
Portland State University
PDXScholar

Dissertations and Theses Dissertations and Theses

2006

Efficient Support for Application-Specific Video Adaptation
Jie Huang
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: http://pdxscholar.library.pdx.edu/open_access_etds

Part of the Computer Engineering Commons, and the Computer Sciences Commons

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized
administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Recommended Citation
Huang, Jie, "Efficient Support for Application-Specific Video Adaptation" (2006). Dissertations and Theses. Paper 2670.

10.15760/etd.2664

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PDXScholar

https://core.ac.uk/display/37775234?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2670&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2670&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2670&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
http://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2670&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2670&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2670&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/open_access_etds/2670?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2670&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.15760/etd.2664
mailto:pdxscholar@pdx.edu

DISSERTATION APPROVAL

The abstract and dissertation of Jie Huang for the Doctor of Philosophy in Computer

Science were presented October 9, 2006, and accepted by the dissertation committee

and the doctoral program.

COMMITTEE APPROVALS: _______________________________________

Wu-chi Feng, Chair

Andrew P. Black

Wu-chang Feng

Nirupama Bulusu

Fu Li

Representative of the Office of Graduate Studies

DOCTORAL PROGRAM APPROVAL: ____________________________________

 Cynthia A. Brown, Director

 Computer Science Ph.D. Program

ABSTRACT

An abstract of the dissertation of Jie Huang for the Doctor of Philosophy in Computer

Science presented October 9, 2006.

Title: Efficient Support for Application-Specific Video Adaptation

As video applications become more diverse, video must be adapted in different

ways to meet the requirements of different applications when there are insufficient

resources. In this dissertation, we address two sorts of requirements that cannot be

addressed by existing video adaptation technologies: (i) accommodating large

variations in resolution and (ii) collecting video effectively in a multi-hop sensor

network. In addition, we also address requirements for implementing video adaptation

in a sensor network.

Accommodating large variation in resolution is required by the existence of

display devices with widely disparate screen sizes. Existing resolution adaptation

technologies usually aim at adapting video between two resolutions. We examine the

limitations of these technologies that prevent them from supporting a large number of

resolutions efficiently. We propose several hybrid schemes and study their

performance. Among these hybrid schemes, Bonneville, a framework that combines

 2

multiple encodings with limited scalability, can make good trade-offs when organizing

compressed video to support a wide range of resolutions.

Video collection in a sensor network requires adapting video in a multi-hop store-

and-forward network and with multiple video sources. This task cannot be supported

effectively by existing adaptation technologies, which are designed for real-time

streaming applications from a single source over IP-style end-to-end connections. We

propose to adapt video in the network instead of at the network edge. We also propose

a framework, Steens, to compose adaptation mechanisms on multiple nodes. We

design two signaling protocols in Steens to coordinate multiple nodes. Our

simulations show that in-network adaptation can use buffer space on intermediate

nodes for adaptation and achieve better video quality than conventional network-edge

adaptation. Our simulations also show that explicit collaboration among multiple

nodes through signaling can improve video quality, waste less bandwidth, and

maintain bandwidth-sharing fairness.

The implementation of video adaptation in a sensor network requires system

support for programmability, retaskability, and high performance. We propose

Cascades, a component-based framework, to provide the required support. A

prototype implementation of Steens in this framework shows that the performance

overhead is less than 5% compared to a hard-coded C implementation.

EFFICIENT SUPPORT FOR APPLICATION-SPECIFIC

VIDEO ADAPTATION

by

JIE HUANG

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

Portland State University

2006

DEDICATION

To my parents, Zhao, and Jenny.

 ii

ACKNOWLEDGEMENTS

I would like to thank my advisor Professor Wu-chi Feng for his support and

patience. He made research work less stressful by bringing in bigger challenges, such

as playing foosball—for me, scoring in a foosball game is more difficult than getting a

paper accepted by a top conference.

I would like to thank Professor Andrew Black and Professor Jonathan Walpole. I

would not be here without their encouragement. I would also like to express my

appreciation to Professor Wu-chang Feng, Professor Nirupama Bulusu, and Professor

Fu Li for serving on my dissertation committee.

I have had the great pleasure to work with Buck Krasic, Kang Li, Ashvin Goel,

Francis Chang, Jim Snow, Ed Kaiser, Chris Chambers, Phillip Sitbon, and Wilfried

Jourve, although they always drove me crazy by talking about bicycles during lunch.

Finally, I would like to thank my husband Zhao for his constant support and my

daughter Jenny for her passionate love. I would also like to thank my parents for their

unconditional support.

 iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... ii

LIST OF TABLES ... v

LIST OF FIGURES ... vi

Chapter 1 Introduction .. 1

1.1 Motivation .. 2

1.2 Challenges .. 5

1.2.1 Challenges in Accommodating Large Variation in Resolution 6

1.2.2 Challenges in Supporting Video Collection ... 7

1.3 Thesis Statements ... 9

1.4 Dissertation Outline .. 10

Chapter 2 Background and Related Work .. 12

2.1 Video Compression .. 12

2.1.1 MPEG Overview .. 12

2.1.2 H.264 Overview ... 18

2.2 Video Adaptation .. 19

2.2.1 Tailoring Mechanisms .. 19

2.2.2 Adaptation Mechanisms ... 25

2.3 Sensor Networks and Video Sensors .. 26

2.3.1 Sensor Networks and Multi-hop routing .. 26

2.3.2 Video Sensors and Video-based Sensor Applications 27

Chapter 3 Bonneville: Supporting Wide-range Fine-grained Multi-resolution Video

 28

3.1 Introduction .. 28

3.1.1 More Motivating Examples .. 28

3.1.2 Proposed Approach .. 30

3.2 Tailoring Mechanisms for Resolution Adaptation 32

3.2.1 A Single Encoding for All Resolutions .. 33

3.2.2 One Encoding Per Resolution .. 37

3.2.3 Hybrid Architectures and Bonneville ... 38

3.2.4 Mechanism Summary ... 39

3.3 Experiments and Analysis .. 39

3.3.1 Experimental Setup .. 40

3.3.2 Metrics .. 51

3.3.3 Experimental Results and Analysis .. 53

3.3.4 Supporting Multi-resolution Video .. 84

3.4 Conclusions .. 88

 iv

Chapter 4 Steens: Multi-hop Buffering and Adaptation for Video Collection in

Sensor Networks ... 89

4.1 Introduction .. 89

4.2 Design of a Multi-hop Buffering and Adaptation Mechanism 92

4.2.1 Basic Tailoring Mechanism .. 93

4.2.2 Basic Adaptation Mechanism ... 93

4.2.3 Composition ... 94

4.3 Experimentation ... 100

4.3.1 Simulation Setup and Metrics .. 100

4.3.2 A Case for Hop-by-hop Adaptation ... 102

4.3.3 Exploring Steens ... 108

4.4 Conclusions .. 124

Chapter 5 Cascades: Supporting Video Adaptation in Sensor Networks 125

5.1 Introduction .. 125

5.2 The Cascades Architecture ... 127

5.3 Implementing Video Adaptation in Cascades .. 132

5.3.1 Programmability ... 133

5.3.2 Retasking .. 137

5.3.3 Performance Experiments .. 138

5.4 Conclusions .. 145

Chapter 6 Conclusions and Future Work .. 146

6.1 Research Contributions .. 146

6.2 Future Directions .. 148

6.2.1 Future Directions in Resolution Adaptation 148

6.2.2 Future Directions for Video-Based Sensor Applications 149

Reference .. 151

 v

LIST OF TABLES

Table 2-1 A taxonomy of tailoring mechanisms for stored video……………..... .. 20

Table 3-1 Available display sizes…………………….………………...……….. .. 38

Table 3-2 Testing Sequences and Resolutions…………………………..……… .. 41

Table 3-3

Compression efficiency of the first enhancement layer and the

highest enhancement layer………….…………………………...….... .. 58

Table 3-4 Compression efficiency of the highest resolution……………………. .. 65

Table 3-5 Bit-rates of derived resolutions………………………………………. .. 66

Table 3-6

Overall bandwidth Efficiencies for mechanisms in the one-encoding-

for-all-resolutions architecture……………………………………….. .. 67

Table 3-7 Comparison of compression efficiency for the highest resolution…... .. 73

Table 3-8 Overall bandwidth Efficiency for multiple scalable encodings……… .. 74

Table 3-9

Computational Cost for mechanisms in the one-encoding-for-all-

resolutions architecture (The Italian Job)……………………………. .. 80

Table 3-10

Computational Cost for mechanisms in the one-encoding-for-all-

resolutions architecture (Street Corner)……………………………….. 80

Table 3-11 Computational Cost for hybrid architectures (The Italian Job)……… .. 81

Table 3-12 Computational Cost for hybrid architectures (Street Corner)……….. .. 81

Table 3-13

Storage Cost for mechanisms in one-encoding-for-all-resolutions

architecture…………………………………………………………… .. 83

Table 3-14 Storage Cost for hybrid architectures………………………………... .. 83

Table 5-1 JPEG performance…………………………………………………… 140

Table 5-2 JPEG IPP performance………………………………………………. 141

Table 5-3 MPEG performance………………………………………………….. 142

Table 5-4 Code Sizes (JPEG-IPP)………………………………………………. 144

Table 5-5 Code Sizes (MPEG)………………………………………………….. 144

 vi

LIST OF FIGURES

Figure 2-1 Intra-coding……………………………………………………….… .. 13

Figure 2-2 YUV conversion and downsampling……………………….………. .. 14

Figure 2-3 A DCT and quantization example…………………………………... .. 15

Figure 2-4 Motion Estimation…………………………………………………... .. 16

Figure 2-5 Inter encoding……………………………………………………….. .. 17

Figure 3-1 Encoding The Italian Job at different resolutions…………………... .. 29

Figure 3-2

The difference between lowering the spatial fidelity and

downscaling the resolution………………...……………………...… .. 31

Figure 3-3

Generate DCT coefficients for low-resolution image in the DCT

domain………………………………………………………………. .. 35

Figure 3-4

Comparison of compression efficiency between re-encoding and

transcoding by dropping AC coefficients………………………….... .. 36

Figure 3-5 Multi-resolution mechanism summary…………………………….... .. 39

Figure 3-6 The H.264 encoder configuration file………………….…………… .. 43

Figure 3-7 The MPEG-2-like spatially scalable encoder……………………….. .. 45

Figure 3-8 Dugad’s spatially scalable encoder…………………………………. .. 46

Figure 3-9 Comparison of different representations for differential signals……. .. 48

Figure 3-10 Comparison of scaling algorithms…………………………………... .. 50

Figure 3-11

The resolution arrangement for mechanisms in the one-encoding-

for-all-resolutions architecture……………………………………… .. 56

Figure 3-12

Bandwidth Efficiency of Different Algorithms for One-encoding-

for-all-resolutions…………………………………………………… .. 57

Figure 3-13

The resolution arrangement for the combination of scalable

encoding and DCT-coefficient dropping in the one-encoding-for-

all-resolutions architecture……………………………………….…. .. 61

Figure 3-14

Comparison of the MPEG-2-like schemes with six layers and three

layers combined with DCT-coefficient dropping…………………… .. 63

Figure 3-15

Comparison of the Dugad’s scheme with six layers and three layers

combined with DCT-coefficient dropping…………………….……. .. 64

Figure 3-16

The resolution arrangement for configurations in the hybrid

architectures………………….……………………………………… .. 69

Figure 3-17

Comparison of MPEG-2-like schemes in different configurations:

one encoding or multiple encodings……………………...…………. .. 71

 vii

Figure 3-18

Comparison of Dugad’s schemes in different configurations: one

encoding or multiple encodings…………………………………….. .. 72

Figure 3-19

Comparison of re-encoding in different configurations: one

encoding and multiple encodings………………………………….... .. 76

Figure 3-20

Compression efficiency of the combination of multi-encoding and

DCT-coefficient dropping…………………………………………... .. 77

Figure 3-21 Bandwidth efficiency for single resolutions………………………… .. 78

Figure 4-1

The basic adaptation mechanism and a simple prioritization

mechanism…………………………………………………………... .. 94

Figure 4-2 Examples of global prioritization…………………………………… .. 96

Figure 4-3 Signaling protocols for collaboration among sensor nodes…………. ..99

Figure 4-4 The network structures used in the simulations..………………..….. 101

Figure 4-5 The end-to-end reliability through hop-by-hop acknowledgement … 103

Figure 4-6

Throughput and priority distribution for end-to-end adaptation and

hop-by-hop adaptation………………………………………………. 104

Figure 4-7 The frame rates….…………………………………………………... 106

Figure 4-8 Wasted bandwidth……….………………………………………….. 107

Figure 4-9

Throughput and priority distribution for three hop-by-hop

adaptation systems…………………………………………………... 109

Figure 4-10 The frame rates (hop-by-hop adaptation)…………………………… 111

Figure 4-11 Wasted bandwidth…………………………………………………... 112

Figure 4-12

Throughput and priority distribution for signaling 1 with different

low watermarks.…………………………………………………….. 114

Figure 4-13 The frame rates (signaling 1)……………………………………….. 115

Figure 4-14 Wasted bandwidth…………………………………………………... 116

Figure 4-15

Throughput and priority distribution for signaling 2 with different

low watermarks……………………………………………………... 116

Figure 4-16 The frame rates (signaling 2)…….…………………………………. 117

Figure 4-17 Wasted bandwidth…………………………………………………... 118

Figure 4-18 Fairness……………………………………………………………… 120

Figure 4-19 Fairness……………………………………………………………… 121

Figure 4-20 Throughput and priority distribution………………………………... 122

Figure 4-21 Wasted Bandwidth (dropped data)………………………………….. 123

Figure 5-1 An example of the overall architecture of Cascades………..………. 130

Figure 5-2 A simple adaptive video collection system…………………………. 133

Figure 5-3 The construction of a video sensor capturing and adaptation system. 134

 viii

Figure 5-4 The capturing and adaptation script………………………………… 134

Figure 5-5 Implementing signaling in Python………………………………….. 136

Figure 5-6 Retasking through dynamic reloading………………………………. 137

Figure 5-7 The re-organized filter structure for retasking……………………… 138

 1

CHAPTER 1

INTRODUCTION

The advent of digital video compression algorithms and standards [26][49] in the

early 1990s has fostered the development of many video applications such as video

conferencing and video on demand. For many of these applications, video adaptation

is an indispensable tool to adjust their resource requirements to match the underlying

resources supporting them. The goal of video adaptation, of course, is to adapt video

to lower resource consumption while maximizing video quality. What makes this

difficult is that the meaning of “quality” changes from one user to another, and from

one application to another.

In this dissertation, we address how to adapt video to maximize video quality for

different applications. Different applications have different resource constraints and

different preferences on video quality. Therefore, they have different requirements on

video adaptation technologies. As video applications are becoming more diverse,

video adaptation must be specialized according to application requirements to

maximize the video quality.

 2

1.1 Motivation

Handling digital video can be burdensome for many computers or networks,

especially as video resolutions continue to increase. For example, the H.261 video

compression algorithms require approximately 968 million operations per second to

compress CIF (358×288) resolution video at 30 frames per second (fps)[4]. This is

with highly-optimized motion-estimation algorithms and fast DCT algorithms in place.

Despite the large compression ratios of video compression algorithms, the data rate of

a compressed video stream can still be several megabits per second (Mbps). Not only

is the handling of digital video resource demanding, but the resource requirements are

also bursty over time because of the temporal compression used between frames. Due

to the high data rate and burstiness in resource requirements, it is often not feasible or

cost-effective to provide resource guarantees for digital video across all resources.

Fortunately, many video applications can work without complete resource

guarantees because they can tolerant some quality degradation. Video adaptation is

the key to make these applications work when there are insufficient resources. It

intelligently adapts video to lower resource consumption to meet resource constraints

while providing the highest quality video possible (as defined by the user).

There are many ways to adapt a video stream; for example, either reducing the

frame rate or downscaling the video resolution can reduce the bandwidth requirements

needed to support it. The choice, however, is typically application-dependent. In the

above example, frame rate reduction may work for video with little motion but not for

 3

motion-intensive video. Conversely, resolution downscaling might be preferred by

users with a palm-size display device but not by users watching the video on a larger

PC display. Obviously, video adaptation needs the input from applications to

maximize the video quality to a user’s particular display and preferences.

Most existing video adaptation technologies are focused on providing continuous

video for best-effort streaming applications such as video conferencing, webcasting,

distance education, video surveillance, video on demand, and so on. The goal of these

adaptation technologies is (i) to tailor video to fit available bandwidth and (ii) to

deliver smooth video over bursty networks for uninterrupted playback. To tailor video

to fit available bandwidth, the adaptation technologies use bit-rate reduction

techniques that reduce the frame rate and/or lower the spatial fidelity. To deliver

smoother quality video over bursty networks, they usually employ some form of

buffering, in which larger buffers typically provide better video quality at the expense

of latency. The buffer smoothes both network bandwidth fluctuations and the data

rate fluctuations of compressed video.

As a variety of new video devices are emerging, video applications are becoming

more diverse and video adaptation systems need to deal with more diversified

application requirements. We will now describe two emerging application scenarios

that have different requirements from existing applications and need support beyond

existing adaptation technologies.

 4

Scenario 1: Streaming high-resolution video to devices with widely disparate

resolutions. In this scenario, a video server hosts a popular high-resolution video clip.

The high-resolution video clip is generated either by an HD camcorder (1920×1080)

or by stitching together video from multiple cameras (e.g. panoramic video) [8] [24].

To view this video stream, users can choose from a variety of devices covering a wide

range of display sizes such as 96×64 pixels on a cell phone, 240×160 on a Palm device,

320×240 on a video iPod, 640×480 on an iPAQ, 1024×768 on a laptop, 1920×1080 on

a HDTV, 2048×1536 on a PC monitor, or 2560×1600 on an Apple Cinema Display.

To stream high-resolution video to a device with a small display, video adaptation

technologies should downscale the video resolution to the display size because

sending high-resolution video to the device is not as bandwidth-efficient as sending at

the display resolution. Furthermore, it may cause significant processing problems on

such devices. In this scenario, we are interested in the adaptation of video to a variety

of display characteristics, where the range of display resolution variation may be

greater than an order of magnitude.

Scenario 2: Collecting video in a sensor network. Oceanographers at Oregon

State University would like to place a video camera every ¼ mile along the Oregon

coast in order to observe near-shore phenomena [34]. This can be made possible by a

class of new video capturing devices—video sensors. These video sensor nodes can

capture, store, and process video and harvest energy from the environment for

computation and networking. Furthermore, they can cooperate in order to pass data

along the coast through other nodes to sink nodes with more power. This is a typical

 5

application of a video sensor network, which collects video from multiple sensors and

sends it through an ad hoc, multi-hop, store-and-forward network to a sink. While

video collection does not have latency requirements as stringent as video streaming

applications, it places four new requirements on adaptation technologies. First, it

requires adaptation technologies to maximize video quality in an arbitrarily long time

frame. Second, it requires adaptation technologies to work over multi-hop networks

without end-to-end connectivity. Third, it requires adaptation technologies to ensure

fair sharing of networking resources among multiple video sources, including both

buffer and bandwidth resources. Finally, it requires adaptation technologies to adapt

video based on video content or even to filter out unwanted video segments. For

example, oceanographers might be interested in high quality video during high tide; in

habitat monitoring, biologists might need only those video clips with a particular

species in them.

These two scenarios show that while dealing with non-ideal network conditions is

still a major responsibility of video adaptation, new application scenarios put new

requirements on how it is accomplished. Existing technologies are still useful, but we

need to further explore the adaptation space and to tailor adaptation technologies

around these new application requirements.

1.2 Challenges

In this subsection, we discuss several challenges in meeting the requirements of

accommodating large variations in resolution and supporting video collection in

 6

video-based sensor networks. Our discussion is centered around two parts of a video

streaming system. The adaptation mechanism is responsible for determining when

and how much video to send across the network. It is also the mechanism that is

responsible for determining the bandwidth for the video stream to match. The

adaptation mechanism works in concert with the tailoring mechanism. The tailoring

mechanism works in one of two ways. It either provides a video stream to the

adaptation mechanism that is formatted in such a way that the adaptation mechanism

can adapt the stream through dropping of marked data, or the tailoring mechanism

reformats the video stream to a target rate based upon feedback received from the

adaptation mechanism. A more detailed description of these mechanisms will be

provided in Section 2.2.

1.2.1 Challenges in Accommodating Large Variation in Resolution

To display high-resolution video on small display devices, the video needs to be

cropped to a smaller size and/or downscaled to a smaller resolution. Usually video is

compressed; making changes to compressed video requires tailoring mechanisms such

as re-encoding or transcoding. Re-encoding techniques decompress the stream into

the pixel domain and then encode it again with new parameters. Transcoding partially

decompresses the stream, manipulates the stream in the compressed domain in a way

that approximates operations in the pixel domain, and re-encodes it. A summary of

existing tailoring mechanisms will be presented in Chapter 2.

Accommodating large variation in resolution requires the tailoring mechanisms to

support fine-grained region-of-interest (ROI) adaptation and resolution adaptation

 7

over a wide range. Providing a large number of sub-regions and resolutions is

challenging because the number of resolutions and the range of resolutions make

tailoring difficult. For resolution adaptation, full re-encoding may be feasible for

generating one new resolution, but encoding many resolutions at the same time is

impractical even for modern computers. Fast transcoding can reduce the resolution in

the compressed domain by up to a factor of eight but cannot downscale beyond that.

We will describe the limitation of transcoding in more detail in Chapter 3.

In this work, we focus on supporting fine-grained resolution adaptation over a

wide range of resolutions. We study how to organize and represent high-resolution

video so it can be tailored to multiple resolutions efficiently.

1.2.2 Challenges in Supporting Video Collection

With the tailoring mechanism, we can tailor video to many different resolutions or

target bit-rates. Still, we need an adaptation mechanism to determine the target bit-

rates and a sending schedule so the resources can be utilized efficiently while

maximizing the video quality. It is more challenging, though, to make the right

decisions for video collection in a sensor network than in an IP-style network because

there is no end-to-end connectivity in a sensor network and there are multiple video

sources in a video collection application.

In an IP-style network, there is an end-to-end connection between a sender and a

receiver, and the adaptation mechanisms make adaptation decisions according to the

conditions of that connection. In a sensor network, the route from a video source to

 8

the sink usually consists of multiple store-and-forward hops. This results in adaptation

decisions that tend to be made based-upon the first hop. However, this is insufficient

because the tailored video stream may not fit into the network bandwidth closer to the

sink. The adaptation mechanisms need to consider the network conditions on all hops

from the source to the sink without requiring end-to-end coordination. In addition,

adaptation mechanisms also need to consider other video sources and not consume

more than their fair share of resources. Making adaptation decisions based upon

information from many sensor nodes that are not directly connected is a challenge.

Another challenge is implementing video adaptation within a sensor network with

high performance and at the same time with sufficient flexibility to cope with the

dynamic application requirements. High performance is important for video sensor

applications because of the constrained resources in sensor network platforms and the

large resource requirement for handling video. Meanwhile, flexibility is required by

most sensor applications because application requirements often change after

obtaining initial results. In addition, a sensor network is usually a distributed,

embedded, and heterogeneous system; providing high performance and flexibility in

such a system is always a challenge.

In this work, we study how to construct adaptation mechanisms that can collect

the most useful video in a multi-hop store-and-forward network with multiple video

sources. We also study the requirements of implementing video adaptation in a video

sensor network and look for a framework to support the implementation.

 9

1.3 Thesis Statements

In this dissertation, we address three video adaptation problems for emerging

video application scenarios that are becoming feasible with the advent of new video

capturing and display technologies.

Problem 1: What is the right tailoring mechanism to efficiently support fine-

grained resolution adaptation over a wide-range of resolutions?

Thesis Statement 1: A combination of multi-encoding and scalable

encoding/transcoding is necessary to tailor a video stream to multiple resolutions

efficiently.

Problem 2: How can an adaptation mechanism efficiently collect video through a

multi-hop store-and-forward sensor network to maximize the utility of video collected

at the sink and minimize bandwidth wastage?

Thesis Statement 2: In-network adaptation and collaboration among store-and-

forward sensor nodes are necessary to maximize the utility of video collected at the

sink while minimizing wasted bandwidth.

Problems 3: How can we provide programmability, retaskability, and high

performance for the implementation of video adaptation in sensor networks?

Thesis Statement 3: A component-based framework can make it easy to

implement and retask video adaptation in sensor networks while retaining high

performance.

 10

1.4 Dissertation Outline

The rest of this dissertation is organized as follows.

Chapter 2 presents the necessary background for our work. Because our work is

on compressed video and the basic concepts of video compression are important to

understand it, we start with a short tutorial of video compression, using MPEG

compression as an example. We also briefly review the more recent H.264 video

compression standard. We then survey existing video adaptation technologies and

senor networking technologies.

Chapter 3 deals with the problem of how to organize and represent high-

resolution video so it can be tailored to multiple resolutions efficiently. We first

describe existing transcoding and scalable encoding algorithms that support multi-

resolution video. We then present Bonneville, a hybrid architecture to supports fine-

grained video adaptation over a wide range of resolutions. Finally, we discuss the

experimental setup and results.

In Chapter 4, we focus on video collection in ad hoc multi-hop store-and-forward

sensor networks. We propose Steens, a multi-hop buffering and priority-based

adaptation mechanism, for collecting video in a sensor network. We present the three

components of Steens: prioritization, buffer management, and coordinating protocols.

Finally, we demonstrate the advantages of Steens over traditional adaptation

mechanisms through trace-driven simulations.

