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Abstract Increasingly, natural resource management
agencies and nongovernmental organizations are shar-
ing monitoring data across geographic and jurisdictional
boundaries. Doing so improves their abilities to assess
local-, regional-, and landscape-level environmental
conditions, particularly status and trends, and to im-
prove their ability to make short- and long-term man-
agement decisions. Status monitoring assesses the

current condition of a population or environmental con-
dition across an area. Monitoring for trends aims at
monitoring changes in populations or environmental
condition through time. We wrote this paper to inform
agency and nongovernmental organization managers,
analysts, and consultants regarding the kinds of envi-
ronmental data that can be combined with suitable tech-
niques and statistically aggregated for new assessments.
By doing so, they can increase the (1) use of available
data and (2) the validity and reliability of the assess-
ments. Increased awareness of the difficulties inherent in
combining and aggregating data for local- and regional-
level analyses can increase the likelihood that future
monitoring efforts will be modified and/or planned to
accommodate data from multiple sources.

Keywords Data aggregation . Lurking variable .

Simpson’s paradox .Modifiable areal unit problem .

Change of support problem . Environmental monitoring

Introduction

Status and trend monitoring is often conducted by nat-
ural resource and land management agencies and orga-
nizations. Status monitoring characterizes the current
condition of a species or an environmental condition,
whereas trend monitoring aims to assess changes in a
species or condition over time (Roni 2005; Olsen and
Peck 2008). Natural resource managers, policy makers,
and scientists may also pool monitoring data across
geographic and jurisdictional boundaries to increase
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the cost-effectiveness of environmental assessments and
to help inform management decisions at ecologically
relevant scales. However, environmental data are fre-
quently collected in localized or spatially discontinuous
patterns or gathered in surveys targeted at a limited set of
objectives and cover only a portion of the region or
population of interest. Inevitably, new questions arise
and it becomes expedient to combine datasets that con-
tain different variables or to assemble data from spatially
disconnected studies to address more regionalized ques-
tions. In the Pacific Northwest of the USA, several
organizations are creating standardized field protocols
and centralized databases to increase the capacity of
management agencies and nongovernmental organiza-
tions to share and integrate data into regional status and
trend assessments (e.g., Northwest Environmental Data
Network 2005; Mulvey et al. 2009; Pacific Northwest
Aquatic Monitoring Partnership 2014; StreamNet
2014). Combining shared data creates challenges that
need to be carefully considered and addressed to pro-
duce meaningful and valid assessments.

In 1997, the State of Oregon established the
Independent Multidisciplinary Science Team (IMST)
to provide independent, rigorous scientific review of
the Oregon Plan for Salmon and Watersheds (Oregon
Plan 1997) and other issues related to the management
of Oregon’s native fish and watersheds (Oregon Revised
Statute 541.914). Over the following 18 years, the IMST
reviewed multiple salmonid conservation and recovery
plans, revised water quality standards, habitat conserva-
tion plans and environmental impact statements, and
monitoring programs (http://www.fsl.orst.edu/imst/
index.html). In the course of those reviews, the IMST
identified several areas where state and federal agencies
could better integrate monitoring programs, share data,
and increase their capacity to track environmental status
and trends at state and regional levels (e.g., IMST 2010,
2011a, b, 2013). Our goal for this paper is to inform
natural resource managers, analysts, and consultants
about the kinds of data that can be combined and
statistically aggregated for new assessments to increase
the use of available data and to increase the validity and
reliability of assessments. We do so in four sections.
First, we briefly review how objectives should be
defined and key statistical elements addressed before
any data are combined or aggregated. Second, we
describe potential issues that analysts may encounter
when combining datasets and basic techniques to
combine data from disparate sources. Third, we

discuss issues related to statistical aggregation
including potential consequences of improper
aggregation. Fourth, we recommend measures for
improving our capabilities to survey environmental
status and trends and give some current examples of
such survey programs for aquatic ecosystems. This
paper is not a comprehensive guide for combining,
analyzing, or interpreting data; rather, it should serve
as a starting point for thoughtful discussions and
considerations regarding survey planning and
procedures.

Objectives, target populations, and sampling frames

Any environmental assessment that is undertaken,
whether or not it includes combining data from disparate
sources, needs to have well articulated and achievable
objectives. This is a critical step, just as it is when a
monitoring program is created or revised. Similarly,
survey statisticians should be included in all phases of
assessment planning and analysis, including objective
development (Reynolds 2012). Objectives should spec-
ify the target population (and subpopulations if applica-
ble), spatial domain, time frame, population elements,
and sampling frame. The target population may be a
stream network, species, or forest type. Population ele-
ments make up the population (e.g., stream segment,
age class or cohort, watershed of a specific size). The
sampling frame specifies from where samples are to be
drawn from with respect to the target population, which
may or may not be the same as the target population.
The population elements and sampling frame determine
if a sample is part of the target population. The survey
design(s) used to sample the target population will de-
termine the basis from which conclusions or inferences
can be drawn and which techniques are appropriate for
combing datasets. Objectives should also specify the
attributes of concern, sampling protocol, and units of
measure for each variable (Hughes and Peck 2008) and,
for trends analysis, the type of change being
investigated.

