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1 EXECUTIVE SUMMARY 

The Yoncalla Log Ponds are a series of four ponds located in within the city limits of the town in Yoncalla 

in northern Douglas County, Oregon.  The ponds were created in stages between the late 1930s and the 

1950s and used for log storage through the 1970s (North Douglas Betterment 2014).  North Douglas 

Betterment purchased the land surrounding the ponds and contracted with the Center for Lakes and 

Reservoirs at Portland State University to assess the current morphometry, vegetation and water quality 

status of the ponds and provide recommendations for management of the aquatic vegetation.  The 

scope of this document covers the current status assessment of the ponds using data collected from 

June 2013 through May 2014. 

Bathymetric maps were generated from a hydroacoustic survey data conducted in the large pond, 

manual depth-sounding data in the three smaller ponds, collection of geographic information, and 

surface interpolation techniques.  The new maps indicate that the shoreline of the largest pond drops 

off quickly to over a meter deep throughout the pond.  A general trend of deeper water to the north of 

the pond is evident.  The deepest point of 3.9 m is located in the northwest third of the pond.  At full 

pool, the average depth of the pond is 1.9 m. the surface area is 15.1 ha and the volume 0.29 hm3.  

Ponds 2, 3, and 4 are much shallower and smaller with average depths of 0.5, 0.4, and 0.8 m and surface 

areas of 1.1, 0.1, and 0.2 ha respectively.  The water level in Pond 1 ranged by 0.4 m during the survey 

period.  Ponds 3 and 4 dropped by over 0.6 m during the summer of 2013 and nearly became 

completely dry.  Pond 2 dropped by 0.55 m during the survey period due to a leak in the dike containing 

the pond. 

Aquatic vegetation in Ponds 1 and 2 was surveyed on two dates while Ponds 3 and 4 were surveyed on a 

single date.  Aquatic vegetation in Pond 1 was dominated the native floating leaf plant species Brasenia 

schreberi (watershield).  B. schreberi was present and very dense at 96% of the sites surveyed in Pond 1 

and was only absent from the deepest parts of the pond.  The dense coverage by B. schreberi persisted 

throughout the survey period with the exception of during the late winter.  B. schreberi was also present 

in Pond 2, but at fewer locations and mixed in with a broad diversity of dense submerged aquatic 

vegetation.  Most species were native to the area, however, the invasive species Myriophyllum spicatum 

(Eurasian watermilfoil) was fairly common.  The other invasive plant observed was the non-native or 

non-native x native hybrid cattail (Typha sp.) found along the shoreline.  Ponds 3 and 4 were dominated 

by native submerged plants including Ceratophyllum dermersum (coontail). 

Water quality in the ponds were greatly affected by the density and types of aquatic vegetation in the 

ponds.  The dense floating leaves of B. schreberi that covered Pond 1 blocked light from reaching into 

the water and restricted oxygen and carbon dioxide exchange between the water and air creating low 

dissolved oxygen concentrations and low pH values in the pond during much of the year.  Dissolved 

oxygen concentrations were well below Oregon Department of Environmental Quality criteria designed 

to protect warm water fish species most of the year.  Oxygen and pH measured over daily cycles in Pond 

1 did not show and clear patterns indicating that decomposition was dominating the metabolism in the 

water column.  Oxygen concentrations and pH values in the other ponds were much different because 

the plant communities were dominated by submerged aquatic vegetation.  During the summer, oxygen 

concentrations in the three ponds reached almost 200% of atmospheric saturation and pH values 

reached to near pH 10.    
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Total nutrient concentrations, water clarity, and phytoplankton species composition in all ponds indicate 

that the ponds are nutrient rich, or mesotrophic to eutrophic.  Low concentrations of bioavailable forms 

of N and P in Pond 1 indicate that algal growth was limited by N and/or P.  Higher concentrations of 

bioavailable P in the other ponds indicate that P does not limit algal growth in these ponds.  Low 

concentrations of bioavailable N in Ponds 2-4, on the other hand, indicate that these system may be N 

limited during the spring through early fall.  Phytoplankton species include several cyanobacteria 

species, but at extremely low concentrations. 

A diverse assemblage of zooplankton species was encountered in the ponds and densities varied 

considerably over the course of the survey period.  Many of the species were typical of littoral areas.  

Two invasive animal species were detected during benthic surveys: Corbicula fluminea (Asian clam) and 

Gambusia affinis (mosquitofish).  Several other snail, clam, and other invertebrate species were present. 
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2 BATHYMETRIC MAPPING 

2.1 INTRODUCTION   
Accurate estimates of the morphometric characteristics of a waterbody are essential for assessing 

hydrologic budgets, nutrient budgets, and vegetation management strategies such as dredging and 

herbicide application.  Bathymetric maps also provide recreational users with information to help them 

better enjoy a waterbody.  Survey data were collected from the four Yoncalla Ponds and data was 

processed to produce bathymetric maps and estimates of volume and surface area. 

2.2 METHODS 
Two methods were used to collect bathymetric data at the Yoncalla Ponds: a hydroacoustic data survey 

of the largest pond, and manual depth sounding at points within three smaller ponds.  The 

hydroacoustic survey was conducted on March 18, 2014 

during full pool conditions.  Data was collected using a 

Biosonics Inc. DE4000 Scientific Digital Echosounder 

equipped with a 420 kHz narrow beam (8°) transducer 

paired with a differentially corrected Trimble Pathfinder Pro 

GPS receiver.  The acoustic data were collected at a pulse 

width of 0.4 milliseconds and a rate of five to ten acoustic 

pings per second.  GPS location data were recorded once 

per second at boat speed of less than 2.5 m/s resulting in 

acoustic data at a maximum distance of 0.9 m between data 

points.  Since acoustic data were recorded more frequently 

than location data, unknown locations were interpolated 

between known locations along transects.  Data was 

collected along concentric paths parallel to the pond 

shoreline spaced approximately 20 m apart (Figure 1).  

Additional data was collected in the deeper areas of the 

pond with more complex topography.   

Depth at the three smaller ponds was measured by 

lowering a pole marked at 10 cm increments to the 

sediment surface at sites evenly distributed across each 

pond.  Depth was measured at 58 sites in Pond 2, 26 sites in 

Pond 3, and 26 sites in Pond 4.  Site locations were recorded 

with a differentially corrected Trimble Pathfinder Pro GPS 

receiver.  Distances between measurement sites were less 

than 15 m in Pond 2, 9 m in Pond 3, and 11 m in Pond 4.   

