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Regenerative Bioengineering Laboratory, Departments of Mechanical & Materials Engineering
and Biology, Portland State University, Portland, Oregon, USA
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Abstract
Non-destructive techniques characterising the mechanical properties of cells, tissues, and
biomaterials provide baseline metrics for tissue engineering design. Ultrasonic wave propagation
and attenuation has previously demonstrated the dynamics of extracellular matrix synthesis in
chondrocyte-seeded hydrogel constructs. In this paper, we describe an ultrasonic method to
analyse two of the construct elements used to engineer articular cartilage in real-time, native
cartilage explants and an agarose biomaterial. Results indicated a similarity in wave propagation
velocity ranges for both longitudinal (1500–1745 m/s) and transverse (350–950 m/s) waveforms.
Future work will apply an acoustoelastic analysis to distinguish between the fluid and solid
properties including the cell and matrix biokinetics as a validation of previous mathematical
models.

Keywords
transmission wave elasticity; ultrasonic elasticity; acoustoelasticity; cartilage engineering;
hydrogel biomaterials; cartilage biokinetics; biomedical engineering; bioengineering

1 Introduction
Cartilage tissue engineering (TE) is a promising solution for cellular and tissue replacement
therapies as well as an alternative for animal models used in clinical research; however,
many of the current TE approaches have not been fully validated. Most mechanical and
biochemical assessment of TE constructs require destructive endpoint-testing and/or
compromise the sterility of the bioreactor environment used during construct formation
(Walker et al., 2011). Ultrasonic imaging is a standard clinical diagnostic tool that is based
on propagating sound waves and offers a technology for tissue characterisation and
stimulation in a non-invasive and non-destructive manner. The response to mechanical
stimulation induced in passive tissues by external sources such as low to high frequency
vibration or compression can be used to analyse tissue elasticity as a metric for tissue health
(Hein and O’Brien, 1993). Recently, it has been shown that ultrasonic assessment can
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predict the process of native cartilage regeneration and engineered cartilage histology
(Hattori et al., 2005).

Native articular cartilage is divided into four distinct histological zones (superficial
tangential or resting zone; the proliferative or middle zone; the hypertrophic or deep zone;
and the calcified zone) based on the preferential orientation of matrix molecules, cellular
morphology, and biochemistry (Buckwalter and Mankin, 1997). Ultrastructural studies of
adult cartilage have shown that the preferential orientation of collagen fibrils varies from the
articular surface to the intermediate and deep zones (Agemura et al., 1990). The depth-
dependent structural arrangement of chondrocytes and extracellular matrix (ECM)
macromolecules, such as proteoglycans (PG) and fibrillar collagens (mainly collagen type
II), results in a structurally heterogenous and mechanically anisotropic material. For
example, at any given depth from the articular surface, PG concentration may change as a
function of the distance from the chondrocytes (Jurvelin et al., 1997). The zonal distribution
of ECM molecules gives rise to the tissue’s unique poroelastic properties and ability to act
as a load-bearing cushion in which mechanical forces transmitted through the joint to the
underlying subchondral bone can be properly distributed (Waldman et al., 2004).

The localised biomechanics (stresses, strains, and elastic properties) of articular cartilage
ECM is thought to be actively modulated by chondrocyte-matrix interaction driving
biosynthesis regulation (Korhonen et al., 2008; Saha and Kohles, 2012). Characterising the
mechanical properties of cartilage constituents including cells and ECM as a means to define
constitutive relationships between stress and strain may elucidate their physical interactions
and contribute to the understanding of cartilage development, adaptation, and degeneration
(Kohles et al., 2007). In addition, the distinct histologic zones within articular cartilage have
exhibited distinct material properties at both the cell and tissue level (Ginat et al., 2006;
Shieh and Athanasiou, 2006).

Selection of cells and replication of matrix organisation based on zonal mimicry may
provide strong design specifications when constructing regenerative or tissue replacement
therapies. In this work, ultrasonic wave transmission was investigated as one of many
baseline bioengineering design metrics with the objective of characterising and comparing
key engineered cartilage constituents.