Once the statistical population, sampling frame, and
objectives have been clearly articulated, there are sever-
al other issues related to using or combining data that
need to be considered. These issues include data credi-
bility and reliability (Evans et al. 2001; Canfield et al.
2002; Hanson 2006) and data inconsistencies over time,
and, among observers (Darwall and Dulvy 1996;
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Rieman et al. 1999), noncomparability of data (Boyce
et al. 2006; Roper et al. 2010), insufficient sample sizes
(Gouveia et al. 2004), differences in sampling effort
(Cao et al. 2002; Fayram et al. 2005; Smith and Jones
2008), data completeness (e.g., low sampling frequency
and short time-frames; Rieman et al. 1999; Gouveia
et al. 2004), and incomplete spatial and/or temporal
coverage of data (Goffredo et al. 2004; Smith and
Michels 2006). Identifying and resolving these issues
will be possible if detailed metadata records exist for all
datasets.

Potential issues encountered when combining
datasets

Four statistical issues may arise that the analyst should
be aware of when working with any environmental
dataset: pseudoreplication, spatial autocorrelation,
cross-scale correlation, and lurking variables. We de-
scribe these briefly below.

Generally, the more replicates used, the greater the
statistical precision of the resulting data analysis.
However, the lack of sample independence or the lack
of true replicates can lead to pseudoreplication, a com-
mon error associated with ecological studies (Hurlbert
1984; Heffner et al. 1996; Millar and Anderson 2004).
When samples are pseudoreplicated, such as those from
sites with naturally different ecological potentials or
those from sites whose locations may affect observa-
tions at other sites, the natural random variation exhib-
ited by a variable is not properly quantified (Millar and
Anderson 2004). Pseudoreplicated sample sizes appear
higher than they truly are, giving the illusion of greater
stat is t ical power than what actual ly exists .
Consequently, inferential statistics must be used with
great care because most tests are designed for samples
of independent observations. Inaccuracies are typically
manifested in biased standard errors that misrepresent
(typically by underestimating) the variation in the data
and artificially inflate the significance of statistical com-
parisons. This greatly increases the chance of reaching
conclusions of significance for phenomena that only
h a p p e n e d b y r a n d o m c h a n c e . W h e r e
psuedoreplication exists, it may be possible to use
a linear effects model to analyze the data by sepa-
rating the different sources of variability, which will
generate correct inferences from the data (Chaves
2010).

Spatial autocorrelation occurs when measurements
taken at sites in close proximity exhibit values more
similar to one another than would be expected if varia-
tion was distributed randomly across space or through
time. In other words, the value of a measurement de-
pends on, or can be predicted from, values measured at
nearby sites, which often may be the case in ecological
studies (e.g., Van Sickle and Hughes 2000; Herlihy et al.
2006; Pinto et al. 2009). Therefore, one cannot assume
that samples are independent (Bataineh et al. 2006).
Spatial autocorrelation can result from characteristics
inherent in a species’ growth or ecology (e.g., clonal
growth, conspecific attraction), its distribution (e.g.,
Ficetola et al. 2012), or other external factors (e.g., the
tendency for some environmental disturbances to be
correlated with vegetation patterns; Lichstein et al.
2002). Fortin et al. (1989) and Lichstein et al. (2002)
described methods for identifying and overcoming
spatial autocorrelation in ecological analyses, and
Dormann et al. (2007) provided methods to address
spatial autocorrelation in species distribution.

Cross-scale correlation (i.e., correlations between
habitat variables measured at different spatial scales)
has been documented by researchers pursuing
multiscale habitat relationship studies (Battin and
Lawler 2006; Kautza and Sullivan 2012; Marzin et al.
2013). Where cross-scale correlations exist, erroneous
conclusions may be drawn about the strength of rela-
tionships among predictor and response variables mea-
sured at a particular spatial scale (Battin and Lawler
2006; Lawler and Edwards 2006). For example,
Marzin et al. (2013) reported that fish and macroinver-
tebrate assemblages were related to poor water quality
and impoundment at the stream reach scale, but at the
catchment scale, assemblages were related to a gradient
from forest to agricultural covers. Battin and Lawler
(2006) reviewed statistical techniques for detecting
cross-scale correlations among variables measured
at different spatial scales. Lawler and Edwards
(2006) demonstrated how variance decomposition
(Whittaker 1984) can be used as a diagnostic tool
for revealing the amount of variation in a variable
of interest explained by habitat variables measured
at different spatial scales. Several studies have
shown how site- and catchment-scale predictor var-
iables, as well as their shared variance, explain
differing amounts of biological response variables
(e.g., Sály et al. 2011; Marzin et al. 2013; Macedo
et al. 2014).
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Lastly, the association between two or more variables
can be induced, masked, or modified by the presence of
an unknown or lurking variable (Sandel and Smith
2009). Spatial pattern, spatial scale, historic human in-
terventions, and abiotic conditions can be common
lurking variables that account for variation in environ-
mental and ecological data. In aquatic assemblage data,
the size of the water body and geographic location from
which samples are drawn can have enormous implica-
tions for results (Hughes and Peck 2008), but calibration
techniques are available (e.g., McGarvey and Hughes
2008; Pont et al. 2009; Terra et al. 2013b). Historical
human interventions (e.g., removal of native vegetation,
imposition of road networks, channelization, mines,
dams) can create long-lasting legacies that affect the
present conditions of stream geomorphology, water
quality, and aquatic habitat (Frissell and Bayles 1996;
Harding et al. 1998; Walter and Merritts 2008; Brown
et al. 2009). Year-to-year and seasonal variability may
also confound aggregation results. If not adequately
accounted for in sampling designs and analyses, a
lurking variable can be problematic when assessing the
effects of management actions on environmental
conditions.