Since reference elevations points relative to sea level were 

not available near the ponds, water levels on survey dates 

were referenced to the top of temporary galvanized pipes 

driven vertically into each of the ponds (Figure 1).  As Lidar 

 
Figure 1. Yoncalla Pond hydroacoustic 
survey data collection pathlines and 
temporary staff gage locations. 
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data becomes available for the area, the relative elevation data can be referenced to a vertical datum 

relative to sea level. 

Shapefiles of each pond’s shoreline was downloaded from the National Hydrographic Database 

(http://nhd.usgs.gov/data.html, accessed July 2014) and edited in ArcMap to match a 0.3 m resolution 

digital color image (Microsoft UC-G image).  Vertices of the polygons were densified to one meter 

spacing, converted to a point shapefile, and assigned a depth of 0 m.    

Hydroacoustic data collected from Pond Number One was processed using Biosonics Visual Analyzer 

software to produce water depth, latitude, and longitude at each sample point.  All hydroacoustic point 

data from Pond Number One; manually measured point data from Ponds Two, Three, and Four; and 

shoreline points for all ponds were imported into a Microsoft Access database.   

Bathymetric surfaces of the ponds were interpolated from the point data using the spline with tension 

algorithm in ESRI ArcGIS 10 software.  Volume and surface area below contours on the interpolated 

surfaces were calculated using the ArGIS Surface Volume tool.  

2.3 RESULTS 
The measured water level in Yoncalla Pond 1 during the March 18, 2014 bathymetric survey date was 

within 1 cm of the maximum level observed in the pond during the survey period (Figure 2).  Water 

levels in Ponds 3 and 4 during June 26, 2013 bathymetric surveys were 0.3 m below the maximum 

observed during the survey period, while the level in Pond Number Two was the highest observed 

during the project period.  Water levels in Pond 2 would have been higher with fall and winter rains, 

however, the dike containing the pond developed a leak during the project period (Kent Smith, North 

Douglas Betterment, personal communication). 

The morphometry of Pond 1 is characterized by a steep shoreline that drops quickly to a relatively flat, 

shallow surface across most of the pond (Figure 3).  There is a general trend of increasing depth from 

the south to the north.  Much of the southern portion is less than 2 m deep while the northern basin 

ranges up to 3.9 m deep with considerable portions deeper than 2 m.  Notable features include the 

remnants of an old dike running from east 

to west near the north end of the pond and 

several relatively deep submerged channels 

in the northern half of the pond.  The 

submerged dike along with islands in the 

southern part of the pond result in four 

distinct basins in Pond 1. 

The volume of Pond 1 at full pool is 292,643 

m3 (0.29 hm3; 237.25 acre-feet), the surface 

 
Figure 2.  Water surface elevations below the top of 
temporary staff gages at the four Yoncalla Ponds.  
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Figure 3.  Bathymetric contours of Yoncalla Pond Number 1.  Depth contours in 0.5 m intervals are 
relative to full pool elevation measured on March 18, 2014. 
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area is 15.08 ha (37.27 acres), and the mean depth is 1.9 m.  The deepest measured point in the pond 

(3.9 m, 12.8 ft) is located in the northwestern portion of the middle basin.  Fifty percent of the pond’s 

volume lies below 1 m depth.  Morphometric statistics at different water levels and hypsographic curves 

based on the statistics are presented in Table 1.   

Ponds 2-4 are much smaller and shallower than Pond 1 with surface areas of 1.13 ha, 0.11 ha, and 0.24 

ha (Table 2, Figure 4).  The maximum depths of ponds 2-4 are 1.0, 0.6, and 1.3 m; and mean depths are 

0.5, 0.4, and 0.8 m respectively.  

  

 

Table 1.  Morphometric statistics (left) and hypsographic curves (right) for Yoncalla Pond Number 
One.  Values are calculated from a surface interpolated from hydroacoustic data collected on March 
18, 2014.  Depths are relative to full pool elevation measured on the survey date.  Dashed lines 
represent depths with 50% of total volume and surface area at full pool. 

Depth 
(m) 

Surface area at 
depth (hectares) 

Volume below 
depth (m3) 

 

0 15.08 292,643 

 

0.2 15.05 262,334 

0.4 14.95 232,270 

0.6 14.82 202,529 

0.8 14.59 173,137 

1.0 13.97 144,428 

1.2 12.89 117,489 

1.4 11.68 92,998 

1.6 10.25 70,979 

1.8 8.59 52,128 

2.0 7.35 36,324 

 

2.2 6.05 22,773 

2.4 4.13 12,623 

2.6 2.19 6,449 

2.8 1.32 3,052 

3.0 0.68 1,110 

3.2 0.23 243 

3.4 0.03 24 

3.6 0.002 2 

3.8 0.0003 0.1 
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Figure 4. Yoncalla Pond 2 (top) and Ponds 3 and 4 (bottom) bathymetric maps.  Measured depth points 
and 0.2 m contours are relative to the water surface elevation on June 26, 2013. 
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Table 2.  Morphometric statistics (left) and hypsographic curves (right) for Yoncalla Ponds 2-4.  Values 
are calculated from surfaces interpolated from sounding data collected on June 26, 2013.  Depths are 
relative to the water surface elevation on the survey date. 

Pond 
Depth 

(m) 
Surface area 

at depth (m2) 
 Volume below 

depth (m3) 
 

2 0 11257 5423 

 

 0.2 10423 3238 

 0.4 8428 1309 

 0.6 2804 117 

 0.8 7 0 

    

3 0 1056 453 

 0.2 978 244 

 0.4 667 76 

 0.6 114 4 

    

4 0 2388 1965 

 0.2 2337 1488 

 0.4 2106 1041 

 0.6 1770 651 

 0.8 1317 341 

 1 780 133 

 1.2 378 18 
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3 AQUATIC VEGETATION COVERAGE AND SPECIES COMPOSITION 

3.1 INTRODUCTION 
Aquatic vegetation can be beneficial to ponds and lakes though preventing shoreline erosion and 

sediment re-suspension, and providing food and habitat for fish and other aquatic organisms.  Some 

aquatic plants such as arrowhead (Sagittaria latifolia) can also been used as a human food source.  

Excessive growth of aquatic plants, however, can harm the ecology and economy of a waterbody.  For 

example, growth of non-native plant species such as Eurasian watermilfoil (Myriophyllum spicatum) or 

native plant species such as watershield (Brasenia schreberi) can aggressively crowd out other native 

plants, degrade water quality, interfere with boating and fishing, decrease property values, and incur 

management costs. 

We assessed the species composition and 

relative density of submerged and floating 

leaf aquatic plants in the Yoncalla Ponds 

during the summer of 2013.  Plant samples 

were collected throughout each of the 

ponds, species were identified, and 

specimens were pressed and archived. 

