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NONSMOOTH ALGORITHMS AND NESTEROV’S SMOOTHING
 
TECHNIQUE FOR GENERALIZED FERMAT–TORRICELLI
 

PROBLEMS∗
 

NGUYEN MAU NAM† , NGUYEN THAI AN‡ , R. BLAKE RECTOR† , AND JIE SUN§ 

Abstract. We present algorithms for solving a number of new models of facility location which 
generalize the classical Fermat–Torricelli problem. Our first approach involves using Nesterov’s 
smoothing technique and the minimization majorization principle to build smooth approximations 
that are convenient for applying smooth optimization schemes. Another approach uses subgradient
type algorithms to cope directly with the nondifferentiability of the cost functions. Convergence 
results of the algorithms are proved and numerical tests are presented to show the effectiveness of 
the proposed algorithms. 

Key words. MM principle, Nesterov’s smoothing technique, Nesterov’s accelerated gradient 
method, generalized Fermat–Torricelli problem, subgradient-type algorithms 

AMS subject classifications. 49J52, 49K40, 58C20 
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1. Introduction. The Fermat–Torricelli problem was introduced in the 17th 
century by the French mathematician Pierre de Fermat and can be stated as follows: 
Given a finite collection of points in the plane, find a point that minimizes the sum 
of the distances to those points. This practical problem has been the inspiration for 
many new problems in the fields of computational geometry, logistics, and location 
science. Many generalized versions of the Fermat–Torricelli have been introduced and 
studied over the years; see [14, 15, 17, 19, 20, 21, 26] and the references therein. In 
particular, the generalized Fermat–Torricelli problems involving distances to sets were 
the topics of recent research; see [2, 4, 7, 19, 20]. 

In this paper, we focus mainly on developing effective numerical algorithms for 
generalized Fermat–Torricelli problems. Let Rn be the n-dimensional Euclidean space. 
Given a nonempty compact convex set F ⊂ R

n that contains the origin as an interior 
point, define the function 

(1) σF (u) := sup{(u, x) | x ∈ F }, 

which reduces to the dual norm generated by a norm l · lX when F := {x ∈ 
R

n | lxlX ≤ 1}. 
The generalized distance function defined by the dynamic F and the target set Θ 

is given by 

(2) dF (x; Θ)  :=  inf{σF (x − w) | w ∈ Θ}. 
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If F is the closed unit Euclidean ball of Rn, the function (2) reduces to the shortest 
distance function or simply the distance function 

(3) d(x; Θ)  :=  inf{lx− wl |  w ∈ Θ}. 

Given a finite collection of nonempty closed convex sets Ωi for i = 1, . . . ,m, 
consider the following optimization problem: 

(4) minimize T (x), x  ∈ Ω, 

where Ω is a convex constraint set, and the cost function T is defined by 

mm 
T (x) :=  dF (x; Ωi). 

i=1 

In the general case of problem (4), the objective function T is not necessarily 
smooth. To solve problem (4) or, more generally, a nonsmooth optimization problem, 
a natural idea involves using smoothing techniques to approximate the original non-
smooth problem by a smooth one. Then, different smooth optimization schemes are 
applied to the smooth problem. One of the successful implementations of this idea 
was provided by Nesterov. In his seminal papers [25, 23], Nesterov introduced a fast 
first-order method for solving convex smooth optimization problems in which the cost 
functions have Lipschitz gradient. In contrast to the convergence rate of O(1/k) when  
applying the classical gradient method to this class of problems, Nesterov’s acceler
ated gradient method gives a convergence rate of O(1/k2). In Nesterov’s nonsmooth 
optimization scheme, an original nonsmooth function of a particular form is approx
imated by a smooth convex function with Lipschitz gradient. Then the accelerated 
gradient method can be applied to solve the smooth approximation. 

Another approach uses subgradient-type algorithms to cope directly with the 
nondifferentiability. In fact, subgradient-type algorithms allow us to solve the problem 
in very broad settings that involve distance functions generated by different norms 
and also generalized distance functions generated by different sets F . However, the 
classical subgradient method is known to be slow in general. Thus, it is not a good 
option when the number of target sets is large in high dimensions. We apply the 
stochastic subgradient method to deal with this situation. It has been shown that the 
stochastic subgradient method is an effective tool for solving many practical problems; 
see [1, 28] and the references therein. This simple method also shows its effectiveness 
for solving the generalized Fermat–Torricelli problem. 

The remainder of this paper is organized as follows. In section 2 we give an intro
duction to Nesterov’s smoothing technique, Nesterov’s accelerated gradient method, 
and the minimization majorization (MM) principle to solve nonsmooth optimization 
problems. These tools will be used in sections 3 and 4 to develop numerical algorithms 
for solving generalized Fermat–Torricelli problems with points and sets. Subgradient
type algorithms for solving these problems are also presented in section 4. Section 5 
contains numerical examples to illustrate the algorithms. 

Throughout the paper, (·, ·) denotes the usual inner product in Rn, and the corre
sponding Euclidean norm is denoted by l ·l; F is assumed to be a nonempty compact 
convex set in Rn that contains 0 as an interior point; bd F denotes the topological 
boundary of F . We also use basic concepts and results of convex optimization, which 
can be found, e.g., in [24, 27]. 
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2. Nesterov’s smoothing technique, accelerated gradient method, and 
MM principle. In this section we study and provide more details on Nesterov’s 
smoothing technique and accelerated gradient method introduced in [23]. We also 
present a general form of the MM principle well known in computational statistics. 

Let f : Rn → R be a convex function. Consider the constrained optimization 
problem 

minimize f(x) subject to x ∈ Ω, 

where f is not necessarily differentiable and Ω is a nonempty closed convex subset of 
R

n . 
The class of functions under consideration is given by 

f(x) :=  max{(Ax, u) − φ(u) | u ∈ Q}, x  ∈ R
n , 

where A is an m × n matrix, Q is a nonempty compact convex subset of Rm, and  φ 
is a continuous convex function on Q. 

Let d be a continuous strongly convex function on Q with parameter σ >  0. The 
function d is called a prox-function. Since  d is strongly convex on Q, it has a unique 
optimal solution on this set. Denote 

ū := arg min{d(u) | u ∈ Q}. 
Without loss of generality, we assume that d(ū) = 0. From the strong convexity of d, 
we also have 

d(u) ≥ 
σ lu − ūl2 for all u ∈ Q.
2 

2Throughout the paper we will work mainly with the case where d(u) =  1 lu − ūl .2 
Let μ be a positive number called a smooth parameter. Define 

(5) fμ(x) :=  max{(Ax, u) − φ(u) − μd(u) | u ∈ Q}. 
The function fμ will be the smooth approximation of f . 

For an m × n matrix A = (aij ), define 

(6) lAl := max{lAxl | lxl ≤ 1}. 
The definition gives us 

lAxl ≤ lAl lxl for all x ∈ R
n . 

We also recall the definition of the Euclidean projection from point x ∈ R
n to a 

nonempty closed convex subset Ω of Rn: 

π(x; Ω)  :=  {w ∈ Ω | d(x; Ω)  =  lx − wl}. 
Let us present below a simplified version of [23, Theorem 1] that involves the 

usual inner product of Rn . We provide a new detailed proof for the convenience of 
the reader. 

Theorem 2.1. Consider the function f given by 

f(x) := max{(Ax, u) − (b, u) | u ∈ Q}, x  ∈ R
n , 
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2where A is an m × n matrix and Q is a compact subset of Rm. Let  d(u) =  1 lu − ūl2 
with ū ∈ Q. 

