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7.  Oregon's Fish and Wildlife in a Changing Climate

Mark A. Hixon1, Stanley V. Gregory2, W. Douglas Robinson2

Contributing authors:   C. Scott Baker 3,2, Harold P. Batchelder3, Clinton Epps2 , Tiffany S. 

Garcia2, Susan M. Haig4,2 , Ricardo M. Letelier4, David A. Lytle1, Bruce A. Menge1, Jeffrey C. 

Miller5, David L. G. Noakes2, William T. Peterson5,4, James M. Rice3,2 Steven S. Rumrill5,4, Carl 

B. Schreck2, Robert M. Suryan5,2, Mark D. Sytsma5, Angelicque E. White4

Summary and Knowledge Gaps

Oregon's fish and wildlife include animals on land, fish and other species in rivers and lakes, 
and various kinds of sea life in estuaries and coastal ocean. Of great cultural and economic 
value, this immense biodiversity—some of which is already threatened or endangered—
inhabits complex and dynamic ecosystems we have only begun to understand, let alone 
examine in terms of climate change. However, it is clear that the abundance and distribution of 
species are shifting already and will shift more rapidly as habitats on land, in freshwater, and in 
sea are altered due to increasing temperatures and related environmental changes. Some 
patterns are already evident.

•Insects from south of Oregon, including pests, are moving into the state, and the timing 
of development of native species is advancing as spring conditions arrive sooner.

•Frogs are reproducing earlier in the year compared to past decades and emergent 
infectious diseases affecting frogs and their relatives are increasing in severity.

•Land birds are shifting their distributions northward and migrating earlier.

•Small mammals in eastern Oregon are contracting their ranges on mountaintops.

•In our fresh waters, climate-related habitat loss has increased in severity for salmon 
and other cool-water fishes.

•In the ocean, harmful algal blooms have increased substantially in the past 15 years, 
and recurring "dead zones" have appeared in recent years.

•The species composition of copepods (food for many marine fishes) has shifted 
substantially in recent years.

•Highly predatory Humboldt squid have recently shifted their distribution into Oregon 
waters from tropical and subtropical regions.

Of increasing concern are predicted changes in fish and wildlife populations during the coming 
decades as climate change accelerates. In general, these changes include continued northward 
shifts in species distributions, including species invading from the 
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south, upward shifts of mountain species, and declines in the abundance of affected species. 
Species may be negatively affected directly by physiological stress caused by changes in 
temperature, water availability, and other environmental shifts, and/or indirectly by habitat 
degradation and negative interactions with species that benefit from climate change (diseases, 
parasites, predators, and competitors). Because there is a broad range of possibilities regarding 
the degree of forthcoming climate change, especially regarding the response of complex 
biological systems, the severity of predicted responses is unknown, even though the direction of 
such changes is more certain. Predictions of economic and cultural relevance in Oregon include:

•Increasing frequency and severity of insect pest outbreaks, including new invasive 
species (see Case Study 7A).

•Extinction of native frog species.

•High vulnerability of nine coastal bird species.

•Continuing range contraction of mammals on mountain tops and in deserts, with 
possible extinction of rare species.

•Declines in aquatic insects that feed freshwater fishes.

•Continuing decline of salmon and other cool-water fishes as warm-water species, 
especially invasives, thrive.

•Increasing severity of harmful algal blooms and "dead zones" in the ocean.

•Worsening ocean acidification that threatens shellfish and other sea life.

•Decline of some ocean fisheries, with perhaps emergence of new fisheries.

•Population declines of diving seabirds (e.g., murres and puffins).

•Shifts in migratory patterns of marine mammals and possible increases in diseases.

Knowledge gaps in understanding the responses of Oregon's fish and wildlife to climate change 
are due to lack of basic ecological understanding of smaller organisms, such as insects and 
many ocean species. Needed are broad-scale surveys of the biodiversity, geographical ranges, 
and population sizes of indicator species in all major land, freshwater, and ocean habitats. For 
these key species (including present and potential invasives) knowledge of ecological 
interactions (predation, competition, and mutualism) is essential for predicting indirect effects 
of a changing climate. To increase the accuracy of predictions, such ecological data must be 
integrated with climate models to produce region-by-region scenarios for future shifts in fish 
and wildlife communities.

Climate change and its effects on Oregon's fish and wildlife can be moderated by natural 
resource policies that foster ecological resilience (see Case Study 7B). Given that relatively intact 
ecosystems are known to be resistant to major changes, an effective resilience tool is to protect 
refuge habitats on land, in freshwater, and in the sea  in networks of reserves where native 
species can occur and migrate in natural abundances, ages, and sizes. Resilience is also fostered 
by allowing natural cycles and disturbances to run their course, rather than attempting to 
rigidly control a changing biosphere.
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7.1! Introduction

Oregon is blessed with a rich diversity of fish and wildlife that inhabits a broad variety of 
habitats on land, in freshwater, and in the sea. This biodiversity -- the genetic variation within 
species, the number of species, and the range of ecosystems -- provides innumerable benefits to 
Oregonians, including fisheries, hunting, outdoor sports and recreation, and scientific research. 
There are also numerous, less tangible, yet extremely valuable ecosystem goods and services 
provided by these species, such as pollination of crops by insects and transport of ocean 
nutrients to stream habitats by migrating salmon.

The habitats occupied by Oregon's fish and wildlife, and the effects of climate change on those 
habitats, are covered in chapters 1 (ocean), 3 (freshwater), and 5 (forests and rangelands). This 
chapter reviews what is known, predicted, and unknown about the effects of climate change on 
Oregon's living natural heritage, focusing in turn on the land, freshwater, and the sea. Focused 
perspectives (Case Study boxes) on invasive species and ecological resilience also are provided.

7.2! Land Animals

Oregon is rich in species of land animals. Many of these species occur only in very specialized 
habitats and are expected to respond to changes in the distributions of those habitats as climate 
changes. Species that occur in alpine areas or depend on aquatic habitats in eastern Oregon may 
be especially sensitive to climate change. Currently, we know relatively little about the precise 
habitat requirements for most species. We lack sufficient details on the current distributions and 
population sizes of nearly all species, even of birds, which are comparatively well-studied 
because of great interest by amateur birdwatchers. The lack of detailed data reduces our ability 
to predict responses to climate change. In the following summaries, we provide an overview of 
the current diversity of each animal group in Oregon, what is currently known about responses 
of each group to climate change in our state, what information from neighboring regions or 
states may be applicable to Oregon, and important gaps in knowledge that must be filled in the 
coming years.

7.2.1 Insects and Relatives

Insects and their relatives (collectively known as arthropods) are joint-legged invertebrates that 
function in numerous critical ecological roles (Miller, 1993). Most abundant across the coastal, 
valley, mountain, and range habitats of Oregon are insects, spiders, and mites. Lists of species 
are very incomplete but reasonable estimates indicate that more than 14,000 species of 
arthropod live in Oregon (Danks, 1995; Miller, unpublished). Insects, spiders, mites, centipedes, 
and millipedes serve integral roles in soil chemistry, plant growth, food and timber production, 
human health, and the structure and function of habitats and ecosystems. Importantly, 
arthropods are virtually everywhere. Many species are uniquely beneficial as pollinators and 
decomposers, or notorious as pests of crops and carriers of diseases that infect plants and 
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animals. However, the majority of arthropods are relatively innocuous in the context of human 
concerns and public awareness. Nonetheless, these species are vital to the well-being of our 
environment and they are highly sensitive to climate dynamics (Forister et al., 2010).

The recognition of endangered and threatened species of arthropods, nationally and within 
Oregon, is relatively limited. In the context of all plant and animal species, the arthropods are 
extremely under-represented on federal and state lists of species of concern. Among the 
arthropods, butterflies dominate federal threatened and endangered species lists. In Oregon, 
two species of butterfly have been designated as federally threatened and endangered:  the 
Oregon Silverspot, Speyeria zerene hippolyta (Figure 7.1) and the Fender’s Blue, Icaricia icarioides 

fenderi (Miller and Hammond, 2007). These species, and others (Forister et al., 2010), are on the 
verge of extinction primarily due to habitat loss. However, the dynamics of rapid climate 
change creates an additional dimension to the environmental challenges that affect those species 
already recognized as teetering on the brink of extinction.

Figure 7.1 The Oregon Silverspot, Speyeria zerene hippolyta, a federally listed endangered species.  

View of the underside of the wings showing why the butterfly was given the common name of !silverspot."

Regardless of any official assessment, the status of a population or species may be strongly 
altered by climate change. Most critical are changes in temperature because all arthropods 
exhibit a very strong relationship between temperature and developmental rate—the time it 
takes to grow from a fertilized egg to an adult (Miller, 2004a,b). Also, climate in general 
influences the geographical range of each species—where that species is found on the globe. 
Thus, the critical issue with arthropods and climate change is a potential shift in seasonal timing 
(phenology) of critical life-history events, such as egg deposition, growth rates of immature 
stages, and timing of maturation of adults. The timing of these events is related to the seasonal 
cycles of plants and animals that provide food and shelter for arthropods. Most arthropods 
exhibit one generation per year. Thus, the sequence of development through life-history stages 
(egg, larva, pupa, adult) is intimately timed to occur in synchrony with other biological events. 
For example, a bee pollinator must develop from egg to adult so that the adult bee emerges 
from the pupal stage precisely when the flower it pollinates has nectar and pollen.  In certain 
cases, the timing of multiple biological events must occur within days of one another for 
survival of one or more species. 
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The problem lies in the fact that each species has its own genetically-based, temperature-
dependent, biological clock that dictates its phenology expressed under the temperature regime 
of its habitat. A change in the temperature regime will result in a change in the synchrony/
asynchrony of the life cycles of interacting species. Therefore, a trend in changing climate (e.g., 
rising temperatures) will have the following possible consequences for arthropods and other 
species:  (1) dying-out locally or regionally, (2) moving to a place where suitable conditions do 
exist (assuming such a place is available), or (3) adapting and remaining in the same area.  The 
faster the rate of climate change, the more likely that scenarios (1) and (2) will occur and the less 
likely that scenario (3) will occur.

All three consequences listed above have been documented by scientific studies. Although 
examples within Oregon are few, the impacts are dramatic. In Oregon, during 2004–2008, Miller 
(in preparation) documented the phenology of moth flight at the H. J. Andrews Experimental 
Forest located at an elevation of 1,000 to 4,500 feet on the western slope of the Cascade 
Mountains about 35 miles east of Eugene. This study revealed that a rise of 2°C (3.6°F) will 
hasten the annual, and typically well defined, flight period in moths by more than 18 days. A 
shift of 18 days in the overall flight period is not a trivial issue in the survival of moth species. 
The seasonal timing of flight (a period of only 10–25 days for most species) is a critical time 
because this is the only chance females have to deposit eggs, an event followed by caterpillars 
feeding on suitable foliage. If moth flight times shift due to climate change, then likewise a 
certain degree of change is also occurring in plant growth. A shift in the seasonal timing of 
foliage maturation (bud break to leaf toughening) and moth flight creates a situation of 
asynchrony. Asynchrony between two or more species that depend on one another will result in 
negative consequences in the population dynamics and community composition for the moths 
and the plants.  The implication is that all 5,000+ species of arthropods known to occur in the 
H.J. Andrews Forest (Parsons et al., 1991), let alone the 14,000+ species in Oregon, are 
temperature-dependent in their developmental sequence. The timing of the life history of each 
of these species will be affected one way or another by a warming climate, with the potential of 
compounding negative effects on those non-temperature-dependent species, such as insect-
eating birds, bats, and mammals, that otherwise require arthropods for some type of ecological 
service, such as food.

This latter concern is illustrated by the interaction that exists between insects and migratory 
birds. These birds come to Oregon and rear their young, depending on insects to feed their 
nestlings. The birds migrate to the Cascade Mountains from South America based on day-length 
cues that are very consistent. However, the availability of the insect diet they require is not 
consistent through time because it is highly influenced by climate. As mentioned above, a 2°C 
(3.6°F) shift in warmer average temperatures has the potential of altering the availability of a 
required food resource by more than 18 days. If this food (e.g., a caterpillar) has developed into 
a later life stage (i.e., a butterfly) that is not a prey  by the time the migratory birds arrive, then 
the bird populations are likely to be negatively affected due to a lack of food for their young.

Additional examples of how arthropods have been affected by climate change may be found in 
neighboring regions. For instance, subtropical mosquito species (often carriers of devastating 
diseases) are shifting their geographic distributions toward temperate regions like Oregon 
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(Epstein et al., 2008; Shope, 1992). In California, Forister et al. (2010) documented a geographical 
shift in butterfly assemblages across a valley-mountain transect in California. In British 
Columbia, Kurz et al. (2008) modeled the effect of shifting an entire forest from a minor carbon 
sink to a major carbon emitter due to an on-going massive outbreak of the mountain pine bark 
beetle (Dendroctonus ponderosae) that was initiated by climate warming. The mountain pine bark 
beetle (Fig. 7.2) is currently causing severe damage to forests in eastern Oregon (see Chapter 5).

Figure 7.2 The mountain pine bark beetle (Dendroctonus ponderosae) has caused severe damage to forests in 

eastern Oregon.

Another present-day concern in the Pacific Northwest (Oregon, Washington, and northern 
California) involves a new exotic insect pest of small fruits, Drosophila suzukii. This fly has 
entered the region explosively with potentially dire economic impacts on small fruit production 
(Bolda et al., 2010). Climate models (Damus, 2009) that predict the potential geographical range 
and population dynamics of D.  suzukii are proving to be critical for designing and applying a 
regional management plan. One of the most valuable aspects of the climate models is that they 
can predict the geographic distribution and phenology of the fly based on real and projected 
temperature data. Two implications derived from the climate models are that, as average 
temperatures increase, there will be a subsequent increase in the geographic range of the fly and 
the number of generations per year. The ramifications of these predictions suggest the 
possibility that costs for fruit production will increase and greater losses in agricultural 
production will occur.

7.2.1.1 Research needs

The relevance of addressing arthropods as species vital to the study of climate change is clearly 
justified by examples from agriculture and human health. However, the approaches necessary 
to conduct a rigorously documented study that addresses arthropods and climate change must 
be established in a very precise manner to obtain high-resolution data suitable for statistical 
analysis. In addition to a network of field-based climate stations, research activities must 
include models based on an assessment of temperature-dependent requirements for arthropod 
development through the entire life cycle (egg to adult) for groups of species of special interest.
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Two components that are essential to a well-planned comprehensive study of arthropods and 
climate change are (1) landscape-scale monitoring of species assemblages involving permanent 
sites subjected to repeated intra-annual sampling efforts at a frequency of 7–10 day intervals, 
and (2) expertise in identification of various species groups. The scope of the project at a 
landscape scale is a critical issue because the expected shift in species ranges may occur across 
100s to 1,000s of miles. Therefore, a monitoring plan should encompass transects, founded on 
elevation or latitude, that represent gradients of climate conditions across a broad geographical 
region. Also, reliance on a single species as a model organism is not advisable. A species 
complex, involving dozens to hundreds of species, should be monitored. However, the identity 
of arthropods typically is not a simple matter, as accurate identification requires expertise that is 
acquired through specialization in systematics, and such taxonomists are few in number. To 
alleviate taxonomic problems with arthropods, new initiatives are presently underway. 
Recently, Miller and Luh (unpublished) developed an interactive website that can assist non-
taxonomists with the rigors of identifying certain butterflies and moths (Lepidoptera) via the 
simple act of uploading an image, subjecting the image to an automated pixel-by-pixel analysis, 
and acquiring an accurate identification. Another team of scientists at Oregon State University is 
developing an automated identification system for aquatic insects (Larios et al., 2008). Both 
projects are in the pilot stage. These efforts have the potential to provide much needed 
taxonomic expertise to non-experts and thereby mitigate the demands of taxonomic 
specialization that thwart the inclusion of arthropods in large-scale ecological projects.

A final point reiterates the need to study multiple species rather than a single “iconic” species. 
A novel approach, yet to be conducted by any group of scientists, would be to integrate 
arthropods into climate studies in concert with other species, all of which are associated via 
ecological connections, such as food webs. Specifically, it would be valuable to design a project 
that includes a climate study involving numerous groups of plants, arthropods, and other 
animals that are ecologically linked, exhibiting a strong relationship of being inter-dependent, 
so the consequences of dying out, moving away, and adapting to a changed environment can be 
better understood and the new information used to address the goal of conserving biodiversity.

7.2.2 Amphibians and Reptiles

7.2.2.1 Amphibians

Oregon is considered a biodiversity hotspot for amphibians (frogs and salamanders) because of 
the relatively large number of species present within the state. There are an estimated 29 native 
amphibian species in Oregon:  17 salamanders and 12 frogs (Jones et al., 2005). The conservation 
status of these species varies considerably, with several currently experiencing range 
contractions while other species have healthy and robust populations. The Oregon Spotted Frog 
(Rana pretiosa) and the Oregon Slender Salamander (Batrachoseps wrighti) are the only two 
species in Oregon that are listed as vulnerable on the IUCN Red List, while the Siskiyou 
Mountains Salamander (Plethodon stormi) of southwest Oregon is listed as endangered (IUCN, 
2003; Figure 7.3). Nine of Oregon’s amphibian species have been assessed as being nearly 
threatened (IUCN, 2003). The Oregon Department of Fisheries and Wildlife designated the 
conservation status of 4 amphibian species as critical in all or part of their Oregon range—the 
Oregon Spotted Frog (Rana pretiosa), the Foothill Yellow-legged Frog (R. boylii), the Columbia 
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Spotted Frog (R. luteiventris), and the Northern Leopard Frog (R. pipiens) —and 17 other species 
as vulnerable. These classifications indicate that critically sensitive species are in immediate 
danger of extinction within specific geographic regions, and vulnerable species could become 
critically imperiled due to current threats to specific geographic regions or populations (OAR 
635-100-040).

  

(a)! ! ! !    (b)! ! ! ! (c)

Figure 7.3 Three species of endangered and vulnerable Oregon amphibians:  (a) Oregon Spotted Frog (photo by 

William Leonard), (b) Oregon Slender Salamander (photo by Gary Nafis), and (c) Foothill Yellow-Legged Frog (photo 

by David Paoletti).

Worldwide, amphibians are a group of serious conservation concern.  Population extinctions 
and declines are already occurring on a global scale (IUCN, 2004), often due to additive and 
synergistic impacts from multiple environmental stressors, such as habitat loss and climate 
change (Alford et al., 2007; Root et al., 2003; Stuart et al., 2004; Wake and Vredenburg, 2008). 
Amphibians are strongly tied to specific habitats and can be indicators of environmental status 
(Feder and Berggen, 1992; Gibbons and Bennett, 1974; Blaustein et al., 1994; Olson et al., 2007). 
They are also cold-blooded (ectothermy), making them highly sensitive to shifts in temperature 
and moisture conditions (Blaustein et al., 2003; Pounds and Crump, 1994, Rome et al., 1992). 
Physiological constraints associated with an ectothermic life history and dependence on specific 
local conditions (microclimate) make amphibians particularly susceptible to changes in climate 
predicted to occur during this century (Blaustein et al., 1994; Carey and Alexander, 2003; 
Parmesan, 2006).

The majority of amphibian species in the Pacific Northwest have freshwater associations and 
require dispersal between aquatic and upland terrestrial habitats (Olson and Burnett, 2009). 
Many Oregon species breed in temporary (ephemeral) water bodies (i.e., wetlands, vernal pools, 
and intermittent headwater streams) and require adequate wet periods and water quality, as 
well as suitable temperatures. Changes in precipitation patterns and temperature regimes will 
affect wet periods, winter snow pack, and flooding events (Chapter 3). These changes will likely 
affect breeding success, survival, and dispersal, and alter breeding phenology (timing of 
seasonal reproduction) for many species native to Oregon (Blaustein et al., 2010; Corn, 2003). 
Environmental cues, such as temperature shifts and rain events, can trigger breeding in many 
amphibian species, and miscues can result in complete reproductive failure (Hartell, 2008). In 
addition, amphibians have species-specific temperature tolerances, and exceeding these thermal 
thresholds will reduce survival. For example, Pacific Giant Salamanders (Dicamptodon 

tenebrosus) and Tailed Frogs (Ascaphus truei) are normally found in rivers less than 13°C (55°F) in 
Oregon (Huff et al., 2005). However, embryonic and larval development rates are highly 
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correlated with temperature, and warmer temperatures may advantageously affect species in 
ephemeral habitats (Duellman and Trueb, 1986).

Earlier spring thaws and warmer ambient temperatures may affect breeding phenology for 
many Oregon species. Several studies have shown that various amphibian species are breeding 
earlier in response to a warming climate (Beebee, 1995; Chadwick et al., 2006; Reading, 1998). 
Blaustein et al. (2001) examined the breeding patterns of two Oregon frog species, the Western 
Toad (Bufo boreas) and the Cascades Frog (Rana cascadae), and found that three of five 
populations analyzed had strong associations between breeding time and temperature. Only 
one population, however, had a statistical trend towards earlier breeding times over the two 
decades examined (Blaustein et al., 2001). While this study concluded that climate change was 
not influencing breeding phenology for these two Oregon species, subsequent analysis of these 
data by Corn (2003) revealed that significant relationships existed between dates of breeding 
and snow accumulation. Corn concluded that breeding phenology of mountain species are 
driven more by snow pack than by air temperature, and that 20-year data sets are too short to 
reveal significant changes in life history (Corn, 2003).