3.2 METHODS 
Submerged and floating leaf aquatic plant 

samples were collected from the pond on 

two dates in 2013.  All ponds were sampled 

on 6/26/13.  Ponds 1 and 2 were resampled 

on 8/21/13 to assess seasonal differences.  

Ponds 3 and 4 were not resampled because 

they went dry later in the summer.  Sites 

were evenly distributed across each pond 

ranging from approximately 7 m apart in 

Pond 3 to 30 m apart in Pond 1 (Figure 5, 

Table 3).  The number of sites in each 

waterbody ranged from 202 in Pond 1 to 26 

in Ponds 3 and 4.  Samples were collected at 

the sites by inserting a double-sided thatch 

rake attached to a graduated aluminum pole 

to the sediment surface, noting the depth, 

twisting the rake 360 degrees, and retrieving 

all attached vegetation for identification.  

Species composition, relative abundance, 

and sample depths were recorded on field 

datasheets.  Identifications were verified 

according to Crow and Hellquist (2006),  

 

Figure 5. Aquatic plant sampling locations (+). 
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Crow et al. (2006), Brayshaw (2000),  Jepson eFlora (2014) and Flora of North America North of Mexico 

(1993).  Voucher specimens were pressed and archived at Portland State University.  All data are stored 

in a Microsoft Access Database.  

3.3 RESULTS 

3.3.1 Pond 1 

The extent of the aquatic plant coverage of Pond 1 is indicated on a June 2012 satellite image where 

94% of the pond surface appears to be covered with plants (Figure 6) (USDA-FSA 2012).  Our survey on 

June 26, 2013 indicates that the plant species community was dominated by the native floating leaf 

species Brasenia schreberi (watershield) which was present at 96% of the 202 sites surveyed (Figure 7).  

The sites where B. schreberi was not detected were restricted to the 

deepest parts of the pond and ranged in depth from 2.3 to 2.9 m.  

The sites with B. schreberi present ranged up to 3.1 m.   

The only submersed species detected in pond, Potamogeton pusillus 

(small pondweed), was found at two shallow water sites.  Small 

patches of water purslane (Ludwigia palustris), an emergent plant 

species, were encountered at several locations around the shoreline 

but not at any of the sampling sites.  Both species are native and 

common in Oregon.  An invasive Typha sp. (cattail), either T. 

angustifolia or a hybrid between T. angustifolia and the native T. 

latifolia, was present at several locations along the shoreline.  B. 

schreberi was the only plant collected from 10 sites sampled during 

August 2013. 

3.3.2 Pond 2 

Brasensia schreberi was also found in Pond 2; however, it did not 

dominate the aquatic plant community as it did in Pond 1.  B. 

schreberi was present at 3% of the 58 sites sampled on June 26 and 

60% of the 57 sites sampled on August 21, 2013.  A total of 

seventeen aquatic plant species were found in the pond (Table 4) 

and at least one plant species was observed at each site.  The most 

common species encountered were Najas guadalupensis (common 

water nymph) and Elodea canadensis (Canadian waterweed).     

 
Figure 6. B. schreberi 
coverage of Pond 1 on 
7/7/2012 (USDA-FSA 2012). 

 

 

Table 3. Distance between aquatic plant sample sites and number of sites per waterbody 
 

Distance between sites (m) 
Number of sites sampled on date 

Pond 6/26/13 8/21/13 

1 30 202 10 

2 15 58 57 

3 7 26 dry 

4 10 26 dry 
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Two non-native species were present in the pond: Myriophyllum spicatum (Eurasian watermilfoil) and 

Potamogeton crispus (curly-leaf pondweed) (Figure 8).  Since morphological characteristics can be 

unreliable in distinguishing between Myriophyllum spicatum and hybrids of M. spicatum and the native 

M. sibiricum (northern watermilfoil), identification of M. spicatum was verified by Grand Valley State 

University using genetic markers.  M. spicatum is a B Listed Weed on Oregon’s Noxious Weed List (ODA 

2014) which is defined as “a weed of economic importance which is regionally abundant, but which may 

have limited distribution in some counties”.  ODA’s recommended action for a B Listed Weed is for 

limited to intensive control on a site specific, case-by-case basis.  M. spicatum was present at 22% of the 

sites during June and 63% of the sites during August.  P. crispus was present at 9% of the sites during 

each sampling event.  Although P. crispus is a non-native species that can cause some of the same 

problems as M. spicatum, it is not included on Oregon’s Noxious Weed List.  

3.3.3 Pond 3 

Aquatic plants were present at 25 of the 26 Pond 3 sample sites during June 2013 at depths ranging up 

to 0.63 m.  Six aquatic plant species were present, all of which were native species (Table 5).  

Ceratophyllum demersum (coontail), a non-rooted aquatic plant that acquires nutrients from the water 

column rather than the sediment, was the most commonly encountered species.  Callitriche 

heterophylla (water starwort) and the macro-alga species Nitella sp. (brittlewort) were also very 

common.  The overall submerged plant density in the pond was very high.  Since the pond was dry 

during August 2013, a second plant sampling event was not conducted.  

 
Figure 7. Presence, absence and dominance of Brasensia schreberi in Yoncalla Ponds during June 
(left) and August (right) 2013.  Points presented for the August sampling of Pond 1 represent sites 
that were checked to verify that no other species were present.  B. shreberi covered nearly the entire 
pond during the August sampling event. 
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3.3.4 Pond 4 

At least one aquatic plant species was present at each of the 26 sites sampled in Pond 4 during June 

2013.  Seven native aquatic plant species were detected in Pond 4, all of which were native (Table 5).  C. 

demersum was present at 100% of the sites and was densely distributed through the pond.  Three native 

Potamogeton sp. (pondweed) were found that were not found upstream in Pond 3.  Like Pond 3, Pond 4 

was not resampled in August because the pond was nearly dry.  