Methods available to combine data from multiple
sources

Because the statistical methods needed to combine en-
vironmental information from different sources will re-
quire case-specific formulations (Cox and Piegorsch
1994), this section should not be viewed as an all-
inclusive guide to techniques but rather an illustration
of approaches that can be used. Olsen et al. (1999)
cautioned that if studies were designed without the
anticipation of combining additional data, some of these
techniques might not be feasible. To successfully merge
datasets and identify possible data incompatibilities, it
essential that all datasets include comprehensive and up-
to-date metadata records for sampling locations and
protocols (Boyce et al. 2006). Rigorous metadata docu-
mentation includes descriptions of the data, sampling
design and data collection protocols, quality control
procedures, preliminary data processing used (e.g., de-
rivatives or extrapolations, estimation procedures), pro-
fessional judgment used, and any known anomalies or
oddities of the data (National Research Council 1995;
Pont et al. 2006; Hughes and Peck 2008).

Combining data from different probability-based
sampling designs

Combining data from different studies is most straight
forward if the sampling designs are probability-based
(Olsen et al. 1999). Most long-term natural resource and
environmental surveys use probability-based or proba-
bilistic survey sampling designs such as simple random,
systematic, stratified, and cluster designs. In recent
years, the spatially balanced generalized random tessel-
lation stratified (GRTS) design (Stevens and Olsen
2004; Olsen et al. 2012) has been developed and imple-
mented by several resource agencies (e.g., US
Environmental Protection Agency (USEPA), Oregon
Department of Fish and Wildlife, Bonneville Power
Administration). McDonald (2012) recommends using
the GRTS design for large-scale and long-term ecolog-
ical programs because of the design’s flexibility and
broad spatial coverage. Probabilistic survey designs
have the characteristic that every element in the popu-
lation has a known and positive (i.e., >0) probability of
being chosen; consequently, unbiased estimates of pop-
ulation parameters that are linear functions of the obser-
vations (e.g., population means) can be constructed
from the data.

To be combined, datasets must have variables in
common (or variables that can be transformed to
achieve commonality) and must be capable of being
restructured as a single probabilistic sample (Larsen
et al. 2007). Cox and Piegorsch (1994, 1996) described
three methods for combining data from two or more
probabilistic surveys. The first combines weighted esti-
mates from separate probability samples. The estimates
for the parameter of interest and its variance are com-
puted for each sample; then, each estimate is weighted
inversely proportional to its estimated variance, and
then, the weighted estimates are added resulting in a
design-based unbiased minimum variance combined
estimate (Cox and Piegorsch 1994, 1996). A second
method is based on post-stratification (Cox and
Piegorsch 1996; Olsen et al. 1999). Strata are defined
by using shared frame attributes or subsamples that
partition the two probabilistic samples. Both samples
are post-stratified by revising sample unit weights pro-
portional to the new stratum size. Revised estimates are
then computed for the parameter(s) of interest. Cox and
Piegorsch (1996) indicated that dual-frame estimation
could be used to combine the estimates or to estimate a
nonframe variable or an index based on frame variables.
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In the third method, two probabilistic samples are di-
rectly combined into one sample. The probabilities of
each sampling unit’s inclusion in the combined sample
are computed from their first- and second-order inclu-
sion probabilities in the original samples (Cox and
Piegorsch 1996).

Using some elements from methods described by
Cox and Piegorsch (1996), Larsen et al. (2007) com-
bined stream monitoring data from two probability sur-
veys implemented in Oregon to demonstrate how sur-
vey design principles can facilitate data aggregation.
The data were from the Oregon Department of Fish
and Wildlife’s integrated aquatic monitoring program
(i.e., salmonid populations, stream habitats, water
quality and aquatic biotic assemblages; Nicholas 1997)
and the US Forest Service’s Aquatic and Riparian
Effectiveness Monitoring Program, which was focused
on indices of watershed health (Reeves et al. 2004).
Even though these two efforts targeted questions at
different spatial scales and used different indicators,
the survey data could be combined into a single proba-
bilistic sample because sound survey design principles
were used and because the details of the survey frames
and sample selection methods were well documented.

