 6] for recent surveys). In
particular, the functional logic language Curry [7] extends Haskell with com-
mon features of logic programming, i.e., non-determinism, free variables, and
constraint solving. Moreover, the amalgamated features of Curry supports new
programming techniques, like deep pattern matching through the use of func-
tional patterns, i.e., evaluable functions at pattern positions [1]. As a simple
example, consider an operation isSet intended to check whether a given list
represents a set, i.e., does not contain duplicates. In Curry, we might implement
it as follows (“++” denotes the concatenation of lists):

isSet (_++[x]++_++[x]++_) = False

isSet _ = True

The first rule uses a functional pattern: it returns False if the argument matches
a list where two identical elements occur. If this is not the case, the second rule

⋆ This material is based in part upon work supported by the National Science Foun-
dation under Grant No. 1317249.

17

returns True. However, according to the Curry’s semantics, all rules are tried to
evaluate an expression. Therefore, the second rule is always applicable to calls of
isSet so that the expression isSet [1,1] will be evaluated to False and True.

The unindented application of the second rule can be avoided by the ad-
ditional requirement that this rule should be applied only if no other rule is
applicable. We call such a rule a default rule and mark it by adding the suffix
’default to the function’s name. Thus, if we define isSet with the rules

isSet (_++[x]++_++[x]++_) = False

isSet’default _ = True

then isSet [1,1] evaluates only to False and isSet [0,1] only to True.
In the following, we sketch an implementation of default rules in Curry where

we assume familiarity with the basic concepts of functional logic programming
and Curry (see [3, 6, 7]).

2 Default Rules

Default rules are often used in both functional and logic programming. For in-
stance, the following Haskell function reverses a two-element list and leaves all
other lists unchanged:

rev2 [x,y] = [y,x]

rev2 xs = xs

The second rule is applied only if the first rule is not applicable, which yields
the intended semantics. We can avoid the consideration of rule orderings by
replacing the second rule with rules for the patterns not matching the first rule:

rev2 [x,y] = [y,x]

rev2 [] = []

rev2 [x] = [x]

rev2 (x:y:z:xs) = x:y:z:xs

This coding is cumbersome in general and impossible in conjunction with func-
tional patterns, as used in the first rule of isSet above, since a functional pat-
tern conceptually may denote an infinite set of standard patterns (e.g., [x,x],
[x,-,x], [-,x,-,x],. . .). Thus, there is no finite complement of some functional
patterns.

In Prolog, one often uses the cut operator to implement the behavior of
default rules. For instance, rev2 can be defined as a Prolog predicate as follows:

rev2([X,Y],[Y,X]) :- !.

rev2(Xs,Xs).

Although this behaves as intended for instantiated lists, the completeness
of logic programming is destroyed by the cut operator. For instance, the
goal rev2([],[]) is provable, but Prolog does not compute the answer
{Xs=[],Ys=[]} for the goal rev2(Xs,Ys).

These examples show that a new concept of default rules is required for
functional logic programming if we want to keep the strong properties of the
base language, in particular, the completeness of logic-oriented evaluations. To
avoid developing a new logic foundation of functional logic programming with

18

default rules, we try to reuse existing features of functional logic languages. We
describe our approach explaining the translation of the default rule for rev2. The
extension to functional patterns and conditional rules can be done in a similar
way.

An operation is defined by a set of “standard” rules and one optional default
rule that is applied only if no standard rule is applicable because it do not match
or its condition is not satisfiable. For this reason, we translate a default rule into
a standard rule by adding the condition that no other rule is applicable. For this
purpose, we translate the original non-default rules into “test applicability only”
rules where the right-hand side is replaced by a constant (here: the unit value
“()”):

rev2’TEST [x,y] = ()

