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MODIFIED RECONSTRUCTABILITY ANALYSIS FOR MANY-VALUED  
FUNCTIONS AND RELATIONS 
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ABSTRACT 
 
    A novel many-valued decomposition within 
the framework of lossless Reconstructability 
Analysis is presented. In previous work, 
Modified Recontructability Analysis (MRA) was 
applied to Boolean functions, where it was 
shown that most Boolean functions not 
decomposable using conventional 
Reconstructability Analysis (CRA) are 
decomposable using MRA. Also, it was 
previously shown that whenever decomposition 
exists in both MRA and CRA, MRA yields 
simpler or equal complexity decompositions. In 
this paper, MRA is extended to many-valued 
logic functions, and logic structures that 
correspond to such decomposition are developed. 
It is shown that many-valued MRA can 
decompose many-valued functions when CRA 
fails to do so. Since real-life data are often many-
valued, this new decomposition can be useful for 
machine learning and data mining. Many-valued 
MRA can also be applied for the decomposition 
of relations. 
 
1 INTRODUCTION 
 
    One general method to understand complex 
systems is to decompose the system in terms of 
less complex sub-systems (Klir 1985, 
Krippendorff 1986). Full decomposition, as 
opposed to partial decomposition, consists of the 
determination of the minimal sub-sets of 
relations that describe the system acceptably. 
The quality of the decomposition is evaluated by 
calculating (1) the amount of information (or, 
conversely, the loss of information, or error) 
which exists in the decomposed system, and (2) 
the complexity of the decomposed system. The 
objective is to decompose the complex system 
(data) into the least complex and most 
informative (least error) model. 

    This paper is organized as follows: section 2 
presents a background on Reconstructability 
Analysis, both conventional (CRA) and modified 
(MRA). Many-valued MRA decomposition is 
presented in section 3. Conclusions and future 
work are included in section 4.  
 
2 RECONSTRUCTABILITY ANALYSIS 
 
    Reconstructability Analysis (RA) is a 
technique developed in the systems community 
to decompose relations or distributions involving 
qualitative variables (Conant 1981, Klir 1985, 
Krippendorff 1986, Zwick 1999). We are here 
concerned with lossless decomposition of 
completely specified set-theoretic (crisp 
possibilistic) functions and relations. (We do not 
address information-theoretic, i.e. probabilistic, 
distributions). In lossless RA decomposition, the 
aim is to obtain the simplest model of the data 
which has zero error. The models representing 
possible decompositions define a graph-based 
lattice of structures. A “model”  is a structure 
applied to some data (here a set-theoretic 
relation). Each model is a set of sub-relations 
projected from the original relation and 
represented by look-up tables. 
    New lossless RA-based decomposition, called 
Modified RA (MRA) decomposition, has been 
introduced in (Al-Rabadi 2001, Al-Rabadi et al 
2002). While CRA decomposes using all values 
of the function, MRA decomposes using (1) the 
minimum set of values from which the function 
can be reconstructed without error, and (2) the 
simplest model (at the lowest level in the lattice 
of structures) for each value in the minimal set. 
    The first principle is illustrated for Boolean 
functions as follows: For every structure in the 
lattice of structures, decompose the Boolean 
function for one value only, e.g. for value of “1” , 
into the simplest error-free decomposed 
structure. One thus obtains the 1-MRA 
decomposition. This model consists of a set of 
projections which when intersected yield the 
original Boolean function. This is illustrated in 
the following example. 
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Example 1. For Boolean function:  
F = x1x2 + x1x3 
 
    Figure 1 illustrates the simplest models 
obtained using CRA and MRA decompositions. 
While CRA decomposes for both “0”  and “1”  
values of the Boolean function, MRA 
decomposes only for value “1” , since 
F(x1,x2,x3) can be completely retrieved if one 
knows the (x1,x2,x3) values for which F=1. 
    For Boolean functions there are two 
advantages of MRA over CRA: (1) MRA 
decomposition is simpler than CRA 
decomposition, so the MRA algorithm needs less 
time and space for its computation, and (2) MRA 
directly implements the intersection operation 
with an AND gate in binary logic; consequently 
MRA decomposition leads directly to a binary 
circuit and thus can be applied to both machine 
learning and binary circuit design. On the other 
hand, the intersection operation in CRA requires 
ternary logic to accommodate ‘don’ t cares’  
which are represented in top middle of Figure 1 
by ‘ -‘ . Therefore, CRA has no simple application 
in binary circuit design. 
 