 
Figure 8.  Presence, absence, and dominance of Myriophyllum spicatum (top) and 
Potamogeton crispus (bottom) in Pond 2 during June (left) and August (right) 2013.  
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Table 5. Occurrence of submersed and emergent aquatic plant species in Ponds 3 and 4 on 6/26/13. 
   % of sites with species 
Species Common name Status Pond 3 Pond 4 

Ceratophyllum demersum coontail native 81 100 

Nitella sp. brittlewort native 38 8 

Callitriche heterophylla water starwort native 31 4 

Persicaria lapathifolia common knotweed native 19 8 

Elodea canadensis Canadian waterweed native 4 - 

Chara sp. muskwort native 4 - 

Potamogeton pusillus small pondweed native - 12 

Potamogeton epihydrus ribbon-leaf pondweed native - 4 

Potamogeton amplifolius big-leaf pondweed native - 4 

 

Table 4.  Occurrence of aquatic plant species in Yoncalla Pond 2. 
   % of sites with species 
Species Common name Status 6/26/13 8/21/13 

Myriophyllum spicatum Eurasian watermilfoil 
non-native, 
ODA Class B 22 63 

Potamogeton crispus curlyleaf pondweed non-native 9 9 

Typha sp. narrow leaf cattail non-native * * 

Najas guadalupensis common water nymph native 86 89 

Elodea canadensis Canadian waterweed native 81 98 

Potamogeton pusillus small pondweed native 38 46 

Eleocharis acicularis needle-leaf spikerush native 31 2 

Potamogeton amplifolius big-leaf pondweed native 24 67 

Schoenoplectus subterminalis water bulrush native 12 51 

Brasenia schreberi watershield native 3 60 

Eleocharis sp. spikerush native 3 16 

Carex sp. sedge native 3 - 

Potamogeton epihydrus ribbon-leaf pondweed native 2 4 

Sparganium sp. bur-reed native 2 4 

Potamogeton natans floating-leaved pondweed native - 9 

Juncus sp. rush native - 7 

Callitriche heterophylla water starwort native - 4 

Ludwigia palustris water purslane native - 2 

* Present along shoreline, but not at any sampling sites 
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4 WATER QUALITY ASSESSMENT 

4.1 INTRODUCTION 
The water quality of a waterbody consists of the physical, chemical and biological condition of the 

waterbody.  These characteristics determine the suitability of the waterbody for different aquatic 

organisms as well as the utility of the waterbody for human needs such as drinking water and 

recreation.   Water quality is affected by many factors including the land use within watersheds, 

management practices within waterbodies, proliferation of invasive species, and changes in weather 

and climate.   

This water quality assessment is intended to determine the water quality status of the four Yoncalla 

Ponds and provide a baseline for assessing change.  The assessment covers the topics of nutrient 

concentrations, thermal stratification, dissolved oxygen and pH dynamics, biological communities, and a 

summary of the trophic status of the ponds.   

4.2 METHODS 
Measurements and samples were collected from the four Yoncalla Ponds during seven sampling events 

during the period from June 2013 to May 2014 (Table 6).  The timing of the sampling events was 

intended to characterize conditions during the summer growing season when aquatic plant biomass was 

at a maximum, the start of the rainy season in early and late fall, late 

winter when the aquatic plant biomass was low, and early spring as 

aquatic plant biomass was on the increase.  Sampling was conducted 

in the deepest section of each pond (Figure 9). 

In situ measurements were collected from the deepest part of each 

pond using a Eureka MantaTM or Manta2TM multiprobe.  Vertical 

profiles of temperature, pH, dissolved oxygen (DO), and specific 

conductance were measured at 0.5 m intervals from the surface to 

the bottom of Pond 1, while surface water measurements (0.5 m) 

were collected from the three shallower ponds.  Specific conductance 

and pH were calibrated prior to sampling on each date using NIST 

certified standards. Dissolved oxygen was calibrated to 100% 

saturation at the measured barometric pressure in air saturated 

water.  Multiprobe sensors were allowed to equilibrate with 

conditions in each pond for a minimum of five minutes or until 

readings were stable before recording measurements.  At least 90 s 

was allowed for equilibration between measurements at different 

depths. 

A calibrated MantaTM or Manta2TM multiprobe was also deployed in 

Pond 1 over the course of each sampling event: a time period of 

between one and three days.  The multiprobe was suspended at  
Figure 9. Water quality 
sampling sites. 
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approximately 1 m from a surface buoy depth located at the deepest part of the pond and set to record 

data at a maximum interval of once every 15 min.    

Grab samples were collected for analysis of nutrients, acid neutralizing capacity, and chlorophyll-a 

concentration using a horizontal 4.2 L Van Dorn sampler at the deepest location in each pond.  Surface 

samples (0.5 m) were collected from the three shallower ponds.  Samples collected from Pond 1 

consisted of vertical composites of subsamples collected from 0.5, 1, and 2 m.  Unfiltered subsamples 

were submitted to the Cooperative Chemical Analytical Laboratory (CCAL)1 for analysis of total 

phosphorus (TP) and total nitrogen (TN) concentrations.  Subsamples were also filtered through 

Whatman GFF glass fiber filters (nominal pore size of 0.7 μm) and submitted to CCAL for the analysis of 

orthophosphate (PO4-P), ammonia nitrogen (NH3-N), and nitrate plus nitrite nitrogen (NO3+NO2-N).  All 

nutrient samples were stored in acid washed HDPE bottles on ice or refrigerated.  One field replicate 

nutrient sample was submitted for each sampling event.  Subsamples were decanted into opaque HDPE 

bottle for the analysis of acid neutralizing capacity by Gran titration (Wetzel and Likens 2000) and 

chlorophyll-a by fluorometry (Arar and Collins 1997) at the Portland State University Center for Lakes 

                                                           
1 Analytical data were provided by the Cooperative Chemical Analytical Laboratory established by memorandum of 
understanding no. PNW-82-187 between the U.S. Forest Service Pacific Northwest Research Station and the 
College of Forestry, Department of Forest Ecosystems and Society, Oregon State University. 

Table 6.  Samples and measurements collected from Yoncalla Ponds. 

Pond Sample dates Secchi 
In situ 
Meas. 

Chemistry 
samples 

Phyto-
plankton 

Chl-
a 

Zoo-
plankton Benthos 

1 June 25-28, 2013 X X X X -4 X X 

 July 23-24, 2013 -3 X X X -4 X X 

 Aug 21-22, 2013 X X X - -4 X X 

 Oct 22-23, 2013 X X X X -4 X X 

 11/26/2013 X X X - -4 X X 

 Mar 18-19, 2013 X X X X -4 X X 

 Apr 30- May 1, 2014 X X X X -4 X X 

2 June 27, 2013 -1 X X X -4 - X 

 July 24, 2013 -1 X X X -4 - X 

 Aug 21,2013 -1 X X - -4 - X 
 Oct 23, 2013 -1 X X X -4 X X 

 Nov 26, 2013 -1 X X - -4 - X 
 Mar 19, 2014 -1 X X X -4 X X 

 May 1, 2014 -1 X X X -4 X X 

3 June 27, 2013 X X X X -4 - X 

 July 23, 2013 -1 X X X -4 - X 

 Aug 21,2013 -1 -2 -2 - -4 - - 
 Oct 23, 2013 X X X X -4 X X 

 Nov 26, 2013 -1 X X - -4 - X 
 Mar 19, 2014 -1 X X X -4 X X 

 Apr 30, 2014 -1 X X X -4 X X 

4 June 28, 2013 X X X X -4 - X 

 July 23, 2013 X X X X -4 - X 

 Aug 21,2013 -1 X -2 - -4 - - 
 Oct 23, 2013 X X X X -4 X X 

 Nov 26, 2013 X X X - -4 - X 
 Mar 19, 2014 X X X X -4 X X 

 Apr 30, 2014 X X X X -4 X X 
1 Secchi visible on bottom. 2 Not measured due to low water. 3 Not recorded. . 4 Analytical error.  
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and Reservoirs Laboratory.  Subsamples collected on five of the seven dates were preserved with Lugol’s 

solution (Wetzel and Likens 2000) and submitted to Aquatic Analysts Inc. in Friday Harbor, Washington 

for phytoplankton enumeration and biovolume estimation.   