Lawler et al. (2009, 2010) employed climate models to project species turnover and range shifts 
for amphibians and other faunal groups across the Western Hemisphere. This analysis found 
that amphibian species loss was greatest in range-restricted species inhabiting areas with 
significant precipitation decreases. These models found greater species gain and loss rates for 
amphibians relative to birds and mammals due to predicted range expansions and contractions 
(Lawler et al., 2009). Similarly, Olson and Suzuki (in review) predicted that amphibian species 
with small geographic ranges in the Cascade Mountains and the western Cascade foothill 
regions will be negatively affected by reduced precipitation and variable wet periods. Six 
amphibian species have ranges restricted to the Cascade Mountains and are therefore at risk 
from shifting climate conditions (Jones et al., 2005). Predicted increases in temperature, a 
reduction in total snow pack, and increased variability in precipitation patterns in the Cascade 
Mountains and in the foothills of the Cascades (Chapter 3) will likely reduce available breeding 
habitats and upland hibernation habitats (hibernacula) for these species.

Climate change will also affect ecological interactions among species of amphibian.  Shifts in 
breeding phenologies may result in species sharing similar breeding habitats when they did not 
previously overlap (Blaustein et al., 2010). These shifts will result in new competitive 
interactions and predator/prey dynamics in these shared environments. Invasive American 
Bullfrogs (Lithobates catesbeianus) have invaded permanent and ephemeral breeding habitats in 
much of Oregon, and earlier breeding phenologies would increase their overlap with native 
amphibians substantially (Bury and Whelan, 1984). Vegetation structure and heterogeneity will 
also be affected by changes in temperature, precipitation, and wet periods (Stroh et al., 2008). 
These changes will affect larval and adult habitat use, reproductive success, and may influence 
egg-laying behavior for aquatic and terrestrial species (Williams et al., 2008). And because a 
changing climate influences the geographic distribution of potential competitors, predators, and 
prey, amphibians will encounter different biotic communities and experience subsequent 
changes in their population dynamics (Alford, 1989; Lawler and Morin, 1993).
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Disease dynamics in amphibian assemblages are also predicted to change with climate. 
Amphibian species differ in susceptibility to many of the pathogens and parasites present in 
Oregon, thus the effects will be both species-specific and region-specific (Alford et al., 2007; 
Garcia et al., 2006; Kiesecker and Blaustein, 1995). The emergent amphibian disease 
chytridiomycosis has been implicated in the decline of amphibian populations worldwide, and 
the impacts of this disease may be compounded by climate change (Pounds et al., 2006; Alford 
et al., 2007; Bosch et al., 2007). The fungus causing chytridiomycosis (Batrachochytrium 

dendrobatadis) is present in Oregon and is transmitted via aquatic spores, so changes in 
freshwater wet periods may affect transmission rates and prevalence throughout the pathogen’s 
range (Daszak et al., 1999; Lawler et al., 2010). Yellow-Legged Frogs (Rana boylii) in Northern 
California were found to have significantly higher infection rates from a parasitic copepod 
during two years when daily mean summer temperatures exceeded 20°C (68°F) (Kupferburg et 
al., 2009). Similarly, Kiesecker and Blaustein (1995) found that decreased wet periods and 
warmer water temperatures facilitated infection of frogs in the Oregon Cascades by the fungus 
Saprolegnia. Such studies suggest that climate change in Oregon will negatively affect amphibian 
species via disease both directly and indirectly.

7.2.2.2 Reptiles

Reptiles are divided into several distinctive groups, the three occurring in Oregon being turtles, 
lizards, and snakes. Oregon is home to two native and two introduced species of turtle, as well 
as four native species of sea turtle. Oregon has twelve native species of lizard and fifteen species 
of snake (Storm and Leonard, 1995). The highest diversity of reptiles on Earth tends to occur in 
warm, tropical locations. The number of species declines with distance from the equator owing, 
at least in part, to declines in temperature and reduced length of summer as one moves away 
from the equator. Thus, given Oregon’s northern location, the state has comparatively few 
species of reptiles. As of 2004, Oregon had seven reptile species (excluding sea turtles) that were 
of conservation concern, but none were federally endangered or threatened (Oregon Natural 
Heritage Information Center, 2004). The Painted Turtle (Chrysemys picta) and Northwestern 
Pond Turtle (Emys marmorata marmorata) are considered to be of conservation concern. The only 
lizard of concern is the Northern Sagebrush Lizard (Sceloporus graciosus graciosus). Four snakes 
are of concern:  Western Rattlesnake (Crotalus viridus), Common Kingsnake (Lampropeltis getula), 
California Mountain Kingsnake (Lampropeltis zonata), and Ground Snake (Sonora semiannulata). 
All sea turtles are federally listed as endangered or threatened.

The possible influence of climate change on reptiles in Oregon has yet to be studied. Based on 
the biology of reptiles, one can make some predictions of possible outcomes, but these 
predictions must be evaluated with appropriate studies. Reptiles are cold-blooded 
(ectothermic), which means their activity varies with the temperature of their environment; they 
do not generate their own body heat as birds and mammals do. Reptiles become active when 
temperatures warm, so most of their activity occurs during warm periods and seasons. 
Typically this means that activities are limited to times and places where temperatures are, at a 
minimum, above freezing, but typically temperatures for reptile activity must be much warmer. 
This dependence on temperature indicates that climate change will affect the activities of 
reptiles, and perhaps their distribution and abundance (Tewksbury et al., 2008). One might 
expect that as climate warms, the numbers of places that reptiles can live could increase. Longer 
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periods within a year that are warm enough to allow certain species to establish populations 
might occur. Habitats that are presently too cold to support certain reptiles could warm enough 
to allow expansion of ranges into those habitats or sites (for example, moving up elevation in 
mountainous landscapes).

However, simply expecting all reptiles to expand their distributions or increase in numbers as 
the climate warms is not realistic (Tewksbury et al., 2008). Another key factor limiting the 
distribution and abundance of some reptiles is the ability to stay cool (Huey et al., 2009). Many 
reptiles regulate their body temperatures to keep the temperature within specific ranges (warm, 
but not too warm). A common strategy is to engage in behavioral thermoregulation:  when 
temperatures are too hot, reptiles move to shady sites or underground and find cooler locations 
that allow them to maintain their body temperatures appropriately. In some cases, if the climate 
warms too much, the distribution of particular species may be more affected by availability of 
appropriate cover, such as shade from vegetation, than by temperature alone (Kearney et al., 
2009). Therefore, it is possible that distributions and abundances of some reptiles may change as 
vegetation within habitats they select also changes (see Chapter 5). Given that few studies have 
directly evaluated how reptiles will respond to climate change, and little is known particularly 
about the Pacific Northwest and Oregon, additional studies are required to evaluate 
expectations of how climate change will affect reptiles.

7.2.3 Land Birds

Oregon is one of the most ecologically diverse states in the U.S. with all four of the world’s 
major biomes represented:  alpine/tundra, desert, grassland, and forest. Given the ubiquitous 
distribution of land birds throughout the state and these regions, there is immense avian 
diversity representing over half of all land birds known to occur in North America north of 
Mexico (810 species, Sibley, 2000):  360 bird species regularly occur in Oregon and an additional 
135 are more occasional visitors (Marshall et al., 2003). Among land birds breeding in Oregon, 
three are federally listed under the U.S. Endangered Species Act:  Northern Spotted Owl (Strix 

occidentalis caurina), Western Snowy Plover (Charadrius alexandrinus nivosus), and the Marbled 
Murrelet (Brachyramphus marmoratus). The U.S. Fish and Wildlife Service recently (March 2010) 
determined that ESA-listing of the Greater Sage-Grouse (Centrocercus urophasianus) was 
“warranted, but precluded by higher priority listing actions.” They will develop a proposed 
rule to list the Greater Sage-Grouse as their priorities allow (Federal Register 2010). Federal 
species considered candidates for Endangered Species Act-listing include Yellow-Billed 
Cuckoos (Coccyzus americanus) and Streaked Horned Larks (Eremophila alpestris strigata). There 
are an addition 22 avian species of federal concern (www.fws.gov/oregonfwo/species/Data/
Default.asp#Birds).

Birds provide recreational benefits to hunters, bird-watchers, and overall appreciators of nature. 
They contribute substantially to Oregon tourism, outdoor recreation, outdoor sporting good 
manufacturers, as well as private and federal habitat conservation efforts in the State. The 
ubiquitous distribution of birds throughout all habitats in Oregon lends them to be susceptible 
to the varying effects climate change may have on each biome. Further, most birds are 
migratory, hence they are also subjected to changing climates along their migratory pathways 
going north and south, as well as their wintering grounds (Both et al., 2009). As reported in the 
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most recent State of the Birds (NABCI, 2010):  “Birds in every terrestrial and aquatic habitat will 
be affected by climate change, although individual species in each habitat are likely to respond 
differently.”

Avian response to climate change around the world has been manifested in several ways:  the 
geographical distribution of species has shifted poleward and to higher altitudes; and the 
beginning of the breeding season and/or migration is shifting to earlier dates (Moller et al., 
2004; Gienapp, 2008; Sheldon, 2010). Some birds that once were migratory (e.g., Canada Geese, 
Branta canadensis) have become permanent residents in one location throughout the year. Such 
change can have a domino effect on other species accustomed to occupying previously open 
habitats during certain times of year.

The 2010 State of the Birds evaluated vulnerability to climate change for every avian species in 
North America (NABCI, 2010). Among all Oregon birds, nine species were given the highest 
rating for vulnerability and all were coastal species. Two of these species were breeding Black 
Oystercatchers (Haematopus bachmani; Fig. 7.4) and Pigeon Guillemots (Cepphus columba), and 
seven were species that migrated through or wintered on the Oregon coast:  Surfbird (Aphriza 

virgata), Wandering Tattler (Tringa incana), Yellow-Billed Loon (Gavia adamsii), Black Turnstone 
(Arenaria melanocephala), Western Sandpiper (Calidris mauri), Rock Sandpiper (Calidris 

ptilocnemis), and Short-Billed Dowitcher (Limnodromus griseus; also found in the Willamette 
Valley and Great Basin).

Figure 7.4 Rising sea levels and ocean acidification threaten breeding and feeding habitats, respectively, for these 

Black Oystercatchers, one of nine bird species in Oregon given the highest rating for vulnerability to climate change 

by the North American Bird Conservation Initiative (NACBI, 2010). Photo by Brian Guzzetti.

Climate change has not been definitively studied for birds in Oregon, although observed 
general patterns in climate allow one to suggest changes that might occur among the varied 
habitats. Overall, predictions for Oregon and the Pacific Northwest are for warmer wetter 
winters and hotter drier summers (Karl et al. 2009; Chapter 1). On the Pacific Coast, rising sea 
levels are expected to inundate or fragment low-lying habitats such as the estuaries, rocky 
intertidal areas and sandy beaches (Chapter 6). Increasing frequency and severity of storms and 
increases in water temperature and acidity will affect the quality and quantity of coastal habitats 
and alter marine food webs (Chapter 6 and this chapter). Changes in nearshore sea surface 
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temperatures, though smaller than on land, are likely to substantially exceed interannual 
variability (Chapter 1). Coastal bird species are expected to shift their distributions northward, 
as warmer temperatures cause shifts in food resources and nesting opportunities (Browne and 
Dell, 2007). Lower seasonal flows of freshwater into Pacific coastal marshes will change water 
and soil salinity and affect the plants and invertebrates needed by foraging waterbirds. This will 
affect beach nesting and foraging for resident species such as Snowy Plovers and Black 
Oystercatchers. The State of the Birds (NABCI, 2010) found that most coastal birds show medium 
or high vulnerability to climate change. In addition to the most vulnerable species listed above, 
coastal species expected to be particularly impacted are diving ducks, such as Canvasbacks 
(Aythya valisineria) and Ruddy Ducks (Oxyura jamaicensis) because their existing habitats in the 
region have already been severely affected by human development (Glick, 2005; Brown and 
Dell, 2007). Other migratory birds such as the Western Sandpiper, Wandering Tattler, Whimbrel 
(Numenius phaeopus), Harlequin Duck (Histrionicus histrionicus), Red-Throated Loon (Gavia 

stellata) and many others will be vulnerable to these changes in their stopover and wintering 
habitats.

The Willamette Valley provides refuge for hundreds of thousands of Canada Geese, Dunlin 
(Calidris alpina), and other water birds in the winter (Taft and Haig 2003). The predicted warmer, 
wetter winters could enhance this wetland/savannah habitat. However, the more ephemeral 
wetlands are created by rain, the more they are drained for agricultural reasons (Taft et al., 
2008). Thus, summer residents such as Oregon’s state bird, the Western Meadowlark (Sturnella 

neglecta), may not fare as well as warmer temperatures dry up water resources and 
invertebrates. The largest urban areas in Oregon are located in the Willamette Valley, and 
common urban birds such as Vaux’s Swift (Chaetura vaux) and Common Nighthawks (Chordeiles 

minor) are declining (NABCI, 2009). Ironically, resident urban birds appear to be holding their 
own, yet migrants such as the swifts and nighthawks are not.

Further inland, snowpack has decreased substantially and will continue to do so (Chapter 3). 
Impacts will probably be high for mountainous wetlands where temperature-sensitive birds 
will be unable to move upslope (NABCI, 2010). Wetlands that depend on snowmelt will 
diminish or disappear. This lack of water or declining water levels in permanent and ephemeral 
Cascade Mountain lakes may most affect nearby cavity-nesting ducks such as the mergansers, 
Common Goldeneye (Bucephala clangula), and Bufflehead (B. albeola). Other Pacific forest birds of 
similar concern include Marbled Murrelet, Spotted Owl, Olive-Sided Flycatcher (Contopus 

cooperi), Varied Thrush (Ixoreus naevius), Band-Tailed Pigeon (Patagioenas fasciata), Rufous 
Hummingbird (Selasphorus rufus), White-Headed Woodpecker (Picoides albolarvatus) and 
Chestnut-Backed Chickadee (Poecile rufescens) (NABCI, 2009).

Warmer, wetter winters and hotter drier summers may prove to be an additional challenge for 
the threatened Northern Spotted Owl in the Coast Range and Cascade Mountains (Johnson, 
1994; Glenn, 2009; Carroll, 2010). Glenn (2009) and Carroll (2010) both found changing climate, 
particularly wetter winters, accounted for moderate to high amounts of variation in owl 
survival and population growth rates. McRae et al. (2008) similarly found that small changes in 
vital rates resulting from climate change or other stressors can have large consequences for 
population trajectories in Winter Wrens (Troglodytes troglodytes) in mature conifer forests in the 
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Cascades as well as Song Sparrows (Melospiza melodia), which prefer more open, shrubby 
Cascade habitats.

In the Great Basin, decreased summer precipitation will result in an increase in fuels from the 
growth of annual weeds leading to conditions for extensive and intensive fires. Many arid land 
birds (over 40%; NABCI, 2009) are at increased risk because of fire, drought and the potential for 
summertime temperatures greater than they can tolerate. Important wintering areas for many 
arid land birds may also become unsuitable due to increased drought (NABCI, 2010). Greater 
Sage-Grouse, other ground-nesting and sage-nesting birds are particularly vulnerable because 
of their high site fidelity. The climate-enhanced succession to juniper forest in the Great Basin 
will further exacerbate these habitat limitations.

Understanding the impact of climate change for the many water bird species using the chain of 
wetlands in Oregon’s western Great Basin is complex. Most simply put, the higher salinity 
(salty) wetlands such as Lake Abert and Summer Lake in south-central Oregon provide 
superabundant invertebrate food resources for adults (Haig et al., 1998; Plissner et al., 2000). 
However, chicks need to live near freshwater because they do not possess a developed salt 
gland (Mahoney and Jehl, 1985; Barnes and Nudds, 1991; Hannam et al., 2003). Thus, the 
juxtaposition of the need for fresh and saline wetlands is exacerbated by changing climate 
patterns for the region. If summers are hotter, then freshwater sites will become more saline and 
less useful for raising young water birds. However if there is increased precipitation, then the 
decreased salinity at sites like Summer Lake and Abert Lake will decrease food availability for 
adult breeding birds and millions of water birds that pass through on migration. These changes 
will be felt most by the species most dependent on them.  Most of North America’s Snowy 
Plovers breed in the region. Most of North America’s Eared Grebes (Aechmophorus occidentalis), 
Long-Billed Dowitchers (Limnodromus scolopaceus), and the all of the world’s Wilson’s 
Phalaropes (Phalaropus tricolor) use the region during migration. Most of the world’s American 
Avocets (Recurvirostra americana) use the region for an extended post-breeding period—over 
50% of this species breed in the Great Basin, and most of the world’s White-Faced Ibis (Plegadis 

chihi) breed in the Great Basin (reviewed in Warnock et al. 1998).  Western Grebe (Aechmophorus 

occidentalis), Clark’s Grebe (A. clarkii) and Northern Pintail (Anas acuta) will also be vulnerable to 
changes in water level and distribution that affect breeding habitats (NABCI, 2010).

7.2.3.1. Research needs

As the climate changes and Oregon birds respond to these perturbations, it is important to recall 
that most of Oregon’s birds are migrants. Thus, we need to understand how their world is 
changing in each phase of their annual cycle and how carryover of changes in one phase of the 
annual cycle is affecting the next (Webster et al., 2002). In many cases, we do not know migrant 
pathways to winter sites or locations of these winter sites. Understanding this annual 
connectivity is key to conservation planning. Closer to home, we need to better document basic 
information on distribution, abundance, elevation, and habitats used by birds now and as they 
change in the future. Even the most common of Oregon’s birds must be understood, as the scale 
of change we are undergoing is far greater than we could have imagined. Patterns in Oregon 
will likely follow those predicted for California (Stralberg et al., 2009), hence managers will 
need to consider the potential for changes in community composition and unanticipated 

282



consequences of novel species assemblages.  One way to track these changes would be to 
institute a system such as the California Avian Data Center (data.prbo.org/cadc2) in which a 
species, habitat, region, etc. can be queried as to its projected distribution as a result of  climate 
change over particular time frames. At the least, bird distribution information could be entered 
into eBird (ebird.org) or the USGS North American Bird Phenology Program 
(www.pwrc.usgs.gov/bpp/index.cfm), web-based datasets for amateurs and professionals 
interested in changing locations of bird species in real time.

In any case, the unprecedented events we are experiencing will require an unprecedented effort 
to understand the changes on Oregon’s birds and provide for their future existence.

7.2.4 Land mammals

Mammals in Oregon are a major source of economic activity through hunting, wildlife 
watching, and trapping. Mammals also influence habitat for fish, birds, and other species, help 
control agricultural pests, and are highly valued by the public as wilderness symbols and part 
of the state’s biodiversity. Oregon has a diverse assemblage of land mammals representing most 
mammalian orders and families found in North America, including about 128 native species 
and at least 9 established non-native species (Verts and Carraway, 1998). Species found only in 
(i.e., endemic to) Oregon include two species of shrew (Sorex bairdi and S. pacificus) and the 
Camas pocket gopher (Thomomys bulbivorus). The red tree vole (Arborimus longicaudus) is 
endemic to Oregon and extreme northeastern California, and the gray vole (Microtus canicaudus) 
is endemic to Oregon and Clark County of Washington (Verts and Carraway, 1998). Oregon was 
recently recolonized by gray wolf (Canis lupus) and also colonized by moose (Alces alces) (Pat 
Matthews, Oregon Department of Fish and Wildlife, personal communication). Species listed 
under the Endangered Species Act (ESA) include the endangered Columbian subspecies of 
white-tailed deer (Odocoileus virginianus leucurus), gray wolves, and the threatened Canada lynx 
(Lynx canadensis) (Oregon Natural Heritage Information Center, 2004; Fig. 7.2.4.A), although 
lynx are not known to breed in Oregon (Verts and Carroway 1998). Recent candidate species for 
ESA listing include fisher (Martes pennanti), Washington ground squirrel (Spermophilus 

washingtoni), and American pika (Ochotona princeps). The state is also home to at least 18 U.S. 
Fish and Wildlife Service “species of concern,” including pygmy rabbit (Brachylagus idahoensis), 
wolverine (Gulo gulo), 10 species of bat, 3 species of pocket gopher (Thomomys spp.), Preble’s 
shrew (Sorex preblei), and two species of vole (Arborimus spp.) (United States Fish and Wildlife 
Service, 2010).
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(a)    ! ! ! !       (b)! ! ! !       (c)

Figure 7.5 Three large endangered mammals in Oregon. (a) The Columbian white-tailed deer is  restricted to 

Douglas County and several islands in the Columbia River.  (b) The gray wolf has recently recolonized Oregon, 

yet  the impact of  climate change on large predators in Oregon is unclear. (c) The Canada lynx is associated with 

persistent snow cover during winter months (photos courtesy of the American Society of Mammalogists).