 11

Chapter 5 discusses the problem of implementing video adaptation, especially

content-based adaptation and adaptive collection, in a sensor network. First, we

describe the requirements of in-network processing. We then discuss implementation

technologies in scalar sensor networks and why they cannot be applied to video

processing. We present Cascades, a component-based framework based on the

scripting language Python to ease the implementation of video adaptation, and how it

meets those requirements of in-network video processing.

In Chapter 6, we review the contributions of this dissertation and summarize key

findings. Finally, we present future directions for research in this area.

 12

CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we present the necessary background for this dissertation. We

will describe (i) basic concepts in video compression, (ii) existing video adaptation

technologies and their limitations, and (iii) recent developments in sensor networks

and video sensors.

2.1 Video Compression

To help understand the motivation and details of our work, we present an

overview of Discrete Cosine Transform (DCT) based video compression technologies.

DCT-based compression has become extremely popular for imaging and video

because of its high fidelity image reconstruction with high compression ratios [77].

We will use MPEG video as an example because it is the most commonly used video

compression standard. We will also describe some of the new features in H.264,

another popular DCT-based compression algorithm.

2.1.1 MPEG Overview

In this short introduction, we focus on the aspects of MPEG compression

necessary to understand this work. A more detailed introduction to MPEG video is

given by Gall [26].

 13

There are two ways to encode individual frames in MPEG: intra-coding and inter-

coding. Intra-coded frames are similar to JPEG images; they are encoded

independently of other frames. In contrast, inter-coded frames are encoded by

exploiting temporal redundancy among nearby frames.

The major steps for intra-coding are shown in Figure 2-1.

To prepare for compression, each image is divided into macroblocks of 16×16

pixels. In each macroblock, a conversion from the red, green, blue (RGB) color space

into the luminance, chrominance, chrominance (YUV) color space is performed. This

transformation allows the more important luminance component (Y) to be separated

from the two chrominance channels (U and V). Since human eyes are less sensitive to

chrominance channels, each 16×16-pixel chrominance block is typically sub-sampled

into an 8×8 block whereas the luminance component is divided into four 8×8 blocks.

This process is shown in Figure 2-2.

Next, the six 8×8 blocks are transformed into the frequency domain using discrete

cosine transform (DCT). This transformation moves the lower frequency components

DCT
Entropy

encoding

YUV

Conversion

RGB

images
Compressed

video

Figure 2-1 Intra-coding. This figure shows the four main steps involved in

compressing a video frame. 1) Conversion of RGB color space to YUV color space,

2) Transformation into frequency domain via discrete cosine transform (DCT), 3)

Quantization of DCT coefficients, and 4) Entropy encoding: Run Length Encoding

(RLE) and Variable Length Coding (VLC).

Quantization

 14

into the upper left corner of the block while moving the higher frequency components

into the lower right corner. Thus, the average or the DC level of each block is in the

upper left corner. The other 63 coefficients are called the AC coefficients. These 64

DCT coefficients are the values manipulated by many transcoding algorithms to alter

the compressed video quality and/or the compressed stream size. In the quantization

phase, the coefficients are quantized into discrete levels, typically giving coarser

distinctions for higher frequency components. This is considered “lossy” and the

quantization step size directly influences the compression ratio and the compressed

video quality. Figure 2-3 intuitively shows how the combination of DCT and

quantization reduces the number of coefficients to be encoded. There are many zeros

at the lower right corner after quantization because the DCT coefficients are small and

the quantization steps are large at the lower right corner.

Finally, the run-length encoded (RLE) coefficients for each block are compressed

with variable length coding (VLC), a variant of Huffman encoding.

16x16-pixels

B
G

R Y U V Y U V

Y = (0.257*R) + (0.504*G) + (0.098*B) + 16

V = (0.439*R) - (0.368*G) - (0.071*B) + 128

U = -(0.148*R) - (0.291*G) + (0.439*B) + 128

Downsample UV

six 8×8 blocks Conversion

Figure 2-2 YUV conversion and downsampling

 15

For inter-coded frames (sometimes referred as predictive-coded frames), there is

an additional motion estimation (ME) step between the YUV conversion and the DCT.

Motion estimation predicts a macroblock of pixel values using a motion-compensated

macroblock from a reference frame. The location difference between the two

macroblocks is called the motion vector; and the difference between the two

macroblocks is called the prediction error. If the two macroblocks are similar enough

and the prediction error for a block requires less bytes than the original block, the

motion vector and the prediction error are encoded instead of the original block.

1288 201 53 -165 26 -25 5 8

106 -10 20 -18 13 13 -17 4

-11 -258 74 57 -15 42 -11 -3

-4 21 33 -13 -55 12 4 6

60 6 7 10 -23 -8 19 19

-55 -22 14 28 3 5 0 -23

10 -9 -7 26 -38 -11 4 15

-1 -11 17 11 -15 8 23 7

80 12 3 -10 1 -1 0 0

6 0 1 -1 0 0 -1 0

0 16 4 3 0 2 0 0

0 1 2 -2 -3 0 0 0

3 0 0 0 -1 0 1 0

-3 2 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

172 171 166 140 114 166 225 237

177 204 201 213 147 103 164 215

207 205 211 201 177 104 104 166

221 252 251 214 170 072 057 122

226 260 304 177 141 073 066 110

170 213 213 157 120 066 074 106

135 144 132 135 076 105 115 154

147 146 151 150 154 161 170 210

DCT

Quantization

Figure 2-3 A DCT and quantization example

 16

Figure 2-4 shows an example of a good match for motion estimation. Two

consecutive frames are shown. The block being encoded is part of the left tail light of

the car, shown in a black square in the right frame. The left tail light in the left frame

is used as a reference, with the block being referenced shown in another black square.

The Y components for both blocks and their differences are displayed below. The

difference is so small that it can be skipped and only the motion vector is needed to

encode the original block. That is, upon decompression, the decompressor simply

-3 0 0 -3 0 -5 0 0

0 0 0 -4 1 1 2 0

1 0 0 -2 0 0 0 0

0 0 0 0 0 -9 0 -7

2 0 0 0 6 0 0 0

-4 0 -2 0 0 0 0 8

-5 0 0 5 0 0 0 0

-10 15 -18 3 6 0 10 12

172 171 166 140 114 166 225 237

177 204 201 213 147 103 164 215

207 205 211 201 177 104 104 166

221 252 251 214 170 072 057 122

226 260 304 177 141 073 066 110

170 213 213 157 120 066 074 106

135 144 132 135 076 105 115 154

147 146 151 150 154 161 170 210

169 171 166 137 114 161 225 237

177 204 201 209 148 104 166 215

208 205 211 199 177 104 104 166

221 252 251 214 170 063 057 115

228 260 304 177 147 073 066 110

166 213 211 157 120 066 074 114

130 144 132 140 076 105 115 154

137 161 133 153 160 161 180 222

Motion Vector

Prediction errors

Figure 2-4 Motion Estimation

 17

needs to take a part of the reference frame (the reference block) and move it. Motion

estimation is very important to video compression, but the process of finding a good

match with the least prediction error can be very computationally demanding. A

decoder (inverse quantization plus Inverse DCT) is included in the encoder, as shown

in Figure 2-5, reflecting the actual reference frame the decoder will use.

Inter-coding introduces dependencies among compressed frames. For MPEG, the

dependency relationship classifies compressed frames into three types: I frames, P

frames, and B frames. I frames in MPEG are those frames within which all

macroblocks are intra-encoded; their decoding does not depend on other frames. P

frames and B frames have inter-encoded macroblocks; consequently they cannot be

decoded before their reference frames have been decoded. There are two major

differences between P frames and B frames. First, P frames are forward-predictive-

coded with respect to a past frame while B-frames are bidirectionally-predictive-coded,

requiring a preceding and a following frame. Second, a P frame can be a reference

frame, for another P frame or a B frame, while a B frame cannot. When frame

Prediction

Prediction

error

Input

video

Motion Vector

DCT Quantization

Motion

Estimation

Motion

Compensation

Frame Store IDCT

Inverse

Quantization

RLE/VLC

Figure 2-5 Inter encoding

 18

dropping is used for video adaptation, the dependency relationship defines a partial

order for drift-free dropping, that is, a reference frame should not be dropped before

the frames that depend on it.

Most major block-based video compression standards, including the H.26× series

and the MPEG series, follow the compression steps described above, with minor

differences in details such as UV subsampling or entropy encoding.

2.1.2 H.264 Overview

H.264 is a joint MPEG and ITU-T video encoding standard [82]. It is also called

MPEG-4 part 10 Advanced Video Coding (AVC). It is reported to have 50% bit-rate

savings compared to H.263+ or MPEG-4 Advanced Simple Profile (ASP).

While the overall structure of an H.264 encoder is similar to that of other DCT-

based algorithms, there are many improvements in the details. First, it allows finer-

grained predictive coding. Motion estimation can be done on any 4×4, 8×8, 4×8, 8×4,

16×8, and 8×16 blocks in a macroblock. Second, it allows more than one reference

frame, which includes B frames. Third, it adds intra spatial prediction in which a

reference block is in the same frame as the block being predicted. Finally, the primary

transform block size in H.264 is 4×4 instead of 8×8 as in most video coding standards.

In summary, these changes decrease the unit size for prediction, extend the range of

reference frames, and expand the modes for searching so the precision of prediction is

improved. The major advantage is improved compression ratios. The disadvantages

 19

are the extremely high computational cost for motion estimation and increased

memory space for storing extra reference frames at the encoder and the decoder.

2.2 Video Adaptation

We will present the existing video adaptation technologies in two parts: the

tailoring mechanism to provide a required video stream and the adaptation mechanism

to determine what is required according to network conditions.

2.2.1 Tailoring Mechanisms

In this subsection, we first summarize tailoring mechanisms in general. We will

then discuss tailoring mechanism for different quality dimensions.

2.2.1.1 A taxonomy of tailoring mechanisms

In general, the goal of tailoring mechanisms is to make a compressed video

stream fit within the bit-rate allowed by the available network bandwidth and the

receiver resource capability. The intuitive way to make a compressed stream fit a

target bit-rate is to alter the video such as dropping every other frame and/or adjusting

encoding parameters such as the quantization step.

Different types of video applications require different tailoring mechanisms.

Tailoring mechanisms for live video applications are pretty straightforward because

video is encoded at transmission time and the target bit-rate is known while the video

is still uncompressed; the raw video can be altered and encoding parameters can be set

accordingly. In contrast, tailoring mechanisms for stored video applications are more

 20

complicated because stored video is usually already in a compressed format. We will

focus primarily on tailoring already compressed video in this dissertation.

We divide tailoring mechanisms for stored video into several categories, as shown

in Table 2-1, according to how the video is stored: (i) in a non-scalable stream, (ii) in

multiple non-scalable streams, or (iii) in a scalable stream.

If the video is stored in one non-scalable stream, two types of tailoring

mechanisms are available. They are re-encoding and transcoding. Re-encoding fully

decodes the compressed video, alters the decompressed video in the pixel domain, and

Video

representation
A non-scalable stream

Multiple non-

scalable streams
A scalable stream

Mechanisms Re-encoding Transcoding Multi-encoding Scalable encoding

How to tailor

Change encoding parameters
Switch between

streams
Add or drop layers

Tailor raw video
Tailor video in the

DCT domain

Advantages

• Low storage cost

• Low computational cost at encoding time

• Low computational cost at transmission

time

• Fine-grained

• May provide good

trade-offs between

computational cost

and compression

efficiency

• Good compression

efficiency

• Good bandwidth

efficiency for multi-

casting

Disadvantages

• High

computational

cost at

transmission time

• Special algorithms

required

• Limited working

range

• Coarse-grained

• High computational cost at encoding time

• High storage cost

• Special algorithms

required

• Compression

efficiency overhead

Table 2-1 A taxonomy of tailoring mechanisms for stored video

 21

re-encodes the altered video with appropriate encoding parameters. Re-encoding can

tune the video bit rate to precisely match the network bandwidth; however, it requires

a lot of computation at transmission time. Transcoding tries to reduce the

computational cost of re-encoding by partially decoding a video stream, altering the

video in the DCT domain, and partially re-encoding it. Altering the video in the DCT

domain is not as straightforward as altering video in the pixel domain and requires

specially designed algorithms. These algorithms usually lower the compression

efficiency and have a very limited working range. A comprehensive survey of

existing transcoding techniques is presented in [76].

If the video is stored in multiple non-scalable streams, tailoring is accomplished

by switching between encoded streams. We refer to such an approach as multi-

encoding in this dissertation. Multi-encoding spends a lot of time in encoding and a

lot of space to store the compressed streams. Due to the limitation of encoding time

and storage capacity, usually only a few such encodings are used at a given time.

However, for each supported bit-rate, multi-encoding often has better compression

efficiency than other mechanisms. Multi-encoding is currently being used by the

IntelliStream system [3] from Windows Media and the SureStreams system [12] from

Real Networks.

If the video is stored as a scalable stream, tailoring is accomplished through

adding or dropping layers in the scalable stream. A scalable stream is generated by

algorithms that structure a compressed stream into a base layer and several dependent

 22

enhancement layers, which we refer to as scalable encoding. Scalable encoding

usually has worse compression efficiency than non-scalable encoding; moreover,

existing implementations support only two target rates. However, when more than

one target bit-rate is required, scalable encoding allows the base layer to be shared by

those targets so it can improve bandwidth efficiency if the underlying network

provides group networking protocols such as multicast. Scalable encoding is included

in many video compression standards such as MPEG-2.

2.2.1.2 Adaptation dimensions and tailoring mechanisms

In the previous subsection, we discussed ways in which a compressed video

stream can be tailored to fit a target bit-rate. Changing the bit-rate of a video stream

inevitably affects the video quality in one or more dimensions. The most common

quality dimension is the actual visual quality of the individual video frames, which is

commonly referred to as spatial fidelity and can be altered through changes in

quantization. In addition, the frame rate, the spatial resolution, the cropped region,

and the color fidelity can also be affected. For some applications, changing the bit-

rate of a video stream can also be accomplished by selectively encoding part of the

video because the quality or the utility of video depends on the content of the video.

For example, for security surveillance applications, video that catches suspicious

activities or subjects is useful; for habitat monitoring, video containing research

subjects is useful. In summary, video can be tailored in a number. Below we briefly

discuss techniques for tailoring video in different dimensions.

 23

For re-encoding and multi-encoding, video is altered in the pixel domain. Altering

video in the pixel domain is straightforward because there are no dependencies among

frames and there are many algorithms available. For example, changing the frame rate

requires only that frames be dropped before encoding; resolution scaling can be done

through pixel sub-sampling, pixel interpolation, and filtering; algorithms for object

identification and feature extraction can be used for content-based tailoring or filtering.

Transcoding requires altering video in the DCT domain. While operations in the

DCT domain can approximate operations in the pixel domain, they introduce drift

errors in predicative-encoded frames because the reference used during decoding may

be altered and be different from the reference frame used during encoding.

Algorithms for changing the spatial fidelity, the resolution, or the frame rate in the

DCT domain have been proposed. Changing the spatial fidelity level in the DCT

domain is relatively easy since it can be accomplished by changing the quantization

parameters; however, to achieve good compression efficiency, it is necessary to re-

calculate the prediction errors in the DCT domain based on the altered reference to

reduce the drift errors [76] . Changing the resolution is not that straightforward for

block-based compression because the blocks are different at a new resolution, which

means the old motion vectors and the old DCT coefficients are typically invalid.

Algorithms for constructing new motion vectors and new DCT coefficients from the

old ones in the compressed domain have been studied [2][46][47][88]. They are often

designed to support downcaling to one lower resolution, which makes these

algorithms unsuitable for supporting wide-range fine-grained multi-resolution video.

 24

Changing the frame rate can be done by simply dropping frames along the dependency

chain in that remaining frames are likely to be distributed unevenly along the time line.

If a smooth frame rate is preferred, the dropped frames need to be evenly distributed,

which breaks the old dependency and introduce drift errors. In this case, motion

vectors may need to be re-estimated and prediction errors re-calculated in the DCT

domain to reduce drift errors.

Scalable encoding algorithms in different dimensions have been studied.

Algorithms for spatial fidelity scalability (usually called SNR scalability in research

literature of multimedia) and for temporal scalability (supporting multiple frame rates)

are mostly used and are included in video standards such as H.263, MPEG-2, and

MPEG-4. H.263 and MPEG-2 also include algorithms for spatial scalability

(supporting multiple resolutions). Dugad and Ahuja have proposed another spatial

scalability scheme based on non-scalable encoders; this is referred as Dugad’s scheme

in this dissertation. Isolated regions in H.264 [81][82] and selective enhancement for

MPEG-4 [69] can be used to encode ROIs; these schemes can be combined with

multi-resolution video to better accommodate large variation in resolution. The

scalability in a compressed stream is usually coarse, with one base layer and only one

enhancement layer. One exception is the Fine Granularity Scalable (FGS) coding and

Progressive Fine Granularity Scalable (PFGS) coding in MPEG-4[48][84], which

provide fine-grained adaptation in the spatial fidelity dimension.

 25

2.2.2 Adaptation Mechanisms

Adaptation mechanisms are coupled to the tailoring mechanisms being used. For

re-encoding and transcoding, adaptation mechanisms decide when and how to change

the video encoding parameters [42]. For multi-encoding, they decide when to switch

and which stream to switch to [12][72][73]. For scalable encoding, they decide when

to drop or add layers [17][54][64]. Because lower layers are always needed by higher

layers, the decision of how many layers to send can be postponed until lower layers

have been sent and a better estimation of network conditions becomes available. Still

the decision needs to be made within a time window because the sending of higher

layers should meet the latency requirement of an application for continuous playback.

Feng [20], Kang[43], Krasic [44], and Miao [55] have proposed algorithms for

window-based scheduling. The time window smoothes fluctuations of the video data

rate and the network bandwidth at the cost of increased latency. For collection

applications, the window can be very large because such applications typically do not

have stringent latency requirements.

Despite their differences, most existing adaptation mechanisms target streaming

applications with a maximum latency requirement, are based on IP-style networks

with end-to-end connections, and are designed for streaming video from one source to

one or more receivers.

 26

2.3 Sensor Networks and Video Sensors

In this subsection, we describe the network conditions in a sensor network to help

understand the challenges and our assumption for video collection. We then describe

current video sensor platforms and video-based sensor applications.

2.3.1 Sensor Networks and Multi-hop routing

Sensor networks consist of smart sensors capable of sensing, computation, and

communication [1][6][16][59]. They can be deployed in an ad hoc manner at places

without networking infrastructure or power facilities. One challenge in building an

operational sensor network is for sensors to self-organize to form multi-hop routes to

store-and-forward data to a base station. Usually a sensor is not directly connected to

the base station either because the distance between them is out of communication

range or because the multiple short hops are more energy efficient than a long hop.

Multi-hop routes are not always connected, either because of environmental factors or

because of a TDMA MAC layer [87] used to save energy. There is no end-to-end

connection in a sensor network and video adaptation in such a network has not been

studied.

Many routing algorithms [7][28][41][83][85] have been proposed to set up multi-

hop routes in sensor networks. In this dissertation, we assume that multi-hop routes

have been setup and are relatively stable.

 27

2.3.2 Video Sensors and Video-based Sensor Applications

As sensor hardware develops, a class of “large” sensor nodes that are capable of

capturing and processing multimedia data such as audio and video have become

available [31][32]. One representative example is the Crossbow Stargate device,

which has a 400MHz Intel X-scale processor, up to 64 megabytes memory and one

gigabyte flash memory, and an 802.11 wireless interface that can provide wireless

bandwidth from 500Kbps to 10Mbps. These sensor nodes are much more powerful

than typical “small” sensor nodes such as Berkeley motes [33] and make it possible to

capture multimedia information in addition to scalar data. The Panoptes video sensor

[19] is built on this platform and is used for our experiments. The research effort

towards building applications upon video sensor networks has just started [21].

Examples include Panoptes [19], SensEye [45], the CVSN project [27], and

distributed attention [10].

 28

CHAPTER 3

BONNEVILLE: SUPPORTING WIDE-RANGE FINE-GRAINED MULTI-
RESOLUTION VIDEO

As the diversity of video devices increases, video adaptation systems will need to

support adaptation over an extremely large range of display requirements (e.g. 90×60

to 1920×1080.) In this chapter, we examine tailoring techniques for resolution scaling

to support the adaptation. We believe that Bonneville, a combination of multi-

encoding and scalable encoding/transcoding, is necessary to accommodate large

variation in resolution.

3.1 Introduction

In chapter 1 we presented an application scenario in which high-resolution video

is streamed to display devices of different sizes, and resolution adaptation is needed to

adapt video over a wide-range of resolutions. In this section, we present more

application examples that require wide-range fine-grained multi-resolution video. We

then propose Bonneville, a framework to structure stored video to support many

resolutions.

3.1.1 More Motivating Examples

In addition to adapting to display requirements, resolution adaptation also allows

the video stream to be adapted to underlying networking constraints. Currently,

 29

spatial fidelity adaptation (also called SNR adaptation in research literature of

multimedia) is often used to deal with insufficient bandwidth. When the bandwidth is

extremely low, spatial fidelity adaptation cannot reduce the stream size enough and

resolution adaptation has to be used to reduce the number of pixels to be encoded. To

demonstrate this, we have encoded 300 frames from the movie The Italian Job using

the reference codec of H.264 [29] at different resolutions with different quantization

scales as shown in Figure 3-1. When we encode at resolution 768×512, the smallest

stream size we encode by adjusting the spatial fidelity (using the largest quantization

scale 51) is 164Kbps; by reducing the resolution to 384×256, the stream size can be

further reduced to 54Kbps. Even if spatial fidelity adaptation can make the target

Figure 3-1 Encoding The Italian Job at different resolutions. This figure shows average bit-

rates and average PSNRs of video streams encoded at different resolutions with different

quantization scales. Each line represents a resolution and dots on that line represent different

quantization scales. Each dot in this figure represents a feasible bit-rate.

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 1e+06 2e+06 3e+06 4e+06 5e+06

P
S

N
R

Bits/s

768x512
576x384
384x256
288x192
192x128

96x64

 30

bandwidth, downscaling the resolution can result in better perceptual quality than

lowering the spatial fidelity in some cases. Figure 3-2(a) and Figure 3-2(b) show a

decoded frame from two streams encoded at 768×612 and 384×256 respectively, both

having a bit-rate of 164Kbps. The decoded picture from the 384×256 stream shown in

Figure 3-2(b) obviously has better picture fidelity. For example, we can see the back

of a truck on the left side of the picture in Figure 3-2(b) while in Figure 3-2(a) it is so

blurred that it is hardly distinguished from the buildings in front of it. In summary,

adjusting the resolution extends the range and dimensions for bandwidth adaptation;

adjustment over a wide range is needed to fit possible bandwidth limits and the user’s

needs.

Resolution adaptation, combined with ROI adaptation, is also useful to support

Pan-Tilt-Zoom-like operations for users to navigate through high-resolution video

over best-effort networks. Transmission bandwidth and remote computation can be

saved by sending the video at the viewed resolution instead of the high-resolution

video; and potentially the video may be viewed at many resolutions that require fine-

grained resolution adaptation.

3.1.2 Proposed Approach

In order to support resolution adaptation, re-encoding, transcoding, multi-

encoding, or scalable encoding can be used. Each type of mechanisms introduces

some overhead when supporting multiple resolutions. Re-encoding has high

computational overhead; transcoding and scalable encoding have compression

efficiency overhead; and multi-encoding has storage overhead. The problem of

 31

(b) transmitted at 384×256

Figure 3-2 The difference between lowering the spatial fidelity and downscaling the

resolution. These two pictures are decoded from two H.264 streams. Both streams contain the

same 300 frames from the Italian Job encoded by the H.264 reference codec. Stream (a) is

encoded at the resolution 768×512 with a very low spatial fidelity; stream (b) is encoded at

384×256 but the spatial fidelity is higher. Both streams are about 164Kbps. Picture (b) is much

sharper than picture (a).

(a) transmitted at 768×512

 32

extending one mechanism to support resolution adaptation over a wide range, if even

possible, is that the accumulated overhead may become too large and make the

mechanism unsuitable for practical use.

We propose to combine existing tailoring technologies; we believe that the

combination of mechanisms can provide the best-balanced performance. In particular,

we propose to combine multi-encoding with scalable encoding and transcoding. We

call this hybrid framework Bonneville.

We will compare tailoring mechanisms in the Bonneville framework with other

tailoring mechanisms. We group tailoring mechanisms into three architectures based

on the number of “full” encodings that are used to represent the video on the server:

the one-encoding-for-all-resolutions architecture, the one-encoding-per-resolution

architecture, and the hybrid architecture. Bonneville is a hybrid architecture. We

describe the three architectures in Section 3.2. We study the bandwidth efficiency,

computational cost, and storage cost for these architectures in Section 3.3 and present

an in-depth analysis of how Bonneville provides good architectural trade-offs in

providing fine-grained wide-range multi-resolution video. Our work also provides

guidelines to structure the multiple encodings within the Bonneville framework such

as the number of encodings.

3.2 Tailoring Mechanisms for Resolution Adaptation

Despite rapid progress in storage capacity and transmission bandwidth, video

compression is still a key technology for video applications because of large

 33

compression ratios that are achievable. Currently, most compression techniques are

either DCT-based or wavelet-based. Wavelet-based algorithms [53][89] perform a

wavelet transform on the entire image, which results in a hierarchical representation of

an image. In the hierarchy, each layer represents a frequency band, which corresponds

to a resolution. Thus, wavelet-based compression supports multi-resolution video

inherently. However, the ability to perform ROI adaptation is limited due to the

wavelet transform. We believe that both ROI adaptation and resolution adaptation are

needed to accommodate large variation in resolution. In DCT-based compression,

ROI cropping can be supported by flexible macroblock ordering [81][82] or bit-plane

shifting[69]. While somewhat challenging to support multi-resolution video for DCT-

based compression, its adoption into standards such as the MPEG series and the H.26×

series coupled with the ability to support ROI adaptation make it an interesting

technique to use.