Similarly, the Oregon Department of Environmental
Quality conducted a comprehensive assessment of water
quality and aquatic habitat in the Willamette River basin
by combining 450 randomly selected sites from nine
probability-based monitoring programs into a single
probabilistic assessment (Mulvey et al. 2009).
Although the sampling frames were different for each
monitoring program, Mulvey et al. (2009) randomly
chose monitoring sites within the basin and assigned
differential site weighting factors to the data to address
potential sources of bias in randomness. Combining the
datasets was possible because the various programs all
used the USEPA’s Environmental Monitoring and
Assessment Program’s field sampling methods
(Stoddard et al. 2005).

It is also possible to build future data integration into
monitoring designs. For example, Larsen et al. (2008)
used a GRTS-based Bmaster sample^ approach for
stream networks in Oregon and Washington. This
scheme establishes a framework of potential sampling
sites (points, linear networks, or polygons) that can be
sampled at a variety of spatial scales, in such a way that
spatial balance relative to the resource or feature under
consideration is maintained, and the advantages of a
probability-based design are retained as successive

samples are drawn (Stevens and Olsen 2004). The
Oregon Master Sample is being used in select
watersheds and consists of almost 180,000 stream
sites. The Washington State Department of Ecology
(2006) also adopted the master sample concept for use
in stream sampling by several different state agencies as
part of its status and trend monitoring. More widespread
use of the master sample concept could, when applied
and managed correctly, significantly strengthen the sta-
tistical rigor of regional assessments using data from
multiple monitoring programs.

Combining data from probability-based
and nonprobability-based sampling designs

Environmental monitoring programs may acquire data
derived from both probabilistic and nonprobability-
based (sometimes called ad hoc, convenient, opportu-
nistic, or targeted) sampling methods; for example, a
water quality program may include stations randomly
placed to monitor ambient conditions and nonrandom
sites to monitor point source pollutants (e.g., Stein and
Bernstein 2008). Nonprobability-based sampling selects
population elements subjectively, and unlike probabilis-
tic sampling, not every element of the population has a
known and positive probability of being chosen.
Nonprobability-based data may not be representative
of the population of interest, and there is no ability to
quantify that uncertainty. Inferences to the population
are possible by using statistical models if the available
data support the model used, so that unbiased estimates
of the model can be obtained.

Combining probabilistic data with nonprobability-
based data has significant limitations that must be fac-
tored into the analysis. In these situations, spatial and
temporal variation cannot be assumed to have been
factored into sampling in equivalent ways. The primary
problem is that quantitative estimates of variation and
uncertainty cannot be calculated from nonprobability-
based data, so the validity of the results cannot be
quantified. The nature and objectives of the final analy-
sis in which the data will be used will determine how
severe a problem this may be.

There are important caveats to address before any of
the methods presented in this section are used. The
samples used must be synoptic (i.e., sampled from the
entire population) or, at the very least, must lack any
evidence suggesting that data points were preferentially
selected. In addition, the interpretation of any variance
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estimate is open to question, and in some methods,
quantifying uncertainty is problematic.

Nonprobability data may be placed into a
probability-based sample context by simply treating
the nonprobability data as a simple random sample
(i.e., each sample has the same probability of being
chosen). While this solution is suboptimal in a rigorous
statistical sense, it allows the analyst to create a
Bpseudoprobability^ structure for the sample. To do
so, some information about the entire population must
be available, in addition to information from the sample.
If only the locations of the sample sites are known, there
is still some recourse. All environmental populations
have spatial structure because locations near one another
are subject to the same natural and anthropogenic
stressors and influences (i.e., they are statistically
autocorrelated). One approach to imputing a
pseudoprobability is simply to say that a sample site
represents all of those population elements closer to that
site than to any other sample site. The size (number,
length, area, or volume) of the total of those elements is
then used as a weight for that sample point. The
pseudoprobability approach was used in the following
methods proposed by Overton et al. (1993) and Brus
and de Gruijter (2003).

In this set of approaches, the first step is to choose
valid probabilistic samples and Bfound^ datasets. Found
sites are chosen from the overall nonprobability sample
that conforms to the probability sample characteristics
(Overton et al. 1993). One of two methods can be used
to determine similarity between probability and
nonprobability samples and to produce population esti-
mates: pseudorandom and stratified calibration (Fig. 1).
The pseudorandom approach is used when the variable
of interest from the found dataset was also measured in
the probability-based survey. If the variable of interest is
only known for the found data, then stratified calibration
is used.