The effects of expected climate change on Oregon’s mammals have not been evaluated 
specifically, but several studies have examined past and future climate effects on small 
mammals in larger regions that include Oregon. For instance, Beever et al. (2003) recorded more 
apparent population extinctions of pika (O. princeps) in low elevation mountain ranges in the 
Great Basin deserts of western North America, including areas of eastern Oregon. This range 
contraction to higher elevations has occurred over the past 7,500 years as the climate has 
warmed and become more arid (Grayson, 2005), but warming is expected to accelerate much 
more rapidly during this century (Galbreath et al., 2009; Chapter 1). However, some low 
elevation populations of pika have persisted (Beever et al., 2008; Simpson, 2009), perhaps due to 
favorable small-scale habitats that provide shelter from higher temperatures. Studies of 
historical change in species distribution or abundance from the fossil record (Grayson, 2000; 
Blois and Hadly, 2009) demonstrate that periods of warming and drying occurred in the Great 
Basin within the last 10,000 years. These past climate shifts were associated with rapid loss or 
range contraction of species of small mammals adapted to wetter conditions, such as pocket 
gophers (Thomomys spp.), pygmy rabbit (B. idahoensis), and yellow-bellied marmot (Marmota 

flaviventris), as well as expansion of species adapted for arid habitats, such as kangaroo rats 
(Dipodomys spp.). Grayson (2000, 2006) predicted that increases in summer temperature would 
cause declines in species such as bushy-tailed woodrat (Neotoma cinerea), Great Basin pocket 
mouse (Perognathus parvus), and western harvest mouse (Reithrodontomys megalotis), but only if 
precipitation decreases (see Chapter 3). Any major shift in precipitation (drier or wetter) would 
be expected to influence communities of small mammals by favoring either dry or wet-adapted 
species (Grayson, 2000). Predicted extinction of many Great Basin mammal species, such as the 
western jumping mouse (Zapus princeps), Belding’s ground squirrel (Spermophilus beldingi), and 
the whitetailed jackrabbit (Lepus townsendii) resulting from an anticipated 3°C (5.4°F) 
temperature increase (McDonald and Brown, 1992; see Chapter 1) may be overstated because 
dispersal potential was underestimated for many Great Basin species (Grayson, 2006; Waltari 
and Guralnick, 2009).

Few if any studies have evaluated effects of climate change on mammals elsewhere in Oregon, 
other than a range-wide assessment of pika that included habitat in the Cascade Mountain 
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Range (Galbreath et al., 2009). Because most Oregon mammal species are not endemic to the 
state (Verts and Carraway, 1998), some climate change research on mammals outside Oregon is 
relevant. Most such research has occurred in California, which has a similar range of habitats 
and high faunal overlap with Oregon. Moritz et al. (2008) evaluated changes from historic (early 
20th century) to current distributions of 28 small mammal species in the Sierra Nevada 
mountains of California. They found that half of those species shifted their ranges to higher 
elevations over that period of warming, including Belding's ground squirrel (S. beldingi), water 
shrew (Sorex palustris), American pika (O. princeps), bushy-tailed woodrat (N. cinerea), golden-
mantled ground squirrel (Spermophilus lateralis), and long-tailed vole (Microtus longicaudus). 
However, some lower-elevation species, such as the western harvest mouse (R. megalotis) and 
the montane shrew (Sorex monticolus), expanded their ranges. Also, migration appeared to 
moderate some of the apparent impacts of climate change over the last century (Moritz et al., 
2008). Desert bighorn sheep (Ovis canadensis nelsoni) in the Mojave, Great Basin, and Sonoran 
Deserts of California likewise showed a range contraction to higher elevation and wetter 
mountain ranges during the period 1940–2000; populations in higher elevation habitats also 
retained greater genetic diversity (Epps et al., 2006). After observing recolonization of some 
lower elevation habitats by desert bighorn sheep, Epps et al. (2010) argued that maintaining 
connectivity among fragmented populations of climate-sensitive species may offer the best 
opportunity to manage impacts of climate change at local and regional scales. Wolverine (G. 

gulo), possibly extirpated from Oregon but still occasionally reported, require persistent winter 
snows for successful reproduction and, thus, have been negatively affected by declining 
snowpack across North America (Brodie and Post, 2010). Canada lynx are also associated with 
winter snow cover (Verts and Carraway 1998) and could be affected by changes in snowpack. 
There is little research on the effects of climate change on bats in the western United States, 
although Adams and Hayes (2008) determined that the fringed bat (Myotis thysanodes) had high 
water requirements during lactation and would have less successful reproduction if the climate 
becomes more arid. Reproductive success in many temperate bat species is linked to 
precipitation (e.g., Frick et al., 2010).

Climate envelope modeling of the responses of land mammals to climate change in California 
suggested that the greatest potential for changes in species distributions was in the arid eastern 
regions, while mammal distributions in the Sierra Nevada and Central Valley remained 
relatively stable (Parra and Monahan, 2008), suggesting that similar patterns might be observed 
in the arid regions of eastern Oregon. Precipitation, rather than temperature, often has the 
strongest influence on mammalian body condition or population dynamics, particularly in arid 
regions. For instance, precipitation was the stronger determinant of body size of California 
ground squirrel (Spermophilus beecheyi; Blois et al., 2008) as well as diet quality and reproductive 
success of desert bighorn sheep (Epps, 2004; Wehausen, 2005). However, predicted changes in 
precipitation are much more variable than predicted changes in temperature among the current 
spectrum of global climate change models (e.g., Loarie et al., 2008; Parra and Monahan, 2008; 
see Chapter 3), rendering impacts on species in arid lands and other habitats even less 
predictable.
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7.2.4.1 Research needs

Anticipating the impacts of future climate change on mammals requires (1) understanding how 
to accurately downscale global climate change models to regional scales; (2) understanding the 
effects of climate on habitat (in particular, vegetation and surface water); (3) understanding the 
effects of changes in habitat, precipitation, and temperature on physiology, behavior, and 
population dynamics; and (4) understanding complex interactions among species and with 
other factors, such as disease. The first two areas are being addressed in other arenas of climate 
change research, whereas the third often must be approached on a species-by-species basis. 
Species inhabiting deserts (Loarie et al., 2009), high elevations (Parmesan, 2006), and other 
ecosystems already identified as “high risk” are the most obvious candidates for future 
research. Some interactions between species are already anticipated. For instance, American 
beaver (Castor canadensis) dams may retain water for longer periods in freshwater streams, 
which could help mitigate impacts of early snowmelt or changes in precipitation (Hood and 
Bayley, 2008) on freshwater ecosystems (see Section 7.3). Other important considerations 
include how predicted climate changes that affect human activities on agricultural lands 
(Chapter 4) and managed forests (Chapter 5) may affect mammal species restricted to such 
habitats, such as the Camas pocket gopher (T. bulbivorus), which are found only in the 
intensively-farmed Willamette Valley. Refining predictions for future precipitation and 
identifying basic relationships among mammalian population dynamics and climate variables 
may be the highest priorities for future research.

7.3! Freshwater Fishes and Invertebrates

Land use change and industrial/municipal development have directly and indirectly warmed 
streams and rivers throughout Oregon, contributing to the decline of anadromous salmon and 
trout, resident salmonid fishes, and other cold water species (USACE, 2008; NWPCC, 2004). 
More than 11,000 miles of streams and rivers in Oregon have been listed as impaired based on 
temperatures that exceed the water quality standard. In a recent analysis of water quality in the 
Willamette River basin, more than 35% of the streams were classified as poor quality (Annear et 
al., 2004). The human population in the Willamette Basin is projected to double over the next 50 
years (Hulse et al., 2002), creating more pressure to convert riparian areas and floodplains, 
develop more roads and drainage ditches, and generate greater volumes of thermal effluents 
that heat streams and rivers. In addition to accelerated human impacts on river systems, the 
regional and global climate is projected to warm substantially in coming decades (Chapter 1). 
The distribution of cold-water species will potentially shrink and become disconnected as 
thermal regimes in river networks warm more rapidly due to human influences and climate 
warming.

7.3.1 Freshwater Invertebrates

Aquatic invertebrates are present in all Oregon freshwater habitats, from seasonal alpine ponds 
and temporary (ephemeral) desert streams, to permanent (perennial) lakes and rivers. Broadly 
speaking, “aquatic invertebrates” include all of the aquatic insects (mayflies, dragonflies, 
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stoneflies, etc.) as well as crayfish, snails, fairy shrimp, clams, and related groups. Aquatic 
invertebrates are key consumers of aquatic plants and forest leaf litter, and in turn they 
constitute a critical food source for fish (including young salmon and steelhead), birds, bats, and 
other animals. Recreationally, many groups of aquatic insects are important for trout fisheries 
and the fly fishing industry. Many aquatic invertebrate species require clean, cold water year-
round, and for this reason they are used to monitor the ecosystem status of rivers and streams 
(Carter et al., 2007).

Oregon possesses a great diversity of aquatic invertebrate species, due largely to the sheer 
volume and diversity of aquatic habitats distributed across the state. For example, Oregon is 
home to at least 88 species of dragonflies and damselflies (Kondratieff, 2000), 116 species of 
stoneflies (Kondratieff and Baumann, 2000), and 142 species of mayflies (Meyer and McCafferty, 
2007). Distinct invertebrate communities are found in springtime ponds, snowmelt-driven 
headwater streams, isolated desert springs, and large rivers. Of particular interest with respect 
to climate change are “headwater specialist” species, which are often restricted to high-
elevation, cold-temperature mountain streams that are heavily influenced by melting snowpack 
(Meyer et al., 2007). While no studies have directly examined how climate change might affect 
any of these habitats in Oregon, we can obtain guidance from studies done in similar habitats in 
North America, Europe, and Australia.

Aquatic invertebrates are strongly affected by changes in both hydrology (a river’s 
characteristic pattern of baseflow, flood, and drought) and temperature, and both of these 
factors are expected to change substantially under most climate change scenarios. For many 
freshwater aquatic organisms, hydrology is the “master variable” that dictates fundamental 
aspects of their life cycle, ecology, and distribution (Poff et al., 1997). Similarly, stream 
temperature affects the growth rate, biomass, and distribution of many aquatic invertebrate 
species (Vannote and Sweeney, 1980).

In Oregon’s mountain regions, a shift from winter snowpack to winter rainfall could reduce the 
abundance and diversity of aquatic invertebrates. Although milder winter conditions could 
create new stream habitat at higher elevations, studies from other regions suggest these habitats 
might not be suitable for many aquatic invertebrate species. In a long-term study in the Swiss 
Alps, Finn and coauthors (2010) found that stream habitats became significantly less stable 
(higher flow variability) as permanent snowpack retreated over a five decade period. This 
instability was also linked to fluctuations in aquatic invertebrate community structure over 
shorter timescales. This change may have been due to decreasing or more erratic groundwater 
recharge as glaciers receded, as documented by Haldorsen and Heim (1999) for Arctic streams.

Climate predictions for mountain regions also include more winter precipitation falling as rain 
instead of snow, as well as earlier melting of accumulated snowpack (Chapter 3). This change 
will create a substantially different environment for aquatic invertebrates because in snowpack-
dominated streams, winter flows are relatively constant, and there is a pronounced but 
predictable spring flood associated with melting of the snowpack. By contrast, rainfall-
dominated streams can experience major floods during the winter season. Studies of streams in 
the Oregon Cascades have shown that flow variability influences communities of aquatic 
invertebrates, with more stable stream types generally exhibiting higher density and greater 
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biodiversity (Yamamuro, 2009). In some parts of Oregon, deep volcanic aquifers might be 
expected to buffer stream hydrology and maintain stable flows, even as more precipitation falls 
as rain instead of snow (Chapter 3).  For most streams, however, a shift towards more variable 
winter flows may result in lower biodiversity and abundance of aquatic invertebrates.

In Oregon’s arid regions, less frequent or more variable precipitation may cause some streams 
and ponds to shift from perennial (surface water year-round) to intermittent (surface water for 
only part of the year). The transition from perennial to intermittent water bodies can bring 
major shifts in invertebrate community structure as well, due to differences in nutrient 
dynamics and predator communities (e.g., intermittent habitats often are fishless). The 
differences in water permanence alone may be sufficient to produce differences in invertebrate 
communities, because many invertebrate species are unable to survive prolonged periods of 
drought and desiccation (drying). In other arid regions, decreased precipitation is expected to 
be especially problematic because groundwater and stream flows already are compromised by 
increasing human demand and extraction in the American Southwest (Grimm et al., 1997; 
Deacon et al., 2007). The situation likely will be similar in Oregon’s arid regions, where high 
demand for limited water supplies will only exacerbate the ecological changes produced by a 
changing climate.

Increasing temperatures may reduce the biodiversity of aquatic invertebrate communities, 
especially when the temperature tolerances of some species are exceeded. Most aquatic 
invertebrates have a defined range of stream temperature tolerance within which they can 
survive, with some species adapted to warm, oxygen-poor waters and others specializing on 
colder, oxygen-rich habitats. Studies in European alpine zones have noted a local increase in the 
number of species as cold snowmelt-driven streams became warmer due to climate change (e.g., 
Brown et al., 2007, and Jurasinski and Kreyling, 2007, for plant communities), possibly because 
of the enhanced ecosystem productivity that can be associated with warmer temperatures. At 
face value, this increase in species diversity at a single site may seem like a positive effect of a 
warming climate. However, these same studies found that overall diversity across sites actually 
decreased, primarily because alpine headwater specialists were being replaced by widespread 
generalist species from lower elevations. Several species that require cold temperatures had 
declined greatly and were predicted to become locally extinct if the warming trend continued. 
To some degree, the combined effects of changing hydrology and increasing stream 
temperatures might eventually push many headwater species “off the top of the mountain,” as 
has been extensively documented for many terrestrial plant and animal species (e.g., Section 
7.2.4). Overall, warming temperatures in Oregon mountain streams can be predicted to provide 
some positive benefits at the local scale (increased local diversity), but these benefits are 
predicted to be outweighed by negative impacts at the regional scale (decreased overall 
diversity and loss of some specialist species).

Aside from altering patterns of aquatic invertebrate biodiversity and distribution, changes in 
water temperature alter the population dynamics of individual species. The “phenology” of 
aquatic invertebrates refers to their cycle of growth, maturation, and reproduction. For many 
species, if not most, phenology is strongly determined by temperature. Thus, a shift towards 
warmer spring temperatures might produce a much earlier phenology, such that aquatic 
invertebrates reach reproductive maturity at an earlier date (e.g., Section 7.2.1). This 
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phenomenon is well-documented in plants, insects, and birds, with similar patterns occurring in 
aquatic invertebrates (Finn and Poff, 2008; Strayer and Dudgeon, 2010). Mayflies in the Rocky 
Mountains have been observed to emerge earlier during periods of lower snow pack and earlier 
snowmelt (Harper and Peckarsky, 2006). The ramifications for entire aquatic communities of 
such shifts in the phenology of single species remain unknown. It is possible that some aquatic 
invertebrate prey species could become unsynchronized with their predators (fish, birds, or 
other animals), but this outcome remains to be demonstrated directly.

In summary, Oregon has a great diversity of aquatic habitats that likely will be affected by 
climate change. The most immediate effects are likely to arise from changes in aquatic 
hydrology and temperature. The expectation from studies in other regions similar to Oregon is 
that biodiversity will decrease in general, although local increases are possible. Headwater 
specialists that depend on cold water and snowmelt are especially vulnerable, as are arid land 
species that depend on year-round water.

7.3.2 Salmon and other freshwater fishes

Projection of the effects of climate change on 57 species of North American freshwater fish 
indicated that 37% of the current locations inhabited by cold-water fishes would not support 
these species over the next century (Mohseni et al., 2003). Another study of climate effects on 
coldwater fishes concluded that trout habitats throughout the U.S. would be reduced by 15–40% 
by 2090 (O’Neal et al., 2002). This study provided regional estimates as well, and projected that 
trout habitat in the Pacific Northwest would decline by 8–33% by 2090. Salmon habitat is even 
more vulnerable to the effects of climate change because more of the habitat of salmon is at 
lower, warmer elevations. O’Neal et al. (2002) projected that suitable salmon habitat in Oregon 
and Idaho would shrink by 40% by 2090, but Washington would experience only a 22% loss, 
reflecting the cooler temperatures found in more northerly coastal drainages. Bull trout 
(Salvelinus confluentus) require colder temperature than other salmonid fishes and may be more 
sensitive to regional climate warming. Estimates of climate-related habitat loss for bull trout in 
the Columbia River basin range from 22% to 92% (B. Reiman, personal communication, as cited 
by ISAB, 2007).

Similar results have been projected for other regions with native salmonid fishes. Estimates of 
habitat loss for brook trout (Salvelinus fontinalis) in the Appalachian Mountains range from 53% 
to 97% (Fleebe et al., 2006). Habitat for trout in the North Platte River in the Rocky Mountains of 
Colorado is projected to shrink by 7–72% as a result of climate change (Rahel, 1996). Species of 
cold-water fish in the Muskegon River basin in Michigan are projected to decline by 2100, but 
the geographic ranges of cool-water and warm-water species are predicted to expand (Steen et 
al., 2010). 

The context for analyses of habitat losses related to climate change assumes that air surface 
temperatures will change, leading to increased rates of warming from headwater streams to 
large rivers (Chapter 3). Temperatures at stream sources will change slightly but warm more 
rapidly, and higher temperatures in large rivers will reflect the increases in surface air 
temperatures. Summer droughts and reduced snow pack will cause contraction of the stream 
network and current year-round headwater streams will become intermittent seasonal streams. 
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Rain-on-snow zones will extended higher in elevation and winter flood magnitudes may 
increase. Human population growth will increase demands for water, and withdrawals from 
surface water and groundwater will exacerbate effects of climate change on water temperatures 
and low-flow stream networks.

Various native freshwater fishes in the Pacific Northwest require cold water and are potentially 
vulnerable to warming associated with climate change. Coho salmon (Oncorhynchus kisutch), 
rainbow trout (O. mykiss), cutthroat trout (O. clarki), and five species of sculpin (Cottus spp.) 
normally are found in waters less than 17°C (63°F) (Huff et al., 2006; Fig. 7.6). Columbia River 
white sturgeon (Acipenser transmontanus) spawn at temperatures in the range of 10–18°C (50–
64°F) (Parsley et al., 1993). Sturgeon eggs die at 20°C (68°F) (Wang et al., 1985). The upper lethal 
temperature limit of eggs and larvae of Pacific lamprey (Lampetra tridentata) is 22°C (72°F) 
(Meeuwig et al., 2005). The state of Oregon has reviewed thermal tolerances and upper incipient 
lethal levels in establishing temperature standards under the Clean Water Act (see tables in 
Oregon Department of Environmental Quality, 1995; McCullough et al., 2001).  In the face of 
climate change, the length of streams and rivers that exceeds the upper incipient lethal levels for 
species of native fish would likely expand.

Figure 7.6. Cutthroat trout, one of many native Pacific Northwest freshwater fishes potentially vulnerable 

to a warming climate.

Climate change scenarios in the Pacific Northwest project increased frequency and duration of 
summer drought (Chapter 3). Small headwater streams will become intermittent, increasing the 
death rate of eggs and juvenile fish. Extension of drought into early autumn can have 
substantial negative impacts on salmonid fishes. Populations of spring Chinook salmon 
(Oncorhynchus tschawytscha) in the Salmon River in Idaho increase with the size of autumn water 
discharges (Crozier and Zabel, 2006). Chinook salmon juveniles in wide and shallow streams 
are affected by summer low flows and maximum temperatures more than fish in deeper 
channels (Torgerson et al., 1999; Crozier and Zabel, 2006).

Water temperature influences the time required for fish eggs to develop and the rate at which 
fry and juvenile fish grow. Life histories of freshwater fishes are closely tied to habitat 
conditions, food supplies, migration, and transitions between freshwater and saltwater for 
anadromous species. Shifts in timing and the consequences for critical life-history requirements 
(such as migration, egg development, juvenile rearing, ocean entry and migration, adult return) 
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make projections related to timing highly variable, but such changes have substantial potential 
to negatively affect hatching, growth, migration, and survival. Warmer water temperatures are 
likely to lead to shorter incubation periods and faster growth and maturation of young fish 
(Beckman et al., 1998). Faster growth and maturation can have positive effects because young 
fish attain larger sizes before winter, which increases their survival potential (Quinn and 
Peterson, 1996). High summer temperatures can also increase metabolic costs and decrease 
growth during summer (Healy, 2006). However, accelerated growth can also cause earlier entry 
of juvenile salmon into the ocean. Because salmon and steelhead stocks have evolved to migrate 
and enter the ocean at specific times of the year, changes in that timing could have either 
negative or positive outcomes. Timing of ocean entry is known to be a primary factor in 
survival and production of pink salmon (Oncorhynchus gorbuscha) in the ocean (Henderson et al., 
1992; Pearcy, 1992). In Carnation Creek, British Columbia, increased stream temperatures due to 
logging caused more rapid growth in coho salmon, and juveniles entered the ocean two weeks 
earlier than normal. Returns of adult coho salmon decreased, and the authors hypothesized that 
change in timing of ocean entry resulted in higher consumption of young salmon by marine 
predators (Holtby et al., 1990).
 
