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Abstract 

Within undergraduate mathematics education, there are few validated 

instruments designed for large-scale usage. The Group Concept Inventory (GCI) 

was created as an instrument to evaluate student conceptions related to 

introductory group theory topics. The inventory was created in three phases: 

domain analysis, question creation, and field-testing. The domain analysis phase 

included using an expert protocol to arrive at the topics to be assessed, analyzing 

curriculum, and reviewing literature. From this analysis, items were created, 

evaluated, and field-tested. First, 383 students answered open-ended versions of 

the question set. The questions were converted to multiple-choice format from 

these responses and disseminated to an additional 476 students over two rounds. 

Through follow-up interviews intended for validation, and test analysis processes, 

the questions were refined to best target conceptions and strengthen validity 

measures. The GCI consists of seventeen questions, each targeting a different 

concept in introductory group theory. The results from this study are broken into 

three papers. The first paper reports on the methodology for creating the GCI with 

the goal of providing a model for building valid concept inventories. The second 

paper provides replication results and critiques of previous studies by leveraging 

three GCI questions (on cyclic groups, subgroups, and isomorphism) that have 

been adapted from prior studies. The final paper introduces the GCI for use by 

instructors and mathematics departments with emphasis on how it can be 

leveraged to investigate their students’ understanding of group theory concepts. 

Through careful creation and extensive field-testing, the GCI has been shown to 
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be a meaningful instrument with powerful ability to explore student understanding 

around group theory concepts at the large-scale.   
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Introduction and Rationale 

 Abstract algebra is a standard course required of mathematics and 

mathematics education majors across the United States. For many students, this 

course is the first time concepts are to be reasoned about formally based on their 

properties (Hazzan, 1999). Dubinsky, Dautermann, Leron and Zazkis (1994) 

noted, “mathematics faculty and students generally consider it to be one of the 

most troublesome undergraduate subjects” (p. 268). While this statement is 

largely accepted, student understanding in the course has not been empirically 

evaluated on a large scale.  

 When the Force Concept Inventory (FCI) was introduced into the physics 

community, the state of students’ conceptual understanding was similarly not 

understood (Hestenes, Wells, & Swackhamer, 1992). The inventory was created 

to evaluate students’ conceptions of force via a validated and quick multiple-

choice test. As a result, the test became widely used at the collegiate level. A 

concept inventory distills concepts from procedural and other knowledge to probe 

at a deeper level than many traditional assessments. Results from the FCI showed 

that students might do procedures correctly while still maintaining fundamentally 

flawed understandings of Newtonian force. 

 Advanced undergraduate mathematics education finds itself where the 

physics community was decades ago when the FCI was created. There is a body 

of research related to student understanding about abstract algebra, but it remains 

small scale. In general, the research falls into the categories of student 

understanding and instructional innovation (Weber and Larsen, 2008). Currently 
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literature exists to describe mechanisms that could lead to concept acquisition 

(Dubinsky, 1997), student difficulties with proofs, abstraction and complexity 

(Dubinsky et al., 1994; Hazzan, 1999; Leron, Hazzan, & Zazkis, 1995; Selden & 

Selden, 1987; Weber & Alcock, 2004; Weber, 2001) and instructional innovations 

(Larsen, Johnson, & Weber, 2013; Dubinsky, 1997). However, these studies were 

primarily exploratory and often relied on in-depth interviews with small samples. 

Student conceptions in algebra have not been explored systematically or 

comprehensively. In fact, Larsen, Johnson, and Bartlo (2014) have recently called 

for the “creation of validated assessment instruments” (p. 709) in group theory for 

the purpose of evaluating instructional innovations. 

 Recently, Weber (2013) similarly called for an increase of quantitative 

studies in the Research in Undergraduate Mathematics Education (RUME) 

community noting that qualitative studies dominate the undergraduate portion of 

the mathematics education community. Ideally, quantitative and qualitative 

methods could be used in a complementary fashion to establish both meaningful 

and generalizable results. The Group Concept Inventory (GCI) was created to 

address this call. The GCI is a quantitative measure created through both 

qualitative methods (such as interviewing students) and quantitative methods 

(such as item analysis and reliability - see methods section.) Ultimately, the 

validated tool serves a powerful purpose to complement qualitative explorations 

and evaluate larger populations. 
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Importance of Assessing Concept Understanding 

 The aim of the GCI is to assess conceptual understanding independent of 

proof skills. Proof is often the focus of assessment in advanced mathematics, 

ignoring the role of strong conceptual understanding. Attending to concepts is 

important for several reasons:  

1. Understanding concepts in group theory is not trivial. 
2. Understanding concepts is an essential part of advanced mathematics. 
3. Understanding concepts is a necessary for a high degree of success in 

proving. 
 

 The small body of literature related to abstract algebra has unanimously 

documents the difficulty of complete conceptual understanding of various topics. 

Dubinsky (1997) and his colleagues established that students frequently lacked 

advanced conceptions of topics in group theory ranging from groups to normality 

and quotient groups. Hazzan (1999) found that students struggled with abstraction 

level when dealing with objects in algebra defined solely by their properties. 

Students might use only one element of a set to evaluate a class of objects, or 

students might substitute information about familiar groups, such as the real 

numbers, to reason about unfamiliar groups such as modular arithmetic groups. 

Leron, Hazzan and Zazkis (1995) documented the struggles students have when 

coordinating the complexity of isomorphism such as differentiating between the 

idea of isomorphic groups and an isomorphism map. For a more complete 

discussion of student understanding see the literature review chapter.  

 Concepts play a vital role both in the formal proving process and 

independent from it. While formal proof may dominate assessment at the 
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advanced level, it is not the only important activity.  Raman (1999) warned, 

“competence in mathematics might readily be misperceived as synonymous with 

the ability to create the form, a rigorous proof” (p. 60).  When Weber and Mejia-

Ramos (2011) explored what mathematicians did when reading proofs, they found 

their activities were rarely centered on verifying the formal deduction in proofs. 

Rather, they were testing examples, determining the big ideas and considering 

methods for their own use. These activities all require an understanding of 

concepts, instantiations, and relationships between ideas.   

 Even if the focus of a course is entirely on producing formal proof, 

conceptual understanding can be a mitigating and necessary component in the 

creation of valid proofs (Tall & Vinner 1981; Moore, 1994; Hart, 1994).  Through 

a series of interviews with both students and mathematicians, Weber and Alcock 

(2004) found that undergraduates often relied on purely syntactic (symbol-

pushing) proving strategies. Their undergraduates were limited in their 

approaches to proof and were unable to provide valid proofs and correct 

evaluations a mathematical statement’s validity. In contrast, advanced graduate 

students would often utilize semantic strategies where they reasoned from 

instantiations. When prompted to assess whether groups were isomorphic, 

undergraduates were limited to trying to create a map and so failed to show 

groups were not isomorphic. Their graduate counterparts were able to reason 

about properties and easily determine when two groups were not isomorphic.  

Weber and Alcock identified several requirements related to concept 

understanding including instantiating rich and accurate reflections of “the object 
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and concepts they represent” (p. 229). Further students need to be able to connect 

the formal definitions with instantiations. Having the formal definition of group 

and isomorphism alone was not a sufficient condition for students to be able to 

either describe isomorphism informally or utilize intuition to explore conjectures. 

 Moore (1994) explained several ways that understanding of concepts 

becomes important when proving. He gathered data from observing a transition to 

proof course and interviewing students from the class. He found the students had 

a multitude of concept-based errors. These include not being able to generate 

examples, lacking an intuitive understanding, not being able to use concept 

images to create formal proofs, and not knowing the appropriate definitions (See 

Figure 1). 

 Melhuish and Larsen (2015) illustrated how understanding of a particular 

concept (that of function) might play into the proving process. Students were 

prompted to prove or disprove the following claim: 

Let ϕ be a 1-1 homomorphism from (G,o) to (H,*). If G is an abelian 
group, then H is an abelian group. 
 

In order to prove this statement, one must show that all elements in H commute. 

The standard approach to the proof would be to begin by selecting arbitrary 

elements in H. However, Melhuish and Larsen found that many of the students 

began in G, ultimately failing to realize the claim was not true. During interviews, 

a student explained that functions must always map from the domain to range, and 

so starting in G was the proper way to begin the proof. This piece of their concept 

image seemed to be interfering with their ability to construct a valid proof.  
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 Concepts play an important role in advanced mathematics. As objects are 

now defined solely on properties, students often struggle to achieve complete 

understanding of concepts. Understanding concepts plays a central role in 

mathematical activities such as using examples to make sense of formal 

statements or exploring new conjectures. Furthermore, one’s concept image can 

interfere with the creation of valid proofs. Having syntactic strategies alone has 

been shown to be insufficient in many cases. For these reasons, concepts in 

advanced mathematics should not be neglected. Beyond their role in proof, 

understanding concepts themselves should be a major goal of introductory 

abstract algebra courses.   
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Purpose of Concept Inventories 

 Concept inventories have traditionally been used for three purposes: 

diagnostics, placement, and evaluating instructional innovation (Hestenes, Wells, 

& Swackhamer, 1992). While placement is not typically relevant at this advanced 

level, the other two purposes remain significant.  

 
Figure 1. How conceptual understanding interferes with proving. Reprinted from 
“Making the transition to formal proof,” by R.C. Moore, 1994, Educational 
Studies in Mathematics, 27, p. 252. Copyright 1994 by Kiuwer Academic 
Publishers. 
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Diagnostics. As a diagnostic tool, the inventory can serve a useful purpose 

to establish the current state of group theory concept understanding and to provide 

specific feedback for instructors. Since the Force Concept Inventory was released, 

it has been used repeatedly to collect information about what conceptions physics 

students have. The inventory has been credited with helping to instigate the 

reform movement in physics education (Savinainen & Scott, 2002a). In the same 

manner, the GCI was designed for ease and widespread usage to document how 

students currently conceive of concepts in group theory.  

The diagnostic usage also makes the GCI useful for individual instructors. 

Concept inventories go through careful validation to ensure the distractors for all 

questions are meaningful. If an instructor administered the assessment to their 

class, they would gain feedback as to which concepts are understood and where 

additional attention should be put. Further, as Svainainen and Scott (2002a) 

explained about the FCI: 

We believe that the very conception and design of the FCI can help the 
teacher to come to know and to understand the conceptual terrain of this 
field of instruction (in terms of both conceptual learning goals and student 
misconceptions) and to thereby be in a much stronger position to sustain 
effective teaching and learning dialogues (p. 51). 
 

Concept inventories and similar assessments can be a powerful tool as the 

questions themselves provide an outline of alternate conceptions. The instrument 

can serve to bring awareness to various student conceptions that may differ from 

instructor conceptions. Instructors might find insight into unexpected student 

conceptions that may not have been captured by traditional proof-based 

assessment. 
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 Comparing groups and evaluation. Innovation efforts can be evaluated 

meaningfully with the GCI, a validated instrument. GCI scores in classes with 

differing instruction can be compared for significant differences. Furthermore, 

performance on individual questions may reflect the impact of varying 

instruction.  

 With the FCI, this type of evaluation has been done at a larger scale to 

evaluate varying pedagogy and demographics.  Docktor, Heller, Henderson, 

Sabella, & Hsu (2008) administered the FCI to 5,500 students to explore gender 

differences. Hoellwarth, Moelter and Knight (2005) compared traditional and 

studio classrooms looking at 6,000 students. The meaningful score from the FCI 

provides an easy way to compare groups. At a local level, an institution could 

evaluate conceptual understanding in their classes when implementing different 

types of instructional changes.  

 Conclusion.  There are a few key facts that motivate the creation of this 

instrument. First, conceptual understanding in abstract algebra is not trivial, but it 

is essential. Yet, we often fail to assess concepts and instead present formal proofs 

as the only means for assessing in advanced mathematics. Furthermore, within the 

field of abstract algebra, there are no validated instruments to try to measure 

student understanding. Validated instruments can serve a central role in 

evaluating improvement efforts, researching instructional innovations and 

providing insight into the current landscape of student understanding in abstract 

algebra. 
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Abstract Algebra Literature Review 

 Abstract algebra is traditionally considered a challenging course (Leron 

and Dubinsky, 1995). The difficulty with abstract algebra can be partially 

attributed to the nature of the course’s content. Abstract algebra is a subject that is 

complex, abstract, and axiomatic. Many of the concepts such as isomorphism 

require a complex coordination of many ideas (Leron, Hazzan, & Zazkis, 1995). 

Additionally, the course is built around objects such as a groups that are discussed 

and argued about abstractly (Hazzan, 1999, 2001). Abstract algebra is built on an 

axiomatic system leading to an elevated use of definitions (Edwards & Ward, 

2004) and central role of proof and logic (Hart, 1994; Selden & Selden, 1987). As 

noted by Weber and Larsen (2008), “For most undergraduates this course is one 

of their earliest experiences in coping with the difficult notions of mathematical 

abstraction and formal proof” (p.139). 

 Research on the teaching and learning of abstract algebra has only begun 

in earnest over the last twenty-five years. Most early work in the area can be 

attributed to Dubinsky and his colleagues’ who used their APOS (Action, Process, 

Object, Schema) framework to launch investigations into how students develop 

their understanding of major concepts of group theory (Dubinsky, 1997; 

Dubinsky, Dautermann, Leron, & Zazkis, 1994). Since this initial research, 

several other researchers have expanded upon student understanding in continued 

efforts to improve instruction (Weber & Larsen, 2008). The majority of research 

on teaching and learning abstract algebra falls into one of two categories: student 

misconceptions and instructional innovations.  In this literature review, I present 
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an overview of research on student conceptions within the themes of algebra as 

complex, abstract, and axiomatic. The review concludes with attention to the 

literature related to instructional innovation efforts. 

Student Understanding in Abstract Algebra  

 The abstract nature of Abstract Algebra. As Hazzan (1999) pointed 

out, “…it is in the abstract algebra course that students are asked, for the first 

time, to deal with concepts which are introduced abstractly” (p. 73). Being able to 

reason about objects exclusively from properties requires students to have 

abstracted in some form. As Hazzan noted abstraction is discussed in a number of 

different manners in mathematics education. Abstraction can be understood in the 

development of objects. Tall (2004) addressed three different types of objects. 