The concept behind the pseudorandom approach is
closely related to the post-stratification technique (Fuller
2009) that is sometimes used to improve a poorly ran-
domized sample after the fact. To combine the samples,
the sampling frame attributes are used to classify the
probabilistic sample into homogeneous groups or sub-
populations (Overton et al. 1993). Found sites are then
assigned to the subpopulations. Pseudorandom samples
are defined by treating the nonrandom sample as if it
were a stratified random design with simple random

sampling within the strata. Population estimates can
then be calculated from the combined data.

The stratified calibration technique is used when the
desired population attribute was not measured in the
probability sample. The initial steps are the same as for
the pseudorandom approach described in the preceding
paragraph; similarity between the datasets is established,
the probability sample is stratified, subpopulations are
identified, found sites are assigned to the subpopula-
tions, and predictor equations for desired attributes are
developed for each subpopulation (Overton et al. 1993).
If two subpopulations have similar predictor relation-
ships, they are combined; if not, they are kept separate.
Some populations may not have corresponding found
data, so no predictor equation can be developed. The
desired attribute is then predicted for the probability
sample, and population estimates can be calculated.

Astin (2006) combined nonprobability-based data
with probabilistic data and census data to select and
calibrate water quality indicators in the Potomac River
basin. Data originated from Maryland, Virginia, and
Pennsylvania. Because each monitoring group used var-
iations of the USEPA’s rapid bioassessment protocols
for streams and rivers (Plafkin et al. 1989), an additive
or multimetric framework based on the protocols was
used to combine the data. Astin (2006) assumed that
repeat observations taken at fixed sites were indepen-
dent and that the sites were representative of the range of
conditions found in the basin.

With respect to these two approaches, Overton
et al. (1993) cautioned that there is an unprovable
assumption that the sites are representative because
found sites were not chosen randomly. Brus and de
Gruijter (2003) asserted that if one is not confident
in the representativeness of the found sites or one
does not want to make this assumption, then the
methods proposed by Overton et al. (1993) should
not be used. The approach of Brus and de Gruijter
maintains the assumption of representativeness, and
the validity of results from estimating means of the
nonprobability data is ensured by collecting and
combining additional data through probabilistic
sampling. The approach of Brus and de Gruijter
involves overlaying a grid onto the nonprobability
and randomly sampled data and calculating the
difference in the means by interpolation through
point kriging. The error in estimating the mean
for each nonprobability sample is calculated by
the difference of the true mean and the average of

278 Page 6 of 16 Environ Monit Assess (2015) 187: 278



the kriged values; this error is then used to
calculate measures of bias and variance. Brus and
de Gruijter (2003) consider the resulting estimators
to be fairly unbiased, even when the nonprobability
sample is very biased.

Finally, a preferable approach to combining data after
they are collected is to design a monitoring framework
that incorporates known and future probabilistic and
nonprobability sites from the beginning. Stein and
Bernstein (2008) demonstrated how to construct a hy-
brid sampling design to incorporate fixed targeted mon-
itoring sites to monitor discharge permit compliance and
fixed sites located at unique areas of interest with ran-
dom ambient water quality sites to better assess condi-
tions of the entire SanGabriel River watershed, CA. The
hybrid design resulted in a more complete assessment of

contamination impacts and patterns; then, either of the
two sampling designs could achieve alone.

Data aggregation

In statistics, data aggregation refers to data that have
been summarized to provide information at a broader
level than the sampling sites. The summary statistics can
then be used for further analyses. Fundamentally, the
statistical appropriateness of data aggregation is a func-
tion of the properties of the data as determined by the
underlying sampling design.

A problematic aspect of aggregation is that infer-
ences about relationships in the data can change as the
level of aggregation changes. The challenge for the

Fig. 1 A schematic of the Overton et al. (1993) process for combining nonprobability-based data with a probability-based dataset.
Reproduced with kind permission from Springer Science+Business Media
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analyst then becomes using inference procedures that
are relatively invariant to such changes or that vary in a
controllable and predictable way. Aggregation is most
straightforward with data that can be summarized with
totals or averages, for example, the total number of
salmon spawning in Oregon coastal streams. In this
case, aggregation can be as simple as summing fine-
scale data, perhaps using weights and confidence limits
that reflect the size of the spatial unit associated with the
fine-scale data relative to the size of the population.

Data collected within spatial domains can be highly
correlated because samples collected near or adjacent to
one another are typically more similar to one another
than samples taken further away. A continuous spatial
domain can be a conterminous area or region, for exam-
ple, a political jurisdiction (e.g., city, county, or state), a
natural feature (e.g., lake, estuary, watershed, ecotype),
or a management unit (e.g., a state forest, ranch, agri-
cultural field; Stehman and Overton 1996). Distorted
conclusions from aggregated spatial data can arise from
several sources, including the sampling designs them-
selves, alternative ways of combining the data, the pro-
cess by which data are spatially Bscaled^ up or down,
changing the geographical boundaries represented by
the data, and hidden influences in the environment that
are not taken into account in sampling. This section

briefly describes some of the problems, specifically
change of support problems, encountered when group-
ing spatial data (Table 1).