Then the function fμ in (5) has the explicit representation   22lAx − bl μ Ax − b 
fμ(x) =  + (Ax − b, ū) −  d(ū + ; Q)

2μ 2 μ 

and is continuously differentiable on Rn with its gradient given by 

∇fμ(x) =  AT uμ(x), 

where uμ can be expressed in terms of the Euclidean projection   
Ax − b 

uμ(x) =  π ū+ ; Q . 
μ 

The gradient ∇fμ is a Lipschitz function with constant 

1 2£μ = lAl . 
μ 

Moreover, 

(7) fμ(x) ≤ f(x) ≤ fμ(x) +  
μ 
[D(ū; Q)]2 for all x ∈ R

n ,
2 

where D(ū; Q) is the farthest distance from ū to Q defined by 

D(ū; Q) :=  sup{lū− ul | u ∈ Q}. 

Proof. We  have    
μ 

  fμ(x) = sup (Ax − b, u) −  lu − ūl2 | u ∈ Q
2   

μ 2 
= sup − lu − ūl2 − (Ax − b, u) | u ∈ Q

2 μ     u − ū− 
Ax − b 
μ

      2 2lAx − bl 2 
= − 

μ 
2 
inf − − (Ax − b, ū) | u ∈ Q

μ2 μ     u − ū− 

    2  
| u ∈ Q

 
2lAx − bl Ax − b 

μ

μ 
+ (Ax − b, ū) −  inf= 

2μ 2     22lAx − bl μ Ax − b 
= + (Ax − b, ū) −  d ū+ ; Q . 

2μ 2 μ 

Since the function ψ(u) :=  [d(u; Q)]2 is continuously differentiable with ∇ψ(u) =  
2[u − π(u; Q)] for all u ∈ Rm (see, e.g., [11, p. 186]), it follows from the chain rule 
that       

1 μ 2 Ax − b Ax − b ∇fμ(x) =  AT(Ax − b) +  ATū− AT ū+ − π ū+ ; Q
μ 2 μ μ μ   

Ax − b 
= ATπ ū+ ; Q . 

μ 

http:Proof.We
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From the property of the projection mapping (see [11, Proposition 3.1.3, p. 118]) and 
the Cauchy–Schwarz inequality, for any x, y ∈ R

n we have 

2
Ax − b Ay − b l∇fμ(x) −∇fμ(y)l2 = ATπ ū+ ; Q −ATπ ū+ ; Q
μ μ 

2
Ax − b Ay − b ≤ lAl2 π ū+ ; Q − π ū+ ; Q
μ μ    

Ax −Ay Ax − b Ay − b ≤ lAl2 , π  ū+ ; Q − π ū+ ; Q
μ μ μ    

2lAl Ax − b Ay − b 
= x − y, ATπ ū+ ; Q −ATπ ū+ ; Q

μ μ μ 
2lAl

= (x − y, ∇fμ(x) −∇fμ(y))
μ 

lAl2 

≤ lx − yll∇fμ(x) −∇fμ(y)l. 
μ 

This implies that 

lAl2 

l∇fμ(x) −∇fμ(y)l ≤  lx − yl. 
μ 

The lower and upper bounds in (7) follow from 
( )μ μ μ(Ax−b, u)− lu−ūl2 ≤ (Ax−b, u) ≤ (Ax − b, u) − lu − ūl2 + sup{lq −ūl2 | q ∈ Q}

2 2 2 

for all x ∈ R
n and u ∈ Q. 

Example 2.2. Let l · lX1 and l · lX2 be two norms in Rm and Rn, respectively, 
and let l · lX∗ and l · lX∗ be the corresponding dual norms, i.e., 

1 2 

lxlX∗ := sup{(x, u) | lulXi ≤ 1}, i  = 1, 2. 
i 

Denote BX1 := {u ∈ Rm | lulX1 ≤ 1} and BX2 := {u ∈ Rn | lulX2 ≤ 1}. Consider  
the function f : Rn → R defined by 

g(x) :=  lAx − blX∗ + λlxlX∗ ,
1 2 

2where A is an m×n matrix, b ∈ R
m, and  λ >  0. Using the prox-function d(u) =  1 lul ,2 

one finds a smooth approximation of f below: 

2 22 2lAx − bl μ Ax − b lxl μ x 
gμ(x) =  − d ; BX1 + λ − d ; BX2 . 

2μ 2 μ 2μ 2 μ 

The gradient of fμ is 

Ax − b x ∇gμ(x) =  ATπ ; BX1 + λπ ; BX2 ,μ μ 

and its Lipschitz constant is 

2lAl + λ 
Lμ = . 

μ 
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Moreover, 

gμ(x) ≤ g(x) ≤ gμ(x) +  
μ 
([D(0; BX1 )]

2 + [D(0; BX2 )]
2) for all x ∈ R

n . 
2 

For example, if l · lX1 is the Euclidean norm, and l · lX2 is the £∞-norm on Rn, then  

Ax − b x ∇gμ(x) =  AT + λmedian , e,−e , 
max{lAx− bl, μ} μ

where e = [1, . . . , 1]T ∈ Rn . 
Let us provide another example of support vector machine problems. Our  ap

proach simplifies and improves the results in [32]. 
mExample 2.3. Let S := {(Xi, yi)} be a training set, where Xi ∈ Rp is the i=1 

ith row of a matrix X and yi ∈ {−1, 1}. The corresponding linear support vector 
machine problem can be reduced to solving the following problem: 

m

minimize g(w) :=  
1 lwl2 + λ 

m 
£i(w), w  ∈ R

p,
2 

i=1 

where £i(w) =  max{0, 1 − yiXiw}, λ > 0. 
Let Q := {u ∈ Rm | 0 ≤ ui ≤ 1}, and define 

mm 
f(w) :=  £i(w) = max  (e − Y Xw, u), 

u∈Q
i=1 

where e = [1, . . . , 1]T and Y = diag(y) with y = [y1, . . . , ym]T . 
Using the prox-function d(u) =  1 lul2, one has 2 

fμ(w) = max  [(e − Y Xw, u) − μd(u)]. 
u∈Q

Then 

e− Y Xw  1 − yiXiw 
uμ(w) =  π ; Q = u ∈ Rm | ui = median , 0, 1 . 

μ μ 

The gradient of fμ is given by 

∇fμ(w) =  −(Y X)T uμ(w), 

lYXl2 

and its Lipschitz constant is £μ = , where the matrix norm is defined in (6). μ 
Moreover, 

mμ 
fμ(w) ≤ f(w) ≤ fμ(w) +  for all w ∈ R

p. 
2 

Then we use the following smooth approximation of the original objective function 
g: 

gμ(w) :=  
1 lwl2 + λfμ(w), w  ∈ Rp. 
2 

Obviously, 

∇gμ(w) =  w + λ∇fμ(w), 
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and a Lipschitz constant is 

lY Xl2 

Lμ = 1 +  λ . 
μ 

The smooth approximations obtained above are convenient for applying Nes
terov’s accelerated gradient method presented in what follows. Let f : Rn → R be 
a differentiable convex function with Lipschitz gradient. That is, there exists £ >  0 
such that 

l∇f(x) −∇f(y)l ≤  £lx− yl for all x, y ∈ Rn . 

Let Ω be a nonempty closed convex set. In his paper [23], Nesterov considered the 
optimization problem 

minimize f(x) subject to x ∈ Ω. 

For x ∈ Rn, define 

£ 
TΩ(x) := arg  min  (∇f(x), y − x) + lx− yl2 | y ∈ Ω . 

2 

Let ρ : Rn → R be a strongly convex function with parameter σ > 0, and let x0 ∈ Rn 

such that 

x0 := arg min {ρ(x) | x ∈ Ω}. 
Further, assume that ρ(x0) = 0. Then Nesterov’s accelerated gradient algorithm is 
outlined as follows. 