3 MANY-VALUED MODIFIED 
RECONSTRUCTABILITY ANALYSIS 
 
    This section presents MRA for many-valued 
functions and relations. 
 

3.1 GENERAL APPROACH 
 

    Real-life data are in general many-valued. 
Consequently, if MRA can decompose relations 
between many-valued variables it can have 
practical applications in machine learning and 
data mining. Many-valued MRA is made up of 
two main steps which are common to two 
equivalent (intersection-based and union-based) 
algorithms: (1) partition the many-valued truth 
table into sub-tables, each contain only single 
functional value, and (2) Perform CRA on all 
sub-tables. Figure 2 illustrates the general pre-
processing procedure for the two many-valued 
MRA algorithms, which will be explained in 
more detail below. 
 
                          Original 3-valued table 

   0 
   1 
   2 

                                                
           Step (1): Separate one-valued tables 

  0   1   2 

 
Step (2): CRA decompositions of all one-valued tables 
 
                Step (3): Application of MRA algorithm 
                                                
 
 
                        Intersection             Union 
                        Algorithm                Algorithm 
 
           Figure 2. Steps for many-valued MRA. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Conventional versus Modified RA decompositions for the Boolean function:  F = x1x2 + x1x3. 

Original Function                     Simplest CRA Model                  Simplest CRA Circuit Model 
                                                                                                                                                                           

   x1    x2     x3        F 
0       0      0     0
0       0      1     0
0       1      0     0
0       1      1     0
1       0      0     0
1       0      1     1
1       1      0     1
1       1      1     1
1-Modified Function              Simplest 1-MRA Model Simplest 1-MRA Circuit Model 

   0  0  0
   0  1  0
   1  0  - 
   1  1  1

  x1 x2 f1 

αααα ββββ γγγγ 

   0  0  0
   0  1  0
   1  0  - 
   1  1  1

  x1 x3 f2 

   0  0  0
   0  1  - 
   1  0  - 
   1  1  - 

  x2 x3 f3  f1

 f2 

x2 
x3 

x1 

∩∩∩∩
αααα 

ββββ 
   γγγγ 

 f3 

F 

X1X2:X1X3: X2X3 

   x1 f2
’      x2 x3  f3

’
 

   0  0
   1  1

   0  0  0
   0  1  1
   1  0  1
   1  1  1

δδδδ ’  γγγγ ‘     f2
’  

  f3
‘  

 x3

 x2 

 x1  ∧∧∧∧      F δδδδ ‘  

γγγγ’  

 X1:X2X3 

1       0      1     1
1       1      0     1
1       1      1     1

   x1     x2     x3     F1 
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    For an “n” -valued completely specified 
function one needs (n-1) values to define the 
function. We thus do all n decompositions and 
use for our MRA model the (n-1) simplest of 
these. For example, using the lattice-of-
structures, decompose the 3-valued function for 
each individual value. One then obtains the 
simplest lossless MRA decomposition for value 
“0”  of the function (denoted as the 0-MRA 
decomposition), for value “1”  (1-MRA 
decomposition), and for value “2”  (2-MRA 
decomposition). By selecting the simplest two 
models from these 0-MRA, 1-MRA, and 2-MRA 
decompositions, one can generate the complete 
function. 
    In the intersection method, first the CRA 
decompositions are expanded to include the full 
set of variable and function values, and these 
“expanded”  decompositions are then intersected 
to yield the original table. 
    Equivalently, one can use a union operation to 
generate the corresponding many-valued MRA 
as follows: (1) Decompose the original table 
(function or relation) into sub-tables for each 
output value: e.g., T = T0 ∪ T1 ∪ T2 for the 
corresponding output values O0, O1, and O2 
respectively, (2) Do the 3-valued CRA 
decomposition on each sub-table. Let M j be the 
decomposition of Tj, (3) The reconstructed 
function or relation (T*) is the union of all the 

sub-table decompositions, 
� 1

0

* −

=
⊗=

n

j
OMT jj , 

where ⊗ is the set-theoretic Cartesian product. 
The union procedure can also be done with (n-1) 
decompositions. 
 
3.2 COMPLETE EXAMPLES 
 
    Following are two examples which illustrate 
many-valued Modified Reconstructability 
Analysis of 3-valued functions. In the first 
example MRA can decompose the function for 
only two values, and one has no choice but to 
use both in the MRA model. In the second 
example, the function is decomposable for all 
three of its values, and the two simplest 
decompositions are chosen to define the model. 
In discussing the second example, we show that 
this approach is generalizable to set-theoretic 
relations, in addition to mappings. 
 