Migration of salmon in the Columbia River is strongly influenced by river temperatures (Goniea 
et al., 2006; ISAB, 2007). Movement of adult steelhead trout and Chinook salmon decrease 
sharply at temperatures greater than 18°C (64°F) (Richter and Kolmes, 2005). Others have 
suggested that 16°C (61°F) is the upper limit for migration of salmon in the upper Columbia and 
Snake Rivers (Salinger and Anderson, 2006). At higher temperatures, migrating salmon move 
into cold water refuges in tributaries or deep pools, and hold position until temperatures in the 
mainstem river decrease (Perry et al., 2002). Adult Chinook salmon did not survive when 
exposed to a constant temperature of 22°C (72°F) (McCullough et al., 2001).

7.3.2.1 Cold-water refuges

Cold-water refuges for aquatic organisms are created by the exchange of stream waters and 
ground waters throughout river networks and deep aquifer sources in specific geologic 
landscapes. Cutthroat trout use cold-water refuges in the mainstem Willamette River 
disproportionately during summer periods of high temperature (Hulse and Gregory, 2007).  
Similar results have been observed for coho salmon in the Smith River, and Chinook salmon 
east of the Cascades (Raskauskas, 2005). Aquifers with sources in the High Cascades create cold-
water springs that provide a substantial portion of the water in some tributaries during summer 
low flow (Tague and Grant, 2004). Distributions of different types of cold-water refuges could 
determine the future distributions and abundances of native cold-water fishes under warmer 
climate regimes.

Cold-water habitats occur in alcoves (side channels) on floodplains and in-channel gravel bars 
(Hulse and Gregory, 2007; Burkeholder et al., 2008). In the upper Willamette River, more than 
68% of the sites sampled in floodplain alcoves were colder than the mainstem river, and 37% 
were 2–9°C (4–16°F) colder than the mainstem sites. Cold-water habitats created by the 
exchange of stream waters and ground waters provide critical refuges for native salmonid 
fishes, but few studies have directly linked the use of cold-water habitats with the processes that 
create and maintain these essential refuges. Chinook salmon in the Yakima River exhibited core 
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body temperatures 2.5°C (4.5°F) lower than the surrounding river temperature (Bermann and 
Quinn, 1991), demonstrating a need for cold water habitats throughout the river network for 
adult salmon. The availability of suitable thermal refuges and appropriate holding habitat 
within mainstem rivers may affect long-term population survival. Torgerson et al. (1999) found 
Chinook salmon in the John Day River system primarily in deeper pools or tributary junctions 
with cooler temperatures. Subsequent studies revealed little exchange of stream waters and 
ground waters in these reaches, so the cooler temperatures were source-related and not 
exchange-related (Wright et al., 2005). Juvenile coho salmon in the Smith River avoided warmer 
mainstem river habitats (up to 25°C or 77°F) and aggregated in cold-water habitats (Raskauskas, 
2005). Fifteen cold-water refuges identified in 15 km (9 mi) of stream contained the majority of 
coho salmon in the reach. In floodplain alcoves of the Willamette River colder than the 
mainstem, more than 80% of the fish species observed were native species; but in floodplain 
alcoves warmer than the mainstem, 60% of the species observed were non-native species (S. 
Gregory and D. Hulse, unpublished data). Studies of fish distributions and water temperatures 
in Oregon demonstrated that most native fish in the Willamette River occured in waters less 
than 20°C (68°F), with only redside shiner (Richardsonius balteatus) and speckled dace 
(Rhinichthys osculus) normally occupying waters as warm as 23-25°C (73-77°F) (Huff et al., 2005).

7.3.2.2 Effects of increased flooding

In the Pacific Northwest, climate change assessments indicate that winter floods may increase as 
a result of expanded rain-on-snow zones (Chapter 3). Expanded area of floodplain could have 
both positive and negative effects on aquatic ecosystems. Floods remove silt from streambeds, 
create spawning gravel deposits, create pools, deposit riffles, accumulate wood in complex 
habitats, deliver food resources from adjacent terrestrial ecosystems, and shape diverse and 
productive floodplains (Swanson et al., 1998, Hulse and Gregory 2004). Increased flooding 
would provide more of these benefits and possibly restore flood processes in tributaries where 
flood control has greatly decreased the frequency and magnitude of flooding. But floods also 
can have detrimental effects on aquatic communities, especially in reaches where channel 
simplification and bank hardening increase the power of floods but eliminate access to lateral 
floodplain and riparian refuges. Winter floods can scour gravel nests (redds) while the eggs of 
Pacific salmon and other salmonid fishes are in the gravel (Jager, 1997). Earlier snowmelt can 
result in exposure of redds if water levels drop sooner and more rapidly. Siltation during flood 
events also has the potential to blanket gravels with silt and smother eggs or trap fry.

7.3.2.3 Effects of increased diseases and parasites

Warmer waters also increase exposure of fish to diseases and potentially alter the resistance of 
aquatic organisms to pathogens and parasites (Marcogliese, 2001). Recent studies have 
documented pre-spawning death rates of 65-90% in spring Chinook salmon in the Willamette 
River system (C. Schreck, unpublished data). These mortalities occur after migration to their 
spawning grounds but before spawning, losses not included in regional estimates of returning 
adult salmon. Disease, exposure to environmental contaminants, and the stress of high 
temperatures are potential causal factors. Native salmonid fishes in the Willamette River system 
also are noted for their high susceptibility to bacterial disease. Several of these diseases also 
have intermediate hosts (e.g., Ceratomyxa shasta with a ploychaete worm host Manayunkia 
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speciosa) likely to increase at higher temperatures and in areas of increased sediment deposits, 
both of which could be worsened by changes in water temperature and flow rates as a result of 
climate change and human population growth. Elevated temperatures and diseases (primarily 
the bacterial disease columnaris) were the major causes of the deaths of 33,000 Chinook salmon 
in the lower Klamath River in 2002 (California Department of Fish and Game, 2003).

7.3.2.4 Effects of community interactions and invasive species

Biotic interactions (competition, predation, etc.) have major influence on the performance of 
freshwater fishes. Many native species are territorial and compete for feeding positions, hiding 
cover, and spawning locations. In the Umpqua River, Oregon, juvenile steelhead trout were 
dominant over redside shiners and occupied the most effective feeding locations at 
temperatures less than 15°C (59°F) (Reeves et al., 1987). However, at temperature above 19°C 
(66°F), redside shiners were dominant and steelhead growth rates declined. In the Rocky 
Mountains, native cutthroat trout and non-native brook trout were equally competitive in 
feeding at 10°C (50°F), but brook trout were more efficient in feeding at 20°C (68°F) (DeStaso 
and Rahel, 1994).

Predation is a major biotic interaction that strongly influences the survival of freshwater fishes. 
As described earlier, shifts in the timing of migration may expose fish to higher predation in 
freshwater or marine environments than they would experience under current run timing 
(Holtby et al., 1990). Consumption of juvenile salmonid fishes by northern pikeminnow 
(Ptychocheilus oregonensis), smallmouth bass (Micropterus dolomieu), and walleye (Sander vitreus) 
was greatest as temperatures increased in midsummer (Vigg et al., 1991). In addition, fish may 
be less able to avoid predators under thermal stress. Chinook salmon were less able to avoid 
predatory northern pikeminnow at temperatures higher than 20°C (68°F) (Marine and Cech, 

2004). Migrating juvenile salmon in the Willamette and Columbia Rivers use shallow margin 
habitats (Friesen et al., 2004; Tiffan et al., 2006). Increasing temperatures in these lateral habitats 
would cause these migrating juveniles to move to deeper waters and experience greater risk of 
predation (Poe et al., 1991).

Many non-native fish species that have been introduced into the Pacific Northwest are warm-
water species. There are increased proportions of non-native species and decreased richness of 
native species in warmer reaches of the Willamette River (Hughes et al., 2005). Non-native 
species can cause extensive habitat degradation (e.g., carp, catfish), prey on native fish species 
(largemouth bass, smallmouth bass, walleye, yellow perch, bluegill, warmouth, etc.), hybridize 
with native species (e.g., brook trout and bull trout), and compete with native species for habitat 
and food resources. Many invasive species benefit simply from increased maximum 
temperatures, but increased minimum temperatures in winter may allow non-native species to 
successfully invade streams and rivers where they currently are excluded by low winter 
temperatures. Distributions of non-native species have been documented in the Pacific 
Northwest (LaVigne et al., 2008), but there has been little research on factors that determine 
their success or their impacts on native communities (see Case Study 7A).
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7.3.2.5 Adaptation to temperature increases through contemporary evolution

Surface water temperatures are projected to increase by roughly 2–4°C (4–7°F) over the next 100 
years (Chapter 3). In many streams and rivers, these temperature increases will either exceed 
the lethal level for some species or lead to declines caused by physiological and reproductive 
stress, disease, competition, predation, or presence of invasive species at temperatures lower 
than lethal levels. This scenario assumes that these species have no ability to adapt to changing 
temperature. Recent research in New Zealand observed that fall Chinook salmon transplanted 
from the Sacramento River in 1901 and subsequently outplanted or migrating to warmer rivers 
in New Zealand have evolved in response to the warmer rivers (Quinn et al., 2001; Kinnison et 
al., 2008). In less than 30 generations, there was divergence of traits (such as age at maturity, 
date of return to freshwater, reproductive morphology, reproductive allocation) and shifts in 
physiological performance (survival and growth) (Quinn et al., 2001; Kinnison et al., 2008). 
Physiological responses have shifted their maximum physiological performances by as much as 
2°C (4°F), indicating that some species like salmonid fishes might be able to adapt to 

and survive projected temperature increases. Others have observed heritable shifts in traits of 
sockeye salmon populations in fewer than 13 generations (Hendry et al., 2000). Ecological 
adaptation and contemporary evolution could allow some species to “keep up” with changing 
temperature regimes in the Pacific Northwest. Note that salmonid fishes exhibit faster trait 
divergence and evolutionary rates than many other fish species. Contemporary evolution may 
not be effective in helping other species of native fish adapt to climate change.

7.3.2.6 Restoration actions to moderate the effects of climate change

The major actions that could be taken to minimize habitat losses and ecological consequences of 
climate change for freshwater fishes in the Pacific Northwest include (1) maintaining water 
volumes in streams and rivers, (2) improving water quality and habitat complexity in degraded 
reaches, (3) maintaining natural flow regimes to the extent possible, (4) protecting and restoring 
riparian and floodplain vegetation, (5) maintaining dynamics floodplains and channels, (6) 
protecting existing cold-water refuges, and (7) restoring watershed conditions in uplands. These 
actions are not novel or unique to climate change. These are conservation actions repeatedly 
called for by all resource management agencies in the Pacific Northwest for the last 50 years. 
The challenge of climate change in freshwater ecosystems is not a need to respond to a new 
change but rather the need to implement existing conservation strategies more widely and 
successfully.

Life histories of aquatic organisms in freshwaters of the Oregon are complex.  Some fish species, 
such as rainbow trout (O. mykiss) and cutthroat trout (O. clarki), have both resident and 
anadromous life histories (anadromous rainbows are called "steelheads"). Responses to changes 
in water temperature and discharge related to climate change may include complex shifts in 
proportions of life history types, distributions, and timing of life history stages. Changes in 
freshwater streams, lakes, estuaries, or ocean can be modified by differences in changes in these 
other major regional habitats within the geographic range of the species. Management decisions 
will be complex, possibly amplifiying, counteracting or altering the biological responses to 
environmental shifts related to regional climate change.  Monitoring of resource trends and 
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anticipating alternative trajectories of change will be essential for effective adaptive 
management (see Case Study 7B).

Many ecosystem services, such as flood storage in river floodplains, habitat for aquatic 
communities, cold-water refuges, and riparian (riverbank) wildlife habitats have been 
dramatically reduced over the last 150 years in the Pacific Northwest as a result of channel 
alteration, dikes, riprap, flood control, water withdrawal, and waste discharge. River and 
stream channels have been straightened and hardened and channel-forming high water flows 
have been reduced. Floodplain forest and riparian habitats have been reduced by more than 
80% in the lowlands. River temperatures have increased and many cold-water refuges along 
river margins have been destroyed. Restoration measures include efforts to repair channel 
dynamics (e.g., removal of bank-control structures, reconnection of historical alcoves and other 
lateral habitats), revegetation (e.g., reforestation, restoration of non-forest wetlands), decreased 
consumption and removal of surface water, water reuse, and matching various uses to different 
water-quality sources (Battin et al., 2007). The scientific and logistic challenges of these 
restoration efforts are substantial, but the rate of restoration mostly is limited by social 
constraints (e.g., land owner participation and attitude, effective incentives, policies and 
governance structure).

7.4! Ocean Life

Oregon's territorial sea extends from the beach to 3 nautical miles offshore, yet is part of a much 
larger ocean region known as the California Current Large Marine Ecosystem (Sherman, 1991). 
The chemical and physical properties of Oregon's ocean environment, including past and 
predicted changes due to warming and acidification, are reviewed in Chapter 1. Regarding sea 
life, our region is part of the Columbian Pacific Marine Ecoregion, extending coastally from 
Vancouver Island south to Cape Mendocino in northern California (Wilkinson et al., 2009). A 
region of seasonal upwelling that fertilizes nearshore waters and supports a productive 
ecosystem, Oregon's territorial sea and numerous estuaries at the mouths of major watersheds 
support a broad variety of plant and animal life of immense ecological, cultural and economic 
value, especially in terms of tourism and fishing.

This rich cornucopia of ocean species lives as a web of consumers and prey (Fig. 7.7), the basis 
of which are the tiny, single-celled, drifting phytoplankton that are the grasses of the sea. These 
plant-like organisms are eaten by zooplankton, tiny drifting animals that include both 
permanent forms and the early life stages (larvae) of fishes and larger invertebrates. Many 
larger animals eat zooplankton, and so the web builds upwards to the top predators, including 
large fishes, seabirds, marine mammals, and, of course, humans. Because this complex food web 
interconnects so many species, and because each part of the web faces specific issues with 
respect to ocean warming and acidification, this section covers in turn phytoplankton, 
zooplankton, seafloor life, fishes and fisheries, seabirds, and marine mammals.

It is important to keep in mind that predicted future changes in each of these groups of sea life 
will propagate through the entire food web in ways that may not be predictable. Such indirect 
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effects include both bottom-up processes, involving changes in the productivity of 
phytoplankton and seaweeds that feed higher levels in the food web, as well as top-down 
processes, involving changes in the distribution and abundance of top predators that affect 
lower levels. Overall, it is highly likely that substantial surprises will be forthcoming in ocean 
ecosystems during this century as the ocean warms and acidifies.

Figure 7.7 Partial food web in Oregon's ocean. Arrows flow from prey to predators, with dashed arrows representing 

minor links (10–50% consumption). Lower trophic levels feed higher trophic levels. Many species are missing, 

including larger fishes, seabirds, marine mammals, and human fisheries, as well as all seafloor species. (From 

Oregon Ocean Resources Management Task Force, 1991.)

7.4.1 Phytoplankton: base of the ocean food web

The term phytoplankton, from the Greek “phyton” (plant) and “planktos” (wanderer), 
encompasses all microalgae and bacteria that, in the same manner as terrestrial plants, are able 
to use inorganic nutrients and sunlight to fuel photosynthesis, growth and reproduction. 
Although they are generally small in size, ranging from 1 to 50 µm (micrometer), phytoplankton 
are responsible for the production of food and energy that supports most forms of life in the 
coastal marine environment (Fig. 7.7). Although most phytoplankton are harmless to higher 
trophic levels—including humans—a few species can develop into harmful algal blooms. Living 
at the base of the food web, phytoplankton will be the first responders to climate change. Thus, 
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efforts to monitor alterations in the patterns of abundance, diversity and activity of this vital 
component of the ocean ecosystem are necessary to inform our understanding of potential 
impacts on higher trophic levels. 

Figure 7.8. Annual mean phytoplankton concentrations for the Oregon region in 2009, where blue represents low 

levels and red, high levels. The location of Newport, the coastal outcropping at Cape Blanco, and the offshore rocky 

region, Heceta Bank, are noted. Images to the right illustrate phytoplankton groups common to local waters, including 

(A–B) diatoms, (C) coccolithophores, and (D) small single-celled cyanobacteria.

7.4.1.2 Variation in time and space

The marine environment over the continental shelf off the Oregon coast supports a large 
diversity of phytoplankton (Fig. 7.8), including all major classes of microalgae and 
photosynthetic bacteria (Rappe et al., 1998). However, the abundance of these classes varies in 
space and time, with primitive microalgae dominating in coastal regions and during periods of 
high nutrient concentrations, while small marine unicellular photosynthetic bacteria increase in 
relative abundance as nutrient and productivity levels decrease offshore. Furthermore, 
phytoplankton concentrations and productivity display a strong seasonal cycle, with maximum 
values observed during summer upwelling (Thomas et al., 2001; Chapter 1). As these upwelled, 
nutrient-rich waters move from the coast into the open ocean, phytoplankton grow, remove 
excess nutrients and form large accumulations (termed "blooms") that ultimately support higher 
trophic levels and enhance  fishery yields.
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The accumulation of phytoplankton along the Oregon coast is not uniform as the distributions 
of these photosynthetic organisms are affected by ocean currents, seafloor contours, and river 
inputs (Barth and Wheeler, 2005). For example, during summer months, the southward 
movement of the Columbia River plume acts as a boundary for the offshore extent of elevated 
concentrations of phytoplankton along the northern Oregon coast. South of Newport, 
phytoplankton blooms move offshore, as currents flow around the west side of the prominent 
Stonewall and Heceta Banks and then return to the coast (Barth 2003). The return flow often 
tends northward, making these banks retentive features that contribute to the accumulation of 
organic matter resulting from phytoplankton productivity. Finally, the outcropping of Cape 
Blanco is another topographic feature that forces coastal currents offshore, transporting 
plankton into the open ocean as well as creating a region of high retention for phytoplankton 
and larvae south of the Cape. Thus, during the summer months, Heceta Bank and Cape Blanco 
are zones of persistent and elevated productivity, supporting major fishing grounds. In contrast 
to the summer upwelling dynamics, the delivery of nutrients into the coastal ocean by rivers 
becomes an important factor during winter months, affecting the growth and distribution of 
nearshore phytoplankton. Recent studies suggest that inputs from rivers contribute significantly 
to the availability of iron and other essential micro-nutrients in these coastal ecosystems (Chase 
et al., 2007).

In addition to seasonal and latitudinal variability in phytoplankton production, there is also 
strong between-year variability caused by two main factors:  (1) the onset and strength of the 
upwelling season, and (2) the occurrence of El Niño events. The timing and strength of the 
upwelling season, possibly caused by the latitudinal position of the jet stream in the upper 
atmosphere (Bane et al., 2007, Barth et al., 2007) or other atmospheric forcing anomalies 
(Schwing et al., 2006), not only affects the delivery of nutrients to the well-lit upper layers of the 
water column, where phytoplankton have sufficient light to grow, but also can delay the 
transfer of energy to higher trophic levels (Barth et al., 2007). This timing of food availability 
may be critical to species with strong seasonal reproductive or migratory cycles.

El Niño events, as well as longer-term inter-decadal changes in ocean conditions over the North 
Pacific, termed the Pacific Decadal Oscillation (PDO, see Chapter 1), can bring warmer waters 
along the Oregon coast that appear to displace zooplankton populations northward, and 
probably phytoplankton species as well (Peterson and Keister 2002). In addition, these warm 
waters deepen the position of cold and nutrient rich waters along the coast, causing a reduction 
in the availability of nutrients in the well-lit surface layers that support phytoplankton growth 
and accumulation during the upwelling season. As a result, fisheries production typically drops 
during El Niño events and warm phases of the PDO (Pearcy and Schoener, 1987; Mantua et al., 
1997).

7.4.1.3 Effects of climate change

Although we do not have extensive data characterizing long-term changes in phytoplankton 
abundance, diversity, and productivity in response to climate trends, we can still assess the 
potential effects of predicted changes in environmental factors (previously described in Chapter 
1). At a regional scale, long-term changes in the position of the upper atmospheric jet stream 
affect the timing and duration of upwelling, and hence the delivery of nutrients to the surface 
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ocean and the magnitude of annual primary production in coastal waters. In addition, these 
changes have substantial effects on annual precipitation and evaporation over the continent, 
causing changes in the magnitude of terrestrial nutrient inputs to coastal ecosystems through 
river discharges. However, land and water use changes in the Columbia and Klamath Basins 
may need to be considered when assessing long-term changes in river inputs along the Oregon 
Coast and their impact on coastal phytoplankton dynamics (see Chapter 3).

At a broader scale, potential changes in the dynamics of the offshore North Pacific Ocean, 
including changes in large-scale currents and increasingly warm surface waters that form a 
barrier to vertical mixing, may affect the chemical composition of seawater being delivered to 
and upwelled near the coast of Oregon. Several recent studies have suggested that significant 
changes in water chemistry can already be observed at large scales, including a decrease in 
oxygen content (Chan et al., 2008) and an increase in acidity (Feely et al., 2009). Alterations of 
the rate and magnitude of the delivery of nutrients to the surface ocean could not only alter 
primary productivity but also lead to changes in the decomposition of this organic matter and a 
biological drawdown of oxygen (via respiration) which could worsen regions of hypoxia, better 
known as “dead zones.”