In the remainder of this section, we describe DCT-based tailoring mechanisms for

resolution adaptation as well as their advantages and disadvantages for supporting

fine-grained wide-range adaptation.

3.2.1 A Single Encoding for All Resolutions

A very simple architecture to provide wide-range fine-grained video resolution

adaptation is to encode the highest resolution once and generate all other resolutions

from the one encoding. Under this architecture, resolution adaptation is accomplished

using one of the following two approaches.

 34

The first approach is to spend more time encoding the stream so it is more

amenable to resolution downscaling; for example, scalably encoding the stream with a

base layer and multiple enhancement layers. We note here that the use of the term

enhancement layer usually means higher spatial fidelity. For our purposes, we use

enhancement layer to refer to layers that provide higher resolutions. Examples of

scalable encoding include the MPEG-2 spatial scalability scheme [30], where an

upscaled base layer provides extra references for motion estimation, and Dugad’s

spatially scalable encoder [15] constructed from non-scalable encoders, where an

enhancement layer encodes differential signals between the high resolution images

and the upscaled base layer. In addition to ease of scaling, it can save bandwidth in

multicast scenarios because low resolutions are included in high-resolution streams.

However, scalability is not free because the compression efficiency of scalable

encoding is lower than that of non-scalable encoding. If scalable encoding is extended

to support many resolutions, the overhead accumulates and can become significant.

We will evaluate the compression efficiency of scalable encoding for wide-range fine-

grained multi-resolution video.

The second approach to provide resolution adaptation is to compress the stream

with minimal extra information and spend more time scaling the video stream to a

different resolution as needed. Scaling can involve (i) a full re-encoding where the

stream is decompressed and recompressed, or (ii) a partial re-encoding (transcoding)

where the stream is altered in the compressed domain [14][37][75]. Different

 35

transcoding algorithms need different amounts of work when a client requires a

smaller resolution; but in general, they need less work than re-encoding.

There are two groups of transcoding algorithms. The first group of algorithms

tries to derive new DCT coefficient matrices for low-resolution images. For example,

many algorithms extract 4×4 low-frequency coefficient from four adjacent blocks in

the high-resolution video to form one 8×8 coefficient matrix for one block in the low-

resolution video as shown in Figure 3-3. Thus, these algorithms can derive only one

low resolution that has to be one-fourth of the high resolution (half in each dimension).

The second group of algorithms simply drops DCT AC coefficients at the server side

and the downscaling is done at the client side. The working range of this class is also

very limited because the compression efficiency for the low-resolution video degrades

rapidly when the number of pixels in the low-resolution video approaches or becomes

less than the number of blocks in the high-resolution video. Figure 3-4 provides an

example of the degradation of compression efficiency. It shows the Y component of a

128×128-pixel image, which is divided into 256 8×8-blocks. After the DCT

Figure 3-3 Generate DCT coefficients for low-resolution image in the DCT domain.

The intuition behind many algorithms is to extract 4×4 low-frequency coefficients of the

MxN video from four adjacent blocks to form the 8×8 coefficient-matrix of the M/2 x N/2

video.

 36

transform and quantization, 30% of the coefficients are typically non-zero; therefore,

each pixel is represented by 0.3 compressed coefficients. Suppose we are to

downscale the image to 16×16 pixels. If the image is re-encoded, the16×16 pixels

are divided into four 8×8-blocks and a similar compression ratio can be retained. If

we simply drop AC coefficients, the 256 blocks remain with one DC coefficient in

each block. Thus, one pixel is represented by one compressed coefficient and the

compression efficiency is about 3.3 times worse than re-encoding. More importantly,

this is the lower bound of the number of blocks. If a smaller resolution is required, the

256 blocks still need to be encoded. In summary, transcoding alone cannot support

many resolutions efficiently.

Figure 3-4 Comparison of compression efficiency between re-encoding and transcoding by

dropping AC coefficients. In each 8×8 block, about 70% coefficients are zeros after DCT

transform and quantization. A compressed 8×8 block is much smaller than 64 1x1 block.

The original image: 128×128 pixels,
16x16 8×8-blocks

The Downscaled image through re-
encoding: 16x16 pixels, 2×2 8×8-blocks

The downscaled image through transcoding:
16x16 pixels, 16x16 1x1 blocks

 37

In addition to the two traditional approaches, we also propose to mix these two

approaches by scalably encoding the video once and then transcoding enhancement

layers to generate resolutions between layers. This mixed approach effectively takes

the advantage of the positive aspects of each while trying to avoid the disadvantages.

The performance of this mixture is unknown and we will figure out through

experiments whether the mixture can provide good trade-offs between coding

efficiency, computational cost, and storage cost.

3.2.2 One Encoding Per Resolution

Another simple architecture to provide multi-resolution video is to encode as

many streams as resolutions that are required. In this way, each encoding has been

optimized for a particular display (or at least one that is of similar resolution).

However, the optimal per-resolution efficiency does not lead to optimal overall

bandwidth efficiency because different resolutions do not share data. Another

drawback is the computational overhead involved in creating and managing

potentially many streams since there are a large number of different display sizes as

shown in Table 3-1. For stored systems, this is further complicated by the fact that the

resolutions required may not be known a priori. Thus, some form of adaptation may

always be necessary.

For this dissertation, we will use the one-encoding-per-resolution architecture in

the experiments to provide a baseline for how well one could have done for a

particular resolution (quality as well as bandwidth requirements).

 38

3.2.3 Hybrid Architectures and Bonneville

In addition to the architectures described in the previous two subsections, one can

encode several candidate resolutions that cover a class of displays and then create all

other resolution streams from the encoded streams. In effect, this hybrid architecture

combines the above two architectures. The goal is to extend the working range of a

single architecture and to provide better trade-offs in bandwidth efficiency,

computational cost, and storage cost.

In the hybrid architecture, resolutions are divided into groups and each group has

one full encoding. In this dissertation, we assume that all groups use the same

tailoring mechanism to support resolutions in that group. For example, all groups

might be based on scalable encoding and use the same scalability scheme; or all

groups might be based on non-scalable encoding and use the same transcoding

algorithm.

Table 3-1 Available display sizes

Cell Phones PDAs Laptops Top-of-the-line Monitors

96x36

96x65

101x80

128×128

160×128

208×176

240×160

320×208

320×240

640×200

640×320

160×160

160×240

240×100

240×200

320×240

320×320

480×160

480×320

640×240

800×480

800×600

640×480

800×600

1024×480

1024×768

1280×800

1280×1024

1400×1050

1440×900

1600×1200

1680×1050

1920×1200

2048×768

2048×1536

2560×1600

 39

Bonneville is a hybrid architecture with multiple scalable encodings. Each group

contains a scalable encoding; some resolutions in the group may not be included in

that encoding and these resolutions between layers are generated by trnascoding.

3.2.4 Mechanism Summary

The mechanisms that can be employed to support multi-resolution video are

summarized in Figure 3-5. The question is how should one structure the video to

support such adaptation to a large number of display sizes. Intuitively, we believe that

supporting such video will fall into the hybrid architecture category because it allows

the efficient trade-off between computation for encoding and computation for display-

dependent streaming.

3.3 Experiments and Analysis

In this section, we will present a number of experiments to highlight the various

trade-offs one can make in supporting multi-resolution video. We first present our

Figure 3-5 Multi-resolution mechanism summary. There are three possible architectures: one-

encoding-for-all-resolutions, one-encoding-per-resolution, and the hybrid architectures. To

generate multiple resolutions from one encoding, there are four possible mechanisms: scalable

encoding, re-encoding, tanscoding, and the combination of scalable encoding and transcoding.

Examples of scalable encoding schemes and transcoding techniques are shown.

Multi-resolution video

One-encoding-for-

all-resolutions

Non-scalable

encoding

Transcoding

Hybrid One-encoding-per-

resolution

Scalable

encoding

Combination of scalable

encoding and transcoding

Dougard’s

scheme

MPEG-2-

like scheme
Reencoding

DCT coeff

dropping

Multiple non-

scalable encodings

Multiple scalable

encodings

 40

experimental setup and the metrics we use to compare mechanisms under different

architectures. We then present the results for bandwidth efficiency, computational

cost, and storage cost in the following three subsections. Finally, we discuss

guidelines for designing a system for multi-resolution video in the framework of

Bonneville.

3.3.1 Experimental Setup

In this subsection, we describe how we set up the test sequences, the testing

resolutions, the codec, the encoding parameters of the codec, the transcoding and

scalable encoding algorithms, and the algorithms for spatial scaling in the following

subsections.

3.3.1.1 Test sequences and testing resolutions

We use the test sequence Bus, which is a standard test sequence in the reseach

community, to test scalable encoding parameters and spatial scaling algorithms.

However, Bus is at CIF resolution (352×288) and the resolution is not high enough to

test resolution adaptation over a wide range as we need in this dissertation.

We choose two video clips with higher resolutions as test sequences for resolution

adaptation, one motion-intensive and the other non-motion-intensive so our results are

not biased towards either. The motion-intensive clip consists of the 300 frames from

The Italian Job. The non-motion-intensive clip is a 100-frame 3008×2000 video

sequence we took at a Street Corner. As we will discuss in the following section, the

codec we choose is the H.264 reference codec, which accepts only those resolutions

 41

that are multiples of 16 in each dimension. Therefore, we padded The Italian Job

images to 768×512 and cropped the Street Corner images to 2880×1920. We took the

raw video and converted it into YUV420 and then downsized the raw images to small

resolutions. The downsized image sequences are used as the reference for that

resolution when calculating PSNRs (Peak Signal Noise Ratio). PSNR is the metric we

use to measure video quality as we will discuss later in Section 3.3.2.

All the testing resolutions we chose, along with a sample frame from each

sequence, are listed in Table 3-2. Some resolutions chosen are non-standard because

of the multiple-of-16 restriction, yet they are close to sizes of all kinds of display

Table 3-2 Testing sequences and resolutions

Name of

video

sequences

A sample picture

The

original

resolution

Testing

resolutions

The Italian

Job
 720×480

768×512,

576x384,

384×256,

288×192,

192×128,

96x64

Street

Corner
 3008×2000

2880×1920,

2160×1440,

1920×1280

1440×960,

960×640,

720×480,

480×320,

384×256,

288×192,

192×128,

96x64

 42

devices. For example, 96×64 is close to the size of many cell phones; 480×320 is a

typical size for PDA screens; 960×640 and 1440×960 could be the resolutions for

laptops or desktops monitors; 1920×1280 is almost the resolution for HDTV;

2160×1440 and 2880×1920 can be used for top-of-the-line monitors. All the testing

resolutions together also provide a wide range of bit-rates that could fit various

network conditions.

3.3.1.2 The base codec and encoding parameters

We constructed our experiments mainly based on the H.264 reference software

[29], which focuses on compression efficiency. The transcoding algorithms and

scalable encoding algorithms used in the experiments are implemented based on this

codec and will be described in the following sections.

Figure 3-6 shows part of the encoding parameters we use for the H.264 codec.

IntraPeriod 4 means there are three P frames after each I frame; FrameSkip 2 means

there are two B frames between any I or P frames. Thus, the GOP structure is

IBBPBBPBBPBB. We allow three reference frames for motion estimation and allow

all inter and intra prediction modes. One important parameter not shown is the

quantization scale. We use the same quantization scale for all frames (the H.264

codec allows different quantization scales for I, P, and B frames) and the same

quantization scale for the Y component and the UV components. The range of legal

quantization scales is 1 to 51. The quantization scales we chose are 8, 16, 20, 22, 24,

 43

Figure 3-6 The H.264 encoder configuration file.

Files

InputHeaderLength = 0 # If the inputfile has a header

StartFrame = 0 # Start frame for encoding. (0-N)

FramesToBeEncoded = 300 # Number of frames to be coded

FrameRate = 25 # Frame Rate per second (0.1-100.0)

TraceFile = "trace_enc.txt"

ReconFile = "test_rec.yuv"

OutputFile = "ij.h264"

Encoder Control

ProfileIDC = 77 # Profile IDC (66=baseline, 77=main,

 # 88=extended; FREXT Profiles: 100=High,

 # 110=High 10, 122=High 4:2:2, 144=High 4:4:4)

LevelIDC = 50 # Level IDC (e.g. 20 = level 2.0)

IntraPeriod = 4 # Period of I-Frames (0=only first)

IDRIntraEnable = 0 # Force IDR Intra (0=disable 1=enable)

FrameSkip = 2 # Number of frames to be skipped in input

 # (e.g 2 will code every third frame)

ChromaQPOffset = 0 # Chroma QP offset (-51..51)

UseHadamard = 1 # Hadamard transform (0=not used, 1=used)

SearchRange = 16 # Max search range

NumberReferenceFrames = 3 # Number of previous frames used for inter

motion search (1-5)

PList0References = 0 # P slice List 0 reference override (0

 # disable, N <= NumberReferenceFrames)

Log2MaxFrameNum = 0 # Sets log2_max_frame_num_minus4 (0-3:based on

 # FramesToBeEncoded, >3:Log2MaxFrameNum - 4)

MbLineIntraUpdate = 0 # Error robustness(extra intra macro block

 # updates)(0=off, N: One GOB every N frames

 # are intra coded)

RandomIntraMBRefresh = 0 # Forced intra MBs per picture

InterSearch16x16 = 1 # Inter block search 16x16 (0=disable, 1=enable)

InterSearch16x8 = 1 # Inter block search 16x8 (0=disable, 1=enable)

InterSearch8×16 = 1 # Inter block search 8×16 (0=disable, 1=enable)

InterSearch8×8 = 1 # Inter block search 8×8 (0=disable, 1=enable)

InterSearch8×4 = 1 # Inter block search 8×4 (0=disable, 1=enable)

InterSearch4×8 = 1 # Inter block search 4×8 (0=disable, 1=enable)

InterSearch4×4 = 1 # Inter block search 4×4 (0=disable, 1=enable)

IntraDisableInterOnly = 0 # Intra modes for Non I-Slices

Intra4×4ParDisable = 0 # Vertical & Horizontal 4×4

Intra4×4DiagDisable = 0 # Diagonal 45degree 4×4

Intra4×4DirDisable = 0 # Other Diagonal 4×4

Intra16x16ParDisable = 0 # Vertical & Horizontal 16x16

Intra16x16PlaneDisable = 0 # Planar 16x16

ChromaIntraDisable = 0 # Intra Chroma modes other than DC

UseFME = 0 # Use fast motion estimation (0=disable, 1=enable)

 44

26, 28, 33, 37, 41, 45, and 51. Usually quantization scales in the twenties are practical

and the quantization scale 24 is used in most of our experiments unless otherwise

specified.

3.3.1.3 Transcoding

We have modified the H.264 codec to drop AC coefficients as the transcoding

scheme. Since the H.264 codec uses 4×4 DCT, the working range of this scheme is

very limited. Suppose the high resolution is MxN, resolutions 3M/4×3N/4, M/2×N/2,

and M/4×N/4 can be derived by keeping the 3×3 low-frequency coefficients, the 2×2

low-frequency coefficients, and the DC coefficients, respectively. The downscaling is

done at the client side after decoding using the sinc filter from ImageMagic [39].

3.3.1.4 Scalable encoding

For our experiments, we will test two spatially scalable encoding schemes. One is

the scheme used in MPEG-2, which is referred to as the MPEG-2-like scheme in this

chapter; the other is Dugad’s scheme that is based on a non-scalable codec. We first

describe how these schemes are implemented based on the H.264 codec and are

extended to support more than one resolution. Then we discuss the representation of

differential signals in Dugad’s scheme and the choice of scaling algorithms.

 45

3.3.1.4.1 MPEG-2-like scheme

We have added MPEG-2-like spatial scalability into the H.264 codec and

implemented an H.264 scalable encoder, as shown in [13]. The scalable encoder has

four more reference frames for motion estimation in addition to the regular three

temporal reference frames. One is the upscaled decoded low-resolution frame, which

is called the spatial reference frame; the other three are the averages of the spatial

reference frame and the three temporal reference frames. The scalability scheme is

extended to generate more than two layers, as shown in Figure 3-7.

Resolution

upscaling
Resolution

downscaling

Figure 3-7 The MPEG-2-like spatially scalable encoder.

Second-lowest-resolution

Sequence

Original

Sequence

Lowest-resolution

Sequence
Non-scalable

encoder

Non-scalable

decoder

scalable

encoder

scalable

encoder

scalable

decoder

Base layer

Highest enhancement layer

1st enhancement layer

Data flow Reference

 46

3.3.1.4.2 Dugad’s scheme

We have constructed a spatially scalable encoder according to Dugad’s scheme

[15], in which differential signals between the high-resolution video and the upscaled

decoded lower resolution video is encoded for enhancement layers. We have extended

the scheme to more than two layers as shown in Figure 3-8. The construction of such

an encoder is simple because it is based on non-scalable encoders.

Original

sequence

Lowest-resolution

Sequence

Highest enhancement layer

1st enhancement layer

Figure 3-8 Dugad’s spatially scalable encoder.

Second-lowest-

resolution

Sequence

Non-scalable

encoder

Non-scalable

decoder

Base layer

Non-scalable

encoder

Non-scalable

encoder

Non-scalable

decoder

Resolution

upscaling
Resolution

downscaling

Data flow Reference

Differentiation

 47

3.3.1.4.3 Representation of differential signals in Dugad’s scheme

In Dugad’s scheme, enhancement layers encode differential signals, which are

supposed to be smaller than encoding the high-resolution video directly. The

differential signals are represented in the same YUV420 format, in which each value

is represented by eight bits ranging from 0 to 255, as in the original video. However,

differential values range from -255 to 255 instead of 0 to 255, thus doubling the range

of values that we need to represent in eight bits. We need to squeeze the range to [-

127, 128] and we consider two ways. One way is to divide the differential signals by

2; the other way is to truncate the range by making values less than -127, -127 and

those larger than 128, 128. The first way introduces rounding errors in about half of

the pixels. The second way introduces overflow errors which are the difference

between -127 and a differential value less than -127 or the difference between 128 and

a differential signal larger than 128. An overflow can be as large as 128 and its

contribution to the Mean Square Error and the PSNR could be equivalent to rounding

errors at 16,384 pixels. Since the upscaled decoded lower resolution video should be

close to the high-resolution video, we believe that the chance for overflow is small and

the “truncate” representation could achieve better video quality for enhancement

layers.

To confirm that the “truncated” representation can achieve better PSNRs than the

“divided by 2” representation, we ran the encoder on the Bus test sequence using the

two representations. The base layer is at QCIF (176×144) and the enhancement layer

is at CIF (352×288). Figure 3-9 shows the average PSNRs of the reconstructed CIF

 48

images and the sizes of the compressed streams when they are scalably encoded and

when they non-scalably encoded. When the differential signals are in the “truncated”

representation, the reconstructed images from the scalable stream have PSNRs close to

the decoded images from the non-scalable stream and the size of the scalable stream is

larger than the non-scalable stream. When the differential signals are in the “divided

by 2” representation, the scalable stream is smaller than the non-scalable stream but

the PSNRs of reconstructed images are about 5dB lower than those from the non-

scalable stream. For this dissertation, we will use the “truncated” representation

because when we compare the two schemes we expect them to have the same or

similar PSNRs, especially given the fact that they represent the same image.

Figure 3-9 Comparison of different representations for differential signals. The

PSNRs are for the Bus test sequence at CIF resolution. The base layer is at QCIF.

 29

 30

 31

 32

 33

 34

 35

 0 200 400 600 800 1000 1200 1400

P
S

N
R

KBytes

non-scalable encoding
divide by 2

truncate

 49

3.3.1.4.4 Choice of scaling algorithms

The resolution-scaling algorithm used in a scalable encoding scheme can greatly

change its compression efficiency because decoded frames at a low-resolution need to

be upscaled to a higher resolution to help reduce the bit-rate when encoding the higher

resolution. For the MPEG-2-like scheme, an upscaled frame is a reference frame for

motion estimation and a reference frame with good quality can potentially provide

good matches to the frame being encoded thus reduce the size of the compressed

frame. For Dugad’s scheme, an upscaled frame with good quality can reduce the size

of the differential signals thus reduce information to be encoded. Therefore, we need

to choose an appropriate scaling algorithm so that the compression efficiency of the

scalable encoding scheme is not limited by it.

There are three categories of scaling algorithms: pixel re-sampling, pixel

interpolation, and transform-based scaling. We have tested all three categories, using

the scaling functions in ImageMagick [39], an open-source image manipulation tool.

The three categories correspond to the “-resample”, “-scale”, and “-resize” options

in ImageMagick, respectively. For transform-based scaling, we have tested the sinc

filter and the Lanczos filter.

Our experiments are mainly based on Dugad’s scheme. The test sequence is the

Bus sequence; the base layer is at QCIF and the enhancement layer is at CIF. The

PSNR and stream size for the CIF resolution are shown in Figure 3-10. As shown the

transform-based algorithms outperform other algorithms. The Lanczos filter and the

sinc filter have very similar results, which are about 0.25 dB better than pixel

 50

interpolation and 1.12dB better than pixel resampling, and the stream size is 27.40%

and 46.96% smaller. We also ran the MPEG-2-like algorithm using the Lanczos filter

and the sinc filter and the results are satisfying, only 10% larger stream size and 0.1dB

better quality compared to non-scalable encoding. Therefore, we use the sinc filter

(because it is more common than the Lanczos filter) throughout the experiments.

3.3.1.5 Summary of experimental setup

For our experiments on multi-resolution video, we will use two test sequences:

The Italian Job and Street Corner. The former is motion-intensive and the resolutions

range from 96×64 to 768×512. The latter is non-motion-intensive but rich in details

and resolutions range from 96×64 to 2880×1920.

Figure 3-10 Comparison of scaling algorithms. The PSNRs are for the Bus test sequence

at CIF resolution. The base layer is at QCIF.

 33

 33.5

 34

 34.5

 35

 0 500 1000 1500 2000

P
S

N
R

KBytes

non-scalable encoding
sinc

Lanczos
spatial interpolation

resample
sinc (MPEG-2)

 51

The H.264 reference codec is our non-scalable encoder. It is also the base for

implementing our transcoding and scalable encoding algorithms. For transcoding, we

implement DCT-coefficient dropping; for scalable encoding, we implement the spatial

scalability scheme in MPEG-2 and Dugad’s scheme. We choose the sinc filter as the

scaling algorithm for the two scalable encoding schemes because the compression

efficiency is good when the sinc filter is used.

3.3.2 Metrics

For this dissertation, bandwidth efficiency, computational cost, and storage cost

are the three metrics we use to compare approaches.

Bandwidth efficiency is determined by two factors: the bit-rate of a video stream

and the video quality it presents. We have to compare both the bit-rate and the video

quality when compare bandwidth efficiency. A video stream has better bandwidth

efficiency than another stream in one of the three cases: (i) it has better video quality

and lower bit-rate, (ii) it has the same quality as the other stream but has lower bit-rate,

or (iii) it has the same bit-rate as the other stream but has higher video quality. If the

stream has better (worse) video quality and higher (lower) bit-rate than the other

stream, their bandwidth efficiency is not really comparable.

In our experiments, video quality is measured by the average PSNR (Peak Signal

Noise Ratio) of the Y component of all frames. PSNR is the log of the ratio of the

square of the peak signal (255 in an 8-bit system) to the MSE (Mean Square Error).

Although PSNR is often criticized for having poor correlation with the human vision

 52

system, it is the most widely used objective metric for video quality because it is

simple and performs statistically equivalent to some more complicated schemes [65]

such as the Just Noticeable Difference model from the Sarnoff Labs [50]. Video

quality can be more accurately measured by subjective testing; however, it is too

costly and time consuming and not adopted in our experiments. After all, neither

objective nor subjective methods can measure video quality directly but provide an

indication of how a degraded picture compares with a reference picture.

There are two ways to measure bandwidth efficiency, the per-resolution

bandwidth efficiency and the overall bandwidth efficiency for all resolutions. The

per-resolution bandwidth efficiency is very important for receivers to use their

bandwidth efficiently. Overall bandwidth efficiency is very important for the server to

improve its performance because it often needs to stream multiple resolutions at the

same time. Per-resolution bandwidth efficiency is determined by its compression

efficiency thus we use the two terms interchangeably. The overall bandwidth

efficiency may not be the sum of the bandwidth requirement for each of the individual

resolutions. Scalable encoding algorithms usually have lower per-resolution

compression efficiency but have the potential for higher overall compression

efficiency because different resolutions can share data (suppose that the underlying

networking protocols can support data sharing.)

For computational cost, we consider the server side cost as the primary metric.

Computational cost at encoding time and streaming time are both considered.

 53

Computational cost at encoding time, however, usually has a looser time constraint

thus is not as important as streaming time cost. It is difficult to measure

computational cost, which depends on factors such as algorithms, compilers, CPUs,

caching, and operating systems. Execution time is not a good measurement in our

case since the H.264 reference codec we used takes about one day to encode one

hundred 2880×1920 frames. This codec is not intended for any real applications.

Therefore, the execution time of this codec does not have any practical meaning.

