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ABSTRACT 

Robot localization is one of the most important subjects in the Robotics science. It 

is an interesting and complicated topic. There are many algorithms to solve the problem of 

localization. Each localization system has its own set of features, and based on them, a 

solution will be chosen. In my thesis, I want to present a solution to find the best estimate 

for a robot position in certain space for which a map is available. The thesis started with 

an elementary introduction to the probability and the Gaussian theories. Simple and 

advanced practical examples are presented to illustrate each concept related to localization.  

Extended Kalman Filter is chosen to be the main algorithm to find the best estimate of the 

robot position. It was presented through two chapters with many examples. All these 

examples were simulated in Matlab in this thesis in order to give the readers and future 

students a clear and complete introduction to Kalman Filter.  

Fortunately, I applied this algorithm on a robot that I have built its base from 

scratch. MCECS-Bot was a project started in Winter 2012 and it was assigned to me from 

my adviser, Dr. Marek Perkowski. This robot consists of the base with four Mecanum 

wheels, the waist based on four linear actuators, an arm, neck and head. The base is 

equipped with many sensors, which are bumper switches, encoders, sonars, LRF and 

Kinect. Additional devices can provide extra information as backup sensors, which are a 

tablet and a camera. The ultimate goal of this thesis is to have the MCECS-Bot as an open 

source system accessed by many future classes, capstone projects and graduate thesis 

students for education purposes.  
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A well-known MRPT software system was used to present the results of the 

Extended Kalman Filter (EKF). These results are simply the robot positions estimated by 

EKF. They are demonstrated on the base floor of the FAB building of PSU. In parallel, 

simulated results to all different solutions derived in this thesis are presented using Matlab. 

A future students will have a ready platform and a good start to continue developing this 

system.  
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 Introduction 

Robotics is one of the fastest growing areas of research. It will contribute much to 

the future and has many promising properties. Nowadays, robotics is everywhere and is 

affecting our lives tremendously. Starting from computers and ending with space crafts. 

Humanity is getting more dependent on robots and every year there are thousands of 

researches and projects that add new contributions to science and engineering of robotics. 

New algorithms that improve old techniques as well as new designs and new robots are 

presented continuously. The ultimate goal is to develop a fully automated machine with all 

its required sensors to sense its surroundings and make behavioral decision independently. 

Additionally, the machine that would work in a social environment should have also a 

reasonable size and behaviors based on perceived personality. Autonomous behavior is one 

of the most important aspects related to modern robotics. Localization and navigation are 

part of automatic behavior and they are one of the most quickly developing fields of 

robotics research presently.  

Localization is a process that occurs inside the robot “brain” to locate the robot in 

a previously known map. In other words, the map is already located in the robot memory 

and is based on landmarks of the environment that the robot perceives. Robot uses sonar, 

camera, Laser Range Finder (LRF) and stereo-vision devices like Kinect to perceive the 

environment. Using localization and sensors, robot will be able to detect its position like 

x, y coordinates as well as its orientation in the map. Even the sensing for localization 

process is not as easy as presented above because there are many types of sensors and a 

sensor fusion are required in the process. As long as there are sensors, there are noise and 
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errors which cause uncertainty about all data produced by sensors. Always, without a 

refining algorithm, the outcome of the process of locating the robot position will diverge. 

In this case, if we need our robot to be in the hall room, after a while it will find itself in 

the kitchen! Nevertheless, filters are used by the robot in order to figure out the best 

estimation of its location and position. Methods of using a filter to refine signals coming 

from the sensors in order to determine the robot’s position will be the main topic of this 

thesis.  

To apply all different theories and algorithms as well as inventing new ones, a 

suitable robot should exist in the first place. In Fall 2011, Professor Perkowski was asked 

by Dean Prof. Su to build a guide robot that will give guided tours to the Engineering 

building. The first robot that served for this purpose was the PEOPLE-Bot (Figure 1.1). 

Jim Larson was the leader of the team that worked on the PEOPLE-Bot in Fall 2011. They 

fixed a lot of technical issues and improved the board circuits of this robot. A new features 

were added to this robot, such as navigation, speech recognition and gesture recognition. 

Due to the limited functionality and ability of the PEOPLE-Bot, professor Perkowski 

decided to have a better and more functional robot. Many meetings were set with him in 

order to decide what kind of base the task required, what the shape for our new robot was 

going to be as well as what the possible functions to be handled by the robot were.  
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Figure 1.1: PEOPLE-Bot. 

 

The new robot name is MCECS-Bot (Maseeh College of Engineering and 

Computer Science Bot) which is shown in Figure 1.2. MCECS-Bot is “an intelligent 

autonomous Guide robot that will give guided tours and be able to lead a user to a sequence 

of specific locations in the basement area of the Engineering Building and the Fourth 

Avenue Building at Portland State University.” [1]. I was chosen by Professor Perkowski 

to be the leader of MCECS-Bot team. I made the robot design, especially the base. After 

couple meeting with Professor Perkowski, the decision was made to choose the Mecanum 

wheels to be the wheels for the base. The design calculations were made by me to in order 

to choose suitable parts for the robot. The main design consideration was the torque 

calculation which was made in order to specify the supported weight, motors, gears, speed, 
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power consumption and selection of the main controlling boards. The main physical 

structure took me two terms to finish. During these terms, Winter and Spring 2012, other 

teams were working on the arm, neck waist as well as improving the other software that 

existed previously on the PEOPLE-Bot. Basically, PEOPLE-Bot was created as a universal 

platform to develop and test main algorithms as well as all support software that will be 

used on MCECS-Bot.  

 

Figure 1.2: MCECS-Bot (PSU Guide Robot) [2]. 

 

I built the main part of the robot which is the base and all its required mechanical 

and circuit’s boards. The main structure is made using aluminum bars. The mechanical part 

of the base consists of the main structure that contains the circuit boards and hardware parts 

like wheels, motors, gears, encoders, motor controllers, Bumper circuits, batteries and the 
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Power Management Circuits (PMC). In the Fall 2012, when another new team was 

involved in this project, they added new sensors like LRF and Kinect. A Power distribution 

board was added to distribute the power from battery and connect to the charger. Their 

team implemented some navigation processing software for the robot. I contributed to their 

work in the mechanical design as well as software. I worked on the power distribution 

board and fixed couple issues as well as updated the board layout to get different voltages. 

Chapter five will be dedicated for the entire mechanical and system design of MCECS-

Bot. 

Navigation is the next step taken by the robot when it knows its position. 

Localization is the main part here as the robot must know its position precisely while 

driving from point to point. The navigation scenario will be:  

1. The robot knows its essential position. 

2. Robot receives an order to go to a different position (or set this goal by 

himself). 

3. Robot creates a trajectory step by step from its start point to its destination 

point. This trajectory is first specified as a path in the map and then it is 

converted to control commands for the robot. 

4. Starts moving. 

5. Keep localizing itself while moving as it has to calibrate itself every while. 

Here, more sensors are involved in navigation and localization (for example; odometry will 

be considered after the robot starts moving).  
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It is known that finding the closest estimation to the real values is very important 

in localization process. There are many ways of finding the best estimation of the real 

values. The robot uses its sensors to get uncertain measurements and the easiest method 

that can be used is to refine these measurements by averaging the incoming values.  

Based on our experience so far as well as literature we decided to add another 

method for a more advanced robot, based on filters such as Kalman Filter and Particle 

Filter. Although the filter methods are more complicated, they are nowadays a standard in 

the most advanced robots such as military “search and rescue” robots and industrial robots 

and we decided to have various methods implemented on the robot in order to compare 

their operation.  Based on study of literature and previous work done by our team, I decided 

to select the Kalman Filter to be considered as a controller for MCECS-Bot because other 

students work on equivalent methods such as Particle Filter. Kalman Filter is used to filter 

all the measurements and to find the closest or the best results that converge the real values. 

Kalman Filter is an interesting prediction/filtering algorithm that gives very precise 

estimations. For example; if the robot measures the position over time which is 

accompanied with an error, Kalman Filter is able to give the best estimation of the robot’s 

position. It will also give the velocity which the robot didn’t even measure (it is explained 

later in this thesis by some examples in chapter 3). 

In order to study Kalman Filter, an introduction to its algorithm is required. An 

extensive introduction to Kalman Filter is presented in this thesis. The presentation of 

Kalman Filtering ideas will be divided into two chapters. The first chapter is only a 

mathematical introduction because Kalman Filter is an advanced area of study based on 
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many areas of mathematics that are not normally studied at the M.S level studies in 

engineering. The explanation will start with basic concepts of probability theory, normal 

distribution, matrices and other basic mathematical concepts required to understand 

Kalman Filter in full detail and next propose some concrete improvements to it in our 

setting. The next chapter is about other simple filters that will lead ultimately to the 

explanation of the Kalman Filter which is too complicated to explain directly. Recursion 

is one of the main Kalman Filter’s features. It will be explained by comparing it with other 

similar filters. Moreover, both mathematical introduction and filters’ recursive theory 

introduction will be explained on many examples in order to make the material covered by 

this thesis easy to understand by future students who will continue working on this or 

similar projects.  

The reason of developing this thesis is to apply Kalman Filter to control the 

MCECS-Bot (or PSU guide robot). MCECS-Bot is made of different parts; base, waist, 

arms, neck and head. It is a humanoid robot that has a face to use facial gestures for 

interaction with visitors. MCECS-Bot has four Mecanum wheels which allow the base to 

have three degrees of freedom, waist that consist of four  linear actuators that allows the 

robot to bend forward/backward and left/right, two arms, neck and head. There are many 

sensors that provide the robot with the sense of the surrounding environment. My thesis 

has two main components; mechanical design and electrical design of the robot base and 

the main body without hand and head, and software for navigation and localization together 

with its integration with a complete autonomous system of the robot. The procedures of 

building this robot from scratch and how this goal has been achieved are covered by this 
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thesis as well. To put it simple, I am responsible for all motion problems of the robot base, 

while other members of the team are responsible for human interaction and guiding 

functions. 

The ultimate goal of this thesis is to have a comprehensive presentation of both the 

mathematics related to Kalman Filter and application of Kalman Filter for this particular 

robot base design with Mecanum wheels and relatively large size of a humanoid robot, a 

topic rarely covered in the literature. Second, some other simple filters also presented to 

explain how the recursive process works which is another introduction to Kalman Filter.  

Third, Kalman Filter and Extended Kalman Filter are explained together with simple 

examples illustrating their behavior in practical control and prediction situations. Fourth, 

MCECS-Bot design and description are given. Finally, the main chapter of this thesis 

presents implementation of Kalman Filter on the specific robot mechanical/electrical 

architecture to the Mecanum base holonomic control of MCECS-Bot. 
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 Mathematical Introduction: 

This chapter is as an introduction to Kalman Filter. In order to be familiar with 

Kalman Filter and the mathematics on which it is based, a brief introduction to different 

fundamental mathematical operations involved will be presented. Every subject will be 

explained with many examples to make it easy to understand. The rule of thumb is to have 

more simple examples that explain various ideas in order to get the reader ultimately 

involved with the fundamental topics of this material.  

2.1 Permutation 

Permutation is an arrangement of all possible collection or selecting of some objects 

(elements of a set) where the order does matter. Permutations can be: 

2.1.1 Permutation with Repetition 

The role of finding the permutation size (or how many permutations) is:  

Number of permutations with repetition = 𝑛𝑟 (n: number of things that we’re going 

to choose from and r is the size of our choice). 

 Example  

We have combination lock with 10 numbers (0-9) and we have to choose 3 numbers 

only. Each time we have 10 choices, so the total number of possible opening sequences 

will be 10x10x10 = 103 = 1000.  
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2.1.2 Permutation without Repetition 

Permutation without repetition means if there is a number that was chosen first 

time, we can’t choose it again. To know how many permutations without reputation exists, 

the formula below is used:  

Number of permutations without repetition = n! 

 Example 

We have nine balls with different colors and we want to arrange them. When we 

choose a ball we can’t choose it again. The Permutation of nine balls is 9! = 362,880. This 

number tells us how many different arrangements the nine balls have.  If we want to arrange 

a certain number which means choosing numbers to arrange out of a bigger population of 

numbers, the below equation is used: 

Permutation without repetition = n! / (n-r)! 

(n: number of things that we’re going to choose from and r is the size of our choice). 

2.1.3 Example  

To choose/arrange 3 balls out of nine balls of the previous example: 

9! / (9-3)! = 504. 

 

2.2 Combination 

Combination is a way of selecting several things out of a larger group (order does 

not matter). Combination can be in two categories: 
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2.2.1 Combinations without Repetition 

 Example 

We have three balls (Red, Blue and Green) 

The set of permutations is (RBG, RGB, BGR, BRG, GRB, and GBR). The number of 

permutations is 3! It is obvious that the repetition matters here. 

The combination of these balls is only (RGB) as the order does not matter. 

The rule of finding combination without repetition: 

 𝑛! /𝑟! (𝑛 − 𝑟)!  =  (
𝑛

𝑟
) 

Where n is the number of things that we’re going to choose from and r is the size of our 

choice. 

 Example  

Back to our nine colored balls, if we want to select 4 out of 9 

 =  9!/4! (9 − 4)!  =  126 

 

2.3 Standard Deviation 

Standard deviation is a way to tell us how the data are spread out.  Standard 

deviation is also a square root of variance. Standard deviation is important as it tells us 

whether the data are close to the mean or not. It is the square root of the average weighted 
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of the difference between each sample and the mean value. The equation that calculates 

Standard deviation is: 

𝜎 = √
1

𝑁
∑(𝑥𝑖 − 𝜇)2
𝑁

𝑖=1

   

We need to calculate the variance in order to find the standard deviation. In this 

case we need to know what the variance is. Variance is an indication about how the data is 

spread out around the mean. The bigger the number is the more spread out the data gets. 

On the other hand, the smaller the number is the closer the data gets. The equation for 

variance is: 

𝜎2 =
1

𝑁
∑(𝑥𝑖 − 𝜇)2
𝑁

𝑖=1

 

2.3.1 Variance and Standard Deviation Example [2]  

Easy example to illustrate the importance of the standard deviation. In this example, 

there are five dogs with different heights as shown in the picture below (Figure 2.1). 

 

 

Figure 2.1: Standard deviation example. 
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First we need to find the mean value:  

Mean = 
600 + 470 + 170 + 430 + 300

5
 = 394 

394 is just a number that tells us the arithmetic average of these dogs’ heights. 

However, it doesn’t tell us how the heights distributed whether they are close to the mean 

or not. We can get the same value (394) with different heights than the ones given in the 

previous example. 

Variance:  𝜎2 =  
1

𝑁
∑ (𝑥𝑖 − 𝜇)2𝑁

𝑖=1 =  
2062+762+(−224)2+362+(−94)2

5
 = 21,704                                  

Standard deviation = √21, 704 = 147 

   

In Figure 2.2 the value 147 (with mean which is the line in the middle) tells us about 

the dogs that have a normal height. In other words, which one is shorter than normal and 

which one is higher than normal. 

  

Figure 2.2: Standard deviation example. 
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2.4 Expected Value 

To calculate the mean (expected value) we perform the summation of each outcome 

value multiplied by the number of its occurrences. This gives a sum S that is next divided 

by the total number of objects. It is the weighted average of all possible values that a 

specific random variable can take.  

2.4.1 Example 

Let’s start with simple example, suppose we have these random values: 2, 2, 5, 5, 

5, 7, 9 and their mean is: 

Mean = (2+2+5+5+5+7+9)/7 = 35/7 = 5 

Observe that expected value is also the total number of averages 2, 5, 7 and 9, multiplied 

by their frequencies 2/7, 3/7, 1/7 and 1/7, respectively, as follows: 

Or:  
2 (2)+3 (5)+7+9

7
 = 2/7  (2) + 3/7  (5) + 1/7  (7) + 1/7  (9) 

= 28.5%  2 + 42.8%  3 + 14.2%  7 + 14.2%  9 = 5 

The percentage is how likely we will get each specific value, in other words the probability 

that each element will show up. 

Some notes about the Expected value: 

1. Expected value is the same as a population mean. 

2. The expected value doesn’t have to be the most probable value. 



18 

 

3. We use expected value instead of mean because we can’t add up all the values 

in the entire population (what about infinite numbers) and divide by the size of 

that population.  

 

2.4.2 Example 

Another common example of calculating the expected value is the expected value 

of the outcome of a six-sided dice.  

The probability of getting each side is 1/6. Therefore: 

E(X) = 1 1/6 + 2 1/6 + 3 1/6 + 4 1/6 + 5 1/6 + 6 1/6 = 3.15 

There is a general rule which says that if each outcome has the same probability, then, the 

expectation calculation becomes simply a weighted average as shown in the example 

above. 
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2.5 Probability 

A measure of how likely it is that a certain thing will happen. Probability has a 

value between 0 and 1. The picture below (Figure 2.3 [3]), is a simple illustration of 

probability. 

 

2.5.1 General Rules 

 P(A) = 
Possible outcomes favoring event A

Total number of possible outcomes
 

 The probability of an outcome favoring either A or B is given by: 

P(A ∪ B) = P(A) + P(B) – P(A) ∙ P(B) 

 The probability of two independent outcomes is: 

P(A ∩ B) = P(A)  P(B)  

 Conditional probability: the probability of the outcome given an occurrence of 

outcome. B: 

P(A|B) = 
P(A∩B)

P(B)
 

Figure 2.3: Probability illustration. 
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P(A∩B) = P(A|B)  P(B),           P(B∩A) = P(B|A)  P(A) 

P(A|B)  P(B) = P(B|A)  P(A)   

P(B|A) = 
P (A|B) ·  P(B)

P(A)
 = 

P(A∩B)

P(A)
 

 

2.5.2 Simple Examples of using Probability 

Upcoming, are many examples that will cover the probability concept in order to 

make Probability fully understandable simply and straightforwardly. 

 If we have a six sided dice, we can find the probability of having even or odd 

numbers, P(1, 2, 3 , 4, 5 or 6) or we can find the P(<5) (the probability of having a 

number less than five), etc.  

P(even) = ½ , the dice has 6 sides and each side has a number. In total there are a 

set of numbers from 0 to 6. Half of these numbers are even and the other half is 

odd. The probability of even is telling how likely we will get an even number if we 

through the dice once.  

P(odd) = ½. 

P(≤5) = 
5

6
 which is the probability of having a number that is not larger than 5. 
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 Tossing coin probability:  

P(TH∪HT)= P(HT)+P(TH) 

=1/4+1/4 = ½. TH means the 

probability of having tail then head. 

HT is the probability of having 

head then tail. Figure 2.4 illustrates the 

probability of having a consecutive heads or tails after tossing a coin for two 

times. 

 P(5 consecutive heads) =1/2∙1/2 1/2 1/2 1/2 = 1/32 

 P(getting no heads after 6 consecutive tosses) =  

P(6 consecutive Tails) = (1/2)
6
 = 1/64 

 P(HHHHHT) = 1/64 too! 

 P(Exactly 1 head only out of 5 tosses) = 5/32 

 P(Not getting exactly 1 head) = 1 - 5/32 = 27/32 

 P(At least one head out of 5-tosses) = 1 - P(No head out of all tosses - all tails) 

= 1 - 1/32 = 31/32 

 I have 9 normal coins in my pocket and one two-heads-sided coin [4]. The 

probability of getting 5 consecutive heads if I pick 

one coin and flip it 5 times is:  

The probability of getting a normal coin which 

equals the probability of getting five consecutive 

Figure 2.4: Probability diagram. 

Figure 2.5: The distribution of 

coins. 
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heads from normal coin added to the probability of getting a five consecutive heads 

from the two-sided-coin.  

(1/10 ∙ 1)  + (9/10  1/32) = 9/320 + 32/320 = 41/320. The detailed solution 

for each case related to this example is listed below: 

o The whole rectangle (Figure 2.5) represents the total number of coins which is 10. 

o (Color oriented) Number of normal coins = 9 

o No. of two-sided coins = 1 

o The probability of having five consecutive heads and the coin is normal: 

 P(5/5|N)  P(N) = 1/32  9/10 = 9/320 = P(5/5∩N) 

o The probability of having five consecutive heads and the coin is a two sided tail: 

P(5/5 ∩ 2s) = P(5/5|2s)  P(2s) = 1  1/10 = 1/10 

o The probability of having five consecutive heads: 9/320 + 1/10 = 41/320 = P(5/5) 

o The probability of having normal coin if the result is five consecutive heads after 

flipping the coin five times: P(N|5/5)* = 
P(N∩

5

5
)

P(
5

5
)

 = 

9

10
 ·

1

32
41

320

= 
9

41
 

o The probability of having two-sided-coin coin if the result is five consecutive heads 

after flipping the coin five times: P(2s|5/5) = 
P(2s∩

5

5
)

P(
5

5
)

 = 

1

10
 · 1 

41

320

= 
32

41
 

 A bag filled with 5 fair coins and 10 unfair coins with 80% H. Find the probability 

after 6 tosses P(Fair|4/6) (4 Heads out of 6 tosses). Detailed solution for different 

cases are explained below: 



23 

 

o P(4/6|Fair) = (If I have fair coins, what is the probability of getting exactly 4 heads 

after 6 tosses?) = (6
4
) ·  (

1

2
)6 = 15/64. 

o P(6/4|Unfair) = (If I have unfair coins, what is the probability of getting exactly 4 

heads after 6 tosses?)  (6
4
)  (0.8)4 · (0.2)2 = 24.57% 

o The probability of having 4 heads after toss the coin six times:  

P(four heads/six tosses) = (probability of having fair coins ∙ probability of having 

four heads out of six tosses in the case that coins are fair)+(probability of having 

unfair coins ∙ probability of having four heads out of six tosses in the case that coins 

are unfair). 

P(4/6) = 5/15  15/64 + 0.2457  10/15 = 24.19% 

o The probability that the coin is fair if the result is four heads after tossing the coin 

six times:  

P(Fair|4/6) = 
𝑃(𝐹𝑎𝑖𝑟∩

4

6
)

𝑃(
4

6
)

=  
𝑃(

4

6
|𝐹𝑎𝑖𝑟) · 𝑃(𝐹𝑎𝑖𝑟)

 𝑃(
4

6
)

 = 
5/64

0.2419
=  32.29% the 

probability that the current 4 heads out of 6 tosses came from Fair coins.  

 We have 40 students in a classroom. What is the probability that there are two 

student share the same the same birthday? 

o It is easier to find the probability of people having distinct birthdays. 

o For two people: 365/365  364/365 = 365 364/365
2
 

o For three people: 365.364.363/365
3
 = 

365!

362!

3652  
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o For 40 people: P(d)= 365…335/365
40

 =

365!

(365−40)!

36540  = 

365!

325!

36540  = 10.87% 

o P(Two student have the same birthday out of 40 people) = 1 - P(d) = 100% - 10.87% 

= 89.13% that somebody share the same birthday with someone else. 

 

2.5.3 Binomial Probability (Discrete) 

Binomial Probability is the way of representing a range of probabilities of an 

experience. However, each probability is exactly descriptive to the outcome. In other 

words, the outcome is either yes or no (or the outcome 0 or 1). This discrete probability 

tells us the range of successive experiments’ outcomes. The main equation of calculating 

the Binomial distribution is: 

P(x) = (𝑛
𝑘
) 𝑃𝑘(1 − 𝑃)1−𝑘 

 Example 

 Let’s have an example of flipping a coin for 

six times again.  

 Here the P(x) = 𝑃(𝑥)̅̅ ̅̅ ̅̅  

 The range of the outcomes of the 

experiment (Figure 2.6): 

o P(0 head) = (6
0
)  ·  (0.5)

6 = 1/64 

o P(1 head) = (6
1
)  ·  (0.5)

6
 = 6/64 

o P(2 heads) = (6
2
)  ·  (0.5)

6
 = 15/64 

Figure 2.6: Binomial Distribution. 
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o P(3 heads) = (6
3
)  ·  (0.5)

6
 = 20/64 

o P(4 heads) = (6
4
)  ·  (0.5)

6
 = 15/64 

o P(5 heads) = (6
5
)  ·  (0.5)

6
 = 6/64 

o P(6 heads) = (6
6
)  ·  (0.5)

6
 = 1/64 

 

 Example 

Let’s have another Example with different probabilities. What is the probability of 

having a rain in k days during a week if the probability of raining of each day is 80%? 

Figure 2.7 below show the binomial distribution of range of raining days during a week. 

The figure shows us what the probability of having rain in seven consecutive days is, if the 

raining probability is 80%. 

 

 

Figure 2.7: Raining probability. 
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2.5.4 Probability Distribution Function 

The probability distribution shows what the probability of each possible outcome 

of a random experiment is. The probability distribution can be for a discrete or continuous 

and for a non-cumulative or cumulative random values. Figure 2.8 shows two different 

examples of a random result of two different experiments (discrete and continuous). 

  

Figure 2.8: Discrete and continuous probability distribution function examples [17]. 

 

 Example  

X = continuous random value and we want to explore 

its probability distribution (Figure 2.9). 

P(2 ≤ X ≤ 3) = 1  1/5 = 1/5 

P(3.9 ≤ X ≤ 4.1) = 1/5  1/5 = 1/25 

P(2.999 ≤ X ≤ 3.001) = 1/500  1/5 = 1/2500 

Figure 2.9: Probability distribution 

function example. 



27 

 

P(X = exact 3) = 0. 

 

2.5.5 Expected Value of Binomial Distribution 

In this section, a derivation of the expected value of binomial distribution is 

presented. X = Number of successes with probability P after n trials. Let’s assume that I 

calculated the probability distribution for this example and we got a shape similar to bell 

curve. We need to prove E(X) = n P. 

 Example  

X = Number of baskets I make after n=10 shots if I have a probability of making one shot 

is: P = 40%. 

E(X) = P ∙ n = 0.4  10 = 4. 

P(X=k) = (𝑛
𝑘
) 𝑃𝑘(1 − 𝑃)𝑛−𝑘  

𝐸(𝑋) =  ∑𝑘 (
𝑛

𝑘
)  𝑃𝑘(1 − 𝑃)𝑛−𝑘

𝑛

𝑘=0

 

= ∑ 𝑘 (𝑛
𝑘
) 𝑃𝑘(1 − 𝑃)𝑛−𝑘𝑛

𝑘=1 , without k the summation = 1 

= ∑ 𝑘 ·  
𝑛!

𝑘! (𝑛 − 𝑘)!
 ·  𝑃𝑘(1 − 𝑃)𝑛−𝑘

𝑛

𝑘=1

 

= ∑
𝑛!

(𝑘 − 1)! (𝑛 − 𝑘)!
 ·  𝑃𝑘(1 − 𝑃)𝑛−𝑘

𝑛

𝑘=1
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= n ·  P ·  ∑
(𝑛−1)!

(𝑘−1)!(𝑛−𝑘)!
 ·  𝑃𝑘−1 ·  (1 − 𝑃)𝑛−𝑘,       𝑎 = 𝑘 − 1,     𝑏 = 𝑛 − 1,    𝑛 − 𝑘 =𝑛

𝑘=1

𝑏 − 𝑎 

= 𝑛 ·  𝑃 ·  ∑
𝑏!

𝑎!(𝑏−𝑎)!
 ·  𝑃𝑎(1 − 𝑃)𝑏−𝑎𝑏

𝑎=0  

E(X) = n  P, this is true for only binomial distribution. 

 

2.5.6 Conditional Probability 

Dependent probability is a description of a case when the possible outcome of an 

event depends on the outcome of another event. 

 

 Example 

A Bag is filled with 5 marbles (Figure 2.10). Pay $0.35 to play and 

if you get 2 white in the first two attempts, you win $1. 

P(1st white) = 3/5 

P(two white) = P(1st g ∩ 2nd g) ≠ 3/5  3/5 as after choosing the 

first white marble the remaining are 4. 

P(1st g ∩ 2nd w) = P(1st w)  P(2nd w |1st w) = 3/5  2/4 = 6/20 = 3/10 = 30% in average, pay 

$.35 and win $0.3! (You play 100 times paying $35 and the probability is 30% which means 

you lose $5.) 

Figure 2.10: Bag filled 

with 3 white and 2 

black marbles. 
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What about playing with putting the white marble back? The probability now becomes 

independent. The result is: 

P(two white) = P(1st w∩ 2nd w) = 3/5  3/5 = 9/25 = 36%, in general you pay $0.35 to get 

$0.36, which means you win $0.01. 

 

2.5.7 Bayes’ Theorem 

Bayes’ Theorem, or the related likelihood ratio, is the key to almost any procedure 

for extracting information from data. Bayes’ Theorem lets us work backward from 

measured results to deduce what might have caused those [5]. 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) ·  𝑃(𝐴)

𝑃(𝐵)
 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) · 𝑃(𝐴)

𝑃((𝐵 ∩ 𝐴) ∪ (𝐵 ∩ �̅�))
=

𝑃(𝐵|𝐴) · 𝑃(𝐴)

[𝑃(𝐵|𝐴) · 𝑃(𝐴)] + [𝑃(𝐵|�̅�) · 𝑃(�̅�)]
 

 

 Example 

Two students want to run an experiment. 1st 

student has a bag filled with stars (white and 

black). 2nd student has a bag filled with marbles 

(white and black). Each throw 5 pieces in a jar as 

shown in Figure 2.11: 

• 1st student throws 4 white Stars and 1 black star 

Figure 2.11: Jar 

filled with stars 

and marbles. 
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• 2nd student throws 2 white marbles and 3 black Marbles  

Someone came and picked a piece from the Jar. He told us that he picked a black piece. 

What is the probability that this piece is marble, P(M|B)? Or P(S|B). 

P(M|B) = 
𝑃(𝑀∩B)

𝑃(𝐵)
=  

𝑃(𝐵|𝑀) · 𝑃(𝑀)

𝑃(𝐵)
,   𝑃(𝐵|𝑀) = 

3

5
= 60%,  𝑃(𝑀) =

1

2
= 50%. 

𝑃(𝐵) = 𝑃((𝐵 ∩ 𝑀) ∪ (𝐵 ∩ 𝑆)) = [𝑃(𝐵|𝑀) · 𝑃(𝑀)] + [𝑃(𝐵|𝑆) · 𝑃(𝑆)] 

= [
3

5
·
1

2
] + [

1

5
·
1

2
] =

3

10
+

1

10
=

4

10
= 40% is the probability of getting a black object if 

someone picked an object from the jar. 

𝑃(𝑀|𝐵) = 

3

5
 · 
1

2
4

10

=
3

10
4

10

=
3

4
 = 75% is the probability of having a marble if someone 

picked a black object from the jar. 

 

2.6  Variance 

Variance is a way to measure or see whether the data are close or far from mean. 

Variance can be calculated for population or for a sample taken from a population if the 

population is too big, for example finding the variance of the men height in the U.S. 

Variance is calculated using the formula below: 

𝜎2 =  
1

𝑁
∑ (𝑥𝑖 − 𝜇)2 𝑁

𝑖=1 𝑂𝑅 = ∑ (𝑃𝑖 . (𝑥𝑖 − 𝜇)2) 𝑁
𝑖=1 ,    𝜇 = ∑ 𝑃𝑖.  𝑥𝑖

𝑁
𝑖=1  
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An easy example shows why we need the concept of variance. Let’s take two groups of 

numbers: x = {1, 2, 3, 4}, y = {0, 0, 5, 5}. The mean value for both groups is 2.5. We need 

something else to give some information about data (are they close to each other or to the 

mean?). We need a measure of dispersion.  

𝜎2(x) =
(1−2.5)2+(2−2.5)2+(3−2.5)2+(4−2.5)2

4
 = 

2.25+0.25+0.25+2.25

4
 = 1.25 

𝜎2(y) = 
(0−2.5)2+(0−2.5)2+(5−2.5)2+(5−2.5)2

4
 = 

6.25+6.25+6.25+6.25

4
 = 6.25 

𝜎2(y)>𝜎2(x), this result shows that the data in y group are far from the mean. 

If the population is too big we need to calculate the variance for a sample using the formula 

below:  

𝑆2 =  
1

𝑛
∑(𝑥𝑖 − 𝑋)

2
𝑛

𝑖=1

 

The example in the Figure below shows the difference between variance for a population 

and a sample of a population. In the example below, the data are represented using black 

dots  and there are two different samples; circles filled with crossed lines and black dots. 

The formula above is correct if the sample data are distributed (the circles that are filled 

with crossed lines) in Figure 2.12. If the data are clustered around some point in the space. 

The sample main (𝑋1) will be skewed from the population main (µ). 
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As shown in Figure 2.13, the first sample (circles filled with crossed lines) will give a 

variance that is close to the population variance. Sample 2 (black triangles) variance will 

be around the sample mean 2 (stripped circle). To solve this issue we need to change the 

variance formula:  

𝑆2 =  
1

𝑛 − 1
∑(𝑥𝑖 − 𝑋)2
𝑛

𝑖=1

 

By this, we will have the result of the summation for n samples of the difference between 

each point and its mean squared divided by n-1. This will make the variance around the 

population mean instead of being diverged away from the mean. 

The below formulas show that variance can be written in different representations that will 

be used by us: 

𝜎2 =  
1

𝑁
∑(𝑥𝑖 − 𝜇)2
𝑁

𝑖=1

 

= 
∑ (𝑋𝑖

2−2𝑥𝑖µ+𝜇2𝑁
𝑖=1 )

𝑁
=  

∑ 𝑋𝑖
2𝑁

𝑖=1

𝑁
−

∑ 2𝑥𝑖µ
𝑁
𝑖=1

𝑁
 + 

∑ 𝜇𝑁
𝑖=1

𝑁
 

Figure 2.12: Variance for a population and a sample of a population. 
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=
∑ 𝑋𝑖

2𝑁
𝑖=1

𝑁
−

2µ∑ 𝑥𝑖
𝑁
𝑖=1

𝑁
 + 

𝜇∑ 1𝑁
𝑖=1

𝑁
 

= 
∑ 𝑋𝑖

2𝑁
𝑖=1

𝑁
 −2𝜇2 + 𝜇 (𝜇=E[x]) 

= E[𝑥2] - 2(𝐸[𝑥])2+E[x] 

= E[(𝑋 − 𝐸[𝑥])2] 

 

2.6.1 Variance of Binomial Distribution 

Variance of Binomial distribution is another way to find the distribution of certain 

values by finding the variance from its binomial distribution. Again, the result will tell us 

how the data are distributed around the mean. To find the variance of a binomial 

distribution, the result of the derivation below should be used.  

The probability of binomial distribution = P(x = k) = (𝑛
𝑘
) 𝑃𝑘(1 − 𝑃)1−𝑘, 

E(x) = n ∙ P 

𝜎2 =  ∑ (𝑘 − 𝑛𝑃)2𝑁
𝑘=1  ·  (𝑛

𝑘
) ·  𝑃𝑘  ·  (1 − 𝑃)𝑛−𝑘 = − 𝑛 (𝑃2 − 𝑃)   

  = −𝑛P (𝑃 − 1) 

  = −𝑛𝑃 (−1(1 − 𝑃)) 

  = 𝑛𝑃(1 − 𝑃) 
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2.7  Random (or Stochastic) Variable 

Random variable is a possible value that represents the outcome of an experiment 

which has not yet happened. It is similar to the traditional variable (x+2=y, as we can solve 

for y by substituting x) in a sense of referring to some values but actually not solving for 

them. A random variable is essentially a function that maps all points in the sample space 

to real numbers. For example, the continuous random variable X(t) might map time to 

position at any point in time, X(t) would tell us the expected position [6]. Or it is a function 

that maps from the world of random processes to actual numbers. 

Let’s take an example to clarify the meaning of a random variable: 

I want to quantify if there is rain tomorrow. 

𝑋 =  {
150          𝑅𝑎𝑖𝑛 

20     𝑁𝑜 𝑟𝑎𝑖𝑛
   X: can be any number depending on how it is defined. 

this example shows the Random value as a process to maps us from a world of a process 

to a number and this number is random as we don’t know if it is going to rain or not. 

There are two types of random variables; discrete and continuous. 

2.7.1 Discrete Random Variables 

Discrete Random Variable is the same concept as in the example that we already 

discussed:  flipping coin: when flip coin there are two outcomes either 1 or 0. When I 

through a dice, there are six discrete cases, which means there are no further results among 

these six results. In the raining example, there is either yes or no (Yes, it is going to rain or 
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No). We have here a countable number of outcomes. Figure 2.13 shows an example of 

discrete values of a six sides dice.  

 

Figure 2.13: The probability distribution of all possible outcomes is discrete random values. 

 

2.7.2 Continuous Random Variables 

Continuous ransom variable can take infinite number of outcomes. An example can 

be the exact amount of rain! I can have 1”, 1.0009” or 2.00112”. Furthermore, we can have 

infinite number of numbers between any two numbers. The bell shape in Figure 2.14 shows 

a continuous distribution of the raining amount.  

 

Figure 2.14: Continuous values representing the amount of raining. 
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What is the probability of having exactly 2” of rain? Logically, it is not possible to get 

exactly 2” (Not 2.0000001” or 1.9999999”!) as there is no way to measure an exact 2”! [7]. 

There is always more molecules in either side! Therefore, P(Y=2”) = 0. However, We can 

find the P(continuous random variable) by saying what is the probability of Y = Almost 2” 

which means P (|Y-2|= < 0.1). In other words, it is finding the area between 1.9 and 2.1 

which is the definite Integral between 1.9 and 2.1 (Figure 2.15). The probability is the area 

under this curve. If the curve is defined as f(x), then P (1.9 < Y < 2.1) = ∫ 𝑓(𝑥) 𝑑𝑥
2.1

1.9
.  

 

Therefore, the probability of an exact certain value is finding the area below the point (the 

shaded area in Figure 2.15) under the curve of the probability distribution which is 0.  

Figure 2.15: Finding the area between two sets (finding the probability of a range). 
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Additionally, the probability of getting some result below a certain value is also applicable 

as shown in Figure 2.16 which is the probability that the rain will be below 1”. 

 

2.8  Normal (or Gaussian) Distribution (Continuous) 

The normal (z) distribution is a continuous distribution that arises in many natural 

processes. "Continuous" means that between any two data values we could (at least in 

theory) find another data value. For example, men's heights vary continuously and are the 

result of so many tiny random influences that the overall distribution of men's heights 

in America is very close to normal. Another example is the exact amount of rain tomorrow. 

Figure 2.17 shows an example of normal distribution and cumulative distribution function 

[8].  

Figure 2.16: Finding the probability below a certain value. 
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Figure 2.17: Normal distribution and Cumulative distribution function examples. 

 

Is normal distribution symmetrical? Yes, fundamentally, the standard deviation and 

the mean values describe the bell shape of the normal distribution. The standard deviation 

grows on the right side and creates the positive values as well as the curve. On the mean’s 

left side, the standard deviation reflects its positive values to represent the negative values 

and the bell curve on the negative side. Additionally, the mean, median1, and mode2 of the 

distribution are equal and located at the peak (i.e., height of the curve). 

The equation to find the normal distribution is listed below:  

 Probability Distribution Function (PDF) =  𝑓(𝑥) =   
1

√2𝜋𝜎2
 𝑒

−
1

2
(
𝑥−𝜇

𝜎
)
2

 

where 
𝑥−𝜇

𝜎
= 𝑧  which is called the standard score. 

                                                 

 

1 Median is the number that comes in the middle after rearranging the analyzed numbers in order.  
2 Mode is the number that repeated more often than other numbers. 
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PDF =  
1

√2𝜋𝜎2𝑒𝑧2
 

Cumulative Distribution Function (CDF) =
1

2
[1 + erf (

𝑥−𝜇

√2𝜎2
)] 

To find the probability for a certain outcome: 

P(x) = ∫
1

√2𝜋𝜎2
 𝑒−

1

2
(
𝑥−𝜇

𝜎
)2𝑥2

𝑥1
 𝑑𝑥 

CDF = ∫
1

√2𝜋𝜎2
 𝑒−

1

2
(
𝑥−𝜇

𝜎
)
2

𝑥

−∞
 𝑑𝑥 

 

2.8.1 Example 

What is the percentage of men that are between 5'10" and 6'1" if men's heights in 

inches follow the N(69, 3) distribution? 

Draw a sketch with the peak at 5'9" and the points of inflection of the bell-shaped curve at 

5'6" and 6'0". We put the points of inflection 3 inches above and below the mean because 

we were given that the standard deviation was 3. Then shade the area between 5'10" and 

6'1", and mark the answer (found by punching in normal cdf. Answer: 28%. Figure 2.18 

and Figure 2.19 below show the results.  
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Figure 2.18: The normal distribution. 
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Figure 2.19: The cumulative distribution function. 

 

2.8.2 Example 

How tall must a man be at the 90th percentile of height? To find the solution, draw 

the curve as in Figure 2.19 (mean at 69, points of inflection at 66 and 72). Mark and shade 

10% area in a right tail, or 90% area in a left tail. 72.84 inches. NORMAL.INV (Probability, 

Mean, Standard deviation) function is used in Excel to get the answer. 

 

2.9 Normal Distribution and Binomial Distribution 

As mentioned before, Binomial distribution represents the discrete outcomes like 

the probability of selecting faces of a six sides dice. On the other hand, the Normal 

distribution represents continuous outcomes like the normal distribution of the amount of 

rain for tomorrow. However, if we do the experiment for infinite number of times for many 
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different events, the normal distribution will diverge from the binomial distribution. A 

simple example is flipping a coin for thousand times and writing down how many times I 

got a head. If I repeat this process for an infinite number of times, I will get the normal 

distribution of getting heads after flipping a coin for thousand times. Figure 2.20 and Figure 

2.21 below show the difference between Binomial distribution and normal distribution in 

different types of experiments. The first one is running the experiment for 4 times and the 

second one I run the same experiment for fifty times. 

 

Figure 2.20: Binomial distribution. 
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Figure 2.21: Normal distribution. 

 

2.10 Compare Normal distribution to other Distribution Functions 

Let’s take some examples of samples and see whether they are normally distributed 

or not and give an explanation for the reason why not [9]. 

 Hand span of random undergrad students. There is a good normal distribution but 

the left end won’t be in negative and the right end won’t be a very high value (no 

one has a mile hand span or a negative hand span!). 

 The annual salaries of a large company. We will have a right skewed distribution. 

There is a threshold from the left (the minimum wages) and there are two humps 

(means), one for most people and one for CEOs (Chief executive officer) Figure 

2.22). 
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Figure 2.22: Double humped normal distribution. 

 

 Figure 2.23 below shows the possibilities of having a sample of employees that 

have different annual salaries. There is no gab between the high salaries and the 

low ones. Therefore, the distribution will be positive skewed which means that 

there are low number of employees taking high salaries (based on their experience 

for instance) and the majority of them are taking low to medium annual salaries.  

 

Figure 2.23: Positive skew distribution. 

 

 The dates printed on 100 pennies taken from a cash drawer in a convenience store. 

We might have here a left skewed distribution as the majority will be a new pennies 

in 2009 for example and a long tails for older pennies (Figure 2.24). 
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Figure 2.24: Negative skewed distribution. 

 

 

2.11 Normal Distribution Empirical Rule 

68-95-99 is an empirical rule for the normal distribution. It means that 68% of the 

population is between the first standard deviation and 95% between the second standard 

deviation. Eventually, 99.7% of the population is between the third standard deviation. The 

idea of this rule is showed in Figure 2.25. 

 

Figure 2.25: 68 95 99.7 rule [10]. 
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2.11.1 Example 

The drivers’ speeds in Portland’s highways are normally distributed with a mean of 

55 m/h and standard deviation of 10 m/s. Estimate the cars speed percentage of the 

following (without using calculator): 

a) Less than 45 m/h 

b) Between 35 m/h and 75 m/h 

c) More than 85 m/h. 

The solution simply achieved by using 68-95-99.7 rule. 

a) 100 - (68/2) - 50 = 15.7% 

b) 95% 

c) 100 – 50 - (99.7/2) = 0.15%  

 

Figure 2.26 shows the normal distribution of the drivers’ speed in Portland.  
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Figure 2.26: Normal distribution 
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 Introduction to Kalman Filter 

In this chapter, many basic filters will be discussed before going to the main topic 

which is Kalman Filter. There are many reasons to start with these filters. First, it is a good 

introduction to filters and why they are used. Second, it is more important to learn more 

about recursion used in various filters. Finally, it is a good introduction to Kalman Filter 

itself, because later on a comparison between these filters and Kalman Filter will show the 

powerful abilities of Kalman Filter.  This chapter presents recursive filters in a successive 

explanation way provided with very straight-forward examples, which will allow us to 

move a step forward toward the explanation of the Kalman Filter.  

What is recursion? It is a method of reusing the previous result in the current 

process. It has a good efficiency in computation (as we will see in this section). Also, it has 

an advantage in the aspect of memory storage as the recursive approach needs only the 

previous result and not all the previous quantities. Moreover, recursion is applicable in 

simple filters like average filter, and in more complicated filters like the Kalman Filter. 

 

3.1 Average Filter 

Average filter is a very simple filter used to average the acquired data in order to 

eliminate the noises. The main average equation is: 

�̅�𝑘 =  
𝑋1+𝑋2+⋯+𝑋𝑘

𝑘
                (Equation 3.1) 

This is the traditional function for finding the average of certain values, where k is the size 

of acquired data and �̅�𝑘 is the average value. However, applying this equation will be 
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expensive as we need a bigger memory to save the values when the number of values grows 

every time a new datum is introduced. Additionally, a bigger processer is needed as the 

calculations will get bigger when more data is acquired. Using recursion here will be 

effective as we need only the previous average and the new datum. Currently, we need to 

derive the recursive average filter.  

Recursive average filter derivation: 

�̅�𝑘−1 =  
𝑋1+𝑋2+⋯+𝑋𝑘−1

𝑘−1
  (Equation 3.2) , multiplying Equation 3.1 by k we get 

𝑘�̅�𝑘 = 𝑋1 + 𝑋2 + ⋯+ 𝑋𝑘  

Dividing both sides by k-1:      
𝐾�̅�𝑘

𝐾−1
=  

𝑋1+𝑋2+⋯+𝑋𝑘

𝑘−1
,  the right side could be written as  

𝑘�̅�𝑘

𝑘−1
=  

𝑿𝟏+𝑿𝟐+⋯+𝑿𝒌−𝟏

𝐤−𝟏
+  

𝑋𝑘

𝑘−1
, The bold part can be substituted by �̅�𝑘−1 in Equation 3.2.  

𝐾�̅�𝑘

𝑘 − 1
= �̅�𝑘−1 +  

𝑋𝑘

𝑘 − 1
 

�̅�𝑘 =  
𝐾−1

𝐾
�̅�𝑘−1 +

1

𝐾
 𝑋𝑘 

�̅�𝑘 =∝ �̅�𝑘−1 + (1- ∝)𝑋𝑘, where ∝=
𝑘-1

𝑘
  ,  

1

𝑘
 = 1- ∝ 

This is the main function of a recursive average filter. 

 

 

3.1.1 Example  

Average Filter is tested here with a real data that comes from one of the sonars that 

is used in MCESC-Bot. This data has some false measurements which are some zeros 
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showing up every while. We got this kind of measurements after the improvements of 

having the chaining method. More information about this measurements and the chaining 

method can be found in the ultrasonic section in the fifth chapter. Anyway, this example 

will show that Average filter has very limited applications. There is accumulated error and 

diverge due to the effect of the earliest measurements. However, it might be a good sensor 

for a fixed state. In other word, this filter may be good if the robot is stationary, but it is not 

the case all the time.  

Figure 3.1 shows the code of the average filter algorithm. It receives the sonar 

measurements and returns the average of the measurements. 

AvgFilter 

function avg = AvgFilter(x) 

persistent prevAvg k  

persistent firstRun 

if isempty(firstRun) 

  k = 1; 

  prevAvg = 0; 

  firstRun = 1;   

end 

alpha = (k - 1) / k; 

avg   = alpha*prevAvg + (1 - alpha)*x;  

prevAvg = avg; 

k = k + 1; 
Figure 3.1: Average filter equation. 

 

Figure 3.2 shows GetMaxSonar1 code that reads the sonar from a file that has a real 

data taken from the front sonar of the MCECS-Bot. 
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GetMaxSonar1 

function h = GetMaxSonar1() 

% 

% 

persistent son1      % SonartAlt.mat 

persistent k firstRun 

  

  

if isempty(firstRun) 

  load Son1 

  k = 1; 

   

  firstRun = 1; 

end 

  

h = son1(k); 

   

k = k + 1; 
Figure 3.2: Get Sonar. 

 

Figure 3.3 shows the main code (ResultAveSonar1) that gets the sonar 

measurements and passes them to AvgFilter(). It presents the average on a graph, which is 

Figure 3.4. 

 

ResultAveSonar1 

clear all 

  

Nsamples = 500; 

Avgsaved = zeros(Nsamples, 1); 

Xmsaved  = zeros(Nsamples, 1);   

  

for k=1:Nsamples 

  xm  = GetMaxSonar1(); 

  avg = AvgFilter(xm); 

   

  Avgsaved(k) = avg; 

  Xmsaved(k)  = xm; 
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end 

  

dt = 1; 

t  = 0:dt:Nsamples-dt; 

  

figure 

plot(t, Xmsaved, 'r') 

hold on 

plot(t, Avgsaved,':','LineWidth',2) 

xlabel('Time (sec)'); 

ylabel(Distance (inch)'); 

legend('Measured', 'Estimated') 
Figure 3.3: Test Average filter. 

 

 

Figure 3.4: Average filter results. 

 

It is obvious in Figure 3.4 that the Average Filter lost tracking the signal after it 

changed at 225. This shows how that filter’s results get diverged by the effect of the earliest 

measurements. 
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3.2  Moving Average Filter (MAF) 

A “Moving Average Filter” is the second filter presented in this chapter. This filter 

is used to eliminate the noise by calculating the average of the last n measurements. 

Average filter doesn’t show the changing pattern of the measurements as it averages all 

acquired data. The Moving Average Filter makes only the last n measurements to contribute 

in the new estimation. This will keep the pattern of the changing measurements. The simple 

average filter is not efficient and not very descriptive to our measured data because all the 

dynamic changes are being removed and only a signal value represents the whole data. A 

Moving Average Filter is used in this case as the observed data are changing along with 

time. Only a certain number of measurements will be chosen. Each time we measure a 

datum the set of data will be “shifted”. 

�̅�𝑘 = 
𝑋𝑘−𝑛+1+𝑋𝑘−𝑛+2+𝑋𝑘

𝑛
, �̅�𝑘 is the average from k-n+1𝑡ℎ  to 𝑘𝑡ℎ. 

�̅�𝑘−1 =   
𝑋𝑘−𝑛+𝑋𝑘−𝑛+1+𝑋𝑘−1

𝑛
, The moving average of the previous datum. 

Subtracting these two equations we get the Moving Average Filter in its recursive form: 

               �̅�𝑘 = �̅�𝑘−1 +  
𝑋𝑘−𝑋𝑘−𝑛

𝑛
                     (Equation 3.3) 

 

3.2.1 Example 

Moving Average Filter is used in this example to filter out a real data taken from 

front sonars of the MCECS-Bot. The sonar used to measure a distance from a wall gives a 

measurement every 50 μ second. The measurement was very noisy due to the acoustic 
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noise, which is the interference that was coming from other sonars. We faced this problem 

of noisy measurements before the improvements of having the chaining method (for more 

information refer to the ultrasonic sensors section in the fifth chapter). However, the noisy 

data is good to test the tolerance of each filter.  

Figure 3.5 shows the algorithm of moving average filter. This function receives the 

sonar data from the main code (Figure 3.7) and returns the average value. The function that 

reads the real sensor data is shown in Figure 3.6. 

 

Moving Average Filter 

function avg = MovAvgFilter(x) 

% 

persistent prevAvg n xbuf 

persistent firstRun 

   

if isempty(firstRun) 

  n    = 20; 

  xbuf = x*ones(n+1, 1); 

   

  k = 1; 

  prevAvg = x; 

   

  firstRun = 1;   

end   

for m=1:n 

  xbuf(m) = xbuf(m+1); 

end 

xbuf(n+1) = x; 

  

avg = prevAvg + (x - xbuf(1)) / n; 

prevAvg = avg; 
Figure 3.5: Moving Average Filter code. 
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The result of the second filter (n = 20) in Figure 3.8 is coming from MovAvgFilter3 

function. This function is similar to MovAvgFilter with only one difference which is n = 

20 instead of 5. 

Sonar1 

function h = Sonar1() 

% 

persistent son       % Son.mat 

persistent k firstRun 

   

if isempty(firstRun) 

  load son 

  k = 1;   

  firstRun = 1; 

end 

h = son(k); 

k = k + 1; 
Figure 3.6: Get Sonar code. 

 

ResultMovAvSonar 

clear all 

  

Nsamples = 500; 

Xsaved   = zeros(Nsamples, 1); 

Xsaved2   = zeros(Nsamples, 1); 

Xmsaved  = zeros(Nsamples, 1); 

  

  

for k=1:Nsamples 

  xm = Sonar1(); 

  x  = MovAvgFilter(xm); 

  x2 = MovAvgFilter3(xm); 

  Xsaved(k)  = x; 

  Xsaved2(k)  = x2; 

  Xmsaved(k) = xm; 

end 

  

  

dt = 0.02; 
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t  = 0:dt:Nsamples*dt-dt; 

  

figure 

plot(t, Xmsaved, 'r.'); 

hold on 

plot(t, Xsaved2, 'black'); 

plot(t, Xsaved, 'b'); 

xlabel('Time (sec)'); 

ylabel('Distance (inch)'); 

legend('Measured', 'Estimated') 

%legend('Measured', 'Moving average') 

legend('Measured','n = 5', 'n = 20')% when the no. of datum is 

bigger the filter will  

                         %eliminate more noise but it is slower 

                         %Smaller n means sharper/faster filter but more 

noise. 
Figure 3.7: Test Average filter code. 

 

 

Figure 3.8: Moving Average filter result. 

 

Figure 3.8 above shows the difference between the results when the size of the last 

measurements is different. When n = 5 the estimation is sharper and more descriptive with 

n = 20 
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the changing values. On the other hand, when n = 20, the estimation is smoother and less 

affected by the noise. There are both advantages and disadvantages of choosing either 

bigger or smaller n. Another shortcoming of the Moving Average Filter  is that it is not able 

to reduce noise and it tracks the changes in the measurements. The filter in general is unable 

to distinguish which particular measurement contributes more than the others. In other 

words, the filter doesn’t answer this question; “is the current measurement more important 

than the previous one or not?” This answer becomes more obvious after expanding 

equation 3.4 to the following form:  

�̅�𝑘 =
1

𝑛
�̅�𝑘−𝑛+1 +

1

𝑛
�̅�𝑘−𝑛+2 + ⋯+

1

𝑛
�̅�𝑘   (Equation 3.4) 

Each measured datum has the same weight (1/n). A good example to understand 

the difference is that there is a robot moving toward a wall and it takes measurements. The 

very recent measurement is more important than the old ones, hence the old measurements 

will weakly affect the robot perception. 

 

3.3  Low Pass Filter (LPF) 

Simply, Low pass filter is a filter that passes signals with low frequencies and 

blocks higher frequencies, as usually the noise is in a higher frequency than the main signal. 

In LPF �̅�𝑘 is estimate instead of average. The LPF equation is: 

�̅�𝑘 =  ∝ �̅�𝑘−1 + (1- ∝)𝑧𝑘,    0<∝<1. 

Let’s analyze how the LPF is different from the Moving Average Filter: 

�̅�𝑘−1 =  ∝ �̅�𝑘−2 + (1- ∝)𝑋𝑘−1, substitute in the original equation of moving average filter: 
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�̅�𝑘 =  ∝ {∝ �̅�𝑘−2 + (1- ∝ )𝑋𝑘−1} + (1−∝)𝑋𝑘 

      =  ∝2 �̅�𝑘−2 +  ∝ (1−∝)𝑋𝑘−1 + (1−∝)𝑋𝑘                (Equation 3.5) 

If the same thing is done with  �̅�𝑘−2 = ∝ �̅�𝑘−3 + (1- ∝)𝑋𝑘−2 and substitute it in Equation 

3.5, the final result is: 

�̅�𝑘 =∝3 �̅�𝑘−3+∝2 (1−∝)�̅�𝑘−2 +  ∝ (1−∝)�̅�𝑘−1 + (1−∝)𝑧𝑘 

The last equation shows how the weight is different between each measurement based on 

precedence. The last equation shows how the LPF deals differently with the acquired 

measurements. In LPF, the smaller ∝ is the more dependent �̅�𝑘 on the current measurement 

gets, which is illustrated below: 

�̅�𝑘 =  ∝ �̅�𝑘−1 + (1- ∝)𝑧𝑘 

 

3.3.1 Example  

The same example used for the Moving Average Filter will be used here. Figures 

below (Figure 3.9, Figure 3.10, Figure 3.11 and Figure 3.12) show Matlab code and the 

filter results.  

LPF 

function xlpf = LPF(x) 

% 

% 

persistent prevX 

persistent firstRun 

   

if isempty(firstRun) 

  prevX = x; 
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  firstRun = 1;   

end 

   

alpha = 0.7; 

xlpf = alpha*prevX + (1 - alpha)*x; 

  

prevX = xlpf; 
Figure 3.9: LPF code. 

 

In the LPF results, LPF and LPF2 are presented. LPF2 is basically identical to LPF 

(Figure 3.9) but with different alpha value in order to show the difference between the two 

results. Each time there is a measurement, it will be passed from the main code to the LPF 

function in order to get the estimated result. The measurement value is obtained by calling 

the Sonar1() function by the main code ResultLPFSonar which is shown in Figure 3.11.  

Soanr1 

function h = Sonar1() 

persistent son % son.mat 

persistent k firstRun 

   

if isempty(firstRun) 

  load son 

  k = 1; 

    firstRun = 1; 

end 

h = son(k); 

k = k + 1; 
Figure 3.10: Get Sonar code. 

 

Get Sonar hasn’t changed. Simply it just loads a file (son.mat) which includes the 

measurements. The main function (Test LPF) will call this function in every measurement 

step in order to simulate the sonar measurements. 
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ResultLPFSonar 

clear all 

  

Nsamples = 500; 

Xsaved   = zeros(Nsamples, 1); 

Xsaved2   = zeros(Nsamples, 1); 

Xmsaved  = zeros(Nsamples, 1); 

  

  

for k=1:Nsamples 

  xm = Sonar1(); 

  x  = LPF(xm); 

  x2 = LPF2(xm); 

  Xsaved(k)  = x; 

  Xsaved2(k)  = x2; 

  Xmsaved(k) = xm; 

end 

  

  

dt = 0.02; 

t  = 0:dt:Nsamples*dt-dt; 

  

figure 

plot(t, Xmsaved, 'r.'); 

hold on 

plot(t, Xsaved2, 'b'); 

plot(t, Xsaved, 'k'); 

%legend('Measured', 'LPF') 

legend('Measurements', 'ALpha = 0.9', 'ALpha = 0.3') 

xlabel('Time (sec)') 

ylabel('Distance (inch)') 

 
Figure 3.11: The main code that gets the real data from Sonar1() and sends it to LPF(). 

Eventually, it shows the result in Figure 3.12. 
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Figure 3.12: LPF results.  

 

Figure 3.12 shows the results of two different alphas. Going back to the LPF 

equation �̅�𝑘 =  ∝ �̅�𝑘−1 + (1- ∝)𝑋𝑘, it is obvious that there is a different contribution of 

the measurements to the result when ∝ equals 0.3 or 0.9. When ∝ was smaller, it made the 

new measurement contributed more to the new estimation. On the other hand, when ∝ 

equaled 0.9, the old estimate had more weight and the estimation didn’t change by the new 

measurements. As shown in the LPF results, a smaller alpha means sharper and faster 

results. Contrary, a bigger alpha caused a delay in the output estimate but the estimation 

was smoother. 

  

 

 

Alpha = 0.9  
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 Kalman Filter 

After the mathematical and some filter theory introduction, now it is time to present 

the Kalman Filter. A Kalman Filter is an optimal estimator – i.e. it infers parameters of 

interest from indirect, inaccurate and uncertain observations. It is recursive so that new 

measurements can be processed as they arrive [11]. In what sense the Kalman Filter is 

optimal? If all noise is Gaussian, the Kalman Filter minimizes the mean square error of the 

estimated parameters. What if the noise is NOT Gaussian? Assuming that the noise is 

Gaussian, one needs only mean and standard deviation of noise and the Kalman Filter is 

the best linear estimator. Non-linear estimators may be better for non-Gaussian noise. This 

leads for instance to Extended Kalman Filter. The steps of KF are shown in Figure 4.1. 

Why is Kalman Filtering so popular? 

 Good results in practice due to 

optimality and structure. 

 Convenient form for online real 

time processing. 

 Easy to formulate and 

implement given a basic 

understanding [11]. 

 Based completely on algebra. 

 

 

I. Set the initial values: 

𝑋 0, 𝑃0 

II. Predict state and error covariance: 

𝑥 𝑘
− = 𝐴𝑥 𝑘−1 

𝑃𝑘
− = 𝐴𝑃𝑘−1𝐴

𝑇 + 𝑄 

III. Compute Kalman gain: 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅)−1 

IV. Compute Kalman filter estimate: 

𝑥 𝑘 = 𝑥 𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥 𝑘

−) 
V.  

VI. Compute the error covariance: 

𝑃𝑘 = 𝑃𝑘
− + 𝐾𝑘𝐻𝑃𝑘

− 

Figure 4.1: Kalman Filter Algorithm [12]. 
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Kalman Filter algorithm is shown in the Figure 4.1 above. Briefly, Kalman Filter steps are 

explained as follows: 

I. Set the initial values of 𝑋 0 (the value that we made Kalman Filter for) and 

𝑃0 which is the error covariance. The concept of the error covariance is 

explained in section 4.2. 

II. Based on the initialized values (first time) or based on the previous 

estimated values, the predicted values will be calculated. 

III. Based on the predicted values from the second step, the Kalman gain K is 

calculated. For now, Kalman gain K is similar to alpha in LPF. 

IV. Now, there is a new measurement and Kalman gain is computed. Current 

step is the step to compute the estimated value. 

V. The error covariance is computed. 

The subscript k is just telling us that Kalman is a recursive process. Likewise, the subscript 

“-” means predicted value. Table 4.1 shows the Kalman Filter variables: 

External input 𝑧𝑘(measurement) 

Final output 𝑋 𝑘(estimate) 

System model A, H, Q, R 

For internal computation 𝑋 𝑘
−, 𝑃𝑘

−, 𝑃𝑘, 𝐾𝑘 

Table 4.1: Kalman Filter variables. 
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System model variables (A, H, Q and R) are variables that are not computed inside Kalman 

Filter. They are set by the user based on the system characteristics and the purpose of 

Kalman Filter. The performance of Kalman Filter will be determined by these factors. 

Kalman Filter could be summarized as following: 

1. Predict state and error covariance for next time point, based on system 

model (A and Q): 𝑥 𝑘
− and 𝑃𝑘

−, respectively. 𝑥 𝑘
− is the predicted state and 𝑃𝑘

− 

is the predicted error covariance. 

2. Compensate the difference between measurement and prediction, and 

compute new estimate. This estimate is the final result of Kalman Filter: 

𝑥 𝑘and 𝑃𝑘. Here  𝑥 𝑘 is called the estimated state and 𝑃𝑘 is the (new) estimate 

error covariance. 

3. Loop through those two steps above [12]. 

 

4.1  A Comparison between Kalman Filter and Low Pass Filter 

Comparing Kalman Filter to other filters is important as it helps us to have a better 

understanding of its features as well as it will help us to appreciate Kalman Filter breadth 

of applications and its power. In this comparison, it is obvious that Kalman Filter is quite 

similar to LPF. The following points show the similarities and differences: 
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 There is a relation between estimation in Kalman Filter and LPF3.  

For Kalman Filter we calculate: 

𝑥 𝑘 = 𝑥 𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥 𝑘

−), 𝑧𝑘is measurement and 𝑥 𝑘
− is prediction. 

𝑥 𝑘 = 𝑥 𝑘
−(𝐼 − 𝐾𝑘𝐻) + 𝐾𝑘𝑧𝑘                           Equation 4.1 

If we assume that H is an identity matrix 𝐼 the above equation becomes: 

𝑥 𝑘 = 𝑥 𝑘
−(𝐼 − 𝐾𝑘) + 𝐾𝑘𝑧𝑘 

For LPF we calculate: 

Substituting ∝ with 1-K in the LPF equation (�̅�𝑘 =  ∝ �̅�𝑘−1 + (1- ∝)𝑋𝑘) we will 

get: 

�̅�𝑘 = (1 − 𝐾)�̅�𝑘−1 + K𝑋𝑘                   Equation 4.2 

Now compare equation 4.1 with equation 4.2. Both LPF and Kalman Filter are quite 

similar with some differences: 

o Kalman Filter uses the previous prediction not estimate. 

o Kalman Filter’s gain 𝐾𝑘 is changing every time; not fixed like alpha (α) in 

LPF. 

                                                 

 

3 The way I derived KF and LPF equations in order to compare them is taken from “Kalman Filter 

for Beginner” [12]. 
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o 𝐾𝑘 is a gain used as weighting in the above equation. The gain being 

computed is the significant difference between LPF and KF. Kalman gain 

equation: 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅)−1 

 Difference between estimation and prediction: 

In LPF (�̅�𝑘 =  ∝ �̅�𝑘−1 + (1- ∝)𝑋𝑘) the previous estimate �̅�𝑘−1 is used without 

being changed as shown in the Figure 4.2 below: 

 

 

Figure 4.2: Estimation process in LPF [12]. 

 

In Kalman Filter the previous estimation is not used in the next state estimate calculation 

in contrast to LPF. More about Kalman Filter prediction process will be found in section 

4.3.  

 

4.2  Error Covariance 

The equation to compute the error covariance is:  
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𝑃𝑘 = 𝑃𝑘
− − 𝐾𝑘𝐻𝑃𝑘

− 

Error covariance is a matrix that indicates the difference between the estimate from Kalman 

Filter and the true unknown value. There is a relationship between 𝑥𝑘 and its estimate 𝑥 𝑘 

and the error covariance 𝑃𝑘. This relation is explained in the formula 4.1: 

𝑥𝑘  ~ 𝑁(𝑥 𝑘 , 𝑃𝑘)      (Equation 4.3) 

 

Figure 4.3: 𝑥𝑘 ~ 𝑁 (𝑥 𝑘,𝑃𝑘). 

 

The formula (Equation 4.1) tells us that there is a normal distribution of all possible values 

taken by 𝑥𝑘 so that they are distributed as a bell shape (Figure 4.3). The width of this bell 

shape is determined by 𝑃𝑘. When the bell is wide the estimate will be less accurate than for 

a narrower bell. Simply, use 𝑥 𝑘 𝑎𝑛𝑑 𝑃𝑘 to draw the bell and choose 𝑥𝑘 with the highest 

probability. Error covariance is the mean of the square of the error estimate (The difference 

between the estimate �̂�𝑘 and the true but unknown value 𝑥𝑘). Additionally, the size of error 

is proportional to the size of the error covariance. 
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4.3  Prediction Process 

As mentioned before, estimation from the previous step is used to compute the 

prediction of the next step’s outcome. 𝑥 𝑘 is obtained and a prediction needed to the next 

estimate value is 𝑥 𝑘+1. 

Prediction equations are (one for estimate and the other one for error covariance): 

• 𝑥 𝑘+1
− = 𝐴𝑥 𝑘 

• 𝑃𝑘+1
− = 𝐴𝑃𝑘𝐴

𝑇 + 𝑄 

𝑥 𝑘 and 𝑃𝑘 (in the above two equations) are calculated in the last two steps of Kalman Filter 

algorithm. 𝐴 and 𝑄 are defined by the system model. (A and Q are used in prediction, and 

H and R are used in the estimation). 

In Kalman Filter the estimate is   𝑥 𝑘 = 𝑥 𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥 𝑘

−), where 𝑥 𝑘−1 is not shown here. 

𝑥 𝑘
− is presented instead (The prediction of the current time point). The previous estimate is 

transferred into the current point prediction using the following equation:  

𝑥 𝑘
− = 𝐴𝑥 𝑘−1 

Let’s substitute the above equation in the estimate equation: 

𝑥 𝑘 = 𝐴𝑥 𝑘−1 + 𝐾𝑘(𝑧𝑘 − 𝐻𝐴𝑥 𝑘−1) 

Kalman Filter is different than LPF. There is one more step between the previous estimate 

and the current estimate in Kalman Filter while the previous estimate is used directly to 

find the new estimate in LPF. As a result we will have two different values for the same 
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point at the same time (in KF). Figure 4.4 illustrates the prediction process in Kalman 

Filter. 

 

Figure 4.4: Prediction process in Kalman Filter. Simply, the previous estimation 𝑥 𝑘−1 is not used 

in the process of estimating the current state. Instead, the previous estimation is converted to a 

prediction 𝑥 𝑘
− using the prediction equation: 𝑥 𝑘

− = 𝐴𝑥 𝑘−1. Then the prediction of the current state 

is used to calculate the current estimation [12]. 

 

The state space model represents a physical system as a set of n first-order differential 

equations. This form is better suited for computer simulation than a single nth order input-

output differential equation. From the system model, A and H matrices are acquired. 

Part of state space representation: 

1. State Variables:  a subset of system variables which is known at an initial time t0 

along with subsequent inputs are determined for all time t>t0+ 

2. State Equations:  n linearly independent first order differential equations relating 

the first derivatives of the state variables to functions of the state variables and the 

inputs. 

3. Output equations:  algebraic equations relating the state variables to the system 

outputs. 



72 

 

Below are basic state space examples. However, when we create system equations for our 

systems, we pick one of the following equations for capacitor, inductor and resistor, as 

convenient: 

 Capacitor: the main equations are current and voltage equation. 

𝑉𝑐 =
1

𝑐
∫ 𝑖𝑐𝑑𝑡,      𝑖𝑐 = 𝑐 

𝑑𝑉𝑐

𝑑𝑡
 

 Inductor: the inductor equations are: 

𝑉𝐿 = 𝐿 
𝑑𝑖𝐿

𝑑𝑡
,        𝑖𝐿 =

1

𝐿
∫𝑉𝐿𝑑𝑡 

 Resistor: it has only simple equation: 

𝑉𝑅 = 𝑖𝑅 . 𝑅, 𝑖𝑅 =
𝑉𝑅

𝑅
 

In this chapter, an introduction to the state space model has been presented side by side 

with examples. This introduction will help later to understand the process of deriving the 

system model for Kalman Filter. 

 

4.4  State Space Representation 

Generally, there are two equations; one to describe the state equation and the other 

one for the output equation. 

�̇� = 𝐴𝑥 + 𝐵𝑢,  The state equation. 

𝑦 = 𝐶𝑥 + 𝐷𝑢,  The output equation. 
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This is the standard form of representing all linear physical systems. 

• 𝑥 is the state of the system. It is n  1 matrix. 

• 𝑢 is the input to the system. It is p  1 matrix. 

• �̇� is the derivative of x. It is nx1 matrix. It is like a storage for the previous states. 

• A state matrix of the system and it hold the property of the system (nxn matrix). 

• B is the input matrix (n  p matrix). 

• y is the output variable (q  1 matrix). 

• C maps system state to the output (q  n matrix). 

• D maps the input to the output (q  p matrix). 

The matrices form of the state space model equations is shown below. Figure 4.5 shows 

the block diagram of the state space model as it represents the state equation and the output 

equation.  

[
 
 
 
 
�̇�1

�̇�2

.

.
�̇�𝑛]

 
 
 
 

= [

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

]

[
 
 
 
 
𝑥1

𝑥2

.

.
𝑥𝑛]

 
 
 
 

+ [

𝑏11 ⋯ 𝑏1𝑝

⋮ ⋱ ⋮
𝑏𝑛1 ⋯ 𝑏𝑛𝑝

]

[
 
 
 
 
𝑢1

𝑢2

.

.
𝑢𝑝]

 
 
 
 

 

[
 
 
 
 
y1

y2

.

.
𝑦𝑛]

 
 
 
 

= [

𝑐11 ⋯ 𝑐1𝑛
⋮ ⋱ ⋮

𝑐𝑛1 ⋯ 𝑐𝑛𝑛

]

[
 
 
 
 
𝑥1

𝑥2

.

.
𝑥𝑛]

 
 
 
 

+ [

𝑑11 ⋯ 𝑑1𝑝

⋮ ⋱ ⋮
𝑑𝑛1 ⋯ 𝑑𝑛𝑝

]

[
 
 
 
 
𝑢1

𝑢2

.

.
𝑢𝑝]
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Figure 4.5: State space equations diagram. 
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4.5  State Space Property 

State space model has properties as follows: 

 Additivity: if a state (𝑥3) equals the summation of two states (𝑥1 + 𝑥2) and the input 

to this state (𝑢3) equals both inputs of these two states (𝑢1 + 𝑢2), the output of state 

𝑥3 is: 𝑦3 = 𝑦1 + 𝑦2. 