Algorithm 1. 
INPUT: f , /.
 
INITIALIZE: Choose x0 ∈ Ω.
 
Set k = 0 
  
Repeat the following 

Find yk := TΩ(xk).  kg
 i+1 

  }
Find zk := arg min ρ(x) + [f(xi) +  (∇f(xi), x− xi)] x ∈ Ω .

σ i=0 2 
2 k+1Set xk+1 := zk + yk.k+3 k+3 

Set k := k + 1.  
until a stopping criterion is satisfied. 
OUTPUT: yk. 

For simplicity, we choose ρ(x) =  σ lx− x0l2, where  x0 ∈ Ω and  σ = 1. Following 2 
the proof of Theorem 2.1, it is not hard to see that 

∇f(xk) 
yk = TΩ(xk ) =  π xk − ; Ω  . 

£ 

Moreover, 

k
1 m i+ 1  

zk = π x0 − ∇f(xi); Ω . 
£ 2 

i=0 

We continue with another important tool of convex optimization and computa
tional statistics called the MM principle; see [8, 12, 16] and the references therein. 
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Here we provide a more general version. Let f : Rn → R be a convex function, and 
let Ω be a nonempty closed convex subset of Rn . Consider the optimization problem 

(8) minimize f(x) subject to x ∈ Ω. 

Let M : Rn ×R
p → R, and let F : Rn →→ R

p be a set-valued mapping with nonempty 
values such that the following properties hold for all x, y ∈ R

n: 

f(x) ≤ M(x, z) for all z ∈ F (y), and f(x) =  M(x, z) for all z ∈ F (x). 

Given x0 ∈ Ω, the MM algorithm to solve (8) is given by 

Choose zk ∈ F (xk) and find xk+1 ∈ arg min{M(x, zk) | x ∈ Ω}. 
Then 

f(xk+1) ≤ M(xk+1, zk) ≤ M(xk , zk) =  f(xk). 

Finding an appropriate majorization is an important step in this algorithm. It 
has been shown in [7] that the MM principle provides an effective tool for solving the 
generalized Fermat–Torricelli problem. In what follows, we apply the MM principle in 
combination with Nesterov’s smoothing technique and accelerated gradient method 
to solve generalized Fermat–Torricelli problems in many different settings. 

3. Generalized Fermat–Torricelli problems involving points. Let Ω be a 
nonempty closed convex subset of Rn, and let ai ∈ R

n for i = 1, . . . ,m. In this section, 
we consider the following generalized version of the Fermat–Torricelli problem: 

mm 
(9) minimize H(x) :=  σF (x − ai) subject to x ∈ Ω. 

i=1 

Let us start with some properties of the function σF used in problem (9). The 
following proposition can be proved easily. 

Proposition 3.1. For the function σF defined in (1), the following properties 
hold for all u, v ∈ R

n and λ ≥ 0: 
(i) |σF (u) − σF (v)| ≤ lF llu − vl, where  lF l := sup{lfl | f ∈ F }. 
(ii) σF (u + v) ≤ σF (u) +  σF (v). 
(iii) σF (λu) =  λσF (u), and  σF (u) = 0  if and only if u = 0. 
(iv) σF is a norm if we assume additionally that F is symmetric, i.e., F = −F . 
(v) γlul ≤ σF (u), where  γ := sup{r >  0 | B(0; r) ⊂ F }. 
Let Θ be a nonempty closed convex subset of Rn, and  let  x̄ ∈ Θ. The normal 

cone in the sense of convex analysis to Θ at x̄ is defined by 

N(x̄; Θ)  :=  {v ∈ R
n | (v, x − x̄) ≤ 0 for all x ∈ Θ}. 

It follows from the definition that the normal cone mapping N(·; Θ) has closed graph 
in the sense that for any sequence xk → x̄ and vk → v̄ where vk ∈ N(xk ; Θ), one has 
that v̄ ∈ N(x̄; Θ).  

Given an element v ∈ R
n, we also define cone {v} := {λv | λ ≥ 0}. 

In what follows, we study the existence and uniqueness of the optimal solution 
of problem (9). The following definition and the proposition afterward are important 
for this purpose. 

Definition 3.2. We say that F is normally smooth if for every x ∈ bd F there 
exists ax ∈ R

n such that N(x; F ) =  cone  {ax}. 
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Given a positive definite matrix A, let  
√ 

lxlX := xTAx. 

It is not hard to see that the set F := {x ∈ Rn | lxlX ≤ 1} is normally smooth. 
Indeed, N(x; F ) =  cone  {Ax} if lxlX = 1; see [18, Proposition 2.48]. 

Define the set 

B ∗ := {u ∈ R
n | σF (u) ≤ 1},F 

and recall that a convex subset Θ of Rn is said to be strictly convex if tu + (1  − t)v ∈ 
int Θ whenever u, v ∈ Θ, u �= v, and  t ∈ (0, 1). 

Proposition 3.3. We have that F is normally smooth if and only if B ∗ isF 
strictly convex. 

Proof. Suppose that F is normally smooth. Fix any u, v ∈ B ∗ with u � v and = F 
t ∈ (0, 1). Let us show that tu+(1−t)v ∈ int B ∗ , or  equivalently,  σF (tu+(1−t)v) < 1.F 
We need only consider the case where σF (u) =  σF (v) = 1.  Fix  ̄x, ȳ ∈ F such that 

(u, x̄) = σF (u) = 1  and  (v, ȳ) = σF (v) = 1, 

and fix e ∈ F such that 

(tu + (1  − t)v, e) = σF (tu + (1  − t)v). 

It is obvious that σF (tu +(1  − t)v) ≤ 1. By contradiction, suppose that σF (tu + (1  − 
t)v) =  1.  Then  

1 =  (tu + (1  − t)v, e) = t(u, e)+ (1  − t)(v, e) ≤ t(u, x̄)+ (1  − t)(v, ȳ) = 1. 

This implies that (u, e) = (u, x̄) = 1 =  σF (u) and  (v, e) = (v, ȳ) = 1 =  σF (v). Then 

(u, x) ≤ (u, e) for all x ∈ F, 

which implies that u ∈ N(e; F ). Similarly, v ∈ N(e; F ). Since F is normally smooth, 
u = λv, where  λ >  0. Thus, 

1 =  (u, e) = (λv, e) = λ(v, e) = λ. 

Hence λ = 1  and  u = v, a contradiction. 
Now suppose that B ∗ is strictly convex. Fix x̄ ∈ bd F , and fix any u, v ∈ N(x̄; F )F 

with u, v �= 0.  Let  α := σF (u) and  β := σF (v). Then 

(u, x) ≤ (u, x̄) for all x ∈ F 

and 

(v, x) ≤ (v, x̄) for all x ∈ F. 

It follows that (u, x̄) = α and (v, x̄) = β. Moreover,  

σF (u + v) ≥ (u, x̄)+ (v, x̄) = α + β = σF (u) +  σF (v), 

and hence σF (u + v) =  σF (u) +  σF (v). We have u/α, v/β ∈ B ∗ and F 

u α v β 
σF + = 1. 

α α + β β α + β 



 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

      

  

1824 NGUYEN MAU NAM, NGUYEN THAI AN, R. BLAKE RECTOR, JIE SUN 

u vSince B ∗ is strictly convex, one has = , and hence u = λv, where  λ := α/β > 0.F α β 
The proof is now complete. 

Remark 3.4. Suppose that F is normally smooth. It follows from the proof 
of Proposition 3.3 that for u, v ∈ Rn with u, v �= 0, one has that σF (u + v) =  
σF (u) +  σF (v) if and only if u = λv for some λ >  0. 