Example 2. We will generate the MRA 
decomposition for the ternary function specified 
by the following ternary Marquand chart: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The following is the intersection algorithm for 
many-valued MRA for the ternary function in 
Example 2. 
 
Step 1: decompose the ternary chart of the 
function into three separate tables each for a 
single function value. This will produce the 
following three sub-tables. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
              D0                 D1                D2 
 
Step 2: Perform CRA for each sub-table. 
 
Step 2a: The simplest error-free 0-MRA 
decomposition is the original “0” -subtable itself 
since it is not decomposable. 
 
Step 2b: 1-MRA decomposition of D1 is as 
follows: 
 
 

 X1X2 

X3 

   0         1          2 

F 

  00        0           0           0  
   01        1           1           0  
   02        1           1           1  
  10        0            0          2  
   11        0            0          2  
  12        1            1          1  
   20        0            2          0  
   21        1            1          0  
   22        2            2          0  

000
001
002 
012
100
101

Value “0”  

110 
111
200
202
212 
222

010
011
020 
021
022
120

Value “1”  

121 
122
210
211

102
112
201 
220
221

Value “2”  
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                       Table 1  Table 2 
                          X1 X2  :   X2X3 

                                         0    1      1   0 
                           0    2      1   1 
                           1    2      2   0 
                           2    1      2   1 
                                         2   2 
                             D11     D12 
 
Step 2c: The 2-MRA decomposition of D2 is as 
follows: 
 
                       Table 3   Table 4 
                          X1 X3  :  X2X3 

                                         1    2      0   2 
                           2    1      1   2 
                           2    0      0   1 
                                         2   0 
                                         2   1 
                          D21         D22 
 
THE INTERSECTION ALGORITHM 
 
Step 3.1: Select the (3-1=2) simplest error-free 
decomposed models. In this example these are 1-
MRA and 2-MRA decompositions. MRA thus 
gives the decomposition model of 
D11:D12:D21:D22 from which the original 
function can be reconstructed as follows. 
 
Step 3.2: Note that, for Tables 1 and 2, the MRA 
decomposition is for the value “1”  of the logic 
function. Therefore, the existence of the tuples in 
the decomposed model implies that the function 
has value “1”  for those tuples, and the non-
existence of the tuples in the decomposed model 
implies that the function does not have value “1”  
but “0”  or “2”  for the non-appearing tuples. This 
is shown in Tables 1’  and 2’ , respectively. 
Similarly note that, for Tables 3 and 4, the MRA 
decomposition is for the value “2”  of the logic 
function. Therefore, the existence of the tuples in 
the decomposed model implies that the function 
has value “2”  for those tuples, and the non-
existence of the tuples in the decomposed model 
implies that the function does not have value “2”  
but “0”  or “1”  for the non-appearing tuples. This 
is shown in Tables 3’  and 4’ , respectively. 
 
 
 
 
 
 
 
 

Table 1’     Table 2’             Table 3’      Table 4’  
X1 X2 F1  :  X2 X3 F2           X1 X3 F3  :  X2 X3 F4 
0  0  0,2      0  0  0,2             0  0  0,1     0  0  0,1 
0  1  1,0,2   0  1  0,2             0  1  0,1     0  1  2,0,1 
0  2  1,0,2   0  2  0,2             0  2  0,1     0  2  2,0,1 
1  0  0,2      1  0  1,0,2          1  0  0,1     1  0  0,1 
1  1  0,2      1  1  1,0,2          1  1  0,1     1  1  0,1 
1  2  1,0,2   1  2  0,2             1  2  2,0,1  1  2  2,0,1 
2  0  0,2      2  0  1,0,2          2  0  2,0,1  2  0  2,0,1 
2  1  1,0,2   2  1  1,0,2          2  1  2,0,1  2  1  2,0,1 
2  2  0,2      2  2  1,0,2          2  2  0,1     2  2  0,1 
 