 𝑥1(𝑡0)                           𝑦1(𝑡)  𝑡 ≥ 𝑡0 

𝑢1(𝑡)    𝑡 ≥ 𝑡0 

𝑥2(𝑡0)                𝑦2(𝑡)  𝑡 ≥ 𝑡0 

𝑢2(𝑡)    𝑡 ≥ 𝑡0 

𝑥3(𝑡0) = 𝑥1+𝑥2                     𝑦3(𝑡) = 𝑦1(𝑡) + 𝑦2(𝑡)     𝑡 ≥ 𝑡0 

𝑢3(𝑡) = 𝑢1(𝑡) + 𝑢2(𝑡)    𝑡 ≥ 𝑡0 

 Homogeneity: if the initial state and the input signal are multiplied with a 

constant 𝛼, the result should be multiplied by the same constant 𝛼. 

 𝛼𝑥1(𝑡0)                            𝛼𝑦1(𝑡)  𝑡 ≥ 𝑡0 

𝛼𝑢1(𝑡)    𝑡 ≥ 𝑡0 

 Zero state response: it tells us what the system response is when the initial state 

equals zero and there is a certain signal applied. 

𝑥1(𝑡0) = 0              𝑦𝑧𝑠(𝑡)  𝑡 ≥ 𝑡0 

            𝑢1(𝑡)    𝑡 ≥ 𝑡0 
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 Zero input response: it tells us what the output is when there is a zero input applied 

to an initial state. 

𝑥1(𝑡0)                     𝑦𝑧𝑖(𝑡)  𝑡 ≥ 𝑡0 

𝑢1(𝑡) = 0   𝑡 ≥ 𝑡0 

 Every time a signal is applied to a state, an output that is a combination of zero state 

response and zero input response is observed. 

𝑥1(𝑡0) + 0            y(𝑡) = 𝑦𝑧𝑠(𝑡) + 𝑦𝑧𝑖(𝑡)  

    0 + 𝑢(𝑡) 

 

4.6  Writing a System in a State Space Form Requires: 

Step 1: Identify the energy storing elements. This will give us the number of 

integrators in our model. The number of integrators determines the order of 

the system. 

Step 2: Identify the variables that will be used for modeling. Any system’s response 

is dependent on the input given to the system and also on the integrator output 

values. The integrator output is denoted 𝑥 and the integrator’s input is denoted 

by 𝑢. We need to identify all the u’s and x’s. 

Step 3: Starting with dynamic elements to obtain the differential equations. The 

number of differential equations equals the order of the system or the number 

of energy-storing elements. 
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Step 4: Write the information obtained using the previous steps into equations using 

the following form: 

�̇� = 𝐴𝑥 + 𝐵𝑢 

𝑦 = 𝐶𝑥 + 𝐷𝑢 

 

4.7  State Space Model Examples 

4.7.1 Example 

In this example as shown in Figure 4.6, the 

equations are applied to get the state space model. 

�̇� = 𝐴𝑥 + 𝐵𝑢 

𝑦 = 𝐶𝑥 + 𝐷𝑢 

There is a mass pushed by applying force 𝑓 on it and the result can be position 𝑝, velocity 

𝑣 or acceleration 𝑎.  

𝑓 = 𝑚𝑎,     𝑎 = �̇�,   𝑣 = �̇�  

 In this example: 𝑢 = 𝑓,        𝑦 = 𝑝 

We select p and v to create the state space model equation. 

�̇� = 𝑣,      �̇� = 𝑎 =
𝑓

𝑚
  

Figure 4.6: A mass pushed by f. 

The outputs are p, v and a. 
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[
�̇�
�̇�
] = [

0    1

0    0
] [

𝑝
𝑣
] + [

0
1/𝑚

]𝑓 

[𝑝] = [1    0] [
𝑝
𝑣
] + [0]𝑓 

 What if u=f and y = v? 

𝑓 = 𝑚𝑎,     𝑎 = �̇� =
𝑓

𝑚
 

�̇� = [0]𝑣 + [1/𝑚]𝑓 

v = [1]𝑣 + [0]𝑓 

 What if u=f and y=a? a=f/m this system doesn’t have a state space formulation.  

 

4.7.2 Example 

It is required to find the state space model for the circuit from Figure 4.7. 

 

Figure 4.7: Simple RC circuit. 

The steps from 4.6 section are applied here.  

1. The number of energy storing elements = 1, It is a first order system. 

2. The modeling variables are state variables 

x = Vc = Vo, u = Vg, as well as parameters R and C. 
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3. Number of differential equations = 1. 

𝑉𝑐 =
1

𝑐
∫ 𝑖𝑐𝑑𝑡 ,   𝑖𝑐 = 𝑖𝑅 − 𝑖𝑜 =   (

𝑉𝑔 − 𝑉𝑐

𝑅
) −

𝑉𝑜
𝑅𝑜

 

𝑑𝑉𝑐
𝑑𝑡

=
[𝑉𝑔 − 𝑉𝑐]

𝐶𝑅
−

1

𝐶𝑅𝑜
. 𝑉𝑐 

4. �̇� = 𝐴𝑥 + 𝐵𝑢 

�̇�𝑐 = (−
1

𝑅𝐶
−

1

𝑅𝑜𝐶
)𝑉𝑐 + (

1

𝑅𝐶
)𝑉𝑔,      𝑠𝑡𝑎𝑡𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 

𝑉𝑜 = [1][𝑉𝑐] + [0]𝑉𝑔 

 

4.8  Kalman Filter State Model 

Simply, Kalman Filter represents the problem mathematically using state equations. 

Modeling the system mathematically and establishing the system model is a difficult task. 

Fortunately, Kalman Filter is very popular, so we can find many practical system models 

to learn how to derive the state model for the Kalman Filter in our type of robot. However, 

if no reference or no system model examples for similar system can be found, the reader is 

advised to go deeper in the state space modeling in order to correctly drive his model from 

the first principle. 

Kalman Filter deals with equations as follows: 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝑤𝑘 

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘 

𝑥𝑘: State variable (n  1). 
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𝑧𝑘: Measurement (m  1). 

𝐴: State transition matrix (n  n). 

𝐻: State-to-measurement matrix (m  n). 

𝑤𝑘: State transition noise (n  1). 

𝑣𝑘: Measurement noise (m  1). 

𝑤𝑘 is the noise that affects the system space model and 𝑣𝑘 is the noise measured by the 

sensor. Matrix 𝐴 describes how the system changes along time. It contains the equation 

motion of the system. The other matrix 𝐻 shows the relationship between the measurement 

and the state variable. It defines how the measurement is mapped to the state variable.  

 

4.9  Covariance Matrix 

There is no method to calculate noise or predict it, but it could be estimated 

statistically. The noise is distributed normally with a mean of zero. Matrix 𝑄 is the 

covariance matrix of 𝑤𝑘 (state transition noise) (n  n) and it is a diagonal matrix. While 

matrix 𝑅 is the covariance matrix of 𝑣𝑘 (measurement noise) (m  m) and it is a diagonal 

matrix. If there is 𝑛 noises 𝑤1, 𝑤2,  … ,𝑤𝑛 and the variance of each variable is 

𝜎1
2, 𝜎2

2,  … , 𝜎𝑛
2 then the covariance matrix will be: 
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𝑄 =

[
 
 
 
 𝜎1

2     0

0     𝜎2
2

 ⋯
…

0
0

⋮          ⋮ ⋱ ⋮

0      0 ⋯ 𝜎𝑛
2]
 
 
 
 

 

𝑄 and 𝑅 matrices are the design factor of Kalman Filter (Table 4.2). Additionally, they are 

crucial to the design of Kalman Filter. Appropriate values of 𝑄 and 𝑅 should be based on 

calibration through “trial and error” while maximizing the use of the information on the 

noise.  

𝑄 Error covariance of state transition noise. 

𝑅 Error covariance of sensor measurements. 

Table 4.2: Q and R matrices. 

 

4.10 The Effect of Matrix R and Q 

Using the equations below to find the effect of changing matrix R or Q. 

𝐾 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅)−1 

𝐾 =
𝑃𝑘

−𝐻𝑇

(𝐻𝑃𝑘
−𝐻𝑇+𝑅)

  (Equation 4.4) 

Increasing 𝑅 will decrease 𝐾. This will affect the estimate as: 

𝑥 𝑘 = 𝑥 𝑘
−(𝐼 − 𝐾𝑘) + 𝐾𝑘𝑧𝑘 

When 𝐾 decreases, the dependency on the measurement decreases. While when 𝐾 

increases, the dependency on prediction decreases. On the other hand, increasing 𝑅 

decreases K which gives us a steady output less affected by measurements. 
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𝑃𝑘+1
− = 𝐴𝑃𝑘𝐴

𝑇 + 𝑄 

The prediction of error covariance (𝑃𝑘
−) increases if 𝑄 increases. When 𝑃𝑘

− increases, 𝐾 

increases. In summary, when 𝐾 increases it leads to more influence of measurement. While 

𝑄 has opposite influence of matrix 𝑅. 

 

4.11  Kalman Filter Examples 

In this section, many examples will be presented. These examples will show how 

to apply Kalman Filter. Some applications will be easy but sometimes it can be very 

complicated to create a state space model for the chosen system.  

 

4.11.1 One Dimension Kalman Example 

Kalman filter is needed to be used to refine the measurements coming from two 

sonars in the right or left side of the MCECS-Bot’s base. The scenario is that the robot is 

moving beside a wall and there are two sonars measuring the distance from the wall (Shown 

in Figure 4.8). There is noise in the sonar measurements (sometimes called acoustic noise) 

that coming from motors as the magnetic field affects the connections and wires that lead 

to the sonars. The signals coming from the sonars are very small which makes them very 

sensitive to any noise. In this simple example, the distances measured by these two sonars 

will be averaged. Then, Kalman filter will use the averaged value to find the best estimate.  
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System model: (in Kalman Filter we just represent the state-state and input-state 

modelling. No state-output or input-output modelling) 

𝒙𝒌+𝟏 = 𝑨𝒙𝒌 + 𝒘𝒌(= 𝟎)                   Equation 4.5 

𝒛𝒌 = 𝑯𝒙𝒌 + 𝒗𝒌    Equation 4.6 

𝒙𝟎 = 𝟏𝟎                              Equation4.7 

   𝒗𝒌 = 𝑵(𝟎, 𝟐𝟐)                  Equation 4.8    

 

The first and second equations (equation 4.5 and equation 4.6) are the state space 

models. Equation 4.5 shows that there is no change in the state transition as the distance 

from the wall remains constant. While equation 4.6 maps the state 𝑥𝑘 of the robot to the 

measurement 𝑧𝑘. As long as there is a noise in the measurement, it is represented in the 

Figure 4.8: Robot following the right wall. The two sonars on the right detect the wall but the 

distance is not very accurate. In this case, Kalman filter is used to refine the measurements. 



84 

 

second equation as 𝒗𝒌. The initial distance in inches is shown in the third equation (𝑥0 

=10). 𝑣𝑘 in equation 4 is the measurement noise and it has a normal distribution with mean 

= 0 and covariance = 4. Error covariance can be known either by trial and error till we find 

an appropriate value or statistically by taking many measurements and trying to find the 

normal distribution of them. 

From the four previous equations, the following matrices are obtained: 

𝑨 = 𝟏,  𝑯 = 𝟏,  𝑸 = 𝟎 (There is no noise while transmitting from state to state) and 𝑹 =

𝟒 (lets assumed that R = 4 came with the sensor taken from the sensor documentation 

created by the manufacturer) 

Finally, an initial values should exist to be fed to the Kalman Filter which are both 

�̂�𝟎
− and  𝑷𝟎

−.  If the initial estimates are unknown, a large covariance can be set;  �̂�𝟎
− =

𝟏𝟒,  𝑷𝟎
− = 𝟔. Figures below show the Matlab codes and the Kalman Filter results. Simply, 

there is the main function calling three different functions. The first functions is 

Simple1DKalman (Figure 4.9) function which receives the distances from the sonar 

simulators and returns the estimated distance. While the second two functions are 

simulating the sonars measurements which are GetSonar1 and GetSonar2 (Figure 4.10 and 

Figure 4.11).  
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Simple1DKalman 

function [D Px K] = Simple1DKalman(AveZ) 

persistent A H Q R  

persistent x P 

persistent firstRun 

if isempty(firstRun) 

  A = 1; 

  H = 1; 

  Q = 0; 

  R = 4; 

  x = 14; 

  P =  6; 

  firstRun = 1;   

end 

xp = A*x; 

Pp = A*P*A' + Q; %A’ is the transpose matrix for A            

%and it is the same for H’ 

K = Pp*H'*inv(H*Pp*H' + R); 

  

x = xp + K*(z - H*xp); 

P = Pp - K*H*Pp; 

D = x; 

Px   = P; 

Figure 4.9: Simple1DKalman function (it gets the voltage and returns the estimate). 

 

 

GetSonar1  

function z1 = GetSonar1() 

w = 0 + 4*randn(1,1); 

z1 = 35 + w; 
Figure 4.10: GetSonar1 (A function to simulate the first sonar). 

 

GetSonar2  

function z2= GetSonar2() 

w = 0 + 4*randn(1,1); 

z2 = 35 + w; 
Figure 4.11: GetSonar2 (A function to simulate the second sonar). 
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As shown in GetSonar1 and GetSonar2 codes (Figure 4.10 and Figure 4.11), the 

function simply adds random values to the initial value and sends them as simulated 

measurements with noise. The main code is shown in Figure 4.12. This code gets the 

measurements from Sonar1 and Sonar2 and passes them to Kalman Filter algorithm 

(Simple1DKalman). After getting the estimation, it will show the results. Figure 4.13 

shows the result of Kalman Filer that is used in this example. 

ResultSimple1DKalman 

clear all 

  

  

dt = 0.2; 

t  = 0:dt:10; 

  

Samples = length(t); 

  

X = zeros(Samples, 1); 

Z1 = zeros(Samples, 1); 

Z2 = zeros(Samples, 1); 

AVEZ = zeros(Samples, 1); 

for k=1:Samples 

  z1 = GetSonar1();   

  z2 = GetSonar2(); 

  AveZ = (z1+z2)/2; 

  D = Simple1DKalman(AveZ); 

   

  X(k) = volt; 

  Z1(k) = z1; 

  Z2(k) = z2; 

  AVEZ(k) = AveZ; 

end 

  

  

figure 

plot(t, X, 'o-') 

hold on 

plot(t, Z1, 'g:*')  

plot(t, Z2, 'k:.')  
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plot(t, AVEZ, 'r:s')  

title('Kalman Filter Estimation');  

xlabel('Time(s)'); 

ylabel('Inche'); 

grid on 

legend('Estimation','Measurements Z1','Measurements 

Z2','Measurements Average') 
Figure 4.12: The main code. 

 

 

Figure 4.13: Kalman Filter result. 

 

4.11.2  Estimating Velocity from Position 

So far, Kalman Filter was used to refines noisy signal by getting inaccurate input 

and producing an estimation as close as possible to the real value. In this example, Kalman 

Filter will be used to find the best estimation of data that haven’t been measured. This will 

show the unique features of Kalman Filter. Having equations that describe the system will 

allow Kalman filter estimating data that have not been physically measured. Otherwise, 
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there is no difference between the Kalman Filter and the Low Pass Filter. Therefore, LPF 

is unable to find estimate if there are no measurements. This new feature will be explained 

through the following examples. 

 

Another One-Dimensional Kalman Filter Example 

In this example, MCECS-Bot is moving in high speed of 50 inch/s. Kalman filter 

is used here to find the best estimation of the robot speed. In the first case, the front sonars 

of the MCECS-Bot will be used to detect a wall by which the robot position will be known. 

On the other hand, odometry is used to figure out the robot’s speed. This example is also 

considered as it is a one-dimensional Kalman filter example. However, it is different than 

the first example because we are trying to find another quantity that has not been measured 

yet. However, the equation of the Kalman and the Matlab code should remain the same. 

The only difference will be the way that the state space model is formulated. The results in 

both cases should be both the velocity and the position. In one of the cases, we measure 

the velocity and estimate the position. In other case, we measure the position and estimate 

the velocity. If we go back to Low Pass Filter, we will notice that LPF would not be able 

to find the estimation of the velocity or position if they have not been measured 

 

 First case 

Velocity and position are required to be estimated from measuring the position: 

The state space model for the robot is: 
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𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝑤𝑘 

𝐴 = [
1 ∆𝑡
0 1

] ,   𝐻 = [1   0] 

∆𝑡 is the time when the measurements were taken. 

[
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

]
𝑘+1

= [
1 ∆𝑡
0 1

] [
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

]
𝑘
+ [

0
𝑤𝑘

]        Equation 4.9 

To find whether the above state space model represents the system or not, equation 4.9 will 

be solved. 

= [
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦. ∆𝑡

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 + 𝑤𝑘
]
𝑘

 

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑘+1 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑘 + 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑘 . ∆𝑡, 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑘+1 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑘 + 𝑤𝑘, 

These expressions tell us that the current velocity equals the previous velocity plus noise. 

𝑤𝑘 is the system noise which comes from friction, error in the engine controller or gears. 

The system noise can be the gear slippage (there are gears between the encoder and wheels 

and between wheels and motors). Friction between wheels and ground is another kind of 

noise. In our robot, the friction is magnified due to the use of Mecanum wheels. Because 

position is measured, there is no system noise accompanied with position while we transit 

from state to state. 

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘 

= [1  0] [
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

]
𝑘

+ 𝑣𝑘              (Equation 4.10) 
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This expression (Equation 4.10) maps the input measurement which is the position 

to the state variable (position). Here, the noise showed up as there is a noise that 

accompanies the measurement. So far, A and 𝐻 were found and we proved that the system 

model exactly describes the robot model in the example. 𝑄 and 𝑅 are needed to be found. 

𝑅 is the covariance matrix of the sensor measurements which is given by the sensor 

manufacturer. If it is not given the value should be found statistically or by experimenting 

with different values that can be close to the real one. The sonar measurements are taken 

from the front the sonars of the MCECS-Bot. The current data were noisy and were affected 

by acoustic noise from other sonars. Nevertheless, Kalman Filter did a good job with it as 

shown in Figure 4.19. This was before adding the power delay circuit and chaining method 

to the twelve sonars which are explained in more details in the fifth chapter. The modelling 

of 𝑤𝑘 is more difficult to find. It is also based on experiments and experience.  

For the current example: 

𝑄 = [
1 0
0 1

] ,  𝑅 = 50 

Different values of Q and R can be used to appreciate how they affect the results of Kalman 

Filter. Figure 4.14, 4.15 and 4.16 show the Matlab codes that used in this example. 
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KalmanEstimate 

function [pos, vel] = KalmanEstimate(z) 

% 

% 

persistent A H Q R  

persistent x P 

persistent firstRun 

  

  

if isempty(firstRun) 

  firstRun = 1; 

   

  dt = 0.1; 

   

  A = [ 1 dt; 

        0 1  ]; 

  H = [1 0]; 

   

  Q = [ 1 0; 

        0 1 ]; 

  R = 50; 

  

  x = [ 0 10 ]'; 

  P = 5*eye(2); % create an identity 2x2 matrix 

%and multiplied by 5. 

  

   

xp = A*x;   

Pp = A*P*A' + Q;     

  

K = Pp*H'*inv(H*Pp*H' + R); 

  

x = xp + K*(z - H*xp); 

P = Pp - K*H*Pp;    

 

pos = x(1); 

vel = x(2); 
Figure 4.14: Kalman Filter algorithm code. This code gets the sonar data from the main code. 

Then, it computes the position and velocity and returns them to the main code to be shown.  
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GetMaxSonar 

function h = GetMaxSonar() 

% 

% 

persistent son      % SonartAlt.mat 

persistent k firstRun 

  

  

if isempty(firstRun) 

  load Son 

  k = 1; 

   

  firstRun = 1; 

end 

  

h = son(k); 

   

k = k + 1; 
Figure 4.15: This code reads a file that contains a real sonar data. It sends the data to the main 

code. 

Result1DKalmanChangingPosition 

clear all  

Nsamples = 250;  

Xsaved = zeros(Nsamples, 2); 

Zsaved = zeros(Nsamples, 1); 

  

for k=1:Nsamples 

  z = GetMaxSonar();       

  [pos, vel] = KalmanEstimate(z); 

   

  Xsaved(k, :) = [pos vel]; 

  Zsaved(k)    = z; 

end 

   

dt = 1; 

t  = 0:dt:Nsamples-dt; 

  

figure 

hold on 

plot(t, Zsaved(:), 'r') 

plot(t, Xsaved(:, 1)) 

xlabel('Time(s)'); 

ylabel('Position(m)'); 
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title('Position Estimation'); 

legend('Measurements', 'Estimation') 

grid on 

  

figure 

hold on 

[A,H1,H2]=plotyy(t, Xsaved(:, 1),t, Xsaved(:, 2),'plot'); 

set(get(A(1),'Ylabel'),'String','Estimated Distance')  

set(get(A(2),'Ylabel'),'String','Estimated Velocity')  

xlabel('Time(s)'); 

title('Velocity Estimation') 

set(H2,'color','red'); 

set(A,{'ycolor'},{'k'})  

set(H1,'LineStyle',':') 

  

legend('Estimated Distance','Estimated Velocity') 

grid on 
Figure 4.16: The main code that gets the measurements from GetMaxSonar and passes them to 

the Kalman Filter algorithm code. After getting the estimated position and velocity, it will show 

the results. 

 

The results of the main code (4.16) are shown in Figure 4.17 and Figure 4.28. The 

figures show that even when the measurement was very bad, Kalman Filter has the ability 

to refine it and find the closest and clearest signal as much as possible. 
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Figure 4.17: Position estimation. 

 

 

Figure 4.18: Velocity estimation. 
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 Second case 

Velocity and position are required to be estimated from measuring the velocity. As 

stated before, odometry is used here to get the robot’s speed (the odometry is simulated 

here not a real data from the MCECS-Bot): 

There is nothing that will be changed here except for the measurement transition equation 

in the state space model equation. 𝐻 will become [0  1] instead of [1   0] as the input (or 

measured data) is mapped to the velocity and not to the position state variable. 

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘 

= [0   1] [
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

]
𝑘

+ 𝑣𝑘 

The code will be slightly changed as shown in Figure 4.21. 

The Matlab code of Kalman Filter is shown in Figure 4.19. GetVelocity() (Figure 

4.20) is a function that is used to simulate the robot speed. The main code is shown in 

Figure 4.21 and it gets the velocity measurement from GetVelocity() and passes it to 

KalmanVelEstimate() code. Then, it shows the result of the estimations. 
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KalmanVelEstimate 

function [pos, vel] = KalmanSpeedEstimate(z) 

persistent x P A H Q R firstRun 

if isempty(firstRun) 

  firstRun = 1; 

  dt = 0.1; 

  A = [ 1 dt; 

        0 1  ]; 

  H = [0 1]; 

  Q = [ 1 0; 

        0 2 ]; 

  R = 12; 

  x = [ 0 0.3 ]'; 

  P = 5*eye(2); 

end   

xp = A*x;   

Pp = A*P*A' + Q;     

K = Pp*H'*inv(H*Pp*H' + R); 

x = xp + K*(z - H*xp); 

P = Pp - K*H*Pp;    

pos = x(1); 

vel = x(2); 
Figure 4.19: Kalman Filter algorithm code. It receives the sonar data from the main code and 

sends the estimation back to the main code to be presented. 

 

GetVelocity 

function CurrentVel = GetVelocity() 

persistent PreVel PrePos  

if isempty(PrePos) 

  PrePos = 0; 

  PreVel = 50; 

end 

dt = 0.1; 

VelErr  = 0 +  (randn*2); 

PrePos = PrePos + PreVel*dt;     % true position 

PreVel = 50 + VelErr;             % true speed 

CurrentVel = PreVel; 
Figure 4.20: The velocity generator code. This code emulates the velocity of the robot.  
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Result1DKalmanPosVel 

clear all 

dt = 0.1; 

t  = 0:dt:10; 

Samples = length(t); 

X = zeros(Samples, 2); 

Z = zeros(Samples, 1); 

  

for k=1:Samples 

  CurrentVel = GetVelocity();       

  [pos, vel] = KalmanVelEstimate(CurrentVel); 

   

  X(k, :) = [pos vel]; 

  Z(k)    = CurrentVel; 

end 

  

figure 

plot(t, Z(:), 'r','LineStyle',':','Marker','.') 

hold on 

plot(t, X(:, 2)) 

xlabel('Time(s)'); 

ylabel('Velocity(m/s)'); 

title('Estimated Velocity'); 

legend('Measurements', 'Estimation') 

figure 

plot(t, X(:, 1)) 

xlabel('Time(s)'); 

ylabel('Position(m)'); 

title('Position Estimation'); 

legend('Estimated Position') 
Figure 4.21: The main code that receives the senor date from GetVelcoty() and passes it to 

Kalman Filter algorithm. Then, it shows the result of the Kalman Filter estimation. 

 

The results of the main code are shown in the Figures below (Figure 4.22 and Figure 4.23): 
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Figure 4.22: Velocity estimation. 

 

Figure 4.23: Position estimation. 

 

This example showed us how important the state space model is. This importance 

was obvious when Kalman Filter was able to estimate the position with velocity only (or 

the opposite) in addition to refining the coming signal. On the other hand, LPF adds the 
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current measurement (multiplied with some weight) to the previous estimate (multiplied 

with some weight too). Basically there is no estimation without measurement. In Kalman 

Filter there is estimation because the mathematical model of the system is known. The 

explanation of this ability is that the system model that describes the state variables will 

allow Kalman Filter to estimate the physical quantity that has not been measured. System 

model is very important and as much as it is close to the real system it will determine the 

accuracy of the estimation. If it is not it will go far from the real values and may cause a 

damage to the system. 

 

4.11.3  Two Dimension Kalman Filter 

The previous examples were a one-dimensional Kalman Filter as there was one 

input or one set of data. Therefore, the Gaussian of the estimation will be similar to the one 

in Figure 4.26. Simply, Kalman Filter gives the estimated value as a normal distribution. 

The one in the mean is going to come with the highest probability and the signal will 

depend on the width of the bell.  

 

Figure 4.24: 𝑥𝑘 ~ 𝑁 (𝑥 𝑘,𝑃𝑘). 
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Tow-dimensional Kalman Filter means that the state of the system has two variables 

that determine the state of the system. For instance, there are two coordinates; x and y that 

determine the position of the robot. The Gaussian of the Kalman Filter estimation has 

different representation than the one-dimensional from Figure 4.24. To have a clearer 

understanding, the map in Figure 4.25 is a simple corridor and there is a robot moving 

there.  The two-dimensional Gaussian is shown as a set of circles in the below figure.  

 

 

 

 

 

 

The current example is about the MCECS-Bot moving in a room. Based on the 

sonar measurements from the front and right sonars robot position can be obtained (as 

illustrated in Figure 4.25). Kalman Filter is used here to optimize the acquired position and 

estimate the velocity of the robot. The resultant position is presented on x,y coordinates. 

As shown in the figure above, the Gaussian is represented as ellipse and not in a bell shape. 

This ellipse shape is like two intersected bells; one is on x-axis and the other one on the y-

axis. Their intersection produces an ellipse shape.  

 

Figure 4.25: Two dimension Gaussian. 
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4.11.4  Changing Matrices 𝑸 and 𝑹 

Here I use the example in the one dimension section to show how the results will 

be affected by changing 𝑄 or 𝑅 values. 𝑄 and 𝑅 have opposite effect on the estimation. 

Increasing 𝑄 will increase the measurement weight. On the other hand, when 𝑄 is 

decreasing, the estimate will be less affected by measurement and it will converge the 

previous estimate as well as the result will be smoother. In this example the matrix 𝑄 or R 

is multiplied by 0.01. Therefore, the modified code will be only the KalmanEstimate as 

shown below: 

Q = 0.01*eye(4); 

Or 

R = 1/100 * 50; 

The result shows how using a smaller 𝑄 affects the result (Figure 4.26). 

 

Figure 4.26: 1/100 𝑄. 

Q x 1/100 
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It is noticeable that the line that indicated with Q/100 is smoother (Figure 4.26), 

which means that the estimate was less affected by the measurements and there is more 

contribution to the previous estimate. Contrary, (Figure 4.27), the opposite happened when 

the 𝑅 reduced 100 times. The indicated line with R/100 were following the stars 

(measurements), which means that the measurements have more weight on the output 

estimate. 

 

Figure 4.27: 1/100 𝑅. 

 

R x 1/100 
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4.12 Sensor Fusion 4 

In many cases, sensors are not accurate devices. Therefore, acquiring accurate data 

required expensive sensors (The accuracy of sensors are an important matter). However, 

using different sensors to get a certain data is applicable. The technique of fusing two (or 

more) different sensors in order to get the best features of each in a one output is called 

sensor fusion. In this section, an example will show the ability of Kalman Filter to apply 

this technique. The example is about using a gyroscope and accelerometer to obtain the 

horizontal altitude of a helicopter.  

Gyroscope is used to find the angular velocity on each axis. However, the rate gyros 

orientation sensors are aligned with the body frame of the sensor, so that if inertial frame 

data is needed, the sensor outputs must be converted from the body frame to the inertial 

frame. In other words, Euler angles are the rate of the change in the angles (the alignment 

doesn’t matter). The example Figure 4.28 shows an airplane rotated by Yaw angle. There 

are new axis different than the original ones. The Euler is about these new axis wherever 

and however they are obtained but the Gyro is given the angular velocity on each original 

axis. Hence, a conversion is needed to convert the Angular velocity coming from the gyro 

to the Euler angles. 

                                                 

 

4 This section is taken from “Kalman Filter for Beginners” [12]. Except some additional comments 

that I added to the codes and equations. 
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Figure 4.28: The original axes are red and the new axes are gray after Yaw angle rotation [13] 

 

To convert the angular velocities to Euler angles, the below equation is used: 

[
∅̇

�̇�
�̇�

] = [

1 𝑠𝑖𝑛𝜙𝑡𝑎𝑛𝜃 𝑐𝑜𝑠𝜙𝑡𝑎𝑛𝜃

0
0

𝑐𝑜𝑠𝜙
𝑠𝑖𝑛𝜙/𝑐𝑜𝑠𝜃

−𝑠𝑖𝑛𝜙
𝑐𝑜𝑠𝜙/𝑐𝑜𝑠𝜃

] [
𝑝
𝑞
𝑟
] 

𝑝, 𝑞 and 𝑟 are the angular velocity on each axis. 𝜃, ∅ and 𝜓 are the Euler angles. Simply, 

the angular velocity are converted first then the final result is integrated to get each Euler 

angle.  

It is needed to design a Kalman Filter for a helicopter that has both a gyroscope and 

an accelerometer. Kalman Filter is used here to implement the sensor fusion technique in 

order to get the horizontal altitude out of these two sensors. A 0.2 Hz sinusoidal signal 30+
−  

(as shown in Figure 4.29) is used to test using either sensor or to test them together after 

having the sensor fusion in Kalman Filter.  
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Figure 4.29: Sinusoidal signal used to test gyroscope and accelerometer. 

 

The signal shown in Figure 4.29 will be used to test the gyroscope and the accelerometers 

for both Roll and Pitch angles response (Figure 4.30 shows these Euler angles on the 

helicopter). 
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Figure 4.30: Euler Angles. 

 

4.12.1 Using Gyro to get Roll and Pitch angles 

In this section, the gyro is used to measure the angular velocities on each axis. The 

next step is to convert these angular velocities to Euler angles using the following matrix 

equation: 

[
∅̇

�̇�
�̇�

] = [

1 𝑠𝑖𝑛𝜙𝑡𝑎𝑛𝜃 𝑐𝑜𝑠𝜙𝑡𝑎𝑛𝜃

0
0

𝑐𝑜𝑠𝜙
𝑠𝑖𝑛𝜙/𝑐𝑜𝑠𝜃

−𝑠𝑖𝑛𝜙
𝑐𝑜𝑠𝜙/𝑐𝑜𝑠𝜃

] [
𝑝
𝑞
𝑟
] 

The angular velocities that are measured by gyro are showed in Figure 4.31. 
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Figure 4.31: Gyros Angular velocities. 

 

Figure 4.32 is the code that simulates the gyroscope measurements. It simulates the angular 

velocity measurements on each axis and sends them to the main code. Figure 4.33 is the 

code that converts gyroscope measurements (angular velocities) to Euler angles.  

GetGyro 

function [p q r] = GetGyro() 

persistent wx wy wz 

persistent k firstRun 

if isempty(firstRun)  

  load ArsGyro 

  k = 1; 

  firstRun = 1; 

end 

p = wx(k); 

q = wy(k); 

r = wz(k);  

k = k + 1; 
Figure 4.32: GetGyro code. 
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EulerGyro 

function [phi theta psi] = EulerGyro(p, q, r, dt) 

% 

% 

persistent prevPhi prevTheta prevPsi 

  

  

if isempty(prevPhi) 

  prevPhi   = 0; 

  prevTheta = 0; 

  prevPsi   = 0; 

end 

  

sinPhi   = sin(prevPhi);    cosPhi   = cos(prevPhi); 

cosTheta = cos(prevTheta);  tanTheta = tan(prevTheta); 

  

phi   = prevPhi   + dt*( p + q*sinPhi*tanTheta + 

r*cosPhi*tanTheta ); 

theta = prevTheta + dt*(     q*cosPhi          - r*sinPhi ); 

psi   = prevPsi   + dt*(     q*sinPhi/cosTheta + 

r*cosPhi/cosTheta ); 

  

prevPhi   = phi; 

prevTheta = theta; 

prevPsi   = psi;  
Figure 4.33: Convert gyro measurements to Euler angles. 

 

Figure 4.34 is the main code that gets the measurements from GetGyro() and passes 

them to EulerCyro(). Eventually, it presents the results on graphs, which are Figure 4.35 

and Figure 4.36. 

TestEulerGyro 

clear all 

  

Nsamples = 41500; 

Insamples = 41500; 

EulerSaved = zeros(Nsamples, 3); 

Input = zeros (Insamples,3); 

dt = 0.01; 
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for k = 1:Nsamples 

  [p q r] = GetGyro();    

  [phi theta psi] = EulerGyro(p, q, r, dt);  

  

  Input(k, :) = [p q r]; 

  EulerSaved(k, :) = [ phi theta psi ]; 

end   

PhiSaved   = EulerSaved(:, 1) * 180/pi; 

ThetaSaved = EulerSaved(:, 2) * 180/pi; 

PsiSaved   = EulerSaved(:, 3) * 180/pi; 

  

x = Input(:, 1) * 180/pi; 

y = Input(:, 2) * 180/pi; 

t = 0:dt:Nsamples*dt-dt; 

Figure 

subplot(2,1,1) 

plot(t, x) 

title('Angular velocity around x-axis'); 

xlabel('t') 

ylabel('Amplitude') 

subplot(2,1,2) 

plot(t, y) 

xlabel('t') 

ylabel('Amplitude') 

title('Angular velocity around y-axis') 

Figure 

plot(t, PhiSaved) 

xlabel('t') 

ylabel('Roll rate (deg/sec)') 

Figure 

plot(t, ThetaSaved) 

xlabel('t') 

ylabel('Pitch rate (deg/sec)') 
Figure 4.34: The main code. 
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Figure 4.35: Roll angle using gyro. 

 

 

Figure 4.36: Pitch angle using gyro. 

 

The result of using the previous algorithm is shown in the two Figures above. The 

Roll angle(∅) is represented very well (amplitude and duration)except some accumulated 

≅ 30+
−  
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error. On the other hand, there is an accumulated error in the pitch angle(𝜃) and it diverged 

from the beginning even when there is no oscillation. This is because the influence of the 

maneuver on the roll axis.The pattern in both roll and pitch angles is represented very well 

regardless the accumulated error. It was obvious that the amplitude is almost constant. 

 

4.12.2 Using Accelerometers to get Roll and Pitch Angles 

In this section accelerometers are used to find the acceleration along each axis and 

then an equation is used to convert these accelerations to Euler angles. This technique is 

kind of similar to using the gyro in a sense of using the sensor to do measurements then 

convert its data to Euler angles. Using the below matrix equation will convert the 

accelerometer measurements to Euler angles: 

[

𝑓𝑥
𝑓𝑦
𝑓𝑧

] = [
�̇�
�̇�
�̇�
] + [

0 𝑤 −𝑣
−𝑤 0 𝑢
𝑣 −𝑢 0

] [
𝑝
𝑞
𝑟
] + 𝑔 [

𝑠𝑖𝑛𝜃
−𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙
−𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙

]          Equation 4.11 

Where 𝑢, 𝑣 and 𝑤 are the velocities along each axis and p, q and r are the angular 

velocities around each axis. 𝑔 is the gravitational acceleration. 𝑓𝑥, 𝑓𝑥, 𝑓𝑥, p, q, r and g are 

known, but v, u and w are unknown. To know them, expensive sensors should be used. In 

order to simplify this equation, the previous equation will be considered in both stationary 

and constant velocity. In the first case, both accelerations (�̇�, �̇�, �̇�) and velocities (𝑢, 𝑣, 𝑤) 

along each axis are zero and in the second case p, q and r are also zero as there is no change 

in the altitude. The new equation becomes: 
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[

𝑓𝑥
𝑓𝑦
𝑓𝑧

] = 𝑔 [
𝑠𝑖𝑛𝜃

−𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙
−𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙

] 

This equation is suitable as there is no that much change in the helicopter velocity. It is a 

good approximation. 

The Euler angles now could be derived: 

𝜙 = 𝑠𝑖𝑛−1 (
−𝑓𝑦

𝑔𝑐𝑜𝑠𝜃
) 

𝜃 = 𝑠𝑖𝑛−1(
𝑓𝑥
𝑔
) 

Figure 4.37 is the code that simulates the measurements of the accelerometer. It simulates 

the measurements on each axis and sends it to the main code. Figure 4.38 is the code that 

converts the measurements of the accelerometer (accelerations) to Euler angles.  

GetAccel 

function [ax ay az] = GetAccel() 

% 

persistent fx fy fz 

persistent k firstRun 

   

if isempty(firstRun) 

  load ArsAccel 

  k = 1; 

   

  firstRun = 1; 

end 

  

ax = fx(k); 

ay = fy(k); 

az = fz(k); 

   

k = k + 1; 
Figure 4.37: Accelerometer measurements simulator. 
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EulerAccel 

function [phi theta] = EulerAccel(ax, ay) 

% 

% 

g = 9.8; 

  

theta = asin(  ax / g ); 

phi   = asin( -ay / (g*cos(theta)) ); 
Figure 4.38: Convert Accelerometers' measurements to Euler angles. 

 

Figure 4.39 is the main code that gets the measurements from accelerometer date 

simulator and passes them to EulerAccel(). Then, it presents the result of EulerAccel() in 

graphs, which are Figure 4.40 and Figure 4.41. Figure 4.42 shows the accelerations 

measured by accelerometer (GetAccel()). 

TestEulerAccel 

clear all 

  

Nsamples = 41500; 

Insamples = 41500; 

  

EulerSaved = zeros(Nsamples, 2); 

Input = zeros (Insamples,2); 

  

  

for k = 1:Nsamples 

  [ax ay] = GetAccel();    

  [phi theta] = EulerAccel(ax, ay);  

  

  Input(k, :) = [ax ay]; 

  EulerSaved(k, :) = [phi theta]; 

end  

  

  

PhiSaved   = EulerSaved(:, 1) * 180/pi; 

ThetaSaved = EulerSaved(:, 2) * 180/pi; 

  

dt = 0.01; 
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t  = 0:dt:Nsamples*dt-dt; 

  

Figure 

subplot(2,1,1) 

plot(t, Input(:, 1)) 

title('Acceleration along x-axis'); 

ylabel('fx(m/s^2)') 

xlabel('t') 

subplot(2,1,2) 

plot(t, Input(:, 2)) 

title('Acceleration along y-axis') 

ylabel('fy(m/s^2)') 

xlabel('t') 

Figure 

plot(t, PhiSaved) 

ylabel('Roll angle(deg)') 

xlabel('t') 

  

Figure 

plot(t, ThetaSaved) 

ylabel('Pitch angle(deg)') 

xlabel('t') 
Figure 4.39: The main code. 

 

 

Figure 4.40: Angular velocities measured by Accelerometers. 
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Figure 4.41: Roll angle using the accelerometer. Equation 4.7 is used to convert the angular 

velocity to Euler angle. 

 

 

Figure 4.42: Pitch angle using accelerometer. Equation 4.7 is used to convert the angular velocity 

to Euler angle. 
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Obviously, the Roll and Pitch angles do not have accumulated error. However, there 

is a big difference between their amplitude and the one of the original signal. The abcence 

of integration here eliminates the accumulated error.  

 

4.12.3 Using Sensor Fusion 

It is not usuful to use either sensor alone as presented in the previous two sections. 

Accelerometer has constant error and no divergence. Gyro has got amplitude representation 

but with divergence. Why don’t we use both of them to compensate the shortcoming of 

each other? The sensor fusion techinque is described in the Figure 4.43 below: 

 

Figure 4.43:  Sensor fusion diagram. 

 

 Altitude-Sensor Fusion-System Model 

First of all, the system state variables are: 

𝑥 = [
𝜙
𝜃
𝜓
] ,  State variables. 

The relationship between the angular velocity from gyro and the rate of change in Euler 

angles is: 
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[
∅̇

�̇�
�̇�

] = [

1 𝑠𝑖𝑛𝜙𝑡𝑎𝑛𝜃 𝑐𝑜𝑠𝜙𝑡𝑎𝑛𝜃

0
0

𝑐𝑜𝑠𝜙
𝑠𝑖𝑛𝜙/𝑐𝑜𝑠𝜃

−𝑠𝑖𝑛𝜙
𝑐𝑜𝑠𝜙/𝑐𝑜𝑠𝜃

] [
𝑝
𝑞
𝑟
]       Equation 4.12 

Equation 4.12 shows the state transistion model that has the measurements of gyroscope 

and the equations that converted them to Euler angles.However, we need an equation that 

has matrix A and this matrix should not include any state variable (matrix equation 

represents the system): 

[
∅̇

�̇�
�̇�

] = [𝐴 𝑀𝐴𝑇𝑅𝐼𝑋] [
𝜙
𝜃
𝜓
] + 𝑤          Equation 4.13 

It is very difficult to extract Euler angles from the (Equation 4.13). Therefore, instead of 

using Euler angles another representation can be used which is the quaternion5. 

𝑥 = [

𝑞1

𝑞2

𝑞3

𝑞4

] 

The relationship between the angular velocity from gyro and the quaternion is: 

[

�̇�1

�̇�2

�̇�3

�̇�4

] =
1

2
[

0 −𝑝
𝑝
𝑞
𝑟

0
−𝑟
𝑞

     

−𝑞 −𝑟
𝑟
0
−𝑝

−𝑞
𝑝
0

] [

𝑞1

𝑞2

𝑞3

𝑞4

] 

                                                 

 

5 Quaternion is a method used to rotate a point on three dimensional space. There is no rule to 

multiply and divide complex numbers on three dimensional space (they are called triples). Nevertheless, the 

quaternion solved this problem, which took William Rowan Hamilton years of his life to find a three 

dimensional number systems [54], but he find a solution after he looked at four dimensional space. He 

discovered the fundamental formula for quaternion multiplication which is: 

i2 = j2 = k2 = ijk = −1. 
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The system model is:  

[

𝑞1

𝑞2

𝑞3

𝑞4

]

𝑘+1

=

[
 
 
 
 

𝐼 + 𝛥𝑡.
1

2
[

0 −𝑝
𝑝
𝑞
𝑟

0
−𝑟
𝑞

     

−𝑞 −𝑟
𝑟
0
−𝑝

−𝑞
𝑝
0

]

]
 
 
 
 

[

𝑞1

𝑞2

𝑞3

𝑞4

]

𝑘

 

The measurements fed to Kalman Filter are coming from the accelerometer. However, we 

need to convert the Euler angles coming from accelerometer to the quaternion. 

[

𝑞1

𝑞2

𝑞3

𝑞4

] =

[
 
 
 
 
 
 
 cos

𝜙

2
cos

𝜃

2
cos

𝜓

2
+ 𝑠𝑖𝑛

𝜙

2
sin 

𝜃

2
sin 

𝜓

2

sin
𝜙

2
cos

𝜃

2
cos

𝜓

2
− 𝑐𝑜𝑠

𝜙

2
sin 

𝜃

2
sin 

𝜓

2

cos
𝜙

2
sin

𝜃

2
cos

𝜓

2
+ 𝑠𝑖𝑛

𝜙

2
cos 

𝜃

2
sin 

𝜓

2

cos
𝜙

2
cos

𝜃

2
sin

𝜓

2
+ 𝑠𝑖𝑛

𝜙

2
sin 

𝜃

2
cos 

𝜓

2]
 
 
 
 
 
 
 

 

All the state variables are measured which means: 

𝐻 = [

1 0
0
0
0

1
0
0

      

0 0
0
1
0

0
0
1

] 

So far, the use of sensor fusion was intended to be used. State variable has been changed 

from Euler angles to quaternion and the measurement has also been changed from Euler 

angles to quaternion. Now, after having the system model, the next step should be easy 

which is designing the Kalman Filter. 

𝐴 
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Q and R are the noise covariance and it is hard to formulate them in a theoretical 

manner. Therefore, it is necessary to expermentally figure out what is the error distribution 

of Q and R. 

 

𝑄 = [

0.0001 0
0
0
0

0.0001
0
0

      

0 0
0

0.0001
0

0
0

10.0001

], 𝑅 = [

10 0
0
0
0

10
0
0

      

0 0
0
10
0

0
0
10

] 

 

The initial values for the state variables and error covariance matrix are: 

�̇�𝑘
− = [

𝑞1

𝑞2

𝑞3

𝑞4

]=[

1
0
0
0

] ,  𝑃𝑘
− = [

1 0
0
0
0

1
0
0

      

0 0
0
1
0

0
0
1

] 

The quaternion initialization means that all Euler angles are initialized to zero. 

We used the measured Euler angles to make the system matrix A and the input to 

Kalman or the measurements will come from the accelerometers. Figure 4.44 shows 

Kalman Filter algorithm and Figure 4.45 shows the code that converts the Euler angles to 

quaternion. Figure 4.46 cotains the main code that calls other function and shows the 

results. The last figures (Figure 4.47 and Figure 4.48) show how the accumulated error of 

the gyroscope and the inaccuracy of the accelerometers have been eliminated. Kalman 

Filter is able to solve the problem of sensor fusion. In this example, Yaw angle is not 

required since it has been set to zero. 
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EulerKalman 

function [phi theta psi] = EulerKalman(A, z) 

persistent H Q R x P firstRun 

if isempty(firstRun) 

  H = eye(4); 

  Q = 0.0001*eye(4); 

  R = 10*eye(4); 

  x = [1 0 0 0]';   

  P = 1*eye(4); 

  firstRun = 1;   

end  

xp = A*x; 

Pp = A*P*A' + Q; 

K = Pp*H'*inv(H*Pp*H' + R); 

x = xp + K*(z - H*xp);   % x = [ q1 q2 q3 q4 ] 

P = Pp - K*H*Pp; 

phi   =  atan2( 2*(x(3)*x(4) + x(1)*x(2)), 1 - 2*(x(2)^2 + 

x(3)^2) ); 

theta = -asin(  2*(x(2)*x(4) - x(1)*x(3)) ); 

psi   =  atan2( 2*(x(2)*x(3) + x(1)*x(4)), 1 - 2*(x(3)^2 + 

x(4)^2) ); 
Figure 4.44: Kalman Filter algorithm. 

 

EulerToQuaternion 

function z = EulerToQuaternion(phi, theta, psi) 

sinPhi   = sin(phi/2);    cosPhi   = cos(phi/2); 

sinTheta = sin(theta/2);  cosTheta = cos(theta/2); 

sinPsi   = sin(psi/2);    cosPsi   = cos(psi/2); 

  

z = [ cosPhi*cosTheta*cosPsi + sinPhi*sinTheta*sinPsi; 

      sinPhi*cosTheta*cosPsi - cosPhi*sinTheta*sinPsi; 

      cosPhi*sinTheta*cosPsi + sinPhi*cosTheta*sinPsi; 

      cosPhi*cosTheta*sinPsi - sinPhi*sinTheta*cosPsi; 

    ]; 
Figure 4.45: Convert Euler angles to Quaternion. 
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TestEulerKalman 

clear all 

  

Nsamples = 41500; 

EulerSaved = zeros(Nsamples, 3); 

   

dt = 0.01; 

  

for k=1:Nsamples 

  [p q r] = GetGyro();   

  A = eye(4) + dt*1/2*[ 0  -p  -q  -r; 

                        p   0   r  -q; 

                        q  -r   0   p; 

                        r   q  -p   0 

                      ]; 

  

  [ax ay] = GetAccel();                    

  [phi theta] = EulerAccel(ax, ay);  

  z = EulerToQuaternion(phi, theta, 0); 

  

  [phi theta psi] = EulerKalman(A, z); 

   

  EulerSaved(k, :) = [ phi theta psi ]; 

end  

  

PhiSaved   = EulerSaved(:, 1) * 180/pi; 

ThetaSaved = EulerSaved(:, 2) * 180/pi; 

PsiSaved   = EulerSaved(:, 3) * 180/pi; 

  

t = 0:dt:Nsamples*dt-dt; 

  

Figure 

plot(t, PhiSaved) 

xlabel('time (sec)') 

ylabel('Roll angle (deg)') 

  

Figure 

plot(t, ThetaSaved) 

xlabel('time (sec)') 

ylabel('Pitch angle (deg)') 

  

Figure 

plot(t, PsiSaved) 
Figure 4.46: The main code that tests Kalman Filter algorithm. 
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The main code uses the same GetGyro() and GetAccel() code in the previous two sections. 

It does the following steps: 

 Call GetGyro() function to get the gyro angular velocitites (𝑝, 𝑞 and 𝑟). 

 Use the angular velocities coming from gyro to compute 𝐴. 

 Get the measurements from accelerometers (ax, ay). 

 Get 𝜙 and 𝜃 by converting the accelerometers measurements using EulerAccel() 

function. 

 Call the EulerToQuaternion() function and put the quaternion in 𝑧 matrix. 

 Pass matrix 𝐴 and 𝑧 arguments to EulerKalman() function. 

 Get the result and plot them. 

It is clear that Kalman Filter gets the closest possible estimates to the real values as 

shown in Figure 4.47 and Figure 4.48. The sensor fusion model brought the best features 

of the gyroscope and the acceleromer. The sensors compensate the weaknesses of each 

other.  
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Figure 4.47: Roll angle after using Kalman Filter sensor fusion technique. 

 

 

Figure 4.48: angle after using Kalman Filter sensor fusion technique. 
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4.13 Extended Kalman Filter 

In previous sections, Kalman fitler has been designed to work with linear systems. 

If the system turns out to be nonlinear, a system linearization is required. Otherwise, an 

Extended Kalman Filter needs to be designed for this purpose. Extended Kalman Filter is  

important as most of the systems in the real life are nonlinear. Extended Kalman Filter 

algorithm is quite similar to Kalman Filter algorithm exept two differences as shown in 

Figure 4.49. Sometimes, it is possible to linearize the system in order to apply Kalman 

Filter. The previous example that used the quaternion instead of the Euler angles is an 

example of a linearization process to make the system compatible with Kalman Filter. 

However, the linearization technique has its limit as it doesn’t work for all possibilities. 

Therefore, a good linearization is required. Otherwise it will diverge.  

 

 

 

 

 

 

 

 

 

I. Set the initial values: 

𝑋 0, 𝑃0 

II. Predict state and error covariance: 

𝑥 𝑘
− = 𝑓(𝑥 𝑘−1) 

𝑃𝑘
− = 𝐴𝑃𝑘−1𝐴

𝑇 + 𝑄 

III. Compute Kalman gain: 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅)−1 

IV. Compute Kalman filter estimate: 

𝑥 𝑘 = 𝑥 𝑘
− + 𝐾𝑘(𝑧𝑘 − ℎ(𝑥 𝑘

−)) 

V. Compute the error covariance: 

𝑃𝑘 = 𝑃𝑘
− + 𝐾𝑘𝐻𝑃𝑘

− 

Figure 4.49: Extended Kalman Filter algorithm [12]. 
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As showed in Extended Kalman Filter algorithm, the differences are in the below two 

equations: 

 The second step: 

     𝑥 𝑘
− = 𝒇(�̂�𝒌−𝟏) 

     𝑥 𝑘
− = 𝑨�̂�𝒌−𝟏 

 Step three is slightly different as well: 

     𝑥 𝑘 = 𝑥 𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝒉(�̂�𝒌)) 

     𝑥 𝑘 = 𝑥 𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝑯�̂�𝒌) 

 The third difference that 𝐴 and 𝐻 matrices are not obtained directly from the 

system model equations. Instead, they are obtained using the Jacobian of the 

nonlinear equations that describes the system. 

𝐴 ≡
𝜕𝑓

𝜕𝑥
|
𝑥 𝑘

,  𝐻 ≡
𝜕ℎ

𝜕𝑥
|
𝑥 𝑘
−

 

Extended Kalman Filter is used with a nonlinear systems, therefore, there are no 

matrices to map the states or to map the input to state variable. Instead, the current state 

will be a function of the previous state as well as the current measurement will be a funtion 

of the current state. 
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4.13.1 Altitude Reference System Example6 

The same example of the helicopter that I used in the sensor fusion seciton is used 

here. The difference is that instead of using quaternion representation instead of the Eulter 

Angles, the system is linearzsed by figuring out the Jacobian of the equations that describe 

the system. Extended Kalman Filter is used with the same example in order to compare the 

results and see how EKF is better than Kalman Filter with nonlinear systems.  

Extended Kalman Filter is used to fuse the sensors measurements in order to get 

the best features of both. Basically, the measurements coming from the gyroscope are used 

in the state tranisition equations (equation 4.16). While the measurements coming from the 

accelerometer are used in the observation equations (equation 4.15).  

The measurements are coming from accelerometers: 

𝑧 = [
𝜙𝐴𝑐𝑐

𝜃𝐴𝑐𝑐
]                                              Equation 4.14 

where 𝜙𝐴𝑐𝑐 and 𝜃𝐴𝑐𝑐 (in equation 4.14) are the Euler angles that came from 

converting the accelerations measured by the accelerometers.  

𝑧 = [
1 0 0
0 1 0

] [
𝜙
𝜃
𝜓
] + 𝑣                      Equation 4.15 

𝑧 = 𝐻𝑥 + 𝑣 

                                                 

 

6 This example is taken from “Kalman Filter for Beginners” [12]. 
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The system variables are:  

𝑥 = [

𝜙
𝜃
𝜓
] 

[
∅̇

�̇�
�̇�

] = [

1 𝑠𝑖𝑛𝜙𝑡𝑎𝑛𝜃 𝑐𝑜𝑠𝜙𝑡𝑎𝑛𝜃

0
0

𝑐𝑜𝑠𝜙
𝑠𝑖𝑛𝜙/𝑐𝑜𝑠𝜃

−𝑠𝑖𝑛𝜙
𝑐𝑜𝑠𝜙/𝑐𝑜𝑠𝜃

] [
𝑝
𝑞
𝑟
] + 𝑤 

               [

𝑝 + 𝑞𝑠𝑖𝑛𝜙𝑡𝑎𝑛𝜃 + 𝑟𝑐𝑜𝑠𝜙𝑡𝑎𝑛𝜃
𝑝𝑐𝑜𝑠𝜙 − 𝑟𝑠𝑖𝑛𝜙

𝑞𝑠𝑖𝑛𝜙/𝑐𝑜𝑠𝜃 + 𝑟𝑐𝑜𝑠𝜙/𝑐𝑜𝑠𝜃
] + 𝑤        Equation 4.16 

≡ 𝑓(𝑥) + 𝑤 

The state variable x𝑘+1 in equation 4.16 does not equal a mapping matrix A 

multiplied by the state varaibles  x𝑘. In other word, it is not possible to extract the A matrix 

from the equations on the right side of equation 4.16 because these equations describe a 

non-linear system. To find A matrix, the Jacobian for Equation 4.16 must be found: 

𝐴 =

[
 
 
 
 
 
 
𝜕𝑓1
𝜕∅

𝜕𝑓1
𝜕𝜃

𝜕𝑓1
𝜕𝜓

𝜕𝑓2
𝜕∅

𝜕𝑓2
𝜕𝜃

𝜕𝑓2
𝜕𝜓

𝜕𝑓3
𝜕∅

𝜕𝑓3
𝜕𝜃

𝜕𝑓3
𝜕𝜓]

 
 
 
 
 
 

 

= [

q.cos∅.tan𝜃 - r.sin∅.tan𝜃 q.sin∅.sec𝜃^2 + r.cos∅.sec𝜃^2 0

-q.sin∅ - r.cos∅ 0 0

q.cos∅.sec𝜃- r.sin∅.sec𝜃 q.sin∅.sec𝜃.tan𝜃+ r.cos∅.sec𝜃.tan𝜃 0

] 

 

Below are the figures that contain the code used to simulate the current example. 

Figure 4.50 contains the Extended Kalman Filiter algorithm. It receives two vectors and dt 
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which is the sampling time. The first vector is ([phi_a theta_a]’ (or z as it is in EulerEKF 

code), which has the Euler angles that came from the accelerometer. This vector is used in 

the observation model. The second vector is [p q r] (or rates as it is in EulerEKF code). 

These are the measurements coming from the gyroscope, which will be used in the state 

transition model. Figure 5.51 shows the main code that calls different functions.  The first 

two functions are GetGyro() and GetAccel() which are the measurements from the 

gyroscope and the accelerometer. Second, it passes accelerometer measurements to 

EulerAccel(ax, ay) to convert the accelerations to Euler angles. Third, it passes the results 

of EulerAccel(ax, ay) to EKF function (EulerEKF()).  Finally, TestEulerEKF gets the 

results of EulerEKF() and presents them in graphs (Figure 4.52 and Figure 4.53). 

GetGyro() and GetAccel are not presented here because they were presented in the previous 

section in the original helicopter example. 

EulerEKF 

function [phi theta psi] = EulerEKF(z, rates, dt) 

persistent H Q R 

persistent x P 

persistent firstRun 

if isempty(firstRun) 

  H = [ 1 0 0; 

        0 1 0 ]; 

   

  Q = [ 0.0001 0      0; 

        0      0.0001 0; 

        0      0      0.1 ]; 

      

  R = [  6  0; 

         0  6 ]; 

  

  x = [0 0 0]';   

  P = 10*eye(3); 

   

  firstRun = 1;   
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end 

A = Ajacob(x, rates, dt); 

xp = fx(x, rates, dt); 

Pp = A*P*A' + Q; 

K = Pp*H'*inv(H*Pp*H' + R); 

x = xp + K*(z - H*xp); 

P = Pp - K*H*Pp; 

phi   = x(1); 

theta = x(2); 

psi   = x(3); 

%------------------------------ 

function xp = fx(xhat, rates, dt) 

% 

% 

phi   = xhat(1); 

theta = xhat(2); 

p = rates(1); 

q = rates(2); 

r = rates(3); 

xdot = zeros(3, 1); 

xdot(1) = p + q*sin(phi)*tan(theta) + 

r*cos(phi)*tan(theta); 

xdot(2) =     q*cos(phi)            - r*sin(phi); 

xdot(3) =     q*sin(phi)*sec(theta) + r*cos(phi)*sec(theta); 

xp = xhat + xdot*dt; 

%------------------------------ 

function A = Ajacob(xhat, rates, dt) 

A = zeros(3, 3); 

phi   = xhat(1); 

theta = xhat(2); 

p = rates(1); 

q = rates(2); 

r = rates(3); 

A(1,1) = q*cos(phi)*tan(theta)   - r*sin(phi)*tan(theta); 

A(1,2) = q*sin(phi)*sec(theta)^2 + 

r*cos(phi)*sec(theta)^2; 

A(1,3) = 0; 

A(2,1) = -q*sin(phi) - r*cos(phi); 

A(2,2) = 0; 

A(2,3) = 0; 

A(3,1) = q*cos(phi)*sec(theta)            - 

r*sin(phi)*sec(theta); 

A(3,2) = q*sin(phi)*sec(theta)*tan(theta) + 

r*cos(phi)*sec(theta)*tan(theta); 



130 

 

A(3,3) = 0; 

A = eye(3) + A*dt; 

 
Figure 4.50: Extended Kalman Filter function that receives arguments and return the estimation. 

 

TestEulerEKF 

clear all  

Nsamples = 41500; 

EulerSaved = zeros(Nsamples, 3); 

dt = 0.01; 

for k=1:Nsamples 

  [p q r] = GetGyro(); 

  [ax ay] = GetAccel();  

  

  [phi_a theta_a] = EulerAccel(ax, ay);  

  

  [phi theta psi] = EulerEKF([phi_a theta_a]', [p q r], dt); 

   

  EulerSaved(k, :) = [ phi theta psi ]; 

end  

PhiSaved   = EulerSaved(:, 1) * 180/pi; 

ThetaSaved = EulerSaved(:, 2) * 180/pi; 

PsiSaved   = EulerSaved(:, 3) * 180/pi; 

t = 0:dt:Nsamples*dt-dt; 

figure 

plot(t, PhiSaved) 

xlabel('Time(s)'); 

ylabel('Roll angle(deg)'); 

figure 

plot(t, ThetaSaved) 

xlabel('Time(s)'); 

ylabel('Pitch angle(deg)'); 

figure 

plot(t, PsiSaved) 

 
Figure 4.51: The code that test teh EKF and draw the results. 
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Figure 4.52: Roll angle estimation result of EKF. 

 

 

Figure 4.53: Pitch angle estimation result of EKF. 

 

It is obvious that the results in Figure 4.52 and Figure 4.53 are very close to the real 

ones. Using the quaternoin representation is not aloways aplicable. In other words, Linear 
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Kalman Filter is not aplicable all the times and sometimes using it without having a good 

descriptive system equations could have devastating results.  
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 MCECS Guide Bot - PSU GUIDE ROBOT  



134 

 

 MCECS Guide Bot 

MCECS Bot is a robot that can give guided tours inside the PSU FAB Engineering 

Building while interacting with visitors. The base has four Mecanum wheels which give 

the base three degrees of freedom. Therefore, MCECS Bot will be able to move 

forward/backward, left/right and rotate in its position. There are many sensors on the 

MCECS Bot that provide the main processor (Brain) with different “senses” which allows 

the robot to do localization, obstacle avoidance and gesture/speech recognition. Since this 

is a localization thesis, it will focus only on the base sensors which are related to the 

localization part. The “sense” system of the robot consists of different sensors. There are 

12 sonars to detect obstacles, LRF which is a laser range finder used for localization 

purposes, Kinect used for gesture recognition and localization purposes, encoders used for 

the odometry and bumpers for emergency stop.  There are two ways to interact with the 

robot which are either voice/gesture recognition or a direct interaction using the attached 

tablet on the robot. Figure 5.1 shows the MCECS Guide robot diagram. It is possible to 

control the robot remotely using the Wi-Fi connection. 
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Figure 5.1: MCECS Bot diagram [14]. 
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The idea of building the MCECS Guide Bot came after realizing that PEOPLE-Bot 

(which is the first guide bot in the robots museum) was not very functional. Professor 

Perkowski and his students before Fall 2011 were using the PEOPLE-Bot as a platform to 

improve their localization methods and did experiments (PEOPLE-Bot is shown in Figure 

5.2). In Fall 2011, PEOPLE-Bot was improved and lot of issues in the odometry system 

and the interface circuits were fixed7. Additionally, The PEOPLE-Bot team worked on the 

voice/facial recognition and tested them on the PEOPLE-Bot. Basically, the robot has the 

map saved in his brain (PC) and when it is given an order to move from a point to another 

point on the map, the robot was able to achieve it while avoiding obstacles as well. The 

PEOPLE-Bot is used also to test the software built by the students in order to use them in 

the main guide robot which is the MCECS Guide Bot.  

                                                 

 

7 Jim Larson was the team leader in Fall 2011. His team worked on the PEOPLE-Bot to fix the 

odometry and the interfacing issues. 
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Figure 5.2: PEOPLE-Bot. 

 

The MCECS-Bot is built from scratch. The project started in Winter 2012 when the 

first part of the base was built (Figure 5.3) and the first prototype of the neck and the arms 

were attached. The second step was in Spring 2012 where the second part of the robot’s 

base was finished, the base power and control circuits were built, the battery system was 

installed, and all other sensors were added to the base (Sonars, encoders and bumpers). 

Later, since Fall 2012 many teams have worked on the MCECS Guide Bot. Fall 2012 when 

the right hand and neck were added to the robot. The laser sensor (LRF) is added to improve 
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the localization functionality of the robot. The software used in the PEOPLE-Bot to 

implement localization is the MRPT library, which is a collection of C++ libraries created 

for robot developers. This framework was chosen because guidebot code relies on it as well 

as it is the most familiar framework to some of the current MCECS bot members [15]). 

The MRPT library is used again with the MCECS Guide Bot. However, there was an issue 

as the MRPT library uses Kinect measurements and it was not compatible with the 

information coming from sonars. Nevertheless, the LRF is used to simulate the Kinect 

measurements in order to feed them to the MRPT code. Moreover, Sonars can be used to 

simulate the Kinect measurements to fix the problem of sonars/MRPT compatibility.  

 

Figure 5.3: The first part of the base. 

 

Eventually, MCECS-Bot is used as part of my thesis as it will be used to apply the 

Kalman Filter on its navigation part. My thesis is specifically focused on using Kalman 

Filter for a robot with Mecanum wheels. There are more challenges in using Kalman Filter 

with Mecanum wheels than using the same technique with traditional wheels. The state 

variables in this case are the measurements coming from sonars, LRF and odometry. 
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Therefore, presenting the MCECS Guide Bot and its mechanical design is important to 

fully understand the Kalman Filter from different perspectives.  

 

Figure 5.4: PSU Guide Robot (MCECS-Bot). 

 

5.1 Base 

It is the main part of the robot as it contains the main circuits, sensors and batteries 

as well as it holds the other robot’s body. It is designed to support 160 lbs. The base has 4 

Mecanum wheels. Each wheel is run by a model 555 DC motor and gears. There are two 

motor controllers that control the motors which means each motor controller handles two 

motors. Sonars, LRF, Batteries, Arduino boards and other management boards are also held 

by the base. The base is able to move in more degrees of freedom than the traditional robot 

bases.  
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5.1.1 Mechanical Design and Basic Power Calculations 

 In this section, the torque calculation of the DC motors has been covered. This 

calculation was essential to specify the motor size and type that are suitable for the robot 

tasks. Then, based on the motor specifications, the gears were chosen. Next, an estimation 

of the power consumption has been provided based on the DC motor consumption. The 

motors will be the main power consuming part in the robot. Eventually, after specifying 

motors, gears and the power consumption, Batteries are chosen to meet the required current 

by the DC motors and the power consumption by other parts. 

 

 Torque Calculation   

Figure 5.5 shows a ramp with a certain angle θ. The assumption is that the base is 

moving on this ramp with an angular velocity and acceleration. It is kind of experiment in 

order to find the motor specification. These calculations will tell us what is the maximum 

angle, speed, acceleration and weight provided by the base. Due to these calculations, the 

current will be computed as well. 
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Figure 5.5: Torque calculation. 

 r = Wheel radius.  

M = Platform mass.  

θ = maximum assumed incline angle.    

F = Fraction force that produces the torque.  

a = acceleration.  

N = number of the wheels.  

 

The force result on the base axes:  

𝑀𝑔. 𝑠𝑖𝑛𝜃 + 𝑀𝑎 = 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 

𝑀𝑔. 𝑠𝑖𝑛𝜃 + 𝑀𝑎 = 𝑇/𝑟 

𝑇 = 
(𝑎+𝑔𝑠𝑖𝑛𝜃).𝑀.𝑟

𝑁
         Equation 5.1 

The result should be multiplied by 100 𝑇ℎ𝑒 𝑚𝑜𝑡𝑜𝑟 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦⁄ .  

The base characteristics are:  
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r = 4", M = 64Kg, a = 0.3 m/s2, θ = 32°, N = 4 and the motor efficiency is 68.5%. Using 

the torque equation 5.1, the result torque is:   

T = 13 Nm 

The torque of the RS555 Motor - 12V is 0.2059 Nm and the angular velocity is 7750 rpm. 

Additionally, the maximum torque that the P60 gearbox can handle is 35 ft-lb (47.4 Nm) 

[16], which means it is higher than what our design needs. By using P60 Gearbox with 

64:1 gear ratio, the result:  

T = 0.2059 * 64 =13.177 Nm.  

The wheels velocity is  

𝑤2 = 7750/ 64 = 122.18 rpm (122.18/60 × 2 ×Pi = 12.79), where 𝑤2 is the angular velocity 

of the wheels. 

Not that the angular velocity will be transformed to a linear velocity because there are a 

losses due to wheels rollers slippage on the ground (For more information refer to wheels 

section and appendix A). Therefore, the effective rotational velocity of the Mecanum 

wheels is:  

�̇� = 𝑛�̇�𝑚𝑠𝑖𝑛𝛼 [17], where �̇�𝑚 is the motor velocity and 𝑛 is the gear ratio. 𝑛�̇�𝑚 is already 

calculated in the previous step. 𝛼 is the orientation angle of rollers on the wheels.  

 = 122.18 ×
1

√2
= 86.39 rpm (86.39/60 × 2 × Pi = 9 rad/sec)  

86.39 × 2× Pi / 60 × 4 × 2.54 / 100 = 0.92 m/s. (inches converted to meters)  
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  Current calculation  

Power: 𝑃 = 𝑇.𝑤2 

The angular velocity 𝑤2 in rad/sec  

𝑃 = 𝑉 · 𝐼    V = 14.6V 

Then, 𝐼 = 𝑇 · 𝑤2 /𝑉 = 13.177 × 12.79 / 14.6 = 11.54 A is the maximum current. 

We can conclude from the previous calculation that the gear will handle the required torque. 

Additionally, the resultant torque which is 13Nm is for the ultimate situation. For instance; 

if we change the weight to 40kg and the incline to 10 degree, the resultant torque will drop 

to 2.96 Nm, and the current will drop to 2.59 A. There is a simple tool in the robot shop 

website to perform all these calculations (http://www.robotshop.com/dc-

motorselection.html).   

 

  Battery Capacity Calculation  

The current drown by each part of the robot:   

 Platform motors = 12 A.  

 Waist Actuator = 10 A.  

 One Kinects devices = 1 A.  

 One Monitor = 1 A. 

 One Arm = 3 A.  

http://www.robotshop.com/dc-motor-selection.html
http://www.robotshop.com/dc-motor-selection.html
http://www.robotshop.com/dc-motor-selection.html
http://www.robotshop.com/dc-motor-selection.html
http://www.robotshop.com/dc-motor-selection.html
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 One Arduino board = 1 A. The total A = 28A.  

Based on these calculation, the chosen battery was a four cell pack battery. Each cell is 

3.65V and they compose a total of 14.6V. Additionally, the capacity of each cell is 60 

ampere per hour.  

 

5.1.2  Robot Design  

The MCECS-Bot robot is shown in Figure 5.6. The robot base is consists of four 

Omni-wheels which are connected to four DC motors via gear boxes. The robot is 

constructed from aluminum bars assembled together using brackets, bolts, nuts and 

washers. The maximum expected weight of the robot is about 143lb (65kg).  I created a 3D 

model using google Sketch Up program. The result of my work can be found in google 3D 

warehouse:  

http://sketchup.google.com/3dwarehouse/details?mid=2d5e490d368bede3ed1231cfd3b59

8dd &prevstart=0.  

http://sketchup.google.com/3dwarehouse/details?mid=2d5e490d368bede3ed1231cfd3b598dd%20
http://sketchup.google.com/3dwarehouse/details?mid=2d5e490d368bede3ed1231cfd3b598dd%20
http://sketchup.google.com/3dwarehouse/details?mid=2d5e490d368bede3ed1231cfd3b598dd&prevstart=0
http://sketchup.google.com/3dwarehouse/details?mid=2d5e490d368bede3ed1231cfd3b598dd&prevstart=0
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Figure 5.6: PSU Guide Robot [18]. 
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5.1.3 Construction Parts   

 Aluminum Bars  

 There are several shapes of aluminum bars that have been used in this project. 

There is the square shape (Figure 5.7) with .5”x.5” and thickness of 0.065” which weighs 

0.13lb per foot, 1.5”x1.5” and a thickness of 0.065” which weighs 0.45lb per foot and 

1.5”x1.5” and a thickness of 0.125” which weighs 0.732lb per foot.  

 

Figure 5.7: Square shape aluminum bar. 

  

There is the L shape (Figure 5.8) with 0.5”x0.5” and a thickness of 0.065” which weighs 

0.068lb per foot, .5”X.5” and a thickness of 0.125” which weighs 0.131lb per foot, 

0.75”X0.75” and a thickness of 0.125” which weighs 0.205lb per foot and 1.25”X1.25” 

and a thickness of 0.125” which weighs 0.343lb per foot.  

 

Figure 5.8: L shape aluminum bar.  
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 Bolts  

 There are two types of bolts. The first one is a stainless steel socket screws which 

is 2” in length and 3/16” in width. It is shown in Figure 5.9.  

 

Figure 5.9: Socket screw bolt. 

  

The other one is stainless steel machine screws which is 2” in length and 3/16” in width. It 

is shown in Figure 5.10.  

 

Figure 5.10: Machine screw bolt. 

 

These two bolts are used to put the aluminum bars of the main structure together.  

 

 U bolt  

This U bolt (Figure 5.11) is 4-1/2” in length and 2-1/4” in width. This U shape bolt 

is used to hold the gearbox to the aluminum bar, so the gearbox and the DC motor will not 

detached from the base during the robot movement. Figure 5.12 shows how the U bolt is 

used in to attach the motor and its gear to the main frame.  
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Figure 5.11: U shape bolt.  