Fortunately, our goal is to compare runtime computational cost among different

approaches. For our purposes, we will use the number of DCTs, the number of IDCTs,

and the number of motion estimations as an indication of the amount of work each

algorithm needs to perform because they represent the most expensive computations

for DCT-based video compression. For example, a H.261 encoder is reported to

spend about 60% of computation in motion estimation and about 25% in

DCT/IDCT[25]. The H.264 codec we use is likely to spend more time in motion

estimation than other compression standards because for each macroblock, motion

estimation can be done for different blocks within the macroblock over multiple

reference frames as described in Section 2.1.2. In this chapter, we count the match-

searching for one block over one reference frame as one motion estimation.

3.3.3 Experimental Results and Analysis

We will use the results from the one-encoding-per-resolution architecture as a

reference in comparison. The one-encoding-per-resolution architecture is supposed to

have (i) the best per-resolution bandwidth efficiency because each resolution is non-

 54

scalably encoded and has optimized compression efficiency, (ii) the best streaming

time computational cost because no computation is needed, (iii) the worst overall

bandwidth efficiency because there is no data sharing among different resolutions, (iv)

the worst encoding time computational cost because it has to encode every resolution,

and (v) the worst storage cost because it stores a stream for every resolution.

Our experiments will show that Bonneville, multiple scalable encodings combined

with transcoding, can efficiently balance many of the performance metrics. In

particular, we believe that multiple scalable encodings with less than five layers in

each encoding are a good start point and DCT-coefficient dropping can be used to

generate one resolution between layers.

3.3.3.1 Bandwidth efficiency

We first show the limitations of one-encoding-for-all-resolutions (one-encoding

for short) on per-resolution bandwidth efficiency and the improvement in the overall

bandwidth efficiency compared to the one-encoding-resolution architecture. We then

show how a hybrid architecture can improve the per-resolution bandwidth efficiency

of the one-encoding architecture and retain its good overall bandwidth efficiency.

3.3.3.1.1 The one-encoding-for-all-resolutions architecture

The purposes of this subsection are (i) to find out the limitations when scalable

encoding and re-encoding are pushed to support many resolutions and (ii) to find out

whether the one-encoding architecture can improve the overall bandwidth efficiency

compared to the one-encoding-per-resolution architecture. The algorithms being

 55

compared are re-encoding, MPEG-2-like spatially scalable encoding, and Dugad’s

spatially scalable encoding. Since the H.264 codec uses a 4×4 DCT transform, DCT-

coefficient dropping can only generate three lower resolutions from one full encoding

so DCT-coefficient dropping alone cannot support the number of resolutions in our

experimental setup.

The resolution arrangement for this group of experiments is shown in Figure 3-11.

96×64 is the base layer resolution for the two scalable encoding schemes; 192×168 is

the first enhancement layer resolution; and so on. There are six layers altogether for

The Italian Job and 11 layers for Street Corner. For re-encoding, the video is first

encoded at the highest resolution (768×512 for The Italian Job and 2880×1920 for

Street Corner), then decoded, and re-encoded at different resolutions.

3.3.3.1.1.1 Limitations on per-resolution bandwidth efficiency

Figure 3-12 shows the bandwidth efficiency of different algorithms under the one-

encoding architecture. The bandwidth efficiency is represented by PSNR and video

bit-rate. Each line in the figure represents an algorithm; each dot on a line represents a

resolution as the resolution increases from left to right along the line. The x value of a

dot represents the bit-rate and the y value of the dot represents the PSNR. In general,

lines with dots in the upper-left area (high PSNR and low bit-rate) represent good

algorithms. Results from the one-encoding-per-resolution architecture are presented

as references by the “non-scalable” line.

 56

96x64

288×192

384×256

576x384

768×512

96x64

192×128

288×192

384×256

480×320

720×480

960×640

1440×960

1920×1280

2160×1440

2880×1920

96x64

192×128

288×192

384×256

576x384

768×512

96x64

192×128

288×192

384×256

480×320

720×480

960×640

1440×960

1920×1280

2160×1440

2880×1920

Figure 3-11 The resolution arrangement for mechanisms in the one-encoding-for-all-

resolutions architecture.

Scalable encoding Re-encoding

 Non-scalable stream Derived stream Enhancement layer

192×128

 57

(a) The Italian Job

(b) Street Corner

Figure 3-12 Bandwidth Efficiency of Different Algorithms for One-encoding-for-all-

resolutions. Each line represents an algorithm. Each dot represents a resolution. All results are

from the quantization scale 24. In general, lines with dots in the upper-left area represent good

algorithms.

 38

 39

 40

 41

 42

 43

 44

 45

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06

P
S

N
R

Bits/s

non-scalable
reencode

MPEG-2-like
Dugad’s

 35

 35.5

 36

 36.5

 37

 37.5

 38

 38.5

 39

 0 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08 1.4e+08 1.6e+08

P
S

N
R

Bits/s

non-scalable
reencode

MPEG-2-like
Dugad’s

 58

For scalable encoding, as the resolution gets higher, the horizontal distance from

the “non-scalable” line gets larger, indicating that the stream size of scalable streams

grows faster than that of non-scalable streams. To show this trend clearly, we extract

the bit-rate and the PSNR for the second lowest resolution (192×128) and the highest

resolution (768×512 for The Italian Job and 2880×1920 for Street Corner) from

Figure 3-12 and compare them to those of the non-scalable streams in Table 3-3. The

difference in PSNR is insignificant; but the bit-rate overhead compared to non-

scalable encoding increases rapidly as the number of layers increases. For the second

lowest resolution, a scalably encoded stream consists of one base layer and one

enhancement layer; the MPEG-2-like stream of The Italian Job is 407 Kbps and is

28% higher than the non-scalable stream at the same resolution; the MPEG-2-like

stream of Street Corner is 302Kbps and is 16% higher than the non-scalable stream.

For the highest resolution of The Italian Job, the scalably encoded stream consists of

one base layer and five enhancement layers; the MPEG-2-like stream is 3.22Mbps and

59% higher the non-scalable stream. For the highest resolution of Street Corner, the

Table 3-3 Compression efficiency of the first enhancement layer and the highest enhancement

layer, compared to that of non-scalable encoding.

The Italian Job Street Corner

192×128 768×512 192×128 2880×1920

PSNR Kbps PSNR Kbps PSNR Kbps PSNR Kbps

Non-scalable

encoding
40.18 317 43.84 2022 37.39 260 37.61 100095

MPEG-2 scalable

encoding
40.29 407 44.25 3217 37.36 302 37.93 148567

Dugad’s scalable

encoding
40.58 391 43.05 3088 37.24 304 37.90 145256

 59

scalable stream has one base layer and ten enhancement layers; the MPEG-2-like

stream is 148.567Mbps and 48% higher than the non-scalable stream. The results of

Dugad’s streams are similar. Even though the increase of overhead is different for the

two sequences with different content, simply extending the scalable encoding

algorithms to support many resolutions definitely causes overhead accumulation as the

number of layers increase thus poor compression efficiency for high resolutions.

For re-encoding, there is a big drop of PSNR for the second highest resolution.

This is caused by the artifacts introduced while encoding the highest resolution. A

major artifact introduced by a DCT-based compression algorithm is the blocking

artifact, the discontinuity effect across transform block boundaries. Since the highest

resolution is not a multiple of the second highest resolution, block boundaries in the

highest resolution get into the blocks of the second highest resolution; the blocking

artifacts are brought into the blocks too. Thus, when the decoded frames are

downscaled to the second high resolution the quality is much worse than downscaling

directly from the original highest resolution frames. As the resolution gets smaller, the

PSNR of the re-encoded stream gets closer to that of the non-scalable stream at the

same resolution because the effect of the artifacts gets smaller since details are lost in

low resolutions anyway. Therefore, under the one-encoding architecture, re-encoding

cannot efficiently support resolutions close to the encoded resolution.

From Figure 3-12, we also notice that with the same quantization scale, higher

resolutions have higher PSNR. We believe the reason is that when an image is

 60

downscaled, gradual variation at the high resolution becomes radical changes within a

4×4 pixel block, which correspond to high-frequency information in the DCT domain

that is zeroed out during quantization;

We also notice in Figure 3-12 that, for The Italian Job, the coding efficiency of

the MPEG-2-like algorithm is much better than that of the Dugad’s algorithm

especially for high resolutions. We believe that it is because The Italian Job is very

motion-intensive thus motion estimation is very important for coding efficiency. The

enhancement layers in Dugad’s algorithm consist of differential signals that are not

amiable to motion estimation and motion compensation.

3.3.3.1.1.2 Reducing the number of layers in a scalable encoding

In the previous subsection, we showed that the compression efficiency of scalable

encoding degrades rapidly as the number of layers grows and the compression

efficiency of the highest resolution is especially poor. In this subsection, we are

interested in whether we can improve the compression efficiency of the highest

resolution in the one-encoding architecture by reducing the number of layers between

the lowest resolution and the highest resolution. The resolutions between layers are

derived by dropping DCT coefficients of an enhancement layer, transmitting the

partial enhancement layer and all layers below, decoding and downscaling at the client

side. This is the mixed scheme that we proposed in section 3.2.1. The base layer

resolution, the enhancement layer resolutions, and the resolutions derived from each

enhancement layer are shown in Figure 3-13. There are three layers in The Italian Job

and four layers in Street Corner.

 61

Figure 3-13 The resolution arrangement for the combination of scalable encoding and DCT-

coefficient dropping in the one-encoding-for-all-resolutions architecture.

96x64

192×128

288×192

384×256

576x384

768×512

96x64

192×128

288×192

384×256

480×320

720×480

960×640

1440×960

1920×1280

2160×1440

2880×1920

 Non-scalable

stream

Enhancement layer Derived stream

 62

The compression efficiency of the mixed scheme for all resolutions is shown in

Figure 3-14 and Figure 3-15, for the MPEG-2-like scheme and the Dugad’s scheme

respectively. The results for pure MPEG-2-like scalable encoding and pure Dugad’s

scalable encoding are included for comparison. In both Figure 3-14 and Figure 3-15,

the compression efficiency of the highest resolution (the rightmost dot on each line) of

the mixed algorithms is improved compared to pure scalable encoding. The

compression efficiency of the highest resolution is one of our major concerns and is

listed in Table 3-4. For The Italian Job, the MPEG-2-like stream with three layers is

2.38 Mbps, which is 26% smaller than the MPEG-2-like stream with six layers in the

one-encoding architecture; and the overhead compared to a non-scalable stream is

reduced from 59% to 18%. Its PSNR is close to the six-layer MPEG-2-like stream

therefore the coding efficiency for the highest resolution is improved when there are

fewer layers in a stream. For the Street Corner, the MPEG-2-like stream with four

layers is 110.4Mbps and is 25% smaller than the MPEG-2-like stream with 11 layers

in the one-encoding architecture while the PSNR is similar. Reducing the number of

layers, even though the distance between the base resolution and the highest resolution

is still the same, improves the coding efficiency for the highest resolution.

In Figure 3-14(b) and Figure 3-15(b), the lines representing the mixed scheme are

non-monotonic in that resolution 720×480 has higher bit-rate than resolution 960×640

and resolution 1440×960. This is due to that the decrease in stream size through

dropping high-frequency coefficients is very limited, as we show in Figure 3-4,

because some of the dropped coefficients are already zeros. Therefore, the number of

 63

Figure 3-14 Comparison of the MPEG-2-like schemes with six layers and three layers

combined with DCT-coefficient dropping. Each line represents a configuration. Each dot

represents a resolution. All results are from the quantization scale 24. In general, lines with

dots in the upper-left area represent good configurations.

(a) The Italian Job

(b) Street Corner

 38

 39

 40

 41

 42

 43

 44

 45

 46

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06

P
S

N
R

Bits/s

non-scalable
MPEG-2-like

MPEG-2-like with dropping

 36

 38

 40

 42

 44

 46

 0 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08 1.4e+08 1.6e+08

P
S

N
R

Bits/s

non-scalable
MPEG-2-like

MPEG-2-like with dropping

 64

(a) The Italian Job

(b) Street Corner

Figure 3-15 Comparison of the Dugad’s scheme with six layers and three layers combined

with DCT-coefficient dropping. Each line represents a configuration. Each dot represents a

resolution. All results are from the quantization scale 24. In general, lines that are high and with

dots close to the Y-axis represent good configurations.

 38

 39

 40

 41

 42

 43

 44

 45

 46

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06

P
S

N
R

Bits/s

non-scalable
Dugad’s

Dugad’s with dropping

 36

 38

 40

 42

 44

 46

 0 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08 1.4e+08 1.6e+08

P
S

N
R

Bits/s

non-scalable
Dugad’s

Dugad’s with dropping

 65

 macroblocks is the determining factor of the stream size. Resolution 720×480 is

generated from 2880×1920 as shown in Figure 3-13 and has more macroblocks than

the 960×640 stream and the 1440×960 stream, which are generated from the

1920×1280 stream.

Since the decrease in stream size through dropping high-frequency coefficients is

very limited, the resolutions generated by dropping coefficients have large stream

sizes (and high PSNRs) compared to non-scalable streams and scalable streams

because they are derived from a higher resolution and have more macroblocks

encoded. To understand how large the derived streams are, we compare the bit-rate of

the derived streams with that of the scalable streams at the same resolution in Table

3-5. We also list how many coefficients are kept out of the 4×4 DCT coefficient

matrix for a derived resolution. Table 3-5 shows that when 3×3 coefficients are kept,

the derived stream is no more than 35% larger than the scalable stream; when 2×2

coefficients are kept, the derived stream is about one time larger than the scalable

stream; and when only one DC coefficient is kept, the derived stream is several times

Table 3-4 Compression efficiency of the highest resolution (768×512 for the Italian job and

2880×1290 for street corner)

 The Italian Job Street Corner

Non-

scalable

MPEG-

2-like

MPEG-

2-like +

dropping

Dugad’s

Dugad’s

+

dropping

Non-

scalable-

MPEG-

2-like

MPEG-

2-like +

dropping

Dugad’s

Dugad’s

+

dropping

PSNR 43.84 44.25 44.02 43.05 43.12 37.61 37.93 37.75 37.9 37.80

Bit-rate

(Mbps)
2.022 3.217 2.38 3.088 2.47 100.1 148.6 110.4 145.3 116.9

 66

larger than the scalable stream. For example, for the MPEG-2-like scheme and the

Street Corner sequence, at resolution 1440×960, the derived stream is 35.96Mbps,

which is 17% larger than the scalable stream; at resolution 960×640, the derived

stream is 25.90Mbps and about twice the size of the scalable stream; at resolution

720×480, the derived stream is 55.10Mbps and 8.38 times of the scalable stream. We

believe that it is acceptable to derive one resolution between layers through dropping

the right-most column and the bottom row in the 4×4 DCT coefficient matrix;

dropping more than that will cause the stream too big for the derived resolution.

3.3.3.1.1.3 Improvement in overall bandwidth efficiency

Scalable encoding, at the expense of coding efficiency for each resolution, can

support all resolutions in one stream—the stream for the highest resolution—through

dropping layers. Therefore, scalable encoding is efficient in supporting multiple

Table 3-5 Bit-rates of derived resolutions

Resolutions
Coefficients

Kept

Bit-rate (Mbps)

MPEG-2-

like

MPEG-2-like

+ dropping

Dugad’s

Dugad’s +

dropping

The Italian

Job

192×128 2×2 0.41 0.74 0.39 0.79

288×192 3×3 0.82 0.84 0.77 0.89

576x384 3×3 2.19 2.38 2.07 2.42

Street

Corner

192×128 2×2 0.30 0.63 0..30 0.73

288×192 3×3 0.78 0.90 0.78 0.96

480×320 1x1 2.88 14.30 2.85 17.07

720×480 1x1 6.57 55.10 6.82 53.60

960×640 2×2 13.19 25.90 13.54 28.81

1440×960 3×3 30.69 35.96 31.34 38.93

2160×1440 3×3 81.70 110.43 80.29 102.54

 67

resolutions at the same time because different resolutions can share data (assuming

multicasting is used). The bandwidth requirement for all resolutions is shown in the

last row in Table 3-6. Using the MPEG-2 like algorithm, it requires 37.8% less

bandwidth for The Italian Job and 34.0% less for the Street Corner than sending a

non-scalable stream for every resolution. The average PSNR and the worst PSNR of

scalable encoding are close to those of non-scalable encoding.

Re-encoding also requires less bandwidth than non-scalable encoding but the

saving is not as significant as scalable encoding and the PSNR is also a little lower

than that of scalable encoding.

Table 3-6 Overall bandwidth Efficiencies for mechanisms in the one-encoding-for-all-
resolutions architecture. Bit-rates are in mega bits per seconds. The bandwidth efficiency for

non-scalable encoding is listed as a reference.

The Italian Job Street Corner

Non-

scalable

encoding

MPEG-2-

like
Dugad’s

Re-

encode

Non-

scalable

encoding

MPEG-2-

like
Dugad’s

Re-

encode

Average PSNR

for all

resolutions

41.765 42.02 41.48 41.14 37.39 37.45 37.28 36.88

The worst

PSNR of all

resolution

39.32 39.32 39.32 39.13 37.18 37.19 37.09 36.01

Overall bit-rates

for all

resolutions

(Mbps)

5.18 3.22 3.09 5.04 225.0 148.6 145.3 198.1

 68

Not shown in Table 3-6 is the overall bandwidth for the mixed scheme because it

depends on whether the intermediate nodes can perfo``rm coefficient dropping. If the

intermediate nodes can do coefficient dropping, then all resolutions can share one

stream and require less overall bandwidth than scalable encoding because this stream

of the mixed scheme has less layers. If the intermediate nodes cannot do coefficient

dropping, then the server has to do it and sends the original stream and coefficients-

dropped streams. Even though there is still bandwidth sharing among scalably

encoded resolutions, these streams generated through dropping coefficients are so

large (and cannot be shared) that more bandwidth is required to support all resolutions

than transmitting all non-scalable streams

3.3.3.1.2 The hybrid architecture

In this subsection, we try to improve the per-resolution compression efficiency by

increasing the number of encodings and reducing the number of resolutions supported

by each encoding. We have used two encodings for The Italian Job and three

encodings for Street Corner. The resolutions included in each encoding and derived

resolutions from an encoding are shown in Figure 3-16.

We first discuss the results for multiple scalable encoding and then the results for

multiple non-scalable encoding.

 69

96x64

192×128

288×192

384×256

576x384

768×512

96x64

192×128

288×192

384×256

480×320

720×480

960×640

1440×960

1920×1280

2160×1440

2880×1920

96x64

192×128

288×192

384×256

576x384

768×512

96x64

192×128

288×192

384×256

480×320

720×480

960×640

1440×960

1920×1280

2160×1440

2880×1920

Figure 3-16 The resolution arrangement for configurations in the hybrid architectures.

Scalable encoding Re-encoding or DCT-coefficient dropping

 Non-scalable

stream

Enhancement layer Derived stream

 70

3.3.3.1.2.1 Multiple scalable encodings

In Figure 3-17 and Figure 3-18, we show the compression efficiency at all

resolutions for multiple MPEG-2-like scalable encodings and multiple Dugad’s

scalable encodings, respectively. The compression efficiency of the highest resolution

is one of our major concerns and is listed in Table 3-7.

For The Italian Job, the stream for the highest resolution consists of one base

layer and two enhancement layers. The MPEG-2-like stream is 2.67 Mbps, which is

17% smaller than the MPEG-2-like stream in the one-encoding architecture and the

overhead compared to a non-scalable stream is reduced from 59% to 32%. The

PSNRs are similar for these two streams therefore the coding efficiency is improved

when there are fewer layers in a stream. For the Street Corner video, the stream for

the highest resolution consists of one base layer and four enhancement layers. The

MPEG-2-like stream is 143.5Mbps and is 3.4% smaller than the stream in the one-

encoding architecture. The improvement is not as significant as that for The Italian

Job and we believe that this is due to the five layers in the stream that have already

accumulated large overhead. If we look at resolution 1440×960, the first enhancement

layer in the five-layer stream, the stream size decreases from 30.67Mbps in the one-

encoding architecture to 25.71Mbps in the three-encoding architecture, a 16.17%

reduction for the same PSNR 37.25dB. For Dugad’s algorithm, the results are similar.

 71

(a) The Italian Job

(b) Street Corner

Figure 3-17 Comparison of MPEG-2-like schemes in different configurations: one encoding

or multiple encodings. Each line represents a configuration. Each dot represents a resolution.

All results are from the quantization scale 24.

 39

 40

 41

 42

 43

 44

 45

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06

P
S

N
R

Bits/s

non-scalable
MPEG-2-like(one-encoding)

MPEG-2-like(two encodings)

 36.8

 37

 37.2

 37.4

 37.6

 37.8

 38

 0 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08 1.4e+08 1.6e+08

P
S

N
R

Bits/s

non-scalable
MPEG-2-like(one encoding)

MPEG-2-like(three encodings)

 72

(a) The Italian Job

(b) Street Corner

Figure 3-18 Comparison of Dugad’s schemes in different configurations: one encoding or

multiple encodings. Each line represents a configuration. Each dot represents a resolution.

All results are from the quantization scale 24.

 39

 40

 41

 42

 43

 44

 45

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06

P
S

N
R

Bits/s

non-scalable
Dugad’s (one encoding)

Dugad’s (two-encodings)

 36.8

 37

 37.2

 37.4

 37.6

 37.8

 38

 0 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08 1.4e+08 1.6e+08

P
S

N
R

Bits/s

non-scalable
Dugad’s (one encoding)

Dugad’s (three encodings)

 73

In summary, reducing the number of layers (by adding one or two encodings) in

one encoding can improve the coding efficiency of the highest resolution and retain

good compression efficiency of other resolutions. The improvement is more

significant when there are less than five layers in one encoding.

The overall bandwidth efficiency of multiple scalable encodings is very close to

that of the one-encoding architecture and much better than that of the one-encoding-

per-resolution architecture as shown in Table 3-8 because the compression efficiency

for high resolutions is improved. In the hybrid architecture, we have to stream more

than one encoding to support all resolutions at the same time. The total number of

layers is the same regardless of the number of encodings since there is always one

layer corresponding to one resolution; the number of base layers, however, increases

as the number of encodings increases. For example, for The Italian Job, the resolution

384×256 corresponds to an enhancement layer in the one-encoding architecture but is

a base layer in the two-encoding architecture. Usually a base layer is larger than an

enhancement layer for the same resolution; therefore, increasing the number of

Table 3-7 Comparison of compression efficiency for the highest resolution in scalable encodings

with different configurations. The PSNR and the stream size for non-scalable encoding are listed as

references.

The Italian Job (768×512 Street Corner(2880×1920)

One encoding Two encodings One encoding Three encodings

PSNR Mbps PSNR Mbps PSNR Mbps PSNR Mbps

Non-scalable

encoding
43.84 2.02 43.84 2.02 37.61 100.1 37.61 100.1

MPEG-2-like 44.25 3.22 44.21 2.67 37.93 148.6 37.93 143.5

Dugads’ 43.05 3.09 43.33 2.48 37.90 145.3 37.90 138.0

 74

 encodings is likely to increase the overall bandwidth requirement because it increases

the number of base layers. However, since the coding efficiency for high resolutions

is improved, sending one or more encodings does not increase the bandwidth

requirement much. This is especially true for the Street Corner, which contains many

details and reducing the number of layers can greatly increase the coding efficiency.

For example, sending the three MPEG-2-like scalable streams requires 150.3Mbps

only 1.1% more bandwidth than the one big MPEG-2-like scalable stream (consisting

of eleven layers) and still requires 33.2% less than transmitting all non-scalable

streams. For Dugad’s algorithm, the bandwidth for the three streams is even smaller

than that for the one big stream, which means the improved compression efficiency for

high resolutions offsets the high bit-rates of the two extra base layers.

Table 3-8 Overall bandwidth Efficiency for multiple scalable encodings. Bit-rates are in mega

bits per seconds. The bandwidth efficiencies for one-scalable encoding and non-scalable encoding

are listed as references.

The Italian Job Street Corner

Non-

scalable

MPEG-

2-like

MPEG-

2-like

(two en-

codings)

Dugad’s

Dugad’s

(two en-

codings)

Non-

scalable

MPEG-

2-like

MPEG-

2-like

(three

en-

codings)

Dugad’s

Dugad’s

(three

en-

codings)

Average

PSNR for

all

resolutions

41.76 42.02 41.95 41.48 41.69 37.39 37.45 37.45 37.28 37.34

The worst

PSNR of all

resolution

39.32 39.32 39.32 39.32 39.32 37.18 37.19 37.18 37.09 37.02

Overall bit-

rates for all

resolutions

(Mbps)

5.18 3.22 3.59 3.09 3.24 225.0 148.6 150.3 145.3 144.8

 75

3.3.3.1.2.2 Multiple non-scalable encodings

For multiple non-scalable encodings, we have tested two ways to derive

resolutions that are not encoded: re-encoding and DCT-coefficient dropping.

In Figure 3-19, we consider multi-encoding combined with re-encoding and

compare it with re-encoding in the one-encoding architecture. Adding a new encoding

adds a sharp drop for the resolution next to it and decreases the compression efficiency

for lower resolutions. This is consistent with our analysis in the previous section that

re-encoding is inefficient for those resolutions close to the encoded resolution because

of blocking artifacts. For re-encoding, the hybrid architecture performs worse than the

one-encoding architecture.