Objects can arise through empirical abstraction where objects are studied in order 

to determine their properties, objects can arise through reflective abstraction 

where a process is encapsulated or compressed into an object, or objects can arise 

from the study of properties and their logical deductions.  

 Reflective abstraction.  Reflective abstraction served as the underlying 

mechanism behind Dubinsky and colleagues’ instructional innovations and APOS 

framework. While other researchers have mentioned processes and objects in 

algebra (Harel & Kaput, 1991; Sfard & Linchevski, 1994), the APOS framework 

was the only theory explored empirically.  

 APOS provides a development sequence, or genetic decomposition, 

students may use to make sense of mathematical concepts (Dubinsky et al., 1994).  

Dubinsky et al. summarize: 
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The essence of our theoretical perspective is that an individual, 
disequilibrated by a perceived problem situation in a particular social 
context, will attempt to reequilibrate by assimilating the situation to 
existing schemas available to her or him, or if necessary, use reflective 
abstraction to reconstruct those schemes at a higher level of sophistication 
(p. 269).  
 

The levels of student conceptions fall into the categories of action, process, 

object, and schema. An action can be defined as, “any repeatable physical or 

mental manipulation that transforms objects in some way” (p. 270). Once the 

action can be understood as a whole (not each individual action needs to be 

taken), the action is interiorized and is now a process. A process can then be 

encapsulated into an object. This occurs when a process can be transformed by 

some action such as combining two processes. Equally important is the ability to 

de-encapsulate an object back to a process. An object should be more than a 

symbol but instead be able to be thought of as a process and object when 

appropriate. A set of processes and objects are thematized to form a schema or a 

collection of objects and processes that can be used together. (Schemas are 

discussed further in the complexity section of this chapter.)  

  Dubinsky et al. (1994) developed genetic decompositions of various 

algebra topics. Consider their breakdown of coset formation. Coset formation can 

be an action in familiar settings. At this stage, a student might list each individual 

element in a coset. Dubinksy et al. used this student explaining ℤ18/<3>1, as an 

example of an action conception: 

                                                
1 The cyclic group of 18 elements modded out by multiples of 3.  
2 The eighteen topics were expanded to nineteen as cosets and quotient groups were separated to 
be consistent with topic treatment in curriculum. Modular groups were an example group and 
therefore are used within questions, but did not receive tasks independent of other concepts. 
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Well, the number in front is what you add to each element inside the set. 
So zero added to these six elements would keep the same six. One [the 
number] added to each, which is in the first column, would give you the 
1,4,7,10 and then you add 2 to these first the H which is 0 through 
6,9,12,15. Then you add 2 to each and you get 2,5,8,11,14, and 17 (p. 16). 
 

This student began with the subgroup H={0,3,6,9,12,15} and added elements 

from ℤ18 one at a time to arrive at the elements in each coset. Coset construction 

can also be conceived of as a process where students associate each element with 

the subgroup without having to explicitly build the subsets. Dubinsky et al.’s 

process example student stated: 

Ok, I interpreted this as 0+H, 3+… Every third element beginning with 0. 
So 1+H every third element beginning with 1 in ℤ18 and every third 
element beginning with 2. And that would generate all the elements that 
are in G (p. 16). 
 

These students frequently noted patterns for constructing which might limit their 

ability to deal with less familiar groups. This example student made no progress 

when trying to find a quotient group of a dihedral group.  At the object level, a 

coset could be conceived of independent of the process, becoming an object for 

new actions such as comparing size of cosets. Dubinsky et al. presented example 

students who never wrote out all of the elements of cosets and worked entirely 

with their representatives. Dubinsky and his colleagues also provided this type of 

genetic breakdown for binary operation (Brown, DeVries, Dubinsky, & Thomas, 

1997), normality (Asiala, Dubinsky, Matthews, Morics, & Oktac, 1997), coset 

multiplication (Asiala et al., 1997), permutations (Asiala, Kleiman, Brown, & 

Matthews, 1998), and symmetries (Asiala et al., 1998). The researchers worked to 

validate the framework through analyzing student work on exams and 
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interviewing students. Their analyses found evidence that students were working 

at the various levels of sophistication. However, as noted by Hazzan (1999), 

reducing abstraction such as using processes over objects does not necessarily 

equate to misunderstanding or even a lack of understanding. Students may work 

at various levels in problem-solving context as a means for sense making and 

developing intuition.  

 Empirical abstraction. While reflective abstraction dominates the 

literature, empirical abstraction can also be found. Simpson and Stehlíková (2006) 

focused on the alternate transition, or as they label shifts in attention, as students 

moved from examples to general reasoning. The sequence includes five shifts 

where students begin by seeing the elements of a set as objects to be operated on, 

then attend to the interrelationships between set elements, followed by attending 

to names and symbols defining the abstract structure, seeing other examples of the 

general structure and finally moving to a formal system to derive consequences.  

The authors noted that while the first shift may involve the reification of objects 

(in the APOS sense), the final three shifts “involve relating the definitional 

properties of the (teacher- defined) abstract algebraic structure with the 

interrelationships noted in the initial example (and in subsequent instances of the 

structure)” (p. 352). This article focused primarily on the second shift defined as 

“the shift of attention from the familiarity and specificity of objects and 

operations to the sense of interrelationships between the objects caused by the 

operations” (p. 352). The researcher presented one case study where a university 

student was given a non-standard definition of ℤ99  (a commutative ring). Through 
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extensive engagement with the context, the student was able to gain insight into 

structure. For example, the student confronted the idea of “opposite numbers” and 

was able to transition from subtraction to additive inverses arriving at 99-x being 

the additive inverse in ℤ99.  Further, the student used this in calculations treating 

3-7 as 3 +99-7. Simpson and Stehlíková claimed these shifts represent a change 

from focus on operations and objects to obtaining new structural properties.  

 This type of exploration of examples and abstracting properties is not 

unusual in instructional sequences. For example, Larsen et al.’s (2013) curriculum 

has students reinvent the group concept through exploration of a symmetry group. 

(A more complete discussion of this process can be found in the instructional 

innovation section.) 

 Reducing abstraction. Through interviewing algebra students from a 

traditional lecture-based class, Hazzan (1999) discovered that most students 

would work at a lower level of abstraction than what was introduced in class. 

Hazzan introduced a reducing abstraction framework to make sense of this 

activity. Within the framework are three interpretations for levels of abstraction.  

 The first level is Abstraction level as the quality of the relationship 

between the object of thought and the thinking person. This interpretation takes an 

individualistic view where each person has a relationship with a concept based on 

a given level of familiarity. In the case of groups, students might work with 

familiar objects, such as a real numbers, instead of the unfamiliar concept of a 

newly introduced group. For example, in Hazzan’s study, a student decided that 

ℤ3 was not a group based on the fact that the inverse of 2, ½, was not found in ℤ3. 
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The student changed the operation of modular arithmetic to the familiar operation 

of real number multiplication. A similar error occurred when students commonly 

confuse normality with commutativity (Asiala et al., 1997). This type of reduction 

is consistent with Selden and Selden (1987) and Hart (1994) who addressed the 

potential errors in proofs caused by assuming that groups (or other structures) 

behave like real numbers or otherwise confused operations from unfamiliar to 

familiar. 

 The second interpretation is Abstraction level as reflection of the process-

object duality. Hazzan (1999) asserted that conceiving of a concept as a process 

was at a lower abstraction level than conceiving a concept as an object. She 

suggested the use of first person as an indicator that the student was working in 

this lower level of abstraction. For example, a student explored the definition of 

quotient group stating, “I take all the elements [of H] and multiply them on the 

right with some element from G” (p. 81). In this way, she was not capturing 

quotient groups as a single object, but reduced the abstraction level to thinking 

about one step at a time.  

 The final interpretation is Abstraction level as the degree of complexity of 

the concept of thought. This type of reduction in abstraction occurred when a 

student would use one group when evaluating a set of groups. A non-generic 

example might be used to evaluate general statements about a class of objects 

leading the potential for overgeneralization. This type of reduction was also found 

in Selden and Selden’s (1987) taxonomy where students would argue about 
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elements when sets are appropriate such as arguing for gh=hg versus gH=Hg to 

establish normality. 

 Navigating abstraction level. Hazzan’s (1999) framework provided 

insight into three different ways that students may lower abstraction levels in 

group theory. Hazzan cautioned that reducing abstraction “should not be 

conceived as a mental process which necessarily results in misconceptions or 

mathematical errors” (p. 75). Rather, these activities serve as coping mechanisms 

prior to students developing the mental constructs needed to work with the 

abstract objects. 

Lowering abstraction has also been illustrated when students reason using 

Cayley tables (Findell, 2002; Hazzan, 2001) and students leveraging diagrams to 

make sense of cosets (Nardi, 2000). Findell presented an interview case where a 

student used an operation table when determining if ℤ3 was a subgroup of ℤ6. The 

student began by creating what she called the “total table” (p. 1). After realizing 

she was unsure of the operation, the student made a table for multiplication, then 

ruled it out based on the 0 row. She then made the correct table and isolated the 0, 

1, and 2 rows to correctly realize that this set was not closed. She even 

spontaneously used the table to find subgroups. However, using the table limited 

the student to verifying one axiom at a time in an external manner (such as having 

to first hunt down the identity element from the table.) The use of this 

instantiation might have been inefficient, but it served the purpose of reducing the 

abstraction level and making the properties of the group visible. 
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  Weber and Alcock (2004) presented another important aspect of dealing 

with abstract objects. In their interview study with undergraduates and graduate 

students, they found graduate students flexibly navigating between formal, 

abstract representations, and concrete representations. Their undergraduate 

counterparts struggled to leave the formal plane. When determining whether 

groups were isomorphic, the undergraduates attempted to build maps using a 

symbol-pushing strategy labeled syntactic proof production. In contrast, doctoral 

students examined the groups for structural properties. The undergraduates had no 

intuition for what it meant for groups to be isomorphic. When asked, they stated 

the formal definition as equivalent to their intuition. All the experts espoused the 

intuition that isomorphic groups are essentially the same groups with renaming. 

When determining if ℚ and ℤ were isomorphic, the undergraduates (upon 

determining the cardinality) attempted and failed to build an isomorphism. In 

contrast, the doctoral students immediately determined the statement as false and 

largely used the cyclic nature of ℤ and not ℚ as their reasoning. The authors 

labeled the graduates’ attempts as semantic proof production where “the prover 

uses instantiation(s) of the mathematical object(s) to which the statement applies 

to suggest and guide the formal inferences that he or she draws” (p. 210). Weber 

and Alcock showed navigating between the formal language and instantiations 

can provide needed intuition and illustrated that undergraduates may not have 

developed robust images of abstract concepts to do so successfully.    

 Zazkis, Dubinsky and Dauthermann (1996) presented a dichotomy similar 

to the semantic and syntactic proof production. The researchers used student 
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exploration of D4 to differentiate between visual and analytic approaches.  They 

defined visualization as “an act in which an individual establishes a strong 

connection between an internal construct and something to which access is gained 

through the senses” (p. 441). In contrast, an analytic act “is any mental 

manipulation of objects or processes with or without the aid of symbols” (p. 442). 

While not restricted to proof productions, the authors use analytic and visual in a 

parallel way to Weber and Alcock. Any diagrams or drawings constitute visual 

acts. In contrast, when “symbols are taken to be markers for mental objects and 

manipulated entirely in terms of their meaning or according to syntax rules, then 

we take the act to be one of analysis” (p. 442). In this way syntactic proof 

production could be labeled analytical. Zazkis et al. interviewed students with the 

prompt to find the elements of D4. They found that some students took a visual 

approach: using a square. Other students took analytic approach: writing down all 

permutation possibilities.  Zazkis et al. challenged the dichotomy explaining 

analysis required both visual (connecting to the square) and analytical (labeling 

vertices). The authors conclude by presenting a model where students flexibly 

move between visual and analytic acts advocating for students to move flexibly 

between concrete and abstract. 

 The complex nature of Abstract Algebra. In addition to being abstract, 

concepts in abstract algebra have a high level of complexity. By complexity, I 

mean the number of aspects needed to be coordinated to understand and use a 

concept.  In APOS terminology, this aligns with schemas. A person’s schema for 

a topic is “all of her or his knowledge connected (explicitly or implicitly) to that 
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topic.” A schema could be roughly equivalent to a concept image in the sense of 

Tall and Vinner (1981).  

 Even the fundamental concept of group requires an understanding of 

nontrivial concepts: set, binary operation (see Zaslavsky & Peled, 1996), 

associative property (see Larsen, 2010), identities, and inverses. Dubinsky et al. 

(1994) discussed some understandings and misunderstandings of groups and 

subgroups based on exams and student interviews from classes using their APOS-

informed curriculum. Similar to students focusing on one simple structural 

property preserved by isomorphism as discussed above, Dubinsky et al. found 

students would often only attend to the set aspect of groups. Several students 

thought any set of three elements was the same group and that any subset of a 

group would be a subgroup. The authors attributed this difficulty to students 

trying to relate the unfamiliar concept of group with the familiar concept of set. 

Students with this conception were not yet coordinating the operation and set 

aspects of group.  Dubinsky et al. also provided a genetic decomposition for 

quotient groups, which required coordination of new concepts: normality, cosets, 

and coset operation (via representatives). Students struggled to make sense of 

normality (confusing it with commutativity) and struggled to build cosets even 

with an understanding of normality. Siebert and Williams (2003) considered some 

of the complexity of cosets and quotient groups in terms of modular arithmetic 

groups. They found students had three conceptions around the cosets in this 

quotient group. The cosets could be viewed as infinite sets, they could be viewed 

as a representative element and a set, or just as the representative element. 
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Dubinsky et al. concluded their paper by commenting, “It is clear from our 

interview transcripts that an individual’s understanding of the elementary 

concepts connected with mathematical groups is quite complex” (p. 294). They 

continued stating that even in the beginning of abstract algebra, constructing 

understanding is a major cognitive development. 