    In Tables 1’  and 2’  (i.e., the decomposition for 
value “1”  of the function), the existence of value 
“1”  (of sub-relations F1 and F2) means that the 
value “1”  appeared in the original non-
decomposed function for the corresponding 
tuples that appear in each table, but does not 
imply that the values “0”  or “2”  (of sub-relations 
F1 and F2) did not exist in the original non-
decomposed function for the same tuples. 
Therefore “0”  and “2”  are added to “1”  as 
allowed values. In the remaining tuples, 
however, only “0”  and “2”  are allowed since the 
value “1”  did not occur. Similarly, in Tables 3’  
and 4’ , the existence of the value “2”  (of sub-
relations F3 and F4) means that the value “2”  
appeared in the original non-decomposed 
function for the corresponding tuples that appear 
in each table, but does not imply that values “0”  
or “1”  did not exist in the original non-
decomposed function for the same tuples. 
Therefore “0”  and “1”  are added to “2”  as 
allowed values. In the remaining tuples, 
however, only “0”  and “1”  are allowed since the 
value “2”  did not occur. Set-theoretically, 
obtaining tables 1’ , 2’ , 3’ , and 4’  from tables 1, 
2, 3, and 4 is described as follows: 
 
Table 1’ : (D11⊗(0,1,2))∪(D11′⊗(0,2)) 
Table 2’ : (D12⊗(0,1,2))∪(D12′⊗(0,2)) 
Table 3’ : (D21⊗(0,1,2))∪(D21′⊗(0,1)) 
Table 4’ : (D22⊗(0,1,2))∪(D22′⊗(0,1)) 
 
where ′ here means complement. 
 
Step 3.3: Tables 1’ , 2’ , 3’ , and 4’  are used to 
obtain the block diagram in Figure 3, where the 
following set-theoretic equations govern the 
outputs of the levels in the circuit shown in the 
figure: 
 
F = F5 ∩ F6 
F5 = F1 ∩ F2 
F6 = F3 ∩ F4 
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where F1 is given by Table 1’ , F2 by Table 2’ , 
F3 by Table 3’ , and F4 by Table 4’ , respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. The decomposed structure resulting 
from the many-valued MRA decomposition. 
 
    The intermediate sub-functions, F5 and F6 are 
shown in the following maps, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    Note that in Figure 3 the intersection blocks in 
the second level and the intersection block at the 
third (output) level, are general and do not 
depend on the function being decomposed. Only 
the tables at the first level depend upon this 
function. 
 
THE UNION ALGORITHM  
 
Steps 1 and 2 are the same as in the intersection 
algorithm. 
 

Step 3.1: Using the decomposition model 
D11:D12:D21:D22 obtain D1 and D2 by 
standard methods as follows: 
 
D1 = (D11⊗x3)∩(D12⊗x1) 
D2 = (D21⊗x2)∩(D22⊗x1) 
D0 = (D1∪D2)′ 
 
where D1 is the decomposition for function 
value “1” , D2 for function value “2” , and x1, x2, 
and x3 ∈ { 0,1,2} . 
 
Step 3.2: Perform the set-theoretic operations to 
obtain the total function from the decomposed 
sub-functions. 
 
x1x2x3F = (D1⊗1)∪(D2⊗2)∪((D1∪D2)′⊗(1∪2)′) 
               = (D1⊗1)∪(D2⊗2)∪((D1∪D2)′⊗0) 
 
Alternatively, one can use all three 
decompositions: 
 
x1x2x3F = (D0⊗0)∪(D1⊗1)∪(D2⊗2) 
 
    The function value of (x1,x2,x3) is determined 
by the block diagram of Figure 4, where G 
performs the following operation: 
 
F = 0 if (x1x2x3) ∈ D0 
F = 1 if (x1x2x3) ∈ D1 
F = 2 if (x1x2x3) ∈ D2 
 
 
 
 
 
 
 
Figure 4. Block diagram for the union algorithm 
of MRA of Example 2. 
 
    Note that the logic function in Example 2 is 
non-decomposable using CRA. Consequently, as 
can be seen from this example and analogously 
to the binary case, the new many-valued MRA is 
superior to CRA. 
    We now consider an example where CRA 
does decompose, and also where MRA 
decomposes for all three values. 
 