In Figure 3-20, we consider multi-encodings combined with DCT-coefficient

dropping. The derived resolutions have very high bit-rates compared to non-scalable

encoding because the number of macroblocks is larger in the derived streams. To

understand the compression efficiency of these resolutions, we plot the PSNR and bit-

rate of resolutions 96×64, 192×128, and 288×192 over many quantization scales in

Figure 3-21. The compression efficiency for the resolution 288×192 is very close to

that of non-scalable encoding when the bandwidth is low and the difference begins to

show only when the PSNR is higher than 40dB. The compression efficiencies for the

resolutions 192×128 and 96×64 are poor. For example, the PSNR is at least 5dB

worse than that of non-scalable encoding at 96×64. For the same PSNR, for example

40dB, the derived stream is about 280Kbps and is about twice the bit-rate of the non-

 76

(a) The Italian Job

(b) Street Corner

Figure 3-19 Comparison of re-encoding in different configurations: one encoding and

multiple encodings. Each line represents a configuration. Each dot represents a resolution. All

results are from the quantization scale 24.

 38

 39

 40

 41

 42

 43

 44

 45

 46

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06

P
S

N
R

Bits/s

non-scalable
reencode(one encoding)

reencode(two encodings)

 35

 35.5

 36

 36.5

 37

 37.5

 38

 0 2e+07 4e+07 6e+07 8e+07 1e+08

P
S

N
R

Bits/s

non-scalable
reencode(one encoding)

reencode(three encodings)

 77

(a) The Italian Job

(b) Street Corner

Figure 3-20 Compression efficiency of the combination of multi-encoding and DCT-

coefficient dropping.

 38

 39

 40

 41

 42

 43

 44

 45

 46

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06

P
S

N
R

Bits/s

non-scalable
dropping (two encodings)

 37

 38

 39

 40

 41

 42

 43

 44

 0 2e+07 4e+07 6e+07 8e+07 1e+08

P
S

N
R

Bits/s

non-scalable
dropping (three encodings)

 78

288×192

192×128

96x64

Figure 3-21 Bandwidth efficiency for single resolutions. The test sequence is The Italian Job.

Each line represents a configuration and dots on that line represent different quantization scales.

DCT-coefficient dropping from multiple encodings is compared with non-scalable encoding and for

some resolutions with DCT-coefficient dropping from enhancement layers.

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

P
S

N
R

Bits/s

non-scalable
dropping from 384x256

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

P
S

N
R

Bits/s

non-scalable
dropping from 384x256

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

P
S

N
R

Bits/s

non-scalable
dropping from 384x256

 79

scalable stream. This is consistent with Figure 3-4 in that the compression efficiency

gets worse as more coefficients are dropped. Our experiments show that when 3×3

out of 4×4 coefficients are kept after dropping, the compression efficiency is

acceptable. Therefore, the number of streams has to be at least half of the number of

supported resolutions in this approach.

3.3.3.2 Computational cost

To characterize the computational costs of the various algorithms, we use the

number of DCTs, the number of IDCTs, and the number of motion estimations (ME)

for encoding a P frame (Y component only) as the measure for computational cost

instead of execution time. Since the H.264 codec uses a 4×4 DCT, the number of

DCTs/IDCTs is the number of 4×4 blocks in an image (assuming no blocks are

skipped). IDCTs in the encoding cycle to generate reference frames are not counted.

For each 16×16 block, seven searching modes 16×16, 16×8, 8×16, 8×8, 8×4, 4×8, and

4×4 are supported. Therefore, the number of MEs is the number of 16×16 blocks

multiplied by seven multiplied by the number of reference frames. We used three

temporal reference frames. For the MPEG-2-like scheme, there is one spatial

reference frame and three average reference frames so there are seven reference

frames in total.

Table 3-9 and Table 3-10 show the computational cost for approaches under the

one-encoding architecture, for The Italian Job and Street Corner respectively. Table

3-11 and Table 3-12 show the computational cost for approaches under the hybrid

architecture. From these tables, we conclude that no approaches require

 80

Table 3-10 Computational Cost for mechanisms in the one-encoding-for-all-resolutions

architecture and the one-encoding-per-resolution architecture (Street Corner).

Non-

scalable

encoding

MPEG-2-

like (11

layers)

MPEG-2-

like (four

layers +

dropping)

Dugad’s

(11 layers)

Dugad’s

(four

layers +

dropping)

Re-encode

E
n

co
d

in
g

ti
m

e

No of

DCTs
861120 861120 505728 861120 505728 345600

No of

MEs
1130220 2636508 1548120 1130220 663768 453600

S
tr

ea
m

in
g

 t
im

e No of

DCTs
0 0 0 0 0 515520

No of

IDCTs
0 0 0 0 0 345600

No of

MEs
0 0 0 0 0 676620

Table 3-9 Computational Cost for mechanisms in the one-encoding-for-all-resolutions

architecture and the one-encoding-per-resolution architecture (The Italian Job).

Non-

scalable

encoding

MPEG-2-

like (six

layers)

MPEG-2-

like (three

layers +

dropping)

Dugad’s

(six

layers)

Dugad’s

(three

layers +

dropping)

Re-

encode

E
n

co
d

in
g

ti
m

e

No of

DCTs
49920 49920 31104 49920 31104 24576

No of

MEs
65520 152208 94584 65520 40824 32256

S
tr

ea
m

in
g

 t
im

e No of

DCTs
0 0 0 0 0 25344

No of

IDCTs
0 0 0 0 0 24576

No of

MEs
0 0 0 0 0 33264

 81

Table 3-12 Computational Cost for hybrid architectures: multiple encodings + scalable
encoding/transcoding/re-encoding (Street Corner). Non-scalable encoding and one-encoding-for-

all-resolutions mechanisms are listed as reference.

Non-

scalable

encoding

MPEG-2-

like (one

en-

coding)

MPEG-2-

like (two

en-

codings)

Dugad’s

(one en-

coding)

Dugad’s

(two en-

codings)

DCT-

coeff

dropping

Re-

encoding

(one en-

coding)

Re-

encode

(two en-

codings)

E
n

co
d

in
g

ti
m

e

No of

DCTs
861120 861120 861120 861120 861120 505344 505728 505344

No of

MEs
1130220 2636508 2356284 1130220 1130220 663264 663768 663264

S
tr

ea
m

in
g

 t
im

e No of

DCTs
0 0 0 0 0 0 0 355776

No of

IDCTs
0 0 0 0 0 0 0 505344

No of

MEs
0 0 0 0 0 0 0 46695

Table 3-11 Computational Cost for hybrid architectures: multiple encodings + scalable

encoding/transcoding/re-encoding (The Italian Job). Non-scalable encoding and one-encoding-for-

all-resolutions mechanisms are listed as reference.

Non-

scalable

encoding

MPEG-2-

like (one

encoding)

MPEG-2-

like (two

en-

codings)

Dugad’s

(one

encoding)

Dugad’s

(two en-

codings)

DCT-

coeff

dropping

Re-

encode

(one en-

coding)

Re-

encode

(two en-

codings)

E
n

co
d

in

g
 t

im
e

No of

DCTs
49920 49920 49920 49920 49920 30720 24576 30720

No of

MEs
65520 152208 141456 65520 65520 40320 32256 40320

S
tr

ea
m

in
g

 t
im

e No of

DCTs
0 0 0 0 0 0 25344 19200

No of

IDCTs
0 0 0 0 0 0 24576 30720

No of

MEs
0 0 0 0 0 0 33264 25200

 82

significant computation at streaming time except re-encoding. Therefore,

computational cost is not a constraining factor for approaches not involving re-

encoding.

 We also notice other interesting points in the tables. First, the MPEG-2-like

scalable encoding scheme requires the most computation at encoding time because of

the extra MEs on additional reference frames. Second, re-encoding needs the least

computation at encoding time but the computation it saves is spent at streaming time.

Thirdly, adding one encoding decreases the encoding-time-computation for the

MPEG-2-like scheme because two-encoding means one more base layer that is

encoded without additional references. Finally, if we compare the computational cost

for The Italian Job and Street Corner, we can see that resolution is the determining

factor for computational cost.

3.3.3.3 Storage cost

Unlike bandwidth, storage is much cheaper. In theory, one can encode video at

every resolution that might be used and store it all; in practice, it would be extremely

difficult to manage and access the large volume of data; in reality, there is more video

produced than stored and even less stored video can be retrieved. Therefore, we still

want to lower the volume of data to be stored.

Table 3-13 and Table 3-14 show the storage cost for all mechanisms and

architectures. Compared to one-encoding-per-resolution, all other mechanisms can

save at least 30% of the storage space. We are especially interested in the storage cost

 83

for scalable encoding because they have good overall bandwidth efficiency and low

streaming time computational cost. In the one-encoding architecture, the MPEG-2-

like scheme saves 37.92% storage space compared to the one-encoding-per-resolution

architecture for The Italian Job and 33.97% for Street Corner. In the hybrid

architecture, the MPEG-2-like scheme saves 32.51% for The Italian Job and 33.18%

for Street Corner. Adding one or two encodings does not increase storage cost much

for scalable encoding especially for Street Corner because the compression is more

efficient at high resolutions when there are more than one encoding. The results for

Dugad’s scheme are similar.

Table 3-14 Storage Cost for hybrid architectures: multiple encodings + scalable

encoding/transcoding/re-encoding, in megabytes and percentage compared to non-

scalable encoding. Two encodings for The Italian Job and three encodings for Street

Corner.

Non-

scalable

encoding

MPEG-2-

like
Dugad’s

DCT-

coefficient

dropping

Re-encode

The Italian

Job

7.72 5.21 4.83 4.19 4.19

100% 67.49% 62.56% 54.27% 54.27%

Street

Corner

112.50 75.17 72.40 69.83 69.83

100% 66.82% 64.36% 62.07% 62.07%

Table 3-13 Storage Cost for mechanisms in one-encoding-for-all-resolutions

architecture, in megabytes and percentage compared to non-scalable encoding.

Non-

scalable

encoding

MPEG-2-

like

MPEG-2-

like +

dropping

Dugad’s

Dugad’s

+

dropping

Re-

encode

The Italian

Job

7.72 4.79 3.55 4.60 3.59 3.01

100% 62.08% 46.00% 59.57% 46.58% 39.00%

Street Corner
112.50 74.28 55.21 72.63 58.43 50.05

100% 66.03% 49.08% 64.56% 51.94% 44.49%

 84

3.3.4 Supporting Multi-resolution Video

In the previous sections, we tried to determine the trade-offs in supporting multi-

resolution video through a large number of experiments on real video. However, there

are still many open questions. For example, in our experiments, we assume that each

resolution is equally important; however, if 80% of users are watching the video at

resolution 720×480, how much priority should we give to that resolution?

Indeed, designing a multi-resolution video system poses more questions than

those can be answered by our experimental results. In this section, we first try to

formulate the problem of designing a multi-resolution video system. Then we

describe the guidelines we draw from our experimental results to help the design of

such as systems.

The design of a multi-resolution video system can be defined as a Lagrangian

optimization problem. Lagrangian methods have been widely used to minimize video

quality distortion subject to a rate constraint [58][71][80].

At a high level, the design of multi-resolution video is similar to a typical Rate-

Distortion (R-D) optimization problem. A typical R-D optimization problem is to find

a solution S that minimizes the Lagrangian cost J, where

)()(SRSDJ λ+=

In the above equation, D(S) is the distortion, R(S) is the rate, and λ is the Lagrange

multiplier. If the R-D function is known, for a given λ, an optimal solution S*(λ) that

 85

minimizes the Lagrangian cost J for that λ can be found. The Lagrange multiplier λ

allows us to make a trade-off between the distortion and the rate. For example, if λ=0,

the optimization is biased to the distortion and minimizing J is to minimize the

distortion; if λ=∞, the optimization is biased to the rate and minimizing J is to

minimize the rate. If there is a rate constraint C, the Lagrangian method can be used

to find an optimal or near optimal solution subject to the constraint by looking for a λ

that R(S*(λ)) is equal or close to C.

In the scenario of video coding, all three quantities D, λ, and R tend to be

complicated and subject to approximations and compromises. For example, the use of

temporal prediction makes optimization decisions on one frame have cascading effects

on subsequent frames and these interactive effects are often ignored in practice [71].

For the design of multi-resolution video, we consider three cost factors: bandwidth,

computation, and storage, instead of one. Therefore, both λ and R are vectors and the

Lagrangian cost function is:

)()()()(332211 SRSRSRSDJ λλλ +++= ,

where R1 is bandwidth, R2 computation, and R3 storage; and λ=(λ1,λ2,λ3) is the vector

Lagrange multiplier.

The vector Lagrange multiplier λ allows us not only to make a trade-off between

the distortion and the resource consumption but also to make trade-offs among

different resources. For example, bandwidth is usually more expensive than storage;

this can be reflected in the optimization process by specifying a λ1 larger than λ3.

 86

However, the choice of λ is also subject to ii CSR ≤))(*(λ for i=1, 2, and 3, where Ci

is the constraint of the corresponding resource.

The biggest problem for designing multi-resolution video is to establish the right

R-D function. If the R-D function is known, searching for an optimal solution for a

given λ and searching for a λ whose optimal solution can make the best use of

available resources have been studied [9][23][57][61]. However, establishing the R-D

function for designing multi-resolution video is extremely difficult because the huge

solution space and many application-specific factors. We discuss the solution space

and application-specific factors below.

A solution S for our design problem consists of several parts:

),,,(4321 ssssS = ,

where s1 is the grouping of resolutions, s2 is the mechanism to support multiple

resolutions in one group, s3 is the codec, and s4 is the set of encoding parameters.

The above definition of the solution is quite simplified. For example, we assume

that each group uses the same mechanism to support multiple resolutions. However,

the number of possible solutions is still large, just considering the pages of encoding

parameters for the H.264 codec.

The measure of the distortion is highly application-specific. Assuming MSE

(Mean Square Error) is used to measure distortion, the distortion of the system

depends on the MSE at each resolution:

 87

∑
=

=

N

i

ii SMSEw
N

SD
1

)(
1

)(

where N is the total number of resolution and wi is the weighing parameter reflecting

the important of resolution i.

The weights of resolutions are application-specific. For example, some

applications may give priority to high resolutions and others may give priority to

resolutions with the most users. In addition, the MSE for each resolution also depends

on the content of the video, which is application-specific and dynamic.

The measure of resource consumption is also application-specific. For example,

the bandwidth consumption depends on the underlying transport protocol and the

geographic distribution of users; the computation depends on hardware and the

operating system.

While capturing R-D characteristics needs further research and is very

application-specific, our work has established some general guidelines to quickly

discard bad solutions and find promising solutions in the framework of Bonneville.

Our experiments focus on exploring s1 (the grouping of resolutions) and s2 (the

mechanism to support multiple resolutions in one group) in the solution space. Our

work shows that one single encoding or a single algorithm is hard to provide fine-

grained wide-range multi-resolution video effectively. We have also run similar

experiments [35] using the ffmpeg MPEG-1 codec [22], which is known for its speed

 88

while the compression efficiency is not optimized. Different codecs results in

different results. For example, scalable encoding is more efficient with the H.264

codec; and the 8×8 DCT transform of the ffmpeg codec allows a wider working range

of coefficient dropping. However, our results all indicate a hybrid architecture can

provide a good trade-off in resolution adaptation. In particular, we believe that

multiple scalable encodings with less than five layers in each encoding are a good start.

DCT-coefficient dropping is preferred to generate one resolution between layers if

DCT-coefficient dropping can be done at intermediate nodes.

3.4 Conclusions

In this chapter, we have examined the various trade-offs in supporting wide-range,

fine-grained multi-resolution adaptation. We believe that in the future, video

streaming algorithm for both stored and live video are going to have to potentially

support both extremely high-resolution video mapped to a large number of display

characteristics. In addition, we believe that such systems will also need to support

efficient region-of-interest cropping, especially for applications such as telepresence.

Our results show that encoding a video stream for every display size results in highly

compressed and optimized video streams. The main drawback of this approach is the

high computational complexity required to churn out a potentially large number of

streams. Scalable encodings and fast-transcoding are useful but cannot support an

extremely wide-range of display characteristics. Finally, our results show that

adapting a video stream between relatively close resolution requirements makes sense.

 89

CHAPTER 4

STEENS: MULTI-HOP BUFFERING AND ADAPTATION FOR VIDEO
COLLECTION IN SENSOR NETWORKS

As video sensor networks become more widely deployed, mechanisms for

adaptively transmitting video data within the network are necessary because of their

generally large resource requirements compared to their scalar counterparts. In this

chapter, we propose Steens, a multi-hop buffering and adaptation framework, for

adaptively collecting video in sensor networks. We will show that in-network

adaptation and collaboration among sensor nodes is necessary to collect the most

useful video with minimal wastage of networking bandwidth.

4.1 Introduction

With recent advances in hardware technologies, the construction of massively

scalable video sensor networks is becoming possible. Many applications that rely on

video sensor networks require video collection, in which the video needs to be sent to

a central sink (or sinks) for later analysis and processing. Often, there is no direct

network connection between a video sensor and the sink in the sensor network. As

such, they typically need to rely on other nodes in the network to buffer and forward

data on their behalf.

 90

Because image and video data can represent a large burden on the sensor-

networking infrastructure, simply passing data towards the sink, as in scalar sensor

networks, may result in network congestion and random dropping of video data in the

network, which will lead to waste of bandwidth and rapid degradation of video quality.

There are techniques [66][79] to deal with network congestion in a scalar sensor

network, but they do not provide appropriate buffer management and data adaptation

functions that are needed to adaptively transmit video. Video adaptation techniques

are needed to manage in-network buffer space and to tailor video according to network

conditions.

Adaptive video collection in such sensor networks cannot be addressed by

existing video adaptation mechanisms meant for streaming video over the Internet or

other IP-style networks. First, existing adaptation mechanisms for video typically

assume end-to-end semantics between them, which does not exist for the multi-hop

store-and-forward routes in most sensor networks. Second, most of the current

streaming algorithms use either a one-to-one unicast or a one-to-many multicast

delivery mechanism while video collection is typically many-to-one. Finally, existing

streaming mechanisms have to satisfy a real-time or “just in time” delivery

requirement for video streaming and might not suitable for video collection, in which

video can sit in the network for a much longer time. Furthermore, because the video

sensor network will typically respond to specific events spaced out over time, the

resultant video may not necessarily be continuous over time; rather, the video will

consist of a number of short segments representing events.

 91

There exist a couple of video adaptation systems that adapt video over multi-hop

routes or for many-to-one flows; but their applications scenarios are different from

video collection in a sensor network. A system that adapts video over multiple hops is

End System Multicast [11], which is a video conferencing system on application

overlays. In this system, the intermediate nodes are also receivers and adaptation is

independently performed for each hop. In a sensor network, however, the intermediate

nodes are also sources not sinks; and the adaptation must be performed between the

sources and the sink through multiple hops. An adaptation mechanism that deals with

many-to-one video flows is PALS [63], which streams video from multiple senders to

one receiver. However, the multiple streams in aggregate make up a single video

stream. In the video sensor case, the multiple streams are distinctly different streams.

The adaptation challenge for multiple senders is to choose a subset from the senders

and assign different parts of the same video for them to send so that the receiver can

get a complete copy of the video. Multiple sources generate different video and the

adaptation challenge is to collect the most useful video from all sources. In summary,

these adaptation technologies cannot address the requirements of video collection in a

sensor network even though they seem to have extra features compared to common

adaptation technologies.

In this chapter, we propose Steens, a multi-hop video buffering and adaptation

framework for video collection in sensor networks. In this framework, nodes in a

multi-hop route collaboratively participate in video adaptation and delivery of video

sensor data. We describe this framework in section 4.2. In section 4.3, we compare

 92

video quality, bandwidth wastage, and bandwidth sharing fairness of different

approaches within this framework and compare them with traditional IP-based video

adaptation mechanisms through trace-driven simulations.

4.2 Design of a Multi-hop Buffering and Adaptation Mechanism

Adaptation mechanisms need to know the network conditions to make proper

adaptation decisions. However, the lack of end-to-end semantics in a sensor network

makes it hard for a sensor node to detect network conditions several hops away.

Therefore, we propose to adapt video hop-by-hop according to the network conditions

on directly connected links, instead of conventional end-to-end adaptation that

depends on end-to-end network conditions. In this section, we describe the design of

Steens, a multi-hop buffering and adaptation framework for video collection in sensor

networks. We discuss the basic adaptation mechanisms we choose to use in Steens

and possible ways to compose them to construct a system-wide collaborative

adaptation mechanism that can effectively collect data in a multi-hop network and

allow bandwidth fair sharing among multiple sources.

For the purposes of this dissertation, we assume that network setup protocols exist

to construct and maintain the network topology. We also assume that data loss is

caused by congestion only, i.e., links between any two nodes are reliable through link

layer retransmission and the adaptation mechanisms have control over data dropping.

 93

4.2.1 Basic Tailoring Mechanism

For Steens we will use scalable encoding as the basic tailoring mechanism. There

are a number of reasons for this. First, tailoring scalably-encoded video allows video

to be adapted through dropping of data, leading to simplified computational

requirements for adaptation. Re-encoding or transcoding is too computationally

intensive and does not scale because intermediate nodes close to the sink have to tailor

multiple video streams from different sources. Second, it does not require

transmission of extra data to perform tailoring on intermediate nodes. Multi-encoding

requires transmitting multiple streams to intermediate nodes, which can be

prohibitively expensive. Finally, most video encoding schemes support scalability to

some degree and can be used in Steens. For example, even “non-scalable” encodings

can support temporal scalability by dropping frames.

4.2.2 Basic Adaptation Mechanism

In order to adapt the video within the network, we will use a priority-based

buffering and adaptation mechanism on individual nodes as shown in Figure 4-1. At

any time, high priority data (priority zero is the highest and priority three the lowest)

in a buffer are sent before low priority data. This is similar to the window-based

priority dropping mechanisms in [20][44] except that the “window” here is as large as

the buffer. There are a number of advantages of the choice of scalable encoding with

priority-based data dropping for adaptation. First, it does not require much

computation, which will not burden resource-constrained sensor nodes. Second, it

effectively uses buffering for adaptation and can potentially make good adaptation

 94

decisions by allowing the decisions to be delayed until more information is available.

Finally, it separates application-specific encoding-scheme-dependent prioritization

from the general scheduling (sending and dropping) algorithm. The prioritization

mechanism shown in Figure 4-1 is very simple and it tries to maintain a smooth frame

rate based on the assumption that all frames are independently encoded. More

complicated prioritization mechanisms can be easily integrated in without affecting

the generality of our discussion on adaptation mechanisms.

4.2.3 Composition

Given our chosen adaptation and tailoring mechanisms, the most important

question in the design of Steens is how to compose adaptation mechanisms on

individual sensor nodes into a whole system to achieve the application’s adaptation

goal. We identify three components that can change the behavior of the composed

system: global prioritization, buffer management, and signaling. The global

prioritization component accounts for the relative importance among video sources;

the buffer management component allocates buffer space among various sources; and

the signaling component exchanges information among neighbor nodes to help

manage buffers and make adaptation decisions. In the remainder of this section, we

 Priority 0

 Priority 1

 Priority 3

 Priority 2

 0 1 2 3 4 5 6 7 8 9 10 11

 7

 6

 5

 4

 3

 2

 1

 0

 11

 10

 9

 8

 Frame No.

Figure 4-1. The basic adaptation mechanism and a simple prioritization

mechanism. At any time, high priority data are sent before low priority data.

 95

briefly describe the three components and their impact on video quality, bandwidth

wastage, and bandwidth sharing in more detail.

4.2.3.1 Global prioritization

In Section 4.2.3, we assume a prioritization mechanism that maps the utilities of

data to priorities within one stream. When we combine adaptation mechanisms on

individual nodes together, however, prioritization also needs to consider the relative

importance of different video sources. For example, data from a camera at a security

door are likely more important than data from a camera at an office.

In this thesis, we assume a global prioritization component to map local priorities

to global priorities to reflect the importance of video sources. Because such networks

are collaborative rather than combative, we believe that this assumption is reasonable.

Example global mappings are shown in Figure 4-2. Figure 4-2(a) shows two video

sources that are equally important and their local priorities are mapped to the same

local priorities. In Figure 4-2(b), src1 is more important than src2 and all its data

should be sent before data from src2. Figure 4-2(c) shows that src2 is less important

than src1 in general but its highest priority data are as important as those from src1.

For example, src2 is the camera at the office, which is usually not as important as

camera src1 at the security door; but frames from src2 capturing things being moved

out of the office are of great importance. The mapping is application-specific and may

change over time; yet the adaptation mechanism shown in Figure 4-1 still works

because it works on the general notion of priorities.

 96

Global prioritization helps enforce bandwidth sharing among multiple video

sources because it reflects the importance of video sources. The importance of video

sources defines the goal of bandwidth sharing. In Figure 4-2(a), the two sources

should share the bandwidth equally. In Figure 4-2(b), if there is only bandwidth for

half of the data, then all bandwidth should be taken by src1. The bandwidth-sharing

goal is achieved at the granularity of priorities as long as the adaptation mechanism

can get as much high priority data to the sink as possible. If the adaptation mechanism

can achieve the fair-sharing goal in Figure 4-2(a), it can achieve the biased goal in

Figure 4-2(b). In this thesis, we will assume that all video sources are equally

important and the mapping in Figure 4-2(a) is used. We will focus on equal sharing

0

1

2

3

0

1

2

3

4

5

6

7

0

1

2

3

0

1

2

3

0

1

2

3

4

5

6

7

0

1

2

3

0

1

2

3

0

1

2

3

4

5

6

7

0

1

2

3

src1 src2 src1 src1 src2 src2

(a) two sources

are equally import

(b) src1 is more

important than src2

(c) some data from src1 are

more important than those

from src2

0 0 Local priority Global priority

Figure 4-2 Examples of global prioritization.

 97

for the rest of this chapter and our discussion can be easily generalized to unequal

sharing specified by prioritization.