Zooplankton were collected using a 20 cm diameter opening, 64 μm mesh plankton net, rinsed into 

HDPE bottles, and preserved with ethanol to 30% final concentration.  Multiple vertical net tows were 

collected from the deepest spot in Pond 1 on each date and composited into a single sample.  The 

number of tows per sampling event was dependent on the amount of material collected with each tow.  

Because the remaining three ponds were shallow, tows were collected by tossing and retrieving the net 

horizontally for several meters.  Zooplankton samples were not collected from the three shallow ponds 

when the ponds were dry or aquatic plants were growing throughout the water column.  Samples were 

submitted to ZPs Taxonomic Service in Olympia, Washington for identification and enumeration. 

Benthic samples were collected from five sites within each pond during each of the four summer and fall 

sampling events.  Sediment samples were collected using a petit ponar dredge, placed on a course sieve 

(approximately 300 μm mesh size), and rinsed to remove small material.  The remaining material was 

inspected for snails, clams and any other organisms suspected to be non-native.  Representative 

specimens were preserved in 95% ethanol and identified at the Center for Lakes and Reservoirs 

Laboratory according to Martinson et al. (2009), Merritt et al. (2009), Thorp and Covich (2009), and Kipp 

et al. (2014). 

4.3 RESULTS 

4.3.1 Nutrient concentrations 

The plant nutrients phosphorus (P) and nitrogen (N) are the primary chemical constituents that are in 

short enough supply in relation to other chemical requirement for growth to limit algal growth.   Unless 

algal growth is limited by other factors such as light availability, excess amounts of nutrients can lead to 

vigorous growth of plants and algae and associated water quality problems such as high pH or toxin 

producing algal species.  Decomposition of all of this plant and algal growth can lead to other problems 

such as low dissolved oxygen concentrations.  

Phosphorus and nitrogen are present in a water body in many forms including phosphate, nitrate, 

nitrite, and ammonia.  These bio-available forms of dissolved N and P are ready for algae to take up and 

use for growth, and thus are generally present at low concentrations - unless algal nutrient uptake 

cannot outpace dissolved nutrient supply.  The sum of N and P locked up algal biomass, N and P 

complexed with organic and inorganic compounds in the water, and the dissolved forms noted above 

constitute total phosphorus (TP) and total nitrogen (TN).  The concentration of TP in the surface waters 

can be used as a measure of the trophic status of a water body (Carlson 1977).  The relative 

concentrations of TN to TP can influence the species of algae that are likely to thrive in a water body.  

For example, cyanobacteria are less likely to dominate an algal assemblage with high TN:TP ratios (Smith 

1983, Nõges et al. 2008). 

Ortho-phosphorus concentrations in Pond 1 were below or at the method detection limit during all 

sampling events except for the March 2014 event (Figure 10).  The low concentrations indicate that P 

was in high demand relative to supply in Pond 1 during the survey period.  Concentrations in Ponds 2-4 

were considerably higher than in Pond 1.  Ammonia concentrations in Pond 1 were at or below method 
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detection limits throughout the survey period.  Concentrations were also low in the other three ponds 

for most of the time period, but substantially higher during the late fall and winter sampling events.  

Nitrate plus nitrite concentrations follow a similar pattern in the other ponds.  Unlike ammonia 

concentrations, nitrate plus nitrite concentrations in Pond 1 were very high during the March 2014 

event.  Altogether, low concentrations of bioavailable forms of N and P in Pond 1 indicate that algal 

growth is limited by N and/or P.  Higher concentrations of bioavailable P in the other ponds indicate that 

P does not limit algal growth in these ponds.  Low concentrations of bioavailable N in Ponds 2-4, on the 

other hand, indicate that these system were N limited during the spring through early fall. 

 
Figure 10.  Seasonal variation of total and dissolved nutrient concentrations in Yoncalla Ponds 1-4.  
Dashed lines indicate method detection limits. 
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Average TP concentrations in the ponds ranged from 0.034 mg/L in Pond 1 to 0.046 mg/L to Pond 3 

(Table 7) and were generally higher during the summer than winter (Figure 10).  Waterbodies with TP 

concentrations between 0.024 and 0.027 mg/L are classified as eutrophic (Carlson 1977).  Nitrogen to 

phosphorus ratios in all ponds during the spring through fall were less than 30:1 (Figure 10), which 

suggests that cyanobacteria may dominate the algal assemblage.   

4.3.2 Stratification, dissolved oxygen, and pH dynamics 

Thermal stratification is a physical property of a water body in which warmer, less dense water floats on 

top of colder, denser water.  A water body with a 1° C decrease in temperature over a 1 m change in 

depth is considered stratified (Kalff 2001).  During stratification, the mixing of dissolved oxygen and 

other chemicals between the layers is restricted.  If the processes that consume oxygen (respiration) 

outpace the processes that produce oxygen (photosynthesis), oxygen concentrations in the bottom layer 

will decrease.  If stratification is persistent, anoxic conditions can result leading to phosphorus release 

from bottom sediments and loss of habitat for aquatic organisms.   