 Leron, Hazzan, and Zazkis (1995) explored the issue of complexity in the 

context of isomorphism. They attested that for students in their first abstract 

algebra course, “isomorphism is a complex and compound concept, composed of 

and connected to many other concepts, which in themselves may be only partially 

understood” (p. 53). At the basics of the definition, students must understand 

quantifiers, functions, and groups. There are also some important distinctions 

such as the concept of two groups being isomorphic and the isomorphism itself, 

the formal definition and the naive definition, and proving groups are isomorphic 

versus proving groups are not isomorphic. When asked if two groups are 

isomorphic, students used the order type. The order type is the respective orders 

of the elements in a group, so the order type of ℤ4 would be 1, 2, 4, 4. This 

approach would only be valid to show two groups with different order type are 

not isomorphic. Two groups that are not isomorphic could have the same order 

type. Leron, et al. attributed this confusion to one of three causes: neglecting all 

other properties for the simple and comfortable one, the fact that order type is 

sufficient for many small finite groups, or a confusion between a statement and its 

converse.  
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 Leron, et al. (1995) went on to differentiate between two types of 

complexity: syntactical and computational complexity.  When the students were 

asked what properties were preserved with isomorphism, they tended to list 

commutativity first and order of elements last. However, when asked to actually 

determine if two groups are isomorphic, students began by testing order of the 

elements and ended by determining if the groups are commutative. 

Commutativity was identified as syntactically simpler meaning it has simpler 

definition.  However, computationally, showing all elements commute involves a 

global property, which takes more work the “step-by-step nature of order-type 

calculations” (p. 168). 

 Leron, et al. (1995) presented one more aspect of the complexity of 

isomorphism concept by investigating how students construct isomorphisms. 

They found students desired a canonical procedure and would get stuck if there 

were more than one way to proceed. This may reflect the quantifier in the 

definition where “there exists a function” could be interpreted as “there exists a 

unique function” or simply a lack of comfort with uncertainty. Additionally, 

“there exists a function” was expressed in three ways: “I can find a function,” “it 

is possible to find a function,” and “there exists a function” (p. 170). These 

phrasings may represent different levels of development for quantifiers. In a 

parallel manner, students may express a process or object view of the map with 

phrases ranging from, “Each element of G to each element of G” (mapping each 

element individually) to a map from “G to G” (seeing the map as an object 
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relating the sets.)  The authors established some of the many coordinations 

students need to make in order to properly deal with isomorphism.    

 Nardi (2000) also tackled some of the complexities in group theory 

addressing the concept of order and the First Isomorphism Theorem. Through 

observation of tutoring sessions, Nardi found that order applying to both groups 

and elements was a potential point of confusion. When working with a prompt 

requiring order, the student explained, “I don’t understand how an element can 

have an order” (p. 173). While the student was comfortable with order of a group, 

the concept did not make sense applied to an element even after the tutor provided 

the definition from class (smallest integer k such that gk=e). Further, the tutor 

attempted to connect the two types of order by showing that |<g>|=|g|. To make 

sense of this statement, the student had to use the group generated by g evoking 

additional concepts such as a cyclic group and using the operation correctly. (In 

this case, the student struggled to transition between additive and multiplicative 

notation, a struggle termed notational inflexibility by Selden and Selden (1987).) 

At each stage, the tutor seemed to have to unpack more and more concepts that 

were hidden in the simple statement: |<g>|=|g|.  

 Nardi (2000) then identified the First Isomorphism Theorem “as a 

container of compressed conceptual difficulties.”  The students had to coordinate 

multiple mappings, concepts of isomorphism, homomorphism, quotient groups, 

and kernel. They struggled at nearly every stage of proving this theorem from 

notation (the meaning of ~) to the definition a kernel. The complexity of the order 
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of an element and the complexity involved in the First Isomorphism Theorem 

presented barriers for the students in Nardi’s study. 

 Strategic knowledge. Schemas are also utilized in problem solving. 

“When a person confronts a mathematical problem situation, he or she evokes a 

Schema and makes use of some of its components and some relations among 

them to deal with the situation” (Arnon et al., 2013, p. 112). Weber (2001) dealt 

with this issue in terms of strategic knowledge. Strategic knowledge can be 

defined as, “heuristic guidelines that they can use to recall actions that are likely 

to be useful or to choose which action to apply among several alternatives” (p. 

111). Weber identified three types of strategic knowledge used in abstract algebra: 

Knowledge of the domain’s proof techniques, Knowledge of which theorems are 

important and when they will be useful, and Knowledge of when and when not to 

use ‘syntactic’ strategies. With each concept comes a set of appropriate 

techniques. If one wants to show something is a group, then the group axioms 

should be invoked. If one wants to show groups are not isomorphic, then 

structural properties should be examined. Through interviewing graduate and 

undergraduates, Weber found undergraduates often lacked the knowledge of when 

to use theorems. When evaluating a prompt about surjective homomorphisms, the 

four doctoral students all made use of the First Isomorphism Theorem 

immediately. Only two of the four undergraduates did and only after substantial 

struggle. The undergraduate students in Weber’s study largely reverted to 

syntactic strategies that did not prove fruitful. These strategic knowledge issues 

were consistent with Hazzan (1999) who found students misapplying Lagrange’s 
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theorem. Strategic knowledge is intimately tied to the complexity of the subject 

where when and how to use a theorem or various strategies needs to be integrated 

into students’ schema.  

 These episodes highlight just how complex some of the topics are in 

abstract algebra. The compactness of formal mathematics can act to obscure the 

complexity of concepts and theorems in introductory courses where students have 

yet to develop the necessary mental constructs.  

 The axiomatic nature of Abstract Algebra. For many students, abstract 

algebra is one of their first encounters with axiomatic systems and formal proofs. 

Much of the research related to abstract algebra has been in the context of proof. 

 Definitions. Edwards and Ward (2004) reported on the role definitions 

play in formal mathematics. The authors distinguish between extracted and 

stipulated definitions. The everyday use of definition is typically extracted. The 

definition describes something that already exists. In contrast, stipulated 

definitions can serve to create new concepts via stipulating defining properties. 

Through task-based interviews, the authors found students often fail to understand 

the role of definitions in mathematics where they are stipulated rather than 

extracted. Using Tall and Vinner’s (1981) concept image and concept definition 

framework, Edwards and Ward illustrated that students rarely use the idealized 

model of development: building the concept image from the concept definition. 

Using the context of coset multiplication, the authors found that even when 

students knew the formal definition, they proceeded to operate using an incorrect 

concept image (such as the operation as unioning.) The students both professed an 
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explicit desire for definitions to describe something and failed to use definitions 

instead, appealing to informal concept images.  

 Lajoie and Mura (2000) addressed this issue in the context of cyclic 

groups. They found that their students were not using the formal definition to 

reason about cyclic groups, but rather their intuitive idea about cycles. The 

students largely explained the idea of generating as repeatedly operating an 

element with itself. As a result, students did not correctly address infinite groups. 

Of 28 student responses, they found 18 students thought ℤ was not cyclic. In ℤ, if 

one begins with an element such as 1 and operates 1 with itself, only the positive 

numbers are generated. The element will not “cycle” back around. Many students 

concluded that all cyclic groups are finite. If the students had leveraged the formal 

definition, which includes taking all positive and negative powers of one, they 

may have been able to appropriately deal with this infinite case.  

 This is consistent with Moore (1994) who found students were not able to 

use concept images to appropriately inform proofs and were unable to use 

definitions to determine the structure of proofs. Students who could state the 

definition of one-to-one were still unable to see how to use the definition to prove 

that a function was one-to-one. The statement of the formal definition alone was 

not sufficient to make sense and leverage the definition. This result was echoed by 

Wheeler and Champion (2013) who found students largely unable to prove one-

to-one and onto results.  

 Hart (1994) presented a similar definition-type proof. The prompt was to 

show a set and operation form a group which Hart deemed a satisfy axioms proof. 
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Similar to the other researchers, Hart found that beginning undergraduate students 

often struggled with this basic proof type. This was not the case for more 

advanced students indicating that at some point a transition occurred where 

students do gain the requisite understanding to deal with these proofs (or 

potentially, these are just the students that survived to graduate studies and 

advanced courses). 

 Logic and quantifiers. Beyond not understanding the role of definitions, 

some of the failure to use them correctly might be attributed to a lack of comfort 

with logic and deduction. Selden and Selden’s (1987) taxonomy explored many of 

the errors their abstract algebra students made during the proving process. Some 

errors included starting with the conclusion and being unaware that two 

differently named elements might not be different (an important distinction when 

showing that cosets form a partition). Additionally, the Seldens included the use 

of the converse of a theorem. This mistake is frequently associated with 

Lagrange’s Theorem (Hazzan & Leron, 1996) where students make claims about 

the existence of subgroups of various orders. Another major error found in 

abstract algebra proofs is weakening the theorem.  Selden and Selden had 

observed students frequently adding assumptions such as a group being finite or 

cyclic without an awareness of the alteration to the conjecture they are proving.  

 While most of these errors have not been studied extensively, Selden and 

Selden (1987) mentioned a major source of error that has been researched: 

quantifiers. As discussed in the complexity section, quantifiers are a necessary 

prerequisite to even make sense of definitions. Students are known to struggle 
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with quantifiers (Dubinsky & Yiparaki, 2000). Selden and Selden (1995) 

illustrated that students were often unable to unpack informal statements- convert 

statements from their informal (but typical) statement of a theorem to a formal 

style that revels the quantification scheme. This is a key step to selecting a proof 

framework which Selden and Selden (1995) define as, “the ‘top-level’ logical 

structure of a proof.” This issue of quantification is relevant both for its necessary 

role in proving, and maybe more substantially, its necessary role in understanding 

definitions. The concept of one-to-one discussed above is often defined: A 

function f: A→ B is 1-1 if for all x ≠ y in A, f(x) ≠ f(y). While one might have a 

concept image of one-to-one (such as the horizontal line test), to use and 

understand this definition in a formal way requires a firm understanding of 

quantification. Novotná, Stehlíková, and Hoch (2006) presented a framework 

addressing some quantification issues related to binary operation understanding. 

They addressed the role of quantification in understanding the definition of 

identity elements. An element e is an identity for a given operation in a set if it 

fulfills the property ex=xe=x for all x in the set. They provided an example 

operation where students may identify the identity element as an expression 

depending on x. An identity must be the same for all elements in the set. Without 

an understanding of quantification, this difference may not be apparent.   

 In group theory, students are not only grappling with complex, abstract 

objects, but often are struggling to work in a formal system. 

Instruction of Abstract Algebra: Innovations 
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 Prior to the 1990s, there were a few scattered articles on instructional 

innovation related to abstract algebra. Notably, Lesh (1976) provided a 

quantitative analysis comparing the influence of two types of organizers for the 

topic of finite groups. Through videos, four groups of students were exposed to 

finite groups in one of four combinations: either before the formal definition 

(advanced organizers) or after (poster organizers) and the organizers were either 

examples or counterexamples. Students did better when given advanced 

organizers and when given counterexamples. Lesh argued that the typical 

approach of providing just examples and not counterexamples was not ideal for 

students to make abstractions. 

 APOS theory and programming. The genetic breakdowns discussed 

above served as a driving force to create curriculum that would transition students 

through the stages to achieve advanced understanding of concepts. Dubinsky and 

his colleagues have proposed an instructional approach utilizing computer 

programming. This instructional approach was developed through the creation of 

genetic decompositions that were refined through two cycles of implementations 

of programming-based classes and reflections on student interviews (Dubinsky 

1997; Dubinsky et al., 1994).  

 The classes utilized the ACE teaching cycle (Activities, Class discussion, 

and Exercises). Students constructed computer programs to explore mathematical 

concepts and then worked in groups for problem solving and discussion. The 

computer programming language ISETL allowed for the computer to do the 
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processes and then for processes to be used as inputs, ideally encouraging the 

transition from a process conception to an object conception.  

 Early in the course, students programed group axioms where a set and an 

operation are inputs and output would be true or false for closed, associativity, 

identity and inverses. Then a program (is_group) would input the set and 

operation into the four previous programs for each axiom to determine if they set 

and operation form a group (Leron & Dubinsky, 1995). Students then explored ℤn 

under multiplication and addition (with and without zero). Leron and Dubinsky 

argued that their programming language was similar to mathematical definitions 

where a set of axioms must be met.  The quotient group concept was similarly 

developed through programing. Students would create a program oo:=PR(G,o) 

where a group and operation are inputted. Then oo would take inputs that are 

group elements or subgroups. Inputs of an element and subgroup would calculate 

a coset (Asiala et al., 1997).  

 Through programming, Leron and Dubinsky claim there is “a good chance 

that a parallel construction will occur in the their mind” (p. 230). However, the 

data comes from exams and interviews without analysis of what students were 

doing when engaging with the programing. Furthermore, although students are 

reported to have performed marginally better than a control group of students 

from a lecture class, there was no attempt to document any significant differences 

(Brown et al., 1997). 

 Guided reinvention and emergent models. Larsen has spearheaded the 

development of a group theory curriculum where students reinvent formal 



 

 31 

concepts beginning with their own informal knowledge (Larsen, Johnson, & 

Weber, 2013). Larsen designed his curriculum based on the Realistic Mathematics 

Education design heuristics of guided reinvention and emergent models, as well 

as proofs and refutations (Larsen & Zandieh, 2008). Larsen aimed to leverage 

student strategies in such a way that they transition from using models of situated 

activity to models for more general activity.  (See Cook (2014) for a case where 

RME design heuristics are used in a Ring Theory design experiment.) 

 The curriculum was built through iterations of development and 

implementation. A series of small-scale design studies with pairs of students were 

conducted with the goals of discovering students’ informal knowledge and 

strategies that can anticipate formal concepts. Additionally, Larsen worked to 

develop instructional activities to evoke these strategies and activities to help 

students use strategies to transition to formal concepts. The first iteration led to 

the development of a local instructional theory for group and isomorphism. After 

implemention in the classroom, a new second small-design experiment was 

conducted to build local instructional theories for quotient group. At this point 

Larsen and his team developed a full curriculum and worked to implement the 

curriculum in a multitude of group theory classes (Larsen, et al., 2013).  