 

Figure 5.12: U shape bolt is used to attach the DC motor and its gear to the main frame. 

 

 Nuts  

The lock nuts (Figure 5.13) are nylon which will tighten the bolts strongly. It is 

3/16” in width to support the available bolts.  
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Figure 5.13: Nylon nut.  

 

 Brackets  

There are several types of stainless steel brackets with L shape. There is 1”X1/2” 

with 2-holes, 1-1/2”X5/8” with 4-holes, 2”X5/8” with 4-holes, 1-1/2”X3/4” with 4-holes, 

1-1/2”X1-1/2” with 6-holes and 21/2”X1-1/2” with 6-holes. There is 4”X4” T shape with 

5-holes. All of these different brackets that were used to build the main structure are shown 

in Figure 5.14.  
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Figure 5.14: Different brackets that were used in the main frame. 

 

 Washers 

There are 8 flat washers, that each 2 of them are connected to one gearbox to 

prevent the hub key and the spacer from falling off the shaft (as shown in Figure 4.16). 

Washers are shown in Figure 5.15.  

 

Figure 5.15: Flat washer. 
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Figure 5.16: Motor spacer and its holding washer. 

 

 Spacers  

5.1.3.7.1  Bronze Self-Lubricating Spacer  

 The outer diameter of this bronze spacer (Figure 5.17) is 3/4” and the inner 

diameter is ½”. It is used to space the key hub in the gearbox since the gearbox shaft length 

is 1-1/2” and the key hub is 1” (as shown in Figure 5.17). The available one in the market 

is 1” in length, so it has to be cut in order to fit in the gearbox.  

 

Figure 5.17: 1/2" × 3/4" × 1/2” bronze spacer. 

   

5.1.3.7.2 Aluminum Spacer   

These spacers (Figure 5.18) are used to fill in the extra length in bolt that is used to 

attach the gearbox to the Aluminum bars underneath it. Because the length of the available 
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bolts is 2” and the height of the aluminum bar is 1.5”, these spacer must be used in the 

MCECS Bot design.  

 

Figure 5.18: Aluminum spacer. 

 

5.1.4 Base Parts  

 Wheels  

  There was a discussion among all teams that work on the MCECS-Bot project 

about the type of wheels that are going to be used in the MCECS-Bot guide robot. The 

debate was about choosing either Omni or traditional wheels. After discussing the 

advantages and disadvantages of both, the Omni wheels were chosen due to their ability to 

derive in any direction instantaneously. Table 5.1 shows the comparison between the 

normal and Omni wheels [19].  

Conventional wheels  Omni wheels  

Wheels in aligned the body  Wheels are 45o with the body  

2 degrees of freedom  3 degrees of freedom  

High load capacity  Good for small and light robots  

Simple design  Complex design  

Table 5.1: Conventional vs. Omni wheels. 
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Afterward, Mecanum wheels came in the picture and the debate started again. The 

Omni wheels (Figure 5.19) are connected diagonally by 45 to the base and can provide 

movement to any direction. On the other hand, the Mecanum wheels (Figure 5.20) are 

connected in alignment to the base and can provide the same movement. Table 5.2 shows 

the comparison between Omni and Mecanum wheels [19].  

Omni-Wheels  Mecanum Wheels  

mounted diagonally (45°)  mounted parallel to the body  

move in any direction (3 DOF)  move in any direction (3 DOF)  

rollers are in the side of the of the wheel  rollers are constructed diagonally in the wheel  

useful for small and light robot   can handle heavy objects  

Table 5.2: Omni vs. Mecanum wheels. 

  

 

Figure 5.19: Omni Wheels alignment [20]. 
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Figure 5.20:  Mecanum wheels alignment [21]. 

 

The settlement was on the Mecanum wheels because the good looking and 

endurance hence they can endure more weight than Omni wheels. Also, unlike the Omni 

wheels, the Mecanum wheels have the rollers aligning diagonally so it will provide the 

movement that the Omni wheels provide to the robot. Mecanum wheels are special wheel 

designs that are based on a concept that achieves traction in one direction and allows greater 

flexibility in congested environments [22].The Mecanum wheels are 8” in diameter and 2” 

in width and each weighs about 2.5lb. See appendix A to learn more about these wheels.  

The degree of freedom between Omni and Mecanum wheels does not matter, since 

they both have three degrees of freedom. Table 5.3 [19] shows the advantages and 

disadvantages of the Mecanum wheels.  

Advantages  Disadvantages  

Compact design  Very complex conceptually  

High load capacity  Discontinuous wheel contact  

Simple to control  High sensitivity to floor irregularities  

Less speed and pushing force when 

moving diagonally  

Complex wheel design  

Table 5.3: Mecanum wheel advantages and disadvantages. 
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The Mecanum wheel movement profiles are shown in Figure 5.21.  

 

Figure 5.21: Mecanum wheel movement profiles [23]. 

 

 DC Motor Controller (RoboClaw 2x15A.) 

Basic Micro’s RoboClaw motor controller can control a pair of brushed DC motors 

using serial, RC, or analog inputs. Integrated dual quadrature decoders make it easy to 

create a closed-loop speed control system. This version can supply a continuous 15 A per 

channel (30 A peak) [24]. Figure 5.22 shows a picture of this micro controller. In this robot, 

two of these motor controllers are used to control four DC motors. There is a set of mini 
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switches by which different functions can be implemented (More information can be found 

in Appendix B). Interface setting, the size of the battery pack and other specification can 

be determined using these mini switches. Moreover, encoders can be connected to these 

motor controllers in order to implement the odometry system. See Appendix F for more 

information about the system circuit boards. http://www.pololu.com/catalog/product/1496 

supports all the documentations required to work with this motor controller as well as the 

libraries of codes related to that purpose.  

  

Figure 5.22: RoboClaw 2x15A [24]. 

  

  DC Motors  

There are 4 of RS555 brushed DC motors (Figure 5.23) that will run the wheels. 

DC motors are operated by 12V and controlled by two RoboClaw motor controllers. They 

are connected to the Mecanum wheels via gearboxes. Table 5.4 shows DC motors 

specification. To see more on DC motors, refer to appendix C.  

 

http://www.pololu.com/catalog/product/1496
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Specification  Values  

Voltage (V)  5-15  

Nominal Voltage (V)  12  

No load speed (rpm)  7750  

No load current (A)  0.4  

Stall current (A)  15  

Stall torque (mN-m)  205.9  

Efficiency (%)  68.5  

Table 5.4: DC Motor specification. 

 

 

Figure 5.23: DC motor [25]. 

  

 

 Gearbox  

The P60 RS-540/550 gearbox (Figure 5.24) has a ratio of 64:1. It is the medium 

between the DC motor and the Mecanum wheels and will provide the speed and torque 

required to move the robot. It comes with a pinion that should be mounted to the Dc-motor 

shaft (Figure 5.25).  
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Figure 5.24: Motor gearbox and the required pinion to attach the motor to the gear [16]. 

   

 Encoders  

 This encoder sends a 200 pulse per rotation. Using this encoder allows us to know 

the direction and the speed which allows adding a closed loop feedback controller. The 

encoder is shown in Figure 5.25. Appendix B has more information about these encoders. 

 

Figure 5.25: Encoder [26]. 

 

Features [26]: 

- Resolution: 200 Pulse/Rotation 

- Input Voltage: 5 - 12VDC 
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- Maximum Rotating Speed: 5000rpm 

- Allowable Radial Load: 5N 

- Allowable Axial Load: 3N 

- Cable Length: 50cm 

- Shaft Diameter: 4mm 

  

 Encoder Gears 

A Tetrix gears are used in this design to transfer the movement from the wheels to 

encoders. Tetrix gears are expensive as they cost $17-19. I found another source of gears 

which is more affordable. http://www.servocity.com/index.html. This website is a good 

resource to find motor accessories like gears, hubs and bearing, etc. In order to use these 

gears, the bore of the 3” diameter gear had to become 0.5”, so we made them bigger by 

using a 0.5” drill bit. After that we used one of the holes that surrounding the bore with the 

mechanical key. Using the mechanical key is to attach the gear to the gearbox shaft. Figure 

5.26 shows the gears and how they are attached to the encoder as well as the gear shaft. 

http://www.servocity.com/index.html
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Figure 5.26: gears to attach the encoder to the gear shaft. 

 

 500 Hub Key  

This hub key (Figure 5.27) is used to attach the wheel to the gearbox using small 

machine key (Figure 5.28), which I found in the robotics lab. Moreover, ½” spacer is used 

to fill in the extra space in the shaft.  
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Figure 5.27: Gearbox 500 hub key. 

  

 

Figure 5.28: Gearbox key. 

   

 Arduino  

The Arduino mega (Figure 5.29) is the intermediate processor between the main 

brain (PC) and the motor controller. It has the main code to control the Mecanum wheels. 

It sends the commands to the DC motors via DC motor controller. Additionally, it sends 

the LRF measurements to the main PC. Another Arduino is used to gather the other sonars 

data and send them to the main brain. A third Arduino is used to control the waist. Table 

5.5 shows some of the Arduino specifications. To learn more about Arduino refer to 

www.arduino.cc.   

 

 

http://www.arduino.cc/
http://www.arduino.cc/
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Specifications  Values  

Operating Voltage (V)  5  

Input Voltage limits (V)  6-20  

Digital I/O pins   54 (of which 14 provide PWM output)  

Analog I/O pins  16  

DC current per I/O pin (mA)  40  

Table 5.5: Arduino specifications. 

  

 

Figure 5.29: Arduino Mega. 

      

 Battery 

The battery needed to provide the necessary voltage and current has a nominal 

voltage of 12V. The battery capacity (Ah) is chosen based on the mass of the robot, the 

velocity of the robot, the maximum incline, the supplied voltage, the desired acceleration, 

the desired operating time and other components power consumption. The velocity, the 

supplied voltage, the desired acceleration, the desired operation time and the total 
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efficiency will not change. In other words, these variables will be mostly constant and will 

not exceed their limit. The remaining properties are the total mass and the maximum 

incline. If we take an extreme situation as 65kg and the incline is 28o, the desired battery 

capacity will be around 50Ah. The battery in this case will weigh 15kg which may add 

some weight to the robot and its dimensions are 18.34X16.51X17.5cm which is quite big.  

 However, the robot may not reach this situation since the robot is made of 

aluminum which is light and the maximum incline in the engineering building is not that 

steep. In this case, if we take the mass as 40kg and the incline as 10o, the battery capacity 

pack will be around 12Ah. The battery weight is about 4kg and its dimension is 

15X9.8X9.5cm. This is for the base dc-motors consumption. For the battery capacity of the 

whole body, refer to capacity calculation section of this thesis.   

 There is another crucial specification of the battery which is the battery cycle. It 

means the number of charge\discharge cycles of the battery can experience before it fails 

to meet specific criteria. In our situation, the desired battery cycle life is 500. A four 

LiFeMnPO4/60AH are used in this robot. There are many reasons of using these batteries. 

Reading the specifications will show that these batteries have very good features. Figure 

5.30 shows the battery pack. More information about LIFePo4 batteries and their safety 

user manual can be found in appendix E.   
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Figure 5.30:  LiFeMnPO4/60AH Battery pack [27]. 

 

Specifications [28]: 

- Nominal Voltage: 12.8V (4X 3.2 V). 

- Nominal Capacity: 60 Ah. 

- LiFeMnPO4 chemistry. 

- Operation Voltage Range: 11.2 to 14.4V. 

- Weight: 9.2 kg or 20.3 lbs. 

- Dimension: 125X280X180 mm or 4.9X11X7.1 in. 

- Max Charging Current: 3C. 

- Max Discharge Current: 3C (continuous) / 10C (pulsed). 

- Cycle Life : >1500 (80%DOD). 

- Operating Temperature: -20 to 65 C or -4 to 149 F. 

- Self-Discharge Rate: <3% monthly. 
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 Ultrasonic sensors 

In our design, 12 ultrasonic sensors (LV‑MaxSonar‑EZ0 which is shown in Figure 

5.31) are used. Figure 5.32 shows how these ultrasonic sensors are attached to the base of 

the MCECS-Bot. They are numbered from 1 to 12 and these numbers are the same in the 

wall following code. The main task of these sonars is to detect the surrounding environment 

of the robot. This will allow the robot to have perception and able to make decisions like 

avoiding obstacles and navigate itself through obstacles.  There are three sonars on each 

corner of the robot base (on for each direction). The twelve sonars will cover 360 degree 

around the robot. The sonars detect objects between 0 inch and 254 inch. There is no blind 

spot, but any object closer than 5 inches is measured as 5 inches. For more information 

refer to Appendix G. The sonars’ specifications are listed below [29]: 

- 42kHz Ultrasonic sensor measures distance to objects 

- Read from all 3 sensor outputs: Analog Voltage, Serial, Pulse Width 

- Virtually no sensor dead zone, objects closer than 6 inches range as 

6 inches 

- Resolution of 1 inch 

- Maximum Range of 254 inches (645 cm) 

- Operates from 2.5-5.5V 

- Low 2.0mA average current requirement 

- 20Hz reading rate 

- Small, lightweight module 

- Widest beam of the LV-MaxSonar-EZ sensors 



166 

 

- Great for people detection applications 

 

Figure 5.31: LV‑MaxSonar‑EZ0 [29]. 

 

Figure 5.32:  Sonars distribution on the robot. 

 

We needed to mount three sonars on each angle as I designed the robot. Mitch 

Barton created a 3D module to be mounted on each corner of the base. Figure 5.33 shows 

the 3D module that holds three sonars on each corner of the robot’s base. 
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Figure 5.33: Sensors' holder [30] 

 

We got these sonars on Spring 2012 but they weren’t attached until Fall 2012. The 

team that worked on the MCECS-Bot at that moment connected the sonars directly to the 

power and their data lines to Arduino Uno board. The sonars at that moment weren’t 

reliable and very noisy (See Figure 5.34). I used this measurement in the fourth chapter, in 

the one dimensional Kalman Filter example. After sending email to the manufacturer 

regarding this issue, they reply to us with a good explanation to that phenomena. The 

explanation is that the sonars are always connected to Vcc and GND and this makes them 

active and send signals all the time, which makes them interfere with each other. There is 

no signal that would coordinates their work which makes them producing a high aquatic 

noise affecting each other measurements. In order to test that “theory” we (Mathias Sonardi 
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and I) put a tape on all sonars and tried to get measurements from only one sonars which 

left uncovered. The result was much better than when they were uncovered.  As soon as we 

remove the tape from only one sonar, the two sensors started to interfere and make noise. 

To avoid that, these sonars must work either simultaneously or sequentially.  

 

Figure 5.34: Measurement taken from the front sonar. It was taken when the sonars are connected 

directly to the power without a signal to coordinate their work. It is obvious how noisy the signal 

is. Kalman Filter is used in the fourth chapter to refine this signal. 

 

In our case, we decided to make the sonars to work sequentially. They must be 

connected in a method called the chaining method. This method worked when the number 

of sonars were six but it did not work when we connected all the sonars together. The way 

that chaining method works is that there is a signal connected to RX pin of the first sonar 

and it goes from TX of the first sonar to the RX of the second sonar as shown in the Figure 

5.35. This signal comes from Arduino Uno board. When the system starts working the 

signal going to the RX of the first sonar must be held high for 20 μ second. This will trigger 
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the chaining method and make all the sonars to work sequentially. I believe that when the 

number of the sonars increased, the seventh sonar in the chain will get power before getting 

the coordinating signal. I experimented with the sonars trying to find a solution for this 

issue because this problem wasn’t listed in the sonars documentations. Anyway, I found 

that splitting the power source for the sonars into two groups (six sonars each) fixed this 

problem. The first group of sonars was turned on right after the system is on. Then, after 

50 m second, the second group of sonars was turned on using the delay circuit. The delay 

circuit is shown in Figure 5.36. Figure 3.37 shows the measurements of the twelve sonars 

after the chaining mode was used. The measurements were taken while moving a board 

back and forth in front of some of these sonars. In appendix F, a diagram of the delay circuit 

will be found.  

 

 

Figure 5.35: Chaining method [31]. 
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Figure 5.36: Delay circuit. The second group of sonars (six sonars) is connected to it. 

 

 

Figure 5.37: The measurements of twelve sonars. It is obvious that the measurements are smooth 

and there is not noise except some sensors that show some noises. We were testing the sonars by 

moving a board in different directions and also test the angle that can be covered by each sonar. 

This test shows that the sonars are reliable and sensitive to any movements or object that comes 

into their range. 

 

Finally, after all these improvements, we got another issue after the motors started 

running. When the robot started to move, every time we tried to get the sonars 

measurements, there was one of the sonars returning the value of zero inch. This is not 
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possible as the sonars should return 5 inches which is the minimum value. Obviously, the 

motors and their Motor controller boards are a great source of noise. The signals that comes 

from the sonars are small and they are affected easily by other noises. One way to solve 

this problem is to separate the power lines of the motors from the signal lines of the sonars 

[32]. Another solution is to replace the wires with shielded ones. I recommend to move the 

wires from the lower level of the base to the second level of the base. Currently, Mathias 

tried to fix it by changing the code. He prevent the measurements if one of the sonars 

returns zero. This worked fine and sometimes caused delay because the robot does not 

receive new measurements to take action.   

 

 Laser Range Finder (LRF) 

LRF is a distance sensor based on laser principles (Figure 5.38). The LRF works 

on the principle of optical triangulation. It fires the laser on a specific target, then there is 

a camera that receives the returning laser beam. As shown in Figure 5.39, when the distance 

from the target changes, the angle on the focal plane changes too. Knowing the change on 

the camera side allows to calculate the angle (𝜃). The distance between the camera and the 

laser diode is already known which is h. Now, it is easy to calculate the distance D. 

 

Figure 5.38: Laser Range Finder [33]. 
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Figure 5.39: Optical triangulation [34]. 

 

LRF is attached to a plastic component and mounted on a servo motor in order to 

cover a range of 220 degree on the front of the MCECS-Bot. Figure 5.40 shows the LRF 

mounted on a servo motor using the plastic component, which was designed and planted 

on a 3D printer by Mitch Barton. It is also used in the navigation program with the MRPT 

library as it simulates the Kinect input.  

 

Figure 5.40: LRF mounted on server. 

 

For more information about the circuit diagram, refer to appendix F. 
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 Power Management Circuit (PMC) 

Using Power Management Circuit (As shown in Figure 5.41) is important because 

we are using a battery pack of 4 cells. The cells are exposed to different temperatures while 

they operate. This differences in temperature as well as the differences in the chemical 

component as they are not perfectly match each other will create voltage differences from 

cell to cell in time. Using the PMC protects the cells from overcharge/overdischarge, over 

current drown as well as keeps the pack cells having the same voltage. In appendix E, the 

PMC specification and user manual are found [35]. The circuit diagram can be found in 

Appendix F. 

 

Figure 5.41: PMC [36]. 
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Let’s for a moment imagine the four cells in the Figure 5.42. If there is no Power 

Management Board (Battery Management System) to balance the cells, every time the 

system will turn off when the fourth cell reached the 20%. The Figure shows that the third 

cell is fully charged. Therefore, any further charge for the other cells will damage the third 

and the first cells with over charging and vice versa.  

 

 Charger 

The charger that we used has Over Voltage Protection, Short Circuit Protection and 

Output Reverse Protection. This charger is a special charger for the lithium ion batteries 

(charger is shown in Figure 5.43) [37]. It can support 10 Amp which means the charging 

time is 6 hours. (Charging Time= (1.41 * Ah rate of the pack) / 10A charge current) this 

formula shows that the time is a bit longer as there are two stages of charging. The first one 

is when the current is constant and the voltage is increased. On the other hand, after this 

8
 

 

 

 

 

20% 

 Cell 1      Cell 2       Cell 3      Cell 4 

Figure 5.42: Four cells battery pack. 

80% 
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stage is the stage when the charger starts holding the voltage and starts decreasing the 

current till it reaches zero. For more detail see appendix H.  

 

Figure 5.43: Charger [37]. 

 

 Power Distribution Board (PDB) 

The power distribution board is one of the most important components in the 

electrical circuits of the MCECS-Bot. It is important because it distributes the power to all 

different parts of the robot. The PDB is connecting the battery to the robot and the battery 

to the charger. When the charger is connected to the PDB, there are five relays that are used 

to disconnect the robot circuits from the battery. There are four output lines providing the 

robot’s circuits with the 14.6 voltage. The PDB was built by Phil Lamb in Winter 2013. I 

fixed couple technical issues with PDB. I fix the problem of connecting the charger to the 

PDB because it did triggered the relays. I also changed some rails to get the fifth relay to 

work correctly. Additionally, I added a 12V regulator to be used to reduce the voltage from 
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14.6V to 12V, which is used by Kinect or the Monitor. Finally, I added many LEDs to 

indicate the status of the PDB and its output. Figure 5.44 shows the Power Distribution 

Board. 

 

Figure 5.44: Power distribution Board. 

 

For more information about PDB, appendix F contains the PDB schematic diagram.   

 

 Bumpers 

The bumpers are important to our robot as there still exists a dead zone which can’t 

be recognized as an obstacle by the Kinect or ultrasonic sensors. The main goal is to not 

use these bumpers because we should have an efficient system that is able to detect the 

obstacles and not to crash on them. The bumpers are used as an emergency stop in case 

there are no inputs from the other sensors. Two micro-switches (Figure 5.45) are used in 
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each bumper. Springs as well as spacers are used to protect the micro-switches from being 

damaged during operation. Each micro-switch is simply operated as they work either 

normally open or normally closed. For instance, when it hit something it will simply turn 

off the input from +5 to the analog/digital input in the Arduino board. Figure 5.46 and 

Figure 5.47 show the bumpers. I added simple code after connecting the bumpers to the 

right pins in Arduino Mega (The number of pins are given in appendix F). This code is 

used to detect if the bumpers were triggered or not, and if so it will stop the robot 

immediately. For instance, if the robot is moving forward and it bumped into some obstacle, 

it will stop immediately. However, the other directions remain still functional, which means 

that the robot will be able to move right, left or back if the front bumper is triggered. The 

code is found in appendix I. 

 

Figure 5.45: Micro switch. 
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Figure 5.46: Limit switches that are used in the bumpers. 
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Figure 5.47: These images show the steps of constructing the bumpers.  

 

5.1.5 Actual Work  

  After having all parts available to build the base (taking into account that it took 

more than 2 days to find the right hardware materials) we started by calculating the 

aluminum bars dimensions. The base dimension should be 17”X 24” in addition to the 

width of each Mecanum wheel which is 2” as shown in Figure 5.48.  
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Figure 5.48: Base dimension. 

 

 Then we started to cut the bars using the right blade that we bought for the lab 

miter saw (Figure 4.49 shows the construction of the Aluminum parts). After that, we 

drilled the bars to make holes by using a drilling press that is available in the shop of the 

robotics lab and we spent more than 2 days to finish cutting and drilling them. By using 

the brackets and bolts, we assembled the aluminum bars together (Figure 5.50).  
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Figure 5.49: The construction of Aluminum bars. 

 

 

Figure 5.50: Brackets holding two bars. 
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Before assembling the wheels together with the DC motors and gearboxes, the 

gearbox is needed to be greased, and the wheel is needed to be assembled (took around one 

day). After doing that, we connected the gearbox with the DC motor, then to the wheel 

using the 500 key hub. The same procedures were done for remaining wheels, gearboxes 

and DC motors (took one day).  

 The next step is to mount the assembled group of DC motor, gearbox and wheel 

on the aluminum bars structure (Figure 5.51). This was done by making another two holes 

in the aluminum bars for the gearbox, and using U shape bolts to hold the combination to 

the bars (Figure 5.52).  

 

Figure 5.51: Mecanum wheel is connected to the gearbox and DC motor and mounted on the 

aluminum bar. 
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Figure 5.52: U shape bolt holds the gearbox to the main frame. 

    

5.2 Waist 

The waist was built by David Gaskin in the Spring 2012. I contributed to the waist 

as I helped in choosing the motor controller and the structural construction. The waist 

consists of four linear actuators (as shown in Figure 5.53). The linear actuators will give 

the robot’s waist simple movements of human’s waist like bending forward/backward and 

left/right as well as bending in diagonal direction. The waist is located on top of the legs 

and carries the neck and arms.  
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Figure 5.53: MCECS Bot's waist. 

 

5.3 Arms 

Ultimately, there should be two arms setting on the waist. Each arm has 6 degrees 

of freedom. Currently, there is only one arm. The structure of this arm is made of aluminum 

and six servo motors (one in each joint). Minimaestro board is used to control this arm. 

Figure 5.54 shows the arm. 

 

Figure 5.54: Robot's Arm. 
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5.4 Neck 

The neck has two degree of freedom representing the agreement and disagreement 

gesture of the human. The neck is shown in Figure 5.55. There are two stepper motors in 

it. It is controlled by the same Minimaestro board that is used to control the arm.  

 

Figure 5.55: MCECS-Bot's neck. 

 

5.5 Head 

The robot is intended to look like a butler. A Samsung Galaxy tablet  is used as the 

butler’s face. Simply, the tablet will show the gestures of the eyes and the mouth like 

blinking and smiling. Students from the art department are involved to build the alminum 

mask that will cover the tablet. Figure 5.56 shows the head of the MCECS-Bot. 
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Figure 5.56: The head consists of an aluminum mask that covers the tablet which represents the 

head8. On the right, a screen shoot from the tablet shows the face of the butler. 

 

 

 

 

 

 

 

                                                 

 

8 In this picture is Mathias Sunardi who is the team manager and he designed the head.   
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5.6 Software System9  

 

 

Figure 5.57: MCECS-Bot's software diagram. 

                                                 

 

9 This section is part of Mathias Sunardi’s report “MCECS-Bot Progress Report Summer13”. Except 

the MRPT subsection which was part of my thesis.  
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5.6.1 Overview 

We shall give a brief overview of the system here.  Details of the system will be 

explained in the subsequent sections below. Figure 5.57 shows the different software 

components that currently control the MCECS-Bot and how they communicate/connected 

with each other. There is a Server program written in Python (Server.py) that MUST be run 

FIRST when activating the robot.  The Kinect, MRPT, Upper body, and Speech 

Recognition (Java)+Marion programs connect to the Server program as clients (dashed 

green arrows). Once connected, any of the client programs can send messages/commands 

to the other client programs through the Server program. The Server program will broadcast 

any message it receives from any of the client program to ALL the clients connected to it. 

It is the duty of each client program to decide whether to act upon the message/command.  

To facilitate this decision-making process, we devised a simple messaging format/protocol 

which allows easy parsing to determine which client sent the message, which client the 

message is for, and what command is being sent (explained below). 

The Server-client program uses the TCP protocol.  The main reason we use this 

method is because the TCP protocol is one of the established standards for network 

communication hence is platform-agnostic, and the Server program can run as its own 

process as to not interfere with the operation of each software component. Furthermore, 

the different software components are written in many different programming languages, 

and it is very difficult to consolidate using native code (e.g. using wrappers); the Kinect 

and upper body programs are written in Processing language, the iPad app is written in 

Objective-C, Cody Hank’s gesture control program was written in C++, the 
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MRPT/Navigation program is written in C++, the Speech Recognition+Marion program 

was written in Java, and the Server program itself is written in Python. Luckily, all these 

programming languages are equipped with libraries that include the necessary methods for 

TCP communications. 

The software components mentioned above are the ones that have close control 

over the robot’s interaction and movement functions: moving the base, gesturing, tracking, 

etc.  The WordPress site is a website (set up by Cody Hanks) that serves two functions. The 

first function is to provide a user-friendly interface to update the faculty, labs, and other 

information database.  Currently, we have not employed a DBMS (Database Management 

System) such as PostgreSQL, MySQL, or SQLite3.  Our ‘database’ is a set of WordPress 

pages.  We’ll talk about this component in more detail below, but for now it is sufficient to 

state that in the future, this database should be made appropriate by using a DBMS. 

Except for the iPad app/program, all the software components run on the on-board 

PC of the MCECS-Bot. The on-board PC is running under Ubuntu 12.10 64-bit operating 

system.  

The report is organized as follows: We will start with the Server program and the 

messaging protocol, the Kinect program, the iPad program, and the WordPress site.  We do 

not describe in detail the MRPT/Navigation program, the Speech Recognition+Marion 

program, and Cody Hank’s gesture control program since there has not been any significant 

changes in them. Moreover, we have not yet integrated the MRPT/Navigation program into 

the current system. Although we integrated the Speech Recognition+Marion program into 

the current system, we are currently not using it since we are using another Sphinx-based 
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speech recognition library in the iPad app (which will be explained below).  For Cody 

Hank’s gesture control program, we were able to implement it without any changes to the 

program itself except for changing the serial port name.  

 

5.6.2 The Server Program: Server.py 

The Server program was adapted from the online tutorial to create a chat client app 

in iOS/Objective-C [http://www.raywenderlich.com/3932/how-to-create-a-socket-based-

iphone-app-and-server].   It uses the Python Twisted library, which provides Python classes 

and methods to program network communications for web applications such as TCP, UDP, 

SSH, IRC, and FTP.  The current Server program uses TCP to receive and send messages 

to its clients. 

Twisted was built upon a design pattern called Reactor Loop.  As seen in the figure 

below, the Reactor Loop essentially is a loop that waits for events, if an event is detected, 

handle the event by performing some tasks. Once the task is done, wait again for the next 

events (Figure 5.58). 
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Figure 5.58: Reactor Loop. 

 

There are three objects used in the server program: Factory, Protocol and reactor. 

When a client connects to the server, a Protocol object is created for the client. The Factory 

object is responsible for creating the Protocol objects and adds the client to the list of clients 

(i.e. Protocol objects) in a list variable called “clients” in the Factory object.  We create an 

object called IphoneChat as a child object of Protocol.  When a client connects, a new 

IphoneChat object is created and added to the clients list in of the Factory object.  The 

reactor object will run the loop above and “listen” for any events from any of the clients, 

whether it is the first time the client connects to the server, when the client is sending a 

message to the server, etc. How each event is handled is defined in the IphoneChat object 

definition. 
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5.6.3 Kinect 

The Kinect program is written in the Processing language, which is like a subset of 

Java. The progam was first developed by Rami Alshafi in Fall term 2012. His full report 

can be seen here: 

 https://projects.cecs.pdx.edu/projects/roboticsclub-mcecsbot/wiki/Interactive_Kinect  

Since then, several features have been added to the program, and we have done 

some refactoring to make the source code easier to read. The Kinect program does the 

following: 

- Provides the “vision” for the robot 

- Provides a user interface for the user: 

o A menu (i.e. a set of buttons will appear on the screen when the Kinect 

program detected a hand) 

o Using the buttons, user can interact with the robot using hand gestures: 

playing music, controlling the movement of the base 

o Gives feedback to the user on the current state/mode of the robot 

- Directly interface and controls the operation of the Arduino Mega for the base via 

USB 

o Send commands to the Arduino Mega for moving and stopping the base 

- Stops the base if an object or obstacle is too close using the depth image. 

Some of the additions done over Summer 2013 are the following:  

https://projects.cecs.pdx.edu/projects/roboticsclub-mcecsbot/wiki/Interactive_Kinect
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- Collect information of the state of the base including the distance information 

detected from the twelve sonars, bumpers, and Laser Range Finder (LRF). 

- Send all the information from the Arduino Mega on the base and from the Kinect 

program itself to the iPad. 

 

5.6.4 MRPT Code (Navigation Program): 

MRPT is a Mobile Robot Programming Toolkit. It comprises a set of C++ 

libraries and a number of ready-to-use applications [38]. Figure 5.59 shows the MRPT 

libraries. The user should provide MRPT with a map of the environment that his 

experiment is running on and whatever information used to update the system status. This 

information can be come from different sets of sensors that should be supported by MRPT. 

It supports a range of sensors like camera, sonars, LRF, laser scanner, infrared and 

gyroscope.  

http://www.mrpt.org/Applications
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Figure 5.59: MRPT Libraries [38]. 

 

There are different applications and classes provided and supported by MRPT in 

order to be implemented by the users based on their needs (Figure 5.58). One of these 

classes is Extended Kalman Filter, which included in the following class: 

mrpt::bayes::CKalmanFilterCapable10 

This class contains the system state vector and the system covariance matrix, as well as a 

generic method to execute one complete iteration of the selected algorithm [39]. In our 

case, I had to derive all the equations related to the state transition model and to the 

                                                 

 

10 More information can be found on Kalman Filter page of the MRPT website; 

http://www.mrpt.org/Kalman_Filters 

http://reference.mrpt.org/svn/classmrpt_1_1bayes_1_1_c_kalman_filter_capable.html
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observation (measurements) model. Additionally, the Extended Kalman Filter class 

requires all the matrices that related to the system equation.  

 

5.7 Overall Circuit Connections 

This section is a summary that illustrates the connections between the power 

circuits and other controller boards. Moreover, this section is important because it shows 

the readers how everything is connected and helps them to visualize the robot circuits. In 

the current chapter, many boards and circuits were presented. Many motor controllers and 

several Arduino boards are used in this robot. This diversity may confuse readers. 

Therefore, a general descriptive diagram to the circuit board of the robot is required.  Figure 

5.60 shows a diagram that illustrates the circuit boards of the MCECS-Bot. 

As shown in the figure below, there are twelve sonars connected to the Arduino 

Uno board which works as a slave to Arduino Mega. Arduino Mega board is connected to 

the PC to get commands. The main code is set in Arduino Mega1 which has all different 

kinds of interpretations to different kind of control signals or to send data from sonars to 

the main PC (MCECS-Bot brain). Any other details were listed in each section accordingly. 

A detailed schematic diagram for each circuit, Arduino boards connections, motor 

controllers and power circuits are presented in Appendix F. 
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Figure 5.60: MCECS-Bot circuit diagram. 
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5.8 Prices  

We looked for the parts that we needed in different places and websites. The prices 

are varied depending on the quality and the item’s characteristics. For example; the dc-

motor drivers prices will become 50$ more if we choose the 26A current instead of 12 A 

maximum current supplied by it.  

 

5.8.1 Base 

 Wheels  

 There are different wheels varied in the prices depending on the weight that they 

support or the quality as well. The table below lists different wheels with their prices.  

Wheel   Diameter  Supported weight   Price  

Plastic Omni-wheel (am-0013)  8”  50 Ibs  34  

Aluminum Omni Wheel (am-0098)  8”  50 Ibs  54  

Mecanum Wheel (am-0081)  8”  180 Ibs  78  

Mecanum Wheel (am-0201)  10”  440 Ibs  180  

Table 5.6: Different Wheels characteristics with their prices. 

 

 Table 5.6 shows a comparison between the Omni wheels and the Mecanum wheels 

in prices and characteristics. It is easy to see the marginal difference in prices on one hand 

and the supported weights on the other hand.   
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 Aluminum bars  

We bought the Aluminum bars from metal market which is near the airport. It is a 

store that works only on metal stuffs. The materials we needed has different characteristics 

like the thickness, dimension and shape like square, L shape or cylinder shape. The total 

cost so far for the aluminum bars is 160$.  

   

 Gearbox  

After looking in different websites, we found that there are a variety of gearboxes. 

They are shown in Table 5.7.  

Gear  Torque  RPM  Price  

12V, 58RPM 60:1 Gear Motor  254.8mN.m  58  $22.58  

12V, 17RPM 200:1 Gear Motor   784mN.m  17  $22.58  

12V, 185RPM 20:1 Gear Motor  78mNm  185  $22.58 

Banebots 64:1 P60 Gearbox and  

RS555 Brushed Motor  

13.17 Nm (Combined with 

the motor)  

121  $64.50 

Table 5.7: Different gearbox with their prices. 

The Banebots gearboxes prices start at 50$ for the 4:1 ratio, and end with 80$ for the 256:1 

ratio.  Obviously, other motors and gearboxes are not as suitable as using Banebot gearbox 

and the RS555 DC motor, because their supported torque does not satisfy the MCECS-

Bot’s weight and the desired velocity.  

 

 Dc motor (RS555 Brushed Motor)  

The prices of the dc motor are included with the gearboxes prices. It is about 6$ 

each.    



199 

 

 Motor driver  

Here are some motor drivers’ prices and specifications.  

Motor driver  Current  # of motor  Price  

Sabertooth driver  10  2  80  

Pololu TReX Dual Motor 

Controller  

13  2  100  

Bi-directional DC Motor Speed  

Controller   

5-48Amp  

(modification are 

needed)  

1  25  

Table 5.8: Different motor drivers' prices with specifications.  

 

 Arduino   

Arduino Price 

Mega $59.00 

Uno $30.00 
Table 5.9: Arduino boards prices that used in the base. 

 

 

 

 

 

 

 

 

http://www.pololu.com/catalog/product/777
http://www.pololu.com/catalog/product/777
http://www.pololu.com/catalog/product/777
http://www.pololu.com/catalog/product/777
http://www.pololu.com/catalog/product/777
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 Hardware parts and Robot Components 

Item  Specification  Price  

Bolts  Hardware 

stuff 1 

Socket and Machine 

screws  

183 for all the hardware 

parts 

Nylon nuts    

Brackets    

Grease    10.08  

Washers    1.74  

Spacers  Pushing for the gears shaft  6.4 for all 4  

Saw blade  For the miter saw  48  

Hardware stuffs 2  ----- 201.26 

 Quantity  

Plastic shield 2 34.32 

DC-motor controller 2 179.9 

Encoder 4 169.95 

Micro switch 10 20.92 

BMS board 1 38.41 

Gears 2 16.43 

Batter pack of 4 cells 1 410.26 

Aluminum Bars ---- 91.47 

Charger 1 66.18 

Ultra sonic sonars 12 315.6 

PCM (power circuit 

model) 

1 41.36 

Total  1835.28 
Table 5.10: Hardware prices. 

The total cost for this base is (there is half of the Aluminum bars have not been used yet) 

$1835.28.  
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5.8.2 Waist 

Here are two tables of the purchased materials that David Gaskin listed in his report 

“Actuators and You, an in Depth Guide” in Spring 2012.  

Item Source Price QTY Shipping Total 

Arduino Mega 2560 

Microcontroller rev 3 

http://www.trossenrobotics.co

m/p/arduino-mega-2560.aspx 

64.95 1 0 64.95 

Arduino Ethernet 

Shield 

http://www.sparkfun.com/prod

ucts/9026 , 

http://www.trossenrobotics.co

m/p/arduino-ethernet-

shield.aspx 

45.95 1 0 45.95 

Arduino Box http://www.trossenrobotics.co

m/p/arduino-project-box.aspx 

11.95 1 0 11.95 

Pig tail for power http://www.trossenrobotics.co

m/store/p/6612-Barrel-Jack-

Female-Pigtail-Lead-2-1-5-

5mm.aspx 

2.95 2 0 5.9 

6vDC power for 

board 

http://www.trossenrobotics.co

m/p/power-supply-6vdc-

2a.aspx 

9.95 1 0 9.95 

12v 5A pwr supply 

for actuators 

http://www.trossenrobotics.co

m/p/power-supply-12vdc-

5a.aspx 

19.95 1 0 19.95 

Servo wire http://www.trossenrobotics.co

m/store/p/6421-50-Feet-

Standard-Servo-Wire.aspx 

12.95 1 0 12.95 

Motor Controller http://www.trossenrobotics.co

m/store/p/5104-Sabertooth-

dual-5A-motor-driver-for-R-

C.aspx 

59.99 2 0 119.98 

Firgelli Actuators http://www.firgelliauto.com/pr

oduct_info.php?cPath=109&pr

oducts_id=159 

129.9

9 

4 0 519.96 

Actuator Mounting http://www.firgelliauto.com/pr

oduct_info.php?products_id=5

4 

9 4 0 36 

Total     847.54 

Table 5.11: Parts ordered online. 
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Item Cost Comment 

Metal Knockout bit 44.97 For drilling out large metal 

holes 

Dremmel carbide blades 8.98 For shaping holes 

Dremmel EZ lock kit 16.53 For locking blades to dremmel 

UPS shipping 10.52 For exchanging Motor driver 

(they sent the wrong part) 

Terminal kit with tool 9.04 To make the terminal block 

Terminals for 10-12, 14-

16 gauge wires 

5.58 To make the connections for 

the terminal block 

Battery Clamps 3.29 For connecting terminal to 

power source 

Washers 1.50 For spacing out the actuators 

on the plate 

2x terminal blocks 15.98 For making a easy to connect 

to power source 

14 gauge black wire 1.50 For terminal block and 

connections 

14 gauge red wire 1.50 For terminal block and 

connections 

10 gauge wire 2.35 For battery connections 

Safety pins 3.12 For harness connections for 

aluminum plate and actuators 

C-804 compression 

springs 

1.50x4 For joint between waits and 

top 

1/8”  cable ties 2.50x20 For securing all the hardware 

together 

¾” neoprene Grommet 1.21x 4 Replaced the washers, 

allowing a snugger fit for the 

actuator mounting 

Total 185.70  
Table 5.12: Hardware parts purchased from local hardware stores. 
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 Literature Review 

In chapter six, whatever information related in literature to and relevant to our 

project, MCECS-Bot, is presented. It summarizes papers and work of researchers that 

related to Mecanum wheels. We present information based on literature about Omni wheels 

or Mecanum wheels, which are a new concept, different from traditional wheels. Secondly, 

this chapter will present some papers that relate to localization based on Kalman Filters. 

This will give us a clear idea about what researchers have already achieved in localization 

approaches. Finally, our robot will be compared to other fellows’ robots. There are many 

guide robots or museum robots. These robots have their pros and cons when compared to 

our robot. Comparing and appreciating what others have done will show us how far we are 

still from our intended goal of building a comprehensive and general robotic guide. 

Material presented in this chapter will give us a detailed presentation of researches outlined 

in the literature on the subject and how it may be related to our project.  

Three main sections will be presented here: 

 

6.1 Mecanum Wheels 

Mecanum wheels were invented by Bengt Erland Ilon in 1975. The title of his 

patent is “Wheels for a course stable selfpropelling vehicle movable in any desired 

direction on the ground or some other base”. Mecanum wheels have become an interesting 

research and design subject to many researchers because they have unique characteristics 

differing them from the traditional wheels. Robots that have Mecanum wheels have 

advantages in narrow and crowded environments. Mecanum wheels give them more 

http://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Bengt+Erland+Ilon%22
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degrees of freedom to move in any desired direction. More about Mecanum wheels can be 

found in “section 5.1.4.1 Wheels” in chapter five.  

There are not much published about Mecanum and Omni wheels, especially when 

the research topic is about localization based on Mecanum wheels. The reasons for this is 

may be because Mecanum wheels are more complicated to control than the conventional 

wheels. Another reason can be that Mecanum wheels are recently invented and only very 

recently available in kit form, so that researchers are not familiar yet with their 

characteristics. However, there are many papers and research reports about controlling 

Omni wheels and about Omni wheels technical details. Florentina Adăscăliţei and Ioan 

Doroftei [19] presented practical applications of robots that have Mecanum wheels. The 

characteristics of Mecanum wheels are well presented in their paper. However, they 

claimed that the slippage of Mecanum wheels prevents the usage of encoders. I believe that 

it is possible to use encoders, but the designer of four wheels base should be careful if he 

intended to use encoders. The reason why is because using only two encoders in either 

adjacent wheels disambiguates the direction of the robot. It will not be possible to 

differentiate between rotating left/right and strafing left/right. Additionally, putting two 

encoders in opposite wheels won’t solve the problem because it is not possible to 

differentiate between moving forward/backward and strafing left/right. However, relying 

completely on encoders is not feasible even with conventional wheels due to an 

accumulated error. Therefore, using additional sensors are proposed in MCECS-Bot to 

make the sensors compensate the errors of each other. Publication [19] presented the 

difference between the Mecanum wheels and conventional wheels. Furthermore, it lists 
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different improvements on Mecanum wheels to improve the efficiency of wheels as well 

as overcoming some other disadvantages.  

The kinematics and dynamics of Mecanum wheels are presented in Nkgatho Tlale 

and Mark de Villiers paper [17]. These authors derived the laws to find displacement, 

acceleration and velocities for different kinds of movements realized by Mecanum wheels.  

More information about Mecanum wheels are found in chapter five “section 5.1.4.1 

Wheels”. In other words, their paper presented only three movement profiles and 

introduced their kinematics and dynamics. However, more complex profiles can be 

achieved. The rotational movements (three and two wheels’ rotations) described in the 

paper would be more specific if they would describe these motions as arc movements, the 

concept introduced in the previous paper. Additionally, paper [14] addressed all these 

rotations and analyzed them assuming that all the 4 wheels are rotating with the same 

velocity. Further complex analyzes are needed for addressing the profiles where the wheels 

rotate with different velocities producing more combinations of movements (rotations). 

Finally, the researchers used encoders with other sensors like gyroscope and accelerometer 

to do their tests. Using encoder with other sensors have been explained in other papers [40]. 

This goes against the authors’ claim in [19] that using Mecanum wheels prevents using 

encoders. Encoders can be used but the accumulated error would be more than the one that 

comes from using encoders with traditional wheels. More sensors should be used to 

successfully complete the task of controlling a platform with Mecanum wheels. More 

information can be found in chapter five in section “wheels” as well as in Appendix A. 
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6.2 Localization and Sensor Fusion 

The literature is rich with localization and Sensor fusion research topics because 

localization is one of the most important aspects that robotic researchers are interested in. 

Localization and mapping as well as SLAM are essential topics in any mobile robot design. 

Localization is the process of what a robot uses all related sensors to locate itself in a 

previously known map. On the other hand, mapping is the process of constructing a map 

using sensors that sense the surrounding environment. SLAM is a combination of the two 

and it is obviously known from its name, as it is stands for Simultaneous Localization and 

Mapping. The robot constructs the map and locates itself on it.  In our case, as stated 

previously, the map is already known, so we don’t have the “lost robot problem” to be 

solved here. The robot has to localize itself on the map as it performs some required tasks. 

The problem with all the previous processes is that the sensors are not perfect and there are 

always uncertainty and accumulated error that comes from different sensors that are used 

to get the desired measurements. Therefore, filters like Kalman Filters and Particle Filters 

are used to satisfy the needs of these algorithms. In our project, we explored different kinds 

of algorithms to solve simple tasks. For instance, a problem of finding the best solution for 

a robot in a maze. Genetic algorithm and Search algorithm were used to solve such kinds 

of problems. Later, we decided to explore a deeper algorithms as our guide robot project 

became more advance. Bayesian estimations was our intended general approach to create 

algorithms to be applied in our project. First, we started, as stated in the introduction 

chapter, with the Particle Filter which is part of MRPT code. It was applied on PEOPLE-

Bot which was the first prototype of the intended PSU guide robot.  
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After having MCECS-Bot built, our concern about improving and implementing a 

reliable algorithm increased. Kalman Filter was the best candidate to be implemented in 

our robot. It was hard to find articles about localization based on Kalman Filter for 

Mecanum wheels based robot platforms. Nevertheless, in literature, many researchers have 

worked on localization using different kinds of Bayesian estimation. The following 

literature is about localization and sensor fusion for conventional wheels robots. Sergios I. 

Roumeliotis and George A. Bakey [41] listed a combination of Kalman filter and Bayesian 

estimation in order to find landmarks in the surrounding environments and to localize the 

robot position. There are external sensors that provide the robot with the information that 

leads it to the landmarks. Odometry is used to move from landmark to landmark. To find 

the best estimation while moving between landmarks, Kalman Filter is used. Bayesian 

hypothesis testing is used to combine the Kalman estimation and the landmark-detecting 

algorithm. Based on the information that comes from each landmark, a set of multiple 

hypotheses is created. This is called a multiple hypothesis testing.  

MCECS-Bot has more sensors and its sensors are more advanced and better than 

the sensors used in the robot presented in this paper. The authors of [31] didn’t describe in 

details what kind of external sensors they used in their experiments. Additionally, they used 

only odometry as INS (Inertial Navigation Sensors) while MCECS-Bot has them all: 

odometry, Sonars, LRF and Kinect. I believe that it is good to include this paper as a source 

in my thesis. However, the technique used on this paper is not directly applicable by us as 

our system is more advanced. 
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Songmin Jia et al [42] presented using Kalman Filter estimate based on information 

coming from LRF and odometry to achieve robot’s self-localization (Basically, they fused 

odometry with LRF). The result of Kalman Filter was compared with the result of using 

only odometry. Definitely, the result of Kalman Filter was the closest to the real values. 

Finally, if there is an error in drawing the map, a GUI program using an additional camera 

will correct it. This system is close to ours, except that MCECS-Bot is a Mecanum wheels 

platform, which makes control more complicated. In their system the LRF is used to detect 

the environment while MCECS-Bot has LRF, sonars, Kinect and other inertial sensors from 

the tablet (Gyro, Accelerometer and Compass). The measurements coming from encoder 

and LRF were fused in EKF used in their system. This is similar to the method proposed 

in my thesis, but the LRF is replaced with sonars in MCECS-Bot. Similar approach is 

followed by Fantain Kong et al [43] in finding the corners and doing localization. Jungmin 

Kim et al [44] presented a quite similar method. They used sensor fusion on Kalman Filter 

to find the best estimation of the robot position. In the previous papers and as described in 

the fourth chapter, sensor fusion is a solution for the sensors’ shortcomings. It has been 

done using Extended Kalman Filter. Simply, information from gyro, Accelerometer and/or 

encoders are used to figure out the state equation of the system. Then, the measurements 

model is figured out using the information coming from LRF or sonars. Researchers in [45] 

and [46] presented few different sensor measurements fusion algorithms and a comparison 

among them which gives us a clearer understanding about the sensor fusion concept. 

Miguel Pinto et al [47] presented a unique method of teaching by using EKF with 

NXT Lego to get the robot localization. The authors showed how using an interesting kit 
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like Lego would attract undergraduate students to start their journey with robots. They 

presented in a simplified way how to use Extended Kalman Filter to find the best estimation 

of the robot position. It was not a complicated problem as well as this paper is just for 

teaching purposes. I believe that this is somewhat similar to one of the MCECS-Bot 

ultimate goals. MCECS-Bot is meant to be a great platform for other students to experiment 

with and improve in the future.  

 

6.3 Other Guide and Museum Robots 

This section presents different museum and guide robots and compare them with 

MCECS-Bot. The robots chosen for this purpose are one of the most famous robots in the 

world. In the presented literature in this section, I will not list the software program of the 

other robots. I will concentrate only on topics directly related to localization. Interaction, 

speech recognition, facial recognition and gesture recognition are not topics of this thesis. 

However, MCECS-Bot has all different kinds of interaction. Teams have been working on 

them and developing them since the project of PEOPLE-Bot started. There exists already 

a developed software for each specific interaction. There is a tablet to interact manually 

with the robot in order to give a direct order or to get more information about PSU or 

different facilities in the Engineering Building as well as faculties. The ultimate goal is to 

have a remote access to the MCECS-Bot from anywhere around the world using internet 

connection. This will allow people to get the same information as they would obtain in a 

one-on-one interaction, which are the same information that I mentioned before. People 

will have a direct access to the wiki page of the project at ece.pdx.edu website. This project 



211 

 

will be an open source which means that students can learn, improve and participate in this 

project. I believe that this project will be a flagship project at Portland State University and 

will help Maseeh School of Engineering and Computer Science to recruit new students.   

 

6.3.1 RHINO [48] 

RHINO is the oldest robot that I reviewed in the literature. It has a set of five sensors 

that used for human interaction and for navigation purposes. These sensors are laser, 

sonars, infrared, camera and tactile. For localization, Markov localization are used to 

maintain a probabilistic belief as to where the robot currently is located. Markov 

localization failed to satisfy a dynamic environment because Markov assumption works 

only in a static environment. RHINO faced troubles in the presence of people which was 

most of times during its operation in a museum. This is due to the algorithms that were 

used to maintain its position. The robot doesn’t look humanoid. It lacked some important 

sensors like the encoder. For interaction there was a small keyboard of four buttons. People 

can push them to choose different options like tour or listen to a previously recorded voice.  

 

6.3.2 Minerva [49] 

Minerva is a tour-guide robot which was operated successfully for two weeks in a 

Smithsonian Museum. During its operation the robot was able to interact with people and 

move at speed of 1.63 m/sec which is considered a high speed for a guide robot. The 

designers were able to address different kind of problems like navigation in a dynamic 
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or/and unmodified environment, short term human robot interaction and Virtual tele-

presence which was based on a web interface allowing people to access the robot remotely 

from around the world,  control its movements, and have a streaming live images. In this 

project the authors didn’t address the problem of SLAM. Basically, the authors manually 

control the robot in the new environment and use three different sensors to build the map. 

These sensors are laser scanner, camera and odometry. After the map was constructed, the 

robot will solve the problem of localization. Markov localization with the same three 

sensors was used to address this problem.  

 

6.3.3 RoboX [50] 

RoboX is a tour guide robot. It can navigate itself in a previously known map. The 

robot has a lower part which is the base in a hexagonal shape. The base contains the main 

circuits, batteries, two laser range sensors, bumpers and wheels. The upper part consists of 

the body of the robot like waist and face. The face has two eyes; one of them is a camera, 

and moveable eyebrows. RoboX has different sensors such as laser range sensors, 

odometry, camera for face tracking and camera facing the ceiling for localization purposes.  

Localization uses Extended Kalman Filter to find the best estimation. Bumpers are used 

for emergency stop. 
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6.3.4 Maggie [51] 

Maggie is a humanoid robot that has artistic design of a young girl. The base is a 

ready base from iRobot, which is not constructed by the designers. It has twelve sonars, 

twelve infrareds and twelve bumpers. The robot is also equipped with a laser range finder. 

Additionally, there is a color camera for people tracking. The robot can show some 

expressions by using colored lights as a visual expression. Tactile sensors were added in 

different places on the upper part of Maggie. The authors claim that the robot has a high 

quality speech recognition.  
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6.3.5 Comparison between the Presented Robots and MCECS-Bot  

 RHINO MINERVA RoboX Maggie MCECS-Bot 

Humanoid No Yes Yes Yes Yes 

Arms No No No Yes, 1 

DOF11 

Yes, 7 DOF 

Face No Yes No No Yes 

Manual 

Interaction 

No No Yes, using 

four buttons 

No Yes, using 

tablet 

Localization Markov 

localization 

Markov 

localization 

Extended 

Kalman 

Filter 

Not 

mentioned 

Extended 

Kalman Filter 

Wheels Differential 

Steer 

Differential 

Steer 

Differential 

Steer 

Differential 

Steer 

Mecanum 

Drive 

Sensors • Laser Range 

Finder 

• 25 Sonars 

• Infrared 

• Camera  

• Tactile 

• Laser 

scanner 

• 25 Sonars 

• Camera 

• Odometry 

 

• Laser 

Range 

Finder 

• Odometry 

• 2 Cameras 

• 8 Bumpers 

 

• 12 Sonars 

• 12 

Infrareds 

• Odometry 

• 12 

Bumpers  

• Camera 

• 1 Laser 

Scanner 

• 6 Tactile  

 

• 8 Bumpers 

• Odometry 

based on 4 

encoders 

• 12 Sonars 

• 1 Laser Range 

Finder 

• 1 Kinect 

(which has 

several sensors 

inside) 

• Gyroscope, 

Accelerometer 

and compass 

from tablet 

Table 6.1: A comparison between MCECS-Bot and other guide robots. 

 

 

 

                                                 

 

11 DOF: Degree of Freedom. 
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 Using Kalman Filter with MCECS-BOT 

The previous chapters were intended to be an introduction to the current chapter. 

This chapter is the main chapter of my thesis. The first chapter presented an introduction 

to the whole work in this thesis. The second through fourth chapters were about Kalman 

filter. Kalman filter was presented from the basics. Many examples were used to illustrate 

Kalman filtering in order to easily deliver the ideas to the readers. The fifth chapter was 

also important because it describes the system that Kalman Filter is applied for. Knowing 

the field that Kalman filter is applied for is important because the MCECS-Bot is an 

important project for PSU and this project is important to next PSU robotics’ teams for 

further researches and improvements. Especially important will be testing the first version 

of the robot with real public that visits our School. 

In this chapter, two main algorithms are illustrated. The first one is a simple wall 

following algorithm based on measurements coming from the sonars. The first part 

contains two sections. The first one presents a simple algorithm to find the closest wall and 

follow it. The second section presents an approach in which the measurements from all 

sonars are refined using Kalman Filter before sending the measurements to the wall 

following algorithm. Results of both sections will be discussed and compared.  

The second part of this chapter is about using the MRPT code based on the 

Extended Kalman Filter to find the best estimation of the robot’s position. Simply, Arduino 

Mega board sends the measurements coming from sonars (which simulate the Kinect data) 

and the odometry data to the main PC which contains the main process of Extended Kalman 

Filter. The original MRPT code is based on Particle Filter and gets the measurers from LRF 
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and odometry. Sonars will be used instead of the LRF in simulating Kinect measurements 

because they are faster and more descriptive (the front four sonars will be used in this 

experiment). Extended Kalman Filter will be used instead of Particle Filter which represent 

the second part of this chapter. The second part will contain two part that deals with solving 

the problem of localization; the first part is using one dimensional Kalman Filter and the 

second part is using two dimensional Kalman Filter.  

 

7.1 Wall Following Algorithm 

7.1.1 Normal Wall following 

In this task, the robot has to follow the wall. There are more than one sensor to be 

used in this algorithm. We can use either LRF or sonars. Sonars are faster than LRF because 

in LRF it takes time to rotate the LRF device to the other side. In my experiment, among 

the twelve sonars that are mounted on the robot base, only four sonars are used to execute 

the task of the wall following. Figure 7.1 shows the distribution of the sonars that are used 

in this task.  
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Figure 7.1: Four sonars used in the wall following algorithm. 

 

The algorithm is illustrated in the following flow chart: 
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Figure 7.2: Wall following flow chart. 
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This flow chart was transferred to software code which is uploaded to the Arduino Mega_1 

processor. The code was tested and it worked perfectly12. The code of the wall following 

algorithm can be reviewed in Appendix I. 

 

7.1.2 Wall Following with Kalman Filter 

As presented in section “5.1.4.10 Ultrasonic Sonars”, there is still a problem of 

“zero measurements” coming from at least one sonar when data are acquired from twelve 

sonars. I stated in that section that Mathias fixed it by adjusting the code. The code will 

repeat the reading if one of the sonars is giving zero. However, this solution causes delay 

because the robot kept waiting to get a real data from all sonars. This delay might last for 

long time which cannot be tolerated in case that we need a fast response from the robot in 

the wall following. Another solution will require hardware changes like changing the wires 

or moving them away from the noise source. This solution will be applied in future.  

In this section, Kalman filter is applied to refine the measurements that are coming 

from the four sonars used in the wall following algorithm. Instead of using separate Kalman 

Filters which means one for each measurement, one variant of our approach uses a Kalman 

Filter that has a state equation with four state variables. Kalman Filter will look like a four 

                                                 

 

 12 A video available on YouTube shows the wall following test:  

http://www.youtube.com/watch?v=1FVPdDgY684 

http://www.youtube.com/watch?v=1FVPdDgY684
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dimensional one, but the variables are independent inside it.  These Kalman Filter equations 

are presented below: 

[

𝑥1

𝑥2

𝑥3

𝑥4

]

𝑘+1

= [

1 0 0
0 1 0
0 0 1
0 0 0

     

0
0
0
1

] [

𝑥1

𝑥2

𝑥3

𝑥4

]

𝑘

 

[

𝑧1
𝑧2
𝑧3
𝑧4

]

𝑘

= [

1 0 0
0 1 0
0 0 1
0 0 0

     

0
0
0
1

] [

𝑥1

𝑥2

𝑥3

𝑥4

]

𝑘

 

𝐴 = [

1 0 0
0 1 0
0 0 1
0 0 0

     

0
0
0
1

] 

𝐻 = [

1 0 0
0 1 0
0 0 1
0 0 0

     

0
0
0
1

] 

𝑄 = [

1 0 0
0 1 0
0 0 1
0 0 0

     

0
0
0
1

] 

𝑅 = [

25 0 0
0 25 0
0 0 25
 0   0   0

     

0
0
0
25

] 

Figure 7.3 shows the code of Kalman Filter algorithm. It receives the real 

measurements from four sonars and returns the estimate of each one of them.  
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KalmanFourState 

function [dis1, dis3, dis10, dis12] = 

Simple1DKalman(z1,z2,z3,z4) 

persistent A H Q R  

persistent x P 

persistent firstRun 

  

  

if isempty(firstRun) 

  A = [1 0 0 0; 

       0 1 0 0; 

       0 0 1 0; 

       0 0 0 1]; 

  H = 1*eye(4); 

   

  Q = 1*eye(4); 

  R = 25*eye(4); 

%The R has a large value so the Kalman will not affected 

the changing measurements. 

  

  

  x = [20 20 20 20]'; 

  P =  100*eye(4); 

%The initial value of the error is big to cover the 

unexpected unreal zero measurement which due to the 

acoustic noise. 

   

  firstRun = 1;   

end 

  

z=[z1 z2 z3 z4]';   

xp = A*x; 

Pp = A*P*A' + Q; 

  

K = Pp*H'/(H*Pp*H' + R); 

  

x = xp + K*(z - H*xp); 

P = Pp - K*H*Pp; 

  

dis1  = x(1); 

dis3  = x(2); 

dis10 = x(3); 

dis12 = x(4); 
Figure 7.3: Main Kalman Filter code. 
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Figure 7.4 shows the main code which reads the real measurements from four 

sonars and passes them to SimpleKalmanFourState() to find the estimate of each of them. 

After receiving the estimate of the measurements, it presents them in four separate graphs. 

 

ResultKalman4 

clear all    

Samples = 500;  

X = zeros(Samples, 4); 

Z1 = zeros(Samples, 1); 

Z2 = zeros(Samples, 1); 

Z3 = zeros(Samples, 1); 

Z4 = zeros(Samples, 1);  

for k=1:Samples 

  z1 = GetMaxSonar1();   

  z2 = GetMaxSonar3(); 

  z3 = GetMaxSonar10(); 

  z4 = GetMaxSonar12(); 

   

  [dis1, dis3, dis10, dis12] = 

KalmanFourStateV(z1,z2,z3,z4); 

   

  X(k,:) = [dis1 dis3 dis10 dis12]; 

  Z1(k) = z1; 

  Z2(k) = z2; 

  Z3(k) = z3; 

  Z4(k) = z4; 

end  

dt = 1; 

t  = 0:dt:Samples-dt;  

figure  

subplot(2,2,1) 

plot(t, X(:,1),'r') 

hold on 

plot(t, Z1, 'k') 

legend('Estimation S1','Measurements S1') 

xlabel('Time(s)'); 

ylabel('Inche'); 

grid on 

title('Sonar 1');   
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subplot(2,2,2) 

plot(t, X(:,2),'y') 

hold on 

plot(t, Z2, 'k') 

legend('Estimation S2','Measurements S2') 

xlabel('Time(s)'); 

ylabel('Inche'); 

grid on 

title('Sonar 3');   

subplot(2,2,3) 

plot(t, X(:,3),'g') 

hold on 

plot(t, Z3, 'k')  

legend('Estimation S3','Measurements S3') 

xlabel('Time(s)'); 

ylabel('Inche'); 

grid on 

title('Sonar 10');   

subplot(2,2,4) 

plot(t, Z4, 'k') 

hold on 

plot(t, X(:,4),'b') 

legend('Estimation S4','Measurements S4') 

xlabel('Time(s)'); 

ylabel('Inche'); 

grid on 

title('Sonar 12');  
Figure 7.4: The code that Test Kalman Filter algorithm. This code passes four arguments which 

are the measurements coming from the sonars used in the wall following. 

 

The results of the Kalman Filter estimations are shown in the Figure 7.5, Figure 

7.6, Figure 7.7 and Figure 7.8. Kalman Filter gives a good estimation. It was able to avoid 

presenting the zero measurements in its estimation for all the sonars at the same time. 

However, there was a delay in the estimation, but this will not confuse the robot. In the first 

figure, the difference between the actual measurements were big, but the estimation of the 

real measurements were good. Even if it didn’t match the regular measurements, it didn’t 
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go to a level where it would confuse the robot. The estimation of sonar 3 and sonar 10 were 

closer to the “decision threshold”, which is the threshold beyond which the robot will make 

a decision. The decision can be halted if there is an obstacle less than ten inches ahead. 

Another decision might be to move away from the wall if the sonar on the right (sonar 10) 

measures a distance less than 15 inches. In the wall following algorithm, the front threshold 

is 10” and the side threshold is 15”. Nevertheless, the estimations were good and Kalman 

Filter eliminated most of the zeros. 

Using Kalman Filter to estimate the sonars measurements was efficient and it 

prevented the unreal measurements (zeros) from causing delay to the wall following 

algorithm. It is clear that there exist differences between the measurements and their 

estimations, as shown in Figure 7.5, Figure 7.6, Figure 7.7 and Figure 7.8. This algorithm 

produced a faster response. Additionally, the robot has more confidence about its decisions. 

The disadvantages of using Kalman Filter is that there is a delay in estimating the right 

value, especially when there is a big change in measurements which can be seen in the 

estimation of Sonar 1.  
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Figure 7.5: The zero removal algorithm refines the zero measurements from Sonar 1 using 

Kalman filter. 

 

 

Figure 7.6: The zero removal algorithm refines the zero measurements with Kalman filter. 

 

Minor delay 
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Figure 7.7: The zero removal algorithm refines the zero measurements with Kalman filter. 

 

 

Figure 7.8: The zero removal algorithm refines the zero measurements with Kalman filter. 

 

Using Kalman Filter here solves the problem of changing the wires with a shielded 

ones which would be more time consuming and also expensive. This would require many 
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hard hardware changes to the boards like soldering, change some connectors or move the 

boards to different place. Additionally, it might be that the problem will still exist even after 

make these hardware changes. For these reasons Kalman Filter was applied here.  

 

7.2 Localization Based on Kalman Filter 

In this section, two different levels of Extended Kalman Filter are presented. The 

first one is solving the problem of localization with one-dimensional Extended Kalman 

Filter. While the second level will present two-dimensional Extended Kalman Filter to 

solve the problem of localization of the robot. Both of them will use sensor fusion. Sonars 

and Encoders will be fused in Extended Kalman Filter in both levels in order to get a better 

result than using sonars or encoders individually. Both one-dimensional and two-

dimensional Extended Kalman Filter will be simulated using Matlab and tested on 

MCECS-Bot using the MRPT. The results of the tests will be presented as well as screen 

shots from the videos showing the real test are listed in the upcoming sections. A third level 

will be discussed theoretically. There will not be a real test for this level since implementing 

the Extended Kalman Filter for this level will be left as a future work.  

 

7.2.1 One-Dimensional Extended Kalman Filter 

In this level, Extended Kalman Filter is tested to find the estimate of the position 

on one coordinate (either on x-axis or on y-axis). Which means, there is no simultaneous 

update for the position on x-axis and y-axis. Therefore, the robot updates the distance on 
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y-axis (if it starts moving on y-axis) then updates the position on x-axis (if it strafes right 

or left). In this case, the rotation is not implemented here. However, the robot is still able 

to move right and left due to the sliding ability of the Mecanum wheels. Encoders and the 

front sonars will be used to estimate the robot position away from a wall in a room. As 

presented previously, when the motors are running, at least one of the sonars gives a zero 

measurement (refer to ultrasonic section in chapter five). On the other hand, the encoders 

have the problem of accumulating error over time. This problem becomes bigger with 

Mecanum wheels due to slippage (refer to Mecanum wheels section in chapter five). The 

solution is fusing the sensors and encoders, which eliminates the zero measurements of 

sonars and the accumulated error of encoders as well as finds the best estimate of the 

position that came from these sensors. This solution will enhance the performance of the 

robot (Actually, there is no comparison between using Extended Kalman Filter and not 

using it!). Additionally, it will be cost-effective because we don’t need to change the sonars, 

change the cables and/or add extra hardware parts to refine the signals.  

The test is simply putting the MCECS-Bot in a room and make it face one of the 

walls. Before the robot starts to move, it measures the distance from the front wall then 

initializes this distance as the distance from the wall. The sonars (as explained in the fifth 

chapter) are reliable and work well when the motors are not running. This is what made the 

wall distance initializing possible. When the robot starts approaching the wall, it will 

update EKF with encoder and sonar measurements. EKF has two main models; state 

transition model and observation or measurements model. Encoders’ measurements go to 

the state transition model, while sonars’ measurements go to the observation model. Figure 
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7.9 shows the steps of the Extended Kalman Filter (for more information, review EKF 

section in chapter four). 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.10 shows the poses of the robot in a room with the required measurements 

to apply the 1D EKF. As shown in this figure, the robot initializes the wall distance before 

it starts moving. Then the robot will find its position based on the measurements coming 

from encoders and sonars.  

Figure 7.9: The steps of Extended Kalman Filter [12]. 

I. Set the initial values: 

𝑋 0, 𝑃0 

II. Predict state and error covariance: 

𝑥 𝑘
− = 𝑓(𝑥 𝑘−1) 

𝑃𝑘
− = 𝐴𝑃𝑘−1𝐴

𝑇 + 𝑄 

III. Compute Kalman gain: 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅)−1 

IV. Compute Kalman filter estimate: 

𝑥 𝑘 = 𝑥 𝑘
− + 𝐾𝑘(𝑧𝑘 − ℎ(𝑥 𝑘

−)) 

V. Compute the error covariance: 

𝑃𝑘 = 𝑃𝑘
− + 𝐾𝑘𝐻𝑃𝑘

− 
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Figure 7.10: One dimensional Kalman Filter example. 

 

As presented in Figure 7.9, the Kalman Filter consists of five steps that are iterated 

whenever there are measurements being fed to Extended Kalman Filter. In order to use the 

Extended Kalman Filter, we need to define what the state transient and observation model 
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of the system, the state transition mapping matrix (A), and the measurements-state mapping 

matrix (H) are. Let’s first find the state space model equations of the system, which are: 

𝑥𝑘+1 =  𝑓(𝑥𝑘) + 𝑣𝑥 

𝑧𝑘 = ℎ(𝑥𝑘) + 𝑤𝑥 

In our case, the state of the system is the distance traveled on y-axis (or on x-axis). The 

current position equals the previous position plus the position measured by encoder as 

follows: 

𝑦𝑘+1 = 𝑦𝑘 + 𝐷𝐸𝑛𝑐𝑜𝑑𝑒𝑟                        Equation 7.1 

The MRPT gets the updated position from Arduino Mega (x, y and θ) away from the 

previous position. However, we need here only the additional distance traveled from the 

previous position (𝐷𝐸𝑛𝑐𝑜𝑑𝑒𝑟 in equation 7.1). In this case, the MRPT code was edited to 

find the difference between the current position and the old one. Equation 7.1 can be written 

in different form: 

𝑦𝑘+1 = 𝑦𝑘 + ∆𝑡 ∙ 𝑣𝑟,  where 𝑣𝑟 is the robot speed. 

Anyway, we used the equation 7.1 to develop the Extended Kalman Filter. From this 

equation, the state transient equation of the robot was found: 

𝑦𝑘+1 = 𝑦𝑘 + 𝐷𝐸𝑛𝑐𝑜𝑑𝑒𝑟 + 𝑣𝑥                    Equation 7.2 

In order to calculate the mapping matrix A, we need to find the Jacobian of f(x). 

𝜕𝑓

𝜕𝑥
= 1, which means A = 1 
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The mapping matrix in equation 7.2 equals one because the state here describes the 

position of the robot on an axis which is not changing to another state. Value 𝑣𝑥 is assumed 

here to be zero, because there is no error in describing the state of the robot while moving 

from one position to another.  

There is a relationship between the initial wall distance, updated distance by the 

sonars and the state of the robot which depends on the old the state and the updated 

measurements from encoders (see figure 7.10). This relationship can be represented in the 

following equation: 

𝑆1,12 = 𝐷𝑊𝑎𝑙𝑙 − 𝑦
𝑘
             Equation 7.3 

Where 𝑆1,12 is the distance from the front wall measured by the average of sonar 1 and 

sonar 12. While 𝐷𝑊𝑎𝑙𝑙 is the initial wall distance measured by the front sonar (𝑆1,12) before 

the robot starts moving. Equation 7.3 is used to derive the observation model of the one-

dimensional EKF. The observation model is: 

𝑆1,12𝑘 = 𝐷𝑊𝑎𝑙𝑙 − 𝑦𝑘 + 𝑤𝑘                Equation 7.4 

Equation 7.4 tells us that the updated measurement of the front wall equals the difference 

between the initial wall distance and the state of the robot plus the error of the sonars. It is 

obvious that it is not possible to extract H matrix from equation 7.4. Therefore, the Jacobian 

of the h(x) must be found.    

𝜕ℎ

𝜕𝑥
= -1, which means H = -1 

Q and R are found after experimenting with different values. These matrices have different 

effects on the estimate. When Q increases the weight of the measurements on the estimate 
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increases. The same thing happens when R decreases. Which means they have opposite 

influence on the behavior of the Extended Kalman Filter. So far, we found that A = 1, H = 

-1.  The best values for Q and R are 0.7 and 5.  