4.2.3.2 Buffer management

The buffer space on a sensor node is shared by all sensor nodes using it to get data

to the sink. For a single source, the buffer space on intermediate nodes can be used for

video adaptation; if intermediate nodes can carry out the source’s adaptation policy,

the effective buffer space for the source is extended and better video quality can be

achieved. For multiple sources, how the buffer space is shared affects bandwidth

sharing.

There are two primary ways to manage buffers shared by multiple sources. They

can either share a single buffer in a first-come-first-serve manner or explicitly partition

the buffer amongst the sources. Partitioning can prevent a node from using more

resources than its fair-share. However, underutilization of buffer space may happen if

the partitions are not updated with network topology changes; for example, if a source

nodes becomes isolated, the partition reserved for it becomes empty and cannot be

used by another sensor whose partition is overflowing.

4.2.3.3 Signaling

Although adapting video in the network can help realize an application’s

adaptation policy, there are two problems if they make adaptation decisions using only

local information. One is priority inversion, a phenomenon in which data dropped by

a node might have a higher priority than data kept on other nodes and eventually make

 98

their way to the sink. The other is unnecessary bandwidth wastage, caused by data

being sent into the network but dropped somewhere along the way to the sink.

Exchanging information among sensor nodes can help make more globally

optimal adaptation decisions at the expense of signaling messages. We propose two

signaling protocols for information exchange in this chapter and study their effects on

reducing priority inversion and bandwidth wastage as well as the cost of signaling

messages.

The first signaling protocol is similar to the ECN (Explicit Congestion

Notification) mechanism [62] in the Internet to prevent congestion. ECN sends a

“buffer full” message when a high watermark is reached or a “buffer not full” message

when a low watermark is reached to upstream nodes toward the source. Nodes

receiving the “buffer full” message will stop sending data to that node. A sample

message sequence is shown in Figure 4-3(a). We believe that this signaling protocol

can reduce bandwidth waste because it helps prevents data that will be dropped at a

congestion node from being sent. It has other advantages as well. First, it helps use

in-network buffer space effectively by trying to delay dropping until all buffers along

the route from the congested node back to the source are full. Since buffers on nodes

close to the source usually are not shared by as many streams as buffers on nodes

close the sink, they can greatly increase in-network storage capacity while the network

is disconnected. Second, it might reduce priority inversion because it pushes dropping

back to the source and reduces dropping at multiple nodes. Third, the buffer full level

 99

is general information so it can be used in a multi-modal sensor network to reduce

bandwidth wastage for all types of data. However, this signaling protocol might cause

unfair sharing of resources on a certain node because it biases towards nodes close by,

which can potentially occupy the buffer before data from nodes farther away arrive.

The second signaling protocol we propose adjusts the dropping level when a high

watermark or a low watermark is reached and sends the dropping level, instead of the

“buffer full” message, to upstream nodes towards the source so they will not send data

that will ultimately be dropped. A sample sequence of messages of this signaling

protocol is shown in Figure 4-3(b). This signaling protocol can save bandwidth

wastage too but not as aggressively as the first signaling protocol because it allows

high priority data to be sent to a congested node and forces the congested node to drop

lower priority data arriving earlier. However, by allowing high priority data to be sent

Figure 4-3. Signaling protocols for collaboration among nodes.

 i+1 i+2 i

buf full

 drop x

buf full

 drop y

stop

sending y

and below

Signaling 2

stop

sending x

and below

 i+1 i+2 i

buf full
 full

 stop

sending

buf full

 full

 Signaling 1

 stop

sending

 i i+1 i+2 Sensor nodes:

(a) (b)

 100

to the congested node, it uses in-network buffers for more effective adaptation. By

moving high priority data towards buffers close to the sink, high priority data from all

sources are likely to be sent to the sink before low priority data; therefore, it connects

the distributed buffers together as if the adaptation is based on a larger buffer. By

using a “larger” buffer for adaptation, it reduces priority inversion further and

improves fair sharing.

The purpose of these two signaling protocols is to show the benefits of

collaboration among sensor nodes; therefore, their design is much simplified. For

example, we use the instantaneous buffer fill level to measure congestion or to

determine the dropping level. Systems based on instantaneous information tend to be

unstable and history information of the buffer can be used to reduce thrashing in a way

similar to how it is used in active queue management in the Internet [5][18].

4.3 Experimentation

In this section, we construct trace-driven simulations to verify the advantages of

hop-by-hop adaptation over end-to-end adaptation and explore different design

parameters in Steens.

4.3.1 Simulation Setup and Metrics

For our simulations, we captured a 3,000-frame trace using a Panoptes video

sensor [19]. The resolution of the video is 320×240 pixels and the average frame size

is 17,282 bytes. This results in a video stream of approximately 4.14Mbps (at 30

frames per second) for each camera. Figure 4-4 shows the network structures we use

 101

in the simulations. The single-video-source structure shown in Figure 4-4(a) will be

used when bandwidth sharing is not a concern. Because the last link to the sink is

typically shared by the most sensor nodes, we assume that it is the bottleneck link.

The results, however, should generalize to any network configuration where the

bottleneck is between the source and the sink. We assume that each sensor has

1.5Mega Bytes buffer space. Each simulation run is 100 seconds of simulated time.

The purposes of the simulations are (i) to understand the effectiveness of hop-by-

hop adaptation for each video source and (ii) to understand the sharing of bandwidth

among multiple resources.

The metrics we use to compare the effectiveness of video adaptation are video

quality and wasted bandwidth. Video quality is measured as the throughput and the

priority distribution of received frames. Video frame rate smoothness is also used to

9 1 2 3 4 6 7 8 0

1 2 3 4 5 8 6 7 9 0

Figure 4-4 The network structures used in the simulations.

9 3 2 G

1 4

5

7

6

8

Sensor node

with a camera

Sensor node

without a camera
sink

(a)

(b)

(c)

 102

compare video quality since the prioritization mechanism we choose aims to deliver a

smooth frame rate. There are two types of wasted bandwidth. One is unconsumed

bandwidth due to buffer underflow, improper scheduling, and so on. The other is

bandwidth consumed but not contributing to moving data to the sink. In this chapter,

we concentrate on the latter because it also wastes energy, a precious resource in

sensor networks. There are two sources for consumed but wasted bandwidth: data

dropped after leaving their sources and signaling traffic. In our experiments, dropped

data are also weighted by the distance from the source because data dropped far away

from the source consumes more energy than data dropped closer to the source and we

assume transmission over each hop consumes the same energy.

The metric for bandwidth sharing is fairness because we assume that all video

sources are equally important as discussed in Section 4.2.4.1. We use the distribution

of received frames for each camera to measure bandwidth-sharing fairness.

4.3.2 A Case for Hop-by-hop Adaptation

In this subsection, we show through simulations that hop-by-hop adaptation is

better than end-to-end adaptation in terms of video quality. We consider end-to-end

adaptation without end-to-end reliability, in which data may be dropped in the network

randomly, and end-to-end adaptation with end-to-end reliability. We have

implemented a simple end-to-end reliability scheme similar to that in [78], in which a

video frame is kept until an acknowledgement is received from the next hop. Figure

4-5 describes the acknowledgement sequences and data loss detection of the reliability

scheme.

 103

The one-source network structure shown in Figure 4-4(a) is used since we are

mainly concerned about the video quality of hop-by-hop adaptation. The average

bandwidth is 4.2Mbps, which is a little higher than the average bit-rate of the video

stream, on all links except the bottleneck link. The bandwidth for the bottleneck link

varies as shown along the x-axis in Figure 4-6. Also for the bottleneck link, there is a

6.7-second break starting at the 33
rd

 second and a 16.67-second break at the 66
th

second.

Figure 4-5. The end-to-end reliability scheme through hop-by-hop acknowledgement.

 i+1 i+2 i

Receive n

Ack n

 i i+1 i+2 Sensor nodes:

 Frame n

discard n

Receive n+1

 Frame n

No space,

drop n

 Frame x

Ack x

discard x

Receive n+1

Ack n+1

discard n+1,

detect loss of n

 Frame n

discard n+1 Frame n+1

Ack n+1

 Frame n+1

 104

The priority distribution for end-to-end adaptation and hop-by-hop adaptation is

shown in Figure 4-6. In Figure 4-6, the height of a column represents the total number

of frames received. There are at most four sub-parts within each column and each

sub-part represents the number of frames for a certain priority level, from the priority

level zero at the bottom to the priority three on the top. Although the throughput is

similar for both end-to-end adaptation and hop-by-hop adaptation, the hop-by-hop

mechanism gets more high priority data through when the bandwidth is low. For

Figure 4-6 . Throughput and priority distribution for end-to-end adaptation and hop-by-

hop adaptation. The height of a column represents the total number of frames received.

There are at most four sub-parts within each column and each sub-part represents the number of

frames for a certain priority level.

 0

 750

 1500

 2250

 3000

reliable e2e

end-to-end

hop-by-hop

reliable e2e

end-to-end

hop-by-hop

reliable e2e

end-to-end

hop-by-hop

reliable e2e

end-to-end

hop-by-hop

reliable e2e

end-to-end

hop-by-hop

N
u
m

b
e
r

o
f
fr

a
m

e
s
 (

fo
r

e
a
c
h
 p

ri
o
ri
ty

 a
n
d
 t
o
ta

l)

Bandwidth (Mbps)

0.91.83.03.64.2

pri 3

pri 2

pri 1

pri 0

 105

example, when the bottleneck link has bandwidth 1.8Mbps, ideally about 1,000 frames

(one third of the total frames) can get through and 750 of which are of priority zero

and 250 of which are of priority one. The throughputs for all three approaches are

close to the ideal case. Only the hop-by-hop approach has a close to ideal priority

distribution: about 710 priority-zero frames and 382 priority-one frames. The two

end-to-end approaches have frames evenly distributed, about 250 frames for each

priority level. If there are dependencies among these frames, the decodable frames for

these two approaches are far more less than 1000 frames. The frame distribution

along the time line is shown in Figure 4-7.

Figure 4-7 shows the frame rates for these approaches when the bottleneck

bandwidth is 1.8Mbps. The frame rates are calculated based on the capturing

timestamps, not on arrival time because there is no real-time requirement. Ideally, the

frame rate should be about ten frames per second all the time during the simulation.

None of the approaches achieve this frame rate. The hop-by-hop, however,

mechanism has a much smoother frame rate than the two end-to-end adaptation

mechanisms because it effectively utilizes buffer space on multiple nodes for

adaptation. Without reliability, the end-to-end approach has random frame rates

because the network drops data randomly; with reliability, only frames of the first 33

seconds get through because the video source makes adaptation decisions based on the

 106

Figure 4-7 The frame rates. The frame rates are calculated based on the

capturing timestamps, not on arrival time.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

fp
s

seconds

e2e adaptation without e2e reliability

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

fp
s

seconds

hop-by-hop adaptation

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

fp
s

seconds

reliable end-to-end adaptation

 107

bandwidth on the first hop and tries to send out data with all priorities while the

reliability scheme uses up the available bandwidth to send the first 33-second data. .

Figure 4-8 shows the wasted bandwidth for end-to-end adaptation and hop-by-hop

adaptation. The signaling traffic for end-to-end reliability is negligible. The dropped

data for end-to-end adaptation without reliability and hop-by-hop adaptation are

similar because they both send data aggressively. End-to-end adaptation with

reliability uses much of the buffer space for unacknowledged data thus slows down the

sending and drops about 50 megabytes (17%) less data than the other two mechanisms.

However, we do not believe that the saving can justify its highly variable frame rate.

 0

 50

 100

 150

 200

 250

 300

signaling messagesdropped frames

W
a

s
te

d
 B

a
n

d
w

id
th

 (
M

B
y
te

s
)

end-to-to adaptation

reliable e2e adaptation

hop-by-hop adapation

Figure 4-8 Wasted bandwidth

 108

Simulations in this subsection clearly show that hop-by-hop adaptation can

achieve better video quality on a multi-hop route than end-to-end adaptation. If there

are dependencies among frames such as in MPEG, the advantage of our approach is

more significant because a dropped high priority frame can cause many low priority

frames to be un-decodable. In the next subsection, we study different ways to

compose mechanisms on individual nodes in the hop-by-hop framework to better

video quality, to reduce bandwidth waste, and to promote fair sharing.

4.3.3 Exploring Steens

In this subsection, we experiment with different buffer management schemes and

signaling protocols and study their effects on the composed adaptation system. We

first study the video quality and bandwidth waste for a single source; then we study

the bandwidth sharing among multiple sources.

4.3.3.1 Effective adaptation for a single source

In this subsection, we focus on the effect of signaling protocols on hop-by-hop

adaptation for a single source assuming the single source can use all available buffer

space. The network structure and the network bandwidth are the same as the

simulations in Section 4.3.2, where the last link to the sink is the bottleneck link and

has two breaks during the simulation. We assume signaling messages are reliably

transmitted; however, the signaling protocols still work even if signaling messages are

lost occasionally. For example, in case a “buffer full” message is lost, the destination

node of this message keeps sending data to the full node, which will be dropped at the

full node and trigger the sending of another “buffer full” message.

 109

The throughput and the priority distribution are shown in Figure 4-9 for three

hop-by-hop adaptation systems: without explicit signaling, with Signaling 1 that

exchanges “buffer full” messages, and with Signaling 2 that exchanges dropping

levels. The throughput is almost the same for all three systems, as expected. In most

cases, the two systems with signaling have more high priority data than the system

without signaling because they delay the dropping of high priority data in a full buffer

by pushing dropping towards the source. The number of priority inversions is reduced

because priority inversions occur when there are multiple nodes dropping frames and

Figure 4-9 . Throughput and priority distribution for three hop-by-hop adaptation systems. The

height of a column represents the total number of frames received. There are at most four sub-parts

within each column and each sub-part represents the number of frames for a certain priority level.

 0

 750

 1500

 2250

 3000

signaling 1

no signaling

sigaling 2

no signaling

signaling 1

sigaling 2

no signaling

signaling 1

sigaling 2

signaling 1

no signaling

sigaling 2

signaling 1

no signaling

sigaling 2

N
u
m

b
e
r

o
f
fr

a
m

e
s
 (

fo
r

e
a
c
h
 p

ri
o
ri
ty

 a
n
d
 t
o
ta

l)

Bandwidth (Mbps)

0.91.83.03.64.2

pri 3

pri 2

pri 1

pri 0

 110

having different dropping levels. However, for Signaling 1, at the initial stage of the

simulation, there are low priority data getting into intermediate nodes and they cannot

be replaced by high priority data when the buffer is full. This low priority data gets

sent even when the average bandwidth is very low. In general, this is not a problem

for Signaling 2 because it allows high priority data to enter a full buffer to replace

those low priority frames unless occasionally these low priority data get sent before

high priority data arrive.

Figure 4-10 shows the frame rates for the bottleneck bandwidth of 1.8Mbps. Still,

no approach achieves the ideal 10 frames per second. However, both systems with

signaling do better than the system without signaling. Signaling 1 smoothes the frame

rate over the first short break; with Signaling 2, the frame is smoothed into two

relatively stable phases: before the 45
th

 second, the frame rate is 10 frames per second;

after that the frame rate is about 7.5 frames per second despite the long break on the

bottleneck link. The cause of the difference lies in how the buffer space is used as the

smoothness of video is tightly coupled with the buffer space for adaptation. In all

three cases, buffer space on intermediate nodes is used for adaptation. However,

without signaling, dropping starts immediately when the bottleneck link breaks while

the two signaling protocols delay the dropping by asking other nodes in the network to

store some data so the buffer space is used more efficiently than without signaling.

 111

Figure 4-10 The frame rates (hop-by-hop adaptation). The frame rates are

calculated based on the capturing timestamps, not on arrival time.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

fp
s

seconds

No signaling

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

fp
s

seconds

signaling 1

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

fp
s

seconds

signaling 2

 112

Signaling 2 uses the buffer space more efficiently than Signaling 1 because it not only

uses the buffer space to store data but uses it to store high-priority data by trying to

maintain a system-wide dropping level.

Next, we show the reduced bandwidth wastage through signaling (the bottleneck

bandwidth is 1.8Mbps) in Figure 4-11. Signaling 1 and Signaling 2 greatly reduce the

amount of data dropped in the network, 82.7% and 67.1%, respectively. The price

they pay is negligible: 7620 and 8850 signaling messages. Assuming 20 bytes per

signaling message, the wasted bandwidth for signaling messages is just about one

video frame, 0.053% and 0.062% of without-signaling-bandwidth-wastage.

Figure 4-11 Wasted bandwidth

 0

 50

 100

 150

 200

 250

 300

signaling messagesdropped frames (weighted)

W
a
s
te

d
 B

a
n
d
w

id
th

 (
M

B
y
te

s
)

no signaling

signaling 1

signaling 2

 113

For Signaling 1 and Signaling 2, we need to decide the high watermark and the

low watermark for the congested node. In Figure 4-9 and Figure 4-10, the high

watermark is that the buffer is completely full and the low watermark is that the buffer

has 10% free space. That is, in Signaling 1, a node asks its upstream nodes to stop

sending when the buffer is full and to resume sending when the buffer has 10% free

space; in Signaling 2, a node will decrease the dropping level when the buffer is full

and increase the dropping level when the buffer has 10% percent free space.

Obviously, changing the watermarks may change the behavior of the adaptation. We

have experimented with the low watermark of 5%, 20%, 30%, and 50%. The priority

distribution, the frame rate, and the wasted bandwidth are shown in Figure 4-12 to

Figure 4-17 for the two signaling protocols respectively. Changing the watermarks has

a significant impact on Signaling 1. In Figure 4-12, it is obvious that more low

priority data are protected and sent by a larger low watermark because it delays the

arrival of high priority data from other nodes. For example, when the bottleneck

bandwidth is 1.8Mbps, the low watermark 50% has about 164 less priority-zero

frames but 183 more priority-two frames than the low watermark 5%. Figure 4-13

shows clearly that more early data are protected by a larger low watermark regardless

of their priority. When the low watermark is 50%, the frame rate for the first 20

seconds is about 22.5 frames per second but falls to zero after about the 73
rd

 second.

A large low watermark does reduce wasted bandwidth as shown in Figure 4-14. For

example, the low watermark 50% wastes 70% less bandwidth than the 5% watermark.

This is expected since a large low watermark causes less aggressive sending and less

 114

oscillation thus less data dropping than a small low watermark. Increasing the low

watermark for Signaling 2 also increases the number of low priority data in the sink

and reduces the wasted bandwidth as shown in Figure 4-15, Figure 4-16, and Figure

4-17; however, it is not as sensitive to the low watermark as Signaling 1 because it

always allows high priority data to get through.

Figure 4-12 . Throughput and priority distribution for signaling 1 with different low watermarks.

The height of a column represents the total number of frames received. There are at most four sub-parts

within each column and each sub-part represents the number of frames for a certain priority level.

 0

 750

 1500

 2250

 3000

5
1
0

2
0

3
0

5
0 5

1
0

2
0

3
0

5
0 5

1
0

2
0

3
0

5
0 5

1
0

2
0

3
0

5
0 5

1
0

2
0

3
0

5
0

N
u

m
b

e
r

o
f

fr
a

m
e

s
 (

fo
r

e
a

c
h

 p
ri
o

ri
ty

 a
n

d
 t

o
ta

l)

Bandwidth (Mbps)

0.91.83.03.64.2

pri 3

pri 2

pri 1

pri 0

 115

Figure 4-13 The frame rates (signaling 1). The frame rates are

calculated based on the capturing timestamps, not on arrival time.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

fp
s

seconds

5 percent threshold

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

fp
s

seconds

10 percent threshold

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

fp
s

seconds

20 percent threshold

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

fp
s

seconds

30 percent threshold

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

fp
s

seconds

50 percent threshold

 116

Figure 4-14 Wasted bandwidth

 0

 50

 100

 150

 200

 250

 300

signaling messagesdropped frames (weighted)

W
a

s
te

d
 B

a
n

d
w

id
th

 (
M

B
y
te

s
)

5 percent

10 percent

20 percent

30 percent

50 percent

Figure 4-15 . Throughput and priority distribution for signaling 2 with different low watermarks.

The height of a column represents the total number of frames received. There are at most four sub-parts

within each column and each sub-part represents the number of frames for a certain priority level.

 0

 750

 1500

 2250

 3000

5
1
0

2
0
3
0
5
0 5
1
0
2
0
3
0
5
0 5
1
0
2
0
3
0
5
0 5
1
0
2
0
3
0
5
0 5
1
0
2
0

3
0
5
0

N
u
m

b
e
r

o
f
fr

a
m

e
s
 (

fo
r

e
a
c
h
 p

ri
o
ri
ty

 a
n
d
 t
o
ta

l)

Bandwidth (Mbps)

0.91.83.03.64.2

pri 3

pri 2

pri 1

pri 0

 117

Figure 4-16 The frame rates (signaling 2). The frame rates are

calculated based on the capturing timestamps, not on arrival time.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

fp
s

seconds

5 percent threshold

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

fp
s

seconds

10 percent threshold

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

fp
s

seconds

20 percent threshold

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

fp
s

seconds

30 percent threshold

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

fp
s

seconds

50 percent threshold

 118

Changing the watermarks provides a means to make trade-offs between video

quality and wasted bandwidth. For example, for Signaling 2, the low watermark

10%and the low watermark 30% result in similar video quality while the low

watermark 10% leads to about 30 megabytes more wasted bandwidth.

4.3.3.2 Bandwidth sharing among multiple sources

The focus of this subsection is on bandwidth sharing among multiple sources.

Intuitively, the network topology may change the sharing because sensor nodes farther

away from to the sink are likely getting less bandwidth on the bottleneck links, which

are usually close to the sink. Therefore, we use two network structures, both having

ten cameras, and try to draw conclusions independent of network topology: one is the

line structure shown in Figure 4-4(b) and the other is the tree structure in Figure 4-4 (c)

Figure 4-17 Wasted bandwidth

 0

 50

 100

 150

 200

 250

 300

signaling messagesdropped frames (weighted)

W
a
s
te

d
 B

a
n
d
w

id
th

 (
M

B
y
te

s
)

5 percent

10 percent

20 percent

30 percent

50 percent

 119

The bottleneck link in both structures is the last link to the sink. All links have

13.86Mbps bandwidth, which allows about frames from three cameras to get through.

The bottleneck links have four breaks at the16
th

 second, the 23
rd

 second, the 50
th

second, and the 66
th

 second with a total break time of 33.33 seconds, which are one

third of the simulation time.

In this chapter, we assume that all sources have the same priority, the same

prioritization mechanism, and the same data rate. The total bytes can be transmitted

on the bottleneck link is about 115 megabytes, that is, about 6,683 frames. Therefore,

each source should have about 668 frames in the sink under equal sharing, preferably

weighted toward higher priorities.

Figure 4-18 shows the numbers of received frames for each camera, for first-

come-first-serve buffering and partitioned buffering, respectively. Partitioned

buffering enforces fair sharing, regardless of the topology or the signaling protocol, as

shown in Figure 4-18(b). The maximum standard deviation with partitioned buffering

is 36.32 when Signaling 1 is used in the line structure. For the same signaling

protocol and topology, the standard deviation is 522.56 without partitions because

Signaling 1 is very biased to nodes close to the sink whose data arrive early at node 9.

Without signaling, the standard deviation is only 52.73 because all nodes send

aggressively and there is enough bandwidth to transmit their data to node 9 to compete

for the bandwidth on bottleneck link. Signaling 2 also protects early data but it allows

high priority data to be sent to a full buffer and forcing low priority data in the full

 120

 0

 750

 1500

 2250

 3000

treeline

N
u

m
b

e
r

o
f

fr
a

m
e

s
 f

o
r

e
a

c
h

 c
a

m

Topology

no signaling
signaling 1
signaling 2

 0

 750

 1500

 2250

 3000

treeline

N
u

m
b

e
r

o
f

fr
a

m
e

s
 f

o
r

e
a

c
h

 c
a

m

Topology

no signaling
signaling 1
signaling 2

Figure 4-18. Fairness. Received frames for each camera.

(a) no partitions

(b) with partitions

 121

buffer to be dropped; therefore the sharing is greatly improved compared to Signaling

1 and the standard deviation is 71.11. The tree structure is a little more amenable for

fair sharing because the difference in number of hops is smaller in the tree structure.

Changing the low watermark for resuming receiving in Signaling 1 and the low

watermark for decreasing the dropping level in Signaling 2 can change the sharing

among cameras when the buffer is not partitioned. In Figure 4-19, we show the effect

of changing the low watermarks on fair-sharing in the line structure. In general, a

smaller low watermark means more aggressive sending thus better sharing. The

standard deviation for Signaling 1 ranges from 257.7 to 723.94 as the low watermark

goes from 5% to 50% and the standard deviation for Signaling 2 ranges from 43.33 to

218.82. Nevertheless, Signaling 1 is bad for sharing whatever the low watermark is.

 0

 750

 1500

 2250

 3000

signaling 2signaling 1

N
u

m
b

e
r

o
f

fr
a

m
e

s
 f

o
r

e
a

c
h

 c
a

m

The line structure

5 percent
10 percent
20 percent
30 percent
50 percent

Figure 4-19. Fairness. Received frames for each camera.

 122

Figure 4-20 shows the priority distribution for multiple video sources. In Figure

4-20, partitions do not lower the throughput in our configuration because no partition

is underflowing. Signaling 1 has better priority distribution with partitions because

low priority data are forced to be dropped even at the beginning stage due to the small

partition and less low priority data can get to the sink. Signaling 2 works better

without partitions. For example, the tree topology without partitions has 6294 priority

–zero frames, which is 10% more than with partitions. We believe that this is because

high-priority data cannot get into a buffer when its partition is full while other

partitions have lower priority data.