 The instructional sequence begins with students working to identify the 

symmetries of a triangle leading to the creation of an operation table (Larsen et 

al., 2013).  While searching for relationships and patterns to calculate 

combinations of symmetries, the students discovered the group axioms and 

discovered the property that each symmetry appears once in each row and column 
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(a motiving factor to establish the inverse axiom (Larsen, 2009).) Through 

investigating other groups for common structure, the students arrive at the 

definition for group that is then used for deductive activity. A similar process 

occurs with isomorphism where students are given “mystery group” tables and 

must determine if they are the same as the order 6 dihedral group (the symmetries 

of a triangle.) This activity culminates in a formal definition for isomorphism.  

 The quotient group sequence begins with students exploring the sets of 

even and odd numbers. The students leverage this understanding to find partitions 

of the dihedral group that would behave like even and odd numbers. Dubinsky et 

al. (1994) illustrated that students struggle with quotient groups and their set 

elements. Larsen and Lockwood (2013) showed how students might overcome 

this challenge. Consider the following episode from Larsen’s initial teaching 

experiment. At this point the students are making sense of a table with two 

elements: flips and rotations (of a square.) Initially, the student said it had eight 

elements.  

 Teacher/Researcher: What if I said it had two? 
 Rick: Then it wouldn’t be a group. 

Sara: Well if you want to make meta-groups [student name for quotient 
groups] 

 Teacher/Researcher: Ok, let’s make meta-groups 
Rick: No, wait, maybe it would be a group it would be a group now for me 
(p. 732). 

 
Sara quickly agreed and when the teacher/researcher asked what the elements of 

the group were, Rick replied, “Rotations and flips. My identity would be 

rotations” (p. 732). This exchange represented one of the important transition 
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points illustrating how Larsen’s curriculum directly aims to support some of the 

difficulties established in prior studies. 

  Each concept reinvention is followed by a deductive phase where students 

prove conjectures and arrive at important consequences such as the normality 

requirement for the creation of quotient groups. Unlike Dubinsky (1997), each of 

the curriculum stages was illustrated with corresponding episodes providing 

insight into how students engage in the mathematical activities (Larsen, Johnson, 

& Weber, 2013). 

 As in the case of Dubinsky (1997), the effect of this instructional method 

is not well-documented. Larsen et al. (2013) did compare student responses on a 

quotient group survey administered to eight classes using the curriculum and six 

classes that did not. Students in the experimental classes were significantly more 

likely to correctly assess if a subgroup could be used to form a quotient group 

from a table. Furthermore, the students from traditional classes only used 

normality as justification; the experimental class’s students were equally likely to 

address the set operation not being well-defined. As noted by Larsen et al., there 

is still a lot of evaluation work to be done.  

 A note on other research in Abstract Algebra classrooms. Beyond this 

instructional innovation research, there also exists a body of research where the 

abstract algebra setting was used as a means to explore other aspects of teaching 

or learning. For example, Cnop and Grandsard (1998) and Grassl and Mingus 

(2007)  implemented cooperate work in the abstract algebra classroom but did not 

report on the content or student learning. Other objectives such as teacher 
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listening (Johnson & Larsen, 2012), sociomathematical norms (Fukawa-Connelly, 

2012), and student-tutor relationships (Jaworski, 2002) have been studied in an 

abstract algebra context. However, these papers largely lie beyond the scope of 

this literature review because their focus was not on student learning of algebra 

concepts either through exploration of their understanding or content-related 

instructional innovations. 

Conclusion 

 The body of educational research in abstract algebra focuses largely on 

incorrect student conceptions and instructional innovations. Several studies focus 

on proof in the context of abstract algebra (Hart, 1994; Selden & Selden, 1987; 

Weber & Alcock, 2004; Weber, 2001). Another batch of studies explores aspects 

of student difficulty such as with abstraction (Hazzan, 1999), complexity (Leron 

et al., 1995), or process-object duality (Dubinsky et al., 1994). There is also 

literature sharing research-grounded instructional innovations, most notably 

Larsen et al. (2013) and Dubinsky (1997).  

 This leaves a lot of areas for continued research. First, APOS theory is the 

only thoroughly explored mechanism for concept acquisition. The sequence 

action, process, object, and schema may not be the only means of object 

construction (Tall, 1999). Of note, empirical abstraction may have a more 

substantial role than has been explored. The APOS framework also has the 

limitation of being purely cognitive. Although, recently Johnson (2013) has 

contributed a theoretical paper for analyzing learning in classrooms informed by 
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the design heuristic of guided reinvention which may provide an alternate way to 

view learning in the subject. 

 Even in terms of research on student conceptions, majority of prior studies 

have small sample sizes. A validated instrument, such as the GCI, can serve to 

test the generalizability of smaller studies and make a broader argument about the 

general state of student understanding in abstract algebra. Further, in the absence 

of a validated measuring tool, claims of successful instructional innovations lack a 

strong foundation. This is reflected in the cautious claims made by both Larsen et 

al. (2013) and Dubinksy’s (1997) teams.   

 Group theory is typically believed to be a traditional stumbling block for 

mathematics majors (Dubinsky et al., 1994). As a field, we need to develop a 

coordinated picture of what it means for a student to understand group theory. The 

themes of complexity, abstraction, and formal logic provide a lens to continue 

towards this goal. 
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Concept Inventories and Theoretical Background 

In this section, I briefly discuss some of the theoretical considerations for 

this study. This section begins with an introduction to concept inventories. The 

meaning of conceptual understanding is explored with attention to various 

components of it. The conceptual boundaries in a given domain are discussed in 

terms of a domain analysis. I briefly address various tools that can help map the 

conceptual domain including curriculum (textbooks) and expert opinion. 

Additionally, I provide a brief overview of theory relevant to assessment design.  

Within each section, I return to the goals of the GCI to situate the discussion 

relative to this study. 

Concept Inventories 

 A concept inventory is a multiple-choice assessment instrument with a 

focus on conceptual understanding. While many assessments aim to capture 

procedural understanding, conceptual understanding is often neglected (Pegg, 

2003; Tallman & Carlson, 2012). Stone et al. (2003) described the creation of this 

sort of instrument for statistics. Their questions were based on, “the basic 

concepts of statistics and probability. The questions are non-computational in 

nature and focus on conceptual understanding rather than problem-solving ability 

(p. 3).”  In a similar manner, the GCI is aimed to capture conceptual 

understanding centered on set of concepts rather than computational or proving 

ability.   

The development of concept inventories can trace its roots to Hestenes et 

al.'s (1992) Force Concept Inventory (FCI). The name of the instrument lends 
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itself to two interpretations: the Force Concept Inventory or the Force Concept 

Inventory. The authors described their instrument using the former interpretation: 

they are aiming to assess the students “belief systems” (p. 2) about one concept: 

force. Hestenes et al. attempted to determine if students have a “coherent 

conceptual system” (p. 14) underlying their understanding of Newtonian 

physics.  However, within the construction of their instruments, the authors 

created items to capture a multitude of incorrect conceptions related to various 

concepts integral to the force concept. In this way, they also treat the instrument 

as a Force Concept Inventory, assessing various concepts related to the subject.   

Similarly the GCI could be understood flexibly as a Group Concept 

Inventory or a Group Theory Concept Inventory. The former requires an 

underlying model. The fundamental concepts in group theory are all intimately 

tied into one’s understanding of group. A well-developed system around group 

would include understanding of concepts necessary to understand groups (such as 

sets) as well as concepts that are informed by one’s understanding of groups (such 

as normal subgroups.) In the following section, I expand on various aspects that 

might contribute to a robust model of group starting with a discussion of the 

nature conceptual understanding.  

Conceptual Knowledge 

What one means by conceptual knowledge is not consistent within the 

mathematics education field. Hiebert and Lefevre's (1986) seminal work in the 

area introduced the definition of conceptual knowledge as “knowledge that is rich 

in relationships. It can be thought of as a connected web of knowledge, a network 
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in which the linking relationships are as prominent as the discrete pieces of 

information” (pp. 3-4). Star (2005) argued that this is actually a way concepts can 

be known, claiming the term conceptual knowledge encompasses both this way of 

knowing but also “what is known (knowledge of concepts)…” (p. 408). Star 

classified knowledge of concepts and relationships as deep conceptual knowledge. 

It is this definition that best reflects the goals of concept inventories. The FCI did 

not assess the definition of force, but rather assessed the underlying model and 

relationships. Similarly, the goal of the GCI is to assess not just the concepts but 

the properties and relationships amongst and within concepts. Understanding a 

concept requires both an understanding of the relations to surrounding concepts, 

as well as the concept itself. 

This idea is consistent with Tall and Vinner’s (1981) concept image and 

concept definition constructs. They explain that the “total cognitive structure 

which colours the meaning of the concept” (p. 152) is far greater than just the 

symbol or name used to represent it. They use the term concept image to capture 

the total cognitive structure associated with a concept, which includes “all mental 

pictures and associated properties and processes” (p. 152). A concept definition is 

then the “words used to specify a concept” (p. 152).  Tall and Vinner note that 

concept images need not be coherent and that frequently only portions are evoked 

at given times. It is this lack of coherence associated witsh Newtonian force 

concepts that Hestenes et al. (1992) set out to capture with their inventory. 

 A complete understanding of a topic would include related concepts 

forming some sort of coherent system. These relationships are a component of 
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Star’s (2005) deep conceptual knowledge. Tall (2007) discussed the need for 

“compressing knowledge into thinkable concepts” in order “to build a coherent 

connected mental structure to put significant ideas together” (p. 153).  In the 

context of the Force Concept Inventory, Savininen and Viri (2008) used the idea 

of conceptual coherence to frame this structure. In their theory, conceptual 

coherence in physics could be thought of as a conceptual framework (relating 

different concepts), contextual coherence (being able to apply knowledge in 

appropriate contexts), and representational coherence (moving between verbal, 

graphical and diagrammatic representations.)  (See Figure 2.) 

 

Figure 2. Conceptual coherence in physics. Reprinted from “The Force Concept 
Inventory as a measure of students conceptual coherence,” by A. Savininen and J. 
Viiri, 2008 International Journal of Science & Mathematics Education, 6, p. 722. 
Copyright 2007 by National Science Council. 
 
 In the context of mathematics, Biehler (2005) presented a parallel 

breakdown of three aspects that contribute to mathematical meaning of concepts. 
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He identified the domain of application, relations to other concepts within 

mathematics and representations available for working with the concept. Biehler 

used functions to illustrate his breakdown. The domain of application for 

functions included applications like curve fitting and modeling motion. 

Representations included types such as equations, tables, and graphs. Relations to 

other concepts included relationships to variables and mappings.  

 In a group theory context, groups would be related to other concepts such 

as binary operations, group axioms individually, and group isomorphisms. 

Relations to other concepts are part of a deep conceptual knowledge. The tools 

and representations for working with the concepts bring an additional dimension. 

A group might be understood symbolically (such as a set with a rule or a more 

general notation), tabularly (via a Cayley Table), or visually (as a set of 

symmetries). The domain of application might include describing the symmetries 

of a shape or describing the structure of our number system. As noted by 

Savininen and Viri (2008), the representations and applications aspects overlap 

with the relations aspect. “In order to apply a concept in a variety of contexts, the 

student must relate (integrate) a concept to other concepts. The student also needs 

to differentiate that concept from related concepts” (p. 723). The relationships 

between concepts underlie any assessment. It is nearly impossible to isolate a 

concept fully and still ask a meaningful question.  

 Utilizing the ideas of concept image, conceptions, and conceptual 

coherence, various components of conceptual understanding can be explored 

more in depth. The following section includes a discussion of examples, tasks and 
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student activity, representations, and formal/informal understanding of 

definitions. 

Examples. Sinclair, Watson, Zazkis, and Mason (2011) addressed 

examples as an important part of a concept image. They introduced the construct 

of a personal example space. A personal example space was defined as “the set of 

mathematical objects and construction techniques that a learner has access to as 

examples of a concept while working on a given task” (p. 291). An example 

consists of a specific instantiation of a more general concept. Aspects of personal 

example spaces include population (dense or scarce), connectednesss (connected 

to other examples), and generality (representiveness of a class of objects). 

Whereas a personal example space is individual, a conventional example space is 

the example space “as generally understood by mathematicians and as displayed 

in textbooks” (Watson & Mason, 2006, p. 15). It is the conventional example 

space that can be analyzed to bolster the representative nature of the concept 

inventory and provide insight into the domain of application. 

Examples can serve a multitude of purposes within a field. For example, 

Watson and Mason (2006) identified reference examples. Reference examples 

capture the properties of a class of object and can then be utilized to test 

conjectures and in other applications.  Within abstract algebra, Fukawa-Connelly 

and Newton (2014) have recently investigated how an instructor utilized examples 

of groups. They used variation theory to explore the types of properties a 

presented example group did or did not have. These properties included whether 

example groups were commutative or non-commutative, infinite or finite, as well 



 

 42 

as what property was missing in the case of non-examples.  Further, they 

identified various functions of examples in instruction including: illustrating a 

definition, instantiating a statement, introducing a topic, or motivating claims. 

While this analysis was conducted on examples from a single class, both the types 

of examples and their function provide a starting point for describing the usage 

and types of examples related to group. Exploring the function and nature of 

examples in curriculum can provide insight into the types of examples to which 

students have access as well as what examples might be utilized towards certain 

ends. 

Tasks. Associated tasks provide another way to address the domain of 

application. Tasks can be understood in terms of their expected student activity. In 

this way, the standard activity associated with various topics can be understood. 

In Thompson, Senk, & Johnson (2012) and Otten, Gilbertson, Males, and Clark’s 

(2014) textbook analyses, they investigated student activities associated with 

proof in algebra and geometry textbooks respectively. Some of the activities they 

found in their textbooks include making conjectures, investigating statements, 

constructing proofs, and finding counterexamples. (See Figure 3 for a complete 

list of codes.) These types of explorations can help identify the domain of 

application portion of conceptual understanding. 
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Figure 3. An analytic framework for reasoning-and-proving in geometry 
textbooks. Reprinted from “The mathematical nature of reasoning-and-proving 
opportunities in geometry textbooks,” by S. Otten, N.J. Gilbertson, L.M. Males 
and D.L. Clarck, 2014, Mathematical Thinking and Learning, 16, p. 58 Copyright 
2014 by Taylor & Francis Group, LLC. 
 