Change of support problem

The change of support problem (COSP) arises when
inferences are made from spatially transformed data;
i.e., observations are made at one spatial scale, but the
physical or environmental process of interest is operat-
ing at a different spatial scale (Gotway and Young 2002;
Table 2). Here, support refers to the geometric size (or
volume), shape, and spatial orientation of the area asso-
ciated with a measurement (Gotway and Young 2002;
Crawford and Young 2005). Aggregation changes the
underlying two- or three-dimensional space represented
by a variable, creating a new variable with different
spatial and statistical properties (Gotway and Young
2002; Crawford and Young 2005). In mineral surveys,
COSPs receive considerable attention in calculating
volumes of material over large areas from core samples.
Meteorological and snow pack data are also subject to
COSPs, where a continuum (for example, of tempera-
ture, precipitation, or snow water content) must be in-
ferred from point data. COSPs can be addressed and
various geostatistical solutions are available (e.g.,

Table 1 Common problems encountered when aggregating data

Problem encountered What it is Selected references

Change of support problem Occurs when observations are made on one spatial
scale but the process of interest is operating at
a different spatial scale. Can create inference
problems

Gotway and Young (2002); Crawford and
Young (2005)

Modifiable areal unit problem Occurs when changes in the size, configuration,
and number of groupings of data alter the
apparent relationships. May obscure actual
relationships

Openshaw and Taylor (1979); Openshaw
(1983); Jelinski and Wu (1996); Dark
and Bram (2007); Alexandridis et al.
(2010)

Ecological fallacy Occurs when the relationships between group
means is inferred to individuals, leading to false
conclusions about individuals

Johnson and Chess (2006)

Ecological correlation Correlations occur between group means as
opposed to individual means. Assuming that the
correlations at the group level are equal to those
at the individual level is incorrect

Robinson (1950); Clark and Avery (1976)

Simpson’s paradox Relationships between attributes appear to change
(or even reverse) depending on how a population
and its attributes are stratified. Occurs with
discrete data in descriptive statistical analyses

Wagner (1982); Cohen (1986); Thomas and
Parresol (1989); Piñeiro et al. (2006)

The modifiable areal unit problem and ecological fallacy are specific change of support problems. Ecological correlation and Simpson’s
paradox are specific types of ecological fallacies
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Gotway and Young 2002). Gelfand et al. (2001) were
able to address spatial and temporal aspects of COSPs
when they determined ozone levels over different areas
of Atlanta, GA. Ravines et al. (2008) also addressed
spatial and temporal aspects of COSPs in rainfall and
runoff data from the Rio Grande basin, Brazil. Specific
types of COSPs also exist including the modifiable areal
unit problem and ecological fallacy, discussed below.

Modifiable areal unit problem

In the absence of variability, the unit of aggregation has
no impact on the value of a quantity expressed as a per
unit value (e.g., velocity expressed as m/s, density as
g/m3, or species richness as number of species/km2).
The result is the same regardless of the size of the
measurement unit. However, real systems always have
some variation, so the result of aggregation can be
highly influenced by the measurement unit size and
the variation encompassed therein. Yule and Kendall
(1950) noted that correlations between variables mea-
sured on modifiable units such as field plots or geo-
graphical areas depend on the size of the unit in contrast
to variables measured on nonmodifiable units such as

persons, automobiles, or trees. Openshaw and Taylor
(1979) described this issue of variability in a geograph-
ical context as the modifiable areal unit problem
(MAUP). The MAUP is a specific type of COSP
(Crawford and Young 2005) and a potential source of
error that can affect analyses that aggregate spatial data;
that is, if relationships between variables change with
selection of different areal units, then the reliability of
the results decreases. For example, estimates of fish
species richness at sites vary with site size (Hughes
et al. 2002; Kanno et al. 2009; Terra et al. 2013a),
meaning that combining such estimates into regional
means will be more variable or will tend to underesti-
mate richness if site size is variable or small,
respectively.

The MAUP arises because spatial units are modifi-
able (in the sense that they can be aggregated to form
other units or change configuration) and are often arbi-
trarily determined (Jelinski and Wu 1996). There are
two components to the MAUP, the scale (aggregation)
effect, and the zonation (grouping) effect. The scale
effect describes the inconsistency of statistical results
from various levels of aggregation (Openshaw 1983;
Amrhein 1995; Wong 1996). Aggregation decreases
variances and smooths the resulting values such that
information is lost (Wong 1996). Smoothing applies to
all variables or attributes associated with spatial obser-
vations, but the amount varies with the level of aggre-
gation (Wong 1996). The zonation effect refers to the
variability of statistical values when areal units vary in
size and shape while the number of units remains the
same (Openshaw and Taylor 1979; Openshaw 1983;
Jelinski and Wu 1996; Wong 1996).