7.4.1.4 Dead zones

Off the coast of Oregon, hypoxic (low oxygen) and anoxic (effectively no oxygen) events have 
affected both the water column and the benthic environment during the past decade (see also 
Sections 7.4.2 and 7.4.3). However, the strength and duration of these events displays strong 
inter-annual variability (Grantham et al., 2004; Chan et al., 2008) resulting from chemical 
properties of upwelled water, the strength and frequency of upwelling favorable winds along 
the coast (see Chapter 1), and the ensuing rates of primary production and subsequent 
microbial respiration over the continental shelf. Although the production and sedimentation of 
organic matter by phytoplankton plays an important role in the enhancement of hypoxic and 
anoxic environments over the shelf, it is less clear how the reduction of oxygen in subsurface 
waters affects phytoplankton diversity and abundance in surface waters. A loss of upwelled 
nutrients through denitrification (nitrogen gas releasing) processes in hypoxic waters can also 
occur. However, this loss is relatively small compared to the availability of nutrients during 
upwelling periods. In coastal regions experiencing severe hypoxia during summer months, such 
as the central coast of Chile and off Peru, phytoplankton abundance and diversity in surface 
waters remains high (Escribano et al., 2003), suggesting that an expansion in space and time of 
hypoxia over the Oregon continental shelf will primarily affect higher trophic levels, subsurface 
and seafloor microbial processes, and the nutrient cycles they control.

7.4.1.5 Ocean acidification and phytoplankton

The human-induced rise in atmospheric carbon dioxide (CO2) and subsequent transfer of a 
portion of this anthropogenic CO2 to the oceans may also impact the chemical and biological 
function of our ecosystems (Doney et al., 2009). By removing CO2, oceanic uptake has slowed 
the pace of human-induced climate change while creating another problem: a change in ocean 
carbonate chemistry and a decrease in ocean pH levels. This phenomenon, termed “ocean 
acidification,” has already led to a decrease in the mean pH of the California Current system to 
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levels that previously were not expected to occur for decades (Hauri et al., 2009). It is not clear 
to what extent these changes have affected the diversity and activity of phytoplankton. 
However, output from models and our understanding of the physiology of organisms cultured 
in a laboratory setting suggest that there will be clear winners and losers emerging as the ocean 
acidifies (Doney et al., 2009; Hauri et al., 2009). 

7.4.1.6 Harmful algal blooms (HABs)

Major groups of phytoplankton observed along the Oregon coast include a variety of types and 
cell sizes (Anderson, 1965; Sherr et al., 2005). As outlined above, phytoplankton form the 
primary source of food sustaining coastal fisheries. However, phytoplankton blooms can also be 
detrimental to local ecosystems and the economy. Although we have adequate knowledge of the 
major factors controlling the distribution of total phytoplankton abundance and productivity 
along the Oregon coast in time and space, we still have only a rudimentary understanding of 
the factors controlling variability in the distributions of particular species of phytoplankton. The 
issue of which species dominate the composition of phytoplankton is of particular importance 
when trying to characterize and predict the abundance of species that have a strong negative 
impact on human health and the local economy.  Some of these species include those that 
generate harmful algal blooms (HABs).

Of the major phytoplankton groups, diatoms and dinoflagellates are known to include species 
that can have adverse ecological and socioeconomic effects through the generation of HABs off 
the Oregon coast. Of particular interest are the diatoms Pseudo-nitzschia spp., and the 
dinoflagellates Alexandrium spp. and Akashiwo sanguinea. Certain, but not all, strains of Pseudo-

nitzschia produce a neurotoxin called domoic acid which accumulates in coastal shellfish such as 
razor clams and mussels and can lead to amnesic shellfish poisoning (ASP) in humans. 
Similarly, armored dinoflagellates of the genus Alexandrium produce saxitoxin, a potent 
neurotoxin responsible for paralytic shellfish poisoning (PSP) in humans (Horner et al., 1997). 

Long-term monitoring efforts off the Oregon coast indicate that Alexandrium blooms appear to 
predominate south of Cape Blanco, whereas along the central and northern Oregon coast, 
Pseudo-nitzschia seems to be the major group responsible for HABs and the closure of 
commercial shellfisheries (Fig. 7.9). In addition, the dinoflagellate Akashiwo sanguinea was 
responsible for an extensive bloom off Washington and northern Oregon in 2009 that caused 
significant seabird mortality as a result of algal production of chemicals that dissolved the 
natural oils found in feathers. Without these oils, seabirds can lose body heat and die of 
hypothermia (see Section 7.4.5).
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Figure 7.9 Left: Current sites in the Oregon surf zone (dots) and offshore sampling lines (circles) sampled for harmful 

algal blooms relative to ocean depth contours (gray lines). Regions near the Columbia River outflow, Heceta Bank 

and Cape Blanco are sites of strong summer phytoplankton blooms. Right: The percentage of positive samples 

exceeding shellfish fishery closure limits are shown as bars for domoic acid (grey) and saxitoxin (red) at different 

latitudes along the coast.

HABs have afflicted the west coast of the United States for decades. However, over the past 15 
years their frequency has increased significantly (Hallegraeff, 1993; Anderson et al., 2008). In 
Oregon, HAB events have led to more frequent closures of commercially important razor clam 
and mussel fisheries and exerted a considerable economic impact on coastal communities in 
Oregon. 

At present, although we understand the environmental conditions leading to the development 
of phytoplankton blooms along the Oregon coast, we still do not know what combination of 
physical, chemical, and biological factors select for the development of a specific harmful algal 
bloom. Recently, Tweddle et al. (2010) reported that saxitoxin contamination of mussels south of 
Cape Blanco is strongly associated with late-summer upwelling. Thus, latitudinal variations in 
upwelling expected under various climate change scenarios (Bakun, 1990; Schwing and 
Mendelssohn, 1997) may significantly affect the frequency and distribution of this HAB along 
the west coast. For this reason, the effect of both the timing of upwelling and the spatial patterns 
of bloom formation along the Oregon coast must be better understood to improve our capacity 
to assess how and to what extent climate change may affect the diversity of phytoplankton 
species that cause harmful algal blooms.

301



7.4.2 Zooplankton: Food for Sea Life

Zooplankton are small animals—often 0.2 to 40 mm (0.008 to 1.6 in) in body length—that 
inhabit open marine waters, including the estuaries, nearshore ocean, and offshore areas off 
Oregon. Zooplankton are diverse, with representatives from most major animal groups (phyla). 
Peterson and Miller (1976) found close to 100 species of zooplankton (excluding protists) on the 
inner-middle continental shelf of Oregon, with the greatest diversity within the copepods 
(estimated 58 species). Some of the most important zooplankton in our region are tiny and 
relatively poorly studied protists (Neuer and Cowles, 1994), euphausiids (Gomez-Gutierrez et 
al., 2005), copepods (Peterson and Miller, 1975, 1976), and a group collectively known as 
gelatinous zooplankton:  pelagic tunicates (salps and doliolids) (Lavaniegos and Ohman, 2007) 
and jellyfish of various kinds (Suchman and Brodeur, 2005). Some gelatinous zooplankton are 
relatively large, and in some summers can become very abundant, with blooms developing 
rapidly. However, these events are intermittent, often short-lived, and difficult to predict or 
relate to specific ocean conditions.

This review considers only euphausiids (commonly called "krill") and copepods for two 
reasons. First, euphausiids and copepods, especially the latter, dominate the abundance and 
species diversity of mid-sized zooplankton off Oregon, and second, the other types of 
zooplankton have not been sufficiently studied to examine seasonal and interannual variability 
and long-term trends. The life spans of many copepods are several weeks to 4–5 months, while 
the dominant euphausiids off Oregon have 1–2 year life spans. These mid-sized zooplankton 
are important ecologically because they are a key conduit for the transfer of photosynthetic 
production by phytoplankton (Section 7.4.1) to higher trophic levels, such as forage fish, 
harvested fish species, and marine birds and mammals (Sections 7.4.4–7.4.6). The type of 
copepods, their individual size, and their lipid (fat) content, may be important in determining 
whether the food web of the Oregon shelf is good or bad for growth and survival of organisms 
at higher trophic levels, such as anchovies and salmon (Fig. 7.4.A). Because of their small size 
and relatively weak swimming ability, zooplankton drift with the ocean currents. Thus, unlike 
stronger swimming fish, their distributions are strongly controlled by physical processes rather 
than biological movements.

7.4.2.1 Variation in time and space

Climate variability may affect zooplankton populations in several ways, perhaps altering 
species composition, relative abundances, reproductive output, and the magnitude and timing 
of changes in these factors. Also, because zooplankton, by definition, drift with ocean currents, 
species distributions may change due to altered currents. Many of these factors are unknown for 
most species, and what is known focuses on zooplankton variability derived from sustained 
sampling programs off the coast of Oregon. In some cases, zooplankton patterns off northern 
California or southern British Columbia are similar to those off Oregon (e.g., Mackas et al., 2004, 
2006), and so provide information relevant to Oregon. Temporal variability in zooplankton 
biovolume is spatially coherent along the coast of California (Chelton et al., 1982; Roesler and 
Chelton, 1987). Given significant alongshore covariability of zooplankton biomass within the 
California Current Large Marine Ecosystem, it should be noted that Roemmich and McGowan 
(1995ab) reported that the total biomass of zooplankton off southern California declined by 80% 
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between the late 1960s and the mid-1990s. However, this result has been rebutted by several 
subsequent papers (Lavaniegos and Ohman, 2003, 2007) that showed that zooplankton 
biovolume (used by Roemmich and McGowan) was biased by the decline of pelagic tunicates, 
which have large biovolumes but small carbon biomass. There was in fact no long-term trend in 
total zooplankton carbon biomass nor of the dominant planktonic copepods or euphausiids off 
southern or central California, in contrast to the earlier reported multidecadal decline in 
zooplankton biovolume (Lavaniegos and Ohman, 2007). 

The section of Chapter 1 on physical changes in the marine environment concludes that, during 
the past 30–50 years, Oregon's coastal ocean has experienced (1) increased intensity of 
upwelling, (2) increased variability of upwelling, (3) increased summer water temperatures, (4) 
reduced spring-summer Columbia River discharge of freshwater, (5) decreased summer salinity 
of subsurface waters, and (6) declines in near-bottom oxygen concentrations, especially close to 
shore. Zooplankton off Oregon are strongly influenced by both regional coastal and global 
marine environmental factors. Important regionally is the seasonal influence of alongshore 
winds that affect upwelling of deeper nutrient-rich waters, and the role of freshwater from the 
Columbia River (Huyer et al., 2007). In the winter, winds blow from the south along the Oregon 
coast. This causes surface waters to move onshore, and pile-up at the coast, pushing inshore 
waters downward in the water column and offshore, a process called "downwelling." However, 
sometime in spring, often in April but varying in time from year to year (Pierce et al., 2006), the 
large-scale atmospheric pressure systems over the Pacific and North American continent shift, 
and the wind off Oregon shifts to blowing from the north, a seasonal change known as the 
"spring transition" (Checkley and Barth, 2009). With southward winds, surface water is pushed 
offshore and is replaced near the coast with water that ascends from deeper depths, a process 
called "upwelling." Upwelled water is cold, salty and rich in the inorganic nutrients required to 
fuel photosynthesis by phytoplankton (see Chapter 1 and Section 7.4.1). The copepods, 
euphausiids and gelatinous zooplankton consume phytoplankton to support their growth and 
reproduction. A second effect of the change in wind direction is that, prior to the spring 
transition (e.g., in winter), alongshore flow is primarily from the south, transporting 
zooplankton species that are more common in California northward into Oregon waters. After 
the spring transition (e.g., in summer), alongshore flow is to the south, transporting northern 
species of copepods to Oregon.

Oregon’s ocean is also affected by changes occurring elsewhere in the Pacific Basin. For 
instance, changes in atmospheric pressure systems, winds and ocean surface temperatures in 
the equatorial Pacific associated with El Niño can have effects that influence seawater 
characteristics and temperatures as well as species composition and abundance of zooplankton 
off Oregon (Peterson et al., 2002; Keister et al., 2005). Longer-term, interdecadal changes in 
North Pacific atmospheric pressure systems and ocean conditions—the Pacific Decadal 
Oscillation—can change ocean current strengths and water temperatures off Oregon that affect 
the species composition, distribution and abundance of zooplankton and fish off Oregon over 
periods of years (Batchelder et al., 2002; Peterson and Schwing, 2003).

To evaluate whether climate change affects zooplankton biomass or community structure, one 
must first examine and account for the influence of seasonal factors and between-year 
variability on zooplankton. Off the U.S. west coast generally, two specific North Pacific climate 

303



indices, the Pacific Decadal Oscillation (PDO) and the North Pacific Gyre Oscillation (NPGO) 
(Di Lorenzo et al., 2008), explain significant annual-to-decadal variability in temperature, 
salinity, nutrient concentrations, phytoplankton and zooplankton. Hooff and Peterson (2006) 
documented the mean seasonal cycle of copepod biomass and number of species at a permanent 
station off Newport. Both measures exhibited strong seasonality reflecting the influence of 
upwelling on productivity (abundance is highest during the May to September summer 
upwelling) and coastal currents (number of species is lowest during May to September). The 
number of species reflects the influence and mixing of different sources of seawater that have 
different copepod species, with northern sources having generally fewer species than southern 
sources. To remove the strong seasonal influence, we focus here on the summertime (May to 
September) period, where abundance is high and species richness relatively low. Using data 
collected from the summers of 1969–2007, we find that the number of copepod species and the 
biomass of warm water copepods is greatest when the PDO index value is positive and the 
ocean off Oregon is anomalously warm, and that there is not a long-term “ocean warming” 
trend in total copepod biomass (including both cold and warm water types). Using data from 
Hooff and Peterson (2006), Peterson (2009) argued that copepod species richness on the inner-
shelf of central Oregon has increased by 2–3 species over this 40-year interval. However, an 
analysis that accounts for the effect of the PDO on the number of species during the summer 
months, suggests that there has been no detectable long-term increase in the number of copepod 
species in our region (Batchelder and Peterson, unpublished data).

Mackas et al. (2007) recently summarized changes in zooplankton in the region immediately to 
the north of Oregon during 1979–2005. Their results have some relevance to the Oregon region 
because many of the seasonally dominant species off Oregon are shared with British Columbia 
(BC). Overall, zooplankton populations between Oregon and BC have exhibited northward 
latitudinal shifts in their geographic centers of abundance in response to episodically warm 
conditions (Mackas et al., 2001; Batchelder et al., 2002; Peterson and Keister, 2003; Keister et al., 
2005). Throughout this period, biomass of northern copepods and southern copepods have 
varied inversely. Northern copepods increase off Oregon and BC when temperatures are cool 
and southward currents are stronger, while southern copepods are associated with warm 
temperatures and northward transport. This effect is most evident during strong El Niños and 
La Niñas (the opposite conditions of El Niño), but is also observed in relation to longer-term 
temperature fluctuations associated with the PDO (Mackas et al., 2004; Keister and Peterson, 
2003; Keister et al., 2005). These PDO-associated variations in species composition between 
“northern” and “southern” species influences the overall bioenergetic content of the food web 
—northern species are lipid-rich whereas southern species are lipid-poor (Lee et al. 2006). Thus, 
fish such as salmon which need lipid-rich prey (euphausiids and small pelagic fishes such as 
smelts and anchovies) have higher survival when cold water zooplankton dominate. Similar 
shifts in species composition and community structure have been observed in four copepod 
species assemblages in the Northeast Atlantic (Beaugrand et al., 2002). Such changes may 
become more common as ocean warming progresses, with effects on other zooplankton species 
(which may also move northward), as well as on higher trophic levels that are accustomed and 
adapted to feed on the “normal” zooplankton that were typical until recently.

The large copepod Neocalanus plumchrus is abundant in the Gulf of Alaska and off Canada, but 
is usually less important off Oregon (but see Liu and Peterson, 2010). Mackas et al. (2007) have 
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documented phenological (life history timing) changes in N. plumchrus that appear to be due to 
warming of the surface waters providing faster growth and development. The same observation 
has been made off Oregon (Liu and Peterson, 2010). Interestingly, in 2007 and 2008, copepods of 
the genus Neocalanus have been more important and constituted a greater fraction of the spring 
zooplankton biomass on the Oregon continental shelf than during earlier years. Since these 
species are typical of northern waters, this pattern suggests that there was greater southward 
inflow to the Oregon system during those years. The cause of this sudden brief increase in 
biomass is not known. 

7.4.2.2 Ocean acidification and zooplankton

Observed and projected human-caused increases in atmospheric concentrations of the 
greenhouse gas carbon dioxide suggest that concentration of this greenhouse gas in seawater 
has increased and will increase, increasing the acidity of the ocean as carbon dioxide reacts with 
water and forms carbonic acid, a phenomenon called "ocean acidification" (OA). Regions of the 
west coast, including Oregon, have recently been found to be particularly susceptible to OA, 
due to the upwelling of deep waters having high carbon dioxide content and low pH (Feely et 
al., 2008; Hauri et al., 2009). More acidic conditions reduce the availability of carbonate ions to 
marine organisms that form calcium carbonate (essentially, limestone) skeletons or shells. One 
group of zooplankton, the pelagic pteropod snails, use calcium carbonate to form their thin and 
fragile shell, and are particularly susceptible to more acid ocean conditions (Orr et al., 2005; 
Fabry et al., 2008). The ability of these pelagic snails to form or maintain the integrity of their 
shells is reduced in more acidic waters. The pteropod Limacina helicina was present in more than 
half of the Oregon nearshore samples of Peterson and Miller (1976), and was most abundant in 
May and June. Seasonal upwelling enhances the development of high acidity, corrosive waters 
in spring and summer, which might affect these marine snails. To date, there have been no 
specific studies to evaluate shell dissolution rates or growth rates of these snails off Oregon, but 
studies on L. helicina elsewhere suggest they experience significant shell dissolution in high 
carbon dioxide waters (Orr et al., 2005). One ecological significance of pteropods is that they are 
prey for the larvae of some marine fishes.

In summary, because of a concerted and ongoing effort to sample zooplankton at a variety of 
scales of time and space during the past decade off Oregon, we have learned much about the 
temporal and spatial patterns of fluctuations in abundance and species composition. However, 
this decade of sampling has also shown the tremendous amount of variability in “climate 
forcing” and how that has influenced the ocean ecosystem, including the zooplankton. Several 
“anomalous” events, including (1) one of the strongest recorded El Niños in 1997–1998, (2) a 
strong La Niña in 1999, (3) a prolonged three-year cold period through 2003, including 
anomalously strong southward flow of subarctic waters in 2002, and (4) a very late spring 
transition to upwelling in 2005, have clearly shown that the zooplankton assemblage, 
production, and abundance respond strongly and rapidly to environmental variation at 
multiple spatial scales. This variability is superimposed on strong seasonal cycles. Although 
there are hints of how zooplankton populations on the Oregon shelf may respond to climate 
variability and global warming, there are no well documented trends as yet that indicate clearly 
the direction or magnitude of future changes. Clearly two physical factors seem to control 
species composition and rates of production, the Pacific Decadal Oscillation and strength of 
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local upwelling. However, it is not clear how either will change in the future (Chapter 1). Only a 
handful of global climate models include the PDO, but those that do project that the PDO will 
continue into the future (Wang et al., 2010). Bakun (1990) suggested that local upwelling will 
intensify due to stronger gradients between the North Pacific high and the low pressure system 
centered over the western United States, yet there is as yet no evidence that this is happening.

7.4.3 Seafloor Species: Invertebrates and Seaweeds

The responses of seafloor-dwelling invertebrates and seaweeds to ocean warming and 
acidification are likely to be complex, with a host of factors changing and a variety of 
consequences arising (Harley et al. 2006). Evaluating how seafloor species along the Oregon 
coast have responded to climate change is severely compromised by the general lack of long-
term data sets on these organisms. Although research on populations and communities of 
organisms that live along the Oregon shore has been ongoing for decades, funding patterns 
typically have limited the duration of studies to relatively short periods, usually a few years at a 
time. The primary exception has been research on rocky intertidal zones conducted by the 
Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO) program, a consortium of 
four universities along the U.S. west coast, with Oregon State University as the lead institution 
(http://piscoweb.org).

If one moves beyond Oregon to consider the entire coast of the California Current Large Marine 
Ecosystem (CCLME), which ranges from the Straits of Juan de Fuca in Washington to the tip of 
the Baja California peninsula, a few additional data sets become available. The following 
summarizes trends seen in these limited data sets, focusing first on Oregon and then adding 
insights obtained from the broader CCLME. Examined are the extents to which these changes 
may reflect responses to climate change, and conclusions focus on the kinds of threats faced by 
marine organisms from well-documented changes that are currently underway in the climate of 
the northern CCLME (Chapter 1).

7.4.3.1 Rocky intertidal invertebrates

Data gathered for up to 20 years along the Oregon coast have revealed that the abundance of 
phytoplankton and the recruitment of mussels (clam-like species that attach to rocks) increased 
dramatically during the 2000s (Menge et al., 2009). Mussel growth rates have also increased in 
response to the increases in phytoplankton, an important food source for mussels, which filter 
such food particles out of seawater (Menge et al., 2008). These changes are linked to climate 
fluctuations, as reflected in El Niño Southern Oscillation (ENSO), the North Pacific Gyre 
Oscillation (NPGO), and the Pacific Decadal Oscillation (PDO) (see Chapter 1). Such climatic 
cycles vary in duration from the relatively short ENSO (3–7 years) to moderate NPGO (10–15 
years) to long PDO (20–30 years). Each has been found to underlie major natural shifts in 
marine ecosystems (e.g., Glynn, 1988; Chavez et al., 1999; Peterson and Schwing, 2003; Di 
Lorenzo et al., 2008).