The proposition below gives sufficient conditions that guarantee the uniqueness 
of an optimal solution of (9). 

Proposition 3.5. Suppose that F is normally smooth. If for any x, y ∈ Ω with 
x �= y the line connecting x and y, L(x, y), does not contain at least one of the points 
ai for i = 1, . . . ,m, then problem (9) has a unique optimal solution. 

Proof. It is not hard to see that for any α ∈ R, the  set  

Lα := {x ∈ Ω | H(x) ≤ α} 

is compact, and so (9) has an optimal solution since H is continuous. Let us show 
that the assumptions made guarantee that H is strictly convex on Ω, and hence (9) 
has a unique optimal solution. 

By contradiction, suppose that there exist x̄, ȳ ∈ Ω with  ̄x = ¯� y and t ∈ (0, 1) such 
that 

H(tx̄+ (1  − t)ȳ) =  tH(x̄) +  (1  − t)H(ȳ). 

Then 

σF (t(x̄− ai) + (1  − t)(ȳ − ai)) = tσF (x̄− ai) + (1  − t)σF (ȳ − ai) 

= σF (t(x̄− ai)) + σF ((1 − t)(ȳ − ai)) for all i = 1, . . . ,m.  

If x̄ = ai or ȳ = ai, then obviously ai ∈ L(x̄, ȳ). Otherwise, by Remark 3.4, there 
exists λi > 0 such that 

t(x̄ − ai) =  λi(1 − t)(ȳ − ai). 

This also implies that ai ∈ L(x̄, ȳ). We have seen that ai ∈ L(x̄, ȳ) for all i = 1, . . . ,m. 
This contradiction shows that (9) has a unique optimal solution. 

Let us consider the smooth approximation function given by m 2m lx − ail μ x − ai 
2 

(10) Hμ(x) :=  + (x − ai, ū) −  d ū+ ; F ,
2μ 2 μ 

i=1 

where ū ∈ F . 
Proposition 3.6. The function Hμ defined by (10) is continuously differentiable 

on Rn with its gradient given by 

mm x − ai∇Hμ(x) =  π ū+ ; F . 
μ 

i=1 

The gradient ∇Hμ is a Lipschitz function with constant 

m Lμ = . 
μ 

Moreover, one has the following estimate: 

Hμ(x) ≤ H(x) ≤ Hμ(x) +  m
μ 
[D(ū; F )]2 for all x ∈ R

n . 
2 
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Proof. Given  b ∈ R
n, define the function on Rn given by 

f(x) :=  σF (x − b) =  max{(x − b, u) | u ∈ F }, x  ∈ R
n . 

Consider the prox-function 

1 2d(u) :=  lu − ūl . 
2 

Applying Theorem 2.1, one has that the function fμ is continuously differentiable on 
R

n with its gradient given by 

x − b ∇fμ(x) =  uμ(x) =  π ū+ ; F . 
μ 

Moreover, the gradient ∇fμ is a Lipschitz function with constant 

1 
£μ = . 

μ 

The explicit formula for fμ is 

22lx − bl μ x − b 
fμ(x) =  + (x − b, ū) −  d ū+ ; F . 

2μ 2 μ 

The conclusions then follow easily. 
We are now ready to write a pseudocode for solving the Fermat–Torricelli problem 

(9). 

Algorithm 2. 
INPUT: ai for i = 1, . . . ,m, μ.
 
INITIALIZE: Choose x0 ∈ Ω and  set  / = m .


μ 

Set k = 0  
Repeat the following 

m xk −aiCompute ∇Hμ(xk) =  π(ū+ ; F ).i=1 μ 

Find yk := π(xk − 1 ∇Hμ(xk); Ω). 
k i+1Find zk := π(x0 − 1 ∇Hμ(xi); Ω). i=0 2 

2 k+1Set xk+1 := zk + yk.k+3 k+3 

until a stopping criterion is satisfied. 

Remark 3.7. When implementing Nesterov’s accelerated gradient method, in 
order to get a more effective algorithm, instead of using a fixed smoothing parameter 
μ, we often change μ during the iteration. The general optimization scheme is 

INITIALIZE: x0 ∈ Ω, μ0 > 0, μ∗ > 0, σ ∈ (0, 1). 
Set k = 0.  
Repeat the following 

Apply Nesterov’s accelerated gradient method with μ = μk and starting point xk
 

to obtain an approximate solution xk+1.
 
Update μk+1 = σμk.
 

until μ ≤ μ∗. 

Example 3.8. In the case where F is the closed unit Euclidean ball, σF (x) =  lxl 
is the Euclidean norm and   x  

, lxl > 1, 
π(x; F ) = lxl

{x}, lxl ≤ 1. 
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Consider the £1-norm on Rn . For any x ∈ R
n, one has 

lxl1 = max{(x, u) | lul∞ ≤ 1}. 
In this case, 

F = {x ∈ R
n | |xi| ≤ 1 for all i = 1, . . . , n}. 

The smooth approximation of the function f(x) :=  lxl1 depends on the Euclidean 
projection to the set F , which can be found explicitly. In fact, for any u ∈ R

n, one  
has 

π(u; F ) =  {v ∈ R
n | vi = median {ui, 1,−1}}. 

Now we consider the £∞-norm in Rn . For any x ∈ R
n, one has 

lxl∞ = max{(x, u) | lul1 ≤ 1}. 
In this case, 

F = {x ∈ R
n | lxl1 ≤ 1}. 

It is straightforward to find the Euclidean projection of a point to F in two and three 
dimensions. In the case of high dimensions, there are available algorithms to find an 
approximation of the projection; see, e.g., [10]. 

4. Generalized Fermat–Torricelli problems involving sets. In this sec
tion, we study generalized Fermat–Torricelli problems that involve sets. Consider the 
following optimization problem: 

mm 
(11)	 minimize T (x) :=  dF (x; Ωi) subject to x ∈ Ω, 

i=1 

where Ω and Ωi for i = 1, . . . ,m  are nonempty closed convex sets and at least one 
of them is bounded. This assumption guarantees that the problem has an optimal 
solution. The sets Ωi for i = 1, . . . ,m are called the target sets, and the set Ω is called 
the constraint set. 

The generalized projection from a point x ∈ R
n to a set Θ is defined based on the 

generalized distance function (2) as follows: 

(12) πF (x; Θ)  :=  {w ∈ Θ | σF (x− w) =  dF (x; Θ)}. 
Note that this set is not necessarily a singleton in general. 

Before investigating problem (11), we study some important properties of the 
generalized distance function and the generalized projection to be used in what follows. 

Proposition 4.1. Given a nonempty closed convex set Θ, consider the general
ized distance function (2) and the generalized projection (12). The following properties 
hold: 

(i) For x̄ ∈ R
n, the  set  πF (x̄; Θ)  is nonempty. 

(ii) For x̄ ∈ R
n , dF (x̄; Θ)  =  0  if and only if x̄ ∈ Θ. 

(iii) If ¯ ∈ Θ and w ∈ πF (¯ ¯x / ¯ x; Θ), then  w ∈ bd Θ. 
(iv) If F is normally smooth, then πF (x̄; Θ)  is a singleton for every x̄ ∈ R

n and 
the projection mapping πF (·; Θ)  is continuous. 
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Proof. The proofs of (i) and (ii) are straightforward. 
(iii) Suppose by contradiction that w̄ ∈ int Θ. Choose t ∈ (0, 1) sufficiently small 

such that 

wt := w̄ + t(x̄− w̄) ∈ Θ. 