 

 Matlab Simulation of a One-Dimensional Extended Kalman Filter  

In order to find out that my derivation and my representation for the MCECS-Bot 

system is correct, a simulation of the system together with EKF was needed. Therefore, 

encoders and sonars are simulated as well as the system state of MCECS-Bot. Additionally, 

to make the simulated model as close as possible to the real system, the accumulated error 

of the encoders was added to the encoder’s measurements. On the other side, the zero 

measurements and noise of the sonars are added to their measurements as well. Figure 7.11 

shows the code that simulates encoder measurements. The same code is repeated but with 

no noise in order to simulate the ideal measurements of the encoders without noise for the 

purpose of comparison   (as shown in Figure 7.12).  

 

GetEncoder 

function E = GetEncoder() 

persistent first_Run w A0  

if isempty(first_Run) 

 A0 = 0; 

 w = 0; 

 first_Run = 1;   

end 

E = A0 + w; 

A0 = E+1; 

w = 0 + (2*rand(1,1)); 
Figure 7.11: The code that simulates the measurements of the encoders. 
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GetRealEncoder 

function R = GetRealEncoder() 

% 

% 

persistent first_Run 

persistent A0 

if isempty(first_Run) 

 A0 = 0; 

  

 first_Run = 1;   

end 

  

R = A0; 

A0 = R+1; 
Figure 7.12: The code that simulates the ideal measurements of the encoders. 

 

Figure 7.13 and Figure 7.14 do the same thing but with sonars. 

GetSonar12 

function z1 = GetSonar12() 

% 

% 

persistent first_Run w 

persistent A_1 

if isempty(first_Run) 

  A_1 = 50; 

  first_Run = 1;   

  w = 0; 

end 

z1 = A_1-w; 

A_1 = z1-1; 

w = randn(1,1); 
Figure 7.13: The code that simulates the measurements of sonar 12. 
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GetRealSonar 

function z1 = GetRealSonar() 

% 

% 

persistent first_Run w 

persistent A_1 

if isempty(first_Run) 

  A_1 = 50; 

  first_Run = 1;   

  w = 0; 

end 

z1 = A_1+w; 

A_1 = z1-1; 

w = 0; 
Figure 7.14: The code that simulates the measurements of sonar 12 but without noise or zero 

measurements. 

 

Figure 7.15 shows the code of the Extended Kalman Filter. It receives the 

measurements of the encoders and the sensors and returns the estimate.  

EKalman_1D 

function [D,Px] = EKalman_1D (S,Inc_Enc) 

% 

% 

persistent A H Q R Wd 

persistent x P 

persistent firstRun 

Wd = 50; 

z = S; 

if isempty(firstRun) 

  A = 1; 

  H = -1; 

   

  Q = 0.7;   % Increasing Q will make the estimate closer 

%to the measurements. Conrary, deceasing Q %decreases 

%the dependency on measurements/observations. 

  R = 5;   % If the measurements are meant to have more 

%effect on the estimate, matrix R should be decreased. 

  

  x = 0; 
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  P =  1; 

   

  firstRun = 1;   

end 

  

   

xp = A*(x+Inc_Enc); 

Pp = A*P*A' + Q; 

  

K = Pp*H'*inv(H*Pp*H' + R); 

  

x = xp + K*(z - (Wd-x)); 

P = Pp - K*H*Pp; 

D = x; 

Px   = P; 
Figure 7.15: Extended Kalman Filter code. 

 

Figure 7.16 lists the main code that receives the measurements of the encoders and 

sonars from their simulators and sends them to the EKF. Then, the main code receives the 

EKF estimate and presents it with all other measurements in a one figure.  

Result1DEKalman1D 

clear all  

dt = 0.2; 

t  = 0:dt:10; 

Encoder = 0; 

Samples = length(t); 

X   = zeros(Samples, 2); 

ZS  = zeros(Samples, 1); 

ZE1 = zeros(Samples, 1); 

ZE2 = zeros(Samples, 1); 

ZRE = zeros(Samples, 1); 

ZRS = zeros(Samples, 1); 

for k=1:Samples 

  S = GetSonar12(); 

  R_S = GetRealSonar(); 

  E = GetEncoder(); 

  R_E = GetRealEncoder(); 

  ZE1(k) = E; 
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  if (k<2) 

      E_k_1 = 0; 

      S = 50; 

  end 

  if (k == 5 || k == 10 || k == 18 || k ==24 ||k == 35|| k == 

40 || k == 45) 

      S = 0; 

  end 

  if (k > 1) 

      E_k_1 = ZE1(k-1); 

  end 

  Inc_Enc = E - E_k_1; 

  Encoder = Encoder + Inc_Enc; 

  [D,Px]  = Simple1DEKalman1D(S,Inc_Enc); 

  X(k,:)  = [D Px]; 

  ZS(k)   = S; 

  ZE2(k)  = E_k_1; 

  ZE1(k)  = Encoder; 

  ZRE(k)  = R_E; 

  ZRS(k)  = R_S; 

  if (ZS(k)<0) 

      ZS(k) = 0; 

  end 

end  

figure 

plot(t, ZE1, 'k--','LineWidth',2)  

hold on 

plot(t, ZRE, 'k+')  

plot(t, ZS, 'k:','LineWidth',2)  

plot(t, ZRS, 'kx')  

plot(t, X(:,1), 'ko','MarkerSize',10)  

title('Kalman Filter Estimation');  

xlabel('Time(s)'); 

ylabel('Inche'); 

xlabel('x-axis'); 

ylabel('y-axis'); 

legend('Encode measurements with noise','Real Encode 

measurements without noise','Sonar measurements with 

noise','Real Sonar measurements without noise','kalman 

Filter Estimate') 

grid on 
Figure 7.16: The main code of the one-dimensional EKF simulator. 
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Figure 7.17 shows the results of the Extended Kalman Filter estimates. It clearly 

shows the “zero measurements problem” of the sonars as well as the accumulated error of 

the encoders.  

 

Figure 7.17: One-dimensional EKF result. 

 

The goal of using Extended Kalman Filter is achieved here. It is clear that EKF 

eliminates the zero measurements of the sonars and the accumulated error of the encoders. 

  

 MRPT Results based on One-Dimension Extended Kalman Filter  

MRPT has a built-in Extended Kalman Filter. In other words, the steps shown in 

Figure 7.9 are implemented and ready to use in MRPT. However, the equations that 

describe the system model and all required variables are needed. In a detailed explanation, 

the MRPT needs equations, matrices and their dimensions in order to process them with 
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the built in EKF. Therefore, we had to update the code of MRPT with all these new 

modules. The state transition equation model and the observation model were already 

derived in the previous section. The information fed to EKF in MRPT are: 

1- State transition model: 𝑦𝑘+1 = 𝑦𝑘 + 𝐷𝐸𝑛𝑐𝑜𝑑𝑒𝑟 + 𝑣𝑥. 

2- Observation model: 𝑆1,12𝑘 = 𝐷𝑊𝑎𝑙𝑙 − 𝑦𝑘 + 𝑤𝑘. 

3- System matrices: A = 1, H = -1, Q = 0.7, R = 5. 

One of the MRPT features is adding a map for the robot environment in order to 

show the robot position on the map. Moreover, it will show the sonars’ beams (or cone) to 

show the robot sensing of its surrounding environment. The MRPT can show other objects 

and present them on the map, for instance; it shows the position of the robot based on 

EKF’s estimate, sonars or odometry. In my experiment, the robot was mounted over a small 

cart (The wheels weren’t in contact with the ground). There are dividers (represent walls) 

used to simulate the robot movements. When the wheels starts to spin, I push the wall 

against the robot so it can update its sonar measurements (As shown in Figure 7.18). This 

test is more secure than putting the robot on the ground and it is easier to collect the sensor 

data from the robot.  
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Figure 7.18: Running the test of the EKF. 

 

The same equations and models described by the previous section are applied here 

in the MRPT code. To review MRPT code please refer to Appendix I. When the MRPT 

program starts running, it will show a map for the basement floor. Four objects will be 

shown on the map right after the map appears. The first object, which is a yellow ball, 

represents the position of the robot based on the measurements coming from encoder. The 

second object, which is a blue ball, represents the position of the robot based on the sonars’ 

measurements. The third object, which is a green ball, represents the initial position of the 

robot.  The last object, which is a small red cart, represents the robot’s position based on 

the EKF estimates. There are only four sonars presented in these results. They were 

presented as a cone shape in front of the robot (Figure 7.19 shows the sonars’ cone). It is 

possible to use all the twelve sonars but in our experiment only sonar1, sonar3, sonar10 
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and sonar 12 were used. The reason why we presented only these sonars because I didn’t 

want them to be confused with other sonars if something would block them. I focused only 

on the sonars involved in the EKF algorithm at that moment.   

 

Figure 7.19: This window is produced by MRPT which is the map of the basement floor of the 

fab building.  

 

On the program terminal, the data related to each object are presented. Figure 7.20 

shows the MRPT program results that were presented on the terminal window that runs the 

MRPT code.  

Robot 

Sonars’ 

cone 

A ball 

represents the 

initial position 

of the robot 

Divider 

position 
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Figure 7.20: This is the terminal window that runs the MRPT code. As shown in this figure, the 

information related to the robot position based on the sonars and encoders as well as the EKF 

estimates are presented in this terminal. The EKF estimate is zero here because the robot didn’t 

start moving yet when this screen shoot was taken. The variable front_sonar = 2.865 and the 

variable initial front wall distance = 2.865 which means the robot is at the beginning of its path. 
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The result of the 1D EKF is presented on Figure 7.21, Figure 7.22 and Figure 7.23. 

 

Figure 7.21: The biggest object, which represents the robot, is produced by EKF. It follows the 

ball that represents the robot position calculated based on the sonars’ measurements. the two balls 

behind the robot are the initial position of the robot and the position of the robot based on the 

encoder’s measurements. The window on the left reviews the information related to these objects. 

Initial position 

of the robot 

Encoders’ 

position 

Sonars’ 

position 

The Robot 
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Figure 7.22: The first ball on the right (or the one that precedes the robot) is the robot’s position 

based on the encoder’s measurements. The ball that is behind the first ball is the position 

calculated based on the sonars’ measurements. It is obvious that the robot is affected by the 

sensors more than encoders. The EKF neglected the encoder accumulated error. The window on 

the left reviews the information related to this process.  

Initial position 
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Sonars’  

position 

Encoders’ 

position 

The Robot 
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Figure 7.23: The final position of the robot after it stopped moving. The robot position, which is 

based on the EKF estimates, is between the sonars’ based position and the encoders’ based 

position. It is closer to the Sonars because it has to eliminate the accumulated error of the 

encoders. The cone here is small because the robot is very close to the wall (the divider shown in 

Figure7.18).  
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The data shown in Figure 7.20 were printed to a CSV13 file in order to draw them 

using Matlab. Consequently, the results can be seen more clearly in Figure 7.24. 

 

 

Figure 7.24: The result of using 1D EKF. The sonars measurements were good. There was an 

accumulated error coming from encoders. The estimates are more affected by sonars than by 

encoders. 

 

 

 

                                                 

 

13 CSV stands for Coma Separated Values. This file is easier to read with matlab in order to present 

each data individually.  
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7.2.2 Two-Dimensional Extended Kalman Filter 

In this level, EKF is used to find the best estimates of robot’s position on x-axis and 

y-axis simultaneously. Therefore, the state of the robot consists of x and y. Here, a 

simulated and a real test are presented. Adding the simulated results makes understanding 

the system and its behavior easier. Additionally, Matlab code is much easier and less 

complicated than the MRPT code. The reader can easily follow the code and understand 

the EKF algorithm. The Matlab code of EKF is about 100 lines while MRPT code has more 

than 2500 lines! The simulation and real results are for the same system and for the same 

experiment. The experiment is putting the robot in a room and trying to find the estimate 

of the robot position based on the odometry and the sonars (which are front and right sonars 

or left and back sonars) measurements. Figure 7.25 shows the pose of the robot in a room. 

The solution is similar to the solution of the one-dimensional EKF. Simply, if the robot is 

about to move forward the distance from the front sonars should be initialized. Later, if it 

is about to move right/left the distance from the right/left wall should be initialized. The 

new updated measurements from the front/rear or right/left sonars equals the subsequent 

differences between the initial wall distance and the state of the robot which depends on 

the previous state and the distances updated based on odometry. 
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Figure 7.25: The robot's different poses while moving from y-axis to x-axis. 

 

The same steps taken in the previous section that related to deriving the EKF 

equation will be followed here. The equations that describe the system state are: 

𝑥𝑘+1 = 𝑥𝑘 + 𝐷𝑥_𝐸𝑛𝑐𝑜𝑑𝑒𝑟       Equation 7.5           

𝑦𝑘+1 = 𝑦𝑘 + 𝐷𝑦_𝐸𝑛𝑐𝑜𝑑𝑒𝑟        Equation 7.6       

As explained before, the encoder measurements coming from Arduino are updated 

based on the distance from the initial position. In equation 7.5 and equation 7.6, the 
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difference between previous position and current position is needed. These two equations 

lead us to find the state transition model which is shown in the equation below; 

[
𝑥
𝑦]𝑘

= [
𝑥𝑘 + 𝐷𝑥_𝐸𝑛𝑐𝑜𝑑𝑒𝑟

𝑦𝑘 + 𝐷𝑦_𝐸𝑛𝑐𝑜𝑑𝑒𝑟
] + [

𝑣𝑥

𝑣𝑦
]          Equation 7.7 

𝑣𝑥 and 𝑣𝑦 in equation 7.7 are assumed to be zero because there is no error while transiting 

from state to state. It is not possible to find the A matrix from the equation above. Therefore, 

the Jacobian of the state transition equation is needed to find A, which is shown below:  

𝐴 =

[
 
 
 
 
𝜕𝑓1
𝜕𝑥

𝜕𝑓1
𝜕𝑦

𝜕𝑓2
𝜕𝑥

𝜕𝑓2
𝜕𝑦 ]

 
 
 
 

= [
1 0
0 1

] 

The relationship between the encoders and sonars can be listed in the following equations: 

𝑆9,10 = 𝐷𝑥_𝑊𝑎𝑙𝑙 − 𝑥𝑘              Equation 7.8 

𝑆1,12 = 𝐷𝑦_𝑊𝑎𝑙𝑙 − 𝑦𝑘           Equation 7.9 

𝑆9,10 is the average of the measurements coming sonar 9 and sonar 10 which updates the 

distance of the right wall (or left wall in case that sonar 3 and sonar 4 are used). On the 

other side, 𝑆1,12 is average of the measurements coming from sonar 1 and sonar 12 which 

updates the distance from the front wall (or back wall in case sonar 6 and sonar 7 are used). 

𝐷𝑥_𝑊𝑎𝑙𝑙 and 𝐷𝑦_𝑊𝑎𝑙𝑙 are the initial distance of the right and front walls based on the front 

and right sonars before the robot started to move. The Equations 7.8 and 7.9 lead to find 

the observation model of MCECS-Bot, which is shown below: 

[
𝑆9,10

𝑆1,12
]
𝑘

=  [
𝐷𝑥_𝑊𝑎𝑙𝑙 − 𝑥𝑘

𝐷𝑦_𝑊𝑎𝑙𝑙 − 𝑦𝑘
] + [

𝑤𝑥

𝑤𝑦
]             Equation 7.10 
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𝑤𝑥 and 𝑤𝑦 are the errors of sonars measurements. Similar to A, the value of matrix H has 

to be calculated using the Jacobian method as follows: 

𝐻 =

[
 
 
 
 
𝜕ℎ1

𝜕𝑥

𝜕ℎ1

𝜕𝑦
𝜕ℎ2

𝜕𝑥

𝜕ℎ2

𝜕𝑦 ]
 
 
 
 

= [
−1 0
0 −1

] 

Sensor fusion is also applied in this problem for the same reasons as explained in 

the one-dimensional EKF section. The reasons for using the EKF is to eliminate the zero 

measurements of the sonars and the accumulated error of the encoders. The last piece in 

EKF is to find Q and R matrices. As explained before, one way to find the best values of 

these matrices is by experimenting with different values and observing their effects on the 

system’s response. In the two-dimensional EKF, the best values were the following: 

𝑄 = [
14 0
0 14

] 

𝐻 = [
12 0
0 12

] 
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 Two-Dimensional Extended Kalman Filter Matlab Simulation 

The same reasons of simulating the 1D EKF on Matlab, the 2D EKF is simulated 

here. In Figure 7.26 and Figure 7.27 the codes that are responsible for generating the 

encoder measurements on the x-axis and y-axis are presented. The code simulates the 

accumulated error of the encoder. In Figure 7.28 and Figure 7.29 the software codes that 

tell us the ideal x and y positions, respectively, are presented. We can use these ideal values 

to compare them with the odometry results.  

GetEncoder_X 

function z2 = GetEncoder_X(b) 

persistent A_1 A_2 A_3 A_4 A_5 C A_6 B A_7 w 

if (b<11) 

   if (b==1)  

        A_1 = 0; 

        w = 0; 

   end 

z2 = A_1+w; 

w = rand(1,1); 

A_2 = z2; 

elseif(b>10 && b<21) 

    w = 2* rand(1,1); 

    z2 = A_2+w; 

    A_2 = z2+1; 

    A_3 = z2; 

elseif (b > 20 && b < 40) 

    w = rand(1,1); 

    z2 = A_3 + w; 

    A_4 = z2; 

elseif (b>39 && b<55)  

    w = 2* rand(1,1); 

    z2 = A_4+w; 

    A_4 = z2 + 1; 

    A_5 = z2;       

elseif (b>54 && b< 75) 

    w = rand(1,1); 

    z2 = A_5 + w; 

    A_6 = z2; 
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elseif (b>74 && b<85) 

   w = 2*rand(1,1); 

   z2 = A_6+w; 

   A_6 = z2 +1.6;  

   A_7 = z2;     

else 

    w = rand(1,1); 

    z2 = A_7+w;    

end 
Figure 7.26: The code that simulates the odometry measurements on x-axis. The measurement 

variable  b (in the code) is passed by the main code. It represents the order of the measurement. It 

is used to generate different area of measurements. As seen later in EKF results, the encoder 

results will diverge from the real ones. Additionally, this code generates an error that is added to 

the new measurements. This error represented by w. 

 

GetEncoder_Y 

function z1 = GetEncoder_Y(b) 

persistent w  

persistent A_1 A_2 A_3 A_4 A_5 C B A_6 A_7 A_8 

if (b<11) 

   if (b==1)  

        A_1 = 0; 

        w = 0; 

   end 

z1 = A_1+w; 

A_1 = z1+1; 

w = rand(1,1); 

A_2 = z1; 

% B = 0;  

elseif(b>10 && b<21) 

    w = rand(1,1); 

    z1 = A_2+w; 

    A_3 = z1; 

%     B = B+0.2; 

elseif (b > 20 && b < 40) 

    w = rand(1,1); 

    z1 = A_3 + w; 

    A_3 = z1 + 1; 

    A_4 = z1; 

%     C = 1; 

elseif (b>39 && b<55)  

    w = rand(1,1); 



254 

 

    z1 = A_4+w; 

    A_5 = z1; 

%     C = C+0.2; 

elseif (b>54 && b< 65) 

    w = rand(1,1); 

    z1 = A_5 + w; 

    A_5 = z1 + 3; 

    A_6 = z1+1.8;    

elseif (b>64 && b<75) 

    w = rand(1,1); 

    z1 = A_6 + w; 

    A_6 = z1 + 2.7;    

    A_7 = z1+1; 

    B= 0; 

elseif (b>74 && b<85) 

    w = rand(1,1); 

    z1 = A_7 + w;% + B; 

%     B= B + 1; 

    A_8 = z1; 

else 

    w = rand(1,1); 

    z1 = A_8+w;%B; 

    B= B + 1;   

end 
Figure 7.27: The code that simulates the odometry measurements on y-axis. Variable b and w 

work in similar way as in GetEncoder_X. 

 

GetRealX 

function z2 = GetRealX(b) 

% 

% 

persistent w  

  

persistent A_1 A_2 A_3 A_4 A_5 C A_6 B A_7 

if (b<11) 

   if (b==1)  

        A_1 = 0; 

        w = 0; 

   end 

z2 = A_1+w; 

%A_1 = z2-1; 

w = 0; 
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A_2 = z2; 

elseif(b>10 && b<21) 

    w = 0; 

    z2 = A_2-w; 

    A_2 = z2+1; 

    A_3 = z2; 

%     B=0.5; 

elseif (b > 20 && b < 40) 

    w = 0; 

    z2 = A_3 + w; 

    A_4 = z2; 

%     B = B+0.5; 

%     C =0.5;  

elseif (b>39 && b<55)  

    w = 0; 

    z2 = A_4+w; 

    A_4 = z2 + 1; 

    A_5 = z2;       

elseif (b>54 && b< 75) 

    w = 0; 

    z2 = A_5 + w; 

    A_6 = z2; 

%     C = C + 0.5;  

elseif (b>74 && b<85) 

   w = 0; 

   z2 = A_6+w; 

   A_6 = z2 +1.6;  

   A_7 = z2;     

else 

    w = 0; 

    z2 = 40+w; 

%     A_7 = z2+0.4; 

    

end 
Figure 7.28: The code that simulates the real position of the robot on x-axis. Variable b works in 

similar way as it does in GetEncoder_X. Variable w here equals zero as there is no error. 
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GetRealY 

function z1 = GetRealY(b) 

persistent A_1 A_2 A_3 A_4 A_5 C B A_6 A_7 w 

if (b<11) 

   if (b==1)  

        A_1 = 0; 

        w = 0; 

   end 

z1 = A_1+w; 

A_1 = z1+1; 

w = 0; 

A_2 = z1; 

elseif(b>10 && b<21) 

    w = 0; 

    z1 = A_2+w; 

    A_3 = z1; 

elseif (b > 20 && b < 40) 

    w = 0; 

    z1 = A_3 + w; 

    A_3 = z1 + 1; 

    A_4 = z1; 

elseif (b>39 && b<55)  

    w = 0; 

    z1 = A_4+w; 

    A_5 = z1; 

elseif (b>54 && b< 65) 

    w = 0; 

    z1 = A_5 + w; 

    A_5 = z1 + 3; 

    A_6 = z1+1.8;    

elseif (b>64 && b<75) 

    w = 0; 

    z1 = A_6 + w; 

    A_6 = z1 + 2.7;    

    A_7 = z1+1; 

elseif (b>74 && b<85) 

    w = 0; 

    z1 = 80 + w;% + B; 

else 

    w = 0; 

    z1 = 80+w; 

end 
Figure 7.29: The code that simulates the real position of the robot on y-axis. Variable b works in 

similar way as it does in GetEncoder_X. w here equals zero as there is no error. 
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Figure 7.30 and Figure 7.31 show the codes that simulate the sonar measurements 

which are sonar1 (the front sonar) and sonar10 (the right sonar). The codes simulate these 

measurements with a zero measurements as well as with a noise to simulate a real sonar 

response.  Figure 7.32 and Figure 7.33 show the codes that simulate the sonar 

measurements but without any noise or zero measurements. It is useful to have these 

measurements for comparison purpose.  

GetSonar1 

function z1 = GetSonar1(b) 

persistent A_1 A_2 A_3 A_4 A_5 w 

if (b<11) 

   if (b==1)  

        A_1 = 80; 

        w = 0; 

   end 

z1 = A_1+w; 

A_1 = z1-1; 

w = 1 * randn(1,1); 

A_2 = z1; 

elseif(b>10 && b<21) 

    w = 1 * randn(1,1); 

    z1 = A_2+w; 

    A_3 = z1; 

elseif (b > 20 && b < 40) 

    w = 1 * randn(1,1); 

    z1 = A_3 + w; 

    A_3 = z1 - 1; 

    A_4 = z1; 

elseif (b>39 && b<55)  

    w = 1 * randn(1,1); 

    z1 = A_4+w; 

    A_4 = z1; 

elseif (b>54 && b< 65) 

    w = 1 * randn(1,1); 

    z1 = A_4 + w; 

    A_4 = z1 - 4; 

    A_5 = z1; 

elseif (b>64 && b<75) 

    w = 1 * randn(1,1); 
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    z1 = A_5 + w; 

    A_5 = z1 - 1.8;     

else 

    w = 1 * randn(1,1); 

    z1 = 0+w; 

end 
Figure 7.30: The code that simulates sonar1 measurement which is the distance from the front 

wall. Variables b and w work in a similar way as in GetEncoder_X. 

 

GetSonar10 

function z2 = GetSonar10(b) 

persistent w  

  

persistent A_1 A_2 A_3 A_4 A_5 

if (b<11) 

   if (b==1)  

        A_1 = 40; 

        w = 0; 

   end 

z2 = A_1+w; 

%A_1 = z2-1; 

w = 0.5 * randn(1,1); 

A_2 = z2; 

elseif(b>10 && b<21) 

    w = 0.5 * randn(1,1); 

    z2 = A_2+w; 

    A_2 = z2-1; 

    A_3 = z2; 

elseif (b > 20 && b < 40) 

    w = 0.5 * randn(1,1); 

    z2 = A_3 + w; 

    A_4 = z2; 

elseif (b>39 && b<55)  

    w = 0.5 * randn(1,1); 

    z2 = A_3+w; 

    A_3 = z2 - 1; 

    A_4 = z2; 

elseif (b>54 && b< 75) 

    w = 0.5 * randn(1,1); 

    z2 = A_4 + w; 

    A_5 = z2; 

elseif (b>74 && b<85) 
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   w = 0.5 * randn(1,1); 

   z2 = A_5+w; 

   A_5 = z2 -1.9;  

else 

    w = 0.5 * randn(1,1); 

    z2 = 0+w; 

end 
Figure 7.31: The code that simulates sonar10 measurement which is the distance from the right 

wall. b and w work in similar way as in GetEncoder_X. 

 

GetSonar1_Real 

function z1 = GetSonar1_Real(b) 

persistent w  

  

persistent A_1 A_2 A_3 A_4 A_5 

if (b<11) 

   if (b==1)  

        A_1 = 80; 

        w = 0; 

   end 

z1 = A_1+w; 

A_1 = z1-1; 

w = 0; 

A_2 = z1; 

elseif(b>10 && b<21) 

    w = 0; 

    z1 = A_2+w; 

    A_3 = z1; 

elseif (b > 20 && b < 40) 

    w = 0; 

    z1 = A_3 + w; 

    A_3 = z1 - 1; 

    A_4 = z1; 

elseif (b>39 && b<55)  

    w = 0; 

    z1 = A_4+w; 

    A_4 = z1; 

elseif (b>54 && b< 65) 

    w = 0; 

    z1 = A_4 + w; 

    A_4 = z1 - 4; 

    A_5 = z1; 
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elseif (b>64 && b<75) 

    w = 0; 

    z1 = A_5 + w; 

    A_5 = z1 - 1.8;     

else 

    w = 0; 

    z1 = 0+w; 

    

end 
Figure 7.32: The code that simulates the measurements of the front sonar without noise or zero 

measurements. Therefore, w equals zero here. 

 

GetSonar10_Real 

function z2 = GetSonar10_Real(b) 

% 

% 

persistent w  

  

persistent A_1 A_2 A_3 A_4 A_5 

if (b<11) 

   if (b==1)  

        A_1 = 40; 

        w = 0; 

   end 

z2 = A_1+w; 

%A_1 = z2-1; 

w = 0; 

A_2 = z2; 

elseif(b>10 && b<21) 

    w = 0; 

    z2 = A_2+w; 

    A_2 = z2-1; 

    A_3 = z2; 

elseif (b > 20 && b < 40) 

    w = 0; 

    z2 = A_3 + w; 

    A_4 = z2; 

elseif (b>39 && b<55)  

    w = 0; 

    z2 = A_3+w; 

    A_3 = z2 - 1; 

    A_4 = z2; 
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elseif (b>54 && b< 75) 

    w = 0; 

    z2 = A_4 + w; 

    A_5 = z2; 

elseif (b>74 && b<85) 

   w = 0; 

   z2 = A_5+w; 

   A_5 = z2 -1.9;  

else 

    w = 0; 

    z2 = 0+w; 

end 
Figure 7.33: The code that simulates the measurements of the right sonar without noise or zero 

measurements. Therefore, w equals zero here. 

 

Figure 7.34 shows the code of the 2D EKF. It receives the encoders’ measurements 

(on x-axis and on y-axis) and the sonar data (the front sonar and the right sonar). Then, it 

return the estimate of the robot position on the (x, y) coordinate.  

EKalman_2D 

function [Dx, Dy] = EKalman_2D(SF, SR, Inc_Enc_x, 

Inc_Enc_y) 

persistent A H Q R Wd_x Wd_y 

persistent x P 

persistent firstRun 

Wd_x = 40; 

Wd_y = 80; 

z = [SR SF]'; 

if isempty(firstRun) 

  A = 1 * eye(2); 

  H = [-1 0; 

           0 -1]; 

  Q = 14 * eye(2);   % Increasing Q will make the 

estimate %closer to the measurements. Contrary, 

decreasing Q %decreases the dependency on 

measurements/observations. 

  R = 12 * eye(2);   % If the measurements are meant to 

%have more effect on the estimate, matrix R should be 

%decreased. 
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  x = [0 0]'; 

  P =  25 * eye(2); 

  firstRun = 1;   

end  

xp = A*(x+[Inc_Enc_x Inc_Enc_y]'); 

Pp = A*P*A' + Q; 

  

K = Pp*H'*inv(H*Pp*H' + R); 

  

x = xp + K*(z - ([Wd_x Wd_y]' - [x(1)  x(2)]')); 

P = Pp - K*H*Pp;  

Dx = x(1); 

Dy = x(2); 
Figure 7.34: Two-Dimensional Extended Kalman Filter code. 

 

Figure 7.35 shows the main code that calls all the functions from the above figures, 

obtains the encoders’ and sonars’ measurements, and passes them as arguments to the 

EKalman_2D. Then, it receives the estimate of the robot position. Eventually, it present the 

results of the 2D EKF with all the measurements from the encoders and sonars beside the 

measurements without noise.  

Result2DEKalman 

clear all 

dt = 0.2; 

t  = 0:1:90; 

Encoder = 0; 

Samples = length(t); 

  

X       =   zeros(Samples, 2); 

ZS_F    =   zeros(Samples, 1); 

Z2      =   zeros(Samples, 1); 

ZS_R    =   zeros(Samples, 1); 

Z_Ex    =   zeros(Samples, 1); 

Z_Ey    =   zeros(Samples, 1); 

Z_Ex_k_1=   zeros(Samples, 1); 

Z_Ey_k_1=   zeros(Samples, 1); 

Z_Rx    =   zeros(Samples, 1); 
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Z_Ry    =   zeros(Samples, 1); 

Z_RS_F  =   zeros(Samples, 1); 

Z_RS_R  =   zeros(Samples, 1); 

D_R     =   zeros(Samples, 2); 

b       = 0;   

for k=1:Samples 

   

  b = b+1; 

  

  SR = GetSonar10(b); 

  SF = GetSonar1(b); 

   

  E_x = GetEncoder_X(b); 

  E_y = GetEncoder_Y(b); 

  R_x = GetRealX(b);  

  R_y = GetRealY(b); 

   

  Real_FS = GetSonar1_Real(b); 

  Real_RS = GetSonar10_Real(b); 

     

  Z_Ex(k)  = E_x; 

  Z_Ey(k)  = E_y; 

   

  if (k<2) 

      E_k_1_x = 0; 

      E_k_1_y = 0; 

      SF = 80; 

      SR = 40; 

  end 

   

  if (k > 1) 

      E_k_1_x = Z_Ex(k-1); 

      E_k_1_y = Z_Ey(k-1); 

  end 

   

  Inc_Enc_x = E_x - E_k_1_x; 

  Inc_Enc_y = E_y - E_k_1_y; 

   

  [Dx, Dy] = EKalman_2D(SF, SR, Inc_Enc_x, 

Inc_Enc_y); 

   

  

  if (k == 5 || k == 10 || k == 18 || k ==24 ||k == 45|| k == 

50 || k == 65 || k == 77) 
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      SR = 0; 

      %SF = 0; 

  end 

  if (k == 15 || k == 20 || k == 25 || k ==30 ||k == 35|| k == 

55 || k == 70 || k == 80) 

      %SR = 0; 

      SF = 0; 

  end 

  ZS_F(k)     = SF; 

  ZS_R(k)     = SR; 

  Z_Rx(k)     = R_x; 

  Z_Ry(k)     = R_y; 

  Z_Ex_k_1(k) = E_k_1_x; 

  Z_Ey_k_1(k) = E_k_1_y; 

  D_R(k,:)    = [Dx, Dy]; 

  Z_RS_F(k)   = Real_FS; 

  Z_RS_R(k)   = Real_RS; 

  

end 

figure 

plot(ZS_R, ZS_F, 'kx:','MarkerSize',10)  

hold on 

plot(Z_RS_R, Z_RS_F, 'k.','LineWidth',2)  

plot(Z_Ex, Z_Ey, 'k+')  

plot(Z_Rx, Z_Ry, 'k--','LineWidth',2)   

plot(D_R(:,1), D_R(:,2), 'ko-','MarkerSize',10)  

  

% figure 

% plot(Z_Ex,Z_Ey , 'b+')  

% hold on 

% plot(Z_Rx, Z_Ry, 'k+')  

% plot(t, Z_Rx, 'k+')  

% plot(t, Z_Ey, 'bo')  

  

legend('Sonar Measureents with noise','Real Sonar 

Measureents without noise','Encoder Measureents with 

noise','Real Encoder Measureents without noise', 'kalman 

Filter Estimates') 

  

xlabel('x-axis'); 

ylabel('y-axis'); 

grid on 
Figure 7.35: The main code that coordinates the process of simulating 2D EKF. 
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The results of the 2D EKF is shown in Figure 7.36. 

 

Figure 7.36: The result of the 2D EKF.  

 

It is clear in the previous figure that the encoder measurements are off from the real 

position. The lines that go from the sonar measurements towards x and y axis represent the 

zero measurements of the sonars. The result shows us that Extended Kalman Filter did a 

good job with fusing these two sensors and combined their best performance (strengths). 

The result was an estimate without the zero measurements of the sonars and the 

accumulated error of the encoders.  
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 Two-Dimensional Extended Kalman Filter MRPT Results14 

The same procedures I did in section “7.2.1.2 One-Dimension Extended Kalman 

Filter MRPT Results” are followed here. The difference is that the system became more 

complicated and it is now a two-dimension instead of a one-dimension system. The 

equations derived in the previous section will be initialized in the MRPT code. The 

information fed to EKF in MRPT are: 

1- State transition model: [
𝑥
𝑦]

𝑘
= [

𝑥𝑘 + 𝐷𝑥_𝐸𝑛𝑐𝑜𝑑𝑒𝑟

𝑦𝑘 + 𝐷𝑦_𝐸𝑛𝑐𝑜𝑑𝑒𝑟
] + [

𝑣𝑥

𝑣𝑦
]. 

2- Observation model: [
𝑆9,10
𝑆1,12

]
𝑘
= [

𝐷𝑥_𝑊𝑎𝑙𝑙 − 𝑥𝑘

𝐷𝑦_𝑊𝑎𝑙𝑙 − 𝑦𝑘
] + [

𝑤𝑥

𝑤𝑦
]. 

3- System matrices: A = [
1 0
0 1

], H =[
−1 0
0 −1

], Q = [
14 0
0 14

],  

R = [
12 0
0 12

]. 

The same way that the EKF 1D was tested in the 1D section is used to test the 

algorithm of 2D EKF. There are two dividers (moving walls) used to simulate the robot 

approach towards them. The robot first received a command to move forward then received 

another command to move right. The information was presented in the Linux terminal 

                                                 

 

14 Unfortunately, one of the Motor controllers (the one that is controlling the rear wheels) stopped 

and the only way to fix it is to send it to the manufacturer. This will take long time and I have to submit the 

thesis as required on time. Fortunately, strafing sliding movements have the same speed as moving 

forward/backward in Mecanum wheels. Therefore, when the MRPT send the command to strife left or write, 

the Arduino will control the front wheels to move forward and send the forward speed as a sliding speed. 

This is used in MRPT as sliding speed to be fed to EKF. 
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window when the MRPT code were run. Additionally, all the data were saved in a CSV file 

extension in order to represent the data to be used later by Matlab. The same objects 

appeared here, which are three balls representing the robot’s initial position and the robot’s 

position based on the encoders and the sonars, and the fourth object represents the robot’s 

position based on the EKF estimates.  The results are shown in Figure 7.37, Figure 7.38 

Figure 7.39, Figure 7.40 and Figure 7.41. 

 

Figure 7.37: The robot is now stationary. Probably, it is taking measurements using sonars and 

initializing the front wall and the right wall distances. This happens when the robot receives a 

command to move. The sonars cone is wider here because the sonars used here are different than 

the sonars used with 1D EKF. The sonars used in the 1D EKF were sonar1, sonar2, sonar11 and 

sonar12. In 2D EKF, the sonars used are sonar1, sonar3, sonar10 and sonar12. The reason is 

because in 2D EKF the robot is detecting walls or objects in different directions which is not only 

detecting the objects that are in the front of the robot as assumed in 1D EKF.  

Initial position 

of the robot 

Wall’s 

position 

The Robot 
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Figure 7.38: The first step of the robot is shown in the current figure. This figure shows that the 

position based on the sonars was updated but the one based on the encoders was not updated yet. 

However, the robot followed the sonars. 

Initial position 

of the robot 

Sonars’ 

position 
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Figure 7.39: New object is shown here, which is the position of the robot based on the encoders’ 

measurements.  
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Figure 7.40: The robot's position based on sonars' measurements is updated here. The robot’s 

position is closer to that based on sonars rather than that based on encoders. This is happening 

because the robot is affected by measurements (sonars) more than by the old estimate. This can be 

modified if the results is not satisfactory by changing the value of matrices R and/or Q.  
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Figure 7.41: The robot start to move right here. Both position based on encoders' and sonars' were 

updated here. 
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Figure 7.42: The last position of the robot. The estimate was closer to sonars' measurements. In 

other words, it didn't affected by the accumulated error of the encoders. 

 

The CSV file is drown by Matlab and shown in Figure 7.43. 
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Figure 7.43: As shown, the estimate was little bit affected by the wrong measurements of the 

sonars. However, it wasn't affected for long time. The final estimation of the robot’s position on 

x-axis is smaller than the one based on right sonar’s measurements. 
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 Conclusion, Future Work and My Contribution 

This is the last chapter in this thesis. A conclusion to the previous chapters, plans 

for the future work and what my contribution to this project was are listed in this chapter. 

 

8.1 Conclusion 

Kalman Filter is one of the most important algorithms that have been used with 

robots’ localization. It has survived for more than half decade and is still applicable for 

robotic applications. Figure 8.1 shows a quick review of the structure and the content 

presented in this thesis. This thesis covered different topics that related to Kalman Filter. 

The diversity of examples give the readers a clear understanding to these different 

algorithms and concepts.  Complicated subjects become easier to digest with easier and 

practical examples. Moreover, these examples are related to our robot. When the subjects 

become more advanced and closer to Kalman filter, the examples were about MCECS-bot 

and made from real data collected during robot operation.  

Matlab was used to simulate these data beside the code that was used to test the 

robot (I mean MRPT code). The reason of giving such simulations is because Matlab code 

is easier and shorter than C++ code. Different scenarios were simulated with Matlab. These 

scenarios were presented with different filters before introducing Kalman Filter to them. 

This will clarify and show the importance of Kalman Filter. In this thesis, it has been proved 

that Kalman filter is a good algorithm to be used with linear and nonlinear systems. Kalman 

Filter was a good “refiner” when it comes to refine the information collected form sensors 

from noise. That is, because the gain of Kalman Filter is changing every recursion (it is not 
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fixed as in other filters like LPF). Additionally, Kalman Filter was able to fuse the sensors 

information and extract their strength. This is similar to combine sensors to a one more 

accurate sensor. This feature was successfully tested in Matlab and applied on MCECS-

Bot. The code and hopefully my thesis will be available to other student in order to give 

them experience with MCECS-Bot and allows to improve upon my work.  

 
Figure 8.1: The structure of Mobile Robot Localization based on Kalman Filter thesis. 
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When a comparison is done between MCECS-Bot and other guide robots, it is 

obvious that the system of MCECS-Bot is more advanced. MCECS-Bot is equipped with 

better sensors when it comes to quantity and quality. MCECS-Bot has Mecanum wheels 

which is the main advantage and the best feature of its base. The robot has more freedom 

of base motion and body behavior than traditional guide robots. It has more means to solve 

the localization problems that will be encountered by MCECS-Bot during its operation. 

This project will attract students to work on navigation and other guide-bots functionalities 

in the future.  

Whatever listed in this thesis will be a good resource for future student. I just have 

opened the door of navigation-related research. Therefore, my colleges don’t have to start 

it from zero. The MRPT code is a good program that can be used and improved for 

MCECS-Bot. It is not that much complicated as we thought before. I believe that MRPT 

will be easier to work and experience with for other future students. The 1D EKF and/or 

2D EKF are pieces needed to be put together in order to have a complete localization and 

navigation system for the MCECS-Bot. In the future work section, I will state how to 

implement a complete localization system based on EKF which takes its information from 

the map and the sensors.  

 One of the main goals of having this robot is education about guide-bot type of 

robots. Actually, educational robots are very simple like a robot arm or a sonar-based 

mobile robot. Guide-bots are sophisticated robots build by commercial companies or top 

universities and their internal contents is not presented to external audiences and definitely 

not treated as an educational material. In this sense MCEC-Bot and this thesis are a unique 
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concept that can find no counter-part in the world – create a sophisticated guidebot that 

serves also educational mission and that hardware and software can be completely 

reproduced by other universities and even high schools in future. All documentation and 

software will be available to others outside PSU with the aid of internet. In addition, our 

robot can be also controlled remotely by external users located all over the world. They 

will be able to use Kinect and cameras to see what the robot actually sees in the building. 

Does this experience affect the students’ interest about the robots? Is it good for our robot 

to be surrounded by other students other than the students of PSU? Is it good for the 

engineering department to be an interesting place because of such projects? I believe the 

answers for these questions will be “yes”.  

 

8.2 Future Work 

There are different areas in MCECS-Bot need to be improved and updated in the 

future. I will not write about the people interaction, the robot physical look or the upper 

part mechanical parts as they are topics of research of another student. Here, I will state 

whatever related to robot’s localization, which includes whatever pieces that combine the 

robot base. The areas that need to be improved are: 

8.2.1 Sonars 

The sonars have the problem of getting zero measurements as explained in chapter 

five. The solution now is using KF as a refiner to remove the noise from the coming signals. 

This method seems to be good but it would be better if there exist a hardware solution to 

this issue. First and foremost, let’s specify what the noise source is in our system. Because 
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there is no noise when the robot is stationary and the noise appeared when the robot started 

to move, the sources of noise are motor controllers, cables that supply power to motors and 

the motors themselves. Accordingly, I recommend the following: 

1- Replace the data cables of the sonars with a shielded wires. This will prevent or 

reduce the signal interfering from the motor controllers and the power cables as 

well as the noise coming from the motors themselves. Otherwise, a shield must 

surround the data cables coming from sonars. 

2- The Arduino boards should be moved away from the noise source (the three 

main items I mentioned above).  

3- The new shield should be connected to the battery’s ground. 

4- Sonars’ orientation must point in parallel with the ground. Therefore, the angle 

between sonars’ orientation and the ground level is not bigger than 5 degree. 

This will prevent having echoes reflected from the ground. 

 

8.2.2 Encoders 

Currently, only two encoders are being used. For exploiting the advantages of 

Mecanum wheels, all encoders should be used. The figure (Figure 8.2) below reminds us 

of the features of Mecanum wheels. From this picture, multiple profiles can be extracted 

for encoders.  
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Figure 8.2: Different movement profiles of Mecanum wheels [23]. 

 

8.2.3 Battery and Velocity Indicator 

The battery needs an indicators which can be LEDs that indicate the voltage level 

in the battery. Moreover, an input can be taken from each cell’s terminal. This input can be 

interpreted in Arduino and presented later on the main monitor. Speed can be presented 

through the main monitor or by using a separate screen that shows the speed all the time.  
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8.2.4 Advanced Localization based on Extended Kalman Filter 

The localization methods presented in chapter seven were about using EKF inside 

a room or in a short corridor. The one presented here is a robot’s localization in a building 

map. Simply, using EKF to estimate the robot’s position in a room but the initial position 

was in a different room. The information coming from encoders will be used to estimate 

the global position. On the other side, the information coming from the sonars is used to 

estimate the local position. Combining the global position with the local position using 

EKD will solve the problem of robot’s localization in a building map. Additional data can 

be accessed in the Samsung Galaxy tablet, which are accelerometer and compass data. 

Figure 8.3 shows a map of a building (arbitrary map) with applying the new method of 

robot’s localization on it. Figure 8.4 shows the information accessed from the tablet (This 

was done by Rami Alshafi but it is not implemented on MCECS-BOT yet).  
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Figure 8.3: This figure shows a Map of a building and all the equations related to the robot's 

poses which are used later to derive equations' model of the EKF. 
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Figure 8.4:  Data accessed on the Samsung Galaxy tablet. 

 

As seen in Figure 8.3, there are two routes. The second route is used to illustrate 

the derivation of the system equations. Let’s take pose 2b. The distance from the initial 

position and pose 2b is DR1. A landmark is used to combine the local location (based on the 

distance from the surrounding walls) with the global localization (based on the distance 
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away from the initial position). The distance between this landmark and the initial position 

is Dw1. This distance is extracted from the map, which is provided by MRPT. The distance 

between the front wall and the robot is measured by sonars which is DFS. The relationship 

between sonar measurements and the global location that is provided by encoders is:  

𝐷𝐹𝑆 ∙ cos 𝜃1 = 𝐷𝑤1 ∙ cos(|𝛼1 − 𝜃1|) − 𝐷𝑅1          Equation 8.1 

The same thing goes for the third pose in the second route (pose 2c). The relationship 

between the local information of this pose and its global location is shown in equation 8.2: 

𝐷𝐹𝑆 ∙ 𝑐𝑜𝑠(90 − 𝜃2) =  𝐷𝑤2 ∙ cos(|𝛼2 − 𝜃2|) − 𝐷𝑅2         Equation 8.2 

 Equation 8.1 and Equation 8.2 will be used later to derive the observation model of 

the Extended Kalman Filter. One more input can be added to differentiate the robot’s 

orientation. This information can come from a separate compass which is available from 

the tablet (Shown in Figure 8.4).  

Finally, Wi-Fi can be used in this solution in 

order to give an additional constrain to increase the 

robot’s confident about its position. The solution of 

using Wi-Fi is proposed by the current term Fall 2013 

students of the Robotics I class (ECE578) in the 

Electrical and Engineering Department at PSU. 

When the robot gets closer to the router, it will sense 

a stronger signal, which can be used in the 

localization process (the signal strength is illustrated in Figure 8.5). I believe that using the 

Figure 8.5: Wi-Fi signal strength 

representation. 
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Wi-Fi to improve the robot localization is a good idea and can be implemented with the 

proposed solution in this section15.  

  

8.2.5 Connecting the MCECS-Bot to the Internet 

I have done a project in ECE 578 in Fall 2011, which was connecting a robot called 

Newton to the pave website designed by computer science faculty Dr. Fei Xie and his 

students. I wrote the code that does this task. Newton has four Omni wheels and other 

sensors.  It was equipped with three cameras; the first one was placed in the front of the 

robot, the second one was placed on the back of it and the third one placed externally to 

show the whole robot and its surrounding environment. People from anywhere around the 

world can access the computer science webpage and find three screens of video streaming 

showing what the robot sees and the whole room that the robot is moving in. Additionally, 

there are command buttons to control the motion of the robot. The result is that people can 

control and see the robot’s response. It would be not difficult to adapt this software to 

MCECS-Bot. 

 

                                                 

 

15 In the below link, Localization using Wi-Fi Signal Strength is proposed, but they used Particle 

Filter instead of Kalman Filter. However, Extended Kalman Filter can be used to fuse Wi-Fi with the existing 

sensors. http://robotics.usc.edu/~ahoward/projects_wifi.php 

 

http://robotics.usc.edu/~ahoward/projects_wifi.php
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8.2.6 Testing for a Long Time Operation 

Add extensive testing for long period of time. This test will show the reliability and 

durability of the robot. For instance, we can claim that we have operated our robot for a 

thousand hours without maintenance.   

 

8.3 My Contributions in this Thesis 

There are many students who have worked and continue working on MCECS-Bot. 

Therefore, it is important to list my contributions to this project. My contributions are: 

1- I authored the entire design of the robot. The original conception of the robot 

by Dr. Perkowski was different and I convinced him to Mecanum wheels and 

the actual design. 

2- I designed, modeled, simulated and build the robot’s base. That includes the 

design of the base using aluminum bars and putting all the following 

components together. The main components of the robot’s base are Mecanum 

wheels, Encoders and their gears, Motor-controllers, Motors, Gearboxes, 

Battery, Power Management Circuits and sonars. Choosing the right wheels, 

motors and gearboxes was based on calculations that I did.  

3- I have chosen a compatible charger for the battery.  

4- I contributed to mounting the LRF on the base and to use the LRF’s 

measurements to simulate the Kinect data.  

5- The power distribution board was done by Phil Lamb. It has some problems 

which were described in the fifth chapter. I fixed these problem and added other 
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functions to the power distribution board. I added many LED’s to indicate the 

inputs and outputs of the PDB. 

6- I designed the delay circuit that used to implement the chaining method that I 

used in connecting the twelve sonars. This circuit was used to delay the power 

to the second group of six sonars. This problem was described in detail in the 

fifth chapter. 

7- I designed the robot’s bumpers and building them from scratch. 

8- I contributed in designing and constructing the waist with David Gaskin.  

9- I designed the upper part of the robot that holds the neck.  

10- I created a 3D model for MCECS-Bot. the program used is Google sketchUp. 

This model can be found on the google 3d warehouse website.  Anyone can 

download it and look at it using the google sketchUp program, which is a free 

software provided by google. 

11- I created the wall following flowchart with Mathias Sunardi help. Later, I wrote 

the code for wall following, also with Mathias help. 

12- I wrote all the Matlab codes used in this thesis.  
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Abstract  

  

 In this paper a literature review concerning practical applications for mobile robotic platforms based 

on special wheels (in this case, Mecanum wheel) is presented. Mobile robots equipped with four Mecanum 

wheels have the omnidirectional property, which means, they have the ability to move instantaneously in any 

direction, from any configuration. Therefore, compared to conventional platforms, these vehicles possess 

multiple advantages in terms of their mobility in narrow spaces or crowded environments. They have the 

ability to easily perform certain tasks in congested environments foreseen with static obstacles, dynamic 

obstacles or narrow areas. Usually, such environments are found in factory workshops, warehouses, hospitals, 

etc. Hence the resulting needs to create this kind of robotic platforms to satisfy the requirements of various 

fields, such as: industrial, military, naval, medical and last but not least, the educational field (as the basis for 

research). The characteristics of the Mecanum wheel, a short comparison between this type of wheel and a 

conventional wheel, as well as the constructive and design solutions previously developed are described in 

the first part of this paper. Then, some application fields and the related systems based on Mecanum wheel 

are presented.  

  

Keywords  

  Mecanum wheel, omnidirectional mobile robot, AGV  

  

Introduction  

  

Omnidirectional wheels have been used in robotics, in industry, and in logistics for many years. By 

reviewing and analyzing systematically the existing literature concerning this type of wheels, it was revealed 

that systems based on Mecanum wheels detain omnidirectional capabilities, whereas systems based on 

conventional wheels do not. Specifically, these capabilities make the vehicle extremely maneuverable, which 

could be very helpful in different indoor and outdoor applications. Therefore, compared to conventional 

vehicles, omnidirectional robotic vehicles possess multiple advantages in terms of their mobility in narrow 

spaces and crowded environments. They have the ability to easily perform certain tasks in congested 

environments foreseen with static obstacles, dynamic obstacles or narrow areas. Usually, such environments 

are found in factory workshops, warehouses, hospitals, etc. Hence the resulting needs to create this kind of 

robotic platforms to satisfy the requirements of various fields, such as: industrial, military, naval, medical 

and last but not least, the educational field. Furthermore, to prevent the shortcomings presented by Mecanum 
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wheel, researchers have focused on its optimization, developing new constructive solutions, thus allowing 

their implementation in new applications, such as planetary explorations, mine operations.  

  

Mecanum wheel  

  

Mecanum wheel characteristics  

  

Mecanum wheel was designed and invented in Sweden, in 1975, by Bengt Ilon, an engineer with the 

Swedish company Mecanum AB [1]. Mecanum wheel is based on the principle of a central wheel with a 

number of rollers placed at an angle around the periphery of the wheel. The angle between rollers axis and 

central wheel axis could have any value, but in the case of conventional Mecanum wheel it is 45° (Figure 1). 

The rollers are shaped such that the silhouette of the omnidirectional wheel is circular. The angled peripheral 

rollers translate a portion of the force in the rotational direction of the wheel to a force normal to the wheel 

direction. Depending on each individual wheel direction and speed, the resulting combination of all these 

forces produces a total force vector in any desired direction, thus allowing the platform to move freely in 

direction of the resulting force vector, without changing the direction of the wheel.   

A Swedish omnidirectional wheel has 3 DOF’s composed of wheel rotation, roller rotation and 

rotational slip about the vertical axis passing through the point of contact (Figure 2). In the omnidirectional 

wheel, the wheel velocity can be divided into the components in the active direction and in the passive 

direction. The active component is directed along the axis of the roller in contact with the ground, while the 

passive one is perpendicular to the roller axis [2]. When the wheel rotates, a force vector along the wheel and 

a force vector perpendicular to the wheel are created. By a simple control of each wheel rotation, the vehicle 

moving direction can be changed instantaneously.  

  

 
A. 1: Mecanum wheel. 
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A. 2: DOF’s in a Mecanum wheel [2]. 

 

When a Mecanum wheel is rotating, at least one roller (maximum two rollers) is (are) in contact with 

the ground. Only a small surface (theoretical, one point) of the roller is in contact with the ground. The area 

of this surface traverses the roller from one side to another, depending on the sense of wheel rotation. The 

direction of the traction force will be done by the traversing sense of contact surface. It means, if we look to 

the wheel from the top side, the traction force will be perpendicular to the roller axis [3].  

  

Mecanum wheel vehicle vs. Conventional wheel vehicle  

  

         The benefits of a vehicle with Mecanum wheels relative to one with steered wheels have been presented 

by [4]. Usually, robotic vehicles are designed to perform planar motion. In a two dimensional space, a body 

has three degrees of freedom, being capable of translating in both directions and rotating about its centre of 

gravity. However, most conventional vehicles do not have the ability to control every degree of freedom 

independently, because conventional wheels are not capable of moving in a direction parallel to their axis. 

These so called nonholonomic constraints of the wheel prevent vehicles using skid-steering from moving 

perpendicular to its drive direction. To reach every location and orientation in a two dimensional space it can 

require complicated maneuvers and complex path-planning. Non-holonomic vehicles can move in some 

directions (forward and backward) and can describe some curved trajectories, but cannot crab sideways. For 

example, to realize a parallel parking, a differential drive vehicle should make a number of maneuvers (Figure 

3).  

 
A. 3: Lateral parking of a differential drive mobile. 

A vehicle without non-holonomic constraints it can travel in any direction under any orientation. This 

capability is widely known as omnidirectional mobility. Omnidirectional vehicles have great advantages over 

conventional platforms, with car-like Ackerman steering or differential drive system in terms of moving in 

tight areas [5]. They can crab sideways, turn on the spot and follow complex trajectories. These vehicles are 

capable of easily performing tasks in environments with static and dynamic obstacles and narrow spaces.  
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Usually, vehicles based on Mecanum wheel have a square or a rectangular configuration, with two 

wheels on each side of the chassis. Using four of these wheels provides omnidirectional movement for a 

vehicle without needing a conventional steering system. When Mecanum wheels are actuated, the angled 

peripheral rollers translate a portion of the force in the rotational direction of the wheel to a force normal to 

the wheel direction.   

  

 

Table A. 1: Comparison between different types of drives. 

  Mecanum drive  Holonomic drive  Swerve drive  

Description  

  
Wheels with angled 

rollers  

  
Wheels with “straight” 

rollers (omniwheels)  

  
Independently steered 

drive modules  

Advantages  compact design high load 

capacity simple to control  

less speed and pushing 

force when moving  

diagonally  

low weight compact 

design  

simple to control less 

speed and pushing force 

when moving diagonally  

simple conceptually  

simple wheels  

continuous wheel contact  

high load capacity  

robust to  floor 

conditions  

Disadvantages  very complex 

conceptually  

discontinuous wheel 

contact high sensitivity to 

floor irregularities  

complex wheel design  

  

more complex 

conceptually  

discontinuous wheel 

contact or variable drive-

radius sensitive to floor 

irregularities lower 

traction  

complex mechanical 

design heavy and massive 

design complex to 

program and control  

high friction and scrubbing 

while steering  
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A. 4: Vehicle motion according to the direction and angular speed of the wheels [6]. 

  

Depending on each individual wheel direction and velocity, the resulting combination of all these 

forces produce a total force vector in any desired direction thus allowing the platform to move freely in the 

direction of the resulting force vector, without changing of the wheels themselves. The vehicle is able to 

translate on any direction, forward/backward but also sideways left/right and turning on the spot, thanks to 

its special wheels (Figure 4). This is especially helpful when having to maneuver in tight environments [5]. 

A short comparison between Mecanum drive, holonomic drive and swerve drive is presented in Table 1.  

  

Mecanum wheel constructive solutions  

  

Omnidirectional wheeled vehicles with Mecanum wheels have some shortcomings. According to [7], 

a vehicle with Mecanum wheels is susceptible to slippage, and as a result, with the same amount of wheel 

rotation, lateral travelling distance is different from longitudinal travelling distance. In addition, the ratio of 

longitudinal travelling distance over lateral travelling distance with the same amount of wheel rotation, 

changes with ground condition. The second drawback is that the contact point between the wheel and the 

ground moves along a line parallel to the wheel axis, even though the wheel is always in contact with the 

ground. The lateral movement produces horizontal vibrations. The last drawback is that its ability to 

overcome obstacles is not independent of travel direction.  

The slippage of the wheels prevents the most popular dead-reckoning method, using rotary shaft 

encoders [5], [8], from being performed well on a vehicle with Mecanum wheels. In order to solve the 

problem, visual dead-reckoning was used as a slip-resilient sensor [7], [9]. This technique, also used in optical 

mice, makes use of an on-board video-camera continuously capturing frames of the ground beneath and 

image processing hardware on the robot determining the speed and direction in which the current frame has 

moved relative to the previous frame thus allowing the speed and direction of that point of reference to be 

calculated.  

 A traditional Mecanum wheel with the peripheral rollers held in place from the outside is presented in Figure 

1. This design, although having a good load carrying capacity, has the disadvantage that, when encountering 

an inclined or uneven surface, the rim of the wheel can make contact with the surface, instead of the roller, 



298 

 

therefore preventing the wheel from operating correctly (Figure 5.a). A simple alternative design, also 

proposed by Ilon, which alleviates the problem, consists in having the rollers split in two (or in three) and 

centrally mounted as shown in Figure 5.b. This design ensures that the rollers are always in contact with the 

work surface, thus allowing a better performance on uneven surfaces [10].  

  

  
A. 5: a) Traditional Mecanum wheel on inclined surface; b) Mecanum wheel with centrally 

mounted rollers 

      

               (a)                                                                         (b)  

  

One disadvantage of the Mecanum design is the inefficient use of the kinetic energy supplied to the 

wheels by the motors. Due to the rotation of the exterior rollers, only a component of the force at the perimeter 

of the wheel is applied to the ground and the resulting force only partially contributes to the motion of the 

vehicle. [11] proposed two designs to improve the Mecanum wheel efficiency. The first design is the 

Mecanum wheel with lockable rollers illustrated in Figure 6. This design was conceived to overcome the 

losses of efficiency due to energy lost in a direction normal to that of travel through the peripheral rollers 

(they bleed off energy as they rotate), when the vehicle is travelling in a straight line (forward/backward). 

Simple actuators are used to rotate the brake activation disc, therefore to lock and unlock the roller, when the 

vehicle is moving. When driving in longitudinal motion, the peripheral rollers will be locked and they will 

act as a heavy thread, but when driving in sideways motion the rollers will be unlocked. This design is 

effective in reducing any lost forces in the forward direction to zero, but does not improve the losses in any 

other directions.  

  

 
A. 6: Mecanum wheel with lockable rollers [11]. 
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A. 7: Mecanum wheel with rotatable rollers [11]. 

  

  

The second design is Mecanum wheel with rotatable rollers illustrated in Figure 7. Compared to the 

first design, this one is more effective, but mechanically more complex. The peripheral rollers are split and 

centrally mounted on an axle which can be pivoted through 135°. This allows the rollers to be adjusted from 

a straight position (in which they are locked so the rollers cannot rotate on their axles), thus effectively 

forming an almost normal treaded tire, to an angle of 45° in which case they act as a traditional Mecanum 

wheel, or to an angle of 135°, making diagonal travel easier as it overcomes the resistance given by the 

traditionally immobile wheels. The angle of the rollers on each wheel is controlled through all the roller 

shafts, which are connected through a bevel gear system in such a way that a rotary actuator on one of the 

shafts controls all the other simultaneously. 

[3] proposed a new Mecanum wheel constructive solution in terms of its performance on various 

surfaces and concluded that the size of the peripheral rollers has a great effect upon this performance (Figure 

8.a). The larger the rollers are, the greater the range of surface deviations can be overcome. Also, as the size 

of rollers increases, the slower they spin, resulting in lower friction losses in the driving of the wheel. In 

conclusion, when designing a new drive system for a vehicle, there exist a certain number of rollers that 

makes the ideal compromise between having a small number of large rollers per wheel, and having a large 

number of small rollers per wheel (Figure 8.b).  

 

 

 

  

 

   

  

       

  

 

 

 

 

 

 

Large size of rollers means a small number of them. This has as effect a very small radius to the rollers 

extremities and, in this case, it could be difficult to use ball bearings in order to decrease the friction between 

the roller and its axis. The new constructive solution not only facilitates the use of big bearings, but also 

makes possible the approximation of the roller shape with a circle, because the roller length becomes smaller 

than the one used in a traditional Mecanum wheel – it is half of the normal roller.  

  
     (a)                                                           (b)  

 A. 8: a) New constructive wheel design; b) Rollers number according to 

their size. 
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In order to overcome the Mecanum wheel difficulties when moving on rough terrain, [12] has 

developed two new concepts of this type of wheel, using the principle of “steeping on obstacles”. The first 

one is the concept of “elliptical Mecanum double wheel” (Figure 9). The wheel itself consists in two 

elliptically Mecanum wheels, 1 and 2, coupled with a special mechanism in between 3. The role of the 

mechanism 3 is to move (rotation and relative translation to each other) the components 1 and 2 in such a 

way that the resulting motion would provide the same movement (in terms of speed, direction, smoothness) 

to the vehicle as a traditional Mecanum wheel would. For practical purposes, components 1 and 2 are not 

truly elliptical, when viewed sideways, but rather an approximation of an ellipse is used. The designed wheel 

includes a total number of 12 rollers (8 of type 1 and 4 of type 2). The maximum obstacle height that this 

wheel can overcome is 75% of the wheel largest radius.  

 
A. 9: Assembled elliptical Mecanum double wheel [12]. 

 

  

The second concept is the “semicircular Mecanum double wheel”. The idea was to modify the elliptically 

shaped wheel seen in Figure 9, and replace it with a wheel having half circular and half elliptical profiles as 

shown in Figure 10. In this case, as the double wheel rotates, the smooth motion of a regular Mecanum wheel 

is achieved, while the ability of overcoming small obstacles when travelling laterally is kept. In contrast to 

the elliptical wheel, the semicircular wheel includes three types of rollers (4 of type 1, 2 of type 2 and 7 of 

type 3) and the total number of rollers is 13. The flatter the elliptical part is the greater clearance can be 

achieved for overcoming higher obstacles. This type of wheel is capable of overcoming obstacles of height 

up to 37.5% of the wheel’s radius. Also, both of these types of wheel have the ability of moving in soft dirt. 

The wheel would pile up a small amount of dirt and then step on it, thus avoiding being blocked by large 

amounts of dirt.  

 

 

  

 
A. 10: Assembled semicircular Mecanum double wheel [12]. 

 

 

  



301 

 

A. 11: Mecanum wheel vehicle for 

USA  Navy [15]. 

Practical applications in various fields  

  

Military field  

  

The manoeuvrability provided by omnidirectional vehicles can be utilized and can be very important in 

numerous outdoors applications, such as search and rescue missions, military activities, planetary 

explorations and mine operations.  

This wheel is commonly used in robotic applications requiring a high degree of maneuverability, such as 

those experienced by NASA for hazardous environment exploration [13]. The objective of the OmniBot 

project (Figure 11) is to develop a hazardous duty mobile base as an advanced development test bed to 

research alternate technical approaches for remotely controlled operations in hazardous areas. In addition, 

this base will be used to test various automated umbilical technologies for autonomous mobile vehicles.  

  

  
A. 12: NASA OmniBot mobile base [14]. 

          

    

In hazardous environments where it is too dangerous to send in unprotected personnel, a mobile base could 

be used to perform remote inspections, site surveys, and operations. The OmniBot is driven with four 

brushless servomotors connected to omnidirectional wheels (Mechanum). This allows for complete 2-degree-

offreedom motion, which results in extremely high maneuverability. The benefit of this motion profile can 

truly be appreciated when the vehicle is operated in a teleoper-ational mode.The vehicle can be controlled 

with a radio frequency (RF) control box or with a hardwired joystick. With the video transmission gear 

installed, teleoperation is possible up to a distance of 1,800 feet [14].  

Omnix Technology Systems, Inc. had developed Mecanum wheel vehicle for U.S Navy for inspection 

of areas inaccessible to humans and vehicles capable of transporting very heavy loads in military 

environments [15]. These vehicles can be seen in Figure 12 are especially adaptable for autonomous or 

teleported operations due to the unrestricted manoeuvrability and simplicity of control.  

MarsCruiserOne is a pressurized, habitable rover, designed to allow exploration of the Moon and 

Mars during future space missions (Figure 13). Characterized by omnidirectional wheels especially suited to 

tackle rocky terrain, it travels at a speed of 5-10 km/h [16]. This design incorporates: hubless wheels (which 

allowed ingress/egress for the astronaut crew for extra-vehicular activities and access to other surface 

modules and rovers), Mecanum wheels, a linear motor drive and a single point rotary shock 

absorber/suspension system [17].  
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A. 13: MarsCruiserOne [16]. 

  

  

Industrial field  

  

Airtrax ATX-3000 industrial forklifts (Figure 14) excel in applications requiring tight manoeuvring or 

transporting long loads sideways through standard sized doors or narrow aisle ways. The ATX’s unique, 

OmniDirectional movement allows it to travel in all directions thus making it an ideal vehicle to work in tight 

spaces where turns are not possible and finite control is a necessity. The truck features 48 volt transistor 

controls with state-of-the-art technology, infinitely variable travel, lift and lower speeds, excellent visibility, 

ergonomic controls and operator comfort [18].  

The unique design of the four 21x12 independently driven Mecanum wheels enables the ATX’s 

OmniDirectional capabilities. Each wheel is directly driven by individual transaxles. The wheels consist of a 

large, heavy-duty hub with 12 uniquely designed polyurethane rollers. The wheel and roller design provides 

the Omni-Directional movement of the vehicle based on the speed and direction of each wheel as determined 

by the operation of the traction joystick. Each roller incorporates bearings that do not require periodic 

greasing or maintenance under most conditions. Since each roller rotates freely, scrubbing against the floor 

is minimized while turning or moving sideways [18].  

  

 
A. 14: Airtrax Sidewinder lift truck [19]. 

 [20] developed an Automated Guided Vehicle as a drive-under tractor in very compact dimensions. 

The development and realization of the vehicle are optimized for the transportation of small goods (Figure 

15.a) [21]. The primary goal was a small vehicle at low cost [22]. Furthermore the vehicle has to be able to 

transport variable amounts of containers in an economic way. An innovative approach was to accomplish 

accumulated and single transports by towing a trolley (Figure 15.b) or by carrying one container with the 

same vehicle. For transport and providing of small goods, the following applications were found to be the 

most promising: Floor block storage, order picking, assembly and production. The vehicle has an 
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omnidirectional drive, using four independently and electrically driven Mecanum wheels. The accomplished 

prototype is smaller than any vehicle that is available at the market in Europe. As a result the needed space 

for logistic operations, like the width of the track and stations, could be minimized compared to common 

solutions. Especially the height of the vehicle is very low so that an efficient use as a drive-under tractor is 

possible. The results showed an efficient approach for an automated transportation of trailers and small load 

carriers.  

 

 

 

 

 

 

       

   
  

 

 

 

Medical field  

 

Powered wheelchairs are known to provide benefits for older adults by enabling them to have a means 

of independent mobility. These benefits include: participation in self-care, productivity, and leisure 

occupations; as well as, socialization opportunities, and positive self worth [23] [24]. Overall powered 

wheelchairs are linked to an improved quality of life for older adults who have a reduced ability to walk and 

do not have the stamina, strength, or ability to propel themselves in a manual wheelchair [23]. Without a 

powered wheelchair these older adults would be dependent on others to complete life tasks [25], and unable 

to have independent mobility.  

The OMNI (Office Wheelchair for High Manoeuvrability and Navigational Intelligence for People 

with Severe Handicap) is a standalone wheelchair developed with two goals in mind: 1) to allow high 

mobility in complex environments; and 2) to have modes of operation that will help the user have higher 

degrees of independence [26]. This wheelchair has been designed for individuals with severe mental and 

physical disabilities. It consists of Mecanum wheels that provide 3-DOF (degrees of freedom) for the 

wheelchair; a specialized joystick for 3-DOF movement; a sensor ring around the wheelchair that has IR 

(infrared) and ultrasound sensors to provide obstacle detection capabilities; a bumper sensor for fail-safe 

detection of collisions; wheel odometers for knowledge of the wheelchair’s location; an elevating seat to raise 

the user; and a specialized display for the user select modes of operation (Figure 16).  

The omnidirectional wheelchair being developed at the University of Western Australia’s Centre for 

Intelligent Information Processing Systems (CIIPS) allows the user to easily manoeuvre in what would 

otherwise be an extremely complicated environment. This project made improvements to the Mecanum 

wheels, batteries, motor driver cards, human interface, control software, chassis and suspension system. 

These improvements transformed the partially working prototype into a fully usable wheelchair (see Figure 

16). The result is much higher driving accuracy and a greatly improved overall experience for the user in 

both comfort and easeof use. On the whole, the project was extremely successful and will provide a very 

solid test bed for advanced driving and mapping projects in the future [19].  

  

(a)                        (b) 

A. 15: a) Vehicle with small goods container; b) Vehicle with trolley [20]. 
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A. 16: Omnidirectional wheelchairs: OMNI [26], CIIPS wheelchair [19], iRW [27] (from left to 

right). 

  

  

Another example of an omnidirectional wheelchair is iRW [27], which provides a telehealth system 

with easy-to-wear, non-invasive devices for real time vital sign monitoring and long-term health care 

management for the senior users, their family and caregivers (Figure 16). A joystick controller is used to 

control the iRW to move forward/backward, sway right/left, and spin clockwise/counter clockwise. The 

maximum forward speed of the iRW is set at 3km/h, which is close to walking speed of human, and the 

maximum backward and sideways speed is set at 1.5km/h.  

  

Educational field  

  

Uranus (Figure 17) was the first mobile robot with Mecanum wheels, designed and constructed in 

Carnegie Melon University [28], [29]. It was built to provide a general purpose mobile base to support 

research in to indoor robot navigation. As a base, it provides full mobility, along with support for a variety 

of payloads, such as sensors and computers. It had not a suspension system, which is absolutely necessary if 

the ground is not completely flat.  

 
A. 17: Uranus omnidirectional mobile robot [28]. 

  

  

Other researchers, such as Braunl from University of South Australia have developed two different 

Mecanum wheel omnidirectional mobile robots, Omni-1 and Omni-2 [30], [31]. Figure 18 shows the structure 

of Omni-1 and Omni-2. The first design, Omni-1 used the Mecanum wheel design with rims that only leave 

a small gap/clearance for the roller. The motor and wheel assembly tightly attached to robot’s chassis. The 

Omni-1 can drive very well on hard and flat surface but it loses the omnidirectional capability on soft surface.  

  

 
A. 18: Mecanum Wheel Mobile robot Omni-1 and Omni-2 from University of Western Australia 

[31]. 
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Omni-2 was develop using rimless and with centrally mounted roller. The motor and wheel assembly 

attach to cantilever wheel suspension with shock absorbers. The rimless Mecanum wheel and shocks 

absorbers encounter the sinking-in on softer surface and uneven work surface as a result allows 

omnidirectional driving for Omni-2.  

The Mechatronics and Robotics Research Group (MR2G) at Massey University have developed all 

terrain Automatic Guided Vehicle (AGV) using a set of Mecanum wheels combined with a set of 

conventional wheels [11]. Any terrain change is automatically detected and a set of pneumatics actuators 

used to change from Mecanum wheels for indoor and high mobility requirement to conventional wheel for 

outdoor and rough terrain. This new driving mechanism of AGV has been implemented on Mapped 

Environment Guided Autonomous Navigator (MEGAN). Figure 19 illustrates the structure of MEGAN.  