Example 3. Let us generate the MRA 
decomposition for the ternary function specified 
by the following ternary Marquand chart: 
 
 
 

x1 00  01   02   10   11    12    20  21   22 

0    0,2  0,2  0,2    1     1    0,2    1     1     1 

1    0,2  0,2  0,2  0,2  0,2  0,2    1      1     1 

2    0,2  0,2  0,2    1     1    0,2  0,2  0,2  0,2 

x1 

x2x3 

 00  01   02   10   11    12    20  21   22 

0    0,1  0,1  0,1  0,1  0,1  0,1   0,1  0,1   0,1 
 1    0,1  0,1   2    0,1  0,1    2    0,1  0,1   0,1     

2    0,1   2    0,1  0,1  0,1   0,1    2     2    0,1 

F5 = F1 ∩∩∩∩ F2 

F6 = F3 ∩∩∩∩ F4 

x2x3 

 

x1 

  
x2 

 
 
x3  

x1 

  
x3 

 
 
x2  

F1 

 
 
 
 
F2 

 
F3 

 
 
 
 
F4 

F 

Table 1’  

Table 2’  

Table 3’  

Table 4’  

  

    ∩∩∩∩ 

 

    ∩∩∩∩ 

 

    ∩∩∩∩ 

F5 

F6 

G 

x1
x2 
x3 

F 
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Utilizing the intersection-based algorithm, one 
obtains the following results for MRA for the 
ternary function in Example 3. 
 
Step 1: decompose the ternary chart of the 
function into three separate tables each for a 
single function value. This will produce the 
following three sub-tables. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
               D0                D1                 D2 
 
Step 2: Perform CRA for each sub-table.  
 
Step 2a: The 0-MRA decomposition of D0 is as 
follows: 
 
                Table 1   Table 2   Table 3 
                    X1X2    :   X2X3  :  X1X3 

                      0 0         0 0        0 0 
                      1 0         0 1        0 1 
                      1 1         0 2        0 2 
                      2 0         1 0        1 0 
                      2 2         1 1        1 1 
                                    2 2        2 0 
                                                 2 2 
                      D01      D02      D03 

Step 2b: The 1-MRA decomposition of D1 is as 
follows: 
 
                       Table 4    Table 5 
                            X1 X2  :   X3 

                             0    1       0 
                             0    2       1  
                             1    2       2  
                             2    1                                                         
                              D11     D12 
 
Step 2c: The 2-MRA decomposition of D2 is as 
follows: 
 
                       Table 6   Table 7 
                          X1 X3   :   X2X3 

                                        1    2       0   2 
                          2    1       1   2 
                          2    0       0   1 
                                         2   0 
                                         2   1 
                         D21         D22 
 
THE INTERSECTION ALGORITHM 
 
Step 3.1: Select the two simplest decomposed 
models, namely the 1-MRA and 2-MRA 
decompositions. These are at a lower level in the 
lattice of structures than 0-MRA. 
 
Step 3.2: Analogously to Example 2, one obtains 
the following expanded tables: 
 
      Table 4’     Table 5’      Table 6’     Table 7’  
       X1 X2 F1  :  X3 F2        X1 X3 F3  :  X2 X3 F4 
        0  0  0,2      0  1,0,2    0  0  0,1      0  0  0,1 
        0  1  1,0,2   1  1,0,2    0  1  0,1      0  1  2,0,1 
        0  2  1,0,2   2  1,0,2    0  2  0,1      0  2  2,0,1 
        1  0  0,2                      1  0  0,1      1  0  0,1 
        1  1  0,2                      1  1  0,1      1  1  0,1 
        1  2  1,0,2                   1  2  2,0,1   1  2  2,0,1 
        2  0  0,2                      2  0  2,0,1   2  0  2,0,1 
        2  1  1,0,2                   2  1  2,0,1   2  1  2,0,1 
        2  2  0,2                      2  2  0,1      2  2  0,1 
 
    Set-theoretically, obtaining tables 4’ , 5’ , 6’ , 
and 7’  from tables 4, 5, 6, and 7 is described as 
follows: 
 
Table 4’ : (D11⊗(0,1,2))∪(D11’⊗(0,2)) 
Table 5’ : (D12⊗(0,1,2))∪(D12’⊗(0,2)) 
Table 6’ : (D21⊗(0,1,2))∪(D21’⊗(0,1)) 
Table 7’ : (D22⊗(0,1,2))∪(D22’⊗(0,1)) 
 
 

 X1X2 

X3 

   0         1          2 

F 

   00         0           0          0  
   01         1           1          1  
   02         1           1          1  
   10         0           0          2  
   11         0           0          2  
   12         1           1          1  
   20         0           2          0  
   21         1           1          1  
   22         2           2          0  

000
001
002 
100
101

Value “0”  

110 
111
200
202
222 

010
011
012 
020
021
022

Value “1”  

120 
121
122
210

102
112
201 
220
221

Value “2”  

211
212
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Step 3.3: Tables 4’ , 5’ , 6’ , and 7’  are used to 
obtain the block diagram in Figure 5, where the 
following set-theoretic equations govern the 
outputs of the levels in the circuit shown in the 
figure: 
 
F = F5 ∩ F6 
F5 = F1 ∩ F2 
F6 = F3 ∩ F4 
 
where F1 is given by Table 4’ , F2 by Table 5’ , 
F3 by Table 6’ , and F4 by Table 7’ , respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. The decomposed structure resulting 
from the many-valued MRA decomposition. 
 