Thermal stratification was evident in Pond 1 during all sampling events except for the October 2013 and 

March 2014 event (Figure 11).  Stratification was particularly strong with as much as a 3° C difference in 

temperature over a 0.5 m depth increment.  Two factors contributed to the strong stratification in Pond 

Table 7.  Summary of chemical conditions in Yoncalla Ponds 1-4. 
Parameter (units) Site Mean ±  s.d. Range # samples 

Total nitrogen (mg/l) Pond 1 0.38 ± 0.10 0.24 - 0.49 7 

 Pond 2 0.50 ± 0.08 0.40 - 0.61 7 

 Pond 3 0.85 ± 0.41 0.48 - 1.51 6 

 Pond 4 0.80 ± 0.45 0.48 - 1.71 6 

Total phosphorus (mg/l) Pond 1 0.034 ± 0.015 0.016 - 0.058 7 

 Pond 2 0.035 ± 0.011 0.020 - 0.049 7 

 Pond 3 0.046 ± 0.026 0.019 - 0.077 6 

 Pond 4 0.038 ± 0.012 0.026 - 0.060 6 

Soluble reactive phosphorus (mg/l) Pond 1 0.001 ± 0.001 0.000 - 0.003 7 

 Pond 2 0.006 ± 0.004 0.001 - 0.012 7 

 Pond 3 0.004 ± 0.002 0.002 - 0.007 6 

 Pond 4 0.003 ± 0.001 0.001 - 0.004 6 

Ammonia-nitrogen (mg/l) Pond 1 0.008 ± 0.003 0.004 - 0.012 7 

 Pond 2 0.032 ± 0.048 0.002 - 0.138 7 

 Pond 3 0.042 ± 0.069 0.007 - 0.181 6 

 Pond 4 0.045 ± 0.055 0.006 - 0.135 6 

Nitrate plus nitrite-nitrogen (mg/l) Pond 1 0.189 ± 0.498 0.000 - 1.319 7 

 Pond 2 0.190 ± 0.498 0.001 - 1.320 7 

 Pond 3 0.441 ± 0.680 0.001 - 1.321 6 

 Pond 4 0.441 ± 0.681 0.000 - 1.322 6 

Acid neutralizing capacity (mg/l as CaCO3) Pond 1 19.2 ± 2.5 16.7 - 22.4 5 

 Pond 2 34.9 ± 8.0 25.8 - 47.6 5 

 Pond 3 82.6 ± 27.3 55.8 - 112.4 4 

 Pond 4 72.4 ± 16.7 51.0 - 88.2 4 

Surface water conductivity (μS/cm) Pond 1 42 ± 4 38 - 47 7 

 Pond 2 77 ± 11 65 - 96 7 

 Pond 3 167 ± 54 101 - 250 6 

 Pond 4 159 ± 22 125 - 189 7 
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1.  First, coverage of much of the pond surface by the floating leaf plant Brasenia schreberi restricted 

wind induced mixing of the water column.  Second, the pond’s brown water in open water along with 

the plant coverage prevented solar heat from penetrating into the water very far.  The marked increase 

in specific conductance below 1.5 m indicates that stratification in the pond was persistent through the 

spring and summer.  The increase in specific conductance in the bottom of the pond was likely due to 

 
Figure 11.  In situ water quality profiles measured in Yoncalla Pond 1.  The dashed vertical lines 
represents the Oregon DEQ minimum criteria of 5.5 mg DO/L and pH 6.6. 
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ionic loading from the sediment and redox reactions under anoxic conditions that generate alkalinity 

(Talling 2009). 

Dissolved oxygen (DO) concentrations were extremely low throughout the water column of Pond 1 

during the summer sampling events and low in the lower portion of the water column the entire survey 

period (Figure 11).   Surface water concentrations were below than the Oregon Department of 

Environmental Quality’s criterion of 5.5 mg/L as an absolute minimum (Oregon Administrative Rules 

2007) during all but two of the sampling events. The pH values in Pond 1 were slightly acidic during the 

summer and fall to circumneutral during the winter and spring.  Highest values were observed during 

the March 2014 sampling event when floating leaf plant biomass was at its lowest point.  Values during 

the summer and fall were below the DEQ criteria of pH 6.5 (Oregon Administrative Rules 2003).  The 

most acidic values were observed during the summer sampling events when floating leaf plants covered 

nearly the entire pond. 

As was the case with temperature profiles in Pond 1, the coverage of the pond by B. schreberi had a 

large effect on DO concentrations and pH values.  Dense coverage of floating leaves restricts the 

exchange of oxygen and carbon dioxide between the water column and the atmosphere.  In addition, 

the plant coverage blocks light from reaching into the water column.  The effect of these factors on the 

water column is low photosynthesis using pCO2 and producing DO due to a lack of light; continued 

respiration producing pCO2 and consuming dissolved oxygen; and limited exchange of DO and pCO2 with 

the atmosphere.  The net effect is a decline in dissolved oxygen and a build-up of pCO2, with the 

increase in pCO2 causing a decrease in pH.  

In productive ponds, the daily light-dark cycle can result in a measureable daily pattern in DO and pH 

due to a change in the balance between photosynthesis and respiration.  However, because floating leaf 

plants exchange CO2 and O2 directly with the atmosphere rather than through the water column, the 

daily cycle of DO and pH in the water may not be measurable.  No daily patterns were evident in the pH 

and DO data logged at set intervals over each one to three-day sampling event (Figure 12).  Since 

vertical stratification of DO and pH in the pond is so pronounced, the small magnitude variations in pH 

and DO shown in the plots may be due to increases in wind causing slight mixing of the water column. 

Instrument drift was present during several of the sampling events. 

Since the aquatic vegetation of Ponds 2, 3, and 4 was dominated by submerged vegetation (SAV) rather 

than floating leaf vegetation, DO concentrations and pH values behaved in a completely different 

manner than in Pond 1 (Figure 13).  While photosynthesizing, SAV obtains pCO2 from, and releases DO to 

the water column rather than directly to the atmosphere through floating leaves.  This resulted in much 

higher DO concentrations in the SAV dominated ponds.  DO concentrations during the summer reached 

almost 250% of what would be expected when at equilibrium with the atmosphere.  The consumption of 

pCO2 from the water column raised the pH of the ponds to near pH 10 during the summer sampling 

events. 
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Figure 12. Variation in dissolved oxygen and pH at Yoncalla Pond 1 within each one- to three-day 
sampling event.  pH values for the last four sampling events were not presented since their accuracy  
did not meet quality assurance targets.  
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4.3.3 Phytoplankton and trophic state 

Phytoplankton are the photosynthetic organisms present within the water column of a waterbody.  The 

diversity of phytoplankton species is very high and consist of several groups of eukaryotic algae as well 

as photosynthetic bacteria, also known as cyanobacteria or blue-green algae.  The amount and types of 

phytoplankton in a water body are fundamentally important components of water quality.  Surrogate 

measures for the amount of phytoplankton in a water body, e.g. Secchi transparency and chlorophyll-a 

(Carlson 1977) as well as direct measures of phytoplankton biovolume (Sweet 1986) are used as a 

measure of the trophic status or productivity of a water body.  Some species of cyanobacteria are 

capable of producing toxins that can harm human and animal health.  Since some phytoplankton species 

tend to be more prevalent in certain environmental niches, the phytoplankton community composition 

can tell us about the environment they are growing in.  For example, some cyanobacteria species prefer 

warmer, nutrient rich water. 