  

 
A. 19: Mapped Environment Guided Autonomous Navigator (MEGAN) [11]. 

  

  

Other fields  

  

The main goal of the CommRob project was to develop scientific methods or technologies to introduce 

robots in human environments. The Interactive Behavior Operated Trolley (Figure 20) InBOT addresses 

several everyday problems. Among other possibilities this means helping the customer to find the desired 

products without extensive search in big supermarkets, or relieving the customer from the burden of pushing 

the shopping cart using his own force all the time, especially if the cart is heavily loaded or the customer is 

elderly or handicapped. Especially for these groups of customers it could be very interesting that InBOT is 

able to avoid collisions on its own, even with objects that are moving themselves. InBOT has the ability to 

perform special local maneuvers and a flexible task-planner. It provides four different modes of operation to 

assist the user in the best way. First InBOT can be steered like an ordinary shopping cart by the haptic handle 

[32], including assistance functionalities like obstacle avoidance. Second and third it can follow or lead the 

user. Therefore the robot has to continuously track the user’s position, to perform adaptive distance 

management and finally to estimate the user’s intentions. And fourth the robot can be commanded to act 

independently until ordered otherwise [33].  

 
A. 20: The interactive shopping trolley [33]. 
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Conclusions  

  

In this paper, an overview over the Mecanum wheels and their practical applications is presented. The 

main advantage of this type of wheel is represented by the omnidirectional property that it provides, allowing 

extreme maneuverability and mobility in congested environments. Also, some research that was carried out 

in Mecanum wheel mobile robots in order to improve the wheel design is described. The manoeuvrability 

provided by omnidirectional vehicles can be utilized and can be very important in both outdoors applications, 

such as search and rescue missions, military activities, planetary explorations and mine operations, long loads 

transportation, and indoor applications, like small goods transportation, powered robotic wheelchairs or 

shopping carts.   
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Appendix B: RoboClaw 2 Channel 15A Motor Controller Data Sheet [52] 

Feature Overview: 

• 2 Channel at 15Amp, Peak 30Amp 

• Battery Elimination Circuit (BEC) 

• Switching Mode BEC 

• Hobby RC Radio Compatible 

• Serial Mode 

• TTL Input 

• Analog Mode 

• 2 Channel Quadrature Decoding 

• Thermal Protection 

• Lithium Cut Off 

• Packet Serial 

• High Speed Direction Switching 

• Flip Over Switch 

• Over Current Protection 

•  Regenerative Braking 

  

 

 

 

 

 

 

 

Basic Description 

The RoboClaw 2X15 Amp is an extremely efficient, versatile, dual channel synchronous regenerative 

motor controller. It supports dual quadrature encoders and can supply two brushed DC motors with 15 

Amps continuous and 30 Amp peak.  

With dual quadrature decoding you get greater control over speed and velocity. Automatically maintain a 

speed even if load increases. RoboClaw also has a built in PID routine for use with an external control 

system. 

RoboClaw is easy to control with several built in modes. It can be controlled from a standard RC 

receiver/transmitter, serial device, microcontroller or an analog source, such as a potentiometer based 

joystick. RoboClaw is equipped with screw terminal for fast connect and disconnect. All modes are set by 

the onboard dip switches making setup a snap! 

 Optical Encoders 

RoboClaw features dual channel quadrature decoding. RoboClaw gives you the ability to create a closed 

loop system. Now you can know a motors speed and direction giving you greater control over DC motors 

systems.  
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 Power System 

The RoboClaw is equipped with synchronous regenerative motor drivers. This means your battery is 

recharged when slowing down, braking or reversing. In addition a switching mode BEC is included. It can 

supply a useful current of up to 3Amps. The BEC is meant to provide power to a microcontroller or RC 

receiver. 

 

A: Microcontroller 

B: DIP Switch 

C: Logic Battery 3.5mm Screw Terminals 

D: Encoder Input Header 

E: Input Control Headers 

F: VCC on Input Control Header Disable Jumper 

G: Logic Voltage Regulator 

H: Logic Voltage Source Selection Header 

I: DC Motor Channel 2 Screw Terminals 

J: Main Battery Input Screw Terminals 

K: DC Motor Channel 1 Screw Terminals 

L: Status LED 1 

M: Status LED 2 

N: Error LED 
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 Dimensions: 

 

Board Edge: 2.3”W X 3”L 

Hole Pattern: 0.125D, 2”W x 2.7”H   

 

 

 

 

 

 

 

 

 

 



311 

 

Header Overview 

 

 
 

 

Logic Battery Screw Terminals 

The logic circuits can be powered from the main battery or a secondary battery wired to CN3. JP1 controls 

what source powers the logic circuits. The maximum input voltage for the logic supply is 30VDC. 
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Encoder Inputs 

This header is setup for dual quadrature encoders. A and B are the inputs from the encoders. The header 

also supplies 5VDC to power the encoders. When connecting the encoder make sure the leading channel 

for the direction of rotation is connected to A. If one encoder is backwards to the other you will have one 

internal counter counting up and the other counting down. Which will affect the operation of Robo Claw. 

Refer to the data sheet of the encoder you are using for channel direction. 

 

Control Inputs 

S1, S2 and S3 are setup for standard servo style headers GND, +5V and I/O. S1 and S2 are the control 

inputs for serial, analog and RC modes. S3 used as a fl ip switch input when in RC or Analog modes. In 

serial mode S3 becomes a emergency stop.  
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BEC Jumper 

VCC on control input headers S1,S2 and S3 can be turned off, on or 2V by the jumper near S3 on CN5. 

Removing the BEC jumper disables VCC on S1, S2 and S3 headers. In some systems the RC receiver may 

have its own supply and will confl ict with the RoboClaw logic supply. 

 

 Emergency Stop 

In serial mode S3 becomes the emergency stop. S3 is active low. It is internally pulled up so it will not 

accidentally trip. 
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Logic Supply Select 

The RoboClaw logic requires 5VDC which is provided from the on board regulator. The regulator source 

input is set with the logic supply jumper. Set to LB for a separate logic battery or MB for the main battery 

as the source. 
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 Main Battery Screw Terminals 

The main battery connections are marked with a B- and B+ on the main screw terminal. B+ is the positive 

side of the battery typically marked with a red wire. The B- is the negative side of the battery and typically 

marked with a black wire. When connecting the main battery its a good practice to use a switch to turn the 

main power on and off. When placing a switch in between the RoboClaw and main battery you must use a 

switch with the proper current rating. Since the RoboClaw can draw up to 30Amps peak you should use a 

switch rated for at least 40Amps. The main battery can be 6V to 30V DC. 

 

 Motor Screw Terminals 

The motor screw terminals are marked with M1A / M1B for channel 1 and M2A / M2B for channel 2. 

There is no specifi c polarities for the motors. However if you want both motors turning in the same 

direction on a 4 wheeled robot you need to reverse one of the motors as shown below: 
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 Status and Error LEDs 

The RoboClaw has 3 main LEDs. 2 Status LEDs and 1 Error LED. When Robo Claw is fi rst powered up 

all 3 LED should blink several times briefl y to indicate all 3 LEDs are functional. The status LEDs will 

indicate a status based on what mode RoboClaw is set to. 

 

  Analog Mode 

  Status LED 1 = On continuous. 

  Status LED 2 = On when motor(s) active. 

  RC Mode 

  Status LED 1 = On continuous, blink when pulse received.  

 Status LED 2 = On when motor(s) active. 

  Serial Modes 

  Status LED 1 = On continuous, blink on serial receive.  

 Status LED 2 = On when motor(s) active. 

  Errors 

  Over Current    = Error LED on solid. Status 1 or 2 indicates which motor. 

  Over Heat     = Error LED blinking once with a long pause. 

  Main Batt Low   = Error LED blinking twice with a long pause. 

  Main Batt High   = Error LED on fast fl icker until condition is cleared. 

  Logic Batt Low  = Error LED blinking three times with a long pause.  

  Logic Batt High  = Error LED blinking four times with a long pause.  
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DIP Switch Overview 

The dip switch on RoboClaw is used to set its operating modes and the many options. The switch is marked 

with an ON label at its top. The switches are also labeled from left to right starting with switch 1 and 

ending with switch 10. When a dip switch is moved toward the label ON it is considered ON. When the 

switch is facing away from the ON label it is considered off. Be careful to ensure the switch is not fl oating 

in between and is fi rmly OFF or ON. See illustration below. The red switch (SW1) is in the ON position. 

The grey colored switches are in the OFF position. 
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Low Voltage Cutoff 

RoboClaw has a built in low voltage protection. This has two main purposed. To protect RoboClaw from 

running erratically when the main battery level gets to low and protect a Lithium battery from being 

damaged. 

Voltage SW8 SW9 SW10 

Not Monitored OFF OFF OFF 

Lead Acid - Auto ON OFF OFF 

2- Cell (6V Cutoff) OFF ON OFF 

3- Cell (9V Cutoff) ON ON OFF 

4- Cell (12V Cutoff) OFF OFF ON 

5- Cell (15V Cutoff) ON OFF ON 

6- Cell (18V Cutoff) OFF ON ON 

7- Cell (21V Cutoff) ON ON ON 
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 RoboClaw Modes 

There are 4 modes.  Each with a specifi c way to control RoboClaw. The following list explain each mode 

and the ideal application. 

Mode 1 - RC Input 

With RC input mode RoboClaw can be controlled from any hobby RC radio system. RC input mode also 

allows low powered microcontroller such as a Basic Stamp or Nano to control RoboClaw. RoboClaw 

expects servo pulse inputs to control the direction and speed. Very similar to how a regular servo is 

controlled. RC mode can not use encoders. 

Mode 2 - Analog 

Analog mode uses an analog signal from 0V to 5V to control the speed and direction of each motor. 

RoboClaw can be controlled using a potentiometer or fi ltered PWM from a microcontroller. Analog mode 

is ideal for interfacing RoboClaw joystick positioning systems or other non microcontroller interfacing 

hardware. Analog mode can not use encoders. 

Mode 3 - Simple Serial 

In simple serial mode RoboClaw expects TTL level RS-232 serial data to control direction and speed of 

each motor. Simple serial is typically used to control RoboClaw from a microcontroller or PC. If using a 

PC a MAX232 type circuit must be used since RoboClaw only works with TTL level input. Simple serial 

includes a slave select mode which allows multiple RoboClaws to be controlled from a signal RS-232 port 

(PC or microcontroller). Simple serial is a one way format, RoboClaw only receives data. 

Mode 4 - Packet Serial 

In packet serial mode RoboClaw expects TTL level RS-232 serial data to control direction and speed of 

each motor. Packet serial is typically used to control RoboClaw from a microcontroller or PC. If using a 

PC a MAX232 type circuit must be used since RoboClaw only works with TTL level input. In packet 

serial mode each RoboClaw is assigned an address using the dip switches. There are 8 addresses 

available. This means up to 8 RoboClaws can be on the same serial port. When using the quadrature 

decoding feature of RoboClaw packet serial is required since it is a two way communications format.  

This allows RoboClaw to transmit information about the encoders position and speed. 
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RC Input  
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 Mode 1 - RC Input 

For RC mode set SW1 = ON. RC mode is typically used when controlling RoboClaw from a hobby RC 

radio. This mode can also be used to simplify driving RoboClaw from a microcontroller using servo pulses. 

There are 4 options in RC Input mode. These options are set with SW4, SW5, SW6 and SW7. 

 

              Switch 4 - Mixing Mode 

  SW4 = ON: Turns mixing mode ON. S1 controls forward and reverse. S2 controls steering.  

 Control will be like a car.  

    

  SW4 = OFF: Turns mixing mode OFF. S1 controls motor 1 speed and direction. S2 controls  

 motor 2 speed and direction. Control will be like a tank. 

 

              Switch 5 - Exponential Mode 

  SW5 = ON: Turns exponential mode ON. Exponential response softens the center control  

 position. This mode is ideal with tank style robots.   

    

  SW5 = OFF: Turns exponential mode OFF. Motor response will be linear and directly  

 proportional to the control input. Ideal for 4 wheel style robots. 
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              Switch 6 - MCU or RC Control 

  SW6 = ON: Turns MCU control mode ON. RoboClaw will continue to execute last pulse received   

 until new pulse received. Signal lost fail safe and auto calibration are off in this mode. 

    

  SW6 = OFF: Turns RC control mode ON. RoboClaw will calibrate the center and end points  

 automatically to maximize stick throw. This mode includes a fail safe. If control input is lost,   

 RoboClaw will shut down. 

 

Switch 7 - Flip Switch Input 

SW7 = ON: Flip switch input requires servo pulse. Pulse greater than 1.5ms will reverse steering 

control. The fl ip switch is typically used in robot combats to automatically reverse the controls if 

a robot is fl ipped over.  

   

SW7 = OFF: Flip switch input expects TTL control signal. 0V for fl ipped and 5V for normal. 
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Servo Pulse Ranges 

The RoboClaw expects RC servo pulses on S1 and S2 to drive the motors when the dip switches are set 

for RC mode. The center points are calibrated at start up. 1000us is the default for full reverse and 2000us 

is the default for full forward. The RoboClaw will auto calibrate these ranges on the fl y. If a pulse smaller 

than 1000us or larger than 2000us is detected the new pulses will be set as the new range. 

Pulse Function 

1000us Full Reverse 

2000us Full Forward 
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 RC Wiring Example 

Connect the RoboClaw as shown below. Set switches SW1 and SW4 to ON. Make sure you center the 

control sticks and turn the radio on fi rst, then the receiver, then RoboClaw. It will take RoboClaw about 1 

second to calibrate the neutral position. 
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RC Control - Arduino Example 

The example will drive a 2 motor 4 wheel robot in reverse, stop, forward, left turn and then right turn.  

The program was written and tested with a Arduino Uno and P5 connected to S1, P6 connected to S2.  

Set switches SW1, SW4, SW5 and SW6 to ON. 

//Basic Micro Robo Claw RC Mode. Control Robo Claw //with servo pulses from a 

microcontroller.  

//Switch settings: SW1=ON, SW4=ON, SW5=ON and SW6=ON 

#include <Servo.h>  

  

Servo myservo1;  // create servo object to control a Roboclaw channel Servo myservo2;  // create 

servo object to control a Roboclaw channel 

  

int pos = 0;    // variable to store the servo position  

  

void setup()  

{  

  myservo1.attach(5);  // attaches the RC signal on pin 5 to the servo object   myservo2.attach(6);  

// attaches the RC signal on pin 6 to the servo object  

}  

   

void loop()  

{  

  myservo1.writeMicroseconds(1500);  //Stop   myservo2.writeMicroseconds(1500);  //Stop   

delay(2000); 

  myservo1.writeMicroseconds(1250);  //full forward   delay(1000); 

  myservo1.writeMicroseconds(1500);  //stop   delay(2000); 

  myservo1.writeMicroseconds(1750);  //full reverse   delay(1000); 

  myservo1.writeMicroseconds(1500);  //Stop   delay(2000); 

  myservo2.writeMicroseconds(1250);  //full forward   delay(1000); 

  myservo2.writeMicroseconds(1500);  //Stop   delay(2000); 

  myservo2.writeMicroseconds(1750);  //full reverse 

  delay(1000); 

}  
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 RC Control - BasicATOM Pro Example 

The example will drive a 2 motor 4 wheel robot in reverse, stop, forward, left turn and then right turn. The 

program was written and tested with a BasicATOM Pro and P0 connected to S1, P1 connected to S2. Set 

switches SW1, SW4, SW5 and SW6 to ON. 

;Basic Micro Robo Claw RC Mode. Control Robo Claw ;with servo pulses from a 

microcontroller.  

;Switch settings: SW1=ON, SW4=ON, SW5=ON and SW6=ON 

Main 

  pulsout P15,(1500*2) ; stop   pulsout P14,(1500*2) ; stop   pause 2000 

  pulsout P15,(500*2)  ; full backward 

  pause 1000 

  

  pulsout P15,(1500*2) ; stop 

  pause 2000 

  

  pulsout P15,(2500*2) ; full forward   pause 1000 

  pulsout P15,(1500*2) ; stop 

  pause 2000 

  

  pulsout P14,(500*2)  ; left turn 

  pause 1000 

  

  pulsout P14,(1500*2) ; stop 

  pause 2000 

  

  pulsout P14,(2500*2) ; right turn 

  pause 1000  

goto main 
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Analog Input  
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 Mode 2 - Analog Input 

For Analog mode set SW1,SW2 and SW3 = OFF. In this mode S1 and S2 are set as analog inputs. 

Voltages of 0V = Full reverse, 1V = Stop and 2V = Full forward. You can use linear potentiometers of 

1K to 100K to control RoboClaw. Or you can use a PWM signal to control RoboClaw in analog mode. If 

using a PWM signal to control RoboClaw you will need a simple fi lter circuit to clean up the pulse. If 

using a potentiometer set the BEC header to 2V. 

 

              Switch 4 - Mixing Mode 

  SW4 = ON: Turns mixing mode ON. One channel input to control forward and reverse. Second   

 channel input for steering control. Control will be like a car.  

    

  SW4 = OFF: Turns mixing mode OFF. One channel controls one motor speed and direction.  

 Second channel controls the other motor speed and direction. Control will be like a tank. 

 

              Switch 5 - Exponential Mode 

  SW5 = ON: Turns exponential mode ON. Exponential response softens the center control  

 position. This mode is ideal with tank style robots.   

    

  SW5 = OFF: Turns exponential mode OFF. Motor response will be linear and directly  

 proportional to the control input. Ideal for 4 wheel style robots. 
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              Switch 7 - Flip Switch 

  SW7 = ON: Turns the fl ip switch input S3 on. The fl ip switch signal is a TTL driven signal. 0V   

 is active and 5V is not active. When the fl ip switch signal is active all inputs to RoboClaw are   

 reversed. 

    

  SW7 = OFF: Turns fl ip switch input S3 off. 
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 Analog Wiring Example 

Connect the RoboClaw as shown below using two potentiometers. Install BEC 2V jumper and set switch 

SW4 to ON (Mixing Mode). You can also use the wire example with SW4 OFF. Center the potentiometers 

before applying power or the attached motors will start moving. S1 potentiometer in mix mode (SW4) will 

control forward and reverse. S2 potentiometer in mix mode (SW4) will control turning (LEFT / RIGHT). 
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Simple Serial 
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Mode 3 - Simple Serial 

Simple Serial mode set SW1 = OFF, SW2 = ON and SW3 = OFF. In this mode S1 accepts TTL level byte 

commands. RoboClaw is receive only and uses 8N1 format which is 8 bits, no parity bits and 1 stop bit. If 

your using a microcontroller you can interface directly to RoboClaw. If your using a PC a level shifting 

circuit is required (MAX232). The baud rate is set by the dip switches. 

 
             

 Switch 1 - Slave Select 

  SW1 = ON: Turns slave select ON. Slave select is used when more than one RoboClaw is on    

 the same serial bus. When slave select is set to ON the S2 pin becomes the select pin. Set S2   

 high (5V) and RoboClaw will execute the next commands. Set S2 low (0V) and RoboClaws will   

 ignore all sent commands. 

 
              

              Simple Serial Slave 

  Setting up the RoboClaw for serial slave is straight forward. Make sure all RoboClaws share    

 a common signal ground (GND) shown by the black wire. P0 (Brown line) is connected to S1   

 of all 3 RoboClaws which is the serial in of the RoboClaw. P1, P2 and P3 are connected to S2.   

 Only one MCU pin is connected to each RoboClaws S2 pin. To enable RoboClaw hold S2 high  

 otherwise any commands sent is ignored.  
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Baud Rate 

RoboClaw supports 4 baud rates in serial mode. The baud rate is selected by setting switch 4 and 5. 

    

Baud Rate SW4 SW5 

2400 OFF OFF 

9600 ON OFF 

19200 OFF ON 

38400 ON ON 

      2400 Baud                      9600 Baud 

 

 

 

 

         19200 Baud                    38400 Baud 

 

 

 

Simple Serial Command Syntax 

The RoboClaw simple serial is setup to control both motors with one byte sized command character. Since 

a byte can be anything from 0 to 255 the control of each motor is split. 1 to 127 controls channel 1 and 128 

to 255 controls channel 2. Command character 0 will shut down both channels. Any characters in between 

will control speed, direction of each channel. 

                 

Character Function 

0 Shuts Down Channel 1 and 2 

1 Channel 1 - Full Reverse 

64 Channel 1 - Stop 

127 Channel 1 - Full Forward 

128 Channel 2 - Full Reverse 

192 Channel 2 - Stop 

255 Channel 2 - Full Forward 
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Simple Serial Wiring Example 

In simple serial mode the RoboClaw can only receive serial data. Use the below wiring diagrahm with the 

following code examples. Make sure you install the BEC jumper to 5V if powering the MCU from 

RoboClaw. 
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Simple Serial - Arduino Example 

The following example will start both channels in reverse, stop, then full speed forward. The program was 

written and tested with a Arduino Uno and Pin 5 connected to S1. Set switch SW2 and SW5 to ON. 

 

//Basic Micro Robo Claw Simple Serial Test 

//Switch settings: SW2=ON and SW5=ON //Make sure Arduino and Robo Claw share 

common GND! 

#include “BMSerial.h” BMSerial mySerial(5,6); 

void setup() { 

  mySerial.begin(19200); 

} 

void loop() {   mySerial.write(1);   mySerial.write(-1);   delay(2000);   mySerial.write(127);   

mySerial.write(-127); 

  delay(2000); 

} 
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 Simple Serial - BasicATOM Pro Example 

The following example will start both channels in reverse, stop, then full speed forward. The program was 

written and tested with a BasicATOM Pro and P0 connected to S1. Set switch SW2 and SW5 to ON. 

 

;Basic Micro Robo Claw Simple Serial Test 

;Switch settings: SW2=ON and 

SW5=ON ;Make sure BAP and Robo 

Claw share common GND! 

Main 

  Serout P15, i19200, [0] ;Full stop both channels 

  Pause 500 

  Serout P15, i19200, [96,224] ;Foward slowly 

  Pause 3000  

  Serout P15, i19200, [127,255] ;Foward 

fast   Pause 3000 

  Serout P15, i19200, [64,192] ;Full stop both channels 

  Pause 500 

  Serout P15, i19200, [32,160] ;Reverse slowly 

  Pause 3000 

  Serout P15, i19200, [1,128] ;Reverse fast 

  Pause 3000  

Goto Main 

 

 

 

 



337 

 

 

 

 

 

 

 

 

Packet Serial  
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Mode 4 - Packet Serial 

Packet serial mode set SW3 = ON and then selected address. See table below. Packet serial is used to 

communicate more sophisticated instructions to RoboClaw. RoboClaw can send or receive serial data in 

packet mode. The basic command structures consists of address byte, command byte, data bytes and a 

checksum. The amount of data each command will send or receive can vary. In packet mode the RoboClaw 

serial commands are buffered for more complex functionality. 

 

Baud Rate 

Packet serial supports the same baud rate modes as simple serial and uses the same RS232 8N1 format. The 

following table defi nes the available baud rates and their respective switch settings.  

Baud Rate SW4 SW5 

2400 OFF OFF 

9600 ON OFF 

19200 OFF ON 

38400 ON ON 

Address 

When using packet serial each RoboClaw must be assigned a unique address. With up to 8 addresses 

available you can have up to 8 RoboClaws bussed on the same RS232 port. The following table defi nes 

the addresses and their respective switch settings. 

Address SW1 SW6 SW7 

128 (0x80) OFF OFF OFF 

129 (0x81) OFF ON OFF 

130 (0x82) OFF OFF ON 

131 (0x83) OFF ON ON 

132 (0x84) ON OFF OFF 

133 (0x85) ON ON OFF 

134 (0x86) ON OFF ON 

135 (0x87) ON ON ON 
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 Checksum Calculation 

All packet serial commands use a 7 bit checksum to prevent corrupt commands from being executed.  

Since the RoboClaw expects a 7bit value the 8th bit is masked. The checksum is calculated as follows: 

  Address + Command + Data = Checksum 

To mask the 8th bit you use can a simple math expression called AND as shown below: 

  Serout P15, i19200, [128, 0, 127, (255 & 0X7F)] 

The hexadecimal value 0X7F is used to mask the 8th bit. You can also use a binary value of 01111111 as 

shown below: 

  Serout P15, i19200, [128, 0, 127, (255 & %01111111)]  
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Commands 0 - 7 Standard Commands 

The following commands are the standard set of commands used with packet mode. The command syntax 

is the same for commands 0 to 7: 

  Address, Command, ByteValue, Checksum 

0 - Drive Forward M1 

Drive motor 1 forward. Valid data range is 0 - 127. A value of 127 = full speed forward, 64 = about half 

speed forward and 0 = full stop. Example with RoboClaw address set to 128: 

Serout P15, i19200, [128, 0, 127, (255 & 0X7F)] ;M1 full speed forward 

1 - Drive Backwards M1  

Drive motor 1 backwards. Valid data range is 0 - 127. A value of 127 full speed backwards, 64 = about half 

speed backward and 0 = full stop. Example with RoboClaw address set to 128: 

Serout P15, i19200, [128, 1, 127, (256 & 0X7F)] ;M1 full speed forward 

2 - Set Minimum Main Voltage  

Sets main battery (B- / B+) minimum voltage level. If the battery voltages drops below the set voltage level 

RoboClaw will shut down. The value is cleared at start up and must set after each power up. The voltage is 

set in .2 volt increments. A value of 0 sets the minimum value allowed which is 6V. The valid data range is 

0 - 120 (6V - 30V). The formula for calculating the voltage is: (Desired Volts - 6) x 5 = Value. Examples 

of valid values are 6V = 0, 8V = 10 and 11V = 25. Example with RoboClaw address set to 128: 

   Serout P15, i19200, [128, 2, 25, (165 & 0X7F)] 

3 - Set Maximum Main Voltage 

Sets main battery (B- / B+) maximum voltage level. The valid data range is 0 - 154 (0V - 30V). If you are 

using a battery of any type you can ignore this setting. During regenerative breaking a back voltage is 

applied to charge the battery. When using an ATX type power supply if it senses anything over 16V it will 

shut down. By setting the maximum voltage level, RoboClaw before exceeding it will go into hard 

breaking mode until the voltage drops below the maximum value set. The formula for calculating the 

voltage is: Desired Volts x 5.12 = Value. Examples of valid values are 12V = 62, 16V = 82 and 24V = 123. 

Example with RoboClaw address set to 128: 

  Serout P15, i19200, [128, 3, 82, (213 & 0X7F)] 

 

4 - Drive Forward M2 

Drive motor 2 forward. Valid data range is 0 - 127. A value of 127 full speed forward, 64 = about half 

speed forward and 0 = full stop. Example with RoboClaw address set to 128: 

   Serout P15, i19200, [128, 4, 127, (259 & 0X7F)] ;M2 full speed forward 
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5 - Drive Backwards M2  

Drive motor 2 backwards. Valid data range is 0 - 127. A value of 127 full speed backwards, 64 = about half 

speed backward and 0 = full stop. Example with RoboClaw address set to 128: 

   Serout P15, i19200, [128, 5, 127, (260 & 0X7F)] ;M2 full speed forward 

6 - Drive M1 (7 Bit)  

Drive motor 1 forward and reverse. Valid data range is 0 - 127. A value of 0 =  full speed reverse, 64 = stop 

and 127 = full speed forward. Example with RoboClaw address set to 128: 

   Serout P15, i19200, [128, 6, 96, (230 & 0X7F)] ;M1 half speed forward 

7 - Drive M2 (7 Bit)  

Drive motor 2 forward and reverse. Valid data range is 0 - 127. A value of 0 =  full speed reverse, 64 = stop 

and 127 = full speed forward. Example with RoboClaw address set to 128: 

   Serout P15, i19200, [128, 7, 32, (167 & 0X7F)] ;M2 half speed reverse  
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Commands 8 - 13 Mix Mode Commands 

The following commands are mix mode commands and used to control speed and turn. Before a command 

is executed valid drive and turn data is required. You only need to send both data packets once. After 

receiving both valid drive and turn data RoboClaw will begin to operate. At this point you only need to 

update turn or drive data. 

8 - Drive Forward 

Drive forward in mix mode. Valid data range is 0 - 127. A value of 0 = full stop and 127 = full forward. 

Example with RoboClaw address set to 128: 

   Serout P15, i19200, [128, 8, 127, (263 & 0x7F)] ;full speed forward 

9 - Drive Backwards 

Drive backwards in mix mode. Valid data range is 0 - 127. A value of 0 = full stop and 127 = full reverse. 

Example with RoboClaw address set to 128: 

   Serout P15, i19200, [128, 9, 127, (264 & 0x7F)] ;full speed reverse 

10 - Turn right 

Turn right in mix mode. Valid data range is 0 - 127. A value of 0 = stop turn and 127 = full speed turn. 

Example with RoboClaw address set to 128: 

   Serout P15, i19200, [128, 10, 127, (265 & 0x7F1)] ;full speed right turn 

11 - Turn left 

Turn left in mix mode. Valid data range is 0 - 127. A value of 0 = stop turn and 127 = full speed turn. 

Example with RoboClaw address set to 128: 

   Serout P15, i19200, [128, 11, 127, (266 & 0x7F)] ;full speed left turn 

12 - Drive Forward or Backward (7 Bit) 

Drive forward or backwards. Valid data range is 0 - 127. A value of 0 = full backward, 64 = stop and 127 = 

full forward. Example with RoboClaw address set to 128: 

   Serout P15, i19200, [128, 12, 96, (236 & 0x7F)] ;medium speed forward 

13 - Turn Left or Right (7 Bit) 

Turn left or right. Valid data range is 0 - 127. A value of 0 = full left, 0 = stop turn and 127 = full right. 

Example with RoboClaw address set to 128: 

   Serout P15, i19200, [128, 13, 0, (141 & 0x7F)] ;full speed turn left  
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Packet Serial Wiring 

In packet mode the RoboClaw can transmit and receive serial data. RoboClaw is transmitting return data a 

processor with a hardware serial port is required. 
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Packet Serial - Arduino Example 

The example will start the motor channels independently. Then start turns with mix mode commands. The 

program was written and tested with a Arduno Uno and P5 connected to S1. Set switch SW3 and SW5 to 

ON. 

//Basic Micro Robo Claw Packet Serial Test Commands 0 to 13. //Switch settings: SW3=ON 
and SW5=ON. 

#include “BMSerial.h” 

#include “RoboClaw.h” 

#defi ne address 0x80 RoboClaw roboclaw(5,6); 

void setup() { 

  roboclaw.begin(19200); 

} 

void loop() { 

  roboclaw.ForwardM1(address,64); //Cmd 0    roboclaw.BackwardM2(address,64); //Cmd 5   
delay(2000); 
  roboclaw.BackwardM1(address,64); //Cmd 1   roboclaw.ForwardM2(address,64); //Cmd 6   
delay(2000); 
  roboclaw.ForwardBackwardM1(address,96);  //Cmd 6   
roboclaw.ForwardBackwardM2(address,32);  //Cmd 7   delay(2000); 
  roboclaw.ForwardBackwardM1(address,32);  //Cmd 6   
roboclaw.ForwardBackwardM2(address,96);  //Cmd 7   delay(2000); 

  //stop motors 

  roboclaw.ForwardBackwardM1(address,0);   roboclaw.ForwardBackwardM2(address,0);   

delay(10000); 

  roboclaw.ForwardMixed(address, 64); //Cmd 8   delay(2000); 
  roboclaw.BackwardMixed(address, 64); //Cmd 9   delay(2000); 
  roboclaw.TurnRightMixed(address, 64); //Cmd 10   delay(2000); 
  roboclaw.TurnLeftMixed(address, 64);   //Cmd 11   delay(2000); 
  roboclaw.ForwardBackwardMixed(address, 32); //Cmd 12   delay(2000); 
  roboclaw.ForwardBackwardMixed(address, 96); //Cmd 12   delay(2000); 
  roboclaw.LeftRightMixed(address, 32); //Cmd 13   delay(2000); 
  roboclaw.LeftRightMixed(address, 96); //Cmd 13   delay(2000); 

  //stop motors 

  roboclaw.ForwardMixed(address, 0); 

  delay(10000); 

} 
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 Packet Serial - BasicATOM Pro Example 

The example will start the motor channels independently. Then start turns with mix mode commands. The 

program was written and tested with a BasicATOM Pro and P15 connected to S1. Set switch SW3 and 

SW5 to ON. 

;Basic Micro Robo Claw Packet Serial Test Commands 0 to 13. ;Switch settings: 

SW3=ON and SW5=ON. 

Main 

  Pause 2000 

  Serout P15, i19200, [128, 0, 127, (255 & 0x7F)];M1 full speed forward 

 Serout P15, i19200, [128, 4, 127, (259 & 0x7F)];M2 full speed forward   

  Pause 1000 

  Serout P15, i19200, [128, 0, 0, (128 & 0x7F)];M1 stop   Serout P15, 

i19200, [128, 4, 0, (132 & 0x7F)];M2 stop 

    

  Pause 1000 

 Serout P15, i19200, [128, 1, 127, (256 & 0x7F)];M1 full speed backwards  Serout P15, 

i19200, [128, 5, 127, (260 & 0x7F)];M1 full speed backwards   

  Pause 1000 

  Serout P15, i19200, [128, 0, 0, (128 & 0x7F)];M1 stop   Serout P15, 

i19200, [128, 4, 0, (132 & 0x7F)];M2 stop   

  Pause 1000 

  Serout P15, i19200, [128, 10, 127, (265 & 0x7F)];Mix mode right full speed 

  

  Pause 1000 

 Serout P15, i19200, [128, 10, 0, (138 & 0x7F)];Mix mode stop   

  Pause 1000 

  Serout P15, i19200, [128, 11, 127, (266 & 0x7F)];Mix mode left full speed 

  

  Pause 1000 

  Serout P15, i19200, [128, 11, 0, (139 & 0x7F)];Mix mode stop Goto Main 
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21 - Read Firmware Version 

Read RoboClaw fi rmware version. Returns up to 32 bytes and is terminated by a null character. Command 

syntax: 

  Sent: [Address, CMD] 

  Received: [“RoboClaw 10.2A v1.3.9, Checksum] 

The command will return up to 32 bytes. The return string includes the product name and fi rmware 

version. The return string is terminated with a null (0) character. This is done so the version information 

can be read from a standard PC terminal window. 

  hserout [128, 21] ;read fi rmware version  

 hserin [Str VersionByte\32\0, Checksum] 

24 - Read Main Battery Voltage Level 

Read the main battery voltage level connected to B+ and B- terminals. The voltage is returned in 10ths of a 

volt. Command syntax: 

 Sent: [Address, CMD] 

  Received: [Value.Byte1, Value.Byte0, Checksum] 

The command will return 3 bytes. Byte 1 and 2 make up a word variable which is received MSB fi rst and 

is 10th of a volt. A returned value of 300 would equal 30V. Byte 3 is the checksum. It is calculated the 

same way as sending a command and can be used to validate the data. The following example will read the 

main battery voltage with RoboClaw address set to 128.  

  hserout [128, 24] ;read main battery voltage  

 hserin [Value.Byte1, Value.Byte0, Checksum] 

25 - Read Logic Battery Voltage Level 

Read a logic battery voltage level connected to LB+ and LB- terminals. The voltage is returned in 10ths of 

a volt. Command syntax: 

  Sent: [Address, CMD] 

  Received: [Value.Byte1, Value.Byte0, Checksum] 

The command will return 3 bytes. Byte 1 and 2 make up a word variable which is received MSB fi rst and 

is 10th of a volt. A returned value of 50 would equal 5V. Byte 3 is the checksum. It is calculated the same 

way as sending a command and can be used to validate the data. The following example will read the main 

battery voltage with RoboClaw address set to 128.  

  hserout [128, 25] ;read logic battery voltage  

 hserin [Value.Byte1, Value.Byte0, Checksum]  
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 26 – Set Minimum Logic Voltage Level 

Sets logic input (LB- / LB+) minimum voltage level. If the battery voltages drops below the set voltage 

level RoboClaw will shut down. The value is cleared at start up and must set after each power up. The 

voltage is set in .2 volt increments. A value of 0 sets the minimum value allowed which is 3V. The valid 

data range is 0 - 120 (6V - 28V). The formula for calculating the voltage is: (Desired Volts - 6) x 5 = 

Value. Examples of valid values are 3V = 0, 8V = 10 and 11V = 25. RoboClaw example with address set to 

128: 

   hserout [128, 26, 0, (154 & 0X7F)] 

27 - Set Maximum Logic Voltage Level 

Sets logic input (LB- / LB+) maximum voltage level. The valid data range is 0 - 144 (0V - 28V). By 

setting the maximum voltage level RoboClaw will go into shut down and requires a hard reset to recovers. 

The formula for calculating the voltage is: Desired Volts x 5.12 = Value. Examples of valid values are 

12V = 62, 16V = 82 and 24V = 123. RoboClaw example with address set to 128:  hserout [128, 27, 82, 

(213 & 0X7F)] 

Main Battery Voltage Levels 

The main battery levels are set in a similar way as the logic battery. See command 2 and 3 for details.  
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 Quadrature Decoding 

Handling the quadrature encoders is done using packet serial. All the switch settings still apply in to 

enabling packet serial and setting the desired baud rates. See Mode - Packet Serial. The following 

commands deal specifi cally with the dual quadrature decoders built into RoboClaw. 

Checksum Calculation 

All packet serial commands use a 7 bit checksum to prevent corrupt commands from being executed.  

Since the RoboClaw expects a 7bit value the 8th bit is masked. The checksum is calculated as follows: 

  Address + Command + Data = Checksum 

To mask the 8th bit you use can a simple math expression called AND as shown below: 

  Serout P15, i19200, [128, 0, 127, (255 & 0X7F)] 

The hexadecimal value 0X7F is used to mask the 8th bit. You can also use a binary value of 01111111 as 

shown below: 

  Serout P15, i19200, [128, 0, 127, (255 & %01111111)]  
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 Quadrature Encoder Wiring 

RoboClaw can read two quadrature encoders. The encoders are connected to RoboClaw using CN4. Both 

GND and 5 volts are present on the header to power the encoders.  

In a two motor robot confi guration one motor will spin clock wise (CW) while the other motor will spin 

counter clock wise (CCW). The A and B inputs for one of the two encoders must be reversed as shown. If 

either encoder is connected wrong one will count up and the other down this will cause commands like mix 

drive forward to not work properly. 
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Commands 16 - 20 Reading Quadrature Encoders 

The following commands are used in dealing with the quadrature decoding counter registers. The 

quadrature  decoder is a simple counter that counts the incoming pulses, tracks the direction and speed of 

each pulse. There are two registers one each for M1 and M2. (Note: A microcontroller with a hardware 

UART is recommended for use with packet serial modes). 

Command Description 

16 Read Quadrature Encoder Register for M1. 

17 Read Quadrature Encoder Register for M2. 

18 Read M1 Speed in Pulses Per Second. 

19 Read M2 Speed in Pulses Per Second. 

20 Resets Quadrature Encoder Registers for M1 and M2. 

16 - Read Quadrature Encoder Register M1 

Read decoder M1 counter. Since CMD 16 is a read command it does not require a checksum. However a 

checksum value will be returned from RoboClaw and can be used to validate the data. Command syntax: 

              Sent: [Address, CMD] 

  Received: [Value1.Byte3, Value1.Byte2, Value1.Byte1, Value1.Byte0, Value2,    

 Checksum] 

The command will return 6 bytes. Byte 1,2,3 and 4 make up a long variable which is received MSB fi rst 

and represents the current count which can be any value from 0 - 4,294,967,295. Each pulse from the 

quadrature encoder will increment or decrement the counter depending on the direction of rotation. 

Byte 5 is the status byte for M1 decoder. It tracks counter underfl ow, direction, overfl ow and if the 

encoder is operational. The byte value represents: 

                    Bit0 - Counter Underfl ow (1= Underfl ow Occurred, Clear After Reading) 

                    Bit1 - Direction (0 = Forward, 1 = Backwards) 

                    Bit2 - Counter Overfl ow (1= Underfl ow Occurred, Clear After Reading) 

  Bit3 - Reserved 

  Bit4 - Reserved 

  Bit5 - Reserved 

  Bit6 - Reserved 

  Bit7 - Reserved 

Byte 6 is the checksum. It is calculated the same way as sending a command. It can be used to validate the 

resulting data. The following example will read M1 counter register, status byte and checksum value with 

RoboClaw address set to 128.  

   hserout [128, 16] ;read command for M1 encoder 

   hserin [Value1.Byte3, Value1.Byte2, Value1.Byte1, Value1.Byte0, Value2, Checksum] 
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17 - Read Quadrature Encoder Register M2 

Read decoder M2 counter. Since CMD 16 is a read command it does not require a checksum. However a 

checksum value will be returned from RoboClaw and can be used to validate the data. Command syntax: 

Sent: [Address, CMD] 

Received: [Value1.Byte3, Value1.Byte2, Value1.Byte1, Value1.Byte0, Value2, Checksum] 

The command will return 6 bytes. Byte 1,2,3 and 4 make up a long variable which is received MSB fi rst 

and represents the current count which can be any value from 0 - 4,294,967,295. Each pulse from the 

quadrature encoder will increment or decrement the counter depending on the direction of rotation.  

Byte 5 is the status byte for M1 decoder. It tracks counter underfl ow, direction, overfl ow and if the 

encoder is operational. The byte value represents: 

 Bit0 - Counter Underfl ow (1= Underfl ow Occurred, Clear After Reading) 

 Bit1 - Direction (0 = Forward, 1 = Backwards) 

 Bit2 - Counter Overfl ow (1= Underfl ow Occurred, Clear After Reading) 

 Bit3 - Reserved 

 Bit4 - Reserved 

 Bit5 - Reserved 

 Bit6 - Reserved 

 Bit7 - Reserved 

Byte 6 is the checksum. It is calculated the same way as sending a command. It can be used to validate the 

resulting data. The following example will read M1 counter register, status byte and checksum value with 

RoboClaw address set to 128.   

 hserout [128, 17] ;read command for M2 encoder 

 hserin [Value1.Byte3, Value1.Byte2, Value1.Byte1, Value1.Byte0, Value2, Checksum] 

18 - Read Speed M1 

Read M1 counter speed. Returned value is in pulses per second. RoboClaw keeps track of how many pulses 

received per second for both decoder channels. Since CMD 18 is a read command it does not require a 

checksum to be sent. However a checksum value will be returned from RoboClaw and can be used to 

validate the data. Command syntax: 

Sent: [Address, CMD] 

Received: [Value1.Byte3, Value1.Byte2, Value1.Byte1, Value1.Byte0, Value2, Checksum] 

The command will return 6 bytes. Byte 1,2,3 and 4 make up a long variable which is received MSB fi 

rst and is the current ticks per second which can be any value from 0 - 4,294,967,295. Byte 5 is the 

direction (0 – forward, 1 - backward). Byte 6 is the checksum. It is calculated the same way as sending 

a command and can be used to validate the data. The following example will read M1 pulse per second 

and direction with RoboClaw address set to 128.  

 hserout [128, 18] ;read command for M1 encoder 

             hserin [Value1.Byte3, Value1.Byte2, Value1.Byte1, Value1.Byte0, Value2, Checksum] 
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19 - Read Speed M2 

Read M2 counter speed. Returned value is in pulses per second. RoboClaw keeps track of how many pulses 

received per second for both decoder channels. Since CMD 19 is a read command it does not require a 

checksum to be sent. However a checksum value will be returned from RoboClaw and can be used to 

validate the data. Command syntax: 

         Sent: [Address, CMD] 

         Received: [Value1.Byte3, Value1.Byte2, Value1.Byte1, Value1.Byte0, Value2, Checksum] 

The command will return 6 bytes. Byte 1,2,3 and 4 make up a long variable which is received MSB fi 

rst and is the current ticks per second which can be any value from 0 - 4,294,967,295. Byte 5 is the 

direction (0 – forward, 1 - backward). Byte 6 is the checksum. It is calculated the same way as sending a 

command and can be used to validate the data. The following example will read M2 pulse per second 

and direction with RoboClaw address set to 128.  

         hserout [128, 19] ;read command for M2 encoder 

         hserin [Value1.Byte3, Value1.Byte2, Value1.Byte1, Value1.Byte0, Value2, Checksum] 

20 - Reset Quadrature Encoder Counters 

Will reset both quadrature decoder counters to zero. Since CMD 20 is a write command a checksum value 

is required. Command syntax and example: 

          hserout [128, 20, (148 & %01111111)]; resets encoder registers  
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Commands 28 - 48 Motor Control by Quadrature Encoders 

The following commands are used to control motor speeds, acceleration and distance using the quadrature 

encoders. All speeds are given in quad pulses per second (QPPS) unless otherwise stated. Quadrature 

encoders of different types and manufactures can be used. However many have different resolutions and 

maximum speeds at which they operate. So each quadrature encoder will produce a different range of 

pulses per second. 

  

Command Description 

28 Set PID Constants for M1. 

29 Set PID Constants for M2. 

30 Read Current M1 Speed Resolution 125th of a Second. 

31 Read Current M2 Speed Resolution 125th of a Second. 

32 Drive M1 With Signed Duty Cycle. 

33 Drive M2 With Signed Duty Cycle. 

34 Mix Mode Drive M1 / M2 With Signed Duty Cycle. 

35 Drive M1 With Signed Speed. 

36 Drive M2 With Signed Speed. 

37 Mix Mode Drive M1 / M2 With Signed Speed. 

38 Drive M1 With Signed Speed And Acceleration. 

39 Drive M2 With Signed Speed And Acceleration. 

40 Mix Mode Drive M1 / M2 With Speed And Acceleration. 

41 Drive M1 With Signed Speed And Distance. Buffered. 

42 Drive M2 With Signed Speed And Distance. Buffered. 

43 Mix Mode Drive M1 / M2 With Speed And Distance. Buffered. 

44 Drive M1 With Signed Speed, Acceleration and Distance. Buffered. 

45 Drive M2 With Signed Speed, Acceleration and Distance. Buffered. 

46 Mix Mode Drive M1 / M2 With Speed, Acceleration And Distance. Buffered. 

47 Read Buffer Length. 

48 Set PWM Resolution.  
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28 Set PID Constants M1 

Several motor and quadrature combinations can be used with RoboClaw. In some cases the default PID 

values will need to be tuned for the systems being driven. This gives greater fl exibility in what motor and 

encoder combinations can be used. The RoboClaw PID system consist of four constants starting with 

QPPS,  P = Proportional, I= Integral and D= Derivative. The defaults values are: 

 QPPS = 44000 

P = 0x00010000 

 I = 0x00008000 

 D = 0x00004000 

QPPS is the speed of the encoder when the motor is at 100% power. P, I, D are the default values used after 

a reset. Command syntax: 

 Sent: [Address, CMD, D(4 bytes), P(4 bytes), I(4 bytes), QPPS(4 byte), Checksum] 

Each value is made up of 4 bytes for a long. To write the registers a checksum value is used. This prevents 

an accidental write. 

29 - Set PID Constants M2 

Several motor and quadrature combinations can be used with RoboClaw. In some cases the default PID 

values will need to be tuned for the systems being driven. This gives greater fl exibility in what motor and 

encoder combinations can be used. The RoboClaw PID system consist of four constants starting with 

QPPS,  P = Proportional, I= Integral and D= Derivative. The defaults values are: 

 QPPS = 44000 

P = 0x00010000 

 I = 0x00008000 

 D = 0x00004000 

QPPS is the speed of the encoder when the motor is at 100% power. P, I, D are the default values used after 

a reset. Command syntax: 

 Sent: [Address, CMD, D(4 bytes), P(4 bytes), I(4 bytes), QPPS(4 byte), Checksum] 

Each value is made up of 4 bytes for a long. To write the registers a checksum value is used. This prevents 

an accidental write. 

30 - Read Current Speed M1 

Read the current pulse per 125th of a second. This is a high resolution version of command 18 and 19. 

Command 30 can be used to make a independent PID routine. The resolution of the command is 

required to create a PID routine using any microcontroller or PC used to drive RoboClaw. The 

command syntax: 

  Sent: [Address, CMD] 

  Received: [Value1.Byte3, Value1.Byte2, Value1.Byte1, Value1.Byte0, Value2, Checksum] 

The command will return 5 bytes, MSB sent fi rst for a long. The fi rst 4 bytes are a 32 byte value (long) 

that repersent the speed. The 5th byte (Value2) is direction (0 – forward, 1 - backward).  is A checksum is 

returned in order to validate the data returned.  
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31 - Read Current Speed M2 

Read the current pulse per 125th of a second. This is a high resolution version of command 18 and 19. 

Command 31 can be used to make a independent PID routine. The resolution of the command is 

required to create a PID routine using any microcontroller or PC used to drive RoboClaw. The 

command syntax: 

  Sent: [Address, CMD] 

  Received: [Value1.Byte3, Value1.Byte2, Value1.Byte1, Value1.Byte0, Value2, Checksum] 

The command will return 5 bytes, MSB sent fi rst for a long. The fi rst 4 bytes are a 32 byte value (long) 

that repersent the speed. The 5th byte (Value2) is direction (0 – forward, 1 - backward).  is A checksum is 

returned in order to validate the data returned.  

32 - Drive M1 With Signed Duty Cycle 

Drive M1 using a duty cycle value. The default PWM is 8bit resolution. The default value can be changed 

see CMD 48. The duty cycle is used to control the speed of the motor without a quadrature encoder. A 

value used to drive one motor at 50% will be differ from one motor to the next. The command syntax: 

Sent: [Address, CMD, Duty(2 Bytes), Checksum] 

The duty value is signed and the default range is 8bits. The default PWM resolution can be changed for 

more range. To change the resolution see command 48.  

33 - Drive M2 With Signed Duty Cycle 

Drive M2 using a duty cycle value. The default PWM is 8bit resolution. The default value can be changed 

see CMD 48. The duty cycle is used to control the speed of the motor without a quadrature encoder. A 

value used to drive one motor at 50% will be differ from one motor to the next. The command syntax: 

Sent: [Address, CMD, Duty(2 Bytes), Checksum] 

The duty value is signed and the default range is 8bits. The default PWM resolution can be changed for 

more range. To change the resolution see command 48.  

34 - Mix Mode Drive M1 / M2 With Signed Duty Cycle 

Drive both M1 and M2 using a duty cycle value. The default PWM is 8bit resolution. The default value 

can be changed see CMD 48. The duty cycle is used to control the speed of the motor without a 

quadrature encoder. A value used to drive one motor at 50% will be differ from one motor to the next. 

The command syntax: 

Sent: [Address, CMD, DutyM1(2 Bytes), DutyM2(2 Bytes), Checksum] 

The duty value is signed and the default range is 8bits. The default PWM resolution can be changed for 

more range. To change the resolution see command 48.  

35 - Drive M1 With Signed Speed 

Drive M1 using a speed value. The sign indicates which direction the motor will turn. This command is 

used to drive the motor by quad pulses per second. Different quadrature encoders will have different rates 

at which they generate the incoming pulses. The values used will differ from one encoder to another. Once 
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a value is sent the motor will begin to accelerate as fast as possible until the defi ned rate is reached. The 

command syntax: 

Sent: [Address, CMD, Qspeed(4 Bytes), Checksum] 

4 Bytes (long) are used to express the pulses per second. Quadrature encoders send 4 pulses per tick. So 

1000 ticks would be counted as 4000 pulses.  

36 - Drive M2 With Signed Speed 

Drive M2 with a speed value. The sign indicates which direction the motor will turn. This command is 

used to drive the motor by quad pulses per second. Different quadrature encoders will have different rates 

at which they generate the incoming pulses. The values used will differ from one encoder to another. 

Once a value is sent, the motor will begin to accelerate as fast as possible until the rate defi ned is 

reached. The command syntax: 

Sent: [Address, CMD, Qspeed(4 Bytes), Checksum] 

4 Bytes (long) are used to expressed the pulses per second. Quadrature encoders send 4 pulses per tick. So 

1000 ticks would be counted as 4000 pulses.  

37 - Mix Mode Drive M1 / M2 With Signed Speed 

Drive M1 and M2 in the same command using a signed speed value. The sign indicates which direction the 

motor will turn. This command is used to drive both  motors by quad pulses per second. Different 

quadrature encoders will have different rates at which they generate the incoming pulses. The values used 

will differ from one encoder to another. Once a value is sent the motor will begin to accelerate as fast as 

possible until the rate defi ned is reached. The command syntax: 

Sent: [Address, CMD, QspeedM1(4 Bytes), QspeedM2(4 Bytes), Checksum] 

4 Bytes (long) are used to express the pulses per second. Quadrature encoders send 4 pulses per tick. So 

1000 ticks would be counted as 4000 pulses.  

38 - Drive M1 With Signed Speed And Acceleration 

Drive M1 with a signed speed and acceleration value. The sign indicates which direction the motor will 

run. The acceleration values are not signed. This command is used to drive the motor by quad pulses per 

second and using an acceleration value for ramping. Different quadrature encoders will have different 

rates at which they generate the incoming pulses. The values used will differ from one encoder to another. 

Once a value is sent the motor will begin to accelerate incrementally until the rate defi ned is reached. The 

command syntax: 

Sent: [Address, CMD, Accel(4 Bytes), Qspeed(4 Bytes), Checksum] 

4 Bytes (long) are used to express the pulses per second. Quadrature encoders send 4 pulses per tick. So 

1000 ticks would be counted as 4000 pulses. The acceleration is measured in speed per second. An 

acceleration value of  12,000 QPPS with a speed of 12,000 QPPS would accelerate a motor from 0 to 

12,000 QPPS in 1 second. Another example would be an acceleration value of 24,000 QPPS and a speed 

value of 12,000 QPPS would accelerate the motor to 12,000 QPPS in 0.5 seconds. 
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39 - Drive M2 With Signed Speed And Acceleration 

Drive M2 with a signed speed and acceleration value. The sign indicates which direction the motor will 

run. The acceleration value is not signed. This command is used to drive the motor by quad pulses per 

second and using an acceleration value for ramping. Different quadrature encoders will have different rates 

at which they generate the incoming pulses. The values used will differ from one encoder to another. Once 

a value is sent the motor will begin to accelerate incrementally until the rate defi ned is reached. The 

command syntax: 

Sent: [Address, CMD, Accel(4 Bytes), Qspeed(4 Bytes), Checksum] 

4 Bytes (long) are used to express the pulses per second. Quadrature encoders send 4 pulses per tick. So 

1000 ticks would be counted as 4000 pulses. The acceleration is measured in speed per second. An 

acceleration value of  12,000 QPPS with a speed of 12,000 QPPS would accelerate a motor from 0 to 

12,000 QPPS in 1 second. Another example would be an acceleration value of 24,000 QPPS and a speed 

value of 12,000 QPPS would accelerate the motor to 12,000 QPPS in 0.5 seconds. 

40 - Mix Mode Drive M1 / M2 With Speed And Acceleration 

Drive M1 and M2 in the same command using one value for acceleration and two signed speed values for 

each motor. The sign indicates which direction the motor will run. The acceleration value is not signed. 

The motors are sync during acceleration. This command is used to drive the motor by quad pulses per 

second and using an acceleration value for ramping. Different quadrature encoders will have different rates 

at which they generate the incoming pulses. The values used will differ from one encoder to another. Once 

a value is sent the motor will begin to accelerate incrementally until the rate defi ned is reached. The 

command syntax: 

Sent: [Address, CMD, Accel(4 Bytes), QspeedM1(4 Bytes), QspeedM2(4 Bytes), Checksum] 

4 Bytes (long) are used to express the pulses per second. Quadrature encoders send 4 pulses per tick. So 

1000 ticks would be counted as 4000 pulses. The acceleration is measured in speed per second. An 

acceleration value of  12,000 QPPS with a speed of 12,000 QPPS would accelerate a motor from 0 to 

12,000 QPPS in 1 second. Another example would be an acceleration value of 24,000 QPPS and a speed 

value of 12,000 QPPS would accelerate the motor to 12,000 QPPS in 0.5 seconds. 

41 - Buffered M1 Drive With Signed Speed And Distance 

Drive M1 with a signed speed and distance value. The sign indicates which direction the motor will run. 

The distance value is not signed. This command is buffered. This command is used to control the top speed 

and total distance traveled by the motor. Each motor channel M1 and M2 have separate buffers. This 

command will execute immediately if no other command for that channel is executing, otherwise the 

command will be buffered in the order it was sent.  Any buffered or executing command can be stopped 

when a new command is issued by setting the Buffer argument. All values used are in quad pulses per 

second. The command syntax: 

Sent: [Address, CMD, QSpeed(4 Bytes), Distance(4 Bytes), Buffer(1 Byte), Checksum] 

4 Bytes(long) are used to express the pulses per second.  The Buffer argument can be set to a 1 or 0. If a 

value of 0 is used the command will be buffered and executed in the order sent.  If a value of 1 is used the 

current running command is stopped, any other commands in the buffer are deleted and the new command 

is executed. 
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42 - Buffered M2 Drive With Signed Speed And Distance 

Drive M2 with a speed and distance value. The sign indicates which direction the motor will run. The 

distance value is not signed. This command is buffered. Each motor channel M1 and M2 have separate 

buffers. This command will execute immediately if no other command for that channel is executing, 

otherwise the command will be buffered in the order it was sent.  Any buffered or executing command can 

be stopped when a new command is issued by setting the Buffer argument. All values used are in quad 

pulses per second. The command syntax: 

Sent: [Address, CMD, QSpeed(4 Bytes), Distance(4 Bytes), Buffer(1 Byte), Checksum] 

4 Bytes(long) are used to express the pulses per second.  The Buffer argument can be set to a 1 or 0. If a 

value of 0 is used the command will be buffered and executed in the order sent.  If a value of 1 is used the 

current running command is stopped, any other commands in the buffer are deleted and the new command 

is executed. 

43 - Buffered Mix Mode Drive M1 / M2  With Signed Speed And Distance 

Drive M1 and M2 with a speed and distance value. The sign indicates which direction the motor will run. 

The distance value is not signed. This command is buffered. Each motor channel M1 and M2 have 

separate buffers. This command will execute immediately if no other command for that channel is 

executing, otherwise the command will be buffered in the order it was sent.  Any buffered or executing 

command can be stopped when a new command is issued by setting the Buffer argument. All values used 

are in quad pulses per second. The command syntax: 

Sent: [Address, CMD, QSpeedM1(4 Bytes), DistanceM1(4 Bytes),  

    QSpeedM2(4 Bytes), DistanceM2(4 Bytes), Buffer(1 Byte), Checksum] 

4 Bytes(long) are used to express the pulses per second.  The Buffer argument can be set to a 1 or 0. If a 

value of 0 is used the command will be buffered and executed in the order sent.  If a value of 1 is used the 

current running command is stopped, any other commands in the buffer are deleted and the new command 

is executed. 

44 - Buffered M1 Drive With Signed Speed, Accel And Distance 

Drive M1 with a speed, acceleration and distance value. The sign indicates which direction the motor will 

run. The acceleration and distance values are not signed. This command is used to control the motors top 

speed, total distanced traveled and at what incremental acceleration value to use until the top speed is 

reached. Each motor channel M1 and M2 have separate buffers. This command will execute immediately if 

no other command for that channel is executing, otherwise the command will be buffered in the order it 

was sent.  Any buffered or executing command can be stopped when a new command is issued by setting 

the Buffer argument. All values used are in quad pulses per second. The command syntax: 

Sent: [Address, CMD, Accel(4 bytes), QSpeed(4 Bytes), Distance(4 Bytes),    Buffer(1 Byte), 

Checksum] 

4 Bytes(long) are used to express the pulses per second.  The Buffer argument can be set to a 1 or 0. If a 

value of 0 is used the command will be buffered and executed in the order sent.  If a value of 1 is used the 

current running command is stopped, any other commands in the buffer are deleted and the new command 

is executed. 
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45 - Buffered M2 Drive With Signed Speed, Accel And Distance 

Drive M2 with a speed, acceleration and distance value. The sign indicates which direction the motor will 

run. The acceleration and distance values are not signed. This command is used to control the motors top 

speed, total distanced traveled and at what incremental acceleration value to use until the top speed is 

reached. Each motor channel M1 and M2 have separate buffers. This command will execute immediately if 

no other command for that channel is executing, otherwise the command will be buffered in the order it 

was sent.  Any buffered or executing command can be stopped when a new command is issued by setting 

the Buffer argument. All values used are in quad pulses per second. The command syntax: 

Sent: [Address, CMD, Accel(4 bytes), QSpeed(4 Bytes), Distance(4 Bytes),    Buffer(1 Byte), 

Checksum] 

4 Bytes(long) are used to express the pulses per second.  The Buffer argument can be set to a 1 or 0. If a 

value of 0 is used the command will be buffered and executed in the order sent.  If a value of 1 is used the 

current running command is stopped, any other commands in the buffer are deleted and the new command 

is executed. 

46 - Buffered Mix Mode Drive M1 / M2 With Signed Speed, Accel And Distance 

Drive M1 and M2 with a speed, acceleration and distance value. The sign indicates which direction the 

motor will run. The acceleration and distance values are not signed. This command is used to control both 

motors top speed, total distanced traveled and at what incremental acceleration value to use until the top 

speed is reached. Each motor channel M1 and M2 have separate buffers. This command will execute 

immediately if no other command for that channel is executing, otherwise the command will be buffered in 

the order it was sent.  Any buffered or executing command can be stopped when a new command is issued 

by setting the Buffer argument. All values used are in quad pulses per second. The command syntax: 

Sent: [Address, CMD, Accel(4 Bytes), QSpeedM1(4 Bytes), DistanceM1(4 Bytes),  

QSpeedM2(4 bytes), DistanceM2(4 Bytes), Buffer(1 Byte), Checksum] 

4 Bytes(long) are used to express the pulses per second.  The Buffer argument can be set to a 1 or 0. If a 

value of 0 is used the command will be buffered and executed in the order sent.  If a value of 1 is used the 

current running command is stopped, any other commands in the buffer are deleted and the new command 

is executed. 

47 - Read Buffer Length 

Read both motor M1 and M2 buffer lengths. This command can be used to determine how many 

commands are waiting to execute. 

Sent: [Address, CMD] 

Received: [BufferM1(1 Bytes), BufferM2(1 Bytes), Checksum] 

The return values represent how many commands per buffer are waiting to be executed. The maximum 

buffer size per motor is 31 commands. 
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Reading Quadrature Encoder - Arduino Example 

The example was tested with an Arduino Uno. RoboClaw was connected as shown in both packet serial 

wiring and quadrature encoder wiring diagrams.  

The example will read the speed, total ticks and direction of each encoder. Connect to the program using a 

terminal window set to 38400 baud. The program will display the values of each encoders current count 

along with each encoder status bit in binary and the direction bit. As the encoder is turned it will update the 

screen. 

//Basic Micro Robo Claw Packet Serial Mode. 

//Switch settings: SW3=ON, SW4=ON, SW5=ON 

#include “BMSerial.h” 

#include “RoboClaw.h” 

#defi ne address 0x80 

#defi ne Kp 0x00010000 

#defi ne Ki 0x00008000 

#defi ne Kd 0x00004000 

#defi ne qpps 44000 

BMSerial terminal(0,1); RoboClaw roboclaw(5,6); 

void setup() {   terminal.begin(38400);   roboclaw.begin(38400); 
   

  roboclaw.SetM1Constants(address,Kd,Kp,Ki,qpps);   
roboclaw.SetM2Constants(address,Kd,Kp,Ki,qpps); 
} 

void loop() {   uint8_t status;   bool valid; 
   

  uint32_t enc1= roboclaw.ReadEncM1(address, &status, &valid);   if(valid){ 
    terminal.print(“Encoder1:”);     terminal.print(enc1,HEX);     terminal.print(“ “);     
terminal.print(status,HEX);     terminal.print(“ “); 
  } 

  uint32_t enc2 = roboclaw.ReadEncM2(address, &status, &valid);   if(valid){ 
    terminal.print(“Encoder2:”);     terminal.print(enc2,HEX);     terminal.print(“ “);     
terminal.print(status,HEX);     terminal.print(“ “); 
  } 

  uint32_t speed1 = roboclaw.ReadSpeedM1(address, &status, &valid);   if(valid){ 
    terminal.print(“Speed1:”);     terminal.print(speed1,HEX);     terminal.print(“ “); 
  } 

  uint32_t speed2 = roboclaw.ReadSpeedM2(address, &status, &valid);   if(valid){ 
    terminal.print(“Speed2:”);     terminal.print(speed2,HEX);     terminal.print(“ “); 
  } 

  terminal.println(); 

   

  delay(100); 

} 
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Speed Controlled by Quadrature Encoders - Arduino Example 

The following example was written using an BasicATOM Pro. RoboClaw was connected as shown in both 

packet serial wiring and quadrature encoder wiring diagrams.  

The example will command a 4wheel robot to move forward, backward, right turn and left turn slowly.  

You can change the speed by adjusting the value of Speed and Speed2 variables. 

//Basic Micro Robo Claw Packet Serial Mode. 

//Switch settings: SW3=ON, SW4=ON, SW5=ON 

#include “BMSerial.h” 

#include “RoboClaw.h” 

#defi ne address 0x80 

#defi ne Kp 0x00010000 

#defi ne Ki 0x00008000 

#defi ne Kd 0x00004000 

#defi ne qpps 44000 

BMSerial terminal(0,1); RoboClaw roboclaw(5,6); 

void setup() {   terminal.begin(38400);   roboclaw.begin(38400); 

   

  roboclaw.SetM1Constants(address,Kd,Kp,Ki,qpps);   

roboclaw.SetM2Constants(address,Kd,Kp,Ki,qpps);   

} 

void displayspeed(void) 

{ 

  uint8_t status;   bool valid; 

   

  uint32_t enc1= roboclaw.ReadEncM1(address, &status, &valid);   if(valid){     

terminal.print(“Encoder1:”);     terminal.print(enc1,DEC);     terminal.print(“ “);     

terminal.print(status,HEX);     terminal.print(“ “); 

  } 

  uint32_t enc2 = roboclaw.ReadEncM2(address, &status, &valid);   if(valid){     

terminal.print(“Encoder2:”);     terminal.print(enc2,DEC);     terminal.print(“ “);     

terminal.print(status,HEX);     terminal.print(“ “); 

  } 
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  uint32_t speed1 = roboclaw.ReadSpeedM1(address, &status, 

&valid);   if(valid){     terminal.print(“Speed1:”);     

terminal.print(speed1,DEC);     terminal.print(“ “); 

  } 

  uint32_t speed2 = roboclaw.ReadSpeedM2(address, &status, 

&valid);   if(valid){     terminal.print(“Speed2:”);     

terminal.print(speed2,DEC);     terminal.print(“ “); 

  } 

  terminal.println(); 

} 

void loop() { 

  

roboclaw.SpeedAccelDistanceM1(address,12000,12000,48000);   

uint8_t depth1,depth2;   do{ 

    displayspeed(); 

    roboclaw.ReadBuffers(address,depth1,depth2); 

  }while(depth1); 

  roboclaw.SpeedAccelDistanceM1(address,12000,-

12000,48000);   do{ 

    displayspeed(); 

    roboclaw.ReadBuffers(address,depth1,depth2); 

  }while(depth1); 

   

} 
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Reading Quadrature Encoder - BasicATOM Pro Example 

The example was tested with a BasicATOM Pro. RoboClaw was connected as shown in both packet serial 

wiring and quadrature encoder wiring diagrams.  

The example will read the speed, total ticks and direction of each encoder. Connect to the program using 

the Basic Micro Studio terminal window set to 38400 baud. The program will display the values of each 

encoders current count along with each encoder status bit in binary and the direction bit. As the encoder is 

turned it will update the screen. 

Encoder1 Var Long 

Encoder2 Var Long 

Status Var Byte 

CRC Var Byte 

ENABLEHSERIAL  ;used on AtomPro24 and AtomPro28. AtomPro40 and ARC-32 use EnableHSerial2 

SetHSerial H38400,H8DATABITS,HNOPARITY,H1STOPBITS 

Pause 250 

Hserout [128, 20, (148 & 0x7F)]; Resets encoder registers 

Main 

  Pause 100 

ReadEncoderM1 

  Hserout [128, 16] 

  Hserin [Encoder1.byte3, Encoder1.Byte2, Encoder1.Byte1, Encoder1.Byte0, Status, crc] 

  Serout s_out, i38400, [0,”Encoder1: “, SDEC Encoder1, 13, “Status Byte: “, BIN Status] 

ReadSpeedM1 

  Hserout [128, 18] 

  Hserin [Encoder1.byte3, Encoder1.Byte2, Encoder1.Byte1, Encoder1.Byte0, Status, crc] 

  Serout s_out, i38400, [13, 13, “Speed: “, DEC Encoder1, 13, “Direction: “, DEC Status] 

ReadEncoderM2 

  Hserout [128, 17] 

  Hserin [Encoder2.byte3, Encoder2.Byte2, Encoder2.Byte1, Encoder2.Byte0, Status, crc] 

  Serout s_out, i38400, [13, 13, “Encoder2: “, SDEC Encoder2, 13, “Status Byte: “, BIN Status] 

ReadSpeedM2 

  Hserout [128, 19] 

  Hserin [Encoder2.byte3, Encoder2.Byte2, Encoder2.Byte1, Encoder2.Byte0, Status, crc] 

  Serout s_out, i38400, [13, 13, “Speed: “, DEC Encoder2, 13, “Direction: “, DEC Status] 

Goto Main 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



366 

 

Speed Controlled by Quadrature Encoders - BasicATOM Pro Example 

The following example was written using an BasicATOM Pro. RoboClaw was connected as shown in both 

packet serial wiring and quadrature encoder wiring diagrams.  

The example will command a 4wheel robot to move forward, backward, right turn and left turn slowly. 

You can change the speed by adjusting the value of Speed and Speed2 variables. 
CMD   var byte Speed  var long Speed2  var long CRC  var byte 
Address con 128 

ENABLEHSERIAL ;used on AtomPro24 and AtomPro28. AtomPro40 and ARC-32 use EnableHSerial2 SetHSerial 

H38400,H8DATABITS,HNOPARITY,H1STOPBITS 

Mixed_Forward 
  CMD=37 
  Speed=12000 
  Speed2=12000 
  CRC = (address + cmd + speed.byte3 + speed.byte2 + speed.byte1 + speed.byte0 + | 
       speed2.byte3 + speed2.byte2 + speed2.byte1 + speed2.byte0)&0x7F   hserout 
[address,cmd,speed.byte3,speed.byte2,speed.byte1,speed.byte0, |        

speed2.byte3,speed2.byte2,speed2.byte1,speed2.byte0,crc]   pause 4000 

Mixed_Backward 
  CMD=37 
  Speed=-12000 
  Speed2=-12000 
  CRC = (address + cmd + speed.byte3 + speed.byte2 + speed.byte1 + speed.byte0 + | 
       speed2.byte3 + speed2.byte2 + speed2.byte1 + speed2.byte0)&0x7F   hserout 

[address,cmd,speed.byte3,speed.byte2,speed.byte1,speed.byte0, |        
speed2.byte3,speed2.byte2,speed2.byte1,speed2.byte0,crc]   pause 4000 

Mixed_Left 
  CMD=37 
  Speed=-12000 
  Speed2=12000 
  CRC = (address + cmd + speed.byte3 + speed.byte2 + speed.byte1 + speed.byte0 + | 
       speed2.byte3 + speed2.byte2 + speed2.byte1 + speed2.byte0)&0x7F   hserout 

[address,cmd,speed.byte3,speed.byte2,speed.byte1,speed.byte0, |        

speed2.byte3,speed2.byte2,speed2.byte1,speed2.byte0,crc]   pause 4000 

Mixed_Right 
  CMD=37 
  Speed=12000 
  Speed2=-12000 
  CRC = (address + cmd + speed.byte3 + speed.byte2 + speed.byte1 + speed.byte0 + | 
       speed2.byte3 + speed2.byte2 + speed2.byte1 + speed2.byte0)&0x7F   hserout 
[address,cmd,speed.byte3,speed.byte2,speed.byte1,speed.byte0, |        

speed2.byte3,speed2.byte2,speed2.byte1,speed2.byte0,crc]   pause 4000 

Mixed_Stop 
  CMD=37 
  Speed=0 
  Speed2=0 
  CRC = (address + cmd + speed.byte3 + speed.byte2 + speed.byte1 + speed.byte0 + | 
       speed2.byte3 + speed2.byte2 + speed2.byte1 + speed2.byte0)&0x7F   hserout 

[address,cmd,speed.byte3,speed.byte2,speed.byte1,speed.byte0, |        

speed2.byte3,speed2.byte2,speed2.byte1,speed2.byte0,crc] 

  stop 
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Electrical Characteristics 

Characteristic Rating Min Typ Max 

Pulse Per Second PPS 0  8,000,000 

Main Battery (B+ / B-) VDC 6 24 30 

Logic Battery (LB+ / LB-) VDC 6 12 30 

External Current Draw (BEC) A   3A 

Logic Circuit mA  90  

Motor Current Per Channel  A  15 30 

I/O Voltages VDC 0 
 

5 

I/O Logic TTL   5 

Tempature Range C -40  +125 
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Warranty 

Basic Micro warranties its products against defects in material and workmanship for a period of 90 days. 