Off Oregon, strong links have been detected between the NPGO and large increases in 
phytoplankton and mussel recruitment (Menge et al., 2009). ENSO and PDO did not appear to 
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have an influence, suggesting that the 10–15 year shifts in winds that are reflected in the NPGO 
are the primary drivers of these changes. The suggested mechanism causing this link is that, 
with stronger winds over the North Pacific, coastal phytoplankton blooms are denser, leading to 
higher survival of larvae of mussels, and perhaps more favorable conditions for movement of 
larvae to the rocky shore. Whether or not these changes are a result of climate change is not 
clear as data sets are not yet long enough to resolve long-term trends.

The rate of mussel growth is a potentially valuable indicator of mussel well-being. Faster 
growth resulting from higher food likely decreases the time to maturity and enhances 
reproductive output. Faster growth also influences competitive ability; in the mussel world, 
large size means an ability to overgrow and smother other organisms competing for attachment 
space on rock surfaces (Paine 1966). The increase in phytoplankton in the 2000s led to a surge in 
growth of mussels along the Cape Foulweather region of Oregon, which brought their growth 
on par with mussels along the Cape Perpetua region to the south, but did not change growth 
rate in the latter region (Menge et al., 2008). This finding likely indicates that mussel feeding 
capacity is limited (e.g., Hawkins and Bayne, 1992), such that, above some threshold level, 
mussels are unable to consume additional food. In this case, mussel growth was linked to both 
ENSO and PDO climate patterns, with faster growth occurring during warm-phase events of 
both of these cycles. This pattern indicates that temperature also affects mussel growth. The 
stimulating effect of warmer water likely is limited because, like most invertebrates, mussels 
have an upper temperature tolerance limit, beyond which they die (Somero 2002, Jones et al. 
2009). This link to water temperature, which has shown long-term increases over the Oregon 
continental shelf (Chapter 1), predicts that mussels will initially benefit from warming of coastal 
waters, but unless they can adapt rapidly, will eventually decline.

How have intertidal ecosystems responded to these changes in the coastal ocean? Have mussels 
become more abundant?  Scientists have thus far found no persistent change in the abundance of 
mussels, barnacles, and other rocky intertidal organisms (Menge et al., 2010). Thus, despite 
recent large inputs of new mussels, the abundance of large mussels has not yet changed. The 
reasons for this lack of response are unknown. In contrast to mussel recruitment, barnacle 
recruitment did not change in the 2000s (Menge et al., 2010). This result is important because the 
tiny mussel recruits depend on the textured surfaces provided by barnacle populations already 
attached to the rock. So, if barnacle populations have not changed, there is no way for mussel 
colonization to increase despite the large numbers of larvae seeking an attachment location. 
This result suggests that responses to climatic variation differ among the different species of the 
rocky intertidal ecosystem.

At present, our ecological information for rocky intertidal invertebrates in Oregon is limited to 
the above summary, which is clearly inadequate for detection of responses related to climate 
change. The linkage of some of these patterns or processes to climatic variation, which is 
expressed in physical conditions such as air or water temperature, wind and current strength, 
upwelling intensity, wave height, sea level height, and other factors (Chapter 1), potentially 
could inform forecasts of expected biological changes. When considered in the context of entire 
ecosystems, however, such efforts are likely confounded by multiple sources of complexity, as 
suggested by the differential responses of mussel and barnacle recruitment. Thus, one can 
presently say little that is definitive about how rocky intertidal systems in Oregon are 
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responding to climate change, or about how they will respond in the future, although modeling 
approaches may help.

7.4.3.2 Rocky intertidal seaweeds

The ecological survey data referenced above also have not revealed any longer-term changes in 
abundances of seaweeds and other marine plants. Although losses in abundance of giant kelp 
have been attributed to El Niño events in California (e.g., Paine, 1986; Dayton et al., 1999), no 
response of intertidal seaweeds (or invertebrates) to El Niño conditions was detected in 
moderately long-term studies on Tatoosh Island, Washington (Paine, 1986). On the Oregon 
coast, however, the 1997–98 El Niño led to massive losses of intertidal kelps, such as Saccharina 

sessile and Lessoniopsis littoralis (Freidenburg, 2005), likely due to a combination of warm water 
and low nutrients. Complete recovery occurred within two years, however, and no comparable 
changes have occurred since, despite the occurrences of weak El Niños in 2003, 2005 and 2007. 
These perturbations suggest that at least kelps (the large brown algae that dominate kelp forests 
and exposed rocky shores) would be negatively affected by large increases in temperature and 
sharp declines in nutrients associated with a warming ocean. As noted in Chapter 1, data are 
insufficient to determine long-term trends in nutrients, but seawater temperatures off the 
Oregon coast have definitely been rising, thus suggesting potential negative effects through 
time. But as also noted in Chapter 1, and as predicted by Bakun (1990), upwelling intensity has 
been increasing as well, implying colder summer temperatures and higher nutrients inshore, up 
to about 10 km (6 mi) from shore. These changes may positively affect nearshore marine 
ecosystems.

7.4.3.3 Ocean acidification and rocky intertidal species

A potentially more serious effect of climate change is acidification of seawater as excess 
atmospheric carbon dioxide absorbed by the oceans is converted to carbonic acid, which lowers 
the pH (Orr et al., 2005).  Ocean acidification has been forecast as an issue of great concern by 
chemical oceanographers (e.g., Orr et al., 2005; Doney et al., 2009; Feely et al., 2009), and 
changes in the acidity of seawater have already been detected (Feely et al., 2004; Fabry, 2008). 
Importantly, a recent survey of waters along the coast of Oregon and northern California 
revealed that seawater acidity and levels of aragonite saturation (a measure of the ability of 
calcifying organisms to precipitate carbonate-based hard parts such as shells) are already at 
levels not forecast for another 150 yr for the ocean in general (Feely et al., 2008). Thus, it is 
possible that calcifying species, including animals (mussels, oysters, scallops, clams, limpets, 
snails, echinoderms, crustaceans) and seaweeds (coralline algae), may be under severe stress in 
nearshore habitats of the Oregon coast (Pörtner et al., 2004; Vézina and Hoegh-Guldberg, 2008, 
and included papers; Kroeker et al., 2010). Field evidence suggests that these calcifiers are 
generally inhibited by high levels of carbon dioxide and resulting acidification of the oceans 
(Hall-Spencer et al., 2008), although lab studies have yielded more mixed results (Ries et al., 
2009). Larvae of calcified marine invertebrates may be especially at risk (O’Donnell et al., 2009). 
Failure of oyster recruitment has occurred in Oregon in recent years, and studies are underway 
to determine whether this failure is a consequence of ocean acidification (C. Langdon, OSU, 
personal communication). Investigation of the impacts of acidification on calcified species in 
coastal environments will be a research area of high activity in the coming years. At present it is 
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unknown whether invertebrates and seaweeds in Oregon have already been affected by this 
new challenge.

7.4.3.4 Changes in California rocky intertidal systems

In a recent review of how intertidal ecosystems have responded to climate change, Helmuth et 
al. (2006) documented 21 instances of change, yet only two of these were from the CCLME and 
both were in California. In central California, re-sampling in the 1990s of plots originally 
sampled in the 1930s revealed substantial northward shifts in distribution had occurred for 15 
of 18 species (Barry et al., 1995; Sagarin et al., 1999; Fig. 7.10). Average water temperature had 
increased by 0.79°C (1.42°F) and average summer temperature by 1.94°C (3.49°F) over this 60-
year period. In southern California, evidence suggests that the northern range limit of the whelk 
Kelletia kelletii had moved northward from about 1980 to 2000 (Zacherl et al., 2003). Finally, 
Smith et al. (2006) documented a sharp decline in the number of species (average 58.9% loss, 
maximum 80% loss) associated with intertidal mussel beds. The authors attributed these 
declines to climate change, but could only speculate on the specific mechanism(s) underlying 
the loss of species. In any case, Oregon has gained 10 species of invertebrate from California 
over the past three decades (Carlton, 2000).

Figure 7.10 Relative changes in the abundance of (left to right) northern cold-water species, cosmopolitan species, 

and southern warm-water species of rocky intertidal organisms in Monterey, CA, between 1932 and 1993 (modified 

from Barry et al., 1995).

7.4.3.5 Changes in estuaries

The Oregon shoreline is interrupted by over thirty major and minor estuaries that encompass a 
broad range of land-margin habitats located at the nexus of land and sea. Estuaries are 
important nursery habitats for some salmon and marine fishes, feeding habitats for shorebirds, 
and natural flood buffers, among other ecosystem services. The structure of Oregon's estuaries 
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is diverse and includes: (a) river-dominated drowned river mouths (i.e., Columbia, Umpqua, 
Coquille, Rogue, Chetco); (b) tidal dominated drowned river-mouths (i.e., Tillamook, Siletz, 
Yaquina, Alsea, Coos); (c) bar-built coastal lagoons (i.e., Netarts, Sand Lake, New River); and (d) 
numerous tidal creeks (Rumrill, 2006).

The combination of these meteorological and nearshore ocean changes reviewed in Chapter 1 
will exert stress on the communities of estuarine organisms. The range of estuarine community 
responses to the climate change stressors is anticipated to include elevational shifts in the 
distribution of submerged aquatic vegetation, disruption of shell formation for calcifying 
organisms, alteration of the phenology of phytoplankton blooms, shoreward migration of tidal 
marshes, and increased colonization by non-indigenous aquatic species.  It is important to note, 
however, that these anticipated shifts are largely speculative and that long-term time-series data 
are lacking to definitively identify perturbations of the estuarine communities that can be 
attributed to human caused climate change.

As one example, shifts in the acidity of nearshore ocean waters has adverse impacts on the 
larvae of native Olympia oysters (Ostrea lurida) and non-native Pacific oysters (Crassostrea gigas) 
that inhabit the intertidal zone of Netarts Bay (Langdon and Hales, personal communication). 
Water conditions in Netarts Bay during the summer upwelling season are influenced directly by 
ocean waters, and the estuary receives very little influence from the adjacent coastal watershed. 
Like the larvae of several other groups of marine invertebrates that require calcium carbonate 
for their shells and other structures (Orr et al., 2005; Kurihara, 2008), oyster larvae are sensitive 
to acidified marine waters, which dissolve their thin calcified shells (Miller et al., 2009). In 
addition, the upwelled waters that are brought to the surface along the Oregon coast (cold, 
hypoxic, nutrient-rich), intensified by climate change, are highly conducive to outbreaks of the 
pathogenic bacterium (Vibrio tubiashii), which is lethal to oyster larvae and early juveniles.

7.4.3.6 Subtidal and deepsea species

This section focuses almost exclusively on rocky intertidal and estuarine species because 
subtidal and deepsea invertebrates and seaweeds are poorly studied in our region. It is 
nonetheless likely that seafloor species throughout Oregon's territorial sea will be affected by a 
warming ocean. Invertebrate species at risk include commercially valuable flat abalone (Haliotis 

walallensis), which is taken off southern Oregon (Rogers-Bennett, 2007).

It is especially important to note that, regardless of the specific habitat, shellfish and other 
species with calcium carbonate structures will be adversely affected by ocean acidification (Orr 
et al., 2005). Species at risk from acidification include Dungeness crab (Cancer magister), which 
the target of the most valuable marine fishery in Oregon. However, a recent review suggested 
that crustaceans (crabs and relatives) are less susceptible to ocean acidification than other 
calcified invertebrates (Kroeker et al., 2010). Especially at risk are deep-sea corals with calcium 
carbonate skeletons (Guinotte et al., 2006).
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7.4.3.7 Future changes

Based on species-level responses to factors expected to change in ocean waters, including 
acidity, temperature, upwelling intensity, sea level, and oxygen concentration, one can predict 
that abundances of many seafloor organisms, particularly those with calcified structures, likely 
will decline during this century. However, Menge et al., (2010) suggest that simple predictions 
based on how individual species are expected to respond may be misleading. A study on the 
outer coast of Washington suggests that, while some species (such as mussels) appear to have 
declined in abundance as ocean acidity increased over the past 10 years, others (such as 
barnacles and calcifying algae) did not change (Wootton et al., 2008). In this study, species 
interactions combined with different tolerances of acidity stress appeared to influence the 
changes that actually occurred. Paradoxical benefits under ocean acidification are also possible. 
Lab studies suggest that growth rates the ochre sea star (Pisaster ochraceus) increase under high 
carbon dioxide regimes (Gooding et al., 2009). Fleshy seaweeds may also benefit from the future 
ocean, because, rates of photosynthesis may increase with higher levels of carbon dioxide (Hall-
Spencer et al., 2008; Ries et al., 2009).  Nonetheless, it seems likely that the future ocean will not 
treat most seafloor invertebrates and seaweeds well, and that the ecosystems inhabited by these 
organisms will undergo major disruptions.

7.4.4 Marine fishes and fisheries

Marine fishes are of substantial economic and cultural value to the people of Oregon, mostly in 
terms of commercial and recreational fisheries, as well as sports diving. Fish distributions 
(where fish are found) and abundances (the number of fish) are strongly affected by changes in 
ocean climate, which is highly seasonal and variable off Oregon (Mantua et al., 1997; McFarlane 
et al., 2000; Hallowed et al., 2001; Lehodey et al., 2006). As the ocean generally warms and 
seawater acidifies over the course of this century, the ecology of marine fishes and fisheries in 
Oregon's ocean are expected to change in two basic ways.

(1) Distributions will shift poleward (northward off Oregon) and perhaps into deeper, cooler 
waters.

(2) Abundances will change, with warmer-water species increasing as cooler-water species 
decline.

Mechanisms causing these expected changes are both direct and indirect (reviews by Scavia et 
al., 2002; Roessig et al., 2004; Harley et al., 2006; Brander, 2007). Direct mechanisms involve 
mostly physiological effects of changes in water temperature on survival, growth, reproduction, 
and movements (Pörtner et al., 2004; Pörtner and Farrell, 2008). Also a direct mechanism, ocean 
acidification may inhibit the sense of smell in marine fishes (Munday et al., 2009; Dixson et al., 
2010), although a recent review suggested that fishes may be tolerant of acidification relative to 
many invertebrates (Kroeker et al., 2010). Indirect mechanisms involve shifts in currents, food 
availability, and the structure of marine ecosystems, including diseases, predators and 
competitors. As reviewed below, these changes in turn are predicted to affect fisheries yields off 
the Pacific Northwest. In general, smaller, faster-growing, shorter-lived species are expected to 
respond more rapidly to climate change than larger, slower-growing, longer-lived species, as 
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has been documented in the English Channel (Genner et al., 2010). However, the range of 
possibilities in such predictions is very high due to the immense complexity of marine climates 
and ecosystems in general. This is especially true given that climate change will interact with 
fishing intensity and other human effects in unknown and perhaps synergistic ways (Scavia et 
al., 2002; Roessig et al., 2004; Harley et al., 2006; Brander, 2007; Hsieh et al., 2008).

7.4.4.1 Shifts in fish distributions

As active swimmers, marine fishes typically have the ability to choose the water temperatures 
that best fit their physiology, such that the northern and southern range limits of species often 
are set by temperature tolerances (Horn and Allen, 1978). Therefore, as the ocean warms, the 
geographical centers of distribution and the range limits of coastal temperate (cool-water) 
marine fishes are shifting poleward (northward in the Northern Hemisphere), a pattern that has 
been documented in California (Holbrook et al., 1997; Hsieh et al., 2009), Alaska (Grebmeier et 
al., 2006; Mueter and Litzow, 2008), the U.S. east coast (Murawski, 1993; Nye et al., 2009), 
Australia (Figueira and Booth, 2010), and Europe (Perry et al., 2005). Observed and projected 
rates of poleward shifts are 30–130 km (20–80 mi) per year (e.g., Perry et al., 2005; Dulvy et al., 
2008; Mueter and Litzow, 2008; Cheung et al., 2009). Additionally, there is evidence that cool-
water species are moving to deeper, cooler waters as surface waters warm, as documented in 
the North Sea (Dulvy et al., 2008).  Note, however, that if climate change causes more intensive 
upwelling of cooler water along the Oregon coast, then such poleward shifts may not be evident 
nearshore (see Chapter 1).

With Northern Hemisphere species often shifting their distributions northward as the ocean 
warms, will Oregon see an overall increase or a decrease in the number of marine fish species? 
Along the West Coast from Baja California northward, the diversity of coastal marine fishes 
peaks in southern California near the Mexican border (about 32°N), where southern warm-
water species and northern cool-water species mix, then steadily decreases northward (Horn 
and Allen, 1978). Therefore, as the ocean warms, Oregon likely will gain more species 
immigrating into state waters from the south and lose fewer species emigrating out of the state 
to the north, resulting in a net gain in the number of fish species, as has been documented in the 
North Sea (Hiddink and Hofstede, 2008). Possible candidates for California fishes immigrating 
to Oregon are five nearshore species whose present northern range limits are between Cape 
Mendocino and Crescent City (Table 7.1).
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Table 7.1  (a)  Nearshore California marine fishes whose present northern range limits are off northern California 

(between Cape Mendocino and Crescent City).  These species are possible candidates for range extensions into 

Oregon waters as the ocean warms.  (b)  Nearshore marine fishes whose present northern range limits are off 

Oregon.  These species are possible candidates for increasing abundance in Oregon waters as the ocean warms.  

Range limits from Miller and Lea (1972).

Family Species Common name Present northern range limit 
in California

a.  Species with northern range limit off northern California:a.  Species with northern range limit off northern California:a.  Species with northern range limit off northern California:a.  Species with northern range limit off northern California:

Cebidichthyidae Cebidichthys violaceus monkeyface-eel Crescent City

Carcharhinidae Mustelus californicus gray smoothhound shark Cape Mendocino

Cottidae Clinocottus analis wooly sculpin Cape Mendocino

Embiotocidae Hypsurus caryi rainbow surfperch Cape Mendocino

Pleuronectidae Hypsopsetta guttulata diamond turbot Cape Mendocino

b.  Species with northern range limit off Oregon:b.  Species with northern range limit off Oregon:b.  Species with northern range limit off Oregon:b.  Species with northern range limit off Oregon:

Carcharhinidae Triakis semifasciata leopard shark

Myliobatidae Myliobatis californica bat ray

Argentinidae Argentina sialis Pacific argentine

Ophidiidae Chilara taylori spotted cusk-eel

Exocoetidae Cypselurus californicus California flyingfish

Atherinidae Atherinopsis californiensis jacksmelt

Scorpaenidae Sebastes rastrelliger grass rockfish

Zaniolepididae Zaniolepis frenata shortspine combfish

Cottidae Clinocottus recalvus bald sculpin

Sciaenidae Seriphus politus queenfish

Embiotocidae Hyperprosopon anale spotfish surfperch

The only documented recent first-time immigrant to Oregon waters is Humboldt or jumbo 
squid (Dosidicus gigas), which first appeared in 1997 during the strongest El Niño warm-water 
intrusion in the past century (Pearcy, 2002).  Subsequently, this predator has been observed as 
far north as southeastern Alaska (Keyl et al., 2008, Fig. 7.4.4.A). Zeidberg and Robison (2007) 
argue that even though this species is associated with warm-water events, is not dependent on 
warmer waters.  In any case, this large (>2 m [>7 ft]), fast-growing, short-lived (1–2 yr) species is 
a voracious predator of various fishes (Zeidberg and Robison, 2007; Field, 2008), including 
Pacific salmon (J. Field, NOAA, personal communication). Zeidberg and Robison (2007) 
documented that, since 1998—the year Humboldt squid first invaded the West Coast in force—
the abundance of Pacific hake (also known as Pacific whiting, Merluccius productus) has been 
low when the abundance of Humboldt squid has been high. By volume, hake comprise the 
largest fishery off the Oregon coast (ODFW/OCZMA, 2009). In a recent sonar study off Canada, 
hake were found to be more widely dispersed in the presence of Humboldt squid, indicative of 
predator-prey interactions (Holmes et al., 2008). Originally a tropical and subtropical species, 
Humboldt squid also have expanded their range southward to Chile, where they threaten the 
Chilean hake (M. gayi) fishery (Alarcon-Munos et al., 2008; Arancibia and Neira, 2008). They 
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also may affect marine mammals off Oregon (see Section 7.4.6). Paradoxically, Humboldt squid 
are predicted to suffer population declines as the ocean acidifies (Rosa and Seibel, 2008)

Projecting into the future, ocean distributions of Pacific salmon (Oncorhynchus spp.) generally 
are predicted to shift northward (Welch et al., 1998; Ishida et al., 2001). More generally, Cheung 
et al. (2009) predicted the rates of local invasions (such as warm-water fish species shifting 
northward into Oregon waters) and local extinctions (such as cool-water fish species shifting 
northward out of Oregon waters) from 2003 to 2050 for 1,066 marine fishery species worldwide 
(including 228 invertebrate species, Cheung et al., 2010).  Their "dynamic bioclimate envelope 
model" predicted future distributions based on changes in suitable habitat, dispersal, and 
environmental conditions for each species under a high carbon emissions scenario (IPCC 
scenario A1B, which is equivalent to 720 ppm CO2; see Chapter 1).  For the Oregon coast, the 
model predicted that the number of invasions of new fishery species will be less than 15% of the 
more than 100 fishery species currently present (i.e., on the order of 15 species), and that the 
number of extinctions will be less than 2% of the current fishery species (i.e., a couple species) 
(Cheung et al., 2009). Globally, they predicted that the geographic ranges of demersal (seafloor-
associated) fishery species will shift about 200 km (125 mi) poleward by 2050.
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Figure 7.11 Geographic spread of Humboldt squid (Dosidicus gigas) from its historic range in the eastern 

tropical and subtropical Pacific (light gray) northward and southward along the west coasts of North and 

South America (darker grays). Ovals enclose major fishing regions that may be affected by this predator. 