Now we add to the default rule the condition that rev2’TEST is not applicable.
Since we are interested in the failure of attempts to apply rev2’TEST, we use a
primitive for encapsulating search to check whether rev2’TEST has no value. In
functional logic programming, set functions [2] or an operator allValues [5] have
been proposed for this purpose, which behave similarly to Prolog’s findall but
can be used in a declarative manner. Using these primitives, one could translate
the default rule into

rev2’DEFAULT xs | isEmpty (allValues (rev2’TEST xs)) = xs

Hence, this rule can be applied only if all attempts to apply a non-default rule
fail. To complete our example, we add this translated default rule as a further
alternative to the non-default rule so that we obtain the definition

rev2 [x,y] = [y,x]

rev2 xs | isEmpty (allValues (rev2’TEST xs)) = xs

Thanks to the logic features of Curry, one can use this definition also to generate
appropriate argument values for rev2. For instance, if we evaluate the expression
rev2 xs with the Curry implementation KiCS2 [4], the search space is finite and
computes, among others, the binding {xs=[]}. This shows that our concept of
default rules is more powerful than existing concepts in functional or logic pro-
gramming. The actual transformation scheme for default rules is more advanced
than sketched above in order to accommodate also functional patterns and con-
ditionals rules and to ensure the optimality of functional logic computations even
in the presence of default rules.

3 Examples

To show the advantages of default rules for functional logic programming, we
sketch a few more examples. In the classical n-queens puzzle, one must place
n queens on a chess board so that no queen can attack another queen. This
can be solved by computing some permutation of the list [1..n], where the i-
th element denotes the row of the queen placed in column i, and check whether
this permutation is a safe placement. The latter property can easily be expressed
with functional patterns and default rules where the non-default rule fails on a
non-safe placement:

19

safe (_++[x]++y++[z]++_) | abs (x-z) == length y + 1 = failed

safe’default xs = xs

Hence, a solution can be obtained by computing a safe permutation:

queens n = safe (permute [1..n])

This example shows that default rules are a convenient way to express negation-
as-failure from logic programming. This programming pattern can also be ap-
plied to solve the map coloring problem. Our map consists of the states of the
Pacific Northwest and a list of adjacent states:

data State = WA | OR | ID | BC

adjacent = [(WA,OR),(WA,ID),(WA,BC),(OR,ID),(ID,BC)]

Furthermore, we define the available colors and an operation that associates
(non-deterministically) some color to a state (the infix operator “?” denotes a
non-deterministic choice between its arguments):

data Color = Red | Green | Blue

color x = (x, Red ? Green ? Blue)

A map coloring can be computed by an operation solve that takes the informa-
tion about potential colorings and adjacent states as arguments, i.e., we compute
correct colorings by evaluating the initial expression

solve (map color [WA,OR,ID,BC]) adjacent

The operation solve fails on a coloring where two states have an identical color
and are adjacent, otherwise it returns the coloring:

solve (_++[(s1,c)]++_++[(s2,c)]++_) (_++[(s1,s2)]++_) = failed

solve’default cs _ = cs

References

1. S. Antoy and M. Hanus. Declarative programming with function patterns. In
Proceedings of the International Symposium on Logic-based Program Synthesis and
Transformation (LOPSTR’05), pages 6–22. Springer LNCS 3901, 2005.

2. S. Antoy and M. Hanus. Set functions for functional logic programming. In Pro-
ceedings of the 11th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDP’09), pages 73–82. ACM Press, 2009.

3. S. Antoy and M. Hanus. Functional logic programming. Communications of the
ACM, 53(4):74–85, 2010.

4. B. Braßel, M. Hanus, B. Peemöller, and F. Reck. KiCS2: A new compiler from Curry
to Haskell. In Proc. of the 20th Int. Workshop on Functional and (Constraint) Logic
Programming (WFLP 2011), pages 1–18. Springer LNCS 6816, 2011.

5. J. Christiansen, M. Hanus, F. Reck, and D. Seidel. A semantics for weakly encap-
sulated search in functional logic programs. In Proc. of the 15th International Sym-
posium on Principle and Practice of Declarative Programming (PPDP’13), pages
49–60. ACM Press, 2013.

6. M. Hanus. Functional logic programming: From theory to Curry. In Programming
Logics - Essays in Memory of Harald Ganzinger, pages 123–168. Springer LNCS
7797, 2013.

7. M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8.3). Avail-
able at http://www.curry-language.org, 2012.

20

	Portland State University
	PDXScholar
	2015

	Default Rules in Functional Logic Programs
	Sergio Antoy
	Michael Hanus
	Let us know how access to this document benefits you.
	Citation Details

	(wlp15-proceedings.pdf)