If a defect is discovered, Basic Micro will, at our discretion, repair, replace, or refund the purchase price 

of the product in question. Contact us at support@basicmicro.com. No returns will be accepted without 

the proper authorization.  

Copyrights and Trademarks 

Copyright© 2010 by Basic Micro, Inc. All rights reserved. PICmicro® is a trademark of Microchip 

Technology, Inc. The Basic Atom and Basic Micro are registered trademarks of Basic Micro Inc. Other 

trademarks mentioned are registered trademarks of their respective holders.  

Disclaimer 

Basic Micro cannot be held responsible for any incidental, or consequential damages resulting from use of 

products manufactured or sold by Basic Micro or its distributors. No products from Basic Micro should be 

used in any medical devices and/or medical situations. No product should be used in a life support 

situation.  

Contacts 

  

      Email: sales@basicmicro.com 

  Tech support: support@basicmicro.com 

  Web: http://www.basicmicro.com  

Discussion List 

A web based discussion board is maintained at  http://www.basicmicro.com. 

Technical Support 

Technical support is made available by sending an email to support@basicmicro.com. All email will be 

answered within 48 hours. All general syntax and programming questions, unless deemed to be a 

software issue, will be referred to the on-line discussion forums. 
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Appendix C: Motor Specifications [25] 

 

Rs555 DC-motor Performance  
Model  M5-RS555-12  
Operating v  : 5v - 15v  
Nominal v  : 12v  
No Load RPM  : 7750  
No Load A  : 0.4A  
Stall Torque  : 29.16 oz-in  205.9 mN-m  
Stall Current  : 15A  
Kt  : 1.94 oz-in/A  13.7 mN-m/A  
Kv  : 646 rpm/V  
Efficiency  : 68.5%  
RPM - Peak Eff  : 6660  
Torque - Peak 
Eff  

: 4.76 oz-in  33.6 mN-m  

Current - Peak Eff  : 2.5A  
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Appendix D: Encoder Specifications [26] 
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Appendix E: Battery 

Battery Specifications [53] 

 

Table E. 1: Specification of LiFePO4 Prismatic Module: 3.2V 60 Ah, 10C Rate (192 wh). 
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E. 1: Discharge curve. 0.5 C rate means that the discharge current equals half the battery capacity. 

In our case, the battery capacity is 60 Ah so the top curve is when the discharge current is 30 A. 

 

 

E. 2: Charging curve. 0.5 C rate means that the charging current equals half the battery capacity. 

In our case, the battery capacity is 60 Ah so the top curve is when the discharge current is 30 A. 

0.5 C rate 

3 C rate 

1 C rate 

3 C rate 

0.5 C rate 

1 C rate 
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Material Safety Data Sheet [54]  

 

Section 1 - Chemical Product and Company Identification  

 

Product Name: Lithium Iron Manganese Phosphate Battery (GBS-LFMP60AH)   

Sample Code: GBS-LFMP60AH  

Manufacture: ZHEJIANG GBS ENERGY CO., LTD  

Address: No.6 BEIHUAN EAST ROAD, YUYAO, ZHEJIANG PROVINCE.  

Post Code: 315410  

Tel: 0574-62655559  

Emergency Tel (Within USA and Canada): CHEMTREC 1-800-424-9300  

Emergency Tel (Outside USA and Canada) for Shipment to USA: CHEMTREC +1 703-527-

3887  

Fax: 0574-62655552  

Email: Sharon@gbsystem.com.cn  

  

Section 2 – Composition/Information on Ingredient  

  

Chemical Name  
Chemical Formula or 

Abbreviation  CAS No.  
In % By 

Weight  

Lithium Iron Manganese 

Phosphate  LiFeMnPO4  ---  
38.1  

Graphite  C  7782-42-5  18.1  

Aluminum  Al  7429-90-5  7.6  

Copper  Cu  7440-50-8  11.4  

Diaphragm paper (PP)  (C3H6)n  9003-07-0  4.5  

Electrolyte (Lithium 

hexafluorophosphate)  LiPF6  21324-40-3  20.3  
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Routes of Entry  

Inhalation, Skin, Ingestion.  

Health Hazards (Acute and Chronic)  

These chemicals are contained in a sealed can. Risk of exposure occurs only if the battery is 

mechanically or electrically abused. The most likely risk is acute exposure when a battery vents.  

Sign/Symptoms of Exposure  

May be a reproductive hazard. Lithium can cause thermal and chemical burns upon contact with 

the skin.  

Medical Conditions Generally Aggravated by Exposure  

An acute exposure will not generally aggravate any medical condition.  

  

 

Eye  

Flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and lower 

eyelids. Get medical aid.  

Skin  

Remove contaminated clothes and rinse skin with plenty of water or shower for 15 minutes. Get 

medical aid.  

Inhalation   

Remove from exposure and move to fresh air immediately. Use oxygen if available.  

Ingestion  

Give at least 2 glasses of milk or water. Induce vomiting unless patient is unconscious. Call a 

physician.  

  

Section 5 - Fire Fighting Measures   

 

Flash Point: N/A.  

Auto-Ignition Temperature: N/A. Extinguishing Media Dry chemical, CO2.  

Firefighting  

In case of fire in an adjacent area, use CO2 or dry chemical extinguisher if batteries in their 

original containers since the fuel of the fire is basically paper products. For bulk quantities 

of unpackaged batteries use appropriate method. In this case, do not use water.  

 

 

 

 

 

 

 

Section 3 - Hazards Identification  

Section 4 - First Aid Measures   
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Section 6 - Accidental Release Measures 

 

Steps to be Taken in case Material is Released or Spilled  

If the battery is accidentally broken and organic electrolyte leaks out, wipe it up with a cloth, and 

dispose of it in a plastic bag and put into a steel can.  The preferred response is to leave the area 

and allow the batteries to cool and vapors to dissipate. Provide maximum ventilation. Avoid skin 

and eye contact or inhalation of vapors. Remove spilled liquid with absorbent and incinerate.  

Waste Disposal Method  

It is recommended to discharge the battery to the end, to use up the metal lithium inside the battery, 

and to bury the discharged battery in soil.    

  

Section 7 - Handling and Storage   

 

The batteries should not be opened, destroyed or incinerate, since they may leak or rupture and 

release to the environment the ingredients that they contain in the hermetically sealed container.  

Do not short circuit terminals, or over charge the battery, forced over-discharge, throw to fire. Do 

not crush or puncture the battery, or immerse in liquids.   

Precautions to be taken in handling and storing  

Avoid mechanical or electrical abuse. Storage preferably in cool, dry and ventilated area, which is 

subject to little temperature change. Storage at high temperatures should be avoided.  

Do not place the battery near heating equipment, nor expose to direct sunlight for long periods.  

Other Precautions  

Batteries may explode or cause burns, if disassembled, crushed or exposed to fire or high 

temperatures. Do not short or install with incorrect polarity. 

  

Section 8 - Exposure Controls, Personal Protection   

 

Respiratory Protection   

In case of battery venting, provide as much ventilation as possible. Avoid confined areas with 

venting batteries. Respiratory Protection is not necessary under conditions of normal use.  

Ventilation  

Not necessary under conditions of normal use.  

Protective Gloves  

Not necessary under conditions of normal use.  

Other Protective Clothing or Equipment Not necessary 

under conditions of normal use.  

Personal Protection is recommended for venting batteries  

Respiratory Protection, Protective Gloves, Protective Clothing and safety glass with side shields.  
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Section 9 - Physical and Chemical Properties   

 

Nominal Voltage: 3.2V Rated 

Capacity: 60Ah.  

  

Appearance Characters: Cyan, odorless, quadrate battery.   

Chemical Uses: ELECTRIC MOTORCYCLE AND ELECTRIC VEHICLE.  

  

Section 10 - Stability and Reactivity   

 

Stability  

Stable   

Conditions to Avoid  

Heating, mechanical abuse and electrical abuse.   

Hazardous Decomposition Products N/A.  

Hazardous Polymerization N/A.  

 

If leaked, forbidden to contact with strong oxidizers, mineral acids, strong alkalies, halogenated 

hydrocarbons.   

  

  

Section 11 - Toxicological Information   

 

Inhalation, skin contact and eye contact are possible when the battery is opened. Exposure to 

internal contents, the corrosive fumes will be very irritating to skin, eyes and mucous membranes. 

Overexposure can cause symptoms of non-fibrotic lung injury and membrane irritation.  

  

Section 12 - Ecological Information   

 

When promptly used or disposed the battery does not present environmental hazard. When 

disposed, keep away from water, rain and snow.  

  

Section 13 - Disposal Considerations   

 

APPROPRIATE METHOD OF DISPOSAL OF SUBSTANCE OR  

PREPARATION  

If batteries are still fully charged or only partially discharged, they can be considered a reactive 

hazardous waste because of significant amount of unreacted, or unconsumed lithium remaining in 

the spent battery. The batteries must be neutralized through an approved secondary treatment 

facility prior to disposal as a hazardous waste. Recycling of battery can be done in authorized 

facility, through licensed waste carrier.   
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Section 14 - Transport Information 

 

The Lithium Iron Manganese Phosphate Battery (GBS-LFMP60AH) have pass the test UN38.3, 

according the report ID: 1001043-016 and ID: 1001043-016a. According to PACKING 

INSTRUCTION 965 ~ 970 of IATA DGR 51st Edition for transportation.  

  

Electric energy is 192Wh. Watt-hour exceeds the standard, so it belongs to dangerous goods. 

Cargo only.  

  

IATA Proper Shipping Name:  Lithium ion batteries+(including lithium polymer batteries)  

  

Hazard Class: 9  

Identification Number: UN3480  

Packaging group: Ⅱ  

  

Maritime Transport IMDG:  Lithium ion batteries+(including lithium polymer batteries)  

IMDG Class: 9  

UN Number: UN3480  

Packaging group: Ⅱ  

  

More information concerning shipping, testing, marking and packaging can be obtained from 

Labelmaster at http://www.labelmaster.com.  

Separate Li-ion batteries when shipping to prevent short-circuiting. They should be packed in 

strong packaging for support during transport.   

In the case of transportation, confirm no leakage and no overspill from a container. Take in a cargo 

of them without falling, dropping and breakage. Prevent collapse of cargo piles and wet by rain. 

The container must be handled carefully. Do not give shocks that result in a mark of hitting on a 

cell. Please refer to Section 7-HANDLING AND STORAGE also.   

  

Section 15 - Regulatory Information   

 

Law Information   

《Dangerous Goods Regulation》  

《Recommendations on the Transport of Dangerous Goods Model Regulations》  

《International Maritime Dangerous Goods》  

《Classification and code of dangerous goods》  

OSHA Hazard Communication Standard Status  

Toxic Substances Control Act (TSCA) Status  

SARA Title III  

RCRA  

In accordance with all Federal, State and Local laws.  

  

http://www.labelmaster.com/
http://www.labelmaster.com/
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Section 16 - Additional Information   

  

 The above information is based on the data of which we are aware and is believed to be correct as 

of the data hereof. Since this information may be applied under conditions beyond our control and 

with which may be unfamiliar and since data made available subsequent to the data hereof may 

suggest modifications of the information, we do not assume any responsibility for the results of its 

use. This information is furnished upon condition that the person receiving it shall make his own 

determination of the suitability of the material for his particular purpose.  

  

MSDS Creation Date: January 22, 2010  

MSDS Revision Date: May 11, 2010  
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Appendix F: System Circuit Boards Diagram 
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Appendix G: MB1000 LV‑MaxSonar®‑EZ0™ [29] 
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Appendix H: The LiFePo4 Battery Charger [37] 

Features:   

 Intelligent charger designed for 4 cell LiFePO4 battery packs.  

 CPU control and pulse width modulation (PWM) technology, charging current and output 

voltage is controlled accurately to ensure fully-charged and avoid over-charging.  

 Built-in cooling fan to ensure charger long service life.  

 Safety protection:  

o Over Voltage Protection. 

o Short Circuit Protection. 

o Output Reverse Protection  

 Charging time:  

o Charging Time= (1.41 * Ah rate of the pack) / 10A charge current. 

 Built-in IC to cut-off power automatically when battery is fully charged.  

 LED indicators:  

o LED 1 = Red = Power On. 

o LED 2 = Red = Charging. 

o LED 3 = Green = Fully Charged   

 

User Instructions:  

• Check the output plug of this charger and make sure it is not loose.  

• Before charging, please connect the charger's alligator clips to battery first: 

the "red" clip connects to the POSITIVE pole and the "black" connects to 

the NEGATIVE pole. After, connect the input power plug to the indoor 

power supply.  

• The charger applies the intelligent charging method of constant current and 

constant voltage. The charger will automatically shut off when battery is 

fully charged. Unplug the input power supply then disconnect the output 

clips.  

• When charger is not in use or finished charging, be sure to unplug input 

power supply.  

• Indictor LED instruction:   

o "Charging" indicator shows "red" under normal charging state. 

It turns into "Green" when the battery is fully charged, the 

battery can be put into use at this time.  

o The charging voltage of this charger is 12V, and shut-off current 

is 1A. It can only be operated when connect with not fully 

charged battery.  
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Includes:  

 Battery Charger. 

 Power Cable. 

 Manual  

Technical Specifications:  

Item  4 Cell 14.6V (12.8V Nominal) 10A Charger  

Model  TN1210JL  

Max Output Power  240W  

Output Voltage  14.6V ±0.02Vdc  

Output Current  10A  

Rated Input Voltage  110Vac  

Input Voltage  AC90-135V  

Constant Voltage  14.6V±0.2V  

AC Input Voltage Frequency  50¿60 Hz  

Constant Current  10A±1A  

Constant Voltage  14.6 Vdc, 10A ¿  

Shut-off Current  1A  

Power Efficiency  90% (Vin=110Vac, rated load)  

Over Voltage Protection  YES  

Software Over Voltage 

Protection  

The charger software limits the maximum output voltage 

to a level suitable for the connected battery system  

Thermal Protection  N/A  

Current Limiting Protection  YES (At CC Mode)  

Reverse Polarity Protection  When output wires are reversely connected to the battery 

the charger will not operate and will work normally when 

DC wires are correctly connected  

Electric Strength Test Input-

Output  

1500Vac/10mA/1 min  

(No Breakdown)  

Isolation Resistance Input-

ground  

10m¿@500Vdc  

Isolation Resistance Output-

ground  

10m¿@500Vdc  

Leakage Current  <3.5mA  

Safety  CE/UL Compliant  

High Temperature Ambient 

Operating  

+40°C  

Low Temperature  -10°C  

High Temperature Storage  +70°C (Normal after recovery under normal temperature 

for 2 hours)  
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Low Temperature Storage  +40°C (Normal after recovery under normal temperature 

for 2 hours)  

Random Vibration  20Hz to 2000Hz 3  

Grms 20 hours per axis  

Repetitive Shock  40g peak 3 orthogonal axes, 3+ and 3- in each axis, 11ms 

pulse width  

Thermal Shock  -35°C to 75°C, <3min transition, 2.5 hours dwell, 200 

cycle  

Drop Test  BS EN60068-2- 

32:1993 TEST ED: free fall appendix B  

AC Wire Length  1.5 m length  

DC Wire Length  1.5 m length  

Dimensions  173mmX88mmX62mm  

(L*W*H)  

Net Weight  1.0Kg  

Output Connector Type  XLR Connector  

Casing  Aluminum  

  

The charger has been calibrated to take account of the voltage drop in the DC output cables 

during operation, to prevent the possibility of over or under charging of the battery it is 

recommended the DC output cables are connected directly to the battery without modification.  

    

Warning:  

 Only for use with LiFePO4 4 cell battery pack (If used with battery pack of less cells will 

cause damage to battery and possible personal injury may occur).  

 Unplug charger after use. x To prevent electrical shock, DO NOT remove casing  

 Be careful of high-voltage inside charger. If failure happens, please contact us. Users and 

non-professional technicians are prohibited to open the charger!  

 Keep charger out of children's reach. x The charger and battery belongs in indoor 

environment with good ventilation and good cooling system, Do not expose to humid, high 

temperature, flammable, explosive gas environments.  

 Do not bring charger along during transportation to prevent shock damage! x Read the 

instructions carefully before using.  x Damage caused by improper use is not covered by 

warranty.   
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Appendix I: Code 

This appendix contains different codes that have been used and developed by 

different teams that have been working on the MCECS-Bot in the last two years.  

Arduino Uno Code 

The code here is responsible for communicating with Arduino Mega 1 and send the 

sonars measurements to it. As can be seen in Appendix F, Arduino Uno are connected to 

Arduino Mega 1 and works as slave to it. The code is shown below: 

 

// Slave Sonar 

// Jesse Adams 

// Rev 2. Omar Mohsin 

#include <Wire.h> 

#define arraysize 12 // size of array that stores sonar data 

 

uint8_t pulse1; 

uint8_t pulse2; 

uint8_t pulse3; 

uint8_t pulse4; 

uint8_t pulse5; 

uint8_t pulse6; 

uint8_t pulse7; 

uint8_t pulse8; 

uint8_t pulse9; 

uint8_t pulse10; 

uint8_t pulse11; 

uint8_t pulse12; 

 

uint8_t sonar1 = 7; 

uint8_t sonar2 = 6; 

uint8_t sonar3 = 5; 

uint8_t sonar4 = 2; 

uint8_t sonar5 = 3; 

uint8_t sonar6 = 4; 

uint8_t sonar7 = 10; 

uint8_t sonar8 = 9; 

uint8_t sonar9 = 8; 

uint8_t sonar10 = 11; 

uint8_t sonar11 = 12; 

uint8_t sonar12 = 13; 

int InterruptPin = A1; 

int txline = 0; 
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boolean ALERT = false;          // Tells whether object detect. Must "alert" the mega 

uint8_t obstacle;               // Holds value for data transmission to mega 

uint8_t data_to_send[2];        // In I2C protocol, if sending multiple bytes, they  

                                // must be stored in a uint8_t array 

int threshold = 15;             // distance in inches that will trigger robot to stop 

int kinectVal = -1;             // initializing value. ie don't do anything until instructed 

uint8_t rangevalue[arraysize] = {0,0,0,0,0,0,0,0,0,0,0,0};  // data array for sonars 

int slave_address = 2;          // I2C slave address of Arduino 

 

void setup() 

{ 

  Wire.begin(slave_address);      // join i2c bus with address #2 

  Wire.onReceive(receiveEvent);   // register event 

  Wire.onRequest(requestEvent);   // register event 

  Serial.begin(9600);             // start serial for output 

  pinMode(InterruptPin, OUTPUT);  // Alert pin for Mega 

  digitalWrite(InterruptPin, ALERT);  // Initialize as low  

 

  delay(250);                    // delay required for sonars 

 

  pulseIn(sonar1, HIGH);         // Each sonar must be initialized with a read of 102ms 

  delay(102);                    // this is a calibration reading 

  pulseIn(sonar2, HIGH); 

  delay(102); 

  pulseIn(sonar3, HIGH); 

  delay(102); 

  pulseIn(sonar4, HIGH); 

  delay(102); 

  pulseIn(sonar5, HIGH); 

  delay(102); 

  pulseIn(sonar6, HIGH); 

  delay(102); 

  pulseIn(sonar7, HIGH); 

  delay(102); 

  pulseIn(sonar8, HIGH); 

  delay(102); 

  pulseIn(sonar9, HIGH); 

  delay(102); 

  pulseIn(sonar10, HIGH); 

  delay(102); 

  pulseIn(sonar11, HIGH); 

  delay(102); 

  pulseIn(sonar12, HIGH); 

  delay(102);  

  Serial.begin(9600); 

  analogWrite(txline, 255); 

  delayMicroseconds(20); 

  analogWrite(txline, 0); 

} 

 

void loop() 

{ 

 // Code that executes while waiting from I2C communication 
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 // This commented part is part of Jesse's original code 

  if(Serial.available()){                        // If new movement available, retreive. 

    kinectVal = Serial.read();    

 Serial.print("Kinectval: "); 

 Serial.println(kinectVal); 

  } 

   

  int pulse1,pulse2,pulse3,pulse4,pulse5,pulse6,pulse7,pulse8,pulse9,pulse10,pulse11,pulse12;  

  int distance1,distance2,distance3,distance4,distance5,distance6,distance7,distance8,distance9, distance10, 

distance11, distance12; 

 

  pulse1 = pulseIn(sonar1, HIGH); 

  pulse2 = pulseIn(sonar2, HIGH);  

  pulse3 = pulseIn(sonar3, HIGH); 

  pulse4 = pulseIn(sonar4, HIGH); 

  pulse5 = pulseIn(sonar5, HIGH); 

  pulse6 = pulseIn(sonar6, HIGH); 

  pulse7 = pulseIn(sonar7, HIGH); 

  pulse8 = pulseIn(sonar8, HIGH); 

  pulse9 = pulseIn(sonar9, HIGH); 

  pulse10 = pulseIn(sonar10, HIGH); 

  pulse11 = pulseIn(sonar11, HIGH); 

  pulse12 = pulseIn(sonar12, HIGH); 

 

  distance1 = pulse1/147; 

  distance2 = pulse2/147; 

  distance3 = pulse3/147; 

  distance4 = pulse4/147; 

  distance5 = pulse5/147; 

  distance6 = pulse6/147; 

   

  distance7 = pulse7/147; 

  distance8 = pulse8/147; 

  distance9 = pulse9/147; 

  distance10 = pulse10/147; 

  distance11 = pulse11/147; 

  distance12 = pulse12/147; 

 

  rangevalue[0] = distance1; 

  rangevalue[1] = distance2; 

  rangevalue[2] = distance3; 

  rangevalue[3] = distance4; 

  rangevalue[4] = distance5; 

  rangevalue[5] = distance6; 

  rangevalue[6] = distance7; 

  rangevalue[7] = distance8; 

  rangevalue[8] = distance9; 

  rangevalue[9] = distance10; 

  rangevalue[10] = distance11; 

  rangevalue[11] = distance12; 

  /*Serial.print(distance1); 

  Serial.print(","); 

  Serial.print(distance2); 
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  Serial.print(","); 

  Serial.print(distance3); 

  Serial.print(","); 

  Serial.print(distance4); 

  Serial.print(","); 

  Serial.print(distance5); 

  Serial.print(","); 

  Serial.print(distance6); 

  Serial.print(",       "); 

   

  Serial.print(distance7); 

  Serial.print(","); 

  Serial.print(distance8); 

  Serial.print(","); 

  Serial.print(distance9); 

  Serial.print(","); 

  Serial.print(distance10); 

  Serial.print(","); 

  Serial.print(distance11); 

  Serial.print(","); 

  Serial.println(distance12); 

  */  

   

   

  switch(kinectVal){ 

 

    case 48:                              // case 0: Turn Left  

    Serial.print(distance1); 

    Serial.print(","); 

    Serial.print(distance2); 

    Serial.print(","); 

    Serial.print(distance3); 

    Serial.print(","); 

    Serial.print(distance4); 

    Serial.print(","); 

    Serial.print(distance5); 

    Serial.print(","); 

    Serial.print(distance6); 

    Serial.print(",       "); 

     

    Serial.print(distance7); 

    Serial.print(","); 

    Serial.print(distance8); 

    Serial.print(","); 

    Serial.print(distance9); 

    Serial.print(","); 

    Serial.print(distance10); 

    Serial.print(","); 

    Serial.print(distance11); 

    Serial.print(","); 

    Serial.println(distance12); 
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    break; 

 

    /*case 1:                              // case 1: Turn Right 

    Serial.println("Case 1"); 

      pulse3 = getSonar(sonar3); 

        if(pulse3 < threshold){ 

           stop_robot(sonar3, pulse3); 

        } 

 

      pulse5 = getSonar(sonar5); 

        if(pulse5 < threshold){ 

           stop_robot(sonar5, pulse5); 

         } 

 

      pulse8 = getSonar(sonar8); 

        if(pulse8 < threshold){ 

           stop_robot(sonar8, pulse8); 

         } 

      pulse11 = getSonar(sonar11); 

        if(pulse11 < threshold){ 

           stop_robot(sonar11, pulse11); 

         } 

    break; 

*/ 

 /*   case 2:                              // case 2: Move Forward  

    Serial.println("Case 2"); 

      pulse1 = getSonar(sonar1); 

        if(pulse1 < threshold){ 

           stop_robot(sonar1, pulse1); 

        } 

      pulse2 = getSonar(sonar2);    

        if(pulse2 < threshold){ 

           stop_robot(sonar2, pulse2); 

        } 

      pulse11 = getSonar(sonar11); 

        if(pulse11 < threshold){ 

           stop_robot(sonar11, pulse11); 

        } 

      //pulse12 = getSonar(sonar12);    

      //  if(pulse12 < threshold){ 

      //     stop_robot(sonar12, pulse12); 

      //  } 

 

    break; 

 

    case 3:                              // case 3: Move Backward  

    Serial.println("Case 3"); 

      pulse6 = getSonar(sonar6); 

           if(pulse6 < threshold){ 

           stop_robot(sonar6, pulse6); 

        } 

      //pulse7 = getSonar(sonar7); 

      //    if(pulse7 < threshold){ 
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      //     stop_robot(sonar7, pulse7); 

      //  } 

      pulse8 = getSonar(sonar8); 

           if(pulse8 < threshold){ 

           stop_robot(sonar8, pulse8); 

        } 

      pulse9 = getSonar(sonar9); 

           if(pulse9 < threshold){ 

           stop_robot(sonar9, pulse9); 

        } 

    break; 

*/ 

    case 4: 

       // Stopped 

       Serial.println("Case 4"); 

       break; 

     

    default: 

       Serial.println("Nothing"); 

  

 

 

  } 

   

  if (((distance1 < threshold) || (distance3 < threshold) || (distance4 < threshold) || (distance6 < threshold) || 

(distance7 < threshold) || (distance9 < threshold) || (distance10 < threshold) || (distance12 < threshold)) && 

  ((distance1 > 0) && (distance3 > 0) && (distance4 > 0) && (distance6 > 0) && (distance7 > 0) && 

(distance9 > 0) && (distance10 > 0) && (distance12 > 0)) { 

    digitalWrite(InterruptPin, ALERT); 

  } 

} 

 

///             Get Sonar Function              /// 

/* Programmer passes sonar number into this function 

to return sonar reading. i.e. getSonar(sonar3);   */ 

 

int getSonar(int sonar) { 

      int pulse; 

      for(int i = 0 ; i < arraysize; i++){ 

          pulse = pulseIn(sonar, HIGH); 

          delay(48); 

          rangevalue[i] = pulse/147; 

      } 

      isort(rangevalue, arraysize); 

      pulse = mode(rangevalue, arraysize); 

    return pulse; 

} 

 

///////////////   end Sonar Function  /////////////// 

 

///             Stop Robot Function              /// 

/* If any sonar detects a reading of less than the  

variable "threshold" it will call this function.  
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Starts by setting the Interrupt Pin High to noticy  

the Mega. Then it spins in a while loop, continuously 

reading the sonar that detected the obstacle. Once  

the obstacle is removed the loop ends and the function 

removes the alert to the Mega by driving the interrupt 

pin low. */ 

 

void stop_robot(uint8_t sonar, uint8_t obstacle){ 

  ALERT = HIGH; 

  data_to_send[0] = obstacle; 

  data_to_send[1] = sonar; 

  digitalWrite(InterruptPin, ALERT); 

    while(obstacle < threshold){ 

      data_to_send[0] = obstacle; 

      data_to_send[1] = sonar; 

      Serial.print("obstacle: "); 

      Serial.print(obstacle); 

      Serial.print("  sonar: "); 

      Serial.print(sonar);            // Debug Block 

      Serial.print("  ALERT: "); 

      Serial.println(ALERT); 

      Serial.print("Data_to_send0: "); 

        Serial.println(data_to_send[0]); 

        Serial.print("Data_to_send1: "); 

        Serial.println(data_to_send[1]); 

   delay(200); 

      obstacle = getSonar(sonar); 

    } 

   ALERT = LOW; 

   digitalWrite(InterruptPin, ALERT); 

   //data_to_send[0] = 25; 

   //data_to_send[1] = 25; 

}   

 

// function that executes whenever data is requested from master 

// this function is registered as an event, see setup()    

void requestEvent() 

{ 

  //Wire.write(data_to_send, 2);  // respond with message of 2 bytes 

                                // as expected by master 

  Wire.write(rangevalue, 12); // Send out all 12 sonar measurements 

} 

 

// function that executes whenever data is received from master 

// this function is registered as an event, see setup() 

void receiveEvent(int howMany) 

{ 

  kinectVal = Wire.read();        // receive byte as an integer 

//  Serial.println(kinectVal);          // print the integer 

} 

 

// isort is used to sort the array of read values from a sonar // 

void isort(uint8_t *a, int n){ 
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  for (int i = 1; i < n; ++i){                     

    int j = a[i];                                  

    int k;                           

    for (k = i - 1; (k >= 0) && (j < a[k]); k--){ 

      a[k + 1] = a[k]; 

      } 

    a[k + 1] = j; 

  } 

} 

//////////////////////     End isort        //////////////////// 

 

///        Mode function, returns the mode or median.        /// 

int mode(uint8_t *x,int n){ 

  int i = 0; 

  int count = 0; 

  int maxCount = 0; 

  int mode = 0; 

  int bimodal; 

  int prevCount = 0; 

  while(i<(n-1)){ 

    prevCount=count; 

    count=0; 

    while(x[i] == x[i+1]){ 

      count++; 

      i++; 

    } 

    if(count>prevCount&count>maxCount){ 

      mode=x[i]; 

      maxCount=count; 

      bimodal=0; 

    } 

    if(count==0){ 

      i++; 

    } 

    if(count==maxCount){      //If the dataset has 2 or more modes. 

      bimodal=1; 

    } 

    if(mode==0||bimodal==1){//Return the median if there is no mode. 

      mode=x[(n/2)]; 

    } 

    return mode; 

  } 

} 

////////////////////         end mode       ///////////////////////  

 

 

void scan() {     

    if (kinectVal != 4) { // if not 'stop'  

      /*!pulse1 = getSonar(sonar1); 

      if(pulse1 < threshold){ 

          stop_robot(sonar1, pulse1); 

          //Serial.println("Sonar 1"); 

      }!*/ 
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      /*delay(200); 

      pulse7 = getSonar(sonar7); 

      if(pulse7 < threshold){ 

          stop_robot(sonar7, pulse7); 

          //Serial.println("Sonar 7"); 

      }*/ 

      /*!delay(200); 

      pulse3 = getSonar(sonar3); 

      if(pulse3 < threshold){ 

          stop_robot(sonar3, pulse3); 

          //Serial.println("Sonar 3"); 

      }!*/ 

      /*delay(200); 

      pulse9 = getSonar(sonar9); 

      if(pulse9 < threshold){ 

          stop_robot(sonar9, pulse9); 

          //Serial.println("Sonar 9"); 

      }*/ 

      /*delay(200); 

      pulse12 = getSonar(sonar12); 

      if(pulse12 < threshold){ 

          stop_robot(sonar12, pulse12); 

          //Serial.println("Sonar 12"); 

      }*/ 

      /*delay(200); 

      pulse6 = getSonar(sonar6); 

      if(pulse6 < threshold){ 

          stop_robot(sonar6, pulse6); 

          //Serial.println("Sonar 6"); 

      }*/ 

      delay(200); 

      pulse10 = getSonar(sonar10); 

      if(pulse10 < threshold){ 

          stop_robot(sonar10, pulse10); 

          //Serial.println("Sonar 10"); 

      } 

      /*delay(200); 

      pulse4 = getSonar(sonar4); 

      if(pulse4 < threshold){ 

          stop_robot(sonar4, pulse4); 

          //Serial.println("Sonar 4"); 

      }*/ 

      delay(200); 

      pulse2 = getSonar(sonar2); 

      if(pulse2 < threshold){ 

          stop_robot(sonar2, pulse2); 

          //Serial.println("Sonar 2"); 

      } 

      /*delay(200); 

      pulse8 = getSonar(sonar8); 

      if(pulse8 < threshold){ 

          stop_robot(sonar8, pulse8); 

          //Serial.println("Sonar 8"); 



402 

 

      }*/ 

      delay(200); 

      pulse11 = getSonar(sonar11); 

      if(pulse11 < threshold){ 

          stop_robot(sonar11, pulse11); 

          //Serial.println("Sonar 11"); 

      } 

      /*delay(200); 

      pulse5 = getSonar(sonar5); 

      if(pulse5 < threshold){ 

          stop_robot(sonar5, pulse5); 

          //Serial.println("Sonar 5"); 

      }*/ 

      delay(200); 

    } 

} 
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Arduino Mega_1 Code 

This code has different control inputs. For instance, if “w” is written in the serial 

monitor, the robot will move forward and if “f” the robot will starts doing the wall 

following task. This code is made to receive control commands and make the robot move 

in different direction or achieve different tasks. Additionally, this code can receive 

commands to list some information about the robot state for example; if “e” printed in 

serial monitor, the program will return the encoder information (the same thing happened 

for LRF, Sonars and other states if the related letter is printed). The same principle is used 

to receive commands from MRPT. The MRPT sends messages and it will be interpreted to 

commands on the other side (Arduino Mega 1). The code of the Arduino Mega 1 is listed 

below: 

/* This program accepts one of the following commands from a host program and performs the action shown 

   on the PSU MCECS bot, and is intended for use with the MRPT navigation application: 

 'l' - returns a 5pt LRF scan, 1 byte for each range in cm, 5 bytes total 

 'r' - returns odometry (x,y,phi), 2 bytes for each coordinate in MU, MU, and degrees, 6 bytes total 

 'w' - move forward 

 'a' - rotate left 

 's' - move backward 

 'd' - rotate right  

 'x' - stop moving 

 This is intended to run on an Arduino Mega 2560 controlling two Basic Micro Roboclaw motor controllers  

 (with two motors and two encoders each), as well as a parallax LRF mounted to a HiTec servo motor.  There 

 are also bumper switches programmed to send stop commands to the motors when activated.  See the 

MCECS 

 bot wiki for (a lot) more information. https://projects.cecs.pdx.edu/projects/roboticsclub-mcecsbot/wiki 

  

 March 2013 by Mitch Barton 

 V1.0 

 */ 

#include <Wire.h> 

#include <Servo.h>  

// #include <SoftwareSerial.h>  don't include because we are using BMserial and there's a conflict 

#include <BMSerial.h> 

#include <RoboClaw.h> 

 

int left_led = 3;  //led's to indicate which bumpers is trigered. 

int right_led = 4; 
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int front_led = 6; 

int back_led = 5; 

 

int FLCorner = 39; 

int FRCorner = 41; 

int BLCorner = 43; 

int BRCorner = 45; 

 

int bumper_left = 22;  //button on pin  

int bumper_right = 24; 

int bumper_front = 26; 

int bumper_back = 28; 

// opcode which determines case to execute 

char pos; 

 

// outgoing final LRF range measurements 

byte lrf_data[5]; 

byte lrf_data_buf[5]; 

 

// positions for this particular servo with this particular mounting  

// based on center 

int center = 100;                 

int pos1 = center + 20; 

int pos2 = center + 10; 

int pos3 = center - 10; 

int pos4 = center - 20; 

int right90 = 170; 

int left90 = 30; 

 

 

// address for motor controller 

#define address 0x80 

 

// constants for PID on motor controllers 

#define Kp 0x00010000 

#define Ki 0x00008000 

#define Kd 0x00004000 

#define qpps 44000 

//#define STOP 4 

#define STOP 6 

#define FORWARD 2 

#define BACKWARD 3 

#define RIGHT 0 

#define LEFT 1 

#define ST_RIGHT 4 

#define ST_LEFT 5 

#define arraysize 12 

 

// variables for transformation from encoders to odometry (x, y, phi) 

int32_t phi = 0; 

int32_t phi1 = 0; 

int32_t D1 = 0; 

int32_t x1 = 0; 
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int32_t y1 = 0; 

int32_t x = 0; 

int32_t y = 0; 

uint8_t S1 = 0, S2 = 0, S3 = 0, S4 = 0, S5 = 0, S6 = 0, S7 = 0, S8 = 0, S9 = 0, S10 = 0, S11 = 0, S12 = 0; 

 

// the width of the wheels is 17" which converts to 0.4427 map units,  

// but we've also added the scale factor for converting to map units E-8,  

// as well as converting from radians to degrees 

const int32_t w = 44270000*PI/180; 

 

// assign Rx Tx serial comm for the motor controllers to pins 5 and 6 

/* IMPORTANT: Not all pins can be used. Usable pins are: Pins: 10, 11, 12, 13,  50, 51, 52, 53,  62, 63, 64, 

65, 66, 67, 68, 69 

Using pins other than these would cause not being able to read the encoder 

See this thread for more info: http://forums.basicmicro.net/robo-claw-f504/can-send-commands-to-

roboclaw-but-can-t-receive-data-t9885.html 

*/ 

 

// create servo object 

Servo myservo;                  

 

BMSerial terminalSerial(0,1);          // TerminalSerial is the debug serial windows when 0,1 is selected 

RoboClaw roboclaw(50,52);              // 5,6 represent the pins on the arduino that the motor controller is 

connected to 

//RoboClaw roboclaw(46,48);              // 5,6 represent the pins on the arduino that the motor controller is 

connected to 

// constants for motor control 

 

uint8_t MotorSpeed = 0;            // Holds the current motorspeed of the robot, initialized at 5 

uint8_t TopMotorSpeed = 30;        // Top speed is actually TopMotorSpeed + 1 

uint8_t NoMotorSpeed = 0;          // variable to name a speed of zero 

uint8_t increment = 3;//5;             // Rate of acceleration. Make sure it is a multiple of TopMotorSpeed 

boolean stopmoving = false;        // Tells whether the robot has been asked to stop moving 

boolean doneAccelerating; 

boolean first_iteration = false;   // As the robot accelerates it only needs to send the Uno (sonar_controller) 

                                   // when it initiates a new movement. Otherwise the controller would be bogged 

                                   // down with unnecessary communication.    

 

boolean was_interrupt = false;     // If a sonar detects and object that is too close it drives a pin high. This 

                                   // variable stores the value of that interrupt pin (currently enacted as an  

                                   // interrupt. The base code simply polls the "interrupt" pin). 

 

int threshold = 15;                // Threshold. Holds the distance at which a sonar will generate an "interrupt"  

                                   // Threshold must be the same value on the Uno(sonar_controller).     

 

int available_movements = 6;       // This is the number of movements available to the robot. Currently,  

                                   // there is only forward, backward, rotate left, and rotate right. If you add 

                                   // any movement increment this by one. It is used to make sure nothing happens 

                                   // if incorrect input values are received.  

int sonar_controller = 2; 

int new_movement = STOP;           // Holds the command value from any input device telling what movement 

to make.  
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int old_movement = STOP;           // Holds the last value of new_movement. Used to transition out of an old 

movement 

                                   // and into a new movement.  

 

int update;                        // Variable to hold an intermediate value. If robot is accelerating/decelerating this 

                                   // is used to compare against new/old movements.  

 

int interruptPin = 2;              // Pin used to signal an obstacle has been detected by sonars. Logic High 

int interruptLED = 7; 

 

//void (*function[4])(uint8_t) = {&rotateRight, &rotateLeft, &goForward, &goBackward};  // An array of 

pointers to movement functions.  

void (*function[6])(uint8_t) = {&rotateRight, &rotateLeft, &goForward, &goBackward, &strafeRight, 

&strafeLeft};  // An array of pointers to movement functions.  

 

int avoid_count = 0;      // how many turns it did to avoid/clear the obstacle 

int avoid_direction = 6;  // which direction did it turn to avoid/clear the obstacle 

int AVOID_DELAY = 1200;   // arbitrary time delay to turn 

uint8_t AVOID_SPEED = 20; 

uint8_t AVOID_SPEED_0 = 20; 

uint8_t AVOID_SPEED_1 = 13; 

 

// The variables in the following three lines are used in wall_following() 

boolean DontMoveLeft = false; 

boolean DontMoveRight = false; 

uint8_t obstacle1 = 0, obstacle2 = 0, sonar_number1, sonar_number2; 

 

uint8_t sonar_number, obstacle; // used in detected_obstacle()  

//uint8_t sonar1,sonar2,sonar3,sonar4,sonar5,sonar6,sonar7,sonar8,sonar9,sonar10,sonar11,sonar12; 

uint8_t sonar[arraysize] = {0,0,0,0,0,0,0,0,0,0,0,0}; 

uint8_t sonardata[6] = {0,0,0,0,0,0}; 

 

boolean DEBUG = false; 

boolean statusRequest; 

boolean wallFollowing; 

 

boolean encoder_hack = false; // false = update x, true = update y 

 

void setup() 

{ 

 

  // open PC/arduino serial port at 9600 baud 

  Serial.begin(9600); 

 

  // open the software serial port to the LRF at 9600 baud 

  Serial1.begin(9600);        

 

  // open the software serial port for the roboclaw 

  roboclaw.begin(2400);    

  

  Wire.begin();  

   

  pinMode(left_led, OUTPUT);  //led output 
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  pinMode(right_led, OUTPUT);  //led output 

  pinMode(front_led, OUTPUT);  //led output 

  pinMode(back_led, OUTPUT);  //led output 

   

  pinMode(FLCorner, OUTPUT);  //led output 

  pinMode(FRCorner, OUTPUT);  //led output 

  pinMode(BLCorner, OUTPUT);  //led output 

  pinMode(BRCorner, OUTPUT);  //led output 

   

  pinMode(bumper_left, INPUT);  //button input 

  pinMode(bumper_right, INPUT);  //button input 

  pinMode(bumper_front, INPUT);  //button input 

  pinMode(bumper_back, INPUT);  //button input 

   

   

  digitalWrite(bumper_left,HIGH);//pull this input on. 

  digitalWrite(bumper_right,HIGH);//pull this input on. 

  digitalWrite(bumper_front,HIGH);//pull this input on. 

  digitalWrite(bumper_back,HIGH);//pull this input on. 

   

  // attaches the servo on pin 9 to the servo object 

  myservo.attach(8);        

 

  // initialize the LRF 

  delay(2000); 

  Serial1.write('U'); 

  delay(100); 

  Serial1.read(); 

 

  // set PID constants for motor controller  

  roboclaw.SetM1Constants(address,Kd,Kp,Ki,qpps); 

  roboclaw.SetM2Constants(address,Kd,Kp,Ki,qpps); 

  roboclaw.SetM1Constants(0x81,Kd,Kp,Ki,qpps); 

  roboclaw.SetM2Constants(0x81,Kd,Kp,Ki,qpps);   

   

  pinMode(interruptLED, OUTPUT); 

 

  // setup bumper interupt pins 

  /*pinMode(2, INPUT_PULLUP); 

  pinMode(3, INPUT_PULLUP); 

  attachInterrupt(0, bumper_2, FALLING); 

  attachInterrupt(1, bumper_3, FALLING);*/ 

   

  POST(); 

   

  doneAccelerating = true; 

  statusRequest = false; 

  wallFollowing = false; 

} 

 

void loop() { 

 

  readSerial(); 
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  if (pos != 'f')readInterruptx(); 

  //doMove(); 

  if (doMove() && statusRequest) {     

    returnAllData(); 

    statusRequest = false; 

  } 

  delay(150); 

} 

 

void readSerial() { 

   

  int temp_cmd = -1; 

   

  // if we get a valid byte, write it to our local variable   

  if (Serial.available() > 0) {     

    delay(150); 

    //pos = Serial.read(); 

    //Serial.print("Key: "); 

    //Serial.println(pos); 

    int prev_movement = new_movement; 

    new_movement = Serial.read(); 

     

    if(new_movement > 40) { 

 temp_cmd = keyboardDebug(new_movement); 

        if (temp_cmd > -1) { // if temp_cmd is -1, it's not movement related 

          new_movement = temp_cmd; 

        } 

        else { 

          new_movement = prev_movement; 

        } 

    } 

  } 

} 

 

int keyboardDebug(int pos) { 

   

  int debug_pos = -1;  // value=-1 for non-movement commands 

  int wf = 0; 

  // depending what that byte is, perform an action      

  switch (pos) { 

    case 'r': 

      // LRF single read 

      //simpleread();  

      complicatedread(); 

      delay(150); 

      debug_pos = -1;       

      break; 

       

    case 'm':         

      lrfScan1(); 

      debug_pos = -1; 

      break;        
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    // l is the agreed character to start the standard 5pt LRF reading  

    case 'l': 

      //lrfScan2(); 

       

      getSonarMrpt(); 

      debugPrintInt(sonardata[0]); 

      debugPrint(","); 

      debugPrintInt(sonardata[1]); 

      debugPrint(","); 

      debugPrintInt(sonardata[2]); 

      debugPrint(","); 

      debugPrintInt(sonardata[3]); 

      debugPrint(","); 

      debugPrintlnInt(sonardata[4]); 

       

      debug_pos = -1; 

      Serial.write('!'); 

      delay(200); 

      Serial.write(sonardata,6); 

      break; 

 

    case 'e': 

      readEncoder(); 

      debug_pos = -1; 

      break; 

 

    // rotate right command 

    case 'd': 

      //debug_pos = RIGHT; 

      debug_pos = FORWARD; 

      encoder_hack = false; 

      /*new_movement = 0; 

      stopmoving = false; 

 

      // motion smoothing, return to old motion and slow down, then go to new motion 

      if(stopmoving == false && kinectVal < 5){ 

        kinectVal = Stop_old_movement(); 

        if(stopmoving == false && kinectVal < 5){ 

          kinectVal = Start_new_movement(); 

        } 

      }*/ 

 

      break; 

       

    // rotate left command  

    case 'a': 

      debug_pos = LEFT; 

      /*kinectVal = 1; 

      stopmoving = false; 

 

      // motion smoothing, return to old motion and slow down, then go to new motion 

      if(stopmoving == false && kinectVal < 5){ 

        kinectVal = Stop_old_movement(); 
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        if(stopmoving == false && kinectVal < 5){ 

          kinectVal = Start_new_movement(); 

        } 

      }*/ 

 

      break;  

     

    // stop command   

    case 'x': 

      debug_pos = STOP; 

      /*kinectVal = 4; 

      stopmoving = true; 

      kinectVal = Stop_old_movement(); 

 

      // motion smoothing, return to old motion and slow down, then go to new motion   

      if(stopmoving == false && kinectVal < 5){ 

        kinectVal = Stop_old_movement(); 

        if(stopmoving == false && kinectVal < 5){ 

          kinectVal = Start_new_movement(); 

        } 

      }*/ 

 

      break; 

       

    // forward command   

    case 'w': 

      debug_pos = FORWARD; 

      encoder_hack = true; 

      /*kinectVal = 2; 

      stopmoving = false; 

 

      // motion smoothing, return to old motion and slow down, then go to new motion 

      if(stopmoving == false && kinectVal < 5){ 

        kinectVal = Stop_old_movement(); 

        if(stopmoving == false && kinectVal < 5){ 

          kinectVal = Start_new_movement(); 

        } 

      }*/ 

 

      break; 

       

    // backward command   

    case 's': 

      debug_pos = BACKWARD; 

      /*kinectVal = 3; 

      stopmoving = false; 

 

      // motion smoothing, return to old motion and slow down, then go to new motion 

      if(stopmoving == false && kinectVal < 5){ 

        kinectVal = Stop_old_movement(); 

        if(stopmoving == false && kinectVal < 5){ 

          kinectVal = Start_new_movement(); 

        } 
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      }*/ 

 

      break; 

     

    case 'z': 

      debug_pos = ST_LEFT; 

      break; 

       

    case 'c': 

      debug_pos = ST_RIGHT; 

      break; 

       

     case 'f': 

       debug_pos = wall_following(); 

       break; 

        

     case 'y': 

       debug_pos = -1; 

       statusRequest = true; 

       //returnAllData(); 

       break; 

        

     case '?': 

        

       if (wallFollowing) wf=1;        

        

       Serial.write(wf); 

       break; 

      

     case 'p': 

       debug_pos = -1; 

       if (DEBUG) { 

         debugPrintln("Debug off"); 

         DEBUG = false;          

       } else { 

         DEBUG = true; 

         debugPrintln("Debug on"); 

       } 

       break; 

      

     case 48:  // number 0 (zero) 

       //getSonarData(); 

       Wire.requestFrom(sonar_controller, 12); 

   

       delay(100); 

       debugPrint("Bytes available: "); 

       debugPrintlnInt(Wire.available()); 

        

       if (Wire.available() == arraysize) { 

         for( int i=0; i < arraysize; i++ ) { 

           sonar[i] = Wire.read(); 

           debugPrintInt(sonar[i]); 

           debugPrint(", "); 
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         } 

         Serial.println(""); 

       }  

        

       break; 

 

      // right now the only other case is an error so we return 0 

    default: 

      lrf_data[0] = 0; 

      lrf_data[1] = 0; 

      lrf_data[2] = 0; 

      lrf_data[3] = 0; 

      lrf_data[4] = 0; 

 

      //Serial.write(lrf_data,5); 

      debug_pos = -1; 

      break; 

  } 

   

  return debug_pos; 

} 

 

void getSonarData() { 

  //delay(200); 

  boolean data_ok = false; 

   

  while(!data_ok) {  // Keep requesting sonar data from UNO until no reading is 0 

    Wire.requestFrom(sonar_controller, arraysize); 

     

     delay(100); 

     //debugPrint("Bytes available: "); 

     //debugPrintlnInt(Wire.available()); 

      

     if (Wire.available() == arraysize) { 

       for( int i=0; i < arraysize; i++ ) { 

         sonar[i] = Wire.read(); 

         //if (sonar[i] == 0) { 

         //  debugPrintln("reading sonar failed. Repeating ..."); 

         //  break;  // If reading 0, retry requesting from UNO 

         //} 

         //Serial.print(sonar[i]); 

         debugPrintInt(sonar[i]); 

         debugPrint(","); 

         //Serial.print(", "); 

         if (i==arraysize-1) data_ok = true; 

       } 

       //Serial.println(""); 

       debugPrintln(""); 

     }  

  } 

} 

 

void getSonarMrpt() { 



413 

 

  getSonarData(); 

  //byte sonardata[5] = {0,0,0,0,0} 

  sonardata[0] = sonar[2]; 

  sonardata[1] = sonar[0]; 

  sonardata[2] = (sonar[0] + sonar[11])/2; 

  sonardata[3] = sonar[11]; 

  sonardata[4] = sonar[9]; 

    

} 

 

void getSonars_LED(){ 

  getSonarData(); 

  //Serial.println("getting sonars dude!"); 

  if((sonar[0]<10 && sonar[0] > 0)|| (sonar[1]<10 && sonar[1] > 0) || (sonar[2]<10 && sonar[2] > 0)){ 

    digitalWrite(FLCorner,HIGH); 

    debugPrintln("Front Left Corner LED is on!");} 

  else if (sonar[0]>=10 && sonar[1]>=10 && sonar[2]>=10){ 

    digitalWrite(FLCorner,LOW); 

    debugPrintln("Front Left Corner LED is off!");} 

     

  if((sonar[3]<10 && sonar[3] > 0) || (sonar[4]<10 && sonar[4] > 0) || (sonar[5]<10 && sonar[5] > 0)){ 

    digitalWrite(BLCorner,HIGH); 

    debugPrintln("Back Left Corner LED is on!");} //else digitalWrite(BLCorner,LOW); 

  else if (sonar[3]>=10 && sonar[4]>=10 && sonar[5]>=10){ 

    digitalWrite(BLCorner,LOW); 

    debugPrintln("Back Left Corner LED is off!");} 

     

  if((sonar[6]<10 && sonar[6] > 0) || (sonar[7]<10 && sonar[7] > 0) || (sonar[8]<10 && sonar[8] > 0)){ 

    digitalWrite(BRCorner,HIGH); //else digitalWrite(BRCorner,LOW); 

    debugPrintln("Back Right Corner LED is on!");} 

  else if (sonar[6]>=10 && sonar[7]>=10 && sonar[8]>=10){ 

    digitalWrite(BRCorner,LOW); 

    debugPrintln("Back Right Corner LED is off!");} 

     

  if((sonar[9]<10 && sonar[9] > 0) || (sonar[10]<10 && sonar[10] > 0) || (sonar[11]<10 && sonar[11] > 0)){ 

    digitalWrite(FRCorner,HIGH);// else digitalWrite(FLCorner,LOW); 

    debugPrintln("Front Right Corner LED is on!");} 

  else if (sonar[9]>=10 && sonar[10]>=10 && sonar[11]>=10){ 

    digitalWrite(FRCorner,LOW); 

    debugPrintln("Front Right Corner LED is off!");}} 

   

   

int wall_following() { 

  //Serial.println(); 

  boolean Fr_Obs = false; 

  boolean Left_Obs = false; 

  boolean Right_Obs = false; 

  //DontMoveLeft = false; 

  //DontMoveRight = false; 

  //int right_dis, left_dis; 

  int in_Left = 0, in_Right = 0, in_Front = 0, in_Back = 0; 

  do { 

    wallFollowing = true; 
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    getSonarData(); 

    S1 = sonar[0]; //Front left sonar 

    S3 = sonar[2]; //right sonar 

    S4 = sonar[3]; //right sonar 

    S9 = sonar[8]; //left sonar 

    S10 = sonar[9];//left sonar 

    S12 = sonar[11];//Front right sonar 

     

    debugPrintInt(S1); 

    debugPrint(" "); 

    debugPrintInt(S3); 

    debugPrint(" "); 

    debugPrintInt(S4); 

    debugPrint(" "); 

    debugPrintInt(S9); 

    debugPrint(" "); 

    debugPrintInt(S10); 

    debugPrint(" "); 

    debugPrintlnInt(S12); 

     

    getSonars_LED(); 

     

    delay(100); 

    in_Left = digitalRead(bumper_left); 

    in_Right = digitalRead(bumper_right); 

    in_Front = digitalRead(bumper_front); 

    in_Back = digitalRead(bumper_back); 

     

    // IF no bumper is hit, then continue with wall following 

    if (in_Left == HIGH && in_Right == HIGH && in_Front == HIGH && in_Back == HIGH) { 

      digitalWrite(left_led,LOW); 

      digitalWrite(right_led,LOW); 

      digitalWrite(front_led,LOW); 

      digitalWrite(back_led,LOW); 

      

      debugPrint("\nRight distance: "); 

      debugPrintlnInt(S10); //Print right distance 

      debugPrint("Left distance: "); 

      debugPrintlnInt(S3); // pring left distance 

     

       

      if ((S1 < 10 && S1 > 0) || (S12 < 10 && S12 > 0)) Fr_Obs = true; else Fr_Obs = false; 

      debugPrintln("checking front obstacle");  

     

      if ((S3 < S10) || (S3 == S10)) { 

        if (Fr_Obs) {  

          new_movement = ST_RIGHT; 

          Left_Obs = true; 

          Right_Obs = false; 

          //avoid(new_movement); 

          debugPrintln("(Following Left) obstacle and moving right"); 

        //  goto start; 

        } else {  
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           if (Left_Obs){ 

             new_movement = FORWARD; 

             Left_Obs = false; 

             //avoid(new_movement); 

             debugPrintln("(Following Left) avoiding obstacle and moving forward"); 

            // goto start; 

           } else {  

//No_ObsL:      

             if (S3 < 10 && S3 > 0) { 

   

                // check bumper 

                /*in = digitalRead(bumper_left); 

                // Keep stopping while bumper is on 

                while (in == LOW) { 

                  goStop(); 

                  in = digitalRead(bumper_left); 

                }*/ 

                //if (left_dis < 33) goto start; 

                new_movement = ST_RIGHT;               

                //*getSonarData(); 

                //S1 = sonar[0]; 

                //*S3 = sonar[2]; 

                //S4 = sonar[3]; 

                //S9 = sonar[8]; 

                //*S10 = sonar[9]; 

                //S12 = sonar[11];          

                //avoid(new_movement); 

                debugPrintln("(Following Left) less than 10 and moving right"); 

                 

                //goto No_ObsL; 

             } else if (S3 >= 10) {  

               if (S3 > 20){ 

                                // Read from bumper 

                  /*in = digitalRead(bumper_left); 

                  // Keep stopping while bumper is on 

                  while (in == LOW) { 

                    goStop(); 

                    in = digitalRead(bumper_left); 

                  }*/ 

                 new_movement = ST_LEFT; 

                 //*getSonarData(); 

                 //S1 = sonar[0]; 

                 //*S3 = sonar[2]; 

                // S4 = sonar[3]; 

                // S9 = sonar[8]; 

                 //*S10 = sonar[9]; 

                // S12 = sonar[11]; 

                 //avoid(new_movement); 

                 debugPrintln("(Following Left) larger than 20 and moving left"); 

                   

                 //goto No_ObsL; 

               } else { 

                 new_movement = FORWARD; 
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                 debugPrintln("(Following Left) Forward");  

                 //avoid(new_movement); 

             //  goto start; 

               } 

             } 

           } 

         } 

      } else {  

        if (Fr_Obs){ 

          new_movement = ST_LEFT; 

          Right_Obs = true; 

          Left_Obs = false; 

          debugPrintln("(Following right) obstacle and moving left"); 

          //avoid(new_movement); 

        //  goto start; 

        } else {  

           if (Right_Obs) {  

             new_movement = FORWARD; 

             Right_Obs = false; 

             debugPrintln("(Following right) avoiding obstacle and moving forward"); 

             //avoid(new_movement); 

           //  goto start; 

           } else { 

//No_ObsR:      

             if (S10 < 10 && S10 > 0) { 

                //if (right_dis < 33) goto start; 

                new_movement = ST_LEFT; 

                //*getSonarData(); 

               // S1 = sonar[0]; 

                //*S3 = sonar[2]; 

                //S4 = sonar[3]; 

                //S9 = sonar[8]; 

                //*S10 = sonar[9]; 

                //S12 = sonar[11]; 

                debugPrintln("(Following Right) less than 10 and moving left"); 

                //avoid(new_movement); 

                 

                // Check bumper 

                /* 

                in = digitalRead(bumper_left); 

                // Keep stopping while bumper is on 

                while (in == LOW) { 

                  goStop(); 

                  in = digitalRead(bumper_left); 

                }*/ 

                //goto No_ObsR; 

              } else if (S10 >= 10) {  

                    if (S10 > 20){ 

                       new_movement = ST_RIGHT; 

                       //*getSonarData(); 

                       //S1 = sonar[0]; 

                       //*S3 = sonar[2]; 

                     //  S4 = sonar[3]; 
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                      // S9 = sonar[8]; 

                       //*S10 = sonar[9]; 

                       //S12 = sonar[11]; 

                       debugPrintln("(Following Right) larger than 20 and moving right"); 

                       //avoid(new_movement); 

                        

                      // Read from bumper 

                   /*   in = digitalRead(bumper_left); 

                      // Keep stopping while bumper is on 

                      while (in == LOW) { 

                        goStop(); 

                        in = digitalRead(bumper_left); 

                      }*/ 

                        

                       //goto No_ObsR; 

                     } 

                    else { 

                       new_movement = FORWARD; 

                       debugPrintln("(Following right) Forward");  

                       //avoid(new_movement); 

                     //  goto start; 

                     } 

                   } 

                 } 

               } 

        //avoid(new_movement); 

      }  

             

      debugPrint("Fr_Obs: "); 

      debugPrintlnInt(Fr_Obs); 

      debugPrint("Right_Obs: "); 

      debugPrintlnInt(Right_Obs); 

      debugPrint("Left_Obs: "); 

      debugPrintlnInt(Left_Obs);           

     

    } else {  

        goStop(); // Stop the motors and indicate which bumpers has been tregered using the serial moniter and 

led's. 

        if (in_Left == LOW)  { 

          digitalWrite(left_led,HIGH); 

          debugPrintln(":  LEFT BUMPER"); 

        } 

        if (in_Right == LOW) { 

          digitalWrite(right_led,HIGH); 

          debugPrintln(":  RIGHT BUMPER"); 

        } 

        if (in_Front == LOW) { 

          digitalWrite(front_led,HIGH); 

          debugPrintln(":  FRONT BUMPER"); 

        } 

        if (in_Back == LOW)  { 

          digitalWrite(back_led,HIGH);       

          debugPrintln(":  BACK BUMPER"); 
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        } 

     

     } 

     if (Serial.available() > 0) { 

       char serialin = Serial.read(); 

       if (serialin == 'x') break; 

       else if (serialin == 'y') statusRequest = true; 

     } 

     if (doMove() && statusRequest) { 

       returnAllData(); 

       statusRequest = false; 

     } 

   } while(true); 

    

   Serial.read(); 

   debugPrintln("Done wall following!"); 

   new_movement = STOP; 

   wallFollowing = false; 

   avoid(new_movement); 

   return -1; 

  

} 

void readInterrupt() { 

  getSonarData(); 

  //getSonars_LED(); 

  if (((sonar[0] < threshold) || (sonar[2] < threshold) || (sonar[3] < threshold) || (sonar[5] < threshold) || 

(sonar[6] < threshold) || (sonar[8] < threshold) || (sonar[9] < threshold) || (sonar[11] < threshold)) && 

  ((sonar[0] > 0) && (sonar[2] > 0) && (sonar[3] > 0) && (sonar[5] > 0) && (sonar[6] > 0) && (sonar[8] > 

0) && (sonar[9] > 0) && (sonar[11] > 0))) { 

    digitalWrite(interruptLED, HIGH); 

    detected_obstacle(); 

  } 

} 

 

void readInterruptx() { 

    was_interrupt = digitalRead(interruptPin);    // Poll interrupt pin from sonar controller.  

    if(was_interrupt == true){ 

 //Serial.println("Interrupt true."); 

        digitalWrite(interruptLED, HIGH); 

        if(new_movement == FORWARD || new_movement == BACKWARD) { 

             detected_obstaclex();                         // jump to stop routine for detected obstacle 

        } 

        was_interrupt = false; 

    } 

    else { 

      digitalWrite(interruptLED, LOW); 

      //Serial.println("No interrupt."); 

      /*if (avoid_count > 0) { 

        //goForward(15); 

        //delay(AVOID_DELAY); 

        Serial.print("Avoid count: "); 

        Serial.println(avoid_count); 

        Serial.print("Direction: "); 



419 

 

        if(avoid_direction == 0) { 

          Serial.println("RIGHT"); 

        }  

        else { Serial.println("LEFT"); 

        } 

        returnToPath(); 

      } 

      if (avoid_count == 0) { 

        avoid_direction = 4; 

      }*/ 

    } 

} 

 

/////////////////  Read Interrupt End  //////////////////////////// 

 

//////////////////////////// Begin LRF and Encoder subroutines /////////// 

 

void lrfScan1() 

{ 

   myservo.write(pos1); 

   delay(1000); 

   simpleread(); 

   //complicatedread();       

    

   myservo.write(pos2); 

   delay(20); 

   simpleread(); 

   //complicatedread(); 

   //delay(1000); 

   myservo.write(center); 

   delay(20); 

   simpleread(); 

   //complicatedread(); 

   //delay(1000);          

   myservo.write(pos3); 

   delay(20); 

   simpleread(); 

   //complicatedread(); 

   //delay(1000); 

   myservo.write(pos4); 

   delay(20); 

   simpleread(); 

   //complicatedread(); 

   //delay(1000); 

   centerPos();  

} 

 

void lrfScan2() 

{ 

  debugPrintln("\nLRF Scan2"); 

  // The ! is the arduino acknowledge for the LRF reading 

  Serial.write('!'); 
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  // Move servo, start LRF reading, store in outgoing array, repeat 5 times 

  myservo.write(pos1); 

  delay(120); 

  Serial1.write('R'); 

  //lrf_data[0] = dataread(); 

  lrf_data[0] = complicatedread(); 

  lrf_data_buf[0] = lrf_data[0]; 

  //delay(1500); 

 

  myservo.write(pos2); 

  delay(120); 

  Serial1.write('R'); 

  //lrf_data[1] = dataread(); 

  lrf_data[1] = complicatedread(); 

  lrf_data_buf[1] = lrf_data[1]; 

  //delay(1500); 

 

  myservo.write(center); 

  delay(120); 

  Serial1.write('R'); 

  //lrf_data[2] = dataread(); 

  lrf_data[2] = complicatedread(); 

  lrf_data_buf[2] = lrf_data[2]; 

  //delay(1500); 

 

  myservo.write(pos3); 

  delay(120); 

  Serial1.write('R'); 

  //lrf_data[3] = dataread();  

  lrf_data[3] = complicatedread(); 

  lrf_data_buf[3] = lrf_data[3]; 

  //delay(1500); 

 

  myservo.write(pos4); 

  delay(120); 

  Serial1.write('R'); 

  //lrf_data[4] = dataread();   

  lrf_data[4] = complicatedread(); 

  lrf_data_buf[4] = lrf_data[4]; 

  //delay(1500); 

   

   

  // send out the data array 

  centerPos(); 

  Serial.write(lrf_data,5); 

  //delay(1000); 

} 

 

void readEncoder() 

{ 

  // status byte for encoders 

  uint8_t status; 
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  // bit to determine if encoder values are valid 

  bool valid; 

   

  // character buffer for opcode  

  //char pos; 

   

  // local variables for caclulating odometry 

  int32_t enc1; 

  int32_t enc2; 

   

   

  int32_t Dleft; 

  int32_t Dright; 

   

  // angle in radians for the trig functions 

  float phi1fl; 

  //Serial.println(); 

  //Serial.flush(); 

  while (Serial.available() > 0) { 

    Serial.read(); 

  } 

  // predetermined acknowledge char which motherboard requires to accept odometry data 

  Serial.write('*'); 

 

  // read encoder, and set status and valid bits 

  enc1= roboclaw.ReadEncM1(address, &status, &valid); 

  if(valid) { 

 

    // prevents underflow, since we are only looking for the relative change in enc cts and reseting it every 

loop, 

    // if the enc subtracts from 0, it will end up overflowing the 16bit variable as well as being incorrect for 

our  

    // incremental case, for example an enc value reported as 4294967290 will be converted to -5 which is the 

true 

    // relative change from 0 as we expect it.  This could possibly be improved by using the status byte which 

will 

    // indicate an over or underflow. 

     

    if (enc1 > (2^16)) { 

      enc1 = enc1 - (2^32) + 1; 

    }         

 

    // 1470cts/rev, 2.0944ft/rev, 3.2ft/map unit leads to 0.00044524 map units/encoder ct, or 44524 map units 

E-8/enc ct 

    Dright = enc1*44524;  

 

    // debug prints 

    /*Serial.print("Encoder1: "); 

    Serial.print(enc1,DEC); 

    Serial.print(", "); 

    Serial.print(Dright,DEC); 

    Serial.println(" ");*/ 

    debugPrint("Encoder1: "); 



422 

 

    debugPrintInt(enc1); 

    debugPrint(", "); 

    debugPrintlnInt(Dright);     

     

  } 

 

  // read encoder 2, and set status and valid bits 

  enc2= roboclaw.ReadEncM2(address, &status, &valid);       

  if(valid) { 

 

    // prevents underflow, since we are only looking for the relative change in enc cts and reseting it every 

loop, 

    // if the enc subtracts from 0, it will end up overflowing the 16bit variable as well as being incorrect for 

our  

    // incremental case, for example an enc value reported as 4294967290 will be converted to -5 which is the 

true 

    // relative change from 0 as we expect it. 

    if (enc2 > (2^16)) { 

      enc2 = enc2 - (2^32) + 1; 

    } 

 

    // 1470cts/rev, 2.0944ft/rev, 3.2ft/map unit leads to 0.00044524 map units/encoder ct, or 44524 map units 

E-8/enc ct 

    Dleft = enc2*44524; 

 

    // debug prints 

     /*debugPrint("Encoder2:"); 

     debugPrint((char *)enc2,DEC); 

     debugPrint(", "); 

     debugPrint((char *)Dleft,DEC); 

     Serial.println(" ");*/ 

     debugPrint("Encoder2:"); 

     debugPrintInt(enc2); 

     debugPrint(", "); 

     debugPrintlnInt(Dleft); 

      

  } 

 

  // the following equations are taken from simreal.com/content/Odometry, and assume a two wheel 'tank-

type' robot, which   

  // for MCECS bot means that all motion is assumed to have equal motion from the two left wheels and two 

right wheels. It 

  // is certainly capable of other motion, but these equations MUST be rewritten to account for those motions.  

They are  

  // derived by using the law of sines and assuming the distance is a straight line. 

 

  // iterative calculation which accumulates the angular change of the robot from left and right encoder cts, 

where w is 

  // the width of the two wheels 

  phi1 = phi + (Dleft/w) - (Dright/w); 

 

  // keeps angle wrapping around the circle either positively or negatively 

  if (phi1 < 0)  
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  { 

    phi1 += 360; 

  } 

  else if (phi1 >= 360)  

  { 

    phi1 -= 360; 

  } 

 

  // new change in distance, approximating curved path as a straight line.  The max speed of the robot and the 

sample period 

  // for the encoders determines the amount of error, that is the faster the robot moves and the larger the period 

the larger  

  // the approximation error.  We determined that our max speed is sufficiently low and our sample period is 

sufficiently  

  // large such that the error is negligible.  If the speed or sample period are altered that may no longer be the 

case!!! 