2 Methods
2.1 Articular cartilage harvest and ultrasonic testing

Full-thickness articular cartilage was harvested from a two-year old steer (Mark’s Meat,
Canby, OR) within 4 hours of slaughter. The cartilage was extracted from the
metacarpophalangeal joint using a scalpel (Figure 2). Full-thickness cartilage parallelepipeds
(typically x = 4 mm, y = 4 mm, and z or t = 1.5 mm) were created from the tissue samples.
Ultrasonic longitudinal (vii) and transverse (vij) wave propagation velocities were measured
in three orthogonal orientations (planar and thickness directions indicated by i, j subscripts)
for 6 measurements per sample (Figure 1). The experimental test set-up included a pulser-
receiver (Model 5058PR, Panametrics, Billerica, MA, USA), a multichannel oscilloscope
(Model TDS460A, Tektronix, Beaverton, OR, USA), and an array of sending-receiving
transducers: 5 MHz (Model V156), 10 MHz (Model V112), 50 kHz (Model X1021), and
100 kHz (Models X1020 and V1548) transducers (Panametrics) facilitating a total of 1050
measurements. Aggregate tissue density (ρt) of the samples was determined and system time
delays were accounted for during each transducer arrangement.
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2.2 Hydrogel scaffold fabrication and ultrasonic testing
An agarose hydrogel formulation has been widely accepted as a host-biomaterial for
cartilage TE culture (Nicodemus and Bryant, 2008), providing an appropriate technology for
the bioengineering of modern scaffolds (Mata, 2011; Morsi et al., 2011). Here, a 2% agarose
solution was made by slowly adding low-melting agarose (Type VII, Sigma-Aldrich, St.
Louis, MO, USA) to a beaker containing Dulbecco’s phosphate buffered solution (DPBS,
Sigma-Aldrich) while being stirred on a hot plate. The concentration change due to
excessive heating was taken into consideration in order to maintain a 2% concentration by
weighing the beaker and solution prior to heating. The solution was brought to a boil for 10
minutes stirring continuously until the agarose was completely dissolved. Hot sterile water
was added to return the contents to the original weight and mixed continuously. The mixture
was allowed to cool to 45°C and casted in a 5 mm × 5 mm ×5 mm mould, immediately
being placed in a refrigerator at 4°C for 10 minutes. For an equal-weighted statistical
comparison with the cartilage explants, 35 agarose samples were prepared (Figure 2). Due to
the homogeneity of the 125 mm3 agarose cubes, ultrasonic longitudinal (vii) and transverse
(vij) wave propagation velocities were only measured in the z-direction. Three
measurements per sample from each of the five sending-receiving transducers, described
above, were used facilitating a total of 525 measurements per sample. Aggregate biomaterial
density (ρb) of all of the samples was determined and system time delays were accounted for
during each transducer arrangement.

2.3 Elastic and statistical analysis
The measured propagation velocities were examined as a distinguishing elastic feature
between the cartilage/hydrogel structure (when wavelength, λ > t, typically at kHz) or the
constituent matrix/polymer material (when λ < t, typically at MHz) (Kohles and Roberts,
2002). Transverse isotropy was tested and confirmed in the cartilage samples, while full-
isotropy was affirmed in the agarose samples (Kohles et al., 1997). Generalised stiffness or
moduli (as a Young’s and Shear Moduli variants) were calculated (ρvii

2 and ρvij
2) for both

the cartilage explants and agarose samples. An analysis of variance was applied for all
comparisons (JMP v5.0.1, SAS Institute, Inc., Cary, NC, USA). Means (+/− standard
deviation, SD) are shown for graphical comparisons.

3 Results
In this work, ultrasonic measurements analysed an agarose hydrogel formulation as a
scaffold substrate for cartilage TE in comparison with native cartilage samples. The
analysed cartilage samples confirmed an aggregate density (here ρt = 1330 kg/m3) and both
longitudinal and transverse propagation velocities similar to that reported in the literature
(vii = 1500–1720 m/s) (Agemura et al., 1990) (Figure 3). The statistical influence of
propagation orientation on longitudinal (p = 0.8763) and transverse (p = 0.0006) wave
velocities in the native cartilage samples was statistically inconsistent. However, the
wavelength of propagating waves relative to the propagating distance as indicated by MHz
(λ < t) versus kHz (λ > t) frequencies was statistically significant for both longitudinal (p =
0.0001) and transverse (p = 0.0001) waves within the cartilage samples.

In comparison, the fabricated agarose cubes had a mean density of ρb = 1110 kg/m3. A
longitudinal propagation velocity range of 1595–1745 m/s was also determined for the
biomaterial indicating a statistical similarity (p > 0.05) with native cartilage (Figure 4).
Overall, the basic calculation addressing the ultrasonic elastic and shear moduli for both the
cartilage and hydrogel samples was dominated by similar density, propagation velocity
measurements, and water content (nearly 80%) (D’Arrigo and Paparelli, 1988). These
influences produced statistically similar (p > 0.05) hydrated stiffness values having large
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magnitudes dominated by the incompressible nature of water when assessed with both
longitudinal and transverse wave propagation modes (Figure 5).