Phytoplankton biovolume in Ponds 1 and 2 tended to be much lower than in Ponds 3 and 4 (Figure 14).  

A similar pattern is present in the Secchi transparency measurements with Pond 1 showing better clarity 

than Ponds 3 and 4.  Secchi transparency was not measured in Pond 2 because the Secchi disk was 

visible to the bottom of the pond on all sampling dates.  The results for the other measure of algal 

biomass, chlorophyll-a, are not presented due to analytical problems in the CLR laboratory. 

 
Figure 13. Surface water measurements in Pond 1 (solid circles) Pond 2 (open circles), Pond 3 (X’s) 
and Pond 4 (squares). 
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Comparisons of trophic status estimates calculated from phytoplankton biovolume and total 

phosphorus concentrations indicate that biovolume in all ponds was lower than would be expected from 

the phosphorus concentrations (Figure 15).  Biovolume trophic state indices (TSI’s) suggest that all 

ponds are oligotrophic, while total phosphorus and Secchi transparency TSI’s suggest meso- to eutrophic 

conditions.  In Ponds 3 and 4 this discrepancy can be explained by two factors: 1) light limitation of algal 

growth due to high inorganic turbidity in the ponds, or 2) unavailability of a portion of the phosphorus 

due to the binding with inorganic turbidity particles.  In Pond 1, algal growth may be light limited due to 

the brown humic color, phosphorus bound to humic materials, or nitrogen availability.    

Phytoplankton species diversity over the entire survey period was much higher in Ponds 2-4 than in 

Pond 1 (Table 8).  The difference in diversity is due to the higher numbers of Bacillariophyta (diatoms) 

and Chlorophyta (green algae) species in Ponds 2-4.  Algal biovolume in Pond 1 was dominated by two 

species: the cryptomonad species Cryptomonas erosa and the euglenoid species Trachelomonas 

volvocina (Table 9).  Cryptomonads are typical of small, nutrient enriched lakes and can handle low light 

condition like is found in Pond 1 (Reynolds 2006).  Euglenoid species such as the benthic species T. 

volvocina are typical of small organic rich ponds and can tolerate low dissolved oxygen (Reynolds 2006). 

Cryptomonads and euglenoids were also important in Ponds 2-4; however, other species such diatoms 

and green algae contributed substantially to total algal biovolume.  Many of these species were benthic 

species entrained into the water column, including the filamentous green algae Spriogyra sp. and many 

benthic diatoms.  During the July 2013 sampling event total biovolume in Pond 3 was dominated by two 

nitrogen fixing benthic diatoms: Rhopalodia gibba and 

Epithemia turgida (Prechtl 2004) which suggests that 

available nitrogen was in low supply.  Very low 

biovolumes of two cyanobacteria genera were detected 

in Ponds 1-3.  Anabaena flos-aquae and Anabaena sp. 

were detected in Pond 3.  Anabaena sp. are capable of 

producing the cyanotoxins anatoxin-a, microcystin, and 

saxtoxin (Chorus and Bartram 1999).  Oscillatoria 

limosa, O. limnetica, and O. sp. which are capable of 

producing anatoxin-a and microcystin were detected in 

Pond 1.   

  
Figure 14.  Algal biovolume (left) and Secchi transparency (right) in the Yoncalla Ponds.  Biovolume of 
Pond 3 on July 23, 2013 was off scale at 2.6E+6 μm3/ml.  
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Table 8. Number of algal species detected 
in Ponds 1-4 by taxonomic group. 

 Pond 

Group 1 2 3 4 

Bacillariophyta 3 17 45 27 

Chlorophyta 3 15 7 5 

Chyrsophyta 4 5 6 3 

Cryptophyta 2 3 2 2 

Cyanophyta 2 2 2 0 

Euglenophyta 2 3 2 3 

Total # spp. 17 47 67 44 
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Figure 15.  Trophic state indices of Ponds 1-4 calculated from algal biovolume 
(circles), Secchi (dashes) and TP (crosses). 
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Table 9.  Dominant algal species (> 10% of total sample biovolume) in Yoncalla Ponds 1-4. 
Site Sample Date Species name Division % of total biovolume 

 Pond 1 6/28/2013 Cryptomonas erosa Cryptophyta 51 
  Chlamydomonas sp. Chlorophyta 30 
  Trachelomonas volvocina Euglenophyta 19 

  7/23/2013 Cryptomonas erosa Cryptophyta 63 
   Trachelomonas volvocina Euglenophyta 16 

 10/22/2013 Trachelomonas volvocina Euglenophyta 68 
   Cryptomonas erosa Cryptophyta 26 

  3/19/2014 Cryptomonas erosa Cryptophyta 59 
   Trachelomonas volvocina Euglenophyta 19 

  4/30/2014 Dinobryon sertularia Chrysophyta 66 
  Trachelomonas volvocina Euglenophyta 10 

 Pond 2 6/27/2013 Cryptomonas erosa Cryptophyta 65 
   Chlamydomonas sp. Chlorophyta 13 

  7/23/2013 Spirogyra sp. Chlorophyta 34 
   Glenodinium sp. Pyrrophyta 24 
   Staurastrum gracile Chlorophyta 12 
  Oscillatoria limosa Cyanophyta 11 

 10/23/2013 Trachelomonas volvocina Euglenophyta 40 
  Trachelomonas hispida Euglenophyta 18 
  Cryptomonas erosa Cryptophyta 10 

  3/19/2014 Cryptomonas erosa Cryptophyta 78 

  4/30/2014 Trachelomonas robusta Euglenophyta 24 
  Chlamydomonas sp. Chlorophyta 18 
  Fragilaria construens venter Bacillariophyta 17 
   Gomphonema subclavatum Bacillariophyta 14 

Pond 3 6/27/2013 Euglena sp. Euglenophyta 25 
   Cryptomonas erosa Cryptophyta 17 

  7/23/2013 Rhopalodia gibba Bacillariophyta 57 
   Epithemia turgida Bacillariophyta 14 

  10/23/2013 Cryptomonas erosa Cryptophyta 39 
   Euglena sp. Euglenophyta 14 
   Mallomonas sp. Chrysophyta 12 

  3/19/2014 Cryptomonas erosa Cryptophyta 29 
   Synedra radians Bacillariophyta 22 

 4/30/2014 Spirogyra sp. Chlorophyta 94 

 Pond 4 6/28/2013 Ceratium hirundinella Pyrrophyta 52 
   Cryptomonas erosa Cryptophyta 27 

  7/23/2013 Chlamydomonas sp. Chlorophyta 40 
   Cosmarium sp. Chlorophyta 20 
   Trachelomonas volvocina Euglenophyta 18 

  10/23/2013 Dinobryon sertularia Chrysophyta 55 
   Chlamydomonas sp. Chlorophyta 24 
   Cryptomonas erosa Cryptophyta 11 

  3/19/2014 Cryptomonas erosa Cryptophyta 76 

  4/30/2014 Cryptomonas erosa Cryptophyta 64 
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4.3.4 Zooplankton community 

Zooplankton are important components of the food chain in lakes and ponds.  Feeding by zooplankton 

on algae can structure the algal community.  Some species are especially efficient algal grazers which 

can lead to increased water clarity.  Zooplankton are also an important components of fish diets, 

particularly the diets of young fish.   