Within a course such as abstract algebra, proof activity often dominates 

the tasks. For that reason, it makes sense to further subdivide types of proofs. In 

Hart’s (1994) analysis of proof-writing in abstract algebra, he identified several 

key types of proofs in group theory including satisfy axioms proof  (show a given 

example is a group), set-definition proof (show a given subset is a subgroup), 

uniqueness proof (the existence of a unique idempotent element), syntactic proof  

(use a procedural or syntactic approach to show that a given group is Abelian), 

and non-routine proof (such as showing that a group with even number of 

elements has one element that is its own inverse). Hart’s list is not exhaustive, but 

does illustrate some of differences that exist within the proof category of activity.  
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While much of the activity in algebra textbooks may be limited to proof, 

other activity should also be explored. Tallman and Carlson (2012) adapted 

Anderson and Krathwohl’s (2001) seven intellectual behaviors to categorize 

cognitive behavior associated with tasks on calculus exams. Their categories 

include: Remember, Recall and apply procedure, Understand, Apply 

understanding, Analyze, Evaluate, and Create. Remembering involves addressing 

a rote factual question stemming from some prior knowledge. In group theory, 

this might appear as stating or checking a definition for group or isomorphism. 

Recall and apply procedure involves being prompted to apply a known procedure. 

This might look like “calculate the order of an element” in a group theory context. 

Several of their activities are less procedural including evaluating and applying 

understanding. In a group theory context, a student may be asked to evaluate if a 

given statement is true, such as: “All order 12 groups have a subgroup of order 6.” 

Students may also need to apply understanding of various important theorems in 

order to answer questions. For complete descriptions of Tallman and Carlson’s 

categories see Table 1. 

Together, tasks and examples provide a relatively complete view of the 

domain of application (at least within the context of introductory group theory 

classes.)  

 Representations.  Representations also provide essential information 

about concepts. In Lesh’s (1981) article on problem-solving, he introduced the 

notion of representational systems including spoken symbols, written symbols, 

pictures, manipulative models, and real world situations. Broadly, representations 
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can be thought of as “two entities that are taken, by an actor or an observer, to be 

in some referential relation to one another, one taken to ‘represent’ the other” 

(Kaput, 1998, p. 266).  

Table 1 
 
Cognitive Behavior Associated with Calculus Exam Items. Adapted from “A 
characterization of Calculus I final exams in US colleges and universities,” M.A. 
Tallman and M.P. Carlson, 2012, The 15th annual conference on Research in 
Collegiate Mathematics Education, p. 2-222. 
 

 
 

As in personal and conventional example spaces, representations exist as 

both external systems and internal systems (Goldin, 2002). External 

representation systems are the concrete systems available and observable. Internal 

representation consists of the personal systems that students construct. These are 

unobservable mental models. External systems are those existing in documents 

such as textbooks. Within the group theory context, researchers have addressed 

visual representations of groups such as utilizing an equilateral triangle for 

symmetries (Almeida, 1999) and student use of Cayley tables (Hazzan, 2001).  
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Nardi (2000) reported on some of the challenges of a student utilizing a visual 

representation of equivalence classes (cosets) (See Figure 4). Understanding and 

relating representations is a key piece of conceptual understanding.  

 

Figure 4. Equivalence classes represented by fibers. Adapted from 
“Mathematics undergraduates' responses to semantic abbreviations, 
‘geometric’ images and multi-level abstractions in group theory,” by E. Nard, 
2000, Educational Studies in Mathematics, 43, p. 175. Copyright 2001 by the 
Kluwer Academic Publishers. 
 
 Formal and informal definitions. Closely related to representations are 

definitions. A definition could be one type of representation. Tall and Vinner 

(1981) refer to a formal concept definition as a mathematical definition that is 

accepted by the mathematics community. Raman (2002) noted in mathematics 

there is often one accepted formal definition such as the delta-epsilon definition 

for continuity. However, a multitude of informal definitions might exist such as 

continuous functions being characterized as “functions as ones whose graphs have 

no breaks” (p. 136). In her study, she investigated both the formal and informal 

ways that topics can be discussed in textbooks.  

 Both formal and informal characterizations are an essential aspect of 

understanding a concept. For example, in Leron, Hazzan and Zazkis’s (1995) 

discussion of isomorphism, they differentiated between a naïve and formal 

understanding of isomorphism. A formal understanding of isomorphism would be 
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via the typical definition: two groups are isomorphic if there exists a one-to-one 

and onto homomorphism between the groups. A naïve view of isomorphism 

would be the non-formal characterization of groups such as being essentially the 

same groups just with elements renamed. The informal characterizations of 

concepts provide another dimension of conceptual understanding. 

Group schema. In the broadest sense, the concepts (as well their 

examples, applications, representations, and characterizations) in group theory are 

all part of a well-developed group schema (Dubinsky, 1994; Amon, et al., 

2013).  A schema for a mathematical topic can be defined as, “all of [an 

individual’s] knowledge connected (explicitly or implicitly) to that topic” (p. 

110). An individual’s schema includes objects, processes, and other schemas 

“which are linked by some general principles or relations to form a framework in 

the individual’s mind that may be brought to bear upon a problem situation 

involving that concept” (Amon, et al., 2013, p. 110). The group schema requires 

the coordination of an axiom schema, binary operation schema and set schema as 

illustrated in Figure 5. This genetic decomposition illustrates some of the 

coordination and fundamental concepts required to have a well-developed group 

schema.  
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Figure 5. A genetic decomposition of the group schema. Reprinted from APOS 
Theory: A framework for research and curriculum development in 
mathematics education by I. Arnon, 2013, Copyright 20013 by the Springer 
London. 
 
 However, using this decomposition does not capture the scope of schema 

as defined above which most closely resembles a concept image. The genetic 

decomposition consists of the mental constructions needed to make sense of 

group. A schema may also contain related conceptions such as quotient groups 

(which requires coordination of cosets, binary operation and group (Asiala, 

Dubinsky, Mathews, Morics, & Oktaç, 1997)), as well as example groups and 

how they may be leveraged. A group concept inventory needs to address groups 

in both directions: concepts that are coordinated to understand groups and 

concepts that require groups to make sense of them. “When a person confronts a 

mathematical problem situation, he or she evokes a Schema and makes use of 

some of its components and some relations among them to deal with the 
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situation” (Arnon et al., 2013, p. 112). These relationships play a central role in 

mathematical activity. Conceptual understanding is not knowledge of what a 

concept is alone. Rather, conceptual understanding represents a broad network of 

relationships that include relationships amongst topics, formal and informal 

understanding of a concept, representations of the concepts, and how the concepts 

may be utilized. In order to create a full picture of understanding a concept, these 

various components of conceptual understanding should be addressed. 

Fundamental Topics in Group Theory 
 

Most university group theory courses start in one of two directions: 

beginning with symmetry and then building group axioms or beginning with 

group axioms with symmetries as just a passing example (Almeida, 1999). These 

differing schools of thought may reflect differences in what constitutes the 

fundamental concepts of group theory. In fact, Dubinsky et al., (1994) reported 

“On Learning the Fundamental Concepts of Group Theory” where they discussed 

groups, subgroups, cosets, coset products, and normality, sparking a discussion on 

this matter. Burn (1996) challenged that isomorphism, closure, associative, 

identity, inverses, sets, functions, and symmetry were all overlooked as 

fundamental concepts. Dubinsky, et al. (1997) conceded that the title should have 

stated “on some fundamental concepts of group theory” (p. 251) where functions, 

sets, permutations, symmetries and the four group axioms are also fundamental to 

group theory. Johnson, Caughman, Fredericks, and Gibson (2013) discussed the 

important topics in introductory group theory as, “the axioms, basic properties, 

orders of elements, subgroups, examples, permutations, isomorphisms, 
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homomorphisms, cosets, normal subgroups, quotient groups, and the isomorphism 

theorems” (p. 750). Caughman, an experienced group theory instructor, provided 

this list when explaining the tensions between coverage and developing deep 

conceptual understanding. Suominen (2014) provided a slightly different list of 

topics when having graduate students zoom out on abstract algebra more 

holistically.  Three graduate students were asked to identify the important topics 

in abstract algebra. The students agreed only on group, ring, field, Galois Theory, 

isometries and geometric applications. Suominen noted that there is no consensus 

as to what topics are essential in the subject area. These discussions highlight the 

fact that what constitutes the fundamental concepts has not been explored in any 

concrete manner and any number of topics may be argued as essential without 

further exploration. 

Using experts to determine fundamental topics. The above studies and 

conversations represent one potential source of determining essential aspects of a 

domain: using experts in the field. For an ill-defined domain with subjective 

attributes, often experts in the domain provide the optimal resource for making 

decisions about what content is fundamental. In previous concept inventories and 

conceptual-driven assessments, experts served a multitude of roles. In the PCA, 

experts evaluated tasks after their creation to determine if they were appropriate 

and accurate (Carlson, Oehrtmen, & Engelke, 2010). In the development of the 

Calculus Concept Inventory, the creators leveraged a panel of experts to identify 

relevant topics and create and evaluate tasks (Epstein, 2007). Experts were 

leveraged in a more formal manner in the creation of the Comprehensive 



 

 51 

Assessment of Outcomes in a first Statistics Course, a conceptual assessment of 

introductory statistics (CAOS). A team was assembled that served to both make 

decisions of where to focus, as well as create multiple-choice tasks. The team 

provided several rounds of feedback where they addressed the content validity 

(relevance to what is being targeted), and identified concepts that were not being 

targeted on the test (Delmas, Garfield, Ooms, & Chance, 2007). This iterative 

process is one potential model for arriving at a set of tasks and important topics 

related to a domain. Another option is to employ a panel consensus protocol in the 

front-end of a project. The creators of the Thermal and Transport Science 

Inventory did this through a Delphi study where a panel of experts arrived at 

ratings for importance and difficulty of a series of topics (Streveler, Olds, Miller, 

& Nelson, 2003). A more detailed discussion of Delphi studies can be found in 

the Methodology Chapter. 

 Curriculum and textbooks. Beyond leveraging the knowledge of experts, 

artifacts of the field can also serve as a basis for determining the important and 

valued aspects of domain. For introductory group theory, textbooks provide 

essential information about what is valued in the classrooms. In regards to 

textbooks, Zhu and Fan (2006) noted: 

…textbooks are a key component of the intended curriculum, they also, to 
a certain degree, reflect the educational philosophy and pedagogical values 
of the textbook developers and the decision makers of textbook selection, 
and have substantial influence on teachers’ teaching and students’ learning 
(p. 610). 

 
Textbooks contain narratives that introduce the important topics in a domain as 

well as examples, and exercises related to these topics. Textbook analysis 
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frequently consists of analyzing the narratives or exercises alone (Li, 2000). 

However, Thompson, Senk, and Johnson (2012) argued, “The two aspects 

together provide a more complete and coherent picture of opportunities to learn 

than that which can be obtained from analyses of either narrative or exercises 

alone” (p. 256). In order to arrive at a complete picture of what is valued, both 

should be explored. A better picture of the conceptual domain surrounding a topic 

can be developed through exploring what examples textbooks provide, the types 

of activities the textbooks present to students, and the types of representations 

frequently used.  

Conclusion. Prior to developing items, an understanding of the targeted 

subject area is vital. Experts and artifacts provide essential information on the 

domain. In the case of education, instructors and textbooks are two essential parts 

of the domain. Textbooks provide insight into the intended curriculum and typical 

tasks to which students are exposed. Experts provide a deeper level of insight and 

through careful processes such as a Delphi study, a meaningful consensus on the 

valued and important aspects of a domain can be established.   

Assessments  

There are three key components underlying assessment: observations, 

interpretation and cognition (see Figure 6). We are trying to measure cognition 

via observations and arrive at assessment of cognition via interpreting the 

observations (Pellegrino, Chudowsky, & Glaser, 2001). Cognition is “a theory or 

set of beliefs about how students represent knowledge and develop competence in 

a subject domain” (p. 44).  The observation corner “represents a description or set 
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of specifications for assessments tasks that will elicit illuminating responses from 

students’ about the target domain to be measured” (p. 48). The interpretation 

corner “encompasses all the methods and tools used to reason from fallible 

observations” (p. 48). In order for an instrument to be valid, it must coordinate 

these aspects.   

 

Figure 6. The assessment triangle. Adapted from “Rigorous methodology for 
concept inventory development: Using the 'assessment triangle' to develop and 
test the Thermal and Transport Science Concept Inventory (TTCI),” by R.A. 
Streveler, R.L Miller, A. I. Santiago-Roman, M.A. Nelson, M.R. Geist and B.M. 
Olds, 2011, International Journal of Engineering Education, 27, p. 969. 
Copyright 2011 by TEMPUS Publications. 
 

A quick note on test theory.  When evaluating and creating an 

instrument, a test theory is needed to inform the process. There are two major 

branches of test theory often referred to as classical test theory and modern test 

theory. The classical test model assumes a simple linear relationship where: 

Test score = True score + Error. 

In a valid instrument, true score would represent what the test is intended 

to measure or equivalently the score across all parallel forms even for an invalid 

instrument (Hambleton & Jones, 1993). Whereas error would be a random 
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uncorrelated component accounting for the difference between true score and test 

score. 

In contrast, modern test theories, often categorized as latent trait theories 

or item response theories, take a more nuanced approach to modeling items. 

Instead of a test focus, each item is modeled with an item characteristic curve. 

These curves are generated by various functions that look like: 

(Hambleton & Jones, 1993). 

where θ is equivalent to true test score, or the latent trait being measured. The 

above model is the most complex with three parameters: item difficulty (b), item 

discrimination (a) and a guessing factor (c). Simplified versions based on just 

item difficulty, or item difficulty and discrimination also exist.  