(Modified from Keyl et al., 2008.)



As with all models, these predictions are hypotheses with high ranges of possibilities, especially 
given that the model did not include possible synergistic interactions among known causative 
factors, and did not include poorly known additional factors, such as ocean acidification. 
Nonetheless, sensitivity analyses indicated that the predictions are robust with respect to 
uncertainties in the factors examined, and the predicted rates of poleward shifts correspond to 
those observed, leading Cheung et al. (2009) to conclude that their predictions are conservative.

7.4.4.2 Shifts in fish abundances

With a warming ocean, the general expectation is that cool-water species will decline in 
abundance as warm-water species become more abundant (reviews by Scavia et al., 2002; 
Roessig et al., 2004; Harley et al., 2006; Brander, 2007). There has not been sufficient monitoring 
of fish populations off Oregon to assess these predictions rigorously, especially given that fish 
abundance varies with fishing intensity as well as ocean conditions and associated ecological 
fluctuations (Mantua et al., 1997; McFarlane et al., 2000; Hallowed et al., 2001; Lehodey et al. 
2006). However, there are indirect means of addressing this issue.

Periods of warm-water intrusion off Oregon during El Niño (the strongest of the past century 
being 1997–98) and other variations in ocean conditions (the period of 2003–2006 being 
unusually warm) have been associated with shifts in the abundance of marine fishes (W. 
Peterson, NOAA, personal communication). Survival of Sacramento River fall Chinook salmon 
stocks that went to sea during the spring and summer of 2005 and 2006 became so low that the 
salmon fishery was closed coast-wide during the summers of 2008 and 2009. This coast-wide 
closure was necessary because the Sacramento River stocks are major contributors to the 
Oregon and northern California salmon fishery (W. Peterson, NOAA, personal communication; 
see also the Pacific Fisheries Management Council web page).  Other recent changes include 
increased abundance of Pacific sardine (Sardinops sagax) (Emmett et al., 2005), and the first 
records of spawning by Pacific hake, a species normally spawns off Baja California (Phillips et 
al., 2007). Albacore tuna (Thunnus alalunga) now occurs far closer to shore than during the 1970s, 
and has now become a major regional fishery in the Pacific Northwest (W. Peterson, NOAA, 
personal communication).

Fisheries catch records from Oregon show trends consistent with (but not necessarily 
demonstrating) shifts expected due to climate change. The Pacific States Marine Fisheries 
Commission maintains commercial catch records in the Pacific Fisheries Information Network 
(PacFIN) database (pacfin.psmfc.org). Examining this database from its inception in 1981 
through 2009 for Oregon landings, several patterns suggest that warm-water fishery species are 
increasing in abundance. First, the annual catch of albacore tuna did not exceed 10,000 pounds 
until 1998, the year of a particularly strong El Niño. In the 11 years since 1998, annual catch has 
exceeded 10,000 pounds 3 years (2004, 2007, and 2009). However, catch per unit effort off 
Oregon has not increased substantially since the early 1960s (A. Phillips, OSU, personal 
communication, data from NOAA Southwest Fisheries Science Center). Second, although 
yellowtail (Seriola dorsalis) are known to stray into Washington waters, no commercial catch was 
recorded in Oregon until 2009. Third, "unspecified" squid, a category separate from market 
squid (Loligo opalescens) and probably including immigrating Humboldt squid (see above), first 
appeared in commercial landing records in Oregon in 2007 and have been recorded annually 
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since then. Additionally, there is an increasing number of unpublished reports of mahi-mahi 
(a.k.a. dolphinfish or dorado, Coryphaena hippurus) taken by recreational fishermen off Oregon, 
including during non-El Niño years (M. Hixon, OSU, personal communication).

Projecting into the future, warm ocean conditions often cause declines in cool-water species, 
such as Pacific salmon (Miller and Fluharty, 1992; Pearcy, 1992; Ishida et al., 2001). Ocean climate 
modeling by Beamish and Noakes (2002) indicates that ocean conditions will become 
increasingly unfavorable for salmon off Oregon. However, conditions should improve for 
warm-water species.  Of the 554 species of coastal marine fish described in Miller and Lea's 
(1972) "Guide to the Coastal Marine Fishes of California," 11 nearshore species have present 
northern range limits along the Oregon coast (Table 7.1). Assuming that water temperature is 
the primary factor limiting northern distribution limits, it is reasonable to predict that these 11 
species will become more abundant off Oregon as ocean waters warm.

7.4.4.3 Shifts in marine fisheries

Climate variability, especially associated with El Niño events (reviews by Diaz and Markgraf, 
2000; Glantz, 2001), has long been known to affect marine fisheries, yet human-caused climate 
change presents new challenges in understanding fish population dynamics (reviews by 
Cushing, 1982; Glantz, 1992; McGinn, 2002). Catches vary with changes in both fishing intensity 
and ocean climate, so disentangling these causes is extremely difficult, especially in terms of 
predicting an uncertain future (Sharp, 1987; Mantua et al., 1997; McFarlane et al., 2000; 
Hallowed et al., 2001; Lehodey et al., 2006). Nonetheless, it is likely that those species becoming 
more abundant along the Oregon coast (see above) may benefit local fisheries, just as declining 
species will reduce catches. In a global analysis, Cheung et al. (2010) combined previously 
projected changes in species distributions (Cheung et al., 2009, see above) with published 
projections of changes in primary productivity (Sarmiento et al., 2004; see Section 7.4.1) to 
predict regional shifts in "maximum catch potential" (MCP) of 1,066 fishery species from 2005 to 
2050. They defined MCP as the maximum exploitable catch assuming that the geographic range 
and selectivity of fisheries remain unchanged over this half-century period. Under a high 
carbon emissions scenario (IPCC scenario A1B, which is equivalent to 720 ppm CO2; see 
Chapter 1), most of the Oregon coast is predicted to suffer a decline in annual commercial 
fishery catch of at least 0.50 metric tons (0.55 U.S. tons) per km2 (1 km2 = 0.39 mi2 = 0.29 nmi2) 
between 2005 and 2050, representing an estimated 30–50% loss (Fig. 7.12). Under the unlikely 
scenario of carbon emissions stabilized at 2000 levels (365 ppm CO2), these predictions lower to 
catch decreases of only 0.05–0.50 metric tons (0.06–0.55 U.S. tons) per km2 annually, representing 
only a 5–15% loss (Cheung et al., 2010). The same broad range of possibilities, sensitivity 
analyses, and conservative conclusions apply to this analysis as discussed above for Cheung et 
al. (2009).

In a separate modeling effort, Biswas et al. (2009) predicted with a probability of 64% that 
catches in the Northeast Pacific (from Oregon to Alaska) will decline during this century. A third 
recent (and as yet unpublished) model predicts that, in addition to sea surface temperatures 
increasing, nutrients will concentrate below 50–100 m (27–55 fathoms) depth and the northerly 
flowing California Undercurrent will strengthen (Rykaczewski and Dunne, 2010). The increase 
in sea surface temperatures, consistent with the other models, should decrease the production of 
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surface-dwelling salmon species, coho salmon and steelhead in particular, largely because of 
changes in food web structure associated with changes from a cold-water and lipid-rich 
copepod and forage-fish community to a warm-water, lipid-poor community (Hooff and 
Peterson, 2006). If deeper nutrients increase, as suggested by Rykaczewski and Dunne (2010), 
then there is likely to be a corresponding increase in the production of phytoplankton and 
zooplankton. However, it is not clear how (or whether) increased production will alter food-
web structure because community composition is determined by circulation patterns that may 
be more important than production rates. Strengthening of the California Undercurrent could 
benefit Pacific hake because this species takes advantage of the undercurrent during their 
annual northerly migration, yet a stronger current could also increase the invasion rate of 
Humboldt squid (see above, W. Peterson, NOAA, personal communication).

Regarding recreational fishing, Bennett et al. (2004) investigated the interactive effects of ocean 
climate (El Niño events) and fishing intensity on catches of rockfishes (Sebastes spp.), comparing 
southern and northern California. They found that northern California, which is relatively 
similar to Oregon, experienced increased catch per unit effort during warm-water periods. 
Rather than this pattern being caused by changes in fish populations (because rockfishes 
reproduce too slowly to keep pace with El Niño events), the authors suggested that "lower food 
production and higher metabolic activity in warmer water may result in fish being hungrier and 
more active, rendering them more vulnerable to a set hook" (ibid., pp. 2507–2508).

OR OR

Figure 7.12.  Predicted changes in marine fisheries catch off the Oregon coast from 2005 to 2055. 

Warm colors indicate predicted decreases and cool colors indicate predicted increases in terms of 

percent change (left) and absolute change (right) in catch within each 0.5-degree latitude-longitude 

plot. (Extracted from Cheung et al., 2010.)
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In conclusion, there are likely to be "winners" and "losers" among fishery species as Oregon's 
ocean warms and acidifies. Only time will reveal exactly what changes will occur. In any case, it 
is important to emphasize that this report focuses entirely on changes within Oregon's ocean. 
Oregon's fisheries and their income are not restricted to the Oregon coast. Landings in Oregon 
of marine fish captured in Alaskan waters were valued at about $1.4 million during 2002–2009 
(J. Olsen, Pacific Fisheries Information Network, personal communication). Much more 
substantially, 271 Oregon fishing vessels fished off Alaska in 2008, and Oregon residents grossed 
over $104 million from commercial fisheries off Alaska that year, accounting for about 8% of 
gross earnings from Alaskan fisheries (ODFW/OCZMA, 2009). The fisheries link between 
Oregon and Alaska is relevant to this report because arctic and subarctic marine ecosystems are 
warming and changing much more rapidly than anywhere else in the world's oceans (Ciannelli 
et al., 2005; Grebmeier et al., 2006; Perovich and Richter-Menge, 2009), so these distant impacts 
will undoubtedly affect Oregon's economy.

7.4.5 Seabirds

Oregon is home to roughly 1.3 million breeding seabirds, representing more than 15 species 
(Naughton et al., 2007) and many more seasonal migratory species, and has some of the largest 
breeding colonies in the California Current Large Marine Ecosystem (CCLME). Oregon’s 
seabirds are both an economically important natural resource and an ecologically important 
mid- to upper-trophic level foraging guild. Economically, Oregon ranks 7th in per capita 
wildlife viewing (mostly birdwatching) in the U.S., with 49% (1.29 million) of the population 
participating (www.birdiq.com/learn/economics.html). The Oregon Coast birding trail 
(www.oregoncoastbirding.com) includes many seabird viewing opportunities within the 
Oregon Islands National Wildlife Refuge (www.fws.gov/oregoncoast/index.htm), which, along 
with Three Arch Rocks National Wildlife Refuge, protects most of the breeding colonies on the 
coast. Ecologically, Oregon’s seabirds forage upon both zooplankton and forage fishes, with the 
dominant piscivores consuming an estimated 49,000 metric tons (54,000 U.S. tons) of forage fish 
during the summer season (Wiens and Scott, 1975). A single species, the common murre (Uria 

aalge), is estimated to consume over 225,000 metric tons (248,000 U.S. tons) of prey annually off 
the California and southern Oregon coasts (Roth et al., 2008). Contemporary estimates of prey 
consumption by Oregon seabirds are lacking. However, it is clear that seabirds are ecologically 
important consumers within the marine food web.

No sufficiently long-term studies of Oregon seabirds have been conducted to adequately 
address the potential effects of climate change. Some effects of changing climate-driven ocean 
conditions, however, have been documented during long-term studies of seabirds in 
neighboring regions of the CCLME (see Chapter 1), and therefore, offer some basis for the 
predicted responses presented here.

Potential effects include the following:

1) Ocean warming potentially affecting prey distribution, abundance, or density, and 
causing reduced breeding success and survival of pursuit-diving seabirds (e.g., 
murres and puffins), ultimately resulting in population declines.
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2) Species distributions shifting northward with a warming trend, enhancing (or 
initiating) breeding populations for species at the northern edge of their range, and 
negatively affecting species at the southern edge of their range.

3) Increased overwinter mortality with increased storm intensity or variability.

4) Inundation of breeding colonies from sea-level rise, especially for beach or estuary 
breeding species.

5) Potential increases in the occurrence of harmful algal blooms that can negatively 
affect seabirds through acute toxicity, lowered immunity, or other physiological 
stresses (see Section 7.4.1).

6) Increased hypoxia (“dead zones;” see Section 7.4.1) affecting seabird prey, potentially 
either enhancing foraging opportunities (aggregating prey nearer the surface and 
away from oxygen depleted bottom water) or reducing food availability (through 
increased prey mortality).

7) Potential indirect effects of ocean acidification through alteration of marine food 
webs and prey availability (see previous sections of Chapter 7).

8) Potential decrease in foraging opportunities due to increased between-species 
competition for prey as population increases and range expansions of other 
predators occur, such as the recent movement of Humboldt squid into the Pacific 
Northwest (see Section 7.4.4).

Seabirds along the Oregon coast most commonly are viewed on shore in large breeding colonies 
and the viewing public often does not appreciate that these animals forage exclusively at sea, 
some diving to depths of over 150 m (490 ft) and many strictly at sea during most of the year. 
The fact that seabirds do breed on shore, however, allows researchers to more readily quantify 
reproductive output, diet, and population change compared with many other marine animals. 
Consequently, seabirds have been shown to be sensitive indicators, or sentinels, of changing 
ocean conditions (Aebischer et al., 1990; Piatt et al., 2007). Indeed, one of the first publicly visible 
signs along the Oregon coast of reductions in prey abundance due to changes in ocean 
conditions (e.g., 2005) or acute toxicity due to harmful algal blooms (e.g., 2009; see Section 7.4.4) 
were mass mortalities of seabirds resulting in many carcasses found on local beaches (Shumway 
et al., 2003; Parrish et al., 2008). Similarly, large increases in numbers of seabirds frequently are 
evident when prey abundance rebounds in one region and/or declines in another, causing a 
population shift (e.g., dramatic increases in several species during winter 2009-2010 on the 
Oregon coast potentially were caused by changes in prey abundance).

One effect of ocean warming is change in the timing of upwelling (Bograd et al., 2009; see 
Chapter 1) which in turn affects the timing of seabird breeding in our region (Wolf et al., 2009). 
In general, birds that initiate reproduction earlier in the spring are more successful and delayed 
upwelling can cause catastrophic breeding failures (Sydeman et al., 2006). Long-term ocean 
warming has affected the community composition and abundance of seabirds in the southern 
CCLME (Veit et al., 1996, 1997), with an overall decline in numbers resulting from fewer cold-
water associated pursuit-diving seabirds, such as sooty shearwater (Puffinus griseus) and 
rhinoceros auklet (Cerorhinca monocerata), and an increase in warm-water associated near-
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surface feeding species, such as pink-footed shearwater (Puffinus creatopus) and Leach’s storm-
petrel (Oceanodroma leucorhoa; Hyrenbach and Veit, 2003). In the northern CCLME, warming 
ocean temperatures were correlated with declines in reproductive success of tufted puffin 
(Fratercula cirrhata), whose populations have declined precipitously (<2% of 1979 levels; Fig. 
7.13) in coastal Oregon (Kocourek et al. 2009), and marbled murrelet (Brachyramphus 

marmoratus). Both of these species are cold-water associated, pursuit-diving seabirds (Gjerdrum 
et al., 2003; Becker et al., 2007). Pursuit-diving seabirds are common in highly productive 
regions (e.g., high latitudes, upwelling regions), where prey densities are sufficient to meet 
energetic demands of searching for prey while diving (diving birds generally have high flight 
costs as a trade-off for enhanced diving efficiency). In contrast, surface-feeding birds with low 
flight costs can better search larger areas for more sparsely distributed prey aggregations. This 
represents the dominant foraging mode in less productive regions (e.g., low latitude, 
unproductive regions). Hence, evidence suggests that a shift in the CCLME toward seabird 
assemblages characteristic of warmer, lower productivity waters has begun, as has as a trend 
toward decreasing species diversity (Sydeman et al., 2009). Indeed, deteriorating ocean 
conditions have been linked to reduced overwinter survival of seabirds such as Atlantic puffin 
(Fratercula arctica) in the North Sea (Harris et al., 2010).

Figure 7.13 Decline in the estimated breeding population size of the tufted puffin, a pursuit diving seabird, on the 

Oregon coast. Data from Kocourek et al. (2009).

Species range shifts also have been documented for the Oregon coast, in particular the 
occurrence of California brown pelican (Pelecanus occidentalis californicus), a nonbreeding, 
summer migrant whose numbers in Oregon have increased a hundred-fold during the past 
several decades (Wright et al., 2007; U.S. Fish and Wildlife Service, unpublished data). While 
this dramatic increase reflects, in part, an increasing population, major northward expansions 
have been associated with warm weather anomalies, such as El Niño events. The winter of 
2009–2010 saw the first significant over-wintering by brown pelicans along the coast of Oregon 
(records of pelicans present in all winter months also occurred in 1998 and 2002, but individual 
sightings were sparse, in contrast to 2010; R. Bayer, Lincoln County bird sighting compiler, 
personal communication). In contrast to these shifts in post-breeding, migratory range, forced 
shifts in breeding distribution may be more problematic for seabirds, as sufficient predator-free, 
breeding habitat (e.g., offshore islands and sea stacks) may become limited.
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Increased winter storm intensity also can affect seabird populations, with some species (and age 
classes) being more susceptible to storm-associated mortality than others (Frederiksen et al., 
2008). Sea level rise should have little direct effect on many seabird colonies in coastal Oregon 
because most tend to be well above the current high tide level (see Chapter 6). However, species 
nesting adjacent to rocky intertidal zones (e.g., black oystercatcher, Haematopus bachmani, see 
Section 7.2.3. for photo), on beaches (e.g., western snowy plover, Charadrius  alexandrinus), or on 
low-lying sandy islands in estuaries (e.g., terns and gulls) will experience habitat loss due to sea 
level rise (Daniels et al., 1993) and increased storm-driven wave heights (Ruggiero et al., 2010). 
Potential loss of nesting habitat in estuaries is a particular concern for the Columbia River, 
which currently provides nesting sites for the Pacific population’s largest colony of Caspian tern 
(Hydroprogne caspia, approximately 18,000 birds; Suryan et al., 2004), equally as many double-
crested cormorants (Phalacrocorax auritus; Adkins and Roby, 2010), and post-breeding feeding 
and roosting habitat for thousands of brown pelicans (Wright et al., 2007; U.S. Fish and Wildlife 
Service, unpublished data).

Seabirds exhibit direct responses to inter-annual (El Niño) and decadal (Pacific Decadal 
Oscillation/North Pacific Gyre Oscillation) changes in ocean climate. The 1982–1983 El Niño, 
one of the strongest on record, resulted in the death of millions of seabirds in the equatorial 
Pacific Ocean due to starvation, and also affected reproductive success of some species globally 
(Schreiber and Schreiber, 1989). In Oregon, the 1982–1983 El Niño caused reduced seabird 
reproductive success and increased mortality (Hodder and Graybill, 1985; Bayer, 1986). During 
the 1997 El Niño, common murre colonies along the Oregon and Washington coasts suffered 
mass abandonment and breeding failure (Parrish et al. 2001; Roy Lowe, USFWS personal 
observation) and thousands of emaciated birds washed ashore during summer as they made 
their way north (T. Good and J. Parrish, unpublished data).

Harmful algal blooms (see Section 7.4.1) associated with changes in climate can also have 
negative impacts on seabirds. Impairment or mortality occurs more commonly through toxicity, 
such as domoic acid poisoning (Shumway et al., 2003). However, recent events of surfactant-
producing red tides also have caused mass mortalities of seabirds (Jessup et al., 2009). In the 
latter cases, foam from the organic material of the red tide contained surfactant-like proteins 
coated the feathers of birds and removed the protective oils, causing hypothermia. This was first 
described during a 2007 mass mortality event in California (Jessup et al., 2009), and was 
recorded for the first time to cause seabird mortality off Oregon and Washington in 2009. It is 
not clear to what extent these events are occurring for the first time, or simply being detected for 
the first time, but such mortality is certainly worthy of close monitoring and documentation in 
the future (Shumway et al., 2003; Jessup et al., 2009).