Zooplankton densities in Pond 1 decreased over the course of the summer and increased through the 

spring (Figure 16).  Zooplankton densities in Pond 3 were lower than the other ponds.  Eleven 

cladoceran zooplankton species were found in the ponds (Table 10).  Six of the species were found in all 

four ponds.  Bosmina longirostris, a species common in open water and in littoral areas, was, on 

average, the most abundant species in Ponds 1, 2, and 4.  Daphnia rosea was the most abundant species 

in Pond 3.  Four copepod species were detected in the ponds.  The most commonly encountered 

species, Diacyclops thomasi, is a common copepod species  throughout the United States (Hudson and 

Lesko 2003).  Numerous rotifer species were found in the ponds, particularly Pond 1.  Rotifers are 

smaller zooplankton that consume algae and bacteria are a food source for larger zooplankton.  Other 

zooplankton or zoobenthos found in the ponds included midge larvae (Chaoborus sp. and 

Chironomidae), ostracods (Cypridopsis vidua), worms (Oligochaeta) and freshwater polyps (Hydra sp.).  

Most of the zooplankton species encountered are associated with littoral habitats.   

 

 

 
Figure 16.  Zooplankton density by major taxonomic group 
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Table 10. Zooplankton species detected in Yoncalla Ponds.  Densities are average values across all 
sampling dates for each pond.   

  Average zooplankton density (no/m3) 

Group Species Pond 1 Pond 2 Pond 3 Pond 4 

Copepoda Diacyclops thomasi 1623 11137 3850 12046 

 Microcyclops varicans 1844 1070 204  

 Skistodiaptomus oregonensis 170 4380  340 

 Macrocyclops albidus   16 2716 

 Harpacticoids   6  

Cladocera Bosmina longirostris 54877 100750 187 18286 

 Ceriodaphnia dubia 9708 59588 70 255 

 Daphnia rosea 866 54291 1536 10092 

 Daphnia mendotae 1222 9167 366 1641 

 Chydorus sphaericus 233 917 1210 788 

 Alona costata 407 509 35 113 

 Simocephalus serrulatus 170 68 48  

 Pleuroxus aduncus 11  48  

 Diaphanosoma brachyurum  509   

 Eurycercus lamellatus   99 170 

 Macrothrix laticornis   16  

Rotifera Polyarthra vulgaris 27639 4516 225 4312 

 Conochilus unicornis 23428 509.3   

 Polyarthra major 11453 2547 12.7  

 Kellicottia bostonensis 9086 2037   

 Synchaeta sp. 4584 10390 226 747 

 Platyias  patulus 1324 204 6  

 bdelloid rotifer 1192  11  

 Keratella cochlearis 582    

 Collotheca pelagica 509    

 Ploesoma truncatum 509    

 Trichocerca cylindrica 509    

 Trichocerca elongata 407  6  

 Monostyla closterocerca 407    

 Filinia terminalis 170  6  

 Hexarthra mira 21    

 Keratella irregularis  23733 204 14696 

 Asplanchna priodonta  102   

 Trichotria tetractis   143  

 Platyias quadricornis   6  

 Monostyla bulla    736 

Other Difflugia sp.1 350 3871 430 12291 

 Difflugia sp.2    679 

 Difflugia sp.3 413 306 19 57 

 Chaoborus sp. 376    

 Chironomidae 69 34 27 815 

 Cypridopsis vidua 501 289 731 905 

 Hydra sp.   215 113 

 Nematoda   16  

 Oligochaeta   48 169.8 

 Hydrachnidae  34 16 340 
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4.3.5 Invasive animals  

Like invasive aquatic plant species, invasive aquatic animal species can cause environmental and 

economic harm, and can pose a threat to human health (Pimentel et al. 2005).  Zebra and quagga 

mussels (Dreissena polymorpha and D. rostiformis bugensis) are particularly notable examples of 

impactful invasive animal.   

Two non-native aquatic animals were found during the benthic surveys (Table 11).  A single Asian clam 

(Corbicula fluminea) shell was found in Pond 4.  Asian clams can displace native freshwater clams and 

can compete for benthic food resources with other species (Sousa et al. 2008).  The other non-native 

species detected, mosquitofish (Gambusia affinis), was common in Pond 4.  Mosquitofish are often used 

introduced into ponds since they are thought to control mosquito larvae populations, but can have a 

negative impact on other native invertebrates (Pyke 2008). 

One other clam species and at least five snail species were found in the ponds.  The snail species were 

identified to genus and the clam was identified to the family level.  Although we cannot be certain that 

these species are native, we did rule out the possibility that the species are known high impact non-

native species.  Several other types of animal species were collected during the benthic surveys 

including water beetles, leeches, and worms: none of which are known to be invasive species. 

Table 11.  Animal species detected in benthic sieve samples collected from Yoncalla Ponds. 

Group Common name 
Species or lowest 
taxonomic group Status Pond 1 Pond 2 Pond 3 Pond 4 

Molluscs Asian clam Corbicula fluminea Non-native    X 

 bladder snails Physella sp.   X X X 

 fingernail calms Sphaeriidae family  X X X X 

 pond snails Lymnaea sp.  X X   

 ramshorn snails Gyraulus sp.    X  

 ramshorn snails Menetus sp.   X X X 

 ramshorn snails Planorbella sp.   X X  

Fish mosquitofish Gambusia affinis Non-native    X 

Other crane flies Tipulidae family   X   

 leaf beetles Chrysomelidae family  X    

 predatory diving beetles Dytiscidae family  X    

 riffle beetles Stenelmis sp.  X    

 water boatmen Corixidae family    X  

 water mites Hydrachna sp.   X   

 leeches subclass Hirudinea  X    

 worms subclass Oligochaeta  X  X  
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