  D1 = (Dleft/2) + (Dright/2); 

 

  // convert angle to radians and cast as float for trig functions 

  phi1fl = float(phi1*PI/180); 

 

  // iterative calculation which accumulates the x, y position of the robot based on these previous values 

obtained from  

  // encoder cts  

  //x1 = x + D1*sin(phi1fl); 

  //y1 = y + D1*cos(phi1fl); 

  if (!encoder_hack)  x1 = x + D1; 

  else y1 = y + D1; 

 

  // iterate the transform variables 

  x=x1; 

  y=y1; 

  phi=phi1;       

 

  x1 /= 1000000; 

  y1 /= 1000000; 

  //D1 /= 1000000; 

   

  // debug prints 

   debugPrint("Distance: "); 

   //Serial.println(D1); 

   debugPrintlnInt(D1); 

   debugPrint("X coordinate: "); 

   //Serial.println(x1,DEC); 

   debugPrintlnInt(x1); 

   debugPrint("Y coordinate: "); 

   //Serial.println(y1,DEC); 

   debugPrintlnInt(y1); 

   debugPrint("Angle in radians: "); 

    

   if (DEBUG) {  // Float number - can't use debugPrint* - function doesn't accept float 

     Serial.print(phi1fl); 

   } 
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   debugPrint("Angle in degrees: "); 

   //Serial.println(phi1,DEC); 

   debugPrintlnInt(phi1); 

    

 

  byte package[6]; 

  package[0] = x1 & 255; // x1 

  if (x1 < 0) {  

    package[1] = ((x1 >> 8) & 255) | 128; 

  } 

  else 

  { 

    package[1] = ((x1 >> 8) & 255) & 127; 

  } 

  package[2] = y1 & 255; // y1 

  if (y1 < 0)  

  { 

    package[3] = ((y1 >> 8) & 255) | 128;  

  } 

  else 

  {  

    package[3] = ((y1 >> 8) & 255) & 127; 

  }   

   

  package[4] = phi1 & 255; 

  package[5] = (phi1 >> 8) & 255;       

 

  Serial.write(package,6); 

  //Serial.flush(); 

  while (Serial.available() > 0) { 

    Serial.read(); 

  } 

 

  // reset the encoders so that we are recieving incremental change in encoder cts 

  roboclaw.ResetEncoders(address); 

  delay(1000); 

} 

 

void centerPos() 

{ 

  myservo.write(center); 

} 

 

// A simple method to read from the LRF 

void simpleread() { 

  debugPrintln("Reading LRF ..."); 

        char readlrf; 

        char readbuffer[4]; 

        long result; 

        boolean gotresult = false; 

        // Sometimes serial buffer is not empty - clear it out first or you'll get erroneous data 

        debugPrintln("Flushing ... "); 

        while(Serial1.available() > 0) { 
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          Serial1.read(); 

          debugPrint("."); 

        } 

        debugPrint("done.\n"); 

           

        delay(10); 

        Serial1.write('R'); 

        int count = 0; 

        boolean lt15 = false; 

        while(Serial1.available() < 15) { 

          if (!lt15) { 

            debugPrintln("Serial1.available < 15 ...");           

            lt15 = true; 

          } 

          //delay(100); 

          count = count + 1; 

          if (count > 20) { 

            //delay(150); 

            Serial1.write('R'); 

            delay(50); 

            count = 0; 

          } 

        } 

        //delay(1000); 

        debugPrint("Serial1.available() = "); 

        debugPrintlnInt(Serial1.available()); 

        while (Serial1.available() > 0) { 

           

          //delay(150); 

          readlrf = Serial1.read(); 

          delay(10); 

          if (readlrf == ':') { 

            //debugPrintln(":"); 

            readlrf = Serial1.read(); 

          }           

           

          debugPrint((char*)readlrf); 

        } 

         

        //Serial1.flush(); 

        debugPrintln("Done!"); 

} 

 

// A more complicated method to read from LRF, the output is formatted in long type 

long complicatedread() { 

  //debugPrintln("Reading LRF ..."); 

  char readlrf; 

  char readbuffer[4]; 

  long result; 

  boolean gotresult = false; 

  //Serial.println(); 

  // Sometimes serial buffer is not empty - clear it out first or you'll get erroneous data 

  //debugPrintln("Flushing ... "); 
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  while(Serial1.available() > 0) { 

    Serial1.read(); 

    //debugPrint("."); 

  } 

  //debugPrintln("done."); 

     

  delay(10); 

  Serial1.write('R'); 

  int count = 0; 

  //debugPrintln("Scanning ... \n"); 

  while(Serial1.available() < 15) { 

    //Serial.println("Serial1.available < 15");           

    //Serial.print("."); 

    delay(10); 

     

    // keep reading until Serial1.available() >= 15 

    count = count + 1; 

    // if already checked 20 times (arbitrary number) and still failing, send the command again 

    if (count > 50) { 

      //delay(150); 

      Serial1.write('R'); 

      delay(20); 

      count = 0; 

    } 

  } 

  if (Serial1.available() == 16) { 

    //debugPrintln("LRF scan failed.\n"); 

    return 0; 

  } 

  //Serial.write("\n"); 

  //delay(1000); 

  //Serial.write("Serial1.available() = "); 

  //Serial.println(Serial1.available()); 

  while (Serial1.available() > 0) { 

     

    //delay(150); 

    readlrf = Serial1.read(); 

    delay(10); 

    if (readlrf == ':') { 

      //Serial.println(':'); 

      readlrf = Serial1.read(); 

    } 

    //Serial.print("readlrf: "); 

    //Serial.println((char)readlrf); 

     

    // Format of response from lrf: "D = 0000 mm" 

    if ((readlrf == 'D') && !gotresult) { 

      Serial1.read();  // space 

      Serial1.read();  // '=' 

      Serial1.read();  // space 

      readbuffer[0] = Serial1.read(); 

      readbuffer[1] = Serial1.read(); 

      readbuffer[2] = Serial1.read(); 
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      readbuffer[3] = Serial1.read(); 

      // in mm: result = (readbuffer[0]-'0')*1000 + (readbuffer[1]-'0')*100 + (readbuffer[2]-'0')*10 + 

(readbuffer[3]-'0'); 

      result = (readbuffer[0]-'0')*100 + (readbuffer[1]-'0')*10 + (readbuffer[2]-'0'); 

      debugPrint("Distance: "); 

      debugPrintInt(result); 

      debugPrint(" cm\n"); 

      gotresult = true; 

      break; 

    //delay(200); 

    } 

     

    //Serial.print(readlrf); 

  } 

  //Serial.write("Flushing ... "); 

  while(Serial1.available()) { 

    Serial1.read(); 

  } 

  //Serial1.flush(); 

  //Serial.println("Done!"); 

  return result; 

} 

 

// dataread will read the bytes from the LRF and buffer them, then assemble them into a value in cm 

long dataread() { 

  long result; 

  char range[15]; 

  //Serial.println("datareading..."); 

  debugPrintln("reading from LRF...");   

  while (Serial1.available() < 15) { 

    debugPrint("."); 

  } 

  for (int i = 0; i < 15; i++) { 

    range[i] = Serial1.read(); 

    delay(50); 

     

  } 

   

 

  //round the mm value to an integer cm value 

  if (range[10] < 6) { 

    result = (range[7]-'0')*100 + (range[8]-'0')*10 + (range[9]-'0'); 

  } 

  else 

  { 

    result = (range[7]-'0')*100 + (range[8]-'0')*10 + (range[9]-'0') + 1; 

  } 

 

  // if the measurement is outside the valid range of the LRF return a 0 

  if (result > 240 || result < 15) { 

    result = 0; 

  } 
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  // flush buffer 

  for (int j = 0; j < 15; j++) { 

    range[j] = 0; 

  } 

 

  return result; 

} 

/////////////////  POST start  //////////////////////////// 

 

// This code turns the robot right then left to show the robot is in working order and able to move 

 

void POST() { 

 debugPrint("POST Test Start"); 

 rotateRight(10); 

 delay(500); 

 rotateLeft(10); 

 delay(500); 

 goStop(); 

 delay(500); 

 debugPrint("POST Test End");  

} 

 

/////////////////  POST end  /////////////////////////////// 

 

/////////////////  Do Move start  //////////////////////////////// 

 

boolean doMove() { 

 if(new_movement == STOP && old_movement != STOP) { 

        //debugPrintln("new_movement==STOP && old_movement!=STOP"); 

  while(MotorSpeed > 10) { 

                  MotorSpeed = MotorSpeed - increment; 

                  function[old_movement](MotorSpeed); 

                  delay(1); 

                } 

                MotorSpeed = 0; 

  goStop(); 

                old_movement = new_movement; 

                return true; 

 } 

 else if(new_movement != old_movement) { 

        //debugPrintln("new_movement!=old_movement"); 

                while(MotorSpeed > 10) { 

                  MotorSpeed = MotorSpeed - increment; 

                  function[old_movement](MotorSpeed); 

                  delay(1); 

                } 

  function[new_movement](MotorSpeed); 

                old_movement = new_movement; 

                return true; 

 } 

 else if(MotorSpeed < TopMotorSpeed && old_movement != STOP) { 

        //debugPrintln("MotorSpeed<TopMotorSpeed && old_movement!=STOP"); 

   MotorSpeed = MotorSpeed + increment; 
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          if(MotorSpeed > TopMotorSpeed){ 

            MotorSpeed = TopMotorSpeed; 

            return true; 

          }             

   function[new_movement](MotorSpeed); 

          old_movement = new_movement; 

          return false; 

 } 

         

        // DEBUG OUTPUT 

        /*Serial.print("Old_movement= "); 

        Serial.print(old_movement); 

        Serial.print(", new_movement= "); 

        Serial.println(new_movement);*/ 

        /*debugPrint("Old_movement= "); 

        debugPrint((char*)old_movement); 

        debugPrint(", new_movement= "); 

        debugPrintlnInt(new_movement);*/ 

         

        old_movement = new_movement; 

} 

 

///////////////// Do Move End  //////////////////////////////// 

 

/////////////////       Stop Old Movement Function       ///////////////////// 

/* 

When we jump into this loop we set update to the value of new_movement. This  

variable allows us to make sure that if we are sent a new movement during this  

loop we have a variable to compare to. We then deccelerate from the old movement 

until we reach a speed of 0. At which point we update the old_movement to the  

new_movement.  

 

If we enter this loop and we have been told that to stop (stopmoving = true) 

then new_movement becomes equal to old_movement. 

 

We continually check to make sure we are not receiving new movement data.  

If we do receive new movement data we jump out of Stop_old_movement into the  

main loop. 

 

We always send back new_movement to the main loop in case it has changed.  

*/ 

int Stop_old_movement(){  

  update = new_movement;                                    

          while( new_movement != old_movement && MotorSpeed > NoMotorSpeed){ 

              debugPrintln("stopping old movement ..."); 

              MotorSpeed = MotorSpeed - increment; 

              first_iteration = false; 

              function[old_movement](MotorSpeed); 

 

              if (MotorSpeed == NoMotorSpeed && stopmoving == true){ 

                new_movement = old_movement; 

                debugPrintln("updated kinect value from STOP"); 

              } 
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               else if (MotorSpeed == NoMotorSpeed){ 

              old_movement = new_movement; 

              debugPrintln("updated kinect value from STOP"); 

              } 

 

              if(Serial.available()){ 

                 update = Serial.read(); 

                 if (update != new_movement && update != 10){ 

                 new_movement = update; 

                 //Serial.println(update); 

                 //Serial.println("Interrupted Stop Movement");  

                 debugPrintlnInt(update); 

                 debugPrintln("Interrupted Stop Movement"); 

                 break; 

                 } 

              } 

          } 

return new_movement; 

} 

/////////////////       End stop Old Movement Function       ///////////////////// 

 

/////////////////       Start New Movement Function       ///////////////////// 

/* 

Similar to the stop function the start continually checks for new movement input.  

It accelerates up to the TopMotorSpeed and leaves the loop. first_iteration is  

set to false after the first call of a movement function so that the Mega does not 

continue sending movement data to the sonar controller when the movement isn't changing.  

*/ 

 

int Start_new_movement(){ 

   update = new_movement; 

      for( MotorSpeed; MotorSpeed <= TopMotorSpeed; MotorSpeed = MotorSpeed + increment){ 

                function[new_movement](MotorSpeed); 

                first_iteration = false; 

                if(MotorSpeed == TopMotorSpeed){ 

     old_movement = new_movement;  

     debugPrintln("updated kinect from START"); 

    } 

 

               if(Serial.available()){ 

                 update = Serial.read(); 

                 if (update != new_movement && update != 10){ 

                 old_movement = new_movement; 

                 new_movement = update; 

                 //Serial.println(update); 

                 //Serial.println("Interrupted Start Movement");  

                 debugPrintlnInt(update); 

                 debugPrintln("Interrupted Start Movement"); 

                 break; 

                 }  

                } 

              } 
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  return new_movement; 

} 

 

// routine to slow down old motion for motor commands 

/*int Stop_old_movement(){  

  update = kinectVal; 

  //Serial.print("pressed: "); 

  //Serial.println(kinectVal); 

  while( kinectVal != oldKinectVal && MotorSpeed > NoMotorSpeed){ 

    MotorSpeed = MotorSpeed - increment; 

    function[oldKinectVal](MotorSpeed); 

 

    if (MotorSpeed == NoMotorSpeed && stopmoving == true){ 

      kinectVal = oldKinectVal; 

      //Serial.println("updated kinect value from STOP"); 

    } 

    if (MotorSpeed == NoMotorSpeed){ 

      oldKinectVal = kinectVal; 

      //Serial.println("updated kinect value from STOP"); 

    } 

 

    if(Serial.available()){ 

      update = Serial.read(); 

      if (update != kinectVal){ 

        kinectVal = update; 

        //Serial.println("Interrupted Stop Movement");  

        break; 

      } 

    } 

  } 

  return kinectVal; 

}*/ 

 

// routine to smoothly start new motion 

/*int Start_new_movement(){ 

  update = new_movement; 

  //Serial.print("pressed: "); 

  //Serial.println(new_movement); 

  for( MotorSpeed; MotorSpeed <= TopMotorSpeed; MotorSpeed = MotorSpeed + increment){ 

 

    function[new_movement](MotorSpeed); 

 

    if(MotorSpeed == TopMotorSpeed){ 

      old_movement = new_movement;  

      //Serial.println("updated kinect from START"); 

    } 

 

    if(Serial.available()){ 

      update = Serial.read(); 

      if (update != new_movement && update != 10){ 

        old_movement = new_movement; 

        new_movement = update; 

        //Serial.println("Interrupted Start Movement");  
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        break; 

      }  

    } 

  } 

  return new_movement; 

}*/ 

 

void rotateRight(uint8_t MotorSpeed){ 

  debugPrint("Rotate Right: "); 

  debugPrintlnInt(MotorSpeed); 

  roboclaw.BackwardM1(0x80, MotorSpeed); 

  roboclaw.ForwardM2(0x80,MotorSpeed); 

  roboclaw.BackwardM1(0x81,MotorSpeed); 

  roboclaw.ForwardM2(0x81,MotorSpeed); 

} 

 

void rotateLeft(uint8_t MotorSpeed){ 

  debugPrint("Rotate Left:   "); 

  debugPrintlnInt(MotorSpeed); 

  roboclaw.ForwardM1(0x80, MotorSpeed); 

  roboclaw.BackwardM2(0x80,MotorSpeed); 

  roboclaw.ForwardM1(0x81,MotorSpeed); 

  roboclaw.BackwardM2(0x81,MotorSpeed); 

} 

 

 

void strafeLeft(uint8_t MotorSpeed){ 

  debugPrint("Strafe Left:   "); 

  debugPrintlnInt(MotorSpeed); 

  roboclaw.ForwardM1(0x80, MotorSpeed); 

  roboclaw.BackwardM2(0x80,MotorSpeed); 

  roboclaw.BackwardM1(0x81,MotorSpeed); 

  roboclaw.ForwardM2(0x81,MotorSpeed); 

} 

 

 

void strafeRight(uint8_t MotorSpeed){ 

  debugPrint("Strafe Right:   "); 

  debugPrintlnInt(MotorSpeed); 

  roboclaw.BackwardM1(0x80,MotorSpeed); 

  roboclaw.ForwardM2(0x80,MotorSpeed); 

  roboclaw.ForwardM1(0x81,MotorSpeed); 

  roboclaw.BackwardM2(0x81,MotorSpeed); 

} 

 

 

void goForward(uint8_t MotorSpeed){ 

  debugPrint("Forward:   "); 

  debugPrintlnInt(MotorSpeed); 

  roboclaw.ForwardM1(0x80,MotorSpeed); 

  roboclaw.ForwardM2(0x80,MotorSpeed); 

  roboclaw.ForwardM1(0x81,MotorSpeed); 

  roboclaw.ForwardM2(0x81,MotorSpeed); 
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  Wire.beginTransmission(sonar_controller); 

  Wire.write(new_movement); 

  Wire.endTransmission(); 

} 

 

void goBackward(uint8_t MotorSpeed){ 

  debugPrint("Backward:   "); 

  debugPrintlnInt(MotorSpeed); 

  roboclaw.BackwardM1(0x80,MotorSpeed); 

  roboclaw.BackwardM2(0x80,MotorSpeed); 

  roboclaw.BackwardM1(0x81,MotorSpeed); 

  roboclaw.BackwardM2(0x81,MotorSpeed); 

  Wire.beginTransmission(sonar_controller); 

  Wire.write(new_movement); 

  Wire.endTransmission(); 

} 

 

void goForwardDiag(uint8_t MotorSpeedRight, uint8_t MotorSpeedLeft){ 

  debugPrint("Diagonal Forward:   "); 

  debugPrintlnInt(MotorSpeed); 

  roboclaw.ForwardM1(0x80,MotorSpeedRight); 

  roboclaw.ForwardM2(0x80,MotorSpeedLeft); 

  roboclaw.ForwardM1(0x81,MotorSpeedRight); 

  roboclaw.ForwardM2(0x81,MotorSpeedLeft); 

} 

 

void goBackwardDiag(uint8_t MotorSpeedRight, uint8_t MotorSpeedLeft){ 

  debugPrint("Diagonal Reverse:   "); 

  debugPrintlnInt(MotorSpeed); 

  roboclaw.BackwardM1(0x80,MotorSpeedRight); 

  roboclaw.BackwardM2(0x80,MotorSpeedLeft); 

  roboclaw.BackwardM1(0x81,MotorSpeedRight); 

  roboclaw.BackwardM2(0x81,MotorSpeedLeft); 

} 

 

void goStop(){ 

  debugPrint("Stopping"); 

  MotorSpeed = 0; 

  roboclaw.ForwardM1(0x80,MotorSpeed); 

  roboclaw.ForwardM2(0x80,MotorSpeed); 

  roboclaw.ForwardM1(0x81,MotorSpeed); 

  roboclaw.ForwardM2(0x81,MotorSpeed); 

} 

 

 

/* 

void displayspeed(void) 

 { 

 uint8_t status; 

 bool valid; 

  

 uint32_t enc1 = roboclaw.ReadEncM1(0x80, &status, &valid); 

 if(valid){ 
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 Serial.print("Encoder1:"); 

 Serial.print(enc1,DEC); 

 Serial.print(" "); 

 Serial.print(status,HEX); 

 Serial.print(" "); 

 } 

 uint32_t enc2 = roboclaw.ReadEncM1(0x81, &status, &valid); 

 if(valid){ 

 Serial.print("Encoder2:"); 

 Serial.print(enc2,DEC); 

 Serial.print(" "); 

 Serial.print(status,HEX); 

 Serial.print(" "); 

 } 

 uint32_t speed1 = roboclaw.ReadSpeedM1(0x80, &status, &valid); 

 if(valid){ 

 Serial.print("Speed1:"); 

 Serial.print(speed1,DEC); 

 Serial.print(" "); 

 } 

 uint32_t speed2 = roboclaw.ReadSpeedM1(0x81, &status, &valid); 

 if(valid){ 

 Serial.print("Speed2:"); 

 Serial.print(speed2,DEC); 

 Serial.print(" "); 

 } 

 Serial.println(); 

 } 

 */ 

 

void bumper_2()  

{ 

  roboclaw.ForwardM1(0x80,0); 

  roboclaw.ForwardM2(0x80,0); 

  roboclaw.ForwardM1(0x81,0); 

  roboclaw.ForwardM2(0x81,0); 

  //Serial.println("b2"); 

  //delay(25); 

} 

 

void bumper_3()  

{ 

  roboclaw.ForwardM1(0x80,0); 

  roboclaw.ForwardM2(0x80,0); 

  roboclaw.ForwardM1(0x81,0); 

  roboclaw.ForwardM2(0x81,0); 

  //Serial.println("b3"); 

  //delay(25); 

} 

 

 

// Detected Obstacle Function // 

/*  
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This function runs when the sonar controller sets  

the Mega pin 2 HIGH. Indicated that an obstacle is  

in the way of the robot. The Uno will send which  

sonar detected the obstacle and how far the obstacle  

is from that sonar. If the obstacle is less than 10 inches 

away it will perform an emergency stop where the robot 

stops immediately. If 10inches < obstacle < 15inches the 

the robot will decelerate. This function will get stuck 

in the while loop if the obstacle remains, thereby  

preventing the robot from moving until the obstacle 

has been removed.  

*/ 

void detected_obstacle() { 

  //uint8_t sonar_number, obstacle; 

  int interrupted_movement; 

  interrupted_movement = new_movement; 

 

  debugPrint("Obstacle Detected:   "); 

   

  if(old_movement == BACKWARD) { 

    //new_movement = FORWARD; 

    avoid(FORWARD); 

  } 

  else { 

    //new_movement = BACKWARD; 

    avoid(BACKWARD); 

    avoid(RIGHT); 

  } 

   

  avoid(STOP); 

  getSonarData(); 

  getSonars_LED(); 

} 

 

void detected_obstaclex(){ 

  //uint8_t sonar_number, obstacle; 

  int interrupted_movement; 

  interrupted_movement = new_movement; 

 

  debugPrint("Obstacle Detected:   "); 

   

  if(old_movement == BACKWARD) { 

    //new_movement = FORWARD; 

    avoid(FORWARD); 

  } 

  else { 

    //new_movement = BACKWARD; 

    avoid(BACKWARD); 

  } 

   

  avoid(STOP); 

    

  //char sonar_number, obstacle; 
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  Wire.requestFrom(sonar_controller, 2); 

  //int i = 0; 

  delay(100); 

  debugPrint("Bytes available: "); 

  debugPrintlnInt(Wire.available()); 

   

   delay(100); 

   obstacle = Wire.read(); 

   delay(100); 

   sonar_number = Wire.read(); 

   debugPrint("\nobstacle: "); 

   debugPrintInt(obstacle); 

   debugPrint(" sonar number:  ");  

   debugPrintlnInt(sonar_number); 

    

   ////////  evasive manuever method ///// 

   decide(obstacle, sonar_number); 

    

   ////////  End of evasive manuever method ///// 

 

  new_movement = interrupted_movement; 

   debugPrintln("end detected_obstacle()"); 

} 

 

// End Detected Obstacle Function //  

 

// Decide what to do / where to move when there's an obstacle 

void decide(int obstacle, int sonar_number) { 

  // Sonars: 

  // front left: 1,2,3 

  // back left:  4,5,6 

  // back right: 7,8,9 

  // front right: 10,11,12 

  debugPrint("Obstacle: "); 

  debugPrintlnInt(obstacle); 

  debugPrint("Sonar number: "); 

  debugPrintlnInt(sonar_number); 

  debugPrint("Trying to decide what to do..."); 

  if ((sonar_number == 12) || (sonar_number == 11)) { 

    debugPrintln("Go Left"); 

    avoid(LEFT); 

  } else if ((sonar_number == 7) || (sonar_number == 6) || (sonar_number == 5)) { 

    debugPrintln("Go Right"); 

    avoid(RIGHT); 

  } else if ((sonar_number == 2) || (sonar_number == 3) || (sonar_number == 4)) { 

    debugPrintln("Go Left"); 

    avoid(LEFT); 

  } else if ((sonar_number == 8) || (sonar_number == 9) || (sonar_number == 10)) { 

    debugPrintln("Go Right"); 

    avoid(RIGHT); 

  } else { 

    avoid(STOP); 

  } 
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} 

 

void avoid(int direction) { 

  long now = millis(); 

  int maxtime = 801; 

  int mintime = 400; 

  new_movement = direction; 

  while (millis() - now < random(mintime,maxtime)) { 

    doMove(); 

  } 

} 

 

// Mathias' code to read arduino data from Processing/Kinect program 

void returnAllData() { 

  byte interrupted = 0; 

  if (was_interrupt) { 

    interrupted = 1; 

  } else { 

    interrupted = 0; 

  } 

  byte stoppedmoving = 0; 

  if (stopmoving) { 

    stoppedmoving = 1; 

  } else { 

    stoppedmoving = 0; 

  } 

  getSonarData(); 

   

  // byte 33 = '!' 

  byte dataArray[22] = { 35, interrupted, stoppedmoving, (byte)new_movement,  

                        lrf_data_buf[0], lrf_data_buf[1], lrf_data_buf[2],  

                        lrf_data_buf[3], lrf_data_buf[4],  

                        (byte)sonar[0], (byte)sonar[1],(byte)sonar[2],(byte)sonar[3], 

                        (byte)sonar[4],(byte)sonar[5],(byte)sonar[6],(byte)sonar[7], 

                        (byte)sonar[8],(byte)sonar[9],(byte)sonar[10],(byte)sonar[11], 36}; // need to add orientation 

and all sonar data 

                         

  Serial.write(dataArray, 22); 

  /*Serial.println((char)33); 

  Serial.println(interrupted); 

  Serial.println(stoppedmoving); 

  Serial.println(new_movement); 

  Serial.println(lrf_data_buf[0]); 

  Serial.println(lrf_data_buf[1]); 

  Serial.println(lrf_data_buf[2]); 

  Serial.println(lrf_data_buf[3]); 

  Serial.println(lrf_data_buf[4]); 

  Serial.println(obstacle); 

  Serial.println(sonar_number); 

  Serial.println((char)37);*/ 

} 

 

void debugPrint(char* toPrint) { 
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  if(DEBUG) { 

    Serial.print(toPrint); 

  } 

} 

 

void debugPrintln(char* toPrint) { 

  if(DEBUG) { 

    Serial.println(toPrint); 

  } 

} 

 

void debugPrintInt(int toPrint) { 

  if(DEBUG) { 

    Serial.print(toPrint); 

  } 

} 

 

void debugPrintlnInt(int toPrint) { 

  if(DEBUG) { 

    Serial.println(toPrint); 

  } 

} 
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MRPT Code 

/* 

 * guidebot Navigation, spring 2012 

 * 

============================================================================

= 

 * Tested platform: Linux + mrpt lib, guidebbot (ActivMediaRobot) base + Kinect 

 * For initial MRPT library and Kinect setup please see our project report. 

 * additional files: guidebotNavConf.ini, floorplan (map), run script(optional) 

 * 

============================================================================

= 

 * implementing: 

 * - main thread: command prompt for 

 *   + robot status 

 *   + manual drive 

 *   + path planning and driving robot to target 

 * - display thread: 3D display of current robot movement, also shows sensor 

 *   readings(kinect and sonar) and particles distribution 

 * - pdf update thread: execute montecarlo localization using particles filter 

 *   based on the a current pair of action-observation. 

 * - kinect observation grabbing thread 

 * - wall detect thread 

 * 

============================================================================

= 

 * Current status and issues 

 * - path planning and 3d display works 

 * - driving is smooth, however does not work well with wall detect. 

 * - localization works in principle however needed some tuning. Particles are 

 *   calculated in background and updated to our display ONLY. We have NOT update 

 *   current robot location (robot odometry, where robot thinks it is at) with the 

 *   most likely location (calculated from particle filter). We think there is an 

 *   issue with the changeOdometry() function from MRPT. A temporary fix for this 

 *   (odometryOffset) is implemented, but not thoroughly tested. 

 */ 

#include <mrpt/hwdrivers.h> 

#include <mrpt/maps.h> 

#include <mrpt/system/filesystem.h> 

#include <mrpt/bayes/CKalmanFilterCapable.h> 

 

#include <mrpt/base.h> 

#include <mrpt/slam.h> 

#include <mrpt/gui.h> 

#include <mrpt/utils/CImage.h> 

#include <mrpt/slam/COccupancyGridMap2D.h> 

#include <mrpt/hwdrivers/CActivMediaRobotBase.h> 

#include <iostream> 

 

//Includes for arduino serial communication 

#include <stdio.h> 

#include <stdlib.h> 
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#include <sys/ioctl.h> 

#include <fcntl.h> 

#include <termios.h> 

#include <fstream> 

#include <iostream> 

#include <string> 

#include <unistd.h> 

 

//includes for network communication 

#include <sys/socket.h> 

#include <arpa/inet.h> 

 

using namespace mrpt; 

using namespace mrpt::hwdrivers; 

using namespace mrpt::utils; 

using namespace mrpt::math; 

using namespace mrpt::slam; 

using namespace mrpt::poses; 

using namespace mrpt::gui; 

using namespace mrpt::bayes; 

using namespace mrpt::random; 

using namespace std; 

 

#define CONFIG_FILE_NAME    "guidebotNavConf.ini" 

 

#define BEARING_SENSOR_NOISE_STD  DEG2RAD(15.0f) 

#define RANGE_SENSOR_NOISE_STD   0.3f 

#define DELTA_TIME                   0.1f 

 

#define VEHICLE_INITIAL_X   0.0f 

#define VEHICLE_INITIAL_Y   0.0f 

#define VEHICLE_INITIAL_V           1.0f 

#define VEHICLE_INITIAL_W           DEG2RAD(20.0f) 

 

 

#define TRANSITION_MODEL_STD_XY  0.03f 

#define TRANSITION_MODEL_STD_VXY  0.20f 

 

 

/*************************************************************************************

*************/ 

/*                                            NAVIGATION PARAMS                                   */  

/*************************************************************************************

*************/ 

/* DEFAULT PARAM, SEE "guidebotNavConf.ini" */ 

static string TTY_PORT       =     "/dev/ttyACM0"; 

static string COM_PORT       =     "COM4"; 

static int BAUD_RATE         =     9600; 

 

static float ROBOT_RADIUS    =     0.30f; 

static float MIN_STEP        =     0.40f; 

 

static double TURN_THRESHOLD     =  M_PI/90;  /* stop condition while turning */ 
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static double FORWARD_THRESHOLD  =  0.09f;    /* stop condition while forward */ 

static double SHARP_TURN         =  M_PI/5;   /* when robot should stop and turn */ 

static int POLL_INTERVAL         =  100;   /* delay interval between sensor readings */ 

static int POLL_INTERVAL_DIV     =  5; 

 

static double ANGULAR_SPEED      =  0.3;      /* angular velocity */ 

static double LINEAR_SPEED       =  0.2;      /* linear velocity */ 

static double SMALL_NUMBER       =  0.001;    /* a useful number for comparing purpose */ 

static int ANGULAR_SPEED_DIV     =  5; 

static int LINEAR_SPEED_DIV      =  2; 

 

static string MAP_FILE   = "FAB-LL-Central-200px.png"; 

static float MAP_RESOLUTION  =  0.048768f; 

static int X_CENTRAL_PIXEL  = -1; /* start location, ()-1,-1) means center of map */ 

static int Y_CENTRAL_PIXEL  = -1; 

 

static CMonteCarloLocalization2D pdf; 

static float kinectMinTruncateDistance = 0.5; 

 

static char* LRF_PORT_NAME  = "/dev/ttyACM0"; 

static char* ODO_PORT_NAME  = "/dev/ttyACM0"; 

static char* MOTOR_PORT_NAME  = "/dev/ttyACM0"; 

static int   ODO_READ_MIN  = 7; 

static int   LRF_READ_MIN  = 6; 

#define PORT "80" // the port client will be connecting to 

 

#define MAXDATASIZE 100 // max number of bytes we can get at once 

 

#define LOCAL_HOST "127.0.0.1" 

 

/* our threads 's sharing resources */ 

struct TThreadRobotParam 

{ 

 TThreadRobotParam() : quit(false), pushed_key(0), Hz(0) { } 

 

 mrpt::synch::CThreadSafeVariable<bool>         quit; 

 mrpt::synch::CThreadSafeVariable<bool>         stop; 

 mrpt::synch::CThreadSafeVariable<int>      

 pushed_key; 

 volatile double Hz; 

 mrpt::synch::CThreadSafeVariable<COccupancyGridMap2D>   * 

 gridmap; // 

 mrpt::synch::CThreadSafeVariable<CPose2D>      

 currentOdo; 

 mrpt::synch::CThreadSafeVariable<CPose2D>      

 currentKF; 

 mrpt::synch::CThreadSafeVariable<CPose2D>      

 currentSonar; 

 mrpt::synch::CThreadSafeVariable<CPose2D>      

 targetOdo; 

 

 mrpt::synch::CThreadSafeVariable<CObservation2DRangeScanPtr>     new_obs;     // RGB+D 

(+3D points) 
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 mrpt::synch::CThreadSafeVariable<CObservationIMUPtr>            new_obs_imu; // Accelerometers 

 //mrpt::synch::CThreadSafeVariable<CActivMediaRobotBase>     * robot;   // robot info 

 //mrpt::synch::CThreadSafeVariable<CPose2D>                    new_pose;   // robot info 

 

 //mrpt::synch::CThreadSafeVariable<CActionCollectionPtr>       actions; 

 //mrpt::synch::CThreadSafeVariable<CSensoryFramePtr>           observations; 

 //mrpt::synch::CThreadSafeVariable<CMonteCarloLocalization2D>  pdf; 

 mrpt::synch::CThreadSafeVariable<CObjectPtr>                    pdf; 

 mrpt::synch::CThreadSafeVariable<CParticleFilter>               PF; 

 mrpt::synch::CThreadSafeVariable<bool>      

 displayNewPdf; 

 

 mrpt::synch::CThreadSafeVariable<std::deque<poses::TPoint2D> >  thePath; 

 mrpt::synch::CThreadSafeVariable<bool>      

 displayNewPath; 

 

 mrpt::synch::CThreadSafeVariable<deque<TSegment3D> >   sonars; 

 mrpt::synch::CThreadSafeVariable<bool>      

 displayNewSonars; 

 

 mrpt::synch::CThreadSafeVariable<bool>      

 displayClearOldPdf; 

 mrpt::synch::CThreadSafeVariable<bool>      

 displayClearOldSonar; 

 mrpt::synch::CThreadSafeVariable<bool>      

 displayClearOldPath; 

 

 mrpt::synch::CThreadSafeVariable<bool>      

 pdfResetDeterministic; 

 

 mrpt::synch::CThreadSafeVariable<bool>      

 leftObstacle; 

 mrpt::synch::CThreadSafeVariable<bool>      

 rightObstacle; 

 mrpt::synch::CThreadSafeVariable<bool>      

 centerObstacle; 

 mrpt::synch::CThreadSafeVariable<bool>      

 isMoving; //set when robot is moving, clear otherwise 

 mrpt::synch::CThreadSafeVariable<bool>      

 gettingLRF; //set when robot is using LRF, clear otherwise 

 mrpt::synch::CThreadSafeVariable<bool>      

 isTurning; //set when robot is using LRF, clear otherwise 

 mrpt::synch::CThreadSafeVariable<bool>      

 goForward; 

 mrpt::synch::CThreadSafeVariable<bool>      

 goRight; 

 

 

 mrpt::synch::CThreadSafeVariable<CPose2D>     

 odometryOffset; 

 

 mrpt::synch::CThreadSafeVariable<int>      

 odo_fd; //file descripter for odometry port 
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 mrpt::synch::CThreadSafeVariable<int>      

 lrf_fd; //file descripter for lrf (may be same as odometry) 

 mrpt::synch::CThreadSafeVariable<int>      

 vel_fd; 

 mrpt::synch::CThreadSafeVariable<float>                         front_wall; 

 mrpt::synch::CThreadSafeVariable<float>                         right_wall; 

 mrpt::synch::CThreadSafeVariable<float>                         D1; 

 //mrpt::synch::CThreadSafeVariable<CPose2D>     

 pdfMean; 

 //mrpt::synch::CThreadSafeVariable<CPose2D>     

 pdfMostLikely; 

}; 

 

float initial_front_wall = 0.0f; 

float initial_right_wall = 0.0f; 

bool initialize_walls = 1; 

 

int scanTest = 0;  //Testing global variable. Delete After test 

/* prototypes */ 

double turnAngle(CActivMediaRobotBase & aRobot, double phi, TThreadRobotParam thrPar); 

double turnAngle(double current_phi, double phi); 

static void turn( double phi, TThreadRobotParam &p); 

static int PathPlanning(std::deque<poses::TPoint2D> &thePath, CPoint2D  origin, CPoint2D  target); 

static void smoothDrive(CActivMediaRobotBase & aRobot, deque<poses::TPoint2D> aPath, 

TThreadRobotParam & thrPar); 

static CObservation2DRangeScan* getKinect2DScan(const TThreadRobotParam & TP, 

CObservation3DRangeScanPtr & lastObs); 

void thread_LRF(TThreadRobotParam &p); 

void thread_update_pdf(TThreadRobotParam &p); 

void thread_display(TThreadRobotParam &p); 

void createCObservationRange( CObservationRange &obs ); 

void displaySonars(TThreadRobotParam &p, CObservationRange &sonars); 

static void displayFollowPath(TThreadRobotParam &p, deque<poses::TPoint2D> thePath); 

double CObservationRangeLikelihood(COccupancyGridMap2D & map, CPose2D & pose, 

CObservationRange & obs); 

void computePdfLikelihoodValues(COccupancyGridMap2D & map, CMonteCarloLocalization2D & pdf, 

CObservationRange & obs); 

void adjustCObservationRangeSonarPose( CObservationRange &obs ); 

void thread_wall_detect(TThreadRobotParam &p); 

void fixOdometry(CPose2D & pose, CPose2D offset); 

int getNextObservation(CObservation2DRangeScan & out_obs, bool there_is, bool hard_error, int 

fd,TThreadRobotParam &thrPar); 

void getOdometry(CPose2D &out_odom, int odo_fd,TThreadRobotParam &thrPar); 

int setupArduino(char * port, int readBytes); 

int clientCommunication(); 

int parseServerReply(char * server_reply); 

void setVelocities(int linear, int angular, TThreadRobotParam &thrPar); 

 

// ------------------------------------------------------ 

//  Implementation of the system models as a 

// ------------------------------------------------------ 

class CRangeBearing : 
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 //public mrpt::bayes::CKalmanFilterCapable<4 /* x y vx vy*/, 2 /* range yaw */, 0               , 1 /* 

Atime */> 

           // <size_t VEH_SIZE,        size_t 

OBS_SIZE,   size_t FEAT_SIZE, size_t ACT_SIZE, size typename kftype = double> 

 public mrpt::bayes::CKalmanFilterCapable<2 /* x y vx vy*/, 2 /* range yaw */, 0               , 1 /* 

Atime */> 

           // <size_t VEH_SIZE,        size_t 

OBS_SIZE,   size_t FEAT_SIZE, size_t ACT_SIZE, size typename kftype = double> 

{ 

public: 

 CRangeBearing( ); 

 virtual ~CRangeBearing(); 

 

 //void  doProcess( double DeltaTime, double observationRange, double observationBearing ); 

 void  doProcess( double sonar12,double sonar10, double dy, double dx ); 

 

 void getState( KFVector &xkk, KFMatrix &pkk) 

 { 

  xkk = m_xkk; 

  pkk = m_pkk; 

 } 

 

 protected: 

 

 float m_obsBearing,m_obsRange; 

 float m_deltaTime; 

 float m_sonar12;    // latest sonar reading 

 float m_sonar10; 

 float m_dy; // current positon - previous position 

 float m_dx; 

 

 /** @name Virtual methods for Kalman Filter implementation 

  @{ 

  */ 

 

 /** Must return the action vector u. 

   * \param out_u The action vector which will be passed to OnTransitionModel 

   */ 

 void OnGetAction( KFArray_ACT &out_u ) const; 

 

 /** Implements the transition model \f$ \hat{x}_{k|k-1} = f( \hat{x}_{k-1|k-1}, u_k ) \f$ 

   * \param in_u The vector returned by OnGetAction. 

   * \param inout_x At input has \f$ \hat{x}_{k-1|k-1} \f$, at output must have \f$ \hat{x}_{k|k-1} 

\f$. 

   * \param out_skip Set this to true if for some reason you want to skip the prediction step (to do not 

modify either the vector or the covariance). Default:false 

   */ 

 void OnTransitionModel( 

  const KFArray_ACT &in_u, 

  KFArray_VEH       &inout_x, 

  bool &out_skipPrediction 

   ) const; 
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 /** Implements the transition Jacobian \f$ \frac{\partial f}{\partial x} \f$ 

   * \param out_F Must return the Jacobian. 

   *  The returned matrix must be \f$N \times N\f$ with N being either the size of the whole state 

vector or get_vehicle_size(). 

   */ 

 void OnTransitionJacobian(KFMatrix_VxV  &out_F ) const; 

 

 /** Implements the transition noise covariance \f$ Q_k \f$ 

   * \param out_Q Must return the covariance matrix. 

   *  The returned matrix must be of the same size than the jacobian from OnTransitionJacobian 

   */ 

 void OnTransitionNoise(KFMatrix_VxV &out_Q ) const; 

 

 /** Return the observation NOISE covariance matrix, that is, the model of the Gaussian additive 

noise of the sensor. 

   * \param out_R The noise covariance matrix. It might be non diagonal, but it'll usually be. 

   * \note Upon call, it can be assumed that the previous contents of out_R are all zeros. 

   */ 

 void OnGetObservationNoise(KFMatrix_OxO &out_R) const; 

 

 /** This is called between the KF prediction step and the update step, and the application must return 

the observations and, when applicable, the data association between these observations and the current map. 

   * 

   * \param out_z N vectors, each for one "observation" of length OBS_SIZE, N being the number of 

"observations": how many observed landmarks for a map, or just one if not applicable. 

   * \param out_data_association An empty vector or, where applicable, a vector where the i'th 

element corresponds to the position of the observation in the i'th row of out_z within the system state vector 

(in the range [0,getNumberOfLandmarksInTheMap()-1]), or -1 if it is a new map element and we want to 

insert it at the end of this KF iteration. 

   * \param in_all_predictions A vector with the prediction of ALL the landmarks in the map. Note 

that, in contrast, in_S only comprises a subset of all the landmarks. 

   * \param in_S The full covariance matrix of the observation predictions (i.e. the "innovation 

covariance matrix"). This is a M·O x M·O matrix with M=length of "in_lm_indices_in_S". 

   * \param in_lm_indices_in_S The indices of the map landmarks (range 

[0,getNumberOfLandmarksInTheMap()-1]) that can be found in the matrix in_S. 

   * 

   *  This method will be called just once for each complete KF iteration. 

   * \note It is assumed that the observations are independent, i.e. there are NO cross-covariances 

between them. 

   */ 

 void OnGetObservationsAndDataAssociation( 

  vector_KFArray_OBS   &out_z, 

  mrpt::vector_int            &out_data_association, 

  const vector_KFArray_OBS &in_all_predictions, 

  const KFMatrix              &in_S, 

  const vector_size_t         &in_lm_indices_in_S, 

  const KFMatrix_OxO          &in_R 

  ); 

 

  /** Implements the observation prediction \f$ h_i(x) \f$. 

    * \param idx_landmark_to_predict The indices of the landmarks in the map whose 

predictions are expected as output. For non SLAM-like problems, this input value is undefined and the 

application should just generate one observation for the given problem. 
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    * \param out_predictions The predicted observations. 

    */ 

  void OnObservationModel( 

   const vector_size_t &idx_landmarks_to_predict, 

   vector_KFArray_OBS  &out_predictions 

   ) const; 

 

  /** Implements the observation Jacobians \f$ \frac{\partial h_i}{\partial x} \f$ and (when 

applicable) \f$ \frac{\partial h_i}{\partial y_i} \f$. 

    * \param idx_landmark_to_predict The index of the landmark in the map whose 

prediction is expected as output. For non SLAM-like problems, this will be zero and the expected output is 

for the whole state vector. 

    * \param Hx  The output Jacobian \f$ \frac{\partial h_i}{\partial x} \f$. 

    * \param Hy  The output Jacobian \f$ \frac{\partial h_i}{\partial y_i} \f$. 

    */ 

  void OnObservationJacobians( 

   const size_t &idx_landmark_to_predict, 

   KFMatrix_OxV &Hx, 

   KFMatrix_OxF &Hy 

   ) const; 

 

  /** Computes A=A-B, which may need to be re-implemented depending on the topology 

of the individual scalar components (eg, angles). 

    */ 

  void OnSubstractObservationVectors(KFArray_OBS &A, const KFArray_OBS &B) 

const; 

 

 /** @} 

  */ 

}; 

 

/*************************************************************************************

*************/ 

/*                                         FUNCTION IMPLEMENTATIONS                               */ 

/*************************************************************************************

*************/ 

 

/* 

 * @Description 

 * This thread does montecarlo localization and put the pdf into ThreadRobotParam. 

 * Calculation requires a current observation-action pair, from kinect and odometry. 

 * A map is also needed. Tuning parameters defined in guidebotNavConf.ini for: 

 * - Motion and sensor model 

 * - PDF options 

 * - Particle filter options 

 * 

 * @param TThreadRobotParam p (for current odometry) 

 * @return none 

 */ 

void thread_update_pdf(TThreadRobotParam &p) 

{ 

 CPose2D currentOdo, previousOdo; 

 CConfigFile guidebotConfFile(CONFIG_FILE_NAME); 
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 COccupancyGridMap2D  gridmap; 

 CParticleFilter::TParticleFilterStats PF_stats; 

 

 /* get the map first */ 

 bool thereis; 

 CImage img; 

 float resolution = MAP_RESOLUTION;   // size of the grid in meters 

 float xCentralPixel = X_CENTRAL_PIXEL;    // x central pixel 

 float yCentralPixel = Y_CENTRAL_PIXEL;   // y central pixel  // Load 

the gridmap: 

 

 if (!mrpt::system::fileExists(MAP_FILE)) 

  THROW_EXCEPTION_CUSTOM_MSG1("Map file '%s' not 

found",MAP_FILE.c_str()); 

 

 printf("Loading gridmap..."); 

 gridmap.loadFromBitmapFile(MAP_FILE,resolution ,xCentralPixel,yCentralPixel); 

 printf("Done! %f x %f m\n", gridmap.getXMax()-gridmap.getXMin(), gridmap.getYMax()-

gridmap.getYMin()); 

 

 /* insert and likelihood observation options for gridmap */ 

 COccupancyGridMap2D::TInsertionOptions gridmapOption; 

 COccupancyGridMap2D::TLikelihoodOptions likelihoodOption; 

 

 int ind = 0; 

 

 gridmapOption.loadFromConfigFile( guidebotConfFile, 

"MetricMap_occupancyGrid_00_insertOpts" ); 

 gridmapOption.loadFromConfigFile( guidebotConfFile, 

"MetricMap_occupancyGrid_00_likelihoodOpts" ); 

 

 gridmap.insertionOptions = gridmapOption; 

 gridmap.likelihoodOptions = likelihoodOption; 

 

 /****** MonteCarloLocalization  ******/ 

 

 

 uint64_t M = guidebotConfFile.read_uint64_t("LocalizationParams","PARTICLE_COUNT",1000, 

false); 

 pdf = CMonteCarloLocalization2D(M); 

 

 /* PDF Options: */ 

 TMonteCarloLocalizationParams pdfPredictionOptions; 

 pdfPredictionOptions.KLD_params.loadFromConfigFile( guidebotConfFile, "KLD_options"); 

 pdf.options = pdfPredictionOptions; 

 

 pdf.options.metricMap = &gridmap; 

 

 /* PF-algorithm Options: */ 

 CParticleFilter::TParticleFilterOptions  pfOptions; 

 pfOptions.loadFromConfigFile( guidebotConfFile, "PF_options" ); 

 

 CParticleFilter PF; 
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 PF.m_options = pfOptions; 

 

 /* motion model */ 

 CActionRobotMovement2D::TMotionModelOptions dummy_odom_params; 

 dummy_odom_params.modelSelection = CActionRobotMovement2D::mmGaussian; 

 dummy_odom_params.gausianModel.minStdXY  = 

guidebotConfFile.read_double("DummyOdometryParams","minStdXY",0.04); 

 dummy_odom_params.gausianModel.minStdPHI = 

DEG2RAD(guidebotConfFile.read_double("DummyOdometryParams","minStdPHI", 2.0)); 

 

 CPose2D pdfEstimation, odometryEstimation; 

 //CPose2D currentOdo, previousOdo; 

 

 /* get a COPY */ 

 previousOdo.x(p.currentOdo.get().x()); 

 previousOdo.y(p.currentOdo.get().y()); 

 previousOdo.phi(p.currentOdo.get().phi()); 

 

 /* reset all particle to a known location */ 

 pdf.resetDeterministic(previousOdo,1000); 

 

 /* this part below uniformly distributes particles to the whole map */ 

 

//  if ( !guidebotConfFile.read_bool("LocalizationParams","init_PDF_mode",false, /*Fail if 

not found*/true) ) 

//  pdf.resetUniformFreeSpace( 

//   &gridmap, 

//   0.7f, 

//   M , 

//   guidebotConfFile.read_float("LocalizationParams","init_PDF_min_x",0,true), 

//   guidebotConfFile.read_float("LocalizationParams","init_PDF_max_x",0,true), 

//   guidebotConfFile.read_float("LocalizationParams","init_PDF_min_y",0,true), 

//   guidebotConfFile.read_float("LocalizationParams","init_PDF_max_y",0,true), 

//  

 DEG2RAD(guidebotConfFile.read_float("LocalizationParams","init_PDF_min_phi_deg",-180)), 

//  

 DEG2RAD(guidebotConfFile.read_float("LocalizationParams","init_PDF_max_phi_deg",180)) 

//   ); 

// else 

//  pdf.resetUniform( 

//   guidebotConfFile.read_float("LocalizationParams","init_PDF_min_x",0,true), 

//   guidebotConfFile.read_float("LocalizationParams","init_PDF_max_x",0,true), 

//   guidebotConfFile.read_float("LocalizationParams","init_PDF_min_y",0,true), 

//   guidebotConfFile.read_float("LocalizationParams","init_PDF_max_y",0,true), 

//  

 DEG2RAD(guidebotConfFile.read_float("LocalizationParams","init_PDF_min_phi_deg",-180)), 

//  

 DEG2RAD(guidebotConfFile.read_float("LocalizationParams","init_PDF_max_phi_deg",180)), 

//   M 

//   ); 

 

 //CObservation3DRangeScanPtr  last_obs; 
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 /* repeat pdf calculation until terminated */ 

 while(p.quit.get() == false) 

 { 

  if ( p.pdfResetDeterministic.get() ) 

  { 

   pdf.resetDeterministic(previousOdo,1000); 

   p.pdfResetDeterministic.set(false); 

  } 

 

  /* pair of action-observation */ 

  CActionCollectionPtr actions; 

  CSensoryFramePtr senFrame; 

 

  CObservationPtr obsPtr; 

 

  /* get a copy of the most current pose */ 

  currentOdo.x(p.currentOdo.get().x()); 

  currentOdo.y(p.currentOdo.get().y()); 

  currentOdo.phi(p.currentOdo.get().phi()); 

 

  /* it IS possible that computeFromOdometry return nothing if distance 

   * between pose is tiny, adjust minStdXY if need */ 

 

  if (currentOdo.distanceTo(previousOdo) > 

2*dummy_odom_params.gausianModel.minStdXY) 

  { 

   /* make sure that we have new kinect reading */ 

   CObservation2DRangeScanPtr obs_Ptr = p.new_obs.get(); 

   CObservation2DRangeScan* obs_2d = obs_Ptr.pointer(); 

 

   /* make sure that we have new kinect reading */ 

   if (obs_2d == NULL) 

    continue; 

   obs_2d->truncateByDistanceAndAngle(kinectMinTruncateDistance,3); 

   senFrame = CSensoryFrame::Create(); /* get a sensoryFrame Ptr */ 

   actions = CActionCollection::Create(); /* get an AC Ptr */ 

   /* insert action */ 

   CActionRobotMovement2DPtr dummy_odom = 

CActionRobotMovement2D::Create(); 

   dummy_odom->computeFromOdometry(currentOdo - previousOdo, 

dummy_odom_params); 

   actions->insert(*dummy_odom); 

 

   /* stamp this pose */ 

   previousOdo.x(currentOdo.x()); 

   previousOdo.y(currentOdo.y()); 

   previousOdo.phi(currentOdo.phi()); 

 

   /* insert observation */ 

   obsPtr.setFromPointerDoNotFreeAtDtor(obs_2d); 

   senFrame->insert(obsPtr); 

 

   /* add observation to our map for visualization */ 
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   CPose3D currentOdo3D(currentOdo); 

   obs_2d->insertObservationInto(&gridmap, &currentOdo3D); 

 

   // cout << "-------------------------      PDF     ----------------------" << endl; 

   PF.executeOn( 

    pdf, 

    actions.pointer(),   // Action 

    senFrame.pointer(), // Obs. 

    &PF_stats  // Output statistics 

    ); 

 

   CActionRobotMovement2DPtr best_mov_estim = actions-

>getBestMovementEstimation(); 

 

   if (best_mov_estim) 

   { 

    odometryEstimation = odometryEstimation + best_mov_estim-

>poseChange->getMeanVal(); 

   // cout << "odometryEstimation : " << odometryEstimation << endl; 

   } 

   pdf.getMean( pdfEstimation ); 

   //cout << "pdfEstimation : " << pdfEstimation << endl; 

   //cout << "mostlikelyParticle: " << pdf.getMostLikelyParticle() << endl; 

 

   p.pdf.set( pdf.duplicateGetSmartPtr() ); 

   p.displayNewPdf.set(true); 

 

   //cout << "adaptive sample size : " << PF.adaptiveSampleSizepdf.size() << endl; 

   //cout << "-------------------------------------------------------------" << endl; 

 

  }/* end if */ 

   mrpt::system::sleep(POLL_INTERVAL); 

 }/* end while */ 

 

 /* done and save outputs */ 

 pdf.saveToTextFile("pdf.txt"); /* Save PDF's m_particles to a text file.*/ 

 //gridmap.getAsImage(img,false, true);  /* Force a RGB image */ 

 //const std::string dest = "path_planning1.png"; 

 //cout << "Saving output to: " << dest << endl; 

 //img.saveToFile(dest); 

} 

 

/* 

 * @Description 

 * Thread for grabbing: monitor kinect reading, this is required for getKinect2DScan() 

 * calibration file can be used for more accurate reading. 

 */ 

void thread_LRF(TThreadRobotParam &p) 

{ 

 //get lrf file descriptor 

 int fd = p.lrf_fd.get(); 

 sleep(1000); 
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 try 

 { 

  const std::string cfgFile = CONFIG_FILE_NAME; 

  if (mrpt::system::fileExists(cfgFile)) 

  { 

   cout << "Loading calibration from: "<< cfgFile << endl; 

   // Put any code needed to configure LRF from config file 

  } 

  else cerr << "Warning: Calibration file ["<< cfgFile <<"] not found -> Using default 

params.\n"; 

 

  // Open: 

  cout << "Calling LRF::initialize()..."; 

  //Put code to initialize LRF ::: 

  cout << "OK\n"; 

 

  CTicTac tictac; 

  int nImgs = 0; 

  bool there_is_obs=true, hard_error=false; 

  int odometryDelayCounter = 0; 

 

  /* monitor and update hardware status */ 

  while (!hard_error && !p.quit.get() ) 

  { 

   /* Grab new observation from the camera:*/ 

   CObservation2DRangeScanPtr  obs     = CObservation2DRangeScan::Create(); 

   //CObservationIMUPtr          obs_imu = CObservationIMU::Create(); 

   if(!p.isMoving.get() & !p.gettingLRF.get()) 

   { 

    getNextObservation(*obs,there_is_obs,hard_error,fd,p); 

   } 

   if (!hard_error && there_is_obs ) 

   { 

    p.new_obs.set(obs); 

   // p.new_obs_imu.set(obs_imu); 

   } 

   sleep(2500); 

  }/* end while*/ 

 } 

 catch(std::exception &e) 

 { 

  cout << "Exception in grabbing thread: " << e.what() << endl; 

  p.quit.set(true); 

 } 

} 

 

 

/* 

 * @Description 

 *This function is made to mock the getNextObservation function from the kinect 

 * 

 * @param obs: pointer to a CObservation2DRangeScan object created from the LRF 

 *  there_is_obs: boolean set if there is a new observation observation 
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 *  hard_error: true when an error occurs with the LRF 

 * @return none 

 */ 

int getNextObservation(CObservation2DRangeScan & out_obs, bool there_is, bool hard_error, int fd, 

TThreadRobotParam &thrPar) 

{ 

 

 unsigned char buf[256]; 

 char getCommand[1]; 

 int n; 

 cout<<"lrf_odo "<<fd<<endl; 

 cout<<thrPar.gettingLRF.get()<<"LRF VALUE"<<endl; 

 

 thrPar.gettingLRF.set(true); 

 getCommand[0]='l'; 

  /* Flush anything already in the serial buffer */ 

 cout<<thrPar.gettingLRF.get()<<"LRF VALUE"<<endl; 

  tcflush(fd, TCIFLUSH); 

  /* read up to 128 bytes from the fd */ 

 write(fd,getCommand,1); 

 buf[0] = 0; 

 while(buf[0] != '!') 

 { 

   n = read(fd, buf, 7); 

 

  sleep(100); 

   printf("%i sonar bytes got read...\n", n); 

  printf("Buffer has \n%s\n",buf); 

  } 

 

 sleep(150); 

 

  printf("%i bytes got read...\n", n); 

  printf("Buffer 1 contains...\n%d (%.03f)\n", buf[1], buf[1]/38.4); 

  printf("Buffer 2 contains...\n%d (%.03f)\n", buf[2], buf[2]/38.4); 

  printf("Buffer 3 contains...\n%d (%.03f)\n", buf[3], buf[3]/38.4); 

  printf("Buffer 4 contains...\n%d (%.03f)\n", buf[4], buf[4]/38.4); 

  printf("Buffer 5 contains...\n%d (%.03f)\n", buf[5], buf[5]/38.4); 

 

 

    /* 

                CPose2D  odo; 

                double   v,w; 

                int64_t   left_ticks, right_ticks; 

                bool   pollLRF = true; 

                cout<<"counter getting odo"<<endl; 

                p.isMoving.set(true); 

                while(p.gettingLRF.get()); 

                //{ 

                // pollLRF = returnGettingLRF(thrPar); 

                // cout<<pollLRF<<endl; 

                // sleep(1000); 
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                //} 

 

                cout<<"OK"<<endl; 

                getOdometry( odo, fd, p ); 

                p.isMoving.set(false); 

                printf("***x = %d, y = %d, phi = %d\n",odo.x(),odo.y(),odo.phi()); 

                fixOdometry( odo, p.odometryOffset.get() ); 

                p.currentOdo.set(odo); 

                printf("***x = %d, y = %d, phi = %d\n",odo.x(),odo.y(),odo.phi()); 

                cout << "Odometry: " << odo << " v: " << v << " w: " << RAD2DEG(w) << " left: " << left_ticks 

<< " right: " << right_ticks << endl; 

    */ 

 

 CPose2D curOdo = thrPar.currentOdo.get(); 

 CPose2D newOffset(curOdo.x(),curOdo.y(),curOdo.phi()); 

 out_obs.scan.clear(); 

 fixOdometry( newOffset, thrPar.odometryOffset.get() ); 

 out_obs.validRange.clear(); 

 out_obs.setSensorPose(thrPar.odometryOffset.get()); 

 out_obs.aperture = M_PI;//*120/180; 

 sleep(1000); 

 

 //for(int i = 1; i < LRF_READ_MIN; i++) 

 for(int i=5; i > 0; i--) 

 { 

//   printf("Buffer %d contains...\n%d\n",i,buf[i]); 

  if (i > 0) 

  { 

   //out_obs.scan.push_back(float(buf[i])/100); 

   out_obs.scan.push_back(float(buf[i])/38.4); // inches converted into metric / map 

unit 

   out_obs.validRange.push_back(1); 

   cout << "yak!"; 

  } 

 } 

 

 if (initialize_walls) { 

     initial_front_wall = float(buf[2])/38.4;    // Set initial front wall only the first time the program 

run 

     initial_right_wall = float(buf[5])/38.4; 

     initialize_walls = 0; 

 } 

 

 thrPar.front_wall.set(float(buf[2])/38.4);  // Save the front sonar reading 

 thrPar.right_wall.set(float(buf[5])/38.4);  // Save the right sonar reading 

 

 thrPar.gettingLRF.set(false); 

 cout<<thrPar.gettingLRF.get()<<"LRF VALUE"<<endl; 

 

 return 0; 

} 

 

/* 
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 * @Description 

 * Replacement for the getOdometry function that was part of the CActivMediaRobotBase class 

 * @param out_odom: a pointer to the object in which the current odometry of the robot will get filled 

in 

 * 

 */ 

void getOdometry(CPose2D &out_odom, int odo_fd,TThreadRobotParam &thrPar) 

{ 

 

 unsigned char buf[256]; 

 char getCommand[1]; 

 int n; 

 CPose2D tempPose; 

 short x,y,phi; 

 getCommand[0]='e'; 

 cout<<"In getting ODO"<<endl; 

 /* Flush anything already in the serial buffer */ 

 tcflush(odo_fd, TCIFLUSH); 

 /* read up to 128 bytes from the fd */ 

 write(odo_fd,getCommand,1); 

 cout<<"written"<<endl; 

 cout<<"odo_fd "<<odo_fd<<endl; 

 buf[0] = 0; 

 while(buf[0] != '*') 

 { 

  cout<<"reading"<<endl; 

   n = read(odo_fd, buf, 7); 

 

  sleep(100); 

   printf("%i odometry bytes got read...\n", n); 

  printf("Buffer has \n%s\n",buf); 

  } 

 

 sleep(150); 

 

 //read data in 

// n = read(fd, buf,6); 

 

 // printf("Buffer has \n%s\n",buf); 

//  printf("%i bytes got read...\n", n); 

//  printf("Buffer 1 contains...\n%d\n", buf[0]); 

//  printf("Buffer 2 contains...\n%d\n", buf[1]); 

//  printf("Buffer 3 contains...\n%d\n", buf[2]); 

//  printf("Buffer 4 contains...\n%d\n", buf[3]); 

//  printf("Buffer 5 contains...\n%d\n", buf[4]); 

//  printf("Buffer 5 contains...\n%d\n", buf[5]); 

//  printf("Buffer 5 contains...\n%d\n", buf[6]); 

 cout<<"read"<<endl; 

 x = ((buf[2] & 255)<< 8) | (buf[1] & 255); 

 y = ((buf[4] & 255) << 8) | (buf[3] & 255); 

 phi = ((buf[6] & 255) << 8) | (buf[5] & 255); 

 

 //flip phi over x axis 
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// if(phi != 0) 

// { 

//  phi = 360 - phi; 

// } 

 printf("x = %d, y = %d, phi = %d\n",x,y,phi); 

 tempPose = thrPar.currentOdo.get(); 

 

 thrPar.D1.set(float(x)/100.0); 

 //x = x + tempPose.x(); 

 //y = y + tempPose.y(); 

 //phi = phi + tempPose.phi(); 

 

 out_odom.x(float(x)*0.707/100.0); 

 out_odom.y(float(y)*0.707/100.0); 

 //out_odom.phi((float(phi)+90)*M_PI/180.0); 

 

 /*if (thrPar.goRight.get() && !thrPar.goForward.get()) { 

            cout << "UPDATING X*****\n"; 

     out_odom.x(thrPar.currentOdo.get().x() + float(x)/100.0); 

     out_odom.y(thrPar.currentOdo.get().y()); 

     out_odom.phi(90*M_PI/180.0); 

 } else if (thrPar.goForward.get() && !thrPar.goRight.get()) { 

            cout << "UPDATING Y*****\n"; 

     out_odom.y(thrPar.currentOdo.get().y() + float(y)/100.0); 

     out_odom.x(thrPar.currentOdo.get().x()); 

     out_odom.phi(90*M_PI/180.0); 

 } else { 

            cout << "NOT UPDATING ODOMETRY!!!!!\n"; 

            out_odom.x(thrPar.currentOdo.get().x()); 

            out_odom.y(thrPar.currentOdo.get().y()); 

            out_odom.phi(thrPar.currentOdo.get().phi()); 

        }*/ 

 //out_odom.phi((float(phi)+90)*M_PI/180.0); 

 out_odom.phi(90*M_PI/180.0); 

 cout << format("Odometry: x=%.03f, y=%.03f, phi=%.03f",(float)out_odom.x(), 

(float)out_odom.y(), (float)out_odom.phi()) << endl; 

 

 

 sleep(1000); 

 

 

} 

 

int setupArduino(char * port, int readBytes) 

{ 

 

 /* initialize for hardware readings */ 

 char *portname = port; 

 int fd; 

 

 /* Open the file descriptor in non-blocking mode */ 

  fd = open(portname, O_RDWR | O_NOCTTY); 
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 /* Set up the control structure */ 

  struct termios toptions; 

 

  /* Get currently set options for the tty */ 

  tcgetattr(fd, &toptions); 

 

 /* Set custom options */ 

 /* 9600 baud */ 

  cfsetispeed(&toptions, B9600); 

  cfsetospeed(&toptions, B9600); 

 

  /* 8 bits, no parity, no stop bits */ 

  toptions.c_cflag &= ~PARENB; 

  toptions.c_cflag &= ~CSTOPB; 

  toptions.c_cflag &= ~CSIZE; 

  toptions.c_cflag |= CS8; 

  /* no hardware flow control */ 

  toptions.c_cflag &= ~CRTSCTS; 

 

  /* enable receiver, ignore status lines */ 

  toptions.c_cflag |= CREAD | CLOCAL; 

 

  /* disable input/output flow control, disable restart chars */ 

  toptions.c_iflag &= ~(IXON | IXOFF | IXANY); 

 

  /* disable canonical input, disable echo, 

  disable visually erase chars, 

  disable terminal-generated signals */ 

  toptions.c_iflag &= ~(ICANON | ECHO | ECHOE | ISIG); 

 

  /* disable output processing */ 

  toptions.c_oflag &= ~OPOST; 

 

 /* wait for 1 characters to come in before read returns */ 

  toptions.c_cc[VMIN] = readBytes; 

 

  /* no minimum time to wait before read returns */ 

  toptions.c_cc[VTIME] = 0; 

 

 /* commit the options */ 

  tcsetattr(fd, TCSANOW, &toptions); 

 

 /* Wait for the Arduino to reset */ 

 sleep(1000); 

 return fd; 

} 

 

/* 

 * @Description 

 * Try to drive our robot smoothly: avoid stop (between steps) if don't need to. Also 

 * adjust bearing toward the next step. 

 * 

 * @param aPath: calculated path 
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 *   aRobot: access to robot odometry 

 *   thrPar: access and update thread parameter list 

 * @return none 

 */ 

static void smoothDrive(CActivMediaRobotBase & aRobot, deque<poses::TPoint2D> aPath, 

TThreadRobotParam & thrPar) 

{ 

 CPose2D initOdo; 

 int odo_fd = thrPar.odo_fd.get(); 

 getOdometry(initOdo, odo_fd, thrPar); 

  ( initOdo, thrPar.odometryOffset.get() ); 

 

 CPose2D currentOdo, previousOdo; 

 getOdometry(currentOdo, odo_fd, thrPar); 

 fixOdometry( currentOdo, thrPar.odometryOffset.get() ); 

 thrPar.currentOdo.set(currentOdo); 

 

 getOdometry(previousOdo, odo_fd, thrPar); 

 fixOdometry( previousOdo, thrPar.odometryOffset.get() ); 

 

 /* for each individual step on path */ 

 for (deque<poses::TPoint2D>::const_iterator it=aPath.begin(); it!=aPath.end() && 

(thrPar.quit.get() == false); ++it) 

 { 

  double phi; 

  double tempAngle; 

  CPose2D tempOdo; 

 

  cout << "current pose: " << currentOdo << endl; 

  cout <<  "[next nearby target?] x: " << it->x << " y: " << it->y << " " << endl; 

 

  //If getting LRF don't move to the next location 

  while(thrPar.gettingLRF.get()) 

  { 

   sleep(100); 

  } 

 

 

  thrPar.isMoving.set(true); 

  /* check for undefined case atan(0,0), for sure */ 

  if( ( abs(it->y - currentOdo.y()) < SMALL_NUMBER ) && ( abs(it->x - currentOdo.x()) 

< SMALL_NUMBER ) ) 

  {   thrPar.currentOdo.set(currentOdo); 

    cout << "continue.................. "<< endl; 

   continue; 

  } 

  getOdometry( currentOdo,odo_fd, thrPar);//, v, w, left_ticks, right_ticks ); 

  //cout << " Odometry: " << currentOdo; 

  fixOdometry( currentOdo, thrPar.odometryOffset.get() ); 

  //cout << " Fixed Odometry: " << currentOdo; 

  thrPar.currentOdo.set(currentOdo); 

  //cout << " Fixed Odometry 2: " << currentOdo << endl; 
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  while(    /* lower bound, make sure robot does not pass target */ 

            ( currentOdo.distanceTo(CPoint2D(it->x,it->y)) > FORWARD_THRESHOLD ) 

            /* upper bound, make sure robot does not go far off target */ 

         && ( currentOdo.distanceTo(CPoint2D(it->x,it->y)) < 6 * MIN_STEP ) 

      /* stop condition from user interface (esc/spacebar key) */ 

      && (thrPar.quit.get() == false) 

      && (thrPar.stop.get() == false) 

    ) 

  { 

   /* calculate required phi to next nearby target */ 

   phi = atan2 ( (it->y - currentOdo.y() ) , (it->x - currentOdo.x() ) ); 

   /* the next dozen lines of code basically determine whether robot 

    * should stop and turn or not 

    */ 

   tempOdo = CPose2D(currentOdo); 

   tempOdo.normalizePhi(); 

   tempAngle = abs(phi - tempOdo.phi()); 

   if ( tempAngle >= M_PI ) 

   { 

    tempAngle = 2*M_PI - tempAngle; 

   } 

   /*  if current phi > SHARP_TURN, stop and turn */ 

   if ( tempAngle >= SHARP_TURN ) 

   { 

    cout << "phi: " << RAD2DEG(phi); 

    cout << "\t tempOdo.phi: " << RAD2DEG(tempOdo.phi()) << endl; 

    cout << "turning ... " << endl; 

    turn(phi, thrPar); 

    cout << "done with turn"<< endl; 

    getOdometry(currentOdo,odo_fd, thrPar); 

    fixOdometry( currentOdo, thrPar.odometryOffset.get() ); 

    cout << "Phi after turn: " << currentOdo.phi() << endl; 

   } 

 

   /* simple collision avoidance "smooth" drive */ 

 

   /* if no obstacle */ 

   if(   (thrPar.leftObstacle.get() == false) 

           && (thrPar.rightObstacle.get() == false) 

           &&  (thrPar.centerObstacle.get() == false)  ) 

   { 

    /* driving to next target */ 

    /* FIXME : adjust ANGULAR_SPEED_DIV for better drive */ 

    double turn_angle = turnAngle(currentOdo.phi(), phi) / 

ANGULAR_SPEED_DIV; 

    if (turn_angle < .02) 

     turn_angle = 0; 

    /* FIXME : segmentation fault happens sometime, probably it has 

something 

     * to do with the fixOdometry() 

     */ 

    //cout << "after turnangle " << turn_angle << endl; 

      setVelocities( 1,0,thrPar); 
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    //*setVelocities( LINEAR_SPEED, turn_angle, thrPar); 

//turnAngle(aRobot, phi, thrPar) / 5 ); 

   } 

   else if (thrPar.rightObstacle.get() == true && thrPar.leftObstacle.get() == false) 

   { 

    /*turn to the left to avoid the wall on the right */ 

    //setVelocities( LINEAR_SPEED / 2, 0.2, thrPar ); 

    //FIX THIS LATER OBSTICAL AVOIDANCE 

      setVelocities( 0,0,thrPar); 

    //sleep(200); 

   } 

   else if (thrPar.leftObstacle.get() == true && thrPar.rightObstacle.get() == false) 

   { 

    /* turn to the right to avoid the wall on the left. */ 

    //*setVelocities( LINEAR_SPEED / 2, -0.2, thrPar ); 

    setVelocities(0,0, thrPar); 

    //sleep(200); 

   } 

   else /* obstacle in front. FIXME: not having any appropriate behaviour for 

this */ 

   { 

    cout << "error! I am confused and cannot navigate appropriately at this 

time." << endl; 

    //thrPar.stop.set(true); 

    //setVelocities(0, 0); 

   } 

 

   /* update sonar reading to display */ 

   CObservationRange obs; 

   bool thereis; 

   aRobot.getSonarsReadings(thereis,obs); 

   if (!thereis) 

   { 

    cout << "Sonars: NO" << endl; 

   } 

   else 

   { 

    adjustCObservationRangeSonarPose( obs ); 

    displaySonars(thrPar, obs); 

    //cout << "Sonars: "; 

    //for (CObservationRange::const_iterator 

i=obs.sensedData.begin();i!=obs.sensedData.end();++i) 

    // cout << i->sensedDistance << " "; 

    //cout << endl; 

   } 

 

   mrpt::system::sleep(1000); 

  // mrpt::system::sleep(POLL_INTERVAL); 

   //sleep(1000); 

   /* update robot status */ 

   setVelocities(0,0,thrPar); 

 

   mrpt::system::sleep(1000); 
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   getOdometry( currentOdo, odo_fd, thrPar); /* for stop condition */ 

   fixOdometry( currentOdo, thrPar.odometryOffset.get() ); 

   thrPar.currentOdo.set(currentOdo); 

   //cout << "end while" << endl; 

  }/* end while */ 

 

  /* FIXME: update robot odometry to mostlikely particle, below is an example, not tested. 

   * The issue is in the changeOdometry() function, which does not work properly. Our 

current 

   * fix for this is to do a mapping using odometryOffset 

   */ 

//  CMonteCarloLocalization2D * tempPdf = 

(CMonteCarloLocalization2D*)thrPar.pdf.get().pointer(); 

//  CPose2D tempPose; 

//  tempPdf->getMean( tempPose ); 

//  CPose2D startOdo; 

//  getOdometry (startOdo); 

//  startOdo.x(0); 

//  startOdo.y(0); 

//  //CPose2D startOdo(newX,newY,DEG2RAD(newPhi)); 

//  CPose2D newOffset = tempPose; 

//  newOffset.phi( DEG2RAD(tempPose.phi()) - startOdo.phi() ); 

//  thrPar.odometryOffset.set(newOffset); 

//  aRobot.changeOdometry(startOdo); 

//  currentOdo = tempPose; 

// 

 //Stop moving a delay to allow getting LRF values 

 //*setVelocities( 0, 0, thrPar ); 

 thrPar.isMoving.set(false); 

 sleep(100); 

 } /* end for */ 

 

 /* done driving and save outputs */ 

 

 //*setVelocities( 0, 0, thrPar ); 

 thrPar.stop.set(false); 

// 

} 

 

/* 

 * @Description 

 * Get current kinect reading 

 * @param lastObs: last observation from kinect 

 *   TP:   Access to current param list 

 * @return current kinect reading (CObservation2DRangeScan), null if no new reading 

 */ 

static CObservation2DRangeScan* getKinect2DScan(const TThreadRobotParam & TP, 

CObservation3DRangeScanPtr & lastObs) 

{ 

 //CObservation3DRangeScanPtr newObs = TP.new_obs.get(); 

 //CObservation2DRangeScanPtr obs2D; 

/* 

 if (newObs && newObs->timestamp!=INVALID_TIMESTAMP && 
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  (!lastObs  || newObs->timestamp!=lastObs->timestamp ) ) 

 { 

  // It IS a new observation: 

  lastObs = newObs; 

  //last_obs_imu = thrPar.new_obs_imu.get(); 

  // Update visualization --------------------------------------- 

 

  // Convert ranges to an equivalent 2D "fake laser" scan: 

  if (lastObs->hasRangeImage ) 

  { 

   // FIXME memory leak ? 