Then 

σF (x̄− wt) =  σF ((1 − t)(x̄− w̄)) = (1 − t)σF (x̄− w̄) =  (1  − t)dF (x̄; Θ)  < dF (x̄; Θ), 

which is a contradiction. 
(iv) If x̄ ∈ Θ, then πF (x̄; Θ)  =  {x̄}. Consider the case where x̄ /∈ Θ. Suppose by 

contradiction that there exist ¯ w2 ∈ πF (¯ ¯ � w2. Then  w1, ¯ x; Θ)  with  w1 = ¯

γ := σF (x̄− w̄1) =  σF (x̄− w̄2) > 0. 

By the positive homogeneity of σF , 

x̄− w̄1 x̄− w̄2∈ B ∗ and ∈ B ∗ 
F .Fγ γ 

From Proposition 3.3, the set B ∗ is strictly convex, and hence F 

1 x̄− w̄1 x̄− w̄2 
+ ∈ int B ∗ 

F . 2 γ γ 

This implies that 

x̄− (w̄1 + w̄2)/2 ∈ int B ∗ 
F . γ 

It follows again by the homogeneity of σF that 

σF (x̄− (w̄1 + w̄2)/2) < γ  = dF (x̄; Θ), 

which is a contradiction. It is not hard to show that πF (·; Θ) is continuous using a 
sequential argument by contradiction. 

To continue, we recall some basic concepts and results of convex analysis. A 
systematic development of convex analysis can be found, for instance, in [11, 18, 27]. 
Let f : Rn → R be a convex function. For x̄ ∈ R

n, a  subgradient of f at x̄ is a vector 
v ∈ R

n that satisfies 

(v, x− x̄) ≤ f(x) − f(x̄) for all x ∈ R
n . 

The set of all subgradients of f at x̄ is called the subdifferential of f at this point and 
is denoted by ∂f(x̄). 

For a finite number of convex functions fi : Rn → R for i = 1, . . . ,m, one has   
m mm m 

∂ fi (x) =  ∂fi(x), x ∈ R
n . 

i=1 i=1 

It is well known that a convex function f : Rn → R has an absolute minimum on 
a convex  set  Ω  at  ̄x ∈ Ω if and only if 

0 ∈ ∂f(x̄) +  N(x̄; Ω). 



 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1828 NGUYEN MAU NAM, NGUYEN THAI AN, R. BLAKE RECTOR, JIE SUN 

The definition below is important in what follows. 
Definition 4.2. A convex set F is said to be normally round if N(x; F ) �= 

N(y; F ) whenever x, y ∈ bd F , x �= y. 
Proposition 4.3. Given a nonempty closed convex set Θ, consider the general

ized distance function (2). Then the following properties hold: 
(i) |dF (x; Θ)  − dF (y; Θ)| ≤ lFl lx − yl for all x, y ∈ R

n . 
(ii) The function dF (·; Θ)  is convex, and for any x̄ ∈ R

n , 

∂dF (x̄; Θ)  =  ∂σF (x̄ − w̄) ∩N(w̄; Θ), 

where w̄ ∈ πF (x̄; Θ)  and this representation does not depend on the choice of w̄. 
(iii) If F is normally smooth and round, then the function σF (·) is differentiable 

at any nonzero point, and the function dF (·; Θ)  is continuously differentiable on the 
complement of Θ with 

∇dF (x̄; Θ)  =  ∇σF (x̄ − w̄), 

where ¯ ∈ Θ and w := πF (x̄; Θ).x / ¯
Proof. (i) This conclusion follows from the subadditivity and the Lipschitz prop

erty of the function σF . 
(ii) The function dF (·; Θ) can be expressed as the following infimal convolution: 

dF (x; Θ) = inf{σF (x − w) +  δ(w; Θ)  | w ∈ R
n} = (g ⊕ σF )(x), 

where g(x) :=  δ(x; Θ)  is  the  indicator function associated with Θ, i.e., δ(x; Θ) = 0  if  
x ∈ Θ, and δ(x; Θ)  =  ∞ otherwise. For any w̄ ∈ πF (x̄; Θ), one has 

σF (x̄ − w̄) +  g(w̄) =  σF (x̄ − w̄) =  dF (x̄; Θ). 

By [18, Corollary 2.65], 

∂dF (x̄; Θ)  =  ∂σF (x̄ − w̄) ∩ ∂g(w̄) =  ∂σF (x̄ − w̄) ∩N(w̄; Θ). 

(iii) Let us first prove the differentiability of σF (·) at  ̄ �x = 0. From [18, Theorem 
2.68], one has 

∂σF (x̄) =  S(x̄), 

where S(x̄) :=  {p ∈ F | (¯ σF (¯ . We will show that S(x̄) is a singleton. x, p) = x)}
By contradiction, suppose that there exist p1, p2 ∈ S(¯ � p2. From  the  x) with p1 = 
definition, one has 

x̄ ∈ N(p1; F ) = cone  {a1} and x̄ ∈ N(p2; F ) =  cone  {a2}. 

Then there exist λ1, λ2 > 0 such that x̄ = λ1a1 = λ2a2, and hence N(p1; F ) =  
N(p2; F ), a contradiction to the normally smooth and round properties of F . Thus,  
∂σF (x̄) =  S(x̄) is a singleton, and hence σF is differentiable at x̄ by [18, Theorem 
3.3]. 

Observe that the set ∂dF (x̄; Θ) is always nonempty. Since ∂dF (x̄; Θ)  =  ∂σF (x̄ − 
w̄) ∩ N(w̄; Θ)  =  ∇σF (x̄ − w̄) ∩ N(w̄; Θ), it is obvious that ∇σF (x̄ − w̄) ∈ N(w̄; Θ)  
and ∂dF (x̄; Θ)  =  {∇σF (x̄ − w̄)}. Then the differentiability of dF (·; Θ)  at  x̄ follows 
from [18, Theorem 3.3]. Since Θc is an open set and ∂dF (x; Θ)  is  a  singleton  for  
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every x ∈ Θc, the function dF (·; Θ) is continuously differentiable on this set; see the 
corollary of [9, Proposition 2.2.2]. 

As a corollary, we obtain the following well-known formula for subdifferential of 
the distance function (3). 

Corollary 4.4. For a nonempty closed convex set Θ, the following representa
tion holds for the distance function (3): ⎧ ⎨N(x̄; Θ)  ∩ B if x̄ ∈ Θ, 

∂d(x̄; Θ)  =  ⎩ 
x̄− π(x̄; Θ)  
d(x̄; Θ)  

if x̄ /∈ Θ. 

The following proposition gives sufficient conditions that guarantee the uniqueness 
of an optimal solution of problem (11). 

Proposition 4.5. Suppose that F is normally smooth and the target sets Ωi for 
i = 1, . . . ,m  are strictly convex with at least one of them being bounded. If for any 
x, y ∈ Ω with x � y the line connecting  x and y, L(x, y), does not intersect at least = 
one of the target sets, then problem (11) has a unique optimal solution. 

Proof. It is not hard to prove that if one of the target sets is bounded, then 
each level set {x ∈ Ω | T (x) ≤ α} is bounded. Thus, (11) has an optimal solution. 
It suffices to show that T is strictly convex on Ω under the given assumptions. By 
contradiction, suppose that T is not strictly convex. Then there exist x, ¯¯ y ∈ Ω and  
t ∈ (0, 1) with x̄ �= ȳ and 

T (tx̄+ (1  − t)ȳ) =  tT (x̄) + (1  − t)T (ȳ). 