Overall, item response models have some benefits over classical test 

models. The models are more theory grounded, and do not have the limitations of 

being sample (of selected items) and sample (of examinees) dependent (Fan, 

1998). Additionally, item difficulty can obscure item discrimination in classical 

test theory (Hambleton & Jones, 1993). A particularly easy item might be non-

discriminating because most students get it right using a classical test theory 

approach, however, the item might do an excellent job discriminating between 

low scorers which would only be captured in the more complex models of modern 

test theories. Yet, classical test theory continues to underlay the majority of 

concept inventories (see Carlson et al. (2010) and Hestenes et al. (1992) for 

examples.) From a practical standpoint, classical test models require a smaller 



 

 55 

sample size and less intensive analysis (such as goodness-of-fit studies) 

(Hambelton & Jones, 1993). Furthermore, there is no consensus in the 

psychometrics field as “which one is preferable is a matter of continued debate” 

(Haladyna, 2004, p. 164). There have been several attempts to empirically 

differentiate between item statistics derived from the different theories (Fan, 

1998; Macdonald & Paunonen, 2002) and to see if test creation using item 

response theory and using classical test theory produced parallel forms (Lin, 

2008). In each of these cases, the theoretical choice did not yield significant 

differences, further validating the idea that the ease of using a classical test theory 

trumps the stronger theoretical basis for item response theories.  For these 

reasons, I took a classical test theory approach during the development of the 

GCI. 

Validity and Reliability 

The creation of any sort of measurement instrument involves the 

dangerous challenge of converting a complex situation into a distilled score. 

These scores must convey some sort of interpretable meaning whether at the item 

level or at the instrument level. When creating an assessment, two questions must 

be addressed:  

1. Can this assessment be used repeatedly with consistent results?   
2. Are we measuring what we purport to be measuring?  

These questions can be addressed using the constructs of reliability and 

validity respectively. A reliable instrument can be used repeatedly with the same 

results expected.  Reliability could be thought of analogous to precision whereas 
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validity could be thought of as accuracy. Consider the target in Figure 7. The left 

target provides a metaphor for a reliable instrument. The scores are not hitting the 

target, but they are all in the same area and measuring something consistently. 

The right target would be an instrument that is valid (the scores are centered 

around the target) but not reliable as the scores are scattered. In the target 

metaphor, both of these images represent problematic assessment tools. 

              

Figure 7. The target analogy for reliability (left) and validity (right). Adapted 
from Research Methods Knowledge Based by W. Trochim and J. P. Donnelly, 
2007, Copyright 2008 by the Atomic Dog Publishing. 
 

Validity. The question of validity is a complex one. Within the field of 

measurement and psychometrics, types of validity are varied and inconsistently 

named (Trochim & Donnelly, 2008; Lissitz & Samuelsen, 2007). Trochim and 

Donnelly (2008) defined validity as: “the degree to which inferences can 

legitimately be made from the operationalizations in your study to the theoretical 

constructs on which those operationalizations are based” (3-1 Construct Validity, 

para. 2). An operationalization is the translation of a construct into the concrete 

assessment. As my goal was to create an assessment that measures group theory 

understanding, then the concept inventory assessment was the operationalization 
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of this construct. Validity is then the degree to which this assessment actually 

represents group theory understanding.  

Generally, authors take one of two approaches, either treating types of 

validity as independent categories or as subcategories of construct validity 

(Trochim & Donnelly, 2008). I treat validity as consisting of multiple categories 

where construct validity is of narrower focus.    

Since the introduction of the Force Concept Inventory (Hestenes et al., 

1992) and Mechanics Baseline Test (Hestenes & Wells, 1992), concept inventory 

creation has permeated through many subject areas at the university level. 

However, methods for establishing validity vary greatly and are often 

underreported (or perhaps just underexplored) (Lindell, Peak, & Foster, 2007). 

The most common forms of validity explored in concept inventory fall into three 

categories: content, criterion-related, and construct validity (Lindell, et al., 2007). 

For the remainder of this discussion I adopt this terminology from Lindell, et al.’s 

meta-analysis of various physics-related concept inventories. Each type of validity 

is discussed with respect to their analysis as well as their relationship to Messick’s 

(1995) and Lissitz and Samuelsen’s (2007) validity frameworks.  

 Content validity – relevance and representativeness.  Lindell et al. 

(2007) defined content validity as “the degree to which an inventory measures the 

content covered in the content domain” (p. 15). Messick (1995) captured this idea 

as content relevance and representativeness. Messick argued the need to 

determine the knowledge that is to be revealed by the assessment tasks. This 

involves determining the “boundaries and structure of the content domain” (p. 
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745) as discussed in the prior section. A major purpose is to understand the 

“construct-relevant sources of task difficultly” (p. 745).  The assessment items 

need to be relevant to the identified domain and its structure. Beyond relevance, 

the tasks should also be representative. All of the important parts of the domain 

should be covered. Tasks should be selected based on functional importance, what 

Brunswik (1955) called ecological sampling (as cited in Messick (1995), p. 745). 

A task with functional importance is one that is essential to the domain and is rich 

enough to successfully unearth potential alternate conceptions. In the GCI, the 

tasks reflect the important aspects of group theory and target potential areas that 

would differentiate experts from novices. Messick advocated for the use of 

experts to appraise representativeness and relevance.  

Construct validity – substantive.  Lindell et al. (2007) defined construct 

validity as, “The degree to which scores can be utilized to draw an inference on 

the content domain” (p. 15). This is roughly translated to what Messick (1995) 

labeled substantive validity and what Lissitz and Sameulsen (2007) labeled latent 

process validity. This type of validity is characterized as “the need to move 

beyond traditional professional judgment of domain content to accrue empirical 

evidence that the ostensibly sampled processes are actually engaged by 

respondents in task performance” (Messick, p. 745). Additionally, processes such 

as factor analysis can serve to validate that items with expected commonalities are 

indeed correlated. Whereas content validity may often resemble face validity, 

substantive construct validity provides the key information needed to have 

confidence in one’s operationalization. This is particularly true for multiple-



 

 59 

choice tests where complicated cognition is simplified down to a lettered answer. 

For creating a concept inventory, interviewing students about their choices 

provides construct validity. By having them share their thought processes and 

probing them about how their selection choice is related to their conception of 

various topics, an argument is made that their selection is meaningful and that 

students are in fact choosing answers for the reasons hypothesized.  

Factor analytic methods. The meaningfulness of factor analysis in concept 

inventory creation is controversial. Before discussing the controversy, I introduce 

factor analysis. The reader is cautioned that this is a brief conceptual overview 

and not a detailed mathematical breakdown. 

Factor analytic methods aim to leverage correlations amongst items to 

identify underlying or latent variables. An instrument might have 25 items, but 

they might not all be contributing unique information. Test item outcomes might 

be a linear combination of other factors. Perhaps there are 25 items, but there 

might be five underlying factors that account for most of the variation. 

 Factor analysis can serve several purposes: 

1. Identifying how many latent variables underlie a set of items. 
2. Condensing information – eliminating items the might be attributed to 

the same latent variable.   
3. Identifying groups of items that co-vary and attributing meaning to an 

underlying factor. 
4. Eliminating items that do not fit into a factor category or fit into more 

than one category (Devellis, 2011).  
 

Factor analysis can be confirmatory or exploratory. Confirmatory factor analysis 

is used when an instrument is designed with specific factors in mind. However, in 
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the case of the GCI, exploratory factor analysis was more appropriate. Factor 

analysis can be done to explore unanticipated structure that might exist. 

 Principal component analysis (PCA) is the method utilized by mainstream 

statistical software (Tryfos, 1998). Essentially, PCA is an iterative process where 

factors are extracted. A correlation matrix can be created for all individual items. 

A first factor (the sum of the items) is used to try and recreate observed 

correlations. A residual matrix is computed by subtracting the single-factor 

predictions from the original correlations. This process can be repeated on the 

residual matrices to extract additional factors. There are various rules for 

determining how many factors to extract. One rule of thumb is to only find factors 

that contribute to more than a single item. (This is done through finding the 

eigenvalues associated with each factor.) Alternately, a scree plot can be used 

where factors and their corresponding eigenvalues are graphed. The number of 

factors can be determined by looking for a sudden drop or “elbow” in the graph. 

See Figure 8 that illustrates a situation with three underlying factors. Once the 

number of factors is found, the matrix can be rotated to maximize interpretability 

of the factors.  
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Figure 8. Scree plot. Factors vs. Eigenvalues 

 If an instrument is designed with expected factors, then this type of 

analysis can serve to verify that the expected factor structure did exist. In the case 

of the Force Concept Inventory, Heller and Huffman (1995) challenged the 

validity of the instrument based on their factor analysis. The FCI taxonomy has 

six dimensions. Heller and Huffman attempted to confirm this structure in the 

assessment instrument through factor analysis. They found no factors accounting 

for a substantial amount of variance arguing that, “from the students’ point of 

view, the FCI does not appear to test for a coherent, universal force concept, 

dimensions of a force concept, or any organized alternative beliefs” (p. 503). 

Hestenes and Halloun (1995) challenged that this is not a flaw, but in line with the 

established incoherence in students’ systems. The population of students does not 

have a coherent Newtonian idea of force and therefore, the underlying factor 

structure would not be apparent based on this population. 
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 Heller and Huffman (1995) further argued that without a factor structure, 

students with low scores might have a lack of coherent understanding, but that 

students with high scores do not necessarily equate with having a coherent 

system. If there is no evidence that the test itself reflects the coherent system, then 

score-based claims are limited. If you have a coherent system, you should score 

well on the test; however, scoring well on the test does not guarantee you have a 

coherent system. Not arriving at a claim of coherence does not detract from the 

meaningfulness of the assessment. In fact, a concept inventory is significantly 

more nuanced than what a factor analysis can account for. The meaningfulness is 

not in the simplified right and wrong answers, but rather that each multiple-choice 

question targets a multitude of conceptions around a given task and concept. 

Factor analysis treats the questions as dichotomous and loses the richness of 

diagnostically meaningful answer choices. A successful concept inventory targets 

areas of incoherence and that may also reflect less than optimal factor structure.  

As argued by Lissitz and Sameulsen (2007) the meaningfulness of an assessment 

comes first and foremost from establishing that the tasks are eliciting the expected 

behaviors. If an assessment is deemed relevant and representative and each 

distractor is explored qualitatively to associate its selection with student thinking, 

the assessment is undoubtedly meaningful.  

Criterion validity.  Lindell, et al. (2007) defined criterion validity as, “The 

degree to which scores on an inventory predict[s] another criterion” (p. 15). 

Messick (1995) referred to this type of validity as external where an instrument is 

correlated with some sort of external behavior or measurement. Lissitz and 
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Samuelsen (2007) argued that criterion validity is not a type of validity, but rather 

a measure for utility, an external factor.  Their argument was that a high 

correlation between measure A with an external measure B might indicate that 

measure A has high utility for predicting measure B rather than they measure 

similar constructs. Often grades are correlated with concept inventories. However, 

a lack of correlation between the two does not invalidate measure A. If measure A 

has strong construct and content validity, then lack of criterion validity would not 

invalidate the instrument.  Lindell, et al. found that only one of the twelve concept 

inventories in their analysis reported on criterion validity, perhaps strengthening 

Lissitz and Samuelsen’s argument that criterion validity is an indirect measure of 

validity.  

Other validity related considerations.  Both Messick (1995) and Lissitz 

and Sameulsen (2007) presented additional aspects of validity. Of particular note, 

Messick cautioned that construct-irrelevant variance can occur because of undue 

difficulty and easiness. Unintended difficulty can emerge when non-related issues 

such as poor-reading abilities impede a student’s ability to demonstrate 

knowledge in another domain. Unintended easiness can emerge when context 

clues might lead students to the correct answer without having the domain 

knowledge. These are concerns that may be addressed during the follow-up 

interviews with students. Messick (1995) also included an aspect of validity based 

on consequences and potential biases. In the statics concept inventory, the authors 

partially addressed this issue by making sure there were no significant differences 

in mean scores based on gender and race.  While what is required to establish 
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validity varies (Lissitz and Sameulsen, 2007), the more validity components 

addressed, the better the argument that an instrument is unbiased and meaningful. 

Reliability. Trochim and Donnelly (2008) defined reliability as, 

“repeatability or consistency. A measure is considered reliable if it would give 

you the same result over and over again” (3-2c Theory of Reliability, para. 2). 

Reliability can be estimated in several manners such as test- retest, parallel forms, 

and internal consistency. Parallel forms reliability is useful with large samples and 

item banks where two parallel tests could be administered to half of the samples. 

However, this is not a practical form of reliability with the work-intensive item 

development in concept inventories. Test- retest reliability is determined by given 

a test to a sample at one point in time and then again (to a similar) sample at 

another point in time. A reliable test will produce similar scores on both occasions 

(all else being equal.) While this has been done occasionally in concept 

inventories (Olds, Streveler, Miller, & Nelson, 2004; Smith, Wood, & Knight, 

2008), an internal consistency approach is more common as it does not require 

separate administrations.  

As explained in Trochim and Donnelly (2008), internal consistency is 

frequently estimated by Cronbach’s alpha. Cronbach’s alpha is equivalent to 

using a split-half approach. A split-half approach takes the set of items and splits 

them into two halves. The scores on each half should be correlated. For a given 

sample, if you split a test into all possible halves and then correlate each pair, the 

average provides a measure of internal consistency. If students score dramatically 

different on different halves of the test, there is a likely a reliability problem 
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indicating error (and not the latent trait measured by test) is contributing 

significantly to scores. However, there are limitations in this type of reliability 

exploration. The underlying assumption is that the test measures a single 

underlying trait. The use of an internal consistency estimate such as Cronbach’s 

alpha can be used to explore reliability, but the dimensionality of the test 

mitigates the degree that the test should be internally correlated.  

Increasing reliability. In classical test theory, the defining characteristics 

of an item are difficulty and discrimination. The item difficulty is defined as the 

percentage of test-takers who answered correctly. The acceptable range of 

difficulty varies. If the proportion of students answering a question correctly is 

less than chance, the item should be reviewed. The question might be misleading 

or the answer key is wrong. If the proportion of students answering a question 

correctly is high (such as greater than 85%), then the question is likely too easy 

and may be answerable through some other clue based on the wording as opposed 

to their knowledge of the topic. 

The second major factor to address is item discrimination. The item 

discrimination is defined as, “the item’s ability to sensitively measure individual 

differences that truly exist among test-takers” (Haladyna, 2004, p. 166). If we 

operate under the assumption that the GCI is assessing a related set of concepts or 

more generally the group concept, students with incorrect answers on an item 

should correlate with lower overall scores (with the item removed). Students who 

answer the item correctly should correlate with higher scores on the assessment. 