Svancara et al. (2002) examined how the
MAUP affected the statistical relationship between
elk (Cervus elaphus) recruitment and three inde-
pendent variables (forest productivity, the propor-
tion of nonbatholith land across the summer range,
and mature bull elk density) when game manage-
ment units were aggregated to three different
levels in three different configurations. Svancara
et al. (2002) found inconsistencies in variances,
correlation coefficients, regression parameters, and
regression model fit (coefficient of determination)
across aggregations. Differences were not only de-
pendent upon the unit configuration and level of
aggregation but on the variable of interest.

From a series of controlled statistical simulations,
Amrhein (1995) concluded that the effects of MAUP

Table 2 Examples of change of support problems

We observe
or analyze

But the nature of
the process is

Examples

Point Point Point kriging; prediction of
under-sampled variables

Area Point Ecological inference; quadrat
counts

Point Line Contouring

Point Area Use of areal centroids; spatial
smoothing; block kriging

Area Area Modifiable areal unit problem;
areal interpolation;
incompatible/misaligned
zones

Point Surface Trend surface analysis;
environmental monitoring;
exposure assessment

Area Surface Remote sensing;
multiresolution
images; image analysis

Support refers to the size, shape, and spatial orientation associated
with each data value. Table reproduced from Gotway and Young
(2002) with permission. Reprinted with permission from Taylor &
Francis Ltd. (http://www.tandf.co.usk/journals)
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on aggregation depend on the statistics calculated (e.g.,
means, variances, regression coefficients, or Pearson
correlation coefficients). Amrhein found that means
and variances were resistant to aggregation effects.
Regression coefficients and Pearson correlation statis-
tics exhibited dramatic aggregation effects. Based on
these simulations, Amrhein concluded that the MAUP
in spatial analysis does not appear to be as pervasive or
unpredictable as described in earlier literature, and ag-
gregation effects may bemore easily identified and dealt
with than once thought.

Ecological fallacy

Assuming what holds true for the group also holds true
for an individual is an inappropriate extrapolation or
ecological fallacy (Johnson and Chess 2006).
Ecological fallacy is comprised of aggregation bias
caused by the grouping of individuals and specification
bias caused by the differential distribution of confound-
ing variables created by grouping (Gotway and Young
2005). Aggregation and specification biases are analo-
gous to the scale and zoning effect in the MAUP
(Gotway and Young 2005). Similarly, what holds true
for a region does not necessarily hold for an area or site
within the region. For example, the relationship between
years of schooling and support of environmental issues
on a state-wide basis may be quite different from the
relationship between average years of schooling and
support of environmental issues on an individual basis.
Two types of ecological fallacy of concern for environ-
mental assessments are ecological correlation and
Simpson’s paradox.

Ecological correlation

Ecological correlation was originally used by sociolo-
gists to refer to correlations between variables that are
group means (e.g., the correlation between salmonid/
seafood consumption rates and per capita income) as
opposed to individuals. Clark and Avery (1976, p. 429)
stated that a significant Bdisadvantage of using aggre-
gate data is the inherent difficulty of making valid
multilevel inferences based on a single level of
analysis.^ Variables used in individual correlations
(such as weight, age, or length) are descriptive proper-
ties of individuals, while the statistical objects in an
ecological correlation are properties of groups (e.g.,
rates, percentages, or means; Robinson 1950).

Ecological correlations between aggregated individual
properties can therefore be misleading (Robinson 1950).
For example, Schooley (1994) found that black bear
(Ursus americanus) habitat selection varied by year
but was similar between two study areas in individual
years. However, when data from individual years were
aggregated, selection at the two sites appeared to differ.
In this case, the annual variation was lost in the aggre-
gation, leading to incorrect inferences about habitat
selection between the two sites.

Simpson’s paradox

Simpson’s paradox is an ecological fallacy in which the
apparent associations of variables seem to reverse when
they are grouped. It is often illustrated with contingency
tables reporting frequency data and marginal totals. It
occurs because there can be more than one way to
stratify the variables; for example, Pacific salmon counts
may be stratified by watershed or by hatchery versus
wild origin. When linear operators such as simple sum-
mations or means are used to examine the data, no
apparent distortions occur as a result of grouping; the
aggregate of mean values is the mean of aggregate
values. However, nonlinear operators, such as ratios or
rates, do not have this characteristic. The ratio of aggre-
gated values is mathematically and conceptually not the
same as the aggregated value of the ratios in the stratum
used for grouping, which makes a difference in the
outcome. Therefore, it is critical to determine the pa-
rameter of interest before the data are collected.

Several examples of Simpson’s paradox exist for
environmental data. In Thomas and Parresol (1989), a
previous analysis of loblolly pine (Pinus taeda) planta-
tions had shown that recent radial growth rates had
decreased when rates were compared diameter class by
diameter class, implying that the stand-level wood vol-
ume growth rates were declining. However, individual
tree growth rates did not typically show this trend. This
led Thomas and Parresol (1989) to weight diameter
class means by the number of trees in each class and
change the measure of growth to basal area growth.
They then found that overall growth rates were increas-
ing, not declining.