This implies that dF (tx̄ + (1  − t)ȳ; Ωi) =  tdF (x̄; Ωi) +  (1  − t)dF (ȳ; Ωi) for all i = 
1, . . . ,m. Choose  i0 ∈ {1, . . . ,m} such that L(x̄, ȳ) ∩ Ωi0 = ∅. Let w̄1 := πF (x̄; Ωi0 ) 
and w̄2 := πF (ȳ; Ωi0 ). Then 

dF (tx̄+ (1  − t)ȳ; Ωi0 ) =  tdF (x̄; Ωi0 ) + (1  − t)dF (ȳ; Ωi0 ) 

= tσF (x̄− w̄1) +  (1  − t)σF (ȳ − w̄2) 

≥ σF ((tx̄+ (1  − t)ȳ) − (tw̄1 + (1  − t)w̄2)). 

It follows that tw̄1 +(1−t)w̄2 = πF (tx̄+(1−t)ȳ; Ωi0 ) ∈ bd Ωi0 . By the strict convexity 
of Ωi0 , one has w̄1 = w̄2 =: w̄, and hence 

σF (t(x̄− w̄) + (1  − t)(ȳ − w̄)) = σF (t(x̄ − w̄)) + σF ((1 − t)(ȳ − w̄)). 

Following the proof of Proposition 3.5 implies that w̄ ∈ L(x̄, ȳ), a contradiction. 
Let us now apply the MM principle to the generalized Fermat–Torricelli problem. 

We rely on the following properties, which hold for all x, y ∈ R
n: 

(i) dF (x; Θ)  =  σF (x− w) for all w ∈ πF (x; Θ).  
(ii) dF (x; Θ)  ≤ σF (x− w) for all w ∈ πF (y; Θ). 
  
Consider the set-valued mapping
 

F (x) := Πm
i=1πF (x; Ωi). 

Then cost function T (x) is majorized by 

mm 
1T (x) ≤ M(x,w) :=  σF (x − w i), w  = (w , . . . , w  m) ∈ F (y). 

i=1 
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Fig. 1. MM algorithm for a generalized Fermat–Torricelli problem. 

Moreover, T (x) =  M(x,w) whenever w ∈ F (x). 
Thus, given x0 ∈ Ω, the MM iteration is given by 

xk+1 ∈ arg min{M(x,wk) | x ∈ Ω} with wk ∈ F (xk ). 

This algorithm is illustrated in Figure 1 and can be written more explicitly as follows. 

Algorithm 3. 
INPUT: Ω and m target sets Ωi, i = 1, . . . , m.
 
INITIALIZE: x0 ∈ Ω.
 
Set k = 0. 
  
Repeat the following 

Find yk,i ∈ πF (xk; Ωi).
 
Solve the following problem with a stopping criterion
 

mminx∈Ω i=1 σF (x− yk,i), 
and denote its solution by xk+1. 

until a stopping criterion is satisfied. 

Remark 4.6. Consider the Fermat–Torricelli problem 

mm 
(13) minimize ϕ(x) :=  lx− ail subject to x ∈ Ω. 

i=1 

For x /∈ {a1, . . . , am}, 
mm x− ai∇ϕ(x) :=  . lx− ail 
i=1 

Solving the equation ∇ϕ(x) = 0 yields 

m ai 
i=1 lx− ail 

x = 
m 1 . 

i=1 lx− ail 

If x /∈ {a1, . . . , am}, define 

m ai 
i=1 lx− ail 

F (x) :=  .�m 1 
i=1 lx− ail 
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Otherwise, put F (x) :=  x. The Weiszfeld algorithm (see [13]) for solving problem 
(13) is stated as follows: Choose x0 ∈ Ω, and find xk+1 := π(F (xk); Ω) for k ≥ 1. 

In the case where F is the closed unit Euclidean ball of Rn one has σF (x) =  lxl. 
To solve the problem 

m

min lx− yk,il 
x∈Ω 

i=1 

in the MM algorithm above, we can also use the Weiszfeld algorithm or its improve
ments. 

Proposition 4.7. Consider the generalized Fermat–Torricelli problem (11) in 
which F is normally smooth and round. Let {xk} be the sequence in the MM algorithm 
defined by 

m 

 
m

xk+1 ∈ arg min σF (x− πF (xk; Ωi)) | x ∈ Ω . 
i=1 

Suppose that {xk} converges to x̄ that does not belong to Ωi for i = 1, . . . ,m. Then  x̄
is an optimal solution of problem (11). 

Proof. Since the sequence {xk} converges to x̄ that does not belong to Ωi for 
i = 1, . . . ,m, we can assume that xk ∈/ Ωi for i = 1, . . . ,m  and for every k. From  the  
definition of the sequence {xk}, one has 

m 

m

0 ∈ ∇σF (xk+1 − π(xk; Ωi)) + N(xk+1; Ω). 
i=1 

Using the continuity of ∇σF (·) and the projection mapping πF (·) to nonempty closed 
convex sets as well as the closedness of the normal cone mapping, one has 

m 

mm
0 ∈ ∇σF (x̄− π(x̄; Ωi)) + N(x̄; Ω). 

i=1 

Thus, mm
0 ∈ ∂dF (x̄; Ωi) +  N(x̄; Ω)  =  ∂T (x̄) +  N(x̄; Ω). 

i=1 

It follows that x̄ is also an optimal solution of problem (11). 
It is of course important to find sufficient conditions that guarantee the conver

gence of the sequence {xk}. This can be done using [8, Propositions 1 and 2]; see also 
[7]. We justify the use of this approach in the following lemma and apply it in the 
proposition that follows. For simplicity, we assume that the constraint set Ω does not 
intersect any of the target sets Ωi for i = 1, . . . ,m. 

Lemma 4.8. Consider the generalized Fermat–Torricelli problem (11) in which at 
least one of the target sets Ωi for i = 1, . . . ,m  is bounded and F is normally smooth 
and round. Suppose that the constraint set Ω does not intersect any of the target sets 
Ωi for i = 1, . . . ,m, and  any  x, y ∈ Ω with x �= y the line connecting  x and y, L(x, y), 
does not intersect at least one of the target sets. For any x ∈ Ω, consider the mapping 
ψ : Ω  → Ω defined by  mm

ψ(x) := arg  min  σF (y − πF (x; Ωi)) | y ∈ Ω . 
i=1 
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Then ψ is continuous at any point ¯ �x ∈ Ω, and  T (ψ(x)) < T (x) whenever x = ψ(x). 
Proof. Fix any x ∈ Ω. By Proposition 3.5 and from the assumptions made, the 

function 

m

g(y) :=  σF (y − πF (x; Ωi)) 
i=1 

is strictly convex on Ω, so ψ(x) is the unique solution of the Fermat–Torricelli problem 
generated by πF (x; Ωi) for  i = 1, . . . ,m. Thus,  ψ is well defined. Fix any sequence 
{xk} that converges to x̄. Then  yk := ψ(xk) satisfies 

m 

m

Since at least of the sets Ω for i = 1 is bounded, show that one , . . . ,m  we can i 

{ } { }the is bounded. Indeed, that Ω is bounded and issequence y suppose yk 1 k

l → ∞ →unbounded. y as pk �p 

0 ∈ ∇σF (yk − πF (xk ; Ωi)) + N(yk; Ω). 
i=1 

m 

ykpThen there exists a subsequence { } such that l
m∞. For sufficiently large p and a fixed y ∈ Ω, since ykp = arg  min{ σF (y −i=1 