The occurrence of low oxygen waters and hypoxia (“dead zones”) in Oregon’s nearshore 
environment has increased in recent decades (Grantham et al., 2004; Chan et al., 2008; see 
Chapter 1). The effect of hypoxic marine conditions on seabirds, however, is neither known for 
the Oregon coast nor under study. One could speculate that the effect would be either positive 
or negative, depending on the portion of the water column affected and the prey of seabirds 
affected. A positive response could result from mobile seabird prey being driven away from low 
oxygen bottom waters and into greater concentrations in the upper water column, thereby 
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enhancing foraging opportunities. A negative response could result from increased mortality of 
prey or movement of prey away from nearshore feeding areas and consequent reductions in 
availability.

Likewise, the potential effect of ocean acidification on seabirds is largely unknown. However, 
given that Oregon shelf waters are already potentially corrosive to species that form calcium 
carbonate shells and as the ocean continues to absorb carbon dioxide from the atmosphere 
causing increasing corrosive effects (see Chapter 1), there are potential food-web level 
consequences that could affect seabird populations. For example, if marine ecosystems are 
shifted toward more toward communities with low calcium requirements, such as jellyfish, this 
shift could affect seabird food supplies. In summary, there are a variety of direct and indirect 
pathways by which Oregon’s seabird populations may be effected by climate change that have 
population- and community-level consequences.

7.4.6 Marine mammals

Marine mammals typically are widely distributed, highly mobile and, before human 
exploitation, most were more abundant than today (Clapham and Baker, 2009). The cool waters 
off the Oregon coast have a rich diversity of marine mammal species, but few are strictly 
resident and none are restricted entirely to Oregon waters (Maser et al., 1981). Of the 86 living 
species of whales and dolphins (cetaceans) currently recognized (Perrin, 2009), 23 have been 
sighted live or found beached in Oregon. Of the 32 living species of seals and sea lions 
(pinnipeds) currently recognized (Committee on Taxonomy, 2009), 6 have been sighted live or 
found beached in Oregon and 2 more (the ribbon seal and the ringed seal) are considered likely 
to range into Oregon waters based on occasional sightings in California.

A recent review of potential impacts of climate change on marine mammals worldwide did not 
identify obvious risks to the cetaceans most commonly found in Oregon waters, but highlighted 
general uncertainty about direct and indirect effects of climate change (Simmonds and Eliott, 
2009). Climate change will shift the overall state of the world’s oceans toward a future of 
increased warming and acidity, reduced sea-ice cover, and higher sea levels (Chapters 1 and 6), 
with a resulting reduction in productivity and loss of marine biodiversity (Moore and 
Huntington, 2008). However, the impact of these predicted changes on a specific geographic 
region, such as Oregon, or on a specific taxonomic group, such as marine mammals, is highly 
uncertain, especially over a few decades. Only in the Arctic, where the effects of reduction in ice 
cover are already evident, is there likely to be predictable and measurable near-term impacts on 
ice-obligate and ice-associated species of marine mammals (Laidre et al., 2008). Even here, the 
impact of climate change will be compounded (or confounded) by two other human-caused 
threats:  hunting and pollution (Laidre et al., 2008).

As with other marine species (e.g., marine fishes, Section 7.4.5), the expected influence of 
climate change on marine mammals will be both direct and indirect. Unlike other marine 
species, however, marine mammals are capable of rapid learning and physiological resilience 
across a relatively long lifespan. This behavioral plasticity and innate resilience should allow 
many species to respond to environmental changes within a single generation (Learmonth et al., 
2006). Off Oregon, the near-term impact of direct mechanisms, such as water temperature, are 
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unlikely to be as consequential as the indirect influences of shifts in prey and the structure of 
marine ecosystems, including diseases, predators and competitors.

7.4.6.1 Distribution and range extensions

The most obvious effect of warming oceans on marine mammals will be shifts in local 
distributions or range expansions of species, as individuals respond to temperature tolerances 
and preferences. Using a classification of cetaceans into climatic groups, MacLeod (2009) 
predicted that 88% of cetacean species will experience shifts in their geographical distributions 
in response to changes in water temperature resulting from climate change. For 47% of these 
species, predicted changes are anticipated to have unfavorable implications for their 
conservation, and for 21%, the changes could put at least one geographically isolated 
population of that species at risk of extinction (MacLeod, 2009).

Given Oregon’s location in middle latitudes and its cool waters, most marine mammals 
currently found in our waters are unlikely to be excluded by the modest increase in sea-surface 
temperatures predicted for the next few decades. The one exception might be the Steller sea lion 
(Eumetopias jubatus), for which Oregon is at the southerly (but not southernmost) extent of its 
range. Instead, the overall response to warmer waters is likely to be an increase in frequency of 
more tropical species, resulting in a regional increase in species diversity (Whitehead et al., 
2008). Some evidence of this change is already indicated by records of species beyond their 
normal geographic ranges, such as the subtropical Guadalupe fur seal (Arctocephalus townsendi) 
being sighted off Oregon during 2006–2009. Other species likely to expand their range 
northwards from California include many of the more subtropical dolphins, such as bottlenose 
dolphin (Tursiops truncatus), rough-toothed dolphin (Steno bredanensis), and pantropical spotted 
dolphin (Stenella attenuata; Learmonth et al., 2006). The range expansions of these and other 
species are likely to result in new interactions among species.

Inshore and offshore shifts in distributions of some marine mammals could result from changes 
in sea surface temperature and shifts in upwelling, as well as the associated changes in the 
distributions of their prey (Learmonth et al., 2006). For some seals, particularly harbor seal 
(Phoca vitulina), the predicted rise in sea level and the observed increase in the intensity of 
waves along the Oregon coast will likely lead to a loss of beach habitat for haul-out (Chapter 6).

7.4.6.2 Changes in abundance and population growth

The impact of climate change on abundance and rates of increase of marine mammal 
populations is difficult to predict, as many species are still recovering from past exploitation, 
and so, are assumed to be below normal limits set by the environment (Baker and Clapham, 
2004). For those species nearing recovery to pre-exploitation numbers, the expected influence of 
crowding effects, such as increased juvenile mortality, are likely to further confound 
interpretations of climate change. This situation is likely to be true for the western North Pacific 
gray whale (Eschrichtius robustus) and the North Pacific humpback whale (Megaptera 

novaeangliae), both of which are thought to have recovered to pre-exploitation numbers 
(although the local population of humpbacks in Oregon remains at low numbers). Nonetheless, 
efforts to assess the role of climate change or environmental variation on population dynamics 
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of marine mammals are ongoing in cases where there are long-term data sets of abundance and 
recruitment (Leaper et al., 2006; McMahon et al., 2009). In Oregon waters, species most likely to 
show measurable changes in abundance or recruitment are harbor seals, Steller sea lions, 
California sea lions (Zalophus californianus), harbor porpoises (Phocoena phocoena), “resident” 
gray whales, and humpback whales.

7.4.6.3 Changes in migratory distribution and timing

Many marine mammals found in Oregon waters are migratory. For baleen whales (Mysticeti), 
these migrations extend from subtropical or tropical waters to subarctic or even Arctic waters. 
For some gray whales and humpback whales, however, the waters of Oregon are the northerly 
limit of migration and the primary feeding grounds. The influence of climate change on the 
distribution of these “resident” gray and humpback whales is likely to be dependent on changes 
in the distribution and abundance of prey (indirect mechanisms), rather than sea-surface 
temperature itself.

For non-resident gray, humpback and other migratory whales, timing of migration and period 
of transit through Oregon waters will likely change as a direct result of ocean warming and the 
retreat of Arctic ice from summer feeding grounds. Such alteration in timing, or shifts in 
seasonal habitat use, could lead to a mismatch between predator requirements and prey 
availability on the feeding grounds, as well as reproductive timing on breeding grounds 
(Moore, 2009). One of the best long-term records of migratory timing is that of eastern North 
Pacific gray whales. The southbound migration for this population has been documented from a 
census site in central California over the past 40 years, providing evidence of a delay in 
migration that coincided with the strong El Niño event that occurred in the North Pacific during 
1997-1998 (Moore, 2009). This shift in timing of migration was accompanied by reports of more 
newborn calves offshore of California, well north of the historical concentration of calving in 
lagoons of Baja California. Such a shift in migratory timing should also be detectable for gray 
whales along the migratory corridor of the Oregon coast. A similar shift could be expected for 
other migratory whales such as humpbacks (Baker and Herman, 1981), fin whales (Balaenoptera 

physalus), and blue whales (Balaenoptera musculus), but would be much more difficult to detect 
given the absence of long-term records of migratory timing.

7.4.6.4 Changes in ecological interactions

Probably the major impacts of climate change will be on ecological interactions involving 
marine mammals, particularly due to shifts in productivity and prey availability. At a very basic 
level, one can expect that an increase in coastal productivity will be favorable for most marine 
mammals in Oregon, whereas a decline will be unfavorable. However, much will depend on 
which species change in productivity and the oceanographic conditions that concentrate the 
primary prey for each species, influences that are far less predictable (Learmonth et al., 2006). 

The recent range expansion of Humboldt squid (Dosidictus gigas) provides an example of the 
complexity of collateral change in predator-prey interactions that could affect marine mammals 
of Oregon (see Section 7.4.4). This predatory squid is expanding its range northward, coincident 
with climate-linked oceanographic conditions and a reduction in competing predatory fishes 
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(Zeidberg and Robison, 2007). In regards to marine mammals, this squid is both a known prey 
item for larger sperm whales (Physeter macrocephalus) and beaked whales (e.g., Ziphius 

cavirostris) and a potential competitor for the most common prey of smaller cetaceans, such as 
harbor porpoises. The continued northward expansion of Humboldt squid into Oregon waters 
is likely to benefit some species of marine mammals and negatively impact others. The 
Humboldt squid itself, although benefiting from short-term climate and ecological change, is 
predicted to be threatened by longer-term increases in ocean acidity and temperature (Rosa and 
Seibel, 2008).

Expanding and overlapping ranges of some marine mammals could introduce further 
complexity to species interactions, including competition. Along parts of the California coast 
(and elsewhere in the world [Patterson et al., 1998]), bottlenose dolphins have been observed to 
attack and kill harbor porpoises (SIMoN, 2009). These fatal interactions could increase as 
bottlenose dolphins expand their range northward into Oregon.

7.4.6.5 Changes in infectious diseases and toxic algal blooms

Marine mammals are subject to large-scale mortality events due to infectious diseases and 
harmful algal blooms (HABs; Learmonth et al., 2006; Van Dolah 2005; Section 7.4.1). Rates of 
development, transmission, and susceptibility are all influenced by climate, with a greater 
incidence of disease anticipated with ocean warming. Marine mammal deaths associated with 
HABs and diseases appear to have increased over the past three decades, as have the frequency 
and geographic distribution of these events (Moore, 2009). Many HABs produce toxins known 
to affect both humans and marine mammals (e.g., domoic acid, Van Dolah, 2000), as are some of 
the disease organisms responsible for marine mammal deaths (e.g., Toxoplasma gondii, Gulland 
and Hall, 2007). Consequently, there is concern that the increase in mortality of marine 
mammals is the result of a general deterioration in the state of the oceans, with direct 
implications for human health (Gulland and Hall, 2007).
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Case Study 7.1:  Climate Change and Invasive Species

Globalization of trade and travel combined with technology changes over the past two 
centuries have accelerated the rate of species dispersal worldwide (Office of Technology 
Assessment, 1993; Ruiz et al., 2000). European settlement of the Pacific Northwest 
resulted in introduction of nonindigenous plants and fishes that established persistent, 
and sometimes damaging, populations. Warm water fish, such as catfish, bass, and 
walleye, impact threatened and endangered native salmonids (Sanderson et al., 2009). 
Increases in the speed and number of ships calling on Oregon ports, combined with the 
modern use of water as ballast that transports larvae from port to port, has resulted in an 
exponential increase in the rate of new aquatic invertebrate species arrivals to Oregon 
waters. Prior to the 1970s a new, nonindigenous aquatic invertebrate was found, on 
average, in the Columbia River about every five years; over the past decade, however, a 
new species is found about every five months (Sytsma et al., 2004).

Nonindigenous species that proliferate and cause ecological, economic, and human 
health problems are termed “invasive.” Total economic costs are difficult to quantify 
because invasive species affect nonconsumptive, indirect-use, and non-use values of 
ecological goods and services (Naylor, 2000; Lovell and Stone, 2005). One frequently 
cited assessment indicated that economic costs of invasive species in the USA are about 
$120 billion annually (Pimentel et al., 2005). In Oregon, just 23 noxious weeds reduce 
personal income in the state by $83 million each year, which is equivalent to 3329 jobs 
(Oregon Department of Agriculture, 2000). If left unchecked, six of these weeds would 
reduce personal income by another $54 million and eliminate another 2143 jobs. Quagga 
and zebra mussel invasion of the Columbia River was predicted to have a $23 million 
impact on hydropower facilities alone (Phillips et al., 2005), with a worst case scenario of 
$250–300 million/year from lost power production (Independent Economic Analysis 
Board, 2010).

The impact of climate change on invasive species is difficult to separate from natural 
climate cycles and the myriad of other factors that influence the rate of spread of 
organisms. However, changes in USDA plant hardiness zones have already been 
recorded in much of Oregon (see Map), and will result in concomitant shifts in terrestrial 
plant communities and open habitats to invasion. There is also strong fossil evidence 
that ocean warming has resulted in tropical species of planktonic foraminifera moving 
northward in the California Current (Field et al., 2006; see Chapter 1). Substantial 
northward migrations of 10 marine invertebrates in last thirty years coincided with 
increased water temperatures along the Pacific Coast—five of the 10 species exhibited 
range expansions into Oregon from California (Carlton, 2000). The Humboldt squid, a 
voracious predator that could affect commercially important fish stocks, also exhibited 
climate-linked, northern expansion of its range into Oregon. Moreover, this species is 
physiologically adaptable and its current distribution does not depend 
upon the higher surface water temperatures typical of the tropics (Zeidberg and 
Robison, 2007). Similar temperature-related phenomena have been observed in the 
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distribution of sea squirts (Stachowicz et al., 2006), marine fishes (Perry et al., 2005), and 
over 100 other species around the world ranging from trees to insects and forest pests 
(Walther et al., 2009).

Carbon dioxide enrichment of the atmosphere will likely have direct and indirect effects 
on ecosystem processes and species distributions. Plants with C3 photosynthetic 
biochemistry that grow in habitats that are dominated by plants with C4 biochemistry 
may gain a competitive advantage with an increase in CO2, even though there is no clear 
link between CO2-responsiveness and invasiveness (Dukes, 2000).

Secondary effects of climate change could also influence spread and dispersal of 
invasive species (Sutherst, 2000). Climate change that leads to more rain and less snow 
at high elevations will alter seasonal periodicity in stream flow and possibly result in 
construction of more reservoirs to maintain adequate water reserves for human use 
(Fredrick and Gleick, 1999). Native fish communities are adapted to natural hydrologic 
regimes and changes in hydrology facilitate establishment of non-native fish species 
(Moyle and Marchetti, 2006; Johnson et al., 2008). Changes in the amount and 
distribution of precipitation could also alter fire regimes and increase the number of 
invasive species (D’Antonio, 2000). Melting of the polar ice cap will likely lead to shifts 
in shipping routes (Phillips, 2008) and changes in source and sink regions for 
introductions of exotic species via ballast water. Finally, climate warming will increase 
the pool of invasive species by facilitating the northward spread of aquaculture facilities 
and water gardens that are often the source of escaped invasive species that enter 
natural water bodies (Rahel and Olden, 2008).

Shifts in species ranges are an unavoidable and expected consequence of climate change 
in Oregon. The biogeography of native and invasive species in Oregon is not monitored 
systematically, so impacts of climate change on Oregon’s plants and animals cannot yet 
be effectively assessed or managed. Oregon has the infrastructure in place to address 
invasive species issues (Oregon Invasive Species Council, 2010), but all programs are 
underfunded. Additional resources are required for the state to prepare for, and mitigate, 
the inevitable effects of climate change on invasive flora and fauna.
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Change in plant hardiness zones between 1990 and 2006, based on minimum annual 
temperature. Positive changes mean that warming conditions are favoring more 
warm-tolerant species (www.arborday.org/media/map_change.cfm).
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Case Study 7B:  Climate Change, Ecological Resilience, and Natural Resource 

Management

The ecological effects of climate change pose immense challenges for natural resource 
management because the biosphere is heading toward conditions that have not been 
experienced previously by modern humans in any particular region:  the past no longer 
necessarily provides reliable insight for the future. As this report should make clear, 
even though substantial changes are occurring and will accelerate during this century, 
uncertainty is immense regarding specific changes and appropriate responses. In the 
context of rapid change and high uncertainty, an overarching goal to ensure that 
ecosystems do not change catastrophically is ecological resilience (Holling, 1986; Walker 
and Salt, 2006).

“Ecological resilience” is the capacity of an ecosystem to absorb disturbances without 
shifting to a drastically different state that is undesirable—and perhaps irreversible—
from a human perspective (Holling, 1973; Gunderson, 2000). Therefore, fostering 
resilience is a fundamental principle for ensuring that the negative effects of climate 
change are minimized or otherwise slowed by management policy (Holling, 1986; 
Walker and Salt, 2006).

The management goal of “resilience” is different from that of “stability” in a way that 
has important ramifications for natural resource policy in response to climate change. 
Whereas the goal of resilience is an ecosystem that is allowed to vary naturally—
sometimes substantially—yet without crossing a threshold into a fundamentally 
different and undesirable state, the goal of stability is an ecosystem that does not change 
or, following a disturbance, returns quickly to a specific state desired by humans 
(Holling, 1996). History has shown repeatedly that attempting to manage fish and 
wildlife for optimal population levels of specific target species or maximum sustainable 
yield of specific fishery species is impossible in the long run because ecosystems 
constantly change and cannot be held in a constant state by command-and-control 
approaches (Holling and Meffe, 1996). When thresholds are crossed due to human 
alterations of key nonliving and living processes, ecosystems jump rapidly between 
alternate stable states that human may view as deleterious. For example, old fire-
suppression policies to keep western forests static resulted in the build-up of fuel until 
catastrophic wildfires killed far more trees and wildlife than if naturally small and more 
frequent fires had been allowed to burn (Stephens and Ruth, 2005). In the ocean, 
overexploitation of a single predatory species, the sea otter (now extinct in Oregon), 
resulted in the loss of kelp forests as sea urchins overgrazed kelp in the absence of their 
key mammalian predator (Estes and Duggins, 1995). In each case, the new state of the 
ecosystem was less useful to humans than the original state that dominated before the 
phase shift caused by trying to manage for static equilibrium. In short, all ecosystems 
naturally vary through time in adaptive cycles of generation, degeneration, and 
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regeneration (Holling, 1986). Allowing natural cycles to run their course tends to keep 
the system within a particular desirable regime in the long run (Folke et al., 2004).

It is important to realize that exactly what species and natural processes must be 
conserved to prevent the loss of resilience and sudden regime shifts typically are not 
predictable (Holling, 1986). This reality means that maintaining resilience requires 
ecosystem-based management that embodies precautionary and adaptive approaches to 
address unknown threats and consequences before they appear (Arkema et al., 2006). 
Precautionary polices do not harm ecosystem function. Adaptive management occurs 
when policies become hypotheses and management actions become experiments to test 
those hypotheses, providing feedback toward more effective approaches (Folke et al., 
2005).

Experience in a variety of natural systems shows that two specific ecosystem-based 
policies are among the most effective at conferring ecological resilience (Walker and Salt, 
2006).

(1) Maintaining species diversity and functional redundancy:  Ecosystems in which all 
native species are in their unaltered abundances and size/age classes, including 
multiple species that share similar ecological functions, are more resilient than 
systems where key species groups have been overexploited or their habitats 
severely altered. For example, conservation of multiple species of top predator 
means that the loss of any one species due to climate change does not entirely 
remove this essential functional group (Elmqvist et al., 2003).

(2) Allowing natural variability and modularity in processes at all scales of time and 

space:  Ecosystems where natural cycles and disturbances are allowed to run their 
course in a state of natural patchiness are more adaptable than those have been 
artificially and uniformly boxed-in narrow states that are vulnerable to drastic 
change. For an example regarding space, habitat patches in different natural 
states of succession (defined by time since the last natural disturbance) enhance 
regional species diversity and provide opportunities for degraded patches to be 
recolonized by adjacent patches in different successional stages (Holling, 1986). 
For an example regarding time, big, old, fat, fertile, female fish (BOFFFFs) have 
longer spawning seasons and produce more eggs than younger females, and thus 
are more likely to spawn at times when their young find food-rich ocean water 
masses and are delivered by favorable currents to nursery habitats, both of which 
vary unpredictably from year to year (Berkeley et al., 2004).

In practice, these policies can be implemented by (1) networks of reserves where natural 
processes and connectivity between sites are fostered (Bengtsson et al., 2003; McLeod et 
al., 2009), and (2) active management that mimics natural cycles and disturbances (Folke 
et al., 2005). Resilient ecosystems on land and in the sea provide “stepping stones" where 
species can find refuge as they shift their geographic distributions due to climate change. 
For more complete introductions to ecological resilience, including examples of 
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ecosystem-based natural resource management, see Walker and Salt (2006) and 
Gunderson et al. (2010).
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