Figure 4-20. Throughput and priority distribution. The height of a column represents the total number

of frames received. There are at most four sub-parts within each column and each sub-part represents

the number of frames for a certain priority level.

 0

 750

 1500

 2250

 3000

 3750

 4500

 5250

 6000

 6750

 7500

signaling 1

no signaling

signaling 2

signaling 1

no signaling

signaling 2

signaling 1

no signaling

signaling 2

signaling 1

no signaling

signaling 2

N
u

m
b

e
r

o
f

fr
a

m
e

s
 (

fo
r

e
a

c
h

 p
ri
o

ri
ty

 a
n

d
 t

o
ta

l)

topology and buffer management

tree
w/ partions

line
w/ partions

treeline

pri 3

pri 2

pri 1

pri 0

 123

Figure 4-21 shows the wasted bandwidth for multiple resources. As the space for

each partition is small, thrashing occurs for Signaling 1 and Signaling 2, which means

more data dropping as shown in Figure 4-21. For example, for the line structure and

Signaling 2, partitioning drops eight times more data than first-come-first-serve

buffering.

It is worth noting that in our experiments, buffer partitions perfectly reflect

network topology. In a real sensor network, video sources may have different data

rates and the network topology is always changing. A system with partitioned buffer

may not be able to achieve the fair-sharing shown in this section and buffer underflow

Figure 4-21 Wasted Bandwidth (dropped data)

 0

 100

 200

 300

 400

 500

 600

 700

 800

tree w/ partitionsline w/ paritionstreeline

d
ro

p
p
e
d
 d

a
ta

 (
M

B
y
te

s
)

no signaling

signaling 1

signaling 2

 124

can happen, which lowers the throughput of the system. Therefore, we believe that

Signaling 2 without partitions is a good option for fair sharing.

4.4 Conclusions

In this chapter, we propose Steens, a multi-hop buffering and adaptation

framework for video-based sensor networking applications. We have shown that

adapting video in the network is more effective in collecting high quality video than

adapting video at the network edges. We also show that properly sharing information

among sensor nodes can achieve smoother frame rates and reduce bandwidth wastage.

Sharing of application-information information among nodes can also maintain fair

sharing of bandwidth.

 125

CHAPTER 5

CASCADES: SUPPORTING VIDEO ADAPTATION IN SENSOR
NETWORKS

Providing video adaptation within a sensor network requires the underlying

systems software to support some degree of programmability and retaskability while

retaining high performance. In this chapter, we describe Cascades, a flexible

component-based framework for multi-modal sensor networking applications. We

also describe how it supports video adaptation within a sensor network.

5.1 Introduction

In order to reduce the power consumed for communication and to maximize

scalability of a sensor network, it is necessary to process or filter the data from various

sensors as close to the source as possible. For some applications, this might be at the

sensor itself, while in other applications it might be at a point where several sensor

data streams are fused together. Programming a distributed, embedded, and

heterogonous sensor network system consisting of up to thousands of sensor nodes is a

formidable challenge. This is further complicated by the fact that the processing

within the network may need to be adjusted or changed because the sensor application

may be dynamic over time. Changes might be in response to an event captured within

the sensor network or new algorithms being developed by the user to assimilate data.

 126

Therefore, supporting easy-to-program and easy-to-retask data processing in the

network is essential to the cost-effective development and maintenance of sensor

networking applications.

In scalar sensor networks, programmability and retaskablility are most often

provided by query language interfaces that provide high-level abstractions for

programming. TinyDB [51][52], Cougar [86], and SINA [68] are representative

examples of the query language approach. They view the sensor network as a

distributed database system and queries are distributed and processed in the network

automatically. Programming and retasking are accomplished by simply sending

queries to the sensor networks. However, the query language approach is suitable

only for scalar sensor networks because scalar data can be adequately processed

through generic operations such as MAXIMUM, MINIMUM, and AVERAGE.

We propose Cascades [36], a flexible component-based framework, to provide

programmability and retaskability to process multimedia data in the network. Unlike

scalar data, multimedia data processing tends to be very application-specific and

cannot be implemented solely through generic operations. Instead, component-based

approaches are often used to facilitate the development of multimedia applications by

flexibly reusing complex algorithms. For example, the Continuous Media Toolkit

(CMT) [56] from Berkeley allows users to construct streaming applications rapidly

through TCL scripts that combine lower-level video-based components. Cascades

adopts the component-based approach and addresses sensor networking issues such as

 127

retaskability and the integration of scalar data and multimedia data. We believe that

such a framework is necessary for building multimedia sensor networking applications.

In this chapter, we examine whether video adaptation in sensor networks can be

accomplished efficiently in a component-based framework. One key focus of our

work is the need for high-performance. Given the power and processing constraints

on embedded devices, component frameworks that are slow may not be usable in a

sensor network setting. We will show how Cascades can meet the requirements of

programmability, restaskablility, and high performance. We will first describe the

overall architecture of Cascades in Section 5.2.

5.2 The Cascades Architecture

As with any other component-framework, Cascades needs to provide the ability

to combine the components in a meaningful way. At one extreme, composability can

be accomplished through pre-defined code segments that are compiled together into a

single monolithic executable, allowing the system to run as efficiently as possible.

Unfortunately, this eliminates the ability to make changes to a running system. At the

other end of the spectrum, one could imagine using a shell-level scripting program to

compose such a system from a number of smaller executables each running as a

separate process. While making it easier to distribute smaller sub-components, such a

system may suffer from a large amount of overhead in switching between address

spaces and marshalling of data between stand-alone executables.

 128

Cascades adopts an approach somewhere between these two extremes: it uses a

high-level scripting language to connect highly-optimized components so that they

execute in the same process. High-level scripting languages allow users to specify

rather complex systems with minimal code. Furthermore, they allow programs written

in high-level languages such as C or C++ to be called as part of the script. This allows

a majority of computationally intensive code (such as video processing algorithms) to

be written in a language with a highly optimized implementation.

In Cascades, we have chosen to use Python as the high-level scripting. We have

several requirements for the scripting language. First, we prefer a language that

supports Object-Oriented Programming because objects fit into a component-based

framework naturally. Second, it needs to provide the complex data structures that are

needed to manage multimedia data. Third, to support re-tasking, it must have the

ability to add to or change the behavior of parts of the system while it is running.

Finally, the combination of components needs to be of high-performance in order to

minimize impact on systems performance. We have chosen Python because it meets

all these requirements and it is available on the two embedded platforms in our test

bed. We would expect that other scripting languages that meet theses requirements to

work as well.

The primary mechanism used to support the processing of multimedia data and

the integration of multi-modal data in Cascades is cascading filters. Filters are user-

supplied or toolkit-derived components that allow the sensor sub-system to tailor its

 129

data for the user application. The idea behind filters is that they process data with a

highly optimized piece of code (rather than with an interpreted language). There are

several basic types of filters that we envision.

Efilters (error filters) are the primary mechanism by which the handling of faulty

sensors can be specified. As an example, faulty readings can occur from bio-fouling

of the sensors in outdoor scenarios. These filters can consist of standard statistical

filtering techniques; they can also allow the application to specify the exact way in

which the faulty data may be handled.

Dfilters (scalar data filters) are used to manage scalar data within the sensor

network. They take one or more streams of scalar data as input and produce as output

one or more data streams as well as meta-information about the data. As an example,

one filter might calculate the average value measured per hour, either for a single

sensor or a group of sensors. The filter might also add meta-information such as

timing information or relational information between sensors. The sensor output can

then be used by other filters.

Vfilters (video filters) are used to manage video data being collected by video

sensors. Vfilters might consist of application-specific video processing algorithms or

off-the-shelf components. Application-specific algorithms might include image-

processing techniques for object identification; an off-the-shelf component might

include a compression algorithm or video adaptation algorithm.

 130

Ufilters (user filters) are user-specified filters that allow the user to specify the

integration of data from the other types of filters, for example, the annotation of video

streams using scalar sensor data.

The focus in this thesis is on the video filter aspects of the component-based

framework. We leave other types of filters as future work.

An example system in the Cascades framework is shown in Figure 5-1. We

believe that large multi-modal sensor networks will have a multi-tiered architecture

that consists of low-power sensor nodes such as the scalar sensor nodes in Figure 5-1

and high-power sensor nodes such as the video sensor nodes. The scalar sensors nodes,

Stream Processing Engine

Sensor Filtering

 DFilter

VFilter

EFilter

 UFilter

Query Processing and

Optimization

Stargate

Stargate

Data and metadata flow Control flow Filter flow (code motion)

Figure 5-1 An example system in the framework of Cascades. The Stargate nodes are more

powerful than scalar sensor nodes and can both capture video and be used to manage a number of scalar

sensor nodes.

Scalar sensor

and nodes
Video sensors Filters

Powerful sensor

nodes

 131

which are not capable of running Python due to memory constraints, can run the

operating system of their choice such as TinyOS [33]. The scalar sensors can be

abstracted to the point that they can be plugged as input into a dfilter into the

Cascades systems. For example, Cascades provides a mote abstraction layer, which

encapsulates the functionality of TinyDB [51] and exports the data collected from

Berkeley motes [33] through generic Python interconnects. The mote abstraction layer

runs on sensor nodes that are capable of data aggregation, so data from Berkeley

motes can be collected by other filters without dealing with the communication details

or TinyDB interfaces. Crossbow Stargates in Figure 5-1 are an example platform for

such data aggregation tasks. These nodes are powerful enough to process video data

and to support Cascades’ cascading filter architecture. In the Cascades framework,

the base station of a sensor network contains a stream processing engine that

determines the filters needed and their locations. A filter management system will

transmit and load filters into sensor nodes dynamically.

We do not expect Cascades to be a complete system. Rather, we are interested in

providing a framework for others to use in order to gain insights into what abstractions

are needed for building multimedia sensor networking applications. We believe that

once a large number of example applications have been assembled, it will be much

easier to provide a polished, generic, and relatively complete middleware system.

 132

5.3 Implementing Video Adaptation in Cascades

In this subsection, we describe our implementation of a simple prototype of

Steens in the Cascades framework. The prototype includes video capturing, video

filtering, video compression, video adaptation, and collaborative signaling. The

structure of this system is shown in Figure 5-2. The two video sources are both

Panoptes video sensors [19], which use the Crossbow Stargate embedded sensor

platforms. The Stargate platform runs the embedded Linux operating system 2.4.19-

rmk7-pxa2. It has a 400 MHz Intel Xscale processor, 64 megabytes of memory, a 100

Mbps Ethernet connector, and a compact flash wireless 802.11 card. Video capture is

accomplished through a Logitech QuickCam 4000 Pro USB camera. The in-network

manager and forwarder is an Intel StarEast node that has a 533MHz Intel IXP425

network processor and 256 megabytes on-board SDRAM (only 64 megabytes are

used). It runs Snapgear Linux 3.1.1, a uClinux distribution for embedded systems.

Wireless communication is through an Intel Calexico II card. Although the Stargate

nodes and the StarEast node both run embedded Linux, they are heterogeneous and

two different cross compilers are needed. The sink is a Compaq laptop computer

running Redhat 9.0. We will show in the following subsections how the software is

constructed, how retasking is realized, and the performance overhead of the Cascades

framework.

 133

5.3.1 Programmability

We begin with a basic adaptive video collection system without collaboration

among nodes. Our system consists of code from the original Panoptes video

sensor[19], the ffmpeg MPEG-1 codec [22], and code that we wrote to bring them

together. We implemented the prioritization mechanism in described in Figure 4-1. A

majority of the code was in written in C or C++. We wrapped the C/C++ code

segments with Python interfaces so that we have filters for capturing, motion detection,

compression, prioritization, and networking. With these filters, we can quickly build

the software on the video source nodes as shown in Figure 5-3. An example Python

script connecting filters together is shown in Figure 5-4. In Figure 5-4, the

application-layer filter we use is a motion filter, that is, video without change is

discarded, which is very useful to reduce data processing and transmission for

applications such as video surveillance. Other filters such as content-based filters can

be plugged in as easily, assuming they have been written. The compression filter is a

JPEG encoder and can be replaced with an MPEG encoder on-the-fly. The secretary

filter packs and unpacks network messages and the messenger filter sends and receives

Stargate

Stargate

StarEast

Figure 5-2 A simple adaptive video collection system. The two

video sources are Stargate-based. The StarEast node is an in-

network manager and forwarder. The laptop is the sink.

 134

messages. The software on the StarEast node is composed in a similar way with

fewer filters (no capture, motion detection, or compression filters). The prioritizer on

the StarEast node does global prioritization that maps local priorities to global

priorities.

#Initialization and minor procedures removed

while 1:

 messenger.PollSockets()

 rawImage = camera.CaptureOneFrame()

 if motionDector.HasMotion(rawImage):

 JPEGImage,len = compressor.Compress(rawImage)

 priority = prioritizer.PrioritizeCircle();

 JPEGMsg = secretary.MakeJPEGMsg(JPEGImage,len,priority)

 buffer.PutMsg(JPEGMsg)

 msgToSend = buffer.GetNextMsgToSend()

 if messenger.SendMsg("manager", msgToSend, -1):

 buffer.RemoveSelectedMsg()

Figure 5-4 The capturing and adaptation script. In this example, the application-layer

filter is a motion filter; the compression filter is a JPEG encoder; the prioritization

mechanism is show in Figure 4-1; and the buffer sends messages in the priority order.

Application-

Layer

Filtering

Compression
Buffering

and

Adaptation

Figure 5-3 The construction of a video sensor capturing and adaptation system. Each of the

filters has a Python interface, allowing it to be arranged in a variety of ways. The secretary filter

packs and unpacks network messages and the messenger filter sends and receives messages. The

Python script for an example video capture system is shown in Figure 5-4.

Prioritization
Video for

Linux

Capture

Secretary

Messenger

 135

We have also implemented collaboration and signaling protocols as the next step.

Since Python itself can do complicated processing and access data structures defined

in C++, we are able to implement signaling in Python and keep most of the C++ code

unchanged. Figure 5-5 shows a sample Python script on the StarEast node for the

ECN-like signaling in Steens. In the Python script, the manager node checks its

buffer-fill level periodically. If the buffer status changes, it sends the “stop sending”

message or the “resume sending” message to the video source nodes. Because Python

is interpreted and does not need compilation, adaptation parameters such as the

threshold for resuming sending can be adjusted easily. We have found that compiling

for heterogeneous platforms is tedious and error-prone even though we have only two

different platforms. The use of Python reduces the time required for prototyping,

which requires frequent code changes. After the signaling implementation in Python

was working properly, we ported it into C++ and built new buffering and adaptation

filters that were capable of sending and receiving signaling messages and

collaborating with other nodes.

In summary, we have found that the Cascades framework is quite useful for quick

construction of our video adaptation prototype through reusing existing code and

coding in the cross-platform scripting language Python.

 136

Figure 5-5 Implementing signaling in Python.

#Initialization and minor procedures removed.

def is_time_to_stop_receiving():

 global buffer_full, buffer

 if not buffer_full and buffer.IsFull():

 buffer_full = 1

 return 1

 return 0

def is_time_to_resume_receiving():

global buffer_full, buffer

if buffer_full and buffer.HasSpareSpace(8):

 buffer_full = 0

 return 1

return 0

while 1:

 messenger.PollSockets()

 msg = secretary.GetMsgFrom("sensor1")

 buffer.PutMsg(msg)

 msg = secretary.GetMsgFrom("sensor2")

 buffer.PutMsg(msg)

 if is_time_to_stop_receiving():

 cmd = secretary.MakeStopSendingMsg()

 messenger.SendMsg("sensor1", cmd, -1)

 messenger.SendMsg("sensor2", cmd, -1)

 if is_time_to_resume_receiving():

 cmd = secretary.MakeStartSendingMsg()

 messenger.SendMsg("sensor1", cmd, -1)

 messenger.SendMsg("sensor2", cmd, -1)

 msg2send = buffer.GetNextMsgToSend()

 if messenger.SendMsg("sink",msg2send,-1):

 buffer.RemoveSelectedMsg()

 137

5.3.2 Retasking

Retasking is supported by the dynamic reloading function in Python. The code

segment for retasking is shown in Figure 5-6. The Python script checks the time

stamp of the filter file regularly. If a new version is available, it is loaded and

executed. To enable re-tasking at different scopes, we re-organize the filters in Figure

5-3 into the structure shown in Figure 5-7. Filters in the black boxes are surrounded

by the dynamic loading check and can be reloaded when changed. In this example, we

are able to remove or add motion filtering and change the compression algorithm

while the software is running.

def run():

 global modify_time

 messenger.PollSockets()

 rawImage = camera.CaptureOneFrame()

 new_modify_time = os.stat("filters.py")[ST_MTIME]

 if modify_time != new_modify_time:

 modify_time = new_modify_time

 reload(filters)

 msg = filters.run(rawImage)

 buffer.PutMsg(msg)

 msgToSend = buffer.GetNextMsgToSend()

 if messenger.SendMsg("sink", msgToSend, -1):

 buffer.RemoveSelectedMsg()

Figure 5-6 Retasking through dynamic reloading. “filters.py” corresponds to the

processing filter in Figure 5-7. It could contain the motion detection filter or not.

 138

5.3.3 Performance Experiments

To understand the impact of performance overhead on video adaptation, we have

measured the amount of overhead on the Stargate platform introduced by connecting

the system via generic interfaces in Cascades and the amount of extra space on the

sensor needed to hold the code and Python executables.

5.3.3.1 Experimental setup

For experimentation, we compare and contrast four different types of system

architecture. We have implemented a simple video collection system similar to that

shown in Figure 5-3 but without an application layer filter or a prioritizer. We built

the system with a single monolithic C program. We will refer to this approach as the

Figure 5-7 The re-organized filter structure for retasking. Black boxes are filters whose files are

checked regularly and can be replaced on the fly. For example, the processing filter may include the

application-layer filtering or not; the compression filter can be a JPEG encoder or an MPEG encoder.

Video for

Linux

Capture

Application-

Layer

Filtering

Buffering

and

Adaptation

Prioritization

Processing filter

Compression

Prioritization

JPEG Encoder MPEG Encoder

Compression

 139

C approach. We have also built each of the components as standalone executables,

using a shell script with pipes to interconnect the components. We will refer to this

approach as the Shell approach. For the Cascades framework, we experimented with

two approaches. Both approaches use the same compiled C modules. One approach,

referred to as the Python-SWIG approach, uses the Simplified Wrapper and Interface

Generator (SWIG) [74] system to generate Python interfaces for the C code. The

other approach, which we refer to as Python-Native, uses hand-coded C to Python

interface mappings. SWIG can generate necessary glue code automatically but may

lead to excess code given its generic nature.

In the experimental set up, the sensor node is connected to a laptop through

Ethernet so there is no frame dropping due to network bandwidth. Video compression

is the major computationally-intensive component. We implemented three different

compression algorithms because we also expect the outcome of these experiments to

be useful in understanding what can and cannot be done in future multi-modal sensor

networks and what the minimum preocessing requirements are. The three

compression algorithms that we implemented are JPEG, JPEG-IPP, and MPEG. The

JPEG algorithm is based upon the standard libJPEG source code [38] that is freely

available. The code is optimized in a CPU independent way; thus, JPEG represents a

generic image compression algorithm. The JPEG-IPP algorithm takes advantage of

the Intel Integrated Performance Primitives (IPP) libraries that are available from

Intel[40]. The IPP libraries provide routines for copying large amount of memory,

performing DCT transform, Huffman encoding, and other multimedia related tasks.

 140

The libraries are primarily low-level assembly routines that take advantage of the

architecture. The MPEG algorithm is the MPEG-1 video codec from ffmpeg, which

we optimized for the Xscale processor on the Stargate platform by chossing the right

compile flags.

5.3.3.2 System performance

In this section, we compare and contrast the four different approaches that we

have implemented: the C approach, the Shell approach, the Python-SWIG approach,

and the Python-Native approach. For each approach, we captured 300 frames using

each compression algorithm and measured the number of frames per second it was

able to capture. The results show that the performance of the Python-based system is

very close to that of the monolithic C program and better than that of the Shell-based

systems.

Table 5-1 shows the results for JPEG encoding. The system is able to keep up

with the camera’s capture rate at the resolution 160×120 in all cases except the Shell

programming case. The multiple threads and I/O necessary to move information

between shell-scripted entities impose excessing overhead, as expected. Moving to

Table 5-1 JPEG performance. This table shows the performance of the libJPEG

code using the four interconnect techniques. The numbers shown are frame rates

in frames per second.

 C
Python-

Native

Python-

SWIG
Shell

160×120 29.60 29.55 29.57 27.09

320×240 10.01 10.00 9.45 8.07

640×480 2.62 2.59 2.60 2.07

 141

320×240 frames, we see that the C, Python SWIG and Python-Native algorithms

perform similarly. This is encouraging as it suggests that the overhead of using SWIG

is not that high. We also notice that using shell scripting in this case requires

approximately 20% overhead compared to the C approach. Finally, in the 640×480

case, we see that the processor is completely overwhelmed with data per frame. As a

result all versions perform poorly while the shell scripting version is about 20% slower

than the Python and C versions.

For JPEG-IPP at 160×120, as shown in Table 5-2, the Stargate processor is able

to keep up with the camera’s capture rate. The Shell version is slightly faster than in

the JPEG case primarily due to the IPP code freeing up some of the CPU cycles to do

data movement and context switching between address spaces. For the 320×240 video,

we see that the IPP-based code is able to achieve a video capture rate 80 to 87% better

than its non-IPP-based counterpart. This suggests that in building such sensor systems,

hand tuning of the filters for specific platforms is critical to performance. Meanwhile,

the overhead of the Shell version increases from about 20% to 25% compared to JPEG

because the computation time for each frame is decreased and the context-switch

Table 5-2 JPEG IPP performance. This table shows the performance of the JPEG

code that takes advantage of the IPP libraries using the four interconnect techniques.

The numbers shown are frame rates in frames per second,

 C
Python-

Native

Python-

SWIG
Shell

160×120 29.69 29.41 29.88 28.68

320×240 18.37 18.38 17.74 13.95

640×480 5.04 5.04 5.04 3.77

 142

overhead becomes a larger proportion of the total computation time. For the

resolution 320×240 we again see that the C and various Python versions are similar.

Finally, we see that in the 640×480 case, the IPP version allows nearly a doubling of

the frame rate achievable by the non-IPP version.

Results for the ffmpeg MPEG-1 video compression algorithm are shown in Table

5-3. It is interesting to note that adding motion compensation between frames requires

approximately 50% computational overhead in the 320×240 case and the 640×480

case compared to JPEG-IPP. We believe that this is partially due to the slower

memory hierarchy of the embedded processor. Another point worth mentioning is that

the Shell version does relatively better in the MPEG than in the JPEG cases; and the

overhead decreases form 20% in JPEG to about 10%. This is due to the facts that (i)

there is a significantly higher computation per frame requirement than in the JPEG

cases allowing the context switching overhead to be amortized over more cycles and

(ii) MPEG frames are smaller than JPEG frames on average requiring less data

copying between contexts.

Table 5-3 MPEG performance. This table shows the performance of the

ffmpeg code using the four interconnect techniques. The numbers shown are

frame rates in frames per second.

 C
Python-

Native

Python-

SWIG
Shell

160×120 22.55 21.96 21.43 20.25

320×240 8.46 8.32 8.35 7.55

640×480 2.41 2.45 2.40 2.18

 143

In general, we found that the Python-SWIG and Python-Native algorithms had

very similar performance. We also found that the Python versions perform similarly

to the C version. Given its interpretive nature, we believe that this is a significant

achievement for the writers of Python and something that we should take advantage of

for composability and retasking of sensor networking code. Finally, we note that on

average the MPEG frames are approximately half the size of the JPEG frames for the

320×240 case. It may be worth spending twice the computation time (compared to

JPEG-IPP) to encode video as MPEG frames to reduce bandwidth consumption in

extremely bandwidth-stringent environments

5.3.3.3 Code size

One potential drawback of using Python is that it requires that the Python

interpreter and necessary Python libraries (called modules in Python terminology) be

installed on the each node running the Python scripts. Clearly, this could limit the

types of embedded processors that the code can run on.

In Table 5-5, we have listed the code sizes for the JPEG-IPP algorithm. Here, we

see the clear differences between the various approaches. The C code is a single

compiled object allowing all the standard libraries to be linked in just once. For the

Shell approach, the code consists of compiled code segments, which are filters, and a

small script to connect them. The filters are compiled separately and each contains a

copy of the standard libraries. As a result, the Shell connected code is approximately

51% larger than the C code. The Python filters (the compiled code) require even more

space than the Shell filters due to the wrappers for the Python interfaces. Hand-

 144

writing the interface wrappers as in the Python-Native approach saves 120 kilobytes

compared to the Python-SWIG approach, at the expense of additional programming.

We also see that there is approximately one megabyte overhead to store the Python

interpreter and two small Python modules that are required to run the experiments.

Still, these are reasonable for all but the smallest devices.

Table 5-4, we have listed the MPEG-based code sizes. As shown in the table,

MPEG requires significantly more space (and processing power) in order to operate on

the embedded devices. This is as expected, given the complexity of motion estimation.

Because of the relatively large size of the MPEG compiled code, much of the space

Table 5-4 Code Sizes. This table shows the size in kilobytes of

the various subcomponents for the MPEG-based code.

 C
Python

Native

Python-

SWIG
Shell

Compiled

code
1064.9 1072.0 1318.3 1114.1

Script -- 1.2 0.6 0.6

Interpreter

and libraries
-- 1103.7 1103.7 --

Total 1064.9 2176.9 2422.6 1114.7

Table 5-5 Code Sizes. This table shows the size in kilobytes of

the various subcomponents for the JPEG-IPP code.