πF (xkp ; Ωi)) | y ∈ Ω}, we have  

m m

where γ is the constant defined in Proposition 3.1. Letting p → ∞, one  obtains  a  

m 
− ≥ − ≥ −σ ( π ( ; Ω )) σ ( π ( ; Ω )) σ ( π ( ; Ω ))y x y x y xF F k i F k F k i F k F k 1p p p p p 

i=1 i=1 

≥ l − lγ π ( ; Ω )y xk F k 1 ,p p 

{ }contradiction showing that is bounded. yk
Now fix any subsequence {yk£ } of {yk} that converges to ȳ ∈ Ω. Then 

m 

mm
0 ∈ ∇σF (yk£ − π(xk£ ; Ωi)) + N(yk£ ; Ω), 

i=1 

which implies that 

mm
0 ∈ ∇σF (ȳ − πF (x̄; Ωi)) + N(ȳ; Ω). 

i=1 

Therefore, ȳ = ψ(x̄). It follows that yk = ψ(xk) converges  to  ȳ = ψ(x̄), so ψ is 
continuous at ¯. Fix any x ∈ Ω such that x � ψ(x). Since the function g is strictly x = 
convex on Ω and ψ(x) is its unique minimizer on Ω, one has that 

mmm m

T (ψ(x)) = dF (ψ(x); Ωi) ≤ σF (ψ(x) − πF (x; Ωi)) 
i=1 i=1 mm

< σF (x− πF (x; Ωi)) = T (x). 
i=1 

The proof is now complete. 
Let us present below a convergence theorem for the MM algorithm. 
Theorem 4.9. Consider the generalized Fermat–Torricelli problem (11) in the 

setting of Lemma 4.8. Let  {xk} be a sequence generated by the MM algorithm, i.e., 
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xk+1 = ψ(xk) with a given  x0 ∈ Ω. Then any subsequential limit of the sequence 
{xk} is an optimal solution of problem (11). If we assume additionally that Ωi for 
i = 1, . . . ,m  are strictly convex, then {xk} converges to the unique optimal solution 
of the problem. 

Proof. In the setting of this theorem, [8, Proposition 1] implies that lxk+1 −xkl →  
0. Since xk+1 := ψ(xk ), applying Lemma 4.8 yields T (xk+1) ≤ T (xk) ≤ · · · ≤ T (x0) 
for every k. Then from the assumptions made, it is not hard to see that {xk} is a 
bounded sequence. Let {xk£ } be a subsequence of {xk} that converges to some x̄'. 
Note that lxk+1 −xkl → 0 implies that {xk£+1} also converges to x̄' as £→ ∞. Since  
xk£ ∈/ Ωi for all i = 1, . . . ,m  and for all £, from the definition of the sequence {xk}, 
one has 

m

0 ∈ ∇σF (xk£ +1 − πF (xk£ ; Ωi)) + N(xk£ +1; Ω). 
i=1 

Then 

m 

m

0 ∈ ∇σF (x̄
' − πF (x̄

'; Ωi)) + N(x̄'; Ω). 
i=1 

Thus, 

m 

m

0 ∈ ∂dF (x̄
'; Ωi) +  N(x̄'; Ω)  =  ∂T (x̄') +  N(x̄'; Ω). 

i=1 

Therefore, x̄' is an optimal solution of problem (11). 
If Ωi for i = 1, . . . ,m  are strictly convex, then problem (11) has a unique optimal 

solution x̄ by Proposition 4.5. Thus, x̄' = x̄ and the original sequence {xk} converges 
to x̄. 

It is important to note that the algorithm may not converge in general. Our 

m 

examples partially answer the question raised in the concluding remarks of [8]. 
Example 4.10. Let Ω1 and Ω2 be subsets of R2 defined by 

Ω1 := {(x1, x2) ∈ R
2 | x2 ≥ 1} and Ω2 := {(x1, x2) ∈ R

2 | x2 ≤ −1}. 
Consider the generalized Fermat–Torricelli problem (11) for two sets Ω1 and Ω2 with 
the constraint being the line Ω := R × {0} generated by the £∞-norm, i.e., F = 
{(u1, u2) ∈ R

2 | |u1| + |u2| ≤ 1}. Starting from x0 = (0, 0), choose y0,1 = (1, 1) and 
y0,2 = (1,−1). Then x1 = (1, 0) is an optimal solution of the generalized Fermat– 
Torricelli problem for two points y0,1 and y0,2 generated by the £∞-norm. Similarly, 
we can choose y1,1 = (2, 1), y1,2 = (2,−1), and x2 = (2, 0). Repeating this process, 
one sees that xk = (k, 0) is a sequence generated by the MM algorithm, which does 
not have any convergent subsequence. 

Example 4.11. Let Ω1 and Ω2 be subsets of R2 defined by 

Ω1 := {(x1, 0) ∈ R
2 | x1 ≥ 0} and Ω2 := {(0, x2) ∈ R

2 | x2 ≥ 0}. 
Consider the unconstrained generalized Fermat–Torricelli problem (11) for two sets 
Ω1 and Ω2 generated by the £∞-norm. It is not hard to see that (0, 0) is the unique 
optimal solution of this problem. Starting from x0 = (1/2, 1/2), choose y0,1 = (1, 0) 
and y0,2 = (0, 1). Then x1 = (1/2, 1/2) is an optimal solution of the generalized 
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Fermat–Torricelli problem for two points y0,1 and y0,2 generated by the £∞-norm. 
Obviously, if we choose the projections in this way, the sequence of optimal solutions 
and optimal values of the majorizations do not converge to the optimal solution and 
the optimal value of the problem. 

Let us consider an example in which the convergence for the MM method is not 
guaranteed even if we consider generalized Fermat–Torricelli problems generated by 
the Euclidean norm. 

Example 4.12. Let Ωi for i = 1, 2, 3 be three Euclidean balls of R2 defined with 
radii 1 and centers at (−4, 0), (0, 0), and (4, 0), respectively. Consider the uncon
strained generalized Fermat–Torricelli problem (11) for these sets generated by the 
Euclidean norm. We use the starting point x0 = (0, 1). Then y0,2 = x0 = (0, 1), and 
y0,1 and y0,3 are the intersections of the line segments connecting x0 with the centers 
of Ω1 and Ω3 and the boundaries of these disks. Obviously, xk = x0 for every k, where  
xk is the sequence defined by the MM algorithm. However, x0 is not an optimal so
lution of the problem. In fact, the solution set is the line segment connecting (−1, 0) 
and (1, 0). 

Let Θ be a nonempty closed convex set. Consider the generalized distance function 
dF (·; Θ) generated by a dynamic F . For a point x̄ /∈ Θ, a point w̄ ∈ πF (x̄; Θ)  is  said  
to be a representation of the subdifferential ∂dF (x̄; Θ)  if  

∂σF (x̄ − w̄) ⊆ N(w̄; Θ). 

From the definition we see that if F is normally smooth and round, then w̄ := πF (x̄; Θ)  
is always a representation of the subdifferential ∂dF (x̄; Θ).  

Example 4.13. Let Θ be the cube [c1 − r, c1 + r] × [c2 − r, c2 + r] × [c3 − r, c3 + r] 
of R3, and let 

F := {(u1, u2, u3) ∈ R3 | |u1| + |u2| + |u3| ≤  1}. 
For any x /∈ Θ, the choice of projection 

w := {y ∈ R3 | yi = max{ci − r, min{xi, ci + r}}} ∈ πF (x; Θ)  

satisfies that condition that w is a representation of ∂dF (x; Θ).  
Proposition 4.14. Consider the generalized Fermat–Torricelli problem (11). 

Let {xk} be the sequence in the MM algorithm defined by 

mm 
xk+1 ∈ arg min σF (x − yk,i) | x ∈ Ω , 

i=1 

where yk,i ∈ πF (xk; Ωi). Suppose that {xk} converges to x̄ that does not belong to Ωi 

for i = 1, . . . ,m. Suppose further that for any limit point, ȳi ∈ πF (x̄; Ωi) of {yk,i} is 
a representation of the subdifferential ∂dF (x̄; Ωi). Then  x̄ is an optimal solution of 
the problem. 