An item would have high discrimination if the group of students who answered 
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the item correctly averaged 90% on the test and the group of students who 

answered incorrectly averaged 40% on the test.  If the averages are about equal in 

the two groups, the item is not discriminating. If the average is higher for students 

answering incorrectly, the item is discriminating negatively which might indicate 

the answer key is incorrect.  

Table 2 
 
Item Classification Guide by Difficulty and Discrimination. Adapted from 
“Assessment in Health Professions Education,” S. M. Downing & R. Yudkowsky, 
2009. New York, NY: Routledge, p. 108. 
Item Class Item 

Difficulty 
Item 
Discrimination 

Description 

Level I 0.45 to 
0.75 

+0.20 or higher Best item statistics; use most items 
in this range if possible 

Level II 0.76 to 
0.91 

+0.15 or higher Easy; use sparingly 

Level III 0.25 to 
0.44 

+0.10 or higher Difficult; use very sparingly and 
only if content is essential – 
rewrite if possible 

Level IV <0.24 or 
>0.91 

Any Discrim. Extremely difficult or easy; do not 
use unless content is essential 

The point-biserial correlation is a standard measure for item 

discriminations where a student’s correctness on an item (1 or 0) is correlated 

with their overall score. This correlation coefficient can range from -1 to 1.  The 

higher an item’s discrimination, the better the item correlates to the overall test. A 

negative score might indicate an item is scored incorrectly. Table 2 presents some 

overall guidelines. 

By attending to item discrimination and difficulty, items that are not 

consistent with the overall test can be altered or removed. If an item is too 

difficult or easy, it is not contributing useful information to the score. If an item 

fails to discriminate, the information it contributes is not consistent with the test.  
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Conclusion  

For an assessment to be meaningful it must be valid and reliable. By 

determining what it means to have conceptual understanding, the scope of a 

concept inventory was identified generally. However, situating this scope in the 

context of group theory involves several measures to ensure validity. Domain 

analysis plays a central role in content validity where textbooks, literature, and 

experts can help assure the representativeness and relevance of items. Further, 

surveying and interviewing students provides the means for establishing construct 

validity. This qualitative analysis can lend evidence that each multiple-choice 

distractor is in fact reflecting the associated conception.  Furthermore, quantitative 

analyses such as correlating scores with external factors can bolster validity. The 

essence of a strong assessment is identifying what you want to assess, mapping 

the related domain, than ensuring meaning by establishing validity and reliability.   
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Project Methodology 

  
Figure 9. Overall methodology.  

The steps involved in the creation of concept inventories stem from the 

work of Hestenes and his colleagues on the Force Concept Inventory and 

Mechanics Baseline Test (Hestenes et al., 1992; Hestenes & Wells, 1992). In 

Lindell et al.’s (2007) meta-analysis of concept inventories, they outlined the 

general steps that Hestenes and his successors took when designing the 

instruments: 

1. Identify purpose 
2. Determine the concept domain 
3. Prepare test specifications 
4. Construct initial pool of items 
5. Have items reviewed – revise as necessary 
6. Hold preliminary field testing of items – revise as necessary 
7. Field test on large sample representation of the examinee population 
8. Determine statistical properties of item scores – eliminate inappropriate 

items 
9. Design and conduct reliability and validity studies (p. 15). 

While the apparent linearity may be misleading, the general framework presents a 

guideline for creating a concept inventory. The first part of the GCI methodology 

focused on determining the concept domain. The second part focused on going 

from a concept domain analysis to the creation and validation of a concept 

assessment. Table 3 presents an overview of GCI creation timeline. 
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Table 3 
 
Timeline of GCI Development 
Delphi 
Study/ 
Textbook 
Analysis/ 
Literature 
Search 

Develop/ 
Evaluate 
Tasks 

Pilot 
Open-
Ended 
Tasks  

Large-scale 
Open-ended 
Round 

Follow-Up 
Interviews 

Pilot 
Multiple- 
Choice 
Version (and 
follow-up 
interviews) 

Large-Scale 
Multiple-
Choice 
(continued 
follow-up 
interviews) 

Summer 
2014 

September 
2014 

October 
2014 

December 
2014 

January 
2015 

March 2015 April-May 
2015 

 
Concept Domain Analysis 
 

  

Figure 10. Domain Analysis Triangle  

 Typically, the creation of a concept inventory relies on a taxonomy of 

foundational understandings about the area to be covered (Carlson, Oehrtman, & 

Engelke, 2010; Hestenes, Wells, & Swackhamer, 1992). However, such 

taxonomy did not exist for group theory. A domain analysis was used to achieve 

the taxonomy goals.  

 

Figure 11. Components of the domain. Reprinted from “Focus article: On the 
structure of educational assessments,” by R.J. MisLevy, L.S. Steinberg, and R.G. 
Almond, 2003, Measurement: Interdisciplinary Research & Perspective, 1, p. 6. 
Copyright 2003 by Lawrence Erlbaum Associates, Inc. 
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 A domain analysis aims to identify the “boundaries and structure of the 

content domain” (Messick, 1995, p. 745) needing to be determined. This is an 

essential part of creating an instrument to measure understanding of any domain. 

Prior to creating any tasks, assessment developers should determine what is 

important and relevant within the domain to be measured. This helps to develop 

an argument for content validity (the scope and relevance of questions to the 

targeted domain.) MisLevy, Steinberg, and Almond (2003) explained domain 

analysis as:  

…marshaling substantive information about the domain—bringing 
together knowledge from any number of sources and then beginning to 
organize beliefs, theories, research, subject-matter expertise, instructional 
materials, exemplars from other assessments, and so on (p. 7).  
 

The analysis of the domain can be broad and first requires identifying what is to 

be analyzed. In the case of the GCI, the conceptual domain surrounding group 

was the intended domain. However, identifying what it meant to understand a 

concept and what are the fundamental related concepts was not a trivial task. The 

domain’s boundaries were established via expert surveying, textbook analysis, 

and literature consultation.  

 Delphi study and expert panel. The first step in developing the GCI was 

to conduct a Delphi study. A Delphi study is a “widely used and accepted method 

for achieving convergence of opinion concerning real-world knowledge solicited 

from experts within a certain topic” (Hsu & Sanford, 2007, p. 1). Through a series 

of iterative rounds, experts arrive at a consensus on a topic. A Delphi study allows 
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for participants to maintain anonymity from one another while interacting with 

one another’s ideas. 

 A panel of 13 experts was gathered with the goal of heterogeneity. Each 

member of the panel had taught the course at least two times. I selected the panel 

to be heterogeneous in order to best represent the variety of views that may exist 

relevant to introductory group theory. Aligned with Streveler et al.’s (2011) 

recommendations, the panel was geographically dispersed and contained experts 

with varying backgrounds including textbooks authors. The panel had four 

abstract algebra textbook authors, eight mathematicians (with a range of 

specialties including math history, analysis and several group theory specialists), 

and five mathematics education researchers who have published related to 

abstract algebra pedagogy. 

 The panel was surveyed four times: 

Pass 1. The panelists listed what they considered to be the essential topics 

in group theory. I then compared these responses and selected all topics that 

appeared on at least two lists.  

Pass 2. The panelists were presented with the list of topics from the first 

pass. The panelists then rated each topic on a score from 0-10 for importance and 

0-10 for difficulty. I then compiled the ratings in order to present the median, 

mode, and interquartile range (IQR). 

Pass 3. During the third pass, the panelists reconsidered their ratings based 

on the descriptive statistics provided. The experts assigned a new point value 

from 0-10 in the two categories. If a panelist assigned a number outside of the 
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IQR, I asked them to provide justification for their responses. At the end of the 

round, I compiled the same descriptive statistics.  

Pass 4. The panelists rated each topic in terms of importance and 

difficulty one final time. They rerated after considering the justifications and 

descriptive statistics from pass 3.  

At this point, I selected all topics that had a mean score of at least 9 out of 

10 to compile a list of fundamental topics in introductory group theory. 

The Delphi process provides some advantages over other methods of 

eliciting expert opinions. Unlike a round table discussion, responses are 

anonymous and so experts are not going to switch opinions based on perceived 

importance of individuals. However, unlike individual interviews, this process 

does allow for experts to consider and reflect on their peers’ opinions (Sterveler et 

al., 2011).  

Textbook analysis. The next phase involved analyzing textbooks in order 

to analyze the treatment of the topics selected through the Delphi Study. These 

topics were: the First Isomorphism Theorem, homomorphism, associativity, 

inverses, identity, quotient groups, cosets, subgroups, normal subgroups, kernel, 

abelian groups, isomorphism, cyclic groups, binary operations, group, Lagrange’s 

theorem, and the order of an element. Representative textbook analysis has been 

used frequently in the development of concept inventories (Lindell et al., 2007; 

Stone et al., 2003; Wage, Buck, Wright, & Welch, 2005). However, exactly how 

textbooks informed the creation of the tool is largely unaddressed in the literature. 

This textbook analysis had purposes aligned with domain analysis goals. 
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Particularly, the analysis consisted of coding various aspects of concept-

understanding including: related tasks, representations, formal and informal 

definitions, and examples.  Mesa (2004) explained the textbook treatment of 

topics as the intended conceptions of topics.  

In order to identify the typical group theory textbooks, I selected a random 

sample of United States colleges and universities that offer mathematics majors.  

The sample size was 294 representing the 1,244 US institutions with mathematics 

majors in order to achieve a 95% confidence interval about the proportion of 

institutions (+/-5%) using each textbook. The textbook usage was identified based 

on what text is used in the current term or most recent term the course was 

offered. I first consulted online resources such as syllabi or online bookstores. 

When unavailable, I contacted instructors and mathematics departments directly. 

This led to a degree of response bias, however, there is no reason to believe that 

the responding institutions were noticeably different.    

 Initially, each textbook used by at least 20 institutions was included for 

analysis. However, this resulted in three textbooks. The forth textbook, the only 

other textbook with substantial usage, was also included. For these purposes, 

different editions of the same texts were treated as the same textbook. The 

textbooks analyzed can be found in Table 4. 
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Table 4 
 
Abstract Algebra Textbook Analyzed  
Title  Edition Author 
Contemporary Abstract 
Algebra 

7th Joseph Gallian 

A First Course in 
Abstract Algebra 

7th John B. Fraleigh 

Elements of Modern 
Algebra 

7th Linda Gilbert & Jimmy 
Gilbert 

Abstract Algebra, An 
Introduction 

3rd Thomas W. Hungerford 

  

Pass 1. The first textbook pass was to identify the relevant sections of the 

text. For the purposes of this analysis, I selected all sections of the text that 

introduced the relevant topics. In general, this represented the first several 

sections of the textbooks, or in the case of one text, a subsection of the book 

dedicated to groups. 

 Pass 2. The next pass was a more detailed exploration aimed to align with 

the various aspects of conceptions related to each of the topics. My categories for 

analysis consisted of several types: intuitive/formal definitions (Raman, 2002), 

representations (Mesa, 2004), expected student activity (Otten, Gilbertson, Males, 

& Clark, 2014; Tallman & Carlson 2012), and examples (Fukawa-Connelly, & 

Newton, 2014). (See the Theoretical background for a more thorough discussion 

of these aspects of conceptual understanding.) The textbooks were coded using a 

thematic analysis approach (Braun & Clarke, 2006). Initially, I began with a set of 

codes in each category adapted from the respective sources. However, I refined 

the codes in order to better capture representations and activities related to group 

theory topics, and I changed example purposes to better capture the range found 
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in textbooks. All exercises, examples and definitions were also tagged with the 

relevant topic from the Delphi study. A complete set of codes and descriptions 

can be found in Appendix A.  

 The textbook analysis goals were two-fold: determine what is valued in 

the field in terms of representations, activities, and examples and determine which 

examples and representations typical introductory students would have access to. 

The goal is to present a snapshot of the textbooks while also identifying warrants 

for selecting tasks later.   

 Figure 12 illustrates a formal and informal discussion of a topic. I coded 

the sections with the codes formal and informal. I then created analytic notes to 

further parse the informal discussion. These notes can then be compared across 

textbooks to look for commonalities in informal discussion of topics.  
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Figure 12. Example of formal and informal definition and descriptions of 
homomorphism from Fraleigh (2002).  
 
 Figure 13 includes an exercise that was coded during this process. The 

task was first coded for relevant topics: group and homomorphism. The exercise 

received representation codes: group-verbal (“the additive group of functions 

mapping R into R”),  function-verbal (“the second derivative”), and function 

symbolic (Φ(f)=f’’). The expected student activity was evalaute as the students 

were prompted to determine if the map was a homomorphism. Beyond the intial 

codes, analytic notes identied exactly what the activity is: determine if a given 

map is a homomorphism.  
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Figure 13. Homomorphism exercise from Fraleigh (2002).  

 Figure 14 contains an example instance of homomorphism. First, the topic 

was identified: homomorphism. Then the particular example was identified: Sn to 

ℤ2. The representations involved were: group-table, group-name, function-

diagram, and function-verbal. The homomorphism was described in words, but 

then illustrated with a visual of two Cayley tables with lines indicating mapping. 

The example purpose was: example following a definition. (Note: this example 

would also have an informal code as it serves to illustrate “telescoping nature of 

the mapping.”) 

 

Figure 14. Homomorphism example from narrative in Gallian (2009). 
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A second coder, a mathematics education PhD student, coded one 

complete section from each textbook. She coded a section related to a different 

topic for each text in order to try and cover a variety of codes that may emerge. A 

measure for inter-rated reliability was determined. For both the exercises and 

examples, the agreement between coders was over 80%. That is, a second coder 

identified at least 80% of the same codes.  

The textbook analysis served to inform the creation of analytic reports on 

each topic. The reports contained frequencies of representations, types of 

examples and for what purpose they were used, formal and informal definitions, 

and expected student activity around exercises. An example analytic report can be 

found in Appendix B.  