4 Discussion
The application of ultrasonic wave propagation was explored as a means to compare an
agarose biomaterial as a scaffold for cartilage TE design. Here, the results provided baseline
measurements for analysing future neotissue growth in a non-destructive manner. It was
found that 2% agarose constructs had an ultrasonic propagation velocity similar to that of
native cartilage, and that this approach may be used to assess the integrity of agarose
constructs seeded with chondrocytes while ECM macromolecules are being synthesised
without destroying the engineered tissue.

Due to the aqueous nature of both the articular cartilage explants and the agarose hydrogels,
the reported propagation values are highly dominated by the mechanical wave transfer
through the water constituent. As a limitation in this approach, the ultrasonic propagation
velocities themselves may not provide critical information in assessing native or TE
cartilage. However, the signal resolution may be tuned in a manner sufficient to identify
cellular or molecular influences on wave propagation during chondrocyte and ECM
biokinetics. The difference in ultrasonic signals, when comparing isolated agarose with cell-
seeded agarose, may be used to assess the elastic properties of chondrocytes and newly
developing ECM. Mechanical loading of hydrated materials such as cartilage tissue has also
been shown to influence ultrasonic propagation velocity measurements (Nieminen et al.,
2007). Tissue-equivalent phantoms may eventually aid in standardising the accuracy of
developing cell-biomaterial construct measurements (Singh et al., 2008).

Articular cartilage is a highly hydrated tissue due to the negatively charged PG that binds
fluid within its matrix. The mechanical performance of cartilage is dominated by these solid/
fluid interactions. When the tissue degenerates through injury or disease, the PG and
collagen network is disturbed, altering the load transfer to the subchondral bone. This
cascade of degeneration ultimately compromises the tissue and joint mechanical properties,
as recently assessed with ultrasound (Brown et al., 2007). Ultrasonic wave transmission
offers a highly resolved technique for characterising these subtle changes in the tissue
properties. However, distinguishing the ultrasonic propagation through its water content
(~1482 m/s) from the composite solid components (ECM and cells) will be very
challenging. Ongoing efforts will apply forward and reverse acoustoelastic analysis to
decipher bulk (K = ρfvii

2) and aggregate (Ha = ρsvii
2) moduli, which can be measured from

separated fluid (f) and solid (s) ultrasound signals, respectively (Shull, 2002; Kobayashi and
Vanderby, 2007).

Recent efforts have correlated matrix content and mechanics in developing engineered
cartilage constructs with positive success by applying reflective ultrasound (Rice et al.,
2009). In that work, the speed of sound (SoS) and slope of attenuation (SoA) were compared
between developing cell-biomaterial constructs and non-degrading hydrogel controls from
50 MHz to 100 MHz ultrasound data. SoA was shown to be a better indicator of the density
of accumulated matrix molecules than SoS, while SoS correlated better with mechanical
modulus than SoA. These promising data have encouraged the incorporation of ultrasound
sensors as described within two recent reports characterising a novel bioreactor design for
cell and tissue engineering (Mason et al., 2011; Popp et al., 2012). This non-destructive
approach reduces the bench-top assessment modality to a practical tool for online, real-time
evaluation of the developing analogous living system created within the bioreactor
environment.
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As neotissue forms within the cell-seeded agarose constructs, it will be important to detect
any critical changes to the mechanical properties in a non-destructive manner in order to
optimise TE development. Overall, ultrasonic wave propagation offers a potential means to
gather constituent content and mechanical metrics for characterising the biokinetics of native
and engineered cartilage.

5 Conclusion
In this work, we explored the application of ultrasonic propagation velocity as a metric for
comparing native cartilage explants and a hydrogel biomaterial as design specifications for
ongoing cartilage tissue engineering. This approach has identified both the benefits of
interfacing ultrasonic sensors with a novel bioreactor as well as the limitations of assaying
hydrated materials, where the resulting wave propagation is dominated by the water content.
A more refined acoustoelastic analysis will facilitate distinguishing the cell and matrix
biokinetics as modelled previously.
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Figure 1.
Schematics of explant anatomic orientation and propagating ultrasonic waveforms
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Figure 2.
Images of (a) harvested bovine cartilage tissue and (b) fabricated agarose hydrogel scaffold
cubes
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Figure 3.
Mean (+/− SD) (a) longitudinal and (b) transverse propagation wave velocities as gathered
from through-thickness (anterior-posterior) and within-plane (superior-inferior plus medial-
lateral) orientations of harvested cartilage explants
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Figure 4.
Comparison of mean (+/− SD) ultrasonic propagation velocities of n = 35 agarose
biomaterial samples as driven by longitudinal wave impulses at varying frequencies
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Figure 5.
Fluid-dominated stiffnesses of the agarose biomaterial scaffolds and cartilage explants as
measured using the 100 kHz longitudinal and transverse wave transducers
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