   CObservation2DRangeScan* obs2D = new CObservation2DRangeScan(); 

   lastObs->convertTo2DScan(*obs2D, "KINECT_2D_SCAN"); 

   return obs2D; 

  } 

 }*/ 

 /* else return NULL */ 

 return NULL; 

} 

 

/* 

 * @Description 

 * This used to be part of the turn function, bring it out here for other uses 

 * @param phi: calcultated phi to nearby target 

 *   aRobot: access to robot odometry 

 *   thrPar: access to thread parameter list 

 * @return offset to desired bearing 

 */ 

double turnAngle(CActivMediaRobotBase & aRobot, double phi, TThreadRobotParam thrPar) 

{ 

 CPose2D odoTemp; 

 double ret; 

 int odo_fd = thrPar.odo_fd.get(); 

 getOdometry( odoTemp,odo_fd, thrPar); 

 

 fixOdometry( odoTemp, thrPar.odometryOffset.get() ); 

 odoTemp.normalizePhi(); 

 

 /* find the optimized turn angle */ 

 ret = abs(phi - odoTemp.phi()); 

 if ( ret >= M_PI ) 

 { 

  ret = 2*M_PI - ret; 

 } 

 

 /* find the turn direction: add turnAngle, normalized then compare */ 

 

 odoTemp.phi_incr(ret); 

 odoTemp.normalizePhi(); 

 //cout << "after incr" << endl; 

 if ( abs(odoTemp.phi() - phi) > SMALL_NUMBER ) /* small diff */ 

 { 

  ret = -ret; 
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 } 

  //cout << "return " << ret << endl; 

 return ret; 

} 

 

/* 

 * @Description 

 * overloading method of turnAngle() 

 * This used to be part of the turn function, bring it out here for other uses 

 * 

 * @param phi:   calcultated phi to nearby target 

 *   current phi: current phi of robot 

 * @return offset to desired bearing 

 */ 

double turnAngle(double current_phi, double phi) 

{ 

 CPose2D odoTemp; 

 odoTemp.x(0); 

 odoTemp.y(0); 

 odoTemp.phi(current_phi); 

 double ret; 

 

 odoTemp.normalizePhi(); 

 

 /* find the optimized turn angle */ 

 ret = abs(phi - odoTemp.phi()); 

 if ( ret >= M_PI ) 

 { 

  ret = 2*M_PI - ret; 

 } 

 

 /* find the turn direction: add turnAngle, normalized then compare */ 

 

 odoTemp.phi_incr(ret); 

 odoTemp.normalizePhi(); 

 

 if ( abs(odoTemp.phi() - phi) > SMALL_NUMBER ) /* small diff */ 

 { 

  ret = -ret; 

 } 

 

 return ret; 

} 

 

/* 

 * @Description 

 * @Description 

 * Turn robot direction to target next target 

 * 

 * @param phi: is the desired turn angle, which referenced to the map coordiate, 

 *     not the current "phi" of robot phi must be normalized into range 

 *     [-pi,pi] before using. 

 *   robot: access to robot odometry 
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 *   p:   access and update current odometry to thread parameter list 

 * @return none 

 */ 

static void turn( double phi, TThreadRobotParam &p) 

{ 

 CPose2D odo; 

 CPose2D target; 

 double v,w; 

 int64_t left_ticks, right_ticks; 

 double speed; 

 double turnAngle; 

 int odo_fd = p.odo_fd.get(); 

 while(1) 

 { 

  getOdometry( odo, odo_fd, p);//, v, w, left_ticks, right_ticks ); 

  fixOdometry( odo, p.odometryOffset.get() ); 

  p.currentOdo.set(odo);   // Update current odometry for threads. 

 

  /* force odo.phi() to be in the range [-pi,pi]  */ 

  odo.normalizePhi(); 

  cout<<"TA "<<phi<<","<<odo.phi()<<endl; 

  if ( abs(phi - odo.phi()) < .09 ) //was SMALL_NUMBER 

   return; 

 

  /* turn: Only turn toward target, avoid circling if over-turn */ 

  /* find the optimized turn angle */ 

  turnAngle = phi; //abs(phi-odo.phi()); 

  cout<<"M_PI"<<TURN_THRESHOLD<<endl; 

  cout<<"TA "<<turnAngle<<endl; 

  if ( turnAngle >= M_PI ) 

  { 

   turnAngle = 2*M_PI - turnAngle; 

  } 

  cout<<"TA "<<turnAngle<<endl; 

  /* find the turn direction: add turnAngle, normalized then compare */ 

  CPose2D odoTemp(odo); 

  odoTemp.phi_incr(turnAngle); 

  odoTemp.normalizePhi(); 

 

  /* check if we reach turn angle */ 

  if( turnAngle < TURN_THRESHOLD ) 

   break; 

 

  if ( abs(odoTemp.phi() - phi) < SMALL_NUMBER ) /* small diff */ 

  { 

  cout<<"1"<<endl; 

   if( turnAngle < TURN_THRESHOLD * 2 ) /* slow down near desired angle */ 

    //speed = ANGULAR_SPEED / 2; 

    speed = 1; 

   else 

    //speed = ANGULAR_SPEED; 

    speed = 1; 

  } 
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  else 

  { 

  cout<<"2"<<endl; 

   if( turnAngle < TURN_THRESHOLD * 2 ) 

    //speed = -ANGULAR_SPEED / 2; /* slow down near desired angle */ 

    speed = -1; 

   else 

    //speed = -ANGULAR_SPEED; 

    speed = -1; 

  } 

 

  //mrpt::system::sleep(500); 

  /* do turn */ 

  cout<<"Speed"<<speed<<endl; 

  setVelocities( 0,-1* speed , p ); 

 

  /* delay between reading */ 

  //mrpt::system::sleep(POLL_INTERVAL); 

  mrpt::system::sleep(500); 

  //sleep(250); 

 

 setVelocities(0, 0, p); /* stop */ 

  mrpt::system::sleep(1200); 

 } 

 setVelocities(0, 0, p); /* stop */ 

} 

 

bool returnGettingLRF(TThreadRobotParam &thrPar) 

{ 

 return thrPar.gettingLRF.get(); 

} 

 

void setVelocities(int linear, int angular, TThreadRobotParam &thrPar) 

{ 

 int velocity_fd = thrPar.vel_fd.get(); //file descriptor for writing to robot velocity 

 char velocityCommand[1]; 

 int n; 

 

 //wait for lrf reading to finish 

 

 while(thrPar.gettingLRF.get()); 

 /* Flush anything already in the serial buffer */ 

 tcflush(velocity_fd, TCIFLUSH); 

 velocityCommand[0] = 0; 

 //STOP 

 if(linear == 0 && angular == 0) 

 { 

  velocityCommand[0] = 'x'; 

  /* read up to 128 bytes from the fd */ 

  write(velocity_fd,velocityCommand,1); 

  sleep(100); 

 

  write(velocity_fd,velocityCommand,1); 
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  sleep(100); 

  write(velocity_fd,velocityCommand,1); 

  sleep(100); 

  write(velocity_fd,velocityCommand,1); 

  sleep(100); 

  write(velocity_fd,velocityCommand,1); 

  sleep(100); 

 } 

 //LEFT 

 else if(linear == 0 && angular == -1) 

 { 

  velocityCommand[0] = 'a'; 

  /* read up to 128 bytes from the fd */ 

  write(velocity_fd,velocityCommand,1); 

 } 

 //RIGHT 

 else if(linear == 0 && angular == 1) 

 { 

  velocityCommand[0] = 'd'; 

  /* read up to 128 bytes from the fd */ 

  write(velocity_fd,velocityCommand,1); 

 } 

 //FORWARD 

 else if(linear == 1 && angular == 0) 

 { 

  velocityCommand[0] = 'w'; 

  /* read up to 128 bytes from the fd */ 

  write(velocity_fd,velocityCommand,1); 

 } 

 //BACK 

 else if(linear == -1 && angular == 0) 

 { 

  velocityCommand[0] = 's'; 

  /* read up to 128 bytes from the fd */ 

  write(velocity_fd,velocityCommand,1); 

 } 

 else 

 { 

  velocityCommand[0] = 'x'; 

  /* read up to 128 bytes from the fd */ 

  write(velocity_fd,velocityCommand,1); 

 } 

 

} 

 

/* 

 * @Description 

 * Thread to display robot and map in a 3D window. 

 * 

 * @param p:   thread parameter list 

 * @return none 

 */ 

void thread_display(TThreadRobotParam &p) 
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{ 

 mrpt::opengl::CSetOfObjectsPtr  gl_grid,gl_pdf; 

 

 p.displayClearOldPdf.set(true); 

 p.displayClearOldSonar.set(true); 

 p.displayClearOldPath.set(true); 

 

 CDisplayWindow3D win("Example of 3D Scene Visualization - MRPT",640,480); 

 COccupancyGridMap2D  the_grid; 

 

 CObservation2DRangeScan  last_obs; 

 

 COpenGLScenePtr &theScene = win.get3DSceneAndLock(); 

 the_grid.loadFromBitmapFile(MAP_FILE,MAP_RESOLUTION 

/*,xCentralPixel,yCentralPixel*/); 

 

 {  /* display map */ 

  if (!gl_grid) gl_grid = CSetOfObjects::Create(); 

  gl_grid->clear(); 

  the_grid.getAs3DObject( gl_grid ); 

  theScene->insert( gl_grid ); 

 } 

 

 { /* display grid */ 

  opengl::CGridPlaneXYPtr obj = opengl::CGridPlaneXY::Create(-55,55,-41,41,0,1); 

  obj->setColor(0.8,0.8,0.8); 

  theScene->insert( obj ); 

 } 

 

 { /* display current pose */ 

  opengl::CSetOfObjectsPtr obj = opengl::stock_objects::RobotPioneer(); 

  obj->setPose(p.currentOdo.get()); 

  obj->setName( "robot" ); 

  theScene->insert( obj ); 

 } 

 

    { /* display pose by encoder */ 

  opengl::CSpherePtr obj = opengl::CSphere::Create(); 

  obj->setColor(1,1,0); 

  obj->setRadius(0.1); 

  obj->setLocation(0,0,0); 

  obj->setName( "encoder"); 

  theScene->insert( obj ); 

 } 

 

 { /* display pose by sonar */ 

  opengl::CSpherePtr obj = opengl::CSphere::Create(); 

  obj->setColor(0,0,1); 

  obj->setRadius(0.1); 

  obj->setLocation(0,0,0); 

  obj->setName( "sonarpos"); 

  theScene->insert( obj ); 

 } 
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 { /* display target point */ 

  opengl::CSpherePtr obj = opengl::CSphere::Create(); 

  obj->setColor(0,1,0); 

  obj->setRadius(0.1); 

  obj->setLocation(0,0,0); 

  obj->setName( "target"); 

  theScene->insert( obj ); 

 } 

 

 { /* display sonar readings */ 

  opengl::CSetOfLinesPtr obj = opengl::CSetOfLines::Create(); 

  obj->setPose(p.currentOdo.get() ); 

  obj->setName( "sonars" ); 

  obj->setColor(1,0,0); 

 } 

 

 { /* display pdf mean *FIXME* Arrow not positioned properly. The point is at the base of 

the arrow. */ 

  opengl::CArrowPtr obj = opengl::CArrow::Create(0,0,2, 0,0,0, 0.05, 0.01,0.02, 0,0,0 ); 

  obj->setPose(p.currentOdo.get()); 

  obj->setName( "mostlikelyParticle" ); 

  // uncomment to display particles 

  //theScene->insert( obj ); 

 } 

 

 // IMPORTANT!!! IF NOT UNLOCKED, THE WINDOW WILL NOT BE UPDATED! 

 win.unlockAccess3DScene(); 

 

 win.captureImagesStart(); 

 

 // Texts: 

 win.addTextMessage(0.01,0.85, "This is a 2D message", TColorf(1,1,1),"sans",11, 

mrpt::opengl::NICE, 0); 

 

 win.setCameraElevationDeg( 25.0f ); 

 //win.setCameraProjective(false); 

 

    //CDisplayWindowPlots  winEKF("Tracking - Extended Kalman Filter",450,400); 

 

 

 //winEKF.setPos(10,10); 

 

 

 //winEKF.axis(-2,20,-10,10); winEKF.axis_equal(); 

 

  // Create EKF 

 // ---------------------- 

 CRangeBearing  EKF; 

 EKF.KF_options.method = kfEKFNaive; 

 

 EKF.KF_options.verbose = true; 

 EKF.KF_options.enable_profiler = true; 
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 bool end = false; 

 CTicTac  timer; 

 timer.Tic(); 

 

 float x=VEHICLE_INITIAL_X,y=VEHICLE_INITIAL_Y,phi=DEG2RAD(-

180),v=VEHICLE_INITIAL_V,w=VEHICLE_INITIAL_W; 

 //float initial_front_wall; 

 float dy=0, old_y=0; 

 float dx=0, old_x=0; 

 float  t=0; 

 float sonarposition = 0, sonarpositionright = 0; 

 

 int counter = 0; 

 ofstream EKFEstimate; 

    EKFEstimate.open ("ekf.csv"); 

    EKFEstimate << "y, x, front_sonar, right wall, dy, dx, initial_front_wall_distance, 

initial_right_wall_distance, EKF_X, EKF_Y" << endl; 

 

 while (!end && win.isOpen() ) 

 { 

  const double t = timer.Tac(); 

 

  // Move the scene: 

  COpenGLScenePtr &theScene = win.get3DSceneAndLock(); 

 

  //x+=v*DELTA_TIME*(cos(phi)-sin(phi)); 

  //y+=v*DELTA_TIME*(sin(phi)+cos(phi)); 

 

        //x=0; 

  //y=p.currentOdo.get().y(); 

   x = p.currentOdo.get().x(); 

   y = p.currentOdo.get().y(); 

 

        /*if (p.goRight.get()==true) { 

            x = p.currentOdo.get().x(); 

            //y = 0; 

            dx = x - old_x; 

            cout << "************************Going Right************************\n"; 

        } 

        else if (p.goForward.get()==true) { 

            cout << "************************Going Forward************************\n"; 

            y = p.currentOdo.get().y(); 

            //x = 0; 

            dy = y - old_y; 

        }*/ 

 

        dx = x - old_x; 

        dy = y - old_y; 

 

   // 
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  phi+=w*DELTA_TIME; 

 

  v+=1.0f*DELTA_TIME*cos(t); 

  w-=0.1f*DELTA_TIME*sin(t); 

 

 

 

        /* 

  // Simulate noisy observation: 

  float realBearing = atan2( y,x ); 

  float obsBearing = realBearing  + BEARING_SENSOR_NOISE_STD * 

randomGenerator.drawGaussian1D_normalized(); 

  //printf("Real/Simulated bearing: %.03f / %.03f deg\n", RAD2DEG(realBearing), 

RAD2DEG(obsBearing) ); 

  win.addTextMessage(0.01, 0.93, format("Real/Simulated bearing: %.03f / %.03f deg\n", 

RAD2DEG(realBearing), RAD2DEG(obsBearing) ), TColorf(0,0,1), "mono", 9, mrpt::opengl::NICE,10); 

 

  float realRange = sqrt(square(x)+square(y)); 

  float obsRange = max(0.0, realRange  + RANGE_SENSOR_NOISE_STD * 

randomGenerator.drawGaussian1D_normalized() ); 

  //printf("Real/Simulated range: %.03f / %.03f \n", realRange, obsRange ); 

  win.addTextMessage(0.01, 0.9, format("Real/Simulated range: %.03f / %.03f \n", 

realRange, obsRange ), TColorf(0,0,1), "mono", 9, mrpt::opengl::NICE,12); 

        */ 

 

  //EKF.doProcess(DELTA_TIME,obsRange, obsBearing); 

 

  float sonar12; 

  float sonar10; 

  sonar12 = p.front_wall.get(); 

  sonar10 = p.right_wall.get(); 

 

  EKF.doProcess(sonar12, sonar10, dy, dx); 

 

  /*EKF.getProfiler().enter("PF:complete_step"); 

  PF.executeOn(particles, NULL,&SF);  // Process in the PF 

  EKF.getProfiler().leave("PF:complete_step");*/ 

 

  // Show EKF state: 

  CRangeBearing::KFVector EKF_xkk; 

  CRangeBearing::KFMatrix EKF_pkk; 

 

  EKF.getState( EKF_xkk, EKF_pkk ); //**Should be editted?*/ 

 

  //printf("Real: x:%.03f  y=%.03f heading=%.03f v=%.03f w=%.03f\n",x,y,phi,v,w); 

  //cout << format("KF parameters: x=%.03f, y=%.03f, phi=%.03f, v=%.03f, w=%.03f, 

t=%.03f", x,y,phi,v,w, t) << endl; 

  //cout << format("y=%.03f, front_sonar=%.03f, dy=%.03f, initial front wall 

distance=%.03f", y, p.front_wall.get(), dy, initial_front_wall) << endl; 

  cout << format("y=%.03f, x=%.03f, front_sonar=%.03f, right_sonar=%.03f, dy=%.03f, 

dx=%.03f, initial front wall distance=%.03f, initial right wall distance=%.03f", y, x, p.front_wall.get(), 

p.right_wall.get(), dy, dx, initial_front_wall, initial_right_wall) << endl; 
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  //cout << "EKF: " << EKF_xkk << endl; /** and this I think this should be for x and y */ 

  cout << "EKF_Y: " << EKF_xkk[0]<<",   EKF_X: "<<EKF_xkk[1] << endl; //** and this 

I think this should be for x and y. I editted them though!*/ 

  EKFEstimate << format("%.03f, %.03f, %.03f, %.03f, %.03f, %.03f, %.03f, %.03f", y, x, 

p.front_wall.get(), p.right_wall.get(), dy, dx, initial_front_wall, initial_right_wall) << EKF_xkk[0]<< 

EKF_xkk[1] << endl; 

 

 

 

  old_y = y; // replace old y with current y 

  old_x = x; 

 

  // Display the current gridmap x,y position of the cursor on the screen. 

  int mouse_x,mouse_y; 

  if (win.getLastMousePosition(mouse_x,mouse_y))  // See also: 

getLastMousePositionRay() 

  { 

   // Get the ray in 3D for the latest mouse (X,Y): 

   mrpt::math::TLine3D ray; 

   theScene->getViewport("main")-

>get3DRayForPixelCoord(mouse_x,mouse_y,ray); 

 

   // Create a 3D plane, e.g. Z=0 

   const mrpt::math::TPlane 

ground_plane(TPoint3D(0,0,0),TPoint3D(1,0,0),TPoint3D(0,1,0)); 

 

   // Intersection of the line with the plane: 

   mrpt::math::TObject3D inters; 

   mrpt::math::intersect(ray,ground_plane, inters); 

 

 

   // Interpret the intersection as a point, if there is an intersection: 

   mrpt::math::TPoint3D inters_pt; 

   if (inters.getPoint(inters_pt)) 

   { 

    // Display x,y coordinates and left, center, right collision detect flags. 

    string location = format("X,Y Location: %05f, %05f", 

(float)inters_pt.x,(float)inters_pt.y ); 

    if( p.leftObstacle.get() ) location += string ( " LEFT" ); 

    if( p.centerObstacle.get() ) location += string ( " CENTER" ); 

    if( p.rightObstacle.get() ) location += string ( " RIGHT" ); 

    win.addTextMessage(0.01,0.85, location, TColorf(0,0,1),"sans",12, 

mrpt::opengl::NICE, 0); 

   } 

  } 

 

  win.addTextMessage(5,-15,  // |X|,|Y|>1 means absolute coordinates, negative means from 

the top instead of the bottom. 

   format("Time: %s", mrpt::system::dateTimeLocalToString( mrpt::system::now() 

).c_str() ), 

   TColorf(1,1,1), 

   "mono",9,  // font name & size 

   mrpt::opengl::NICE, 
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   20 // An arbitrary ID to always overwrite the same, previous 2D text message 

   ); 

 

  // Point camera at the current robot position. 

  win.setCameraPointingToPoint(p.currentOdo.get().x(),p.currentOdo.get().y(),0); 

 

        CPose2D kalman; 

        kalman.y(EKF_xkk[0]); 

        kalman.x(EKF_xkk[1]); 

        kalman.phi(p.currentOdo.get().phi()); 

  p.currentKF.set(kalman); 

 

  sonarposition = (initial_front_wall - p.front_wall.get()); 

  sonarpositionright = (initial_right_wall - p.right_wall.get()); 

 

  CPose2D sonarpos_; 

        sonarpos_.y(sonarposition); 

        sonarpos_.x(sonarpositionright); 

        sonarpos_.phi(p.currentOdo.get().phi()); 

  p.currentSonar.set(sonarpos_); 

 

  /* Change pose of robot in display */ 

  opengl::CRenderizablePtr obj1 = theScene->getByName("robot"); 

  obj1->setPose( p.currentKF.get() ); //.x() , p.currentOdo.get().y() , 0 ); 

 

  /* Change pose of robot based on encoder in display */ 

  opengl::CRenderizablePtr obj2 = theScene->getByName("encoder"); 

  obj2->setPose( p.currentOdo.get() ); //.x() , p.currentOdo.get().y() , 0 ); 

  cout << format("x=%.03f, y=%.03f, phi=%.03f", p.currentOdo.get().x(), 

p.currentOdo.get().y(), p.currentOdo.get().phi()) << endl; 

 

  /* Change pose of robot based on sonar in display */ 

  opengl::CRenderizablePtr obj3 = theScene->getByName("sonarpos"); 

 

  obj3->setPose( p.currentSonar.get() ); //.x() , p.currentOdo.get().y() , 0 ); 

 

  /* Change location of target marker */ 

  opengl::CRenderizablePtr obj4 = theScene->getByName("target"); 

  obj4->setLocation(p.targetOdo.get().x() , p.targetOdo.get().y() , 0 ); 

 

  /* Put new path in the display */ 

  if(p.displayNewPath.get() ) 

  { 

   std::deque<poses::TPoint2D> thePath(p.thePath.get()); 

   for (std::deque<poses::TPoint2D>::const_iterator 

it=thePath.begin();it!=thePath.end();++it) 

   { 

    string objName; 

    std::stringstream sstm; 

    sstm << "path" << it->x << it->y; 

    objName = sstm.str(); 

    opengl::CSpherePtr obj = opengl::CSphere::Create(); 

    obj->setColor(1,0,0); 
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    obj->setRadius(0.04); 

    obj->setLocation(it->x,it->y,0); 

    obj->setName( objName ); 

    theScene->insert( obj ); 

   } 

   p.displayNewPath.set(false); 

  } 

 

  /* Put new pdf in the display */ 

  if(p.displayNewPdf.get() ) 

  { 

   if (!gl_pdf) { 

    gl_pdf = CSetOfObjects::Create(); 

 

   } 

   if( p.displayClearOldPdf.get() ) gl_pdf->clear(); 

   CMonteCarloLocalization2D * tempPdf = 

(CMonteCarloLocalization2D*)p.pdf.get().pointer(); 

    tempPdf->getAs3DObject( gl_pdf ); 

   theScene->insert( gl_pdf ); 

 

   opengl::CRenderizablePtr obj4 = theScene->getByName("mostlikelyParticle"); 

   CPose2D tempPose; 

   tempPdf->getMean( tempPose ); 

   obj4->setPose( tempPose ); //tempPdf->getMostLikelyParticle() ); 

 

   p.displayNewPdf.set(false); 

  } 

 

  /* Put new sonars in the display */ 

  if(p.displayNewSonars.get() ) 

  { 

   if ( p.displayClearOldSonar.get() ) 

   { 

    opengl::CRenderizablePtr obj3 = theScene->getByName("sonars"); 

    if (obj3 != NULL) ( theScene->removeObject(obj3) ); 

   } 

   opengl::CSetOfLinesPtr sonar_object = opengl::CSetOfLines::Create(); 

   sonar_object->setPose(p.currentOdo.get() ); 

   sonar_object->setName( "sonars" ); 

   sonar_object->setColor(1,0,0); 

   p.displayNewSonars.set( false ); 

   deque<TSegment3D> sonarLines( p.sonars.get() ); 

   for (std::deque<TSegment3D>::const_iterator 

it=sonarLines.begin();it!=sonarLines.end();++it) 

   { 

    sonar_object->appendLine( it->point1.x, it->point1.y, .05, it->point2.x, 

it->point2.y, .05 ); 

    //cout << it->point1.x << " " << it->point1.y <<" " << it->point2.x << " 

" << it->point2.y << endl; 

   } 

   //cout << endl; 

   theScene->insert( sonar_object ); 
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  } 

 

  /* Put new kinect ranges in the display */ 

  { 

   /* make sure that we have new kinect reading */ 

   CObservation2DRangeScanPtr obs_Ptr = p.new_obs.get(); 

   CObservation2DRangeScan* obs_2d = obs_Ptr.pointer(); 

 

   /* make sure that we have new kinect reading */ 

   if (obs_2d != NULL) 

   { 

       cout << "obs_2d IS NOT NULL!\n"; 

    obs_2d->truncateByDistanceAndAngle(kinectMinTruncateDistance,5); 

    opengl::CRenderizablePtr obj4 = theScene->getByName( "kinect" ); 

    if (obj4 != NULL) ( theScene->removeObject(obj4) ); 

    opengl::CPlanarLaserScanPtr kinect_scan = 

opengl::CPlanarLaserScan::Create(); 

    kinect_scan->setScan( *obs_2d ); 

    //kinect_scan->setPose(p.currentOdo.get() ); 

    kinect_scan->setPose(p.currentKF.get() ); 

    kinect_scan->setName( "kinect" ); 

    kinect_scan->setColor(1,0,0); 

    theScene->insert( kinect_scan ); 

   } else { 

       cout << "obs_2d IS NULL!\n"; 

   } 

  } 

 

  // IMPORTANT!!! IF NOT UNLOCKED, THE WINDOW WILL NOT BE UPDATED! 

  win.unlockAccess3DScene(); 

 

  // Update window: 

  win.forceRepaint(); 

  mrpt::system::sleep(100); 

 

  /* Code to save images of the screen for creating movies.  */ 

  /* *FIXME* Caused the kinect to work poorly due to the time spent saving files. 

  // It may help to reduce the frequency of saving the images 

  // Grab frame: 

  //mrpt::utils::CImagePtr img = win.getLastWindowImagePtr(); 

  //if (img) 

  //{ 

  // static int i=0; 

  // const string s = format("GRAB_%06i.png", ++i ); 

  // img->saveToFile(s); 

  // //printf("Saved frame image to: %s \r",s.c_str() );  // "\ r" is to overwrite the same 

line over and over again.. 

  //} 

  */ 

 

  /* Get key press events while 3D window is active. */ 

  if (win.keyHit()) 

  { 
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   mrptKeyModifier kmods; 

   int key = win.getPushedKey(&kmods); 

   printf("Key pushed: %c (%i) - modifiers: 0x%04X\n",char(key),key,kmods); 

 

   p.pushed_key.set(key); 

 

   switch (key) 

   { 

 

    case MRPTK_ESCAPE: 

     end = true; 

     p.quit.set(true); 

     break; 

 

    case MRPTK_RIGHT: 

     win.setCameraAzimuthDeg( win.getCameraAzimuthDeg() + 5 

); 

     break; 

 

    case MRPTK_LEFT: 

     win.setCameraAzimuthDeg( win.getCameraAzimuthDeg() - 5 

); 

     break; 

 

    case MRPTK_UP: 

     win.setCameraElevationDeg( win.getCameraElevationDeg() + 

5 ); 

     break; 

 

    case MRPTK_DOWN: 

     win.setCameraElevationDeg( win.getCameraElevationDeg() - 

5 ); 

     break; 

 

    /* Note: changing camera pointing to point is temporary because the 

       pointing to point is changed to current robot odometry each loop. */ 

    case 'w': 

    case 'W': 

     { 

     float x,y,z; 

     win.getCameraPointingToPoint( x,y,z); 

     win.setCameraPointingToPoint( x , y + 1, z  ); 

     break; 

     } 

 

    case 'a': 

    case 'A': 

     { 

     float x,y,z; 

     win.getCameraPointingToPoint( x,y,z); 

     win.setCameraPointingToPoint( x - 1, y , z  ); 

     break; 
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     } 

 

    case 'x': 

    case 'X': 

     { 

     float x,y,z; 

     win.getCameraPointingToPoint( x,y,z); 

     win.setCameraPointingToPoint( x , y - 1, z  ); 

     break; 

     } 

 

    case 'd': 

    case 'D': 

     { 

     float x,y,z; 

     win.getCameraPointingToPoint( x,y,z); 

     win.setCameraPointingToPoint( x + 1, y , z  ); 

     break; 

     } 

 

    /* clear  / do not clear previous pdf before adding new pdf to display */ 

    case 'p': 

     p.displayClearOldPdf.set(true); 

     break; 

 

    case 'P': 

     p.displayClearOldPdf.set(false); 

     break; 

 

    /* clear  / do not clear previous sonar readings before adding new pdf to 

display */ 

    case 's': 

     p.displayClearOldSonar.set(true); 

     break; 

 

    case 'S': 

     p.displayClearOldSonar.set(false); 

     break; 

 

    /* stops current path finding navigation */ 

    case ' ': 

     p.stop.set(true); 

     break; 

   }  // end case 

 

  } 

 

 

 

 } 

 

 EKFEstimate.close(); 
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} 

 

 

 

// ------------------------------------------------------ 

//    TestPathPlanning 

// ------------------------------------------------------ 

static int PathPlanning(std::deque<poses::TPoint2D> &thePath, CPoint2D  origin, CPoint2D  target) 

{ 

 

 //string   myGridMap( string("FAB-LL-Central-200px.png") ); 

 float resolution = MAP_RESOLUTION;   // size of the grid in meters 

 float xCentralPixel = X_CENTRAL_PIXEL;    // x central pixel 

 float yCentralPixel = Y_CENTRAL_PIXEL;   // y central pixel  // Load 

the gridmap: 

 

 COccupancyGridMap2D  gridmap; 

 

 if (!mrpt::system::fileExists(MAP_FILE)) 

  THROW_EXCEPTION_CUSTOM_MSG1("Map file '%s' not 

found",MAP_FILE.c_str()); 

 

 printf("Loading gridmap..."); 

 //CFileGZInputStream(myGridMap) >> gridmap; 

 gridmap.loadFromBitmapFile(MAP_FILE,resolution ,xCentralPixel,yCentralPixel); 

 printf("Done! %f x %f m\n", gridmap.getXMax()-gridmap.getXMin(), gridmap.getYMax()-

gridmap.getYMin()); 

 

 

 // Find path: 

 CPathPlanningCircularRobot pathPlanning; 

 pathPlanning.robotRadius = ROBOT_RADIUS; 

 pathPlanning.minStepInReturnedPath = MIN_STEP; 

 

 //std::deque<poses::TPoint2D>  thePath; 

 bool notFound; 

 CTicTac tictac; 

 

 cout << "Origin: " << origin << endl; 

 cout << "Target: " << target << endl; 

 

 cout << "Searching path..."; cout.flush(); 

 tictac.Tic(); 

 pathPlanning.computePath( gridmap, origin, target, thePath, notFound, 1000.0f /* Max. distance */ 

); 

 

 double t = tictac.Tac(); 

 cout << "Done in " << t*1000 << " ms" << endl; 

 

 printf("Path found: %s\n", notFound ? "NO":"YES"); 

 printf("Path has %u steps\n", (unsigned)thePath.size()); 

 

 // Save result: 
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 CImage  img; 

 gridmap.getAsImage(img,false, true);  // Force a RGB image 

 

 const std::string dest = "path_planning1.png"; 

 cout << "Saving output to: " << dest << endl; 

 img.saveToFile(dest); 

 printf("Done\n"); 

 

 // Draw the path: 

 // --------------------- 

 int R = round(pathPlanning.robotRadius / gridmap.getResolution() ); 

 

 for (std::deque<poses::TPoint2D>::const_iterator it=thePath.begin();it!=thePath.end();++it) 

 { 

  img.drawCircle( gridmap.x2idx(it->x),gridmap.getSizeY()-1-gridmap.y2idx(it->y),R, 

TColor(0,0,255) ); 

//  cout <<  "x: " << it->x << " y: " << it->y << " " << endl; 

 } 

 img.cross(gridmap.x2idx(origin.x()),gridmap.getSizeY()-1-

gridmap.y2idx(origin.y()),TColor(0x20,0x20,0x20),'+',10); 

 img.cross(gridmap.x2idx(target.x()),gridmap.getSizeY()-1-

gridmap.y2idx(target.y()),TColor(0x50,0x50,0x50),'x',10); 

 

 const std::string dest2 = "path_planning2.png"; 

 cout << "Saving output to: " << dest2 << endl; 

 img.saveToFile(dest2); 

 printf("Done\n"); 

 

 return notFound ? -1:1; 

#if MRPT_HAS_WXWIDGETS 

// mrpt::gui::CDisplayWindow win("Computed path"); 

// win.showImage(img); 

 

// win.waitForKey(); 

#endif 

 

} 

 

 

/* 

 * @Description 

 * Set up the locations and headings of the sonars for simulating sonar in the map. 

 * 

 * @param obs: the sonar readings to be set. 

 * @return none 

 */ 

void createCObservationRange( CObservationRange &obs ) 

{ 

 obs.minSensorDistance = 0; 

 obs.maxSensorDistance = 7; 

 

 int  i,N = 16; 
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 obs.sensorLabel = "BASE_SONARS"; 

 obs.sensorConeApperture = DEG2RAD( 30 ); 

 obs.timestamp = system::now(); 

 

 obs.sensedData.clear(); 

 float yawVals [] = { 90.00, 50.00, 30.00, 10.00, -10.00, -30.00, -50.00, -90.00, -90.00,

 -130.00, -150.00, -170.00, 170.00, 150.00, 130.00, 90.00 }; 

 float xVals [] = { 0.069, 0.114, 0.148, 0.166, 0.166, 0.148, 0.114, 0.069, -0.02,

 -0.024, -0.058, -0.077, -0.077, -0.058, -0.024, -0.02 }; 

 float yVals [] = { 0.136, 0.119, 0.078, 0.027, -0.027, -0.078, -0.119, -0.136, -0.136,

 -0.119, -0.078, -0.027, 0.027, 0.078, 0.119, 0.136 }; 

 for (i=0;i<N;i++) 

 { 

 

  obs.sensedData.push_back( CObservationRange::TMeasurement() ); 

  CObservationRange::TMeasurement & newObs = obs.sensedData.back(); 

 

  newObs.sensorID = i; 

  newObs.sensorPose.x = xVals[i]; 

  newObs.sensorPose.y = yVals[i]; 

  newObs.sensorPose.z = 0; 

  newObs.sensorPose.yaw = DEG2RAD( yawVals[i] ); 

  newObs.sensorPose.pitch = 0; 

  newObs.sensorPose.roll = 0; 

 

  newObs.sensedDistance = 2; 

 } 

 

 

} 

 

/* 

 * @Description 

 * Create a deque of line segments from a sonar reading.  To be used by the display thread. 

 * 

 * @param p:  the thread parameter struct. 

   sonars: the sonar reading to be converted. 

 * @return none 

 */ 

void displaySonars(TThreadRobotParam &p, CObservationRange &sonars) 

{ 

 deque<TSegment3D> sonarLines; 

 for (CObservationRange::const_iterator 

i=sonars.sensedData.begin();i!=sonars.sensedData.end();++i) 

 { 

  //TSegment3D line; 

  TPose3D  sPos; 

  sPos = i->sensorPose;     // set sPos as sensor pose. 

  //sPos.x = sPos.x + p.currentOdo.get().x();  // add robot pose to sensor pose. 

  //sPos.y = sPos.y + p.currentOdo.get().y();  // add robot pose to sensor pose. 

  TPoint3D p1,p2;      // starting and 

ending points of line segment 

  p1.x = sPos.x; 
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  p1.y = sPos.y; 

  p1.z = 0;        // set first point to 

sensor pose 

  p2.x = sPos.x + cos( sPos.yaw ) * i->sensedDistance; 

  p2.y = sPos.y + sin( sPos.yaw ) * i->sensedDistance; 

  p2.z = 0; 

  TSegment3D line( p1,p2 ); 

  sonarLines.push_back( line ); 

  //cout << "p1: " << p1 << " p2: " << p2 << endl; 

 } 

  //cout << "displaySonars: "; 

  //for (std::deque<TSegment3D>::const_iterator 

it=sonarLines.begin();it!=sonarLines.end();++it) 

  // { 

  //  cout << it->point1 << " "; 

  // } 

  //cout << endl; 

 p.sonars.set( sonarLines ); 

 p.displayNewSonars.set( true ); 

 

} 

 

/* 

 * @Description 

 * This function will adjust the poses for the sonars of the 

 * PeopleBot to the correct locations and angles. 

 * The poses returned by the PEOPLE-Bot are wrong. 

 * I believe the error is that the Peoplebot thinks the back 

 * sonars are the upper ring, so they are facing forwards. 

 * 

 * @param obs: the sonar readings to be fixed. 

 * @return none 

 */ 

void adjustCObservationRangeSonarPose( CObservationRange &obs ) 

{ 

 int sensor = 0; 

 TPose3D sensor_pose; 

 

 float yawVals [] = { 90.00, 50.00, 30.00, 10.00, -10.00, -30.00, -50.00, -90.00, -90.00,

 -130.00, -150.00, -170.00, 170.00, 150.00, 130.00, 90.00 }; 

 float xVals [] = { 0.069, 0.114, 0.148, 0.166, 0.166, 0.148, 0.114, 0.069, -0.02,

 -0.024, -0.058, -0.077, -0.077, -0.058, -0.024, -0.02 }; 

 float yVals [] = { 0.136, 0.119, 0.078, 0.027, -0.027, -0.078, -0.119, -0.136, -0.136,

 -0.119, -0.078, -0.027, 0.027, 0.078, 0.119, 0.136 }; 

 float sensed_distance [] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; 

 

 for (CObservationRange::const_iterator i=obs.sensedData.begin();i!=obs.sensedData.end();++i) 

 { 

  sensed_distance[sensor] = i->sensedDistance; 

  sensor ++; 

 } 

 

 sensor = 0; 
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 int i,N = 16; 

 obs.sensedData.clear(); 

 for (i=0;i<N;i++) 

 { 

 

  obs.sensedData.push_back( CObservationRange::TMeasurement() ); 

  CObservationRange::TMeasurement & newObs = obs.sensedData.back(); 

 

  newObs.sensorID = i; 

  newObs.sensorPose.x = xVals[i]; 

  newObs.sensorPose.y = yVals[i]; 

  newObs.sensorPose.z = 0; 

  newObs.sensorPose.yaw = DEG2RAD( yawVals[i] ); 

  newObs.sensorPose.pitch = 0; 

  newObs.sensorPose.roll = 0; 

 

  newObs.sensedDistance = sensed_distance[sensor]; 

  sensor++; 

 } 

 

} 

 

/* 

 * @Description 

 * This function computes the likelihood of the observation given the pose and map. 

 * The mrpt library likelihood function only works with laser scans, sonar scans 

 * are not supported. 

 * 

 * @param map:  the map for checking the sonar readings. 

 *   pose:  pose that current sonar readings will be checked at. 

 *   obs: the sonar readings to be checked. 

 * @return none 

 */ 

double CObservationRangeLikelihood(COccupancyGridMap2D & map, CPose2D & pose, 

CObservationRange & obs) 

{ 

 CObservationRange simObs; 

 float sensed_distance [] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; 

 float simulated_distance [] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 

}; 

 int sensor = 0; 

 double return_value = 1.0; 

 int valid = 0; 

 

 for (CObservationRange::const_iterator i=obs.sensedData.begin();i!=obs.sensedData.end();++i) 

 { 

  sensed_distance[sensor] = i->sensedDistance; 

  sensor ++; 

 } 

 

 map.sonarSimulator( 

  simObs,  // CObservationRange &  inout_observation, 

  pose, // current pose 
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  0.5f,  // float threshold  = 0.5f 

  0,    // float  rangeNoiseStd  = 0, 

  DEG2RAD(0) //  float  angleNoiseStd  = DEG2RAD(0) 

  ); 

 

 sensor = 0; 

 for (CObservationRange::const_iterator 

i=simObs.sensedData.begin();i!=simObs.sensedData.end();++i) 

 { 

  simulated_distance[sensor] = i->sensedDistance; 

  sensor ++; 

 } 

 

 for (int i=0;i< sensor;i++) 

 { 

  if ( sensed_distance[i] > .05 && simulated_distance[i] > .05 ) 

  { 

   if ( sensed_distance[i] > simulated_distance[i] ) 

   { 

    return_value = return_value * ( sensed_distance[i] / 

simulated_distance[i] ); 

   } 

   else 

   { 

    return_value = return_value * ( simulated_distance[i] / 

sensed_distance[i] ); 

   } 

   valid++; 

  } 

 } 

 

 if (valid > (sensor * .75) ) return return_value * valid / sensor; 

 else return 0.0; 

} 

 

/* 

 * @Description 

 * *FIXME* Nonfunctional - the particle weights are not correctly set by this function. 

 * This function uses the CObservationRangeLikelihood function to calculate likelihood 

 * of each pose in the pdf with the current sonar readings.  Setting weights does not 

 * currently work. 

 * 

 * @param map:  the map for checking the sonar readings. 

 *   pdf:  the list of possible robot poses to be compared to the current sonar 

readings. 

 *   obs: the sonar readings to be checked. 

 * @return none 

 */ 

void computePdfLikelihoodValues(COccupancyGridMap2D & map, CMonteCarloLocalization2D & pdf, 

CObservationRange & obs) 

{ 

 int numberOfParticles = pdf.particlesCount(); 

 



482 

 

 for(size_t i=0 ; i < numberOfParticles ; i++) 

 { 

  CPose2D pose = pdf.getParticlePose(i); 

  pdf.setW( i , i/1000 );//CObservationRangeLikelihood( map, pose , obs ) ); 

 } 

 

 pdf.saveToTextFile("test.txt"); 

 pdf.normalizeWeights(); 

} 

 

/* 

 * @Description 

 * Sets flags when the kinect detects range values below 1 meter.  Used for collision 

 * avoidance. 

 * sets the following threadsafe variables: 

 * - bool leftObstacle 

 * - bool centerObstacle 

 * - bool rightObstacle 

 * 

 * @param p:   the thread parameters struct. 

 * @return none 

 */ 

void thread_wall_detect(TThreadRobotParam &p) 

{ 

 //CObservation2DRangeScan  last_obs; 

 /* make sure that we have new kinect reading */ 

 

 

 while(p.quit == false) 

 { 

  CObservation2DRangeScanPtr obs_Ptr = p.new_obs.get(); 

  CObservation2DRangeScan* obs_2d = obs_Ptr.pointer(); 

 

  if (obs_2d == NULL) 

  { 

   //cout << "No readings." << endl; 

  } 

  else 

  { 

   obs_2d->truncateByDistanceAndAngle(kinectMinTruncateDistance,3); 

 

   //cout << "Kinect readings: " << endl; 

   int count = 0; 

//   for (std::vector<float>::iterator it=obs_2d->scan.begin();it!=obs_2d-

>scan.end();++it) 

//   { 

//    if(*it >0) 

//    { 

//     cout << count << " " << *it << endl; 

//    } 

//    count++; 

//   } 
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   //left 

 

   int left_count = 0, 

    center_count = 0, 

    right_count = 0; 

   float left_sum = 0, 

    center_sum = 0, 

    right_sum = 0; 

   int left_offset = 50, 

    center_offset = 340, 

    right_offset = 680; 

   int stop = 50; 

 

   for (int i = 0; i < stop; i+=10) 

   { 

    if(obs_2d->scan[i+left_offset] > kinectMinTruncateDistance) 

    { 

     left_count += 1; 

     left_sum += obs_2d->scan[i+left_offset]; 

    } 

    if(obs_2d->scan[i+center_offset] > kinectMinTruncateDistance) 

    { 

     center_count += 1; 

     center_sum += obs_2d->scan[i+center_offset]; 

    } 

    if(obs_2d->scan[i+right_offset] > kinectMinTruncateDistance) 

    { 

     right_count += 1; 

     right_sum += obs_2d->scan[i+right_offset]; 

    } 

   } 

 

   if(left_count > 0) 

   { 

    //cout << "Left: " << left_sum / left_count << "   "; 

    p.leftObstacle.set( ( (left_sum / left_count) > 1) ? false : true ); 

   } 

   if(center_count > 0) 

   { 

    //cout << "Center: " << center_sum / center_count << "    "; 

    p.centerObstacle.set( ( (center_sum / center_count) > 1) ? false : true ); 

   } else p.centerObstacle.set( false ); 

   if(right_count > 0) 

   { 

    //cout << "Right: " << right_sum / right_count << endl; 

    p.rightObstacle.set( ( (right_sum / right_count) > 1) ? false : true ); 

   } 

   //else cout << endl; 

  } 

 

  sleep(300); 

 } 
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} 

 

/* 

 * @Description 

 * Adjusts the given pose by rotating by phi given in offset and then adds the offset 

 * x and y values. 

 * 

 * @param pose:   the pose to be adjusted. 

 *    offset:  the pose containing the x,y, phi offset. 

 * @return none 

 */ 

void fixOdometry(CPose2D & pose, CPose2D offset) 

{ 

 

 double x = pose.x(); 

 double y = pose.y(); 

 double phi = offset.phi(); 

 //cout << "fixOdometry x 1: " << x << " y: "<< y << " z: " << phi << endl; 

 

 double xprime = x * cos (phi) - y * sin (phi); 

 double yprime = y * cos (phi) + x * sin (phi); 

 

 pose.x( xprime + offset.x() ); 

 pose.y( yprime + offset.y() ); 

 double newPhi = pose.phi() + phi; 

 pose.phi( newPhi ); 

 

 //cout << "fixOdometry x 2: " << pose.x() << " y: "<< pose.y() << " z: " << pose.phi() << endl; 

 pose.normalizePhi (); 

 

} 

 

 

 

 

int clientCommunication() 

{ 

 int sock; 

 struct sockaddr_in server; 

 char message[1000] , server_reply[2000]; 

 

 //Create socket 

 sock = socket(AF_INET , SOCK_STREAM , 0); 

 if (sock == -1) 

 { 

  printf("Could not create socket"); 

 } 

 puts("Socket created"); 

 

 server.sin_addr.s_addr = inet_addr(LOCAL_HOST); 

 server.sin_family = AF_INET; 

 //server.sin_port = htons( 8888 ); 

 server.sin_port = htons( 80 ); 
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 //Connect to remote server 

 if (connect(sock , (struct sockaddr *)&server , sizeof(server)) < 0) 

 { 

  perror("connect failed. Error"); 

  return 1; 

 } 

 

 puts("Connected\n"); 

 

 //keep communicating with server 

 while(1) 

 { 

  printf("Enter message : "); 

  scanf("%s" , message); 

 

  //Send some data 

  //if( send(sock , message , strlen(message) , 0) < 0) 

  //{ 

  // puts("Send failed"); 

  // return 1; 

  //} 

 

  //Receive a reply from the server 

  if( recv(sock , server_reply , 2000 , 0) < 0) 

  { 

   puts("recv failed"); 

   break; 

  } 

 

  // server_reply (char [2000]) is the response (a string) from the server 

  /* 

   The message format would be like this: 

    <target>:<command>:<input argument1>(:<input argument2>) 

 

   The navigation should respond to messages like these from the server: 

   - Navigate to a location: 'nav:goto:fab70', 'nav:goto:eb84' 

   - Short/small movements: 'nav:move:forward:1', 'nav:move:left:2' (maybe 1 = 30 

degrees, 2 = 60 degrees, etc.) 

 

   You might need to check the stringmatching.c file from the Project page > Files 

to see how to use regular expression to parse the message. 

  */ 

 

  puts("Server reply :"); 

  puts(server_reply); 

 

  parseServerReply(server_reply); 

  // Clear the server_reply array 

  memset(server_reply, 0, sizeof server_reply); 

 

  printf("x"); 

 } 
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 close(sock); 

 return 0; 

} 

 

 

 

int parseServerReply(char * server_reply) 

{ 

 //Function to parse the server reply 

 

} 

 

CRangeBearing::CRangeBearing() 

{ 

 //KF_options.method = kfEKFNaive; 

 KF_options.method = kfEKFAlaDavison; 

 

 // INIT KF STATE 

 /*m_xkk.resize(4,0); // State: (x,y,heading,v,w) 

 m_xkk[0]= VEHICLE_INITIAL_X; 

 m_xkk[1]= VEHICLE_INITIAL_Y; 

 m_xkk[2]=-VEHICLE_INITIAL_V; 

 m_xkk[3]=0; 

 */ 

 m_xkk.resize(2,0); 

 m_xkk[0]= VEHICLE_INITIAL_Y; // for y 

 m_xkk[1]= VEHICLE_INITIAL_X; // for x 

 

 // Initial cov:  Large uncertainty 

 /*m_pkk.setSize(4,4); 

 m_pkk.unit(); 

 m_pkk(0,0)= 

 m_pkk(1,1)= square( 5.0f ); 

 m_pkk(2,2)= 

 m_pkk(3,3)= square( 1.0f );*/ 

 m_pkk.setSize(2,2); 

 m_pkk.unit(); 

 m_pkk(0,0)=square( 5.0f ); 

 m_pkk(1,1)=square( 5.0f ); 

} 

 

CRangeBearing::~CRangeBearing() 

{ 

 

} 

 

 

/*void  CRangeBearing::doProcess( double DeltaTime, double observationRange, double 

observationBearing ) 

{ 

 m_deltaTime = (float)DeltaTime; 

 m_obsBearing = (float)observationBearing; 
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 m_obsRange = (float) observationRange; 

 

 runOneKalmanIteration(); 

}*/ 

 

void CRangeBearing::doProcess( double sonar12, double sonar10, double dy , double dx) { 

 

    m_sonar12 = (float)sonar12; 

    m_sonar10 = (float)sonar10; 

    m_dy = (float)dy; 

    m_dx = (float)dx; 

 

    runOneKalmanIteration(); 

} 

 

 

/** Must return the action vector u. 

  * \param out_u The action vector which will be passed to OnTransitionModel 

  */ 

void CRangeBearing::OnGetAction( KFArray_ACT &u ) const 

{ 

 u[0] = 1; 

} 

 

/** Implements the transition model \f$ \hat{x}_{k|k-1} = f( \hat{x}_{k-1|k-1}, u_k ) \f$ 

  * \param in_u The vector returned by OnGetAction. 

  * \param inout_x At input has \f$ \hat{x}_{k-1|k-1} \f$, at output must have \f$ \hat{x}_{k|k-1} \f$. 

  * \param out_skip Set this to true if for some reason you want to skip the prediction step (to do not modify 

either the vector or the covariance). Default:false 

  */ 

void CRangeBearing::OnTransitionModel( 

 const KFArray_ACT &in_u, 

 KFArray_VEH       &inout_x, 

 bool &out_skipPrediction 

 ) const 

{ 

 // in_u[0] : Delta time 

 // in_out_x: [0]:x  [1]:y  [2]:vx  [3]: vy 

 //inout_x[0] += in_u[0] * inout_x[2]; 

 //inout_x[1] += in_u[0] * inout_x[3]; 

 

 inout_x[0] += in_u[0]*(m_dy); // changed by omar, + is removed look at the paper! FOR Y 

 inout_x[1] += in_u[0]*(m_dx); // For X 

 //This should  be:       inout_x[0] = y that comes from the encoder. as the state equals y from encoder. 

 

} 

 

/** Implements the transition Jacobian \f$ \frac{\partial f}{\partial x} \f$ 

  * \param out_F Must return the Jacobian. 

  *  The returned matrix must be \f$N \times N\f$ with N being either the size of the whole state vector or 

get_vehicle_size(). 

  */ 

void CRangeBearing::OnTransitionJacobian(KFMatrix_VxV  &F) const 
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{ 

 F.unit(); 

 

 //F(0,2) = m_deltaTime; 

 //F(1,3) = m_deltaTime; 

 F(0,0) = 1; //changed by omar // THIS IS the A matrix 

 F(1,1) = 1; 

} 

 

/** Implements the transition noise covariance \f$ Q_k \f$ 

  * \param out_Q Must return the covariance matrix. 

  *  The returned matrix must be of the same size than the jacobian from OnTransitionJacobian 

  */ 

void CRangeBearing::OnTransitionNoise(KFMatrix_VxV &Q) const 

{ 

 /*Q(0,0) = 

 Q(1,1) = square( TRANSITION_MODEL_STD_XY ); 

 Q(2,2) = 

 Q(3,3) = square( TRANSITION_MODEL_STD_VXY ); 

 */ 

 Q(0,0) = 14; //changed by omar 

 Q(1,1) = 14; 

} 

 

/** Return the observation NOISE covariance matrix, that is, the model of the Gaussian additive noise of the 

sensor. 

* \param out_R The noise covariance matrix. It might be non diagonal, but it'll usually be. 

* \note Upon call, it can be assumed that the previous contents of out_R are all zeros. 

*/ 

void CRangeBearing::OnGetObservationNoise(KFMatrix_OxO &R) const 

{ 

 /*R(0,0) = square( BEARING_SENSOR_NOISE_STD ); 

 R(1,1) = square( RANGE_SENSOR_NOISE_STD ); 

 */ 

 R(0,0) = 12; // changed by omar 

 R(1,1) = 12; 

} 

 

void CRangeBearing::OnGetObservationsAndDataAssociation( 

 vector_KFArray_OBS   &out_z, 

 mrpt::vector_int            &out_data_association, 

 const vector_KFArray_OBS &in_all_predictions, 

 const KFMatrix              &in_S, 

 const vector_size_t         &in_lm_indices_in_S, 

 const KFMatrix_OxO          &in_R 

 ) 

{ 

 //out_z.resize(1); 

 //out_z[0][0] = m_obsBearing; 

 //out_z[0][1] = m_obsRange; 

 out_z.resize(1); 

 out_z[0][0] = m_sonar12; 

 out_z[0][1] = m_sonar10; 
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 out_data_association.clear(); // Not used 

} 

 

 

/** Implements the observation prediction \f$ h_i(x) \f$. 

  * \param idx_landmark_to_predict The indices of the landmarks in the map whose predictions are expected 

as output. For non SLAM-like problems, this input value is undefined and the application should just generate 

one observation for the given problem. 

  * \param out_predictions The predicted observations. 

  */ 

void CRangeBearing::OnObservationModel( 

 const vector_size_t       &idx_landmarks_to_predict, 

 vector_KFArray_OBS &out_predictions 

 ) const 

{ 

 // predicted bearing: 

 /*kftype x = m_xkk[0]; 

 kftype y = m_xkk[1]; 

 

 kftype h_bear = atan2(y,x); 

 kftype h_range = sqrt(square(x)+square(y)); 

 

 // idx_landmarks_to_predict is ignored in NON-SLAM problems 

 out_predictions.resize(1); 

 out_predictions[0][0] = h_bear; 

 out_predictions[0][1] = h_range; 

 */ 

 kftype y = m_xkk[0]; //OMAR, this is the state, and in our case the state is the encoder measurement. 

 kftype x = m_xkk[1]; 

 

 kftype h_distance = initial_front_wall - y; 

 kftype h_distancex = initial_right_wall - x; 

 

 out_predictions.resize(1); 

 out_predictions[0][0] = h_distance; 

 out_predictions[0][1] = h_distancex; 

} 

 

/** Implements the observation Jacobians \f$ \frac{\partial h_i}{\partial x} \f$ and (when applicable) \f$ 

\frac{\partial h_i}{\partial y_i} \f$. 

  * \param idx_landmark_to_predict The index of the landmark in the map whose prediction is expected as 

output. For non SLAM-like problems, this will be zero and the expected output is for the whole state vector. 

  * \param Hx  The output Jacobian \f$ \frac{\partial h_i}{\partial x} \f$. 

  * \param Hy  The output Jacobian \f$ \frac{\partial h_i}{\partial y_i} \f$. 

  */ 

void CRangeBearing::OnObservationJacobians( 

 const size_t &idx_landmark_to_predict, 

 KFMatrix_OxV &Hx, 

 KFMatrix_OxF &Hy 

 ) const 

{ 

 // predicted bearing: 
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 /*kftype x = m_xkk[0]; 

 kftype y = m_xkk[1]; 

 

 Hx.zeros(); 

 Hx(0,0) = -y/(square(x)+square(y)); 

 Hx(0,1) = 1/(x*(1+square(y/x))); 

 

 Hx(1,0) = x/sqrt(square(x)+square(y)); 

 Hx(1,1) = y/sqrt(square(x)+square(y));*/ 

 

 // Hy: Not used 

 

 Hx.zeros(); 

 Hx(0,0) = -1; //changed by omar 

 Hx(1,1) = -1; 

} 

 

/** Computes A=A-B, which may need to be re-implemented depending on the topology of the individual 

scalar components (eg, angles). 

  */ 

void CRangeBearing::OnSubstractObservationVectors(KFArray_OBS &A, const KFArray_OBS &B) const 

{ 

 A -= B; 

 math::wrapToPiInPlace(A[0]); // The angular component 

} 

 

 

/*************************************************************************************

*************/ 

/*                                            MAIN THREAD                                         */  

/*************************************************************************************

*************/ 

/* 

 * @Description 

 * After starting the threads for kinect, pdf, display and collision avoidance, 

 * loop while accepting manual commands. 

 * command menu: 

 *  -  a/d   : +/- angular speed 

 *  -  space : stop current motion 

 *  -  o     : Query odometry (display odometry is only updated here) 

 *  -  n     : Query sonars 

 *  -  b     : Query battery level 

 *  -  p     : Query bumpers 

 *  -  P   : Follow Path (manual control is not available during navigation) 

 *  -  e   : Enter new current pose 

 *  -  t    : Enter new target for path Planning 

 *  -  x     : Quit 

 * 

 * @param pose:   the pose to be adjusted. 

 *    offset:  the pose containing the x,y, phi offset. 

 * @return none 

 */ 

int main(int argc, char **argv) 
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{ 

 try 

 { 

  /* read parametters from config file */ 

  ASSERT_(fileExists(CONFIG_FILE_NAME)) 

  CConfigFile guidebotConfFile(CONFIG_FILE_NAME); 

 

  TTY_PORT       =     

guidebotConfFile.read_string("NavigationParams","TTY_PORT","/dev/ttyACM0", true); 

  COM_PORT       =     

guidebotConfFile.read_string("NavigationParams","COM_PORT","COM4", true); 

  BAUD_RATE      =     

guidebotConfFile.read_int("NavigationParams","BAUD_RATE",9600, true); 

  ROBOT_RADIUS   =     

guidebotConfFile.read_float("NavigationParams","ROBOT_RADIUS",0.30f, true); 

  MIN_STEP       =     guidebotConfFile.read_float("NavigationParams","MIN_STEP",0.40f, 

true); 

  TURN_THRESHOLD     =  

guidebotConfFile.read_double("NavigationParams","TURN_THRESHOLD",M_PI/90, true); 

  SHARP_TURN         =  

guidebotConfFile.read_double("NavigationParams","SHARP_TURN",M_PI/5, true); 

  FORWARD_THRESHOLD  =  

guidebotConfFile.read_double("NavigationParams","FORWARD_THRESHOLD",0.09, true); 

  POLL_INTERVAL      =  

guidebotConfFile.read_int("NavigationParams","POLL_INTERVAL",100, true); 

  ANGULAR_SPEED      =  

guidebotConfFile.read_double("NavigationParams","ANGULAR_SPEED",0.3, true); 

  LINEAR_SPEED       =  

guidebotConfFile.read_double("NavigationParams","LINEAR_SPEED",0.2, true); 

  SMALL_NUMBER       =  

guidebotConfFile.read_double("NavigationParams","SMALL_NUMBER",0.001, true); 

  ANGULAR_SPEED_DIV  =  

guidebotConfFile.read_int("NavigationParams","ANGULAR_SPEED_DIV",5, true); 

  LINEAR_SPEED_DIV  =  

guidebotConfFile.read_int("NavigationParams","LINEAR_SPEED_DIV",2, true); 

 

  MAP_FILE   =

 guidebotConfFile.read_string("NavigationParams","MAP_FILE","FAB-LL-Central-

200px.png",true); 

  MAP_RESOLUTION  = 

 guidebotConfFile.read_float("NavigationParams","MAP_RESOLUTION",0.048768f, true); 

  X_CENTRAL_PIXEL  =

 guidebotConfFile.read_int("NavigationParams","X_CENTRAL_PIXEL",-30, true); 

  Y_CENTRAL_PIXEL  =

 guidebotConfFile.read_int("NavigationParams","Y_CENTRAL_PIXEL",6, true); 

 

  kinectMinTruncateDistance = 

guidebotConfFile.read_float("NavigationParams","kinectMinTruncateDistance", .5f , true); 

 

  TURN_THRESHOLD = DEG2RAD(TURN_THRESHOLD); 

  SHARP_TURN     = DEG2RAD(SHARP_TURN); 

 

  /* our robot base object REMOVED FOR MCECS*/ 
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  CActivMediaRobotBase robot; 

/* 

#ifdef MRPT_OS_WINDOWS 

  string port= COM_PORT; 

#else 

  string port= TTY_PORT; 

#endif 

 

  int  port_baud = BAUD_RATE; 

 

  cout << "Setting serial port to: " << port << " @ " << port_baud << endl; 

  robot.setSerialPortConfig( port, port_baud ); 

 

  // ------------------------------------------- 

  //  Init comms: 

  // ------------------------------------------- 

  robot.enableSonars(); 

  robot.initialize(); 

*/ 

  double cur_v = 0; 

  double cur_w = 0; 

 

  CActivMediaRobotBase::TRobotDescription  robInfo; 

  robot.getRobotInformation(robInfo); 

 

  CPoint2D  target( -29, 8);  // target for path planning. 

 

 

  //CPoint2D  origin( -29, 10 );  // origin for path planning. 

 

 // cout << "Robot # front bumpers : " << robInfo.nFrontBumpers << endl; 

 // cout << "Robot # rear bumpers  : " << robInfo.nRearBumpers << endl; 

 // cout << "Robot # sonars        : " << robInfo.nSonars << endl; 

 

  /* -------------------------------------------------------- 

   * Launch threads 

   * -------------------------------------------------------- 

   */ 

  TThreadRobotParam thrPar; 

  mrpt::system::TThreadHandle pdfHandle; 

  mrpt::system::TThreadHandle displayHandle; 

  mrpt::system::TThreadHandle thHandle; 

  //mrpt::system::TThreadHandle wallDetectHandle; 

 

 

 

  //setup arduino for odo 

  cout<<"Initializing odometry arduino"<<endl; 

  int odo_fd = setupArduino(ODO_PORT_NAME,ODO_READ_MIN); 

  thrPar.odo_fd.set(odo_fd); 

  cout<<"odo_fd: "<<odo_fd<<endl; 

  //if lrf and odometry are on the same arduino port 

  if(strcmp(ODO_PORT_NAME,LRF_PORT_NAME) == 0) 
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  { 

   cout<<"Initializing lrf arduino on the same port as odometry"<<endl; 

   thrPar.lrf_fd.set(odo_fd); 

 

  } 

  else 

  { 

   cout<<"Initializing lrf arduino on unique port"<<endl; 

   int lrf_fd = setupArduino(LRF_PORT_NAME,LRF_READ_MIN); 

   thrPar.lrf_fd.set(lrf_fd); 

  } 

 

  //if motor is also on the same port 

  if(strcmp(ODO_PORT_NAME,MOTOR_PORT_NAME) == 0) 

  { 

   cout<<"Initializing motor arduino on the same port as odometry"<<endl; 

   thrPar.vel_fd.set(odo_fd); 

  } 

  else 

  { 

   cout<<"Initializing vel arduino on unique port"<<endl; 

   int vel_fd = setupArduino(MOTOR_PORT_NAME,1); 

   thrPar.vel_fd.set(vel_fd); 

  } 

 

  //Robot is not in motion, or getting LRF value 

  thrPar.isMoving.set(false); 

  thrPar.isTurning.set(false); 

  thrPar.gettingLRF.set(false); 

 

  //pdfHandle = mrpt::system::createThreadRef(thread_update_pdf ,thrPar); 

  displayHandle = mrpt::system::createThreadRef(thread_display ,thrPar); 

  thHandle = mrpt::system::createThreadRef(thread_LRF ,thrPar); 

  //wallDetectHandle = mrpt::system::createThreadRef(thread_wall_detect, thrPar); 

  /* Wait until data stream starts so we can say for sure the sensor has been initialized OK: 

*/ 

  cout << "Waiting for sensor initialization...\n"; 

  /* May need to do similar for LRF 

  do 

  { 

   CObservation3DRangeScanPtr possiblyNewObs = thrPar.new_obs.get(); 

   if (possiblyNewObs && possiblyNewObs-

>timestamp!=INVALID_TIMESTAMP) 

    break; 

   else 

    mrpt::system::sleep(10); 

  } while (!thrPar.quit); 

  */ 

  /* Check error condition: */ 

  if (thrPar.quit.get()) 

   return 0; 

 

  bool show_menu = true; 
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  int counter = 0; 

 

  while (1) 

  { 

   if (show_menu) 

   { 

    show_menu=false; 

    cout << "Press the key for your option:" << endl << endl; 

    cout << " w/s   : +/- forward or back" << endl; 

    cout << " a/d   : +/- left or right" << endl; 

    cout << " space : stop" << endl; 

    cout << " o     : Query odometry" << endl; 

    cout << " n     : Query sonars" << endl; 

    cout << " b     : Query battery level" << endl; 

    cout << " p     : Query bumpers" << endl; 

    cout << " P  : Follow Path" << endl; 

    cout << " e  : Enter new current pose: " << endl; 

    cout << " t  : Enter new target for path Planning: " << endl; 

    cout << " n : Network communication mode" << endl; 

    cout << " x     : Quit" << endl; 

   } 

 

   /*if (!mrpt::system::os::kbhit()) 

   { 

    robot.doProcess(); 

    CGenericSensor::TListObservations dummy; 

    robot.getObservations(dummy);  // Empty the list 

    mrpt::system::sleep(20); 

    continue; 

   }*/ 

 

   char c; 

 

   // ==== Update odometry 

    CPose2D  odo; 

    double   v,w; 

    int64_t   left_ticks, right_ticks; 

    bool   pollLRF = true; 

    cout<<"getting odo"<<endl; 

    thrPar.isMoving.set(true); 

    while(thrPar.gettingLRF.get()); 

    //{ 

    // pollLRF = returnGettingLRF(thrPar); 

    // cout<<pollLRF<<endl; 

    // sleep(1000); 

 

    //} 

 

    cout<<"OK"<<endl; 

    getOdometry( odo, odo_fd, thrPar ); 

    thrPar.isMoving.set(false); 

    //printf("***x = %d, y = %d, phi = %d\n",odo.x(),odo.y(),odo.phi()); 
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    fixOdometry( odo, thrPar.odometryOffset.get() ); 

    thrPar.currentOdo.set(odo); 

    //printf("***x = %d, y = %d, phi = %d\n",odo.x(),odo.y(),odo.phi()); 

    cout << "Odometry: " << odo << " v: " << v << " w: " << RAD2DEG(w) 

<< " left: " << left_ticks << " right: " << right_ticks << endl; 

    counter = 0; 

            // ==== End update odometry 

 

   c = mrpt::system::os::getch(); 

 

   show_menu=true; 

 

   if (c=='x') break; /* quit */ 

 

   if (c=='w' || c=='s') /* increase or decrease current linear velocity */ 

   { 

                  thrPar.goForward.set(true); 

    thrPar.goRight.set(false); 

                  initial_front_wall = thrPar.front_wall.get(); 

                  sleep(1000); 

 

    if (c=='w') cur_v = 1; 

    if (c=='s') cur_v = -1; 

 

 

    setVelocities( cur_v, 0, thrPar); 

    sleep(1000); 

    //setVelocities( 0, 0, thrPar); 

 

   } 

 

   if (c=='a' || c=='d')  /* increase or decrease current angular velocity */ 

   { 

    //if (c=='a') cur_w = 1; 

    //if (c=='d') cur_w = 1; 

    thrPar.goForward.set(false); 

    thrPar.goRight.set(true); 

    if (c=='a') cur_w = 1; 

    if (c=='d') cur_w = 1; 

 

    setVelocities( 0, cur_w, thrPar ); 

    //setVelocities( cur_v, 0, thrPar); 

    sleep(1000); 

    //setVelocities( 0, 0, thrPar); 

   } 

 

   if (c==' ')  /* stop, set current linear and anhular velocities to 0 */ 

   { 

    cur_v = 0; 

    cur_w = 0; 

    thrPar.goForward.set(false); 

    thrPar.goRight.set(false); 

    setVelocities( cur_v, cur_w, thrPar ); 
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   } 

   /* 

 

   if (counter >= 3) { 

       c='o'; 

   } else { 

       counter += 1; 

   } 

 

   if (c=='o')  // get current odometry reading 

   { 

    CPose2D  odo; 

    double   v,w; 

    int64_t   left_ticks, right_ticks; 

    bool   pollLRF = true; 

    cout<<"getting odo"<<endl; 

    thrPar.isMoving.set(true); 

    while(thrPar.gettingLRF.get()); 

    //{ 

    // pollLRF = returnGettingLRF(thrPar); 

    // cout<<pollLRF<<endl; 

    // sleep(1000); 

 

    //} 

 

    cout<<"OK"<<endl; 

    getOdometry( odo, odo_fd, thrPar ); 

    thrPar.isMoving.set(false); 

    printf("***x = %d, y = %d, phi = %d\n",odo.x(),odo.y(),odo.phi()); 

    fixOdometry( odo, thrPar.odometryOffset.get() ); 

    thrPar.currentOdo.set(odo); 

    printf("***x = %d, y = %d, phi = %d\n",odo.x(),odo.y(),odo.phi()); 

    cout << "Odometry: " << odo << " v: " << v << " w: " << RAD2DEG(w) 

<< " left: " << left_ticks << " right: " << right_ticks << endl; 

    counter = 0; 

   } 

   */ 

 

   if (c=='p')  /* get current bumper readings */ 

   { 

    vector_bool bumps; 

    robot.getBumpers(bumps); 

    cout << "Bumpers: "<< bumps << endl; 

   } 

 

   if (c=='n' || c=='N') /* get current sonar readings */ 

   { 

    CObservationRange obs; 

    bool thereis; 

    robot.getSonarsReadings(thereis,obs); 

 

    if (!thereis) 

    { 
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     cout << "Sonars: NO" << endl; 

    } 

    else 

    { 

     adjustCObservationRangeSonarPose( obs ); 

     displaySonars(thrPar, obs); 

      cout << "Sonars: "; 

     for (CObservationRange::const_iterator 

i=obs.sensedData.begin();i!=obs.sensedData.end();++i) 

      cout << i->sensedDistance << " "; 

     cout << endl; 

    } 

   } 

 

   if (c=='b') /* get current battery charge */ 

   { 

    double bat; 

    robot.getBatteryCharge(bat); 

    cout << "Battery: " << bat << endl; 

   } 

 

   if (c=='e') /* enter current pose */ 

   { 

    double newX, newY, newPhi; 

    cout << "Input the current x location: "; 

    cin >> newX; cin.clear(); 

    cout << "Input the current y location: "; 

    cin >> newY; cin.clear(); 

    cout << "Input the current phi: "; 

    cin >> newPhi; cin.clear(); 

 

    CPose2D startOdo; 

    getOdometry( startOdo, odo_fd, thrPar); 

    startOdo.x(0); 

    startOdo.y(0); 

    //CPose2D startOdo(newX,newY,DEG2RAD(newPhi)); 

    CPose2D newOffset(newX,newY,DEG2RAD(newPhi) - startOdo.phi() 

); 

    thrPar.odometryOffset.set(newOffset); 

    robot.changeOdometry(startOdo); 

    CPose2D  odo; 

    double   v,w; 

    int64_t   left_ticks, right_ticks; 

    double   phi; 

    //getOdometryFull( odo, v, w, left_ticks, right_ticks ); 

 

    fixOdometry( odo, thrPar.odometryOffset.get() ); 

    thrPar.currentOdo.set(odo); 

    cout << " New odometry has been set! " << odo << endl; 

    thrPar.pdfResetDeterministic.set(true); 

 

   } 
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   if (c=='T') // Turn to target pose 

   { 

    CPose2D  odo; 

    /* calculate required phi to next point */ 

    double phi = atan2 ( (thrPar.targetOdo.get().y() ) , 

(thrPar.targetOdo.get().x() ) ); 

    turn(45.0*M_PI/180,thrPar); 

    cout << "phi: " << RAD2DEG(phi); 

    getOdometry( odo, odo_fd, thrPar ); 

    fixOdometry( odo, thrPar.odometryOffset.get() ); 

    thrPar.currentOdo.set(odo); 

   } 

 

   if (c=='t') /* enter target pose */ 

   { 

    double newX, newY; 

    cout << "Input the target x location: "; 

    cin >> newX; cin.clear(); 

    cout << "Input the target y location: "; 

    cin >> newY; cin.clear(); 

 

    target.x(newX); 

    target.y(newY); 

    thrPar.targetOdo.set(target); 

    thrPar.targetOdo.set(target); 

 

    cout << " New target has been set! " << target << endl; 

   } 

 

   if (c=='P') /* calculate a path and travel there using the smoothDrive function */ 

   { 

    std::deque<poses::TPoint2D>  thePath; 

    CPose2D  odo; 

    double   v,w; 

    int64_t   left_ticks, right_ticks; 

    double   phi; 

    getOdometry( odo, odo_fd, thrPar ); 

    fixOdometry( odo, thrPar.odometryOffset.get() ); 

 

    CPoint2D origin( odo.x(), odo.y() ); 

 

    if (PathPlanning( thePath, origin, target ) == 1) 

    { 

     thrPar.pdfResetDeterministic.set(true); 

     thrPar.thePath.set(thePath); 

     thrPar.displayNewPath.set(true); 

     cout << "found a Path..." << endl; 

     smoothDrive(robot, thePath, thrPar ); 

     cout << "at target..." << endl; 

    } /* end path following */ 

 

   } 
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   if (c=='n') 

   { 

 

    clientCommunication(); 

 

   } 

 

 

 

 

 

  } 

 

 /*join threads */ 

  cout << "Waiting for grabbing thread to exit...\n"; 

  thrPar.quit = true; 

  //mrpt::system::joinThread(pdfHandle); 

  mrpt::system::joinThread(thHandle); 

  //mrpt::system::joinThread(wallDetectHandle); 

  mrpt::system::joinThread(displayHandle); 

  cout << "threads ended!\n"; 

 } 

 catch(std::exception &e) 

 { 

  cerr << e.what() << endl; 

  return -1; 

 } 

 return 0; 

} 
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