Allison and Goldberg (2002) also observed
Simpson’s paradox in a comparison of species-
level versus community- level responses to
arbuscular mycorrhizal fungi across a gradient of
phosphorus availability. Several individual species
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showed a declining response to the fungi as phos-
phorous increased, but when species were grouped
into communities, the relationship of declining re-
sponse to phosphorus weakened significantly.

Piñeiro et al. (2006) found Simpson’s paradox oc-
curred when the whole-soil C/N ratio decreased after
long-term grazing, but the C/N ratios of all soil organic
matter pools increased. They concluded that whole-soil
C/N ratios can erroneously assess the impact of distur-
bance on soil organic matter quality and estimation of
nitrogen mineralization rates.

Recommendations for, and examples of, improved
surveys of environmental status and trends

Our goal with this review has been to balance the
presentation of approaches to combine data from
multiple sources for regional environmental assess-
ments coupled with cautions about statistical com-
plexities of doing so. Heightened interest in evalu-
ating the success of policies for managing natural
resources and protecting the environment makes it
increasingly likely that disparate information will
be used in assessing status and trends of species
and ecosystems. We hope that by raising awareness
about the difficulties inherent in combining data
and aggregating data for local- and regional-level
analyses, it will increase the likelihood that future
monitoring efforts will be modified and/or planned
to accommodate data from multiple sources. We
remind analysts that the techniques that we de-
scribed in this paper (e.g., pseudorandom and strat-
ified calibration techniques) should be used as a
basis for statistical consultations because they may
require modifications before use. Each situation
will be unique, and the services of a statistician
with experience in data combining methods should
be obtained when planning data integration pro-
jects. We strongly encourage managers and moni-
toring practitioners to consult with applied statisti-
cians at all levels of environmental monitoring in-
cluding planning, implementation, and analysis.
This will help ensure that objectives are achievable,
the population(s) properly identified, sampling
schemes and protocols are rigorous, data are accu-
rate, and results are valid (Gitzen and Millspaugh
2012; Reynolds 2012). Finally, we encourage ana-
lysts to publish or, otherwise, make available their

detailed protocols for combining data and/or ad-
dressing COSPs. By doing so, more techniques
can be developed or modified to increase the use
of data from multiple sources.

Examples of current spatially extensive status and trend
monitoring programs for aquatic ecosystems

Because of the difficulties in combining and aggregating
existing and disparate data from multiple sources, sev-
eral agencies have developed their own status and trend
monitoring programs for aquatic ecosystems, but they
also use existing geographic data layers to help interpret
results. The USA states of California, Maryland,
Minnesota Ohio, and Oregon have implemented multi-
year monitoring programs that now include samples
from hundreds to thousands of sites for relating physical
and chemical habitat conditions to fish or macroinver-
tebrate assemblage condition (e.g., Yoder et al. 2005;
Mulvey et al. 2009; Anlauf et al. 2011; Stranko et al.
2012; MDNR 2014; May et al. 2015). Stanfield (2012)
reported on a cooperative fish and macroinvertebrate
monitoring program based on hundreds of sample sites
for Ontario, Canada, tributaries draining into Lake
Ontario. Thirteen institutions with responsibilities for
salmon and steelhead recovery in the lower Columbia
River Basin have initiated a project to improve moni-
toring by developing standardized sampling frames,
field methods, and data sharing protocols (Puls et al.
2014). Callisto et al. (2014) described a monitoring
program for streams and reservoirs of four hydropower
basins in southeastern Brazil in which they relate fish
and macroinvertebrate assemblage condition at hun-
dreds of sites to land use and physical and chemical
habitat condition. In the Pacific Northwest states of the
USA, the US Forest Service, US Bureau of Land
Management, and Bonneville Power Administration
are using such programs to relate status and trends in
stream physical habitat structure with macroinvertebrate
(e.g., Lanigan et al. 2012; Irvine et al. 2014) and fish
(CHaMP 2014) assemblage condition at hundreds of
sites. Australia has developed a Sustainable Rivers
Audit for monitoring river health biannually at hundreds
of sites in 23 catchments across five states (Davies et al.
2010). At a national scale, the USEPA has implemented
a status and trend ecological monitoring program for
lakes, reservoirs, streams, and rivers based on thousands
of sites (USEPA 2009, 2013; Kaufmann et al. 2014).
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The key challenges for such expansive and expensive
biological monitoring programs are data management,
creating reports that are understandable to the general
public, and maintaining funding levels. However, inad-
equate status and trend monitoring means that we are
ignorant of aquatic ecosystem condition and changes,
ignorant of the biological effects of anthropogenic pres-
sures and stressors, and ignorant of the biological effec-
tiveness of rehabilitation measures. Also, protecting
aquatic ecosystems costs much less than attempting to
rehabilitate them after they are degraded (e.g., Woody
et al. 2010; Hughes et al. 2014).
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