Proof. For sufficiently large k, from the definition of the sequence {xk}, one has 

mm 
0 ∈ ∂σF (xk+1 − yk,i) +  N(xk+1; Ω). 

i=1 

The estimate 

σF (−yk,i) ≤ σF (−xk) +  σF (xk − yk,i) ≤ sup[σF (−xk) +  dF (xk; Ωi)] < ∞ 
k 
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implies that {yk,i}k is a bounded sequence in Ωi for i = 1, . . . ,m. Without loss of 
generality, we can assume that yk,i → ȳi ∈ πF (x̄; Ωi) as  k → ∞. Using the fact that 
∂σF (u) is  compact  for any  u ∈ R

n and the normal cone mapping u →→ N(u; Ω)  has  
closed graph yields 

mm 
0 ∈ ∂σF (x̄− ȳi) +  N(x̄; Ω). 

i=1 

Since ∂σF (x̄− ȳi) =  ∂σF (x̄− ȳi) ∩N(ȳi; Ωi) =  ∂dF (x̄; Ωi), 
mm 

0 ∈ ∂dF (x̄; Ωi) +  N(x̄; Ω)  =  ∂T (x̄) +  N(x̄; Ω). 
i=1 

Therefore, x̄ is also an optimal solution of problem (11). 
Remark 4.15 (subgradient-type algorithms). The generalized Fermat–Torricelli 

problems presented in this section and section 3 can be solved by the projected subgra
dient method (see, e.g., [3, 29]). When applying the projected subgradient algorithm 
to the generalized Fermat–Torricelli problem (11), at iteration k we need to find a 
subgradient uk,i of each component function ϕi(x) =  dF (x; Ωi) for  i = 1, . . . ,m  at xk. 
By the well-known subdifferential sum rule of convex analysis, 

mm 
wk := uk,i 

i=1 

is a subgradient of T at xk. Proposition 4.3 as well as its specification to the case 
of the distance function in Corollary 4.4 provide us with a method of finding such a 
subgradient. Note that if xk ∈ Ωi, the subdifferential ∂dF (xk; Ωi) always contains 0, 
so we can choose uk,i = 0. In the case where xk ∈/ Ωi, a subgradient uk,i can be found 
by using a projection point pk,i ∈ πF (xk; Ωi) and we find uk,i ∈ ∂σF (xk − pk,i) ∩ 
N(pk,i; Ωi). 

The projected subgradient algorithm exhibits slow convergence rates when apply
ing to the generalized Fermat–Torricelli problems (9) and (11). One of the reasons 
is that in each iteration, in order to get an improvement we need to calculate all 
subgradients uk,i for i = 1, . . . ,m. This is computationally expensive if the number 
of target sets is large. In order to overcome this shortcoming, the stochastic subgra
dient method provides an alternative; see [3]. The main idea is that in each iteration, 
rather than scanning through all the target sets to find a subgradient as in the sub-
gradient method, we choose t uniformly at random from I and find the subgradient 
wk,t ∈ ∂dF (xk; Ωt). After that, we define w�k := mwk,t and perform the iteration 

xk+1 := π(xk − αkw�k; Ω). 
A more general method can be presented as follows. Fix a positive integer p such 

that p ≤ |I|. At the iteration k, we choose uniformly at random a nonempty set of 
indices Ik, |Ik| = p, that is a subset of I. Then  for  each  i ∈ Ik, find uk,i ∈ ∂dF (xk; Ωi). 
After that, set 

uk,ii∈Ik�wk := m , 
p 

and perform the iteration 

xk+1 := π(xk − αkw�k; Ω), Vk+1 := min{Vk, f(xk)}. 
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5. Numerical examples. To demonstrate the methods presented in the previ-
ous sections, let us consider a numerical example below. 

Example 5.1. The latitude/longitude coordinates in decimal format of 1217 US 
cities are recorded, e.g., at http://www.realestate3d.com/gps/uslatlongdegmin.htm. 
We convert the longitudes provided by the website above from positive to negative to 
match with the real data. Our goal is to find a point that minimizes the sum of the 
distances to the given points representing the cities. 

If we consider the case where σF (x) =  lxl, the Euclidean norm, Algorithm 2 al-
lows us to find an approximate optimal value V ∗ ≈ 23409.33 and an approximate opti-
mal solution x ∗ ≈ (38.63,−97.35). Similarly, if σF (x) =  lxl1, an approximate optimal 
value is V ∗ ≈ 28724.68 and an approximate optimal solution is x ∗ ≈ (39.48,−97.
With the same situation but considering the £∞-norm, an approximate optimal value 

≈ 21987.76 and an approximate optimal solution is x ∗ ≈ (37.54,−97.54). 
Figure 2 below shows the relation between the number of iterations k and the 

optimal value Vk = H(yk) generated by different norms. 
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Fig. 2. Generalized Fermat–Torricelli problems with different norms. 

In the example below we apply Algorithm 2 in combination with the Weiszfeld 
algorithm to solve generalized Fermat–Torricelli problems involving sets. 

Example 5.2. In the same setting as Example 5.1, we consider 1217 squares cen-
tered at the coordinates of the cities with the same radius (half-side length) r = 2.  
The constraint is the line given by the equation x− y = −180. We implement Algo-
rithm 3 with the starting point x0 = (0, 180) to solve the generalized Fermat–Torricelli 
problem generated by these squares and the Euclidean norm. In each step of the MM 
algorithm, we use Weiszfeld’s algorithm to solve the classical Fermat–Torricelli prob-
lem generated by the projections yk,i for i = 1, . . . , 1217. The MM method gives 
very fast convergence rate in this example. With 5 iterations of the MM algorithm 
along with 10 iterations of Weiszfeld’s algorithm, we achieve an approximate optimal 
value V ∗ ≈ 38161.35 and an approximate optimal solution x ∗ ≈ (56.84,−123.
see Figure 3. It is required to perform more than 15, 000 iterations of the stochastic 
subgradient algorithm to achieve similar results. However, the MM algorithm may 
not converge in some situations where the sequence xk enters the target sets, while 
the stochastic subgradient method is applicable to this case. 

Example 5.3. Consider six given cubes in R3 with centers defined by the rows of 

http://www.realestate3d.com/gps/uslatlongdegmin.htm
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Fig. 3. A generalized Fermat–Torricelli problem with US cities. 

the matrix ⎛ ⎜⎜⎜⎜⎜⎜⎝ 

−6 6 −4 
−5 −3 −6 
2 3 4 
4 −4 −5 
5 6 −6 

−5 −2 4 

⎞ ⎟⎟⎟⎟⎟⎟⎠ 

and the half-side lengths being ri = 1.5 for  i = 1, . . . , 6. The implementation of the 
algorithm above for the generalized Fermat–Torricelli problem for the cubes generated 
by the Euclidean norm yields a suboptimal solution x ∗ = (−1.0405, 0.8402,−1.4322). 
This result can also be obtained by the subgradient method under a much slower 
convergence rate. 

With the same problem but considering the £∞-norm instead of the Euclidean 
norm, the choice of the projection from a point x to any cube Ω with center c and 
half-side length r is given by 

{y ∈ R3 | yi = max{ci − r,min{xi, ci + r}}} ∈ πF (x; Ω). 

Then one obtains a suboptimal solution x ∗ = (−0.6511, 0.6511,−0.3489); see Figure 
4. 

Fig. 4. A generalized Fermat–Torricelli problem with the MM method. 
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