 C
Python-

Native

Python-

SWIG
Shell

Compiled

code
95.7 184.8 299.6 145.0

Script -- 1.0 0.6 0.6

Interpreter

and libraries
-- 1103.7 1103.7 --

Total 95.7 1289.5 1403.9 145.6

 145

overhead of the Python interpreter and the Python modules is amortized over the

larger code. For the Python-Native approach, the overhead compared to the C

approach decreases from about 1250% for JPEG-IPP to 104%. For the Python-SWIG

approach, the overhead decreases from 1370% to 125%. We expect that increasingly

complicated video processing will be needed for adaptive video collection and will

make the impact of Python’s overhead smaller.

5.4 Conclusions

We believe that a component-based framework will be needed to provide

programmability and retaskablility to integrate multimedia data into sensor networks.

We have proposed such a framework, Cascades, to support the processing of

multimedia data in the network and the integration of multi-modal data. In this

chapter, we have focused on supporting video adaptation in Cascades. Our

experimental implementation has show that video adaptation fits well into the

Cascades framework and has good performance.

 146

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Research Contributions

In this dissertation, we have focused on addressing application-specific

requirements in the process of adapting video to meet resource constraints. Existing

adaptation technologies for video streaming applications may be used to meet the

resource constraints; however, the mechanisms they use to lower resource

consumption and to respond to network changes might not be able to deliver

acceptable video for new emerging application scenarios. We have investigated new

mechanisms to adapt video to meet resource constraints as well as to satisfy

application requirements. In particular, we address two special requirements:

accommodating large variation in resolution and collecting video in a multi-hop sensor

network.

To accommodate large variation in resolution, our work focuses on supporting

wide-range resolution adaptation. Our work is the first to address the problem of

supporting wide-range resolution adaptation for block-based compression algorithms.

We have examined the performance of existing multi-resolution video technologies

when supporting a large number of resolutions; and have found the efficiency

decreases rapidly as the number of resolutions increases. We have proposed hybrid

 147

schemes and studied their performance. We have found that the Bonneville

framework, which combines multiple scalable encodings, can make good trade-offs

when organizing compressed video to support a wide range of resolutions

simultaneously.

Our work on video collection in a sensor network is the first to consider adapting

video in a multi-hop store-and-forward network, for non-real-time use, and for

multiple video sources. We have proposed to adapt the video in the network and

proposed the Steens framework to compose adaptation mechanisms on multiple nodes.

We have designed two signaling protocols in Steens to coordinate multiple nodes. Our

simulations show that in-network adaptation can use buffer space on intermediate

nodes for adaptation and achieve better video quality than conventional network-edge

adaptation. Our simulations also shown that explicit collaboration among multiple

nodes through signaling can further improve video quality, reduce bandwidth wastage,

and share bandwidth fairly.

We have also implemented a prototype of Steens on a video sensor network test-

bed. The implementation is in Cascades, a framework we propose to support multi-

modal sensor networking applications. The component-based framework of Cascades

provides programmability and retaskability for the implementation of Steens while

still maintains adequate performance.

 148

6.2 Future Directions

In this dissertation, we have proposed unique video adaptation technologies to

address challenges in supporting large variation in resolution and video collection in

sensor networks. As with any good research, new problems have come up during our

search for solutions. Below we list some of these problems that we believe are

important in the area of video adaptation for future diversified video applications.

6.2.1 Future Directions in Resolution Adaptation

To accommodate large variation in resolution, we have proposed Bonneville, a

framework for fine-grained resolution adaptation over a wide range of resolutions.

However, to provide users with what they want to watch from the high resolution

video shown on different display devices, we need both resolution adaptation to adjust

the video to an appropriate resolution and ROI adaptation to select the right region. In

Bonneville, video is encoded by block-based algorithms; a region can be encoded by

constraining motion estimation to search within blocks that comprise that region

[81][82]. The challenge is that the regions (and the resolutions) needed are not

known a priori. We need to encode small regions and compose regions of larger sizes

from them when needed. To construct regions of any size precisely, the smaller the

component regions, the better. However, compression efficiency decreases as regions

become smaller, since motion estimation is constrained to a region and a good match

may not exist in that region. What is the compression efficiency of regional encoding,

especially when combined with spatially scalable encodings, which we propose to

store high-resolution video in to support resolution adaptation? Will the saving of

 149

bandwidth by cropping irrelevant regions offset the degradation of compression

efficiency? Can we plan the regions based on video content, so that large regions can

be encoded that are likely to meet user needs? There are interesting questions for

future work.

6.2.2 Future Directions for Video-Based Sensor Applications

There are many open questions and challenges for video-based sensor

applications.

In our work, we have proposed an adaptive collection mechanism, Steens, that is

based on priorities. We have not considered how priorities should be assigned, and

assigning priorities to sensed video data is hard. Existing prioritization mechanisms

usually prioritize data packets using general frame information such as the frame type

and the dependencies among frames. Video collection is selective in nature so the

prioritization should consider the content of the video and is very application-specific.

 In Steens, we assume that all nodes are static and the multi-hop routes are

relatively stable. Researchers [67] have proposed another collection model in which

mobile “data mules” are roaming and sensor nodes send data to a data mule when it

gets close. This has proven very effective for scalar sensors when sensor nodes are

sparsely deployed. In the oceanographic example, the data mule could be an aircraft

that flies around to collect video data. It is not clear how well this model works with

video collection. Future work could consider such integration and its impact on multi-

hop buffering.

 150

Although many video sensor applications require only batched video collection,

there are situations where video needs to be streamed over the sensor network for

continuous playback. In this case, we still believe that collaborative in-network

adaptation can do a better job than end-to-end adaptation, which most of today’s

adaptive streaming technologies adopt, because it can have a better estimate of

network conditions and can push data dropping back, close to the source. In addition

to in-network adaptation, other forms of in-network video processing, such as stitching

images together to remove overlaps and filtering out irrelevant video, should be

exploited to prevent potential information overload as video is streamed from multiple

sensors to one destination in the sensor network. It is very challenging, though, to

control the streaming latency for continuous playback when adaptation buffers and

processing are both distributed.

 151

REFERENCE

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, “Wireless Sensor

Networks: a Survey”, Computer Networks 38 (2002) 393-422, Elsevier

Science

[2] R. Atta, M. Ghanbari, “A Drift Compensation Architecture for DCT-Pyramid

Video Coding”, in Proceedings of IEEE International Symposium on Video /

Image Processing and Multimedia Communications, Zadar, Croatia, June

2002.

[3] B. Birney, “Intelligent Streaming”, http://www.microsoft.com/windows

/windowsmedia/howto/articles/intstreaming.aspx

[4] V. Bhaskaran, K. Konstantinides, "Image and Video Compression Standards:

Algorithms and Architectures", Kluwer Academic Publishers, Boston /

Dordrecht / London, 1995.

[5] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd,

V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S.

Shenker, J. Wroclawski, L. Zhang, “Recommendations on Queue Management

and Congestion Avoidance in the Internet”, Internet RFC2309, April 1998.

[6] N. Bulusu, S. Jha, (editors) “Wireless Sensor Networks. A Systems

Perspective”, Artech House MEMS series, ISBN 1-8053-867-3.

[7] B. Chen, K. Jamieson, H. Balakrishnan, R. Morris, “Span: An Energy-Efficient

Coordination Algorithm for Topology Maintenance in Ad Hoc Wireless

Networks”, in Proceedings of the Annual International Conference on Mobile

Computing and Networking (MOBICOM 2001), Rome, Italy, July 2001.

[8] C.-Y. Chen, R. Klette, “Image Stitching – Comparison and New Techniques”,

in Proceedings of the 8th International Conference on Computer Analysis of

Images and Patterns (CAIP’99), Ljubljana, Slovenia, September 1999.

[9] J.-J. Chen, D. W. Lin, “Optimal Bit Allocation for Coding of Video Signals

over ATM Networks”, IEEE Journal on Selected Areas in Communications,

Vol. 15, No. 6, August 1997.

[10] M. Chu, J. E. Reich, F. Zhao, “Distributed Attention for Large Video Sensor

Networks”, in Proceedings of Intelligent Distributed Surveillance Systems

2004 Seminar, London, UK, February 2004,.

 152

[11] Y. Chu, S. G. Rao, S. Seshan, H. Zhang, “Enabling Conferencing Applications

on the Internet using an Overlay Multicast Architecture,” in Proceedings of

SIGCOMM 2001, San Diego, California, August 2001

[12] G. Conklin, G. Greenbaum, K. Lillevold, A. Lippman, “Video Coding for

Streaming Media Delivery on the Internet”, IEEE Transactions on Circuits and

Systems for Video Technology, Vol. 11, No. 3, March 2001.

[13] M. Domanski, L. Blaszak, S. Mackowiak, “AVC Video Coders with Spatial

and Temporal Scalability”, in Proceedings of Picture Coding Symposium,

Saint-Malo, France, April 2003.

[14] R. Dugad, N. Ahuja, “A Fast Scheme for Image Size Change in the

Compressed Domain”, IEEE Transactions on Circuits and Systems for Video

Technology, Vol. 11, No. 4, April 2001.

[15] R. Dugad, N. Ahuja, “A Scheme for Spatial Scalability Using Nonscalable

Encoders”, IEEE Transactions on Circuits and Systems for Video Technology,

Vol. 13, No. 10, October 2003.

[16] D. Estrin, L. Girod, G. Pottie, M. Srivastava, “Instrumenting the World with

Wireless Sensor Networks”, in Proceedings of International Conference on

Acoustics, Speech, and Signal Processing (ICASSP 2001), Salt Lake City,

Utah, May 2001.

[17] N. Feamster, D. Bansal, H. Balakrishnan, “On the Interactions between

Layered Quality Adaptation and Congestion Control for Streaming Video”, in

Proceedings of 11th International Packet Video Workshop (PV2001), Kyongiu,

Korea, April 2001.

[18] W.-C. Feng, K. G. Shin, D. D. Kandlur, D. Saha, “The BLUE Active Queue

Management Algorithms”, IEEE/ACM Transaction on Networking, Vol. 10,

No. 4, August 2002.

[19] W.-C. Feng, B. Code, E. Kaiser, M. Shea, W. Feng, L. Bavoil, “Panoptes: A

Scalable Architecture for Video Sensor Networking Applications”, in

Proceedings of ACM Multimedia 2003, Berkeley, California, November 2003.

[20] W.-C. Feng, M. Liu, B. Krishnaswami, A. Prabhudev, “A Priority-Based

Technique for the Best-Effort Delivery of Stored Video”, in Proceedings of

Multimedia Computing and Networking (MMCN ’99), San Jose, California,

January 1999.

[21] W.-C. Feng, J. Walpole, W. Feng, C. Pu, “Moving Towards Massively

Scalable Video-Based Sensor Networks”, in Proceedings of Workshop on New

Visions for Large-Scale Networks: Research and Applications, Washington,

DC, March 2001

[22] http://ffmpeg.sourceforge.net/, ffmpeg homepage.

 153

[23] M.L. Fisher, “The Lagrangian Relaxation Method for Solving Integer

Programming Problems”, Management Science, Vol. 27, January 1981.

[24] J. Foote, D. Kimber, “FlyCam: Practical Panoramic Video”, in Proceedings of

ACM Multimedia 2000, Los Angeles, California, October-November, 2000.

[25] H. Fujiwara, M. L. Liou, M.-T. Sun, K.-M. Yang, M. Maruyama, K. Shomura,

K. Ohyama, “An all-ASIC Implementation of a Low Bit-rate Video Codec”,

IEEE Transaction on Circuits and Systems for Video Technology, Vol. 2, No.

2, June 1992.

[26] D. L. Gall, “MPEG: A Video Compression Standard for Multimedia

Applications”, Communications of the ACM, Vol.34, No.4, April 1991.

[27] A. Gamal, L. J. Guibas, “Collaborative visual sensor networks”,

http://mediax.stanford.edu/projects/cvsn.html.

[28] D. Ganesan, R. Govindan, S. Shenker, D. Estrin, “Highly Resilient, Energy

Efficient Multipath Routing in Wireless Sensor Networks”, Mobile Computing

and Communications Review (MC2R) Vol. 1, No. 2, 2002.

[29] H.264/AVC Reference Software, http://iphome.hhi.de/suehring/tml/

[30] B. G. Haskell, A. Puri, A. N. Netravali, “Digital Video: An Introduction to

MPEG-2”, Chapman & Hall, ISBN 0-412-08411-2.

[31] J. Heidemann, R. Govindan, “An Overview of Embedded Sensor Networks”,

Information Sciences Institute Technical Report, ISI TR-2004-594, University

of Southern California.

[32] J. Hill, M. Horton, R. Kling, L. Krishnamurthy, “The Platforms Enabling

Wireless Sensor Networks”, Communications of the ACM, Vol. 47, No.6, June

2004

[33] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, “System

Architecture Directions for Networked Sensors”, in Proceedings of

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS-IX 2000), Cambridge,

Massachusetts, November 2000.

[34] R. Holman, J. Stanley, T. Ozkan-Haller, “Applying Video Sensor Networks to

Nearshore Environment Monitoring”, Pervasive Computing, October-

December 2003.

[35] J. Huang, W. Feng, J. Walpole, W. Jourve, “An Experimental Analysis of

DCT-based Approaches for Fine-grain Multi-resolution Video”, in

Proceedings Multimedia Computing and Networking (MMCN ’05), January

2005, San Jose, California.

[36] J. Huang, W. Feng, N. Bulusu, W. Feng, “Cascades: Scalable, Flexible, and

Composable Middleware for Multi-modal Sensor Networking Applications”,

 154

in Proceedings of Multimedia Computing and Networking (MMCN ’06),

January 2006, San Jose, CA.

[37] Q. Hu, S. Panchanathan, “Image/Video Spatial Scalability in DCT Domain”,

IEEE Transactions on Industrial Electronics, Vol. 45, February 1998.

[38] http://www.ijpg.org. Independent JPEG group homepage.

[39] http://imagemagick.org. ImageMagick homepage.

[40] http://www.intel.com/cd/software/products/asmo-na/eng/perflib/ipp/index.htm.

Intel® Integrated Performance Primitives main page.

[41] C. Intanagonwiwat, R. Govindan, D. Estrin, “Directed diffusion: A scalable

and robust communication paradigm for sensor networks”, in Proceedings of

the Sixth Annual International Conference on Mobile Computing and

Networking (MobiCom 2000), Boston, Massachusetts, August 2000.

[42] S. Jacobs, A. Eleftheriadis, “Streaming Video Using Dynamic Rate Shaping

and TCP Congestion Control”, Journal of Visual Communication and Image

Representation, 9(3), 1998.

[43] S. H. Kang, A. Zakhor, “Packet Scheduling Algorithm for Wireless Video

Streaming”, in Proceedings of 12th International Packet Video Workshop

(PV2002), Pittsburgh, PA, April 2002.

[44] C. Krasic, J. Walpole, W. Feng, “Quality-Adaptive Media Streaming by

Priority Drop”, in Proceedings of Network and Operating System Support for

Digital Audio and Video (NOSSDAV 2003), Monterey, California, June 2003.

[45] P. Kulkarni, D. Ganesan, P. Shenoy, “The Case for Multi-tier Camera Sensor

Networks”, in Proceedings of Network and Operating System Support for

Digital Audio and Video (NOSSDAV 05), Stevenson, Washington, June 2005.

[46] Y.-R. Lee, C.-W. Lin, C.-C. Kao, “A DCT-Domain Video Transcoder for

Spatial Resolution Downconversion”, in Proceedings of International

Conference on Visual Information and Information Systems (VISUAL 2002),

Hsin Chu, Taiwan, March 2002.

[47] Z. Lei, N. D. Georganas, “H.263 Video Transcoding for Spatial Resolution

Downscaling”, in Proceedings of IEEE International Conference on

Information Technology: Coding and Computing (ITCC 2002), Las Vegas,

Nevada, April 2002.

[48] W. Li, “Overview of Fine Granularity Scalability in MPEG-4 Video Standard”,

IEEE Transactions on Circuits and Systems for Video Technology, Vol. 11,

No. 3, March 2001

[49] M. Liou, “Overview of the px64 kbit/s Video Coding”, Communications of the

ACM, Vol. 34, No. 4, April 1991

 155

[50] J. Lubin, “A Human Vision System Model for Objective Picture Quality

Measurements”, International Broadcasting Convention, Amsterdam,

Netherlands, September 1997

[51] S. Madden, M. Franklin, J. Hellerstein, W. Hong, “TAG: a Tiny

AGgregation Service for Ad-Hoc Sensor Networks”, in Proceedings of the 4th

Symposium on Operating Systems Design and Implementation (OSDI 2002),

Boston, Massachusetts, California, December 2002.

[52] S. Madden, M. J. Franklin, J. M. Hellerstein, W. Hong, “The Design of an

Acquisitional Query Processor For Sensor Networks”, in Proceedings of

SIGMOD 2003, San Diego, California, June 2003.

[53] S. A. Martucci, I. Sodagar, T. Chiang, Y.-Q. Zhang, “A Zerotree Wavelet

Video Coder”, IEEE Transaction on Circuits and Systems for Video

Technology, Vol. 7, No. 1, February 1997.

[54] S. Mccanne, M. Vetterli, V. Jacobson, “Low-Complexity Video Coding for

Receiver-driven Layered Multicast”, IEEE Journal on Selected Areas in

Communications, Vol. 16, No. 6, August 1997.

[55] Z. Miao, A. Ortega, “Expected Run-time Distortion Based Scheduling for

Delivery of Scalable Media”, in Proceedings of 12th International Packet

Video Workshop (PV2002), Pittsburgh, PA, April 2002.

[56] K. Mayer-Patel, L. Rowe, “Design and Performance of the Berkeley

Continuous Media Toolkit”, in Proceedings of Multimedia Computing and

Networking (MMCN’97) San Jose, California, February 1997.

[57] A. Ortega, “Optimal bit allocation under multiple rate constraints”, in

Proceedings of the Data Compression Conference (DCC’96), Snowbird, Utah,

April 1996.

[58] A. Ortega, “Rate-Distortion Methods for Image and Video Compression”,

IEEE Signal Processing Magazine, November 1998.

[59] G. J. Pottie, W. J. Kaiser, “Wireless Integrated Network Sensors”,

Communication of the ACM, Vol. 43, No. 5, May 2000.

[60] http://python.org. Python homepage.

[61] Y. Shoham, A. Gersho, “Efficient Bit Allocation for an Arbitrary Set of

Quantizers”, IEEE Transaction on Acoustic, Speech, and Signal Processing,

Vol. 36, No. 9, September 1988.

[62] K. K. Ramakrishnan, S. Folyd, “A Proposal to add Explicit Congestion

Notification (ECN) to IPv6 and to TCP”, Internet draft draft-kksjf-ecn-oo.txt,

work in progress, November 1997.

[63] R. Rejaie, A. Ortega, “PALS: Peer-to-Peer Adaptive Layered Streaming,” in

Proceedings of Network and Operating System Support for Digital Audio and

Video (NOSSDAV 2003), Monterey, California, June 2003.

 156

[64] R. Rejaie, M. Handley, D. Estrin, “RAP: An End-to-End Rate-based

Congestion Control Mechanism for Realtime Streams in the Internet”, in

Proceedings of IEEE INFOCOM 1999, New York, New York, March 1999.

[65] A. M. Rohaly, P. Corriveau, J. Libert, A. Webster, V. Baroncini, J. Beerends,

J.-L. Blin, L. Contin, T. Hamada, D. Harrison, A. Hekstra, J. Lubin, Y.

Nishida, R. Nishihara, J. Pearson, A. F. Pessoa, N. Pickford, A. Schertz, M.

Visca, A. Waston, S. Winkler, “Video Quality Experts Group: Current Results

and Future Directions”, in Proceddings of SPIE Visual Communication and

Image Processing, Perth, Australia, June 2000.

[66] Y. Sankarasubramaniam, O.B. Akan, I.F. Akyildiz, “ESRT: Event-to-Sink

Reliable Transport for Wireless Sensor Networks”, in Proceedings of the

Fourth ACM International Symposium on Mobile Ad Hoc Networking and

Computing (MOBIHOC 2003), Annapolis, Maryland, June 2003.

[67] R.C. Shah, S. Roy, S. Jain, W. Brunette, “Data MULEs: modeling a three-tier

architecture for sparse sensor networks”, in Proceedings of the First IEEE

International Workshop on Sensor Network Protocols and Applications,

Anchorage, Alaska, May 2003.

[68] C.-C. Shen, C. Srisathapornphat, C. Jaikaeo, “Sensor Information Networking

Architecture and Applications”, IEEE Personal Communications. August

2001.

[69] C. Shin, K. Seo, J. Kim, “Rectangular Region-based Selective Enhancement

(RSE) for MPEG-4 Fine Granular Scalability”, in Proceedings of 12th

International Packet Video Workshop (PV2002), Pittsburgh, PA, April 2002.

[70] P. Sitbon, W.-C. Feng, N. Bulusu, T. Dang, “SenseTK: A Multimodal,

Multimedia Sensor Networking Toolkit”, in Proceedings of the ACM/SPIE

Multimedia Computing and Networking Conference (MMCN 2007), San Jose,

CA, January 2007 (to appear).

[71] G. J. Sullivan, T. Wiegand, “Rate-Distortion Optimization for Video

Compression”, IEEE Signal Processing Magazine, November 1998.

[72] X. Sun, F. Wu, S. Li, W. Gao, Y. Zhang, “Seamless Switching of Scalable

Video Bitstreams for Efficient Streaming”, IEEE Transaction on Multimedia,

Vol. Y, No. 2, April 2004.

[73] X. Sun, S. Li, F. Wu, J. Shen, W. Gao, “The Improved SP Frame Coding

Technique for the JVT Standard”, in Proceedings of IEEE International

Conference on Image Processing (ICIP 2003), Barcelona, Spain, September

2003.

[74] http://www.swig.org. SWIG homepage.

[75] K. H. Tan, M. Ghanbari, “Layered Image Coding Using the DCT Pyramid”,

IEEE Transactions on Image Processing, Vol. 4, No. 4, April, 1995.

 157

[76] A. Vetro, C. Christopoulos, H. Sun, “Video Transcoding Architectures and

Techniques: an Overview,” IEEE Signal Processing Magazine, March 2003.

[77] G.K. Wallace, “The JPEG Still Picture Compression Standard”,

Communications of the ACM, Vol. 34, No. 4, April 1991

[78] C.Y. Wan, A.T. Campbell, L. Krishnamurthy, “PSFQ: a reliable transport

protocol for wireless sensor networks”, in Proceedings of the 1st ACM

International Workshop on Wireless Sensor Networks and Applications (WSNA

’02), Atlanta, Georgia, September 2002

[79] C.-Y. Wan, S.B. Eisenman, A.T. Campbell, “CODA: Congestion Detection

and Avoidance in Sensor Networks”, in Proceedings of ACM SenSys 2003, Los

Angeles, California, November 2003.

[80] Q. Wang, Z. Xiong, F. Wu, S. Li, “Optimal Rate Allocation for Progressive

Fine Granularity Scalable Video Coding”, IEEE Signal Processing Letters,

Vol. 9, No. 2, February 2002.

[81] Y.-K. Wang, M.M. Hannuksela, M. Gabbouj, “Error-robust inter/intra mode

selection using isolated regions,” in Proceedings of International Packet Video

Workshop 2003 (PV2003), Nantes, France, April 2003.

[82] T. Wiegand, G.J. Sullivan, G. Bjntegaard; A. Luthra, “A. Overview of the

H.264/AVC video coding standard”, IEEE Transactions on Circuits and

Systems for Video Technology, Vol. 13, No. 7. July 2003

[83] A. Woo, T. Tong, D. Culler, “Taming the Underlying Challenges of Reliable

Multihop Routing in Sensor Networks”, in Proceedings of ACM SenSys 2003,

Los Angeles, California, November, 2003,

[84] F. Wu, S. Li, Y.-Q. Zhang, “A framework for efficient progressive fine

granularity scalable video coding”, IEEE transactions on Circuits and Systems

for Video Technology, Vol. 11, No. 3, 2001.

[85] Y. Xu, J. Heidemann, D. Estrin, “Geography-informed Energy Conservation

for Ad Hoc Routing”, in Proceedings of the Annual International Conference

on Mobile Computing and Networking (MOBICOM 2001), Rome, Italy, July

2001.

[86] Y. Yao, J. Gehrke, “The Cougar Approach to In-Network Query Processing in

Sensor Networks”, SIGMOD Record, Vol. 31, No. 3, September 2002.

[87] W. Ye, J. Heidemann, D. Estrin, “An Energy-Efficient MAC Protocol for

Wireless Sensor Networks”, in Proceedings of IEEE INFOCOM 2002, New

York, USA, June 2002.

[88] P.Yin, M. Wu, B. Liu, “Video Transcoding by Reducing Spatial Resolution”,

in Proceedings of IEEE International Conference on Image Processing (ICIP

2000), Vancouver, BC, Canada, September 2000.

 158

[89] Y.-Q. Zhang, S. Zafar, “Motion-compensated Wavelet Transform Coding for

Color Video Compression”, in Proceedings of SPIE, Vol. 1605, Visual

Communications and Image Processing '91: Visual Communication, Kou-Hu

Tzou; Toshio Koga, Editors, November 1991

	Portland State University
	PDXScholar
	2006

	Efficient Support for Application-Specific Video Adaptation
	Jie Huang
	Let us know how access to this document benefits you.
	Recommended Citation

	Microsoft Word - new32.doc