    The intermediate sub-functions, F5 and F6 are 
shown in the following maps, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THE UNION ALGORITHM  
 
Steps 1 and 2 are the same as in the intersection 
algorithm. 
 
Step 3.1: Using the decomposition model 
D01:D02:D11:D12:D21:D22 obtain D0, D1, and 
D2 by standard methods as follows: 
 
D0 = (D01⊗x3)∩(D02⊗x1)∩(D03⊗x2) 
D1 = (D11⊗x3)∩(D12⊗x1x2) 
D2 = (D21⊗x2)∩(D22⊗x1) 
 
where D0 is the decomposition for function 
value “0” , D1 is for function value “1” , D2 for 
function value “2” , and x1, x2, and x3 ∈ { 0,1,2} . 
 
Step 3.2: Perform the set-theoretic operations to 
obtain the total function from the decomposed 
sub-functions. This can be done using only two 
of the three decompositions as in Step (3.2) of 
the union algorithm in Example 2, or 
alternatively, one can use all three 
decompositions as follows: 
 
x1x2x3F = (D0⊗0)∪(D1⊗1)∪(D2⊗2) 
 
    The function value of (x1,x2,x3) is determined 
by the block diagram of Figure 6, where G 
performs the following operation: 
 
F = 0 if (x1x2x3) ∈ D0 
F = 1 if (x1x2x3) ∈ D1 
F = 2 if (x1x2x3) ∈ D2 
 
 
 
 
 
 
 
Figure 6. Block diagram for the union algorithm 
of MRA of Example 3. 
 
    The logic function in Example 3 is 
decomposable using CRA with the lossless CRA 
model x1x2:x2x3:x1x3. Consequently, unlike the 
previous example, both many-valued MRA and 
CRA decompose losslessly. Since both CRA and 
MRA decompose this function, we would like to 
be able to compare the complexities of the two 
decompositions. The complexity measure 
reported in (Al-Rabadi et al 2002) could be used, 
but needs to be extended to many-valued 
functions. 

x1 

x2x3 

 00  01   02   10   11    12    20  21   22 

0    0,2  0,2  0,2    1     1      1     1     1     1 

1    0,2  0,2  0,2  0,2  0,2  0,2    1      1     1 

2    0,2  0,2  0,2    1     1      1   0,2  0,2  0,2 

x1 

x2x3 

 00  01   02   10   11    12    20  21   22 

0    0,1  0,1  0,1  0,1  0,1  0,1  0,1  0,1   0,1 
 1    0,1  0,1   2    0,1  0,1    2    0,1 0,1   0,1     

2    0,1   2    0,1  0,1  0,1   0,1    2     2    0,1 

F5 = F1 ∩∩∩∩ F2 

F6 = F3 ∩∩∩∩ F4 

x1 

  
x2 

 
 
x3  

x1 

  
x3 

 
 
x2 

F1 

 
 
 
 
F2 

 
F3 

 
 
 
 
F4 

F 

Table 4’  

Table 5’  

Table 6’  

Table 7’  

 

    ∩∩∩∩ 

    ∩∩∩∩ 

  

    ∩∩∩∩ 

F5 

F6 

G 

x1
x2 
x3 

F 
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    From the previous discussion, it follows that 
the extension of many-valued MRA from 
functions to relations is trivial. One just performs 
the union algorithm using all n decompositions, 
e.g., for three values (D0⊗0)∪(D1⊗1)∪(D2⊗2). 
 
4 CONCLUSION 
 
    A novel many-valued decomposition within 
the framework of Reconstructability Analysis is 
presented. In previous work (Al-Rabadi 2001, 
Al-Rabadi et al 2002) Modified 
Recontructability Analysis (MRA) was applied 
to Boolean functions. In this paper, MRA is 
extended to many-valued logic functions and 
relations. It has been shown that MRA can 
decompose many-valued functions when CRA 
fails to do so. Since real-life data are naturally 
many-valued, future work will apply many-
valued MRA to real-life data for machine 
learning, data mining, and data analysis. 
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