I ultimately leveraged these reports for purposes of access, value, and 

representativeness. In terms of access, the curriculum or textbook used in an 

introductory text should not prevent a student from being able to make sense of an 

item in the GCI. The GCI only made use of representations found throughout all 

texts in a relatively frequent basis. For example, groups are presented 

symbolically and verbally or through the usage of a Cayley Table. A lesser-used 

representation, such as left-hand representation, was not incorporated into the 

GCI. Further, examples were limited to those treated frequently throughout 

textbooks, notably common groups (such as real number or integers) as well as 

modular groups (a typical example used to illustrate or motivate a number of 

topics across texts.) These choices also reflected what appeared to be valued in 

this curriculum. Because tables were a consistent representation, Cayley tables 
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were used in items. This is not to be confused with creating a GCI that reflects 

textbooks in nature. In fact, many of the textbook activities were procedural, 

involved advanced-proofs, or were otherwise not conducive to the ultimate goal 

of creating tasks that captured conceptual understanding. This analysis also 

served to illuminate certain activity-types that were procedural in nature. The 

biggest asset of the textbook analysis was to create an awareness of what students 

have the opportunity to learn.  

Literature consultation. After the Delphi study and initial textbook 

analysis, the literature base served as the third leg of triangulation. Particularly, 

topics and tasks identified as essential were explored in terms of known student 

conceptions in the literature. This was done in as comprehensive of a manner as 

possible. In the first pass, I conducted a full text search for each concept in the 35 

journals identified by SIGMAA on RUME as research-based and relevant to 

undergraduate mathematics (RUMEonline!, 2011). I then conducted a title search 

within relevant conference proceedings including conferences held by the 

International Group for the Psychology of Mathematics Education, the Special 

Interest Group of the Mathematical Association of America on Research in 

Undergraduate Mathematics Education, the Congress of European Research in 

Mathematics Education, the International Congress on Mathematics Education 

and the Southern Hemisphere Conference on the Teaching and Learning of 

Undergraduate Mathematics. Finally, I searched for  “Group Theory” and 

“Abstract Algebra” in the ERIC database to assure I had not overlooked relevant 

literature. 
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 For each essential topic, I compiled reports that included both attention to 

student conceptions and what tasks may be relevant for the creation of the GCI. 

An example report can be found in Appendix C. 

Task creation. After the completion of the textbook analysis and 

literature search, I created an initial set of 42 open-ended tasks. I directly adapted 

tasks from the literature whenever possible. However, many of these tasks 

contained example groups that were not treated consistently across textbooks. In 

these cases, the tasks were altered or new tasks aimed to target the same 

conceptions were developed. Further, several tasks were created to target informal 

understanding of concepts identified in the textbooks. The majority of the tasks 

were structured to be “evaluate” type problems. This was done to allow for the 

maximum number of conceptions to emerge. By leaving the truth-value of the 

statement unknown, students may have a number of ways to agree or disagree 

with the question. The examples and representations used were adapted from 

those common to textbooks. 

 Expert task evaluation.  Every task was evaluated by at least four 

experienced group theory instructors. Two of the evaluators primarily focused on 

research in mathematics education and two of the evaluators focused on 

mathematics research. They were asked to evaluate:  

1. Is this task relevant to an introductory group theory course?      
2. Does this task represent an important aspect of understanding [relevant 
concept]? 
3. If you said NO to either of the above, indicate why. (For example, the 
task might be too advanced, capture prerequisite knowledge or be unrelated 
to the targeted concept.)  
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4. What student conceptions might this task capture? (You could speak 
generally, or provide samples of how you think students might respond.)  
 

This evaluation served the purpose of eliminating tasks that may be inappropriate 

for the GCI for a lack of importance or relevance. The expert feedback was also 

used to refine questions before piloting them. 

I analyzed the open-ended portions of the survey responses using a 

thematic analysis approach (Braun & Clark, 2006). This was done in a series of 

passes. 

Pass 1: All responses were read for initial ideas. Initial yes/no responses to 

the importance and relevance questions were identified. The primary goal of pass 

1 is to become comfortable with the data. 

Pass 2: The evaluations were open-coded. This took the form of analytic 

notes capturing the underlying ideas in each. 

Pass 3: These notes were organized into themes and number of categories 

emerged within each question. Overall categories of codes included: 

1. Minor wording alterations 
2. Content modifications (often suggestions of changing example used) 
3. Concerns of eventual ability to be multiple choice question 
4. Concerns of difficulty 
5. Potential Incorrect or Incomplete Conceptions 

Appendix D includes a sample analysis of expert evaluations on two questions 

related to Abelian groups.  

 After I completed the coding, I first attended to the relevance and 

importance of issues to select tasks. Any task that more than one evaluator rated 
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as unimportant or not relevant was eliminated. I then selected one for each 

concept using the following hierarchy: 

1. Task has been studied in literature. 
2. Task can be connected to literature. 
3. Experts identified the tasks as having the power to unearth student 

conceptions.  
4. Little concerns of difficulty, scope or ability to convert to multiple-

choice. 
 

 I also altered and refined many of the tasks that were ultimately selected 

based on the expert feedback. In general, these alterations were minor and 

involved slight changes to wording or context. However, for the question on 

kernel, none of the questions evaluated particularly well, and so the question was 

replaced with one suggested by an evaluator.  

The Creation of the Assessment 

 The creation of the assessment roughly followed Carlson, Oehrtman and 

Engelke’s (2010) Four-Phase Instrument Development Framework. Following 

the domain analysis, I conducted several more phases to convert open-ended 

questions to multiple-choice questions, and then ultimately refine the multiple-

choice questions. First, I administered the open-ended questions to a small pilot 

group of students to test out wording and that the questions appeared to be 

differentiating between conceptions. Then, I made alterations and field-tested 

updated versions of the open-ended questions. I interviewed fifteen students about 

their open-ended responses. I piloted an initial version of the multiple-choice 

instrument with some pilot classes. I then refined the instrument and gave it to a 
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large sample of diverse students. After this phase, I conducted additional 

psychometric analyses to address reliability and structure of the GCI.  

Phase 1- stem development. The first step towards the creation of the 

GCI was designing the open-ended survey. These questions reflected known areas 

of difficulty from the literature (such as a lack of an object view of cosets (Asiala 

et al., 1997) or misapplication of Lagrange (Hazzan & Leron, 1996)) while 

remaining representative of the domain.  

I tested the open-ended questions in two stages. First, the questions were 

given to 38 students who had recently completed group theory or had finished 

covering the relevant topics in their current course. These students came from five 

different institutions. This sample was one of convenience. The classes were local 

to the Pacific Northwest, or came from classes with instructors I knew (from the 

Mid-Atlantic and Southeast.)  The pilot allowed for four early interviews and 

initial testing of the questions to make sure they did not have wording issues and 

that they had the power to target the conceptions intended. At this point, I altered 

some questions in minor ways and one question was replaced (see Paper 1 for 

detailed explanation.)  

After the pilot, I administered the open-ended survey to 349 students from 

30 classes at 29 institutions. I intentionally aimed to make this sample 

representative. Institutions with mathematics majors were selected randomly with 

respect to selectivity (least selective (>75% admitted), mid-level selective (50-

75% admitted), more selective (25-50% admitted), and most selective (<25% 

admitted)) and geographic regions (West, Midwest, Southeast, Northeast, and 
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Mid Atlantic). I then conducted fifteen interviews with local students to assure 

that I was interpreting their answers correctly. The students were prompted to 

explain their thinking for each answer they provided on the open-ended survey. 

Furthermore, if their responses did not connect to their understanding of a 

relevant concept, they were asked to explicate their understanding of the intended 

concept. 

Phase 2 – the creation of the multiple-choice instrument. Based on the 

results from the open-ended round, I created a multiple-choice version of the 

assessment. A multiple-choice item consists of a stem, a key, and distractors. A 

stem is the command or question, a key is the correct choice, and distractors are 

plausible incorrect choices (Haladyna, 2004).  For the GCI, the stems came from 

the open-ended questions with minor refinements. Refinements included 

removing justification prompts. The open-ended version of questions included 

these additional prompts in order to assure that students shared their reasoning. 

However, in multiple-choice questions, this is an unnecessary concern as the 

closed-form allows the degree of detail to be determined by the test creator.  

I developed the distractors for the multiple-choice items by analyzing the 

349 open-ended responses. For each question, I developed a set of codes that 

represented the various answer types that emerged. Examples of these codes can 

be found in Paper 1 and Paper 2. The codes began open, but eventually became a 

stable set of codes after an initial coding of 200 responses. I then applied the 

stabilized codes to all of the data. I used frequency reports to determine which 
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responses were most common and converted those responses into the multiple-

choice versions of the questions.  

During this process, I also attended to item-writing guidelines when 

possible. In Haladyna, Downing, and Rodriguez’s (2002) analysis of textbooks 

and studies on item-writing guidelines, they found many guidelines, but only a 

few that have been empirically studied. The empirically studied guidelines 

include avoiding “all of the above” options as students pick them frequently even 

if they only agree with a subset of the other options. This makes it impossible to 

differentiate between students who agree with different subsets of responses. The 

“all of the above” option dilutes the meaningfulness. They also found inconsistent 

results about the effect of the number of distractors on difficulty and 

discrimination. The optimal number of distractors lay somewhere in the two to 

four range. In most tests analyzed, only two distractors tended to represent 

genuine misconceptions even when other distractors were included. For the GCI, I 

decided to create only the number of distractors that appeared to genuinely 

connect to student conceptions. This meant that the number of distractors varied 

depending on the question. These guidelines informed the creation of the 

multiple-choice items to a great extent; however, remaining faithful to distractors 

arising from the open-ended surveys remained the primary concern.  The first 

version of the multiple-choice instrument also contained “none of the above” 

options in order to allow for new conceptions to emerge.  

Phase 3- piloting the multiple-choice instrument. At this point, I piloted 

the multiple-choice assessment with 77 students from 8 classes. During January of 
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2015, I attempted to contact all instructors of current undergraduate group theory 

courses at institutions with mathematics majors. This included all classes titled: 

Group Theory, Abstract Algebra, Modern Algebra, or Algebraic Systems. If 

course schedules were available, I used them to identify courses that were 

running. If not, I (or a member of my team), called the institution. From this 

process, 39 instructors agreed to have their classes participate. The classes that 

covered the relevant material by March were included in the pilot round. While 

the overall sample was representative in terms of selectivity, the pilot round 

classes overrepresented highly selective schools.  

At this stage, I analyzed the students’ responses in terms of item difficulty, 

item discrimination, and the effect of various questions on reliability. (See 

Appendix E for these results.) If any items had failed to discriminate or had too 

low of difficulty, I would have removed or altered them from the GCI. However, 

that did not occur at this point.  

 Item refinement. During this time, I also refined distractors. Following 

Carlson et al.’s (2010) suggestions, the optimal way to do this and increase 

validity is through student interviews. I interviewed students who selected various 

distractors to confirm or disconfirm that their thinking matched the distractor 

intentions. Carlson et al. also suggest deleting distractors when less than 5% of 

students select them. I calculated the frequencies of all responses and deleted the 

“none of the above” response if selected by less than 5% of students. I also used 

the interviews to address the “none of the above” responses that remained. When 

possible, I converted to a concrete distractor. Alternately, if a student selected 
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“none of the above” for a reason not related to the questions’ intentions, I altered 

the questions to try and eliminate unintended variance. At this point, the updated 

GCI was ready to be field-tested.  

          Phase 3 – field-testing. The remaining sample classes used the refined 

version of the GCI. At this point, 376 students from 30 institutions, representing 

all levels of selectivity, took the GCI. I then completed the remaining of the 15 

follow-up interviews. I also analyzed the GCI’s psychometric properties in terms 

of reliability, item analysis, factor analysis, and criterion-related validity. 

 Each of the items was evaluated in terms of discrimination and difficulty 

with this more diverse sample. The results can be found in Appendix E. Any 

questions with too low of difficulty or discrimination were marked for further 

exploration in the next round of development.   

 At this stage, I correlated the instrument with student self-reported grades 

on a 4.0 scale. Grades in abstract algebra should ideally be positively correlated 

with a measure of group understanding.  I utilized Pearson’s r to determine 

correlation. If my goal was predictive, some of the nuances such as variability 

attributed to classes would need to be addressed. For establishing correlation, 

Pearson’s r is both sufficient and established as the standard approach in concept 

inventory literature (Carlson, Oehrtman, & Engelke, 2010; Stone et al., 2003). 

        I then calculated Cronbach’s alpha an estimate of reliability in order to 

verify that there is some level of internal consistency in the instrument. As this is 

a low-stakes test that is not developed to be entirely unidimensional, Cronbach’s 

alpha provided rough information about the reliability of the test. Any alpha less 
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than 0.5 is unacceptable, between 0.5 and 0.6 is poor, between 0.6 and 0.7 is 

acceptable, between 0.7 and 0.9 is good, and greater than 0.9 is excellent (George 

& Mallery, 2003).  

Additional analysis. I used principal component analysis to explore the 

dimensionality of the GCI. Epstein (2007) used exploratory factor analysis with 

the Calculus Concept Inventory. Since I did not enter the development of this 

assessment with a set of predetermined factors, I similarly used an exploratory 

approach. By exploring the correlation between items, some underlying 

relationships might have been made apparent. In the Calculus Concept Inventory, 

this analysis revealed two factors: functions and derivatives. In the GCI, the 

questions were created to intentionally target specific concepts that were loosely 

related to some underlying understanding of introductory group theory. 

Ultimately the analysis served to illustrate this structure.  

Conclusion 

The creation of the GCI involved careful attention to developing a 

meaningful instrument. Through domain analysis using textbooks, expert 

opinions, and literature on student understanding, an initial exploration of the 

domain was made in order to make an argument for content validity. Ultimately, I 

created or adopted tasks that were closely tied to student conceptions surrounding 

topics, were accessible to the general population of group theory students, and 

used representations and examples that were valued and available in curricula. 

Through wide-scale surveying and follow-up interviews, genuine student answers 

served as the foundation for the multiple-choice options. The multiple-choice 
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version of the assessment was further refined and tested through item analysis, 

reliability calculations, and continued follow-up interviews to provide the 

strongest case for validity and meaning. 
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Paper 1: Going from nothing to something: A Multi-faceted approach to 
developing questions for concept inventories as applied to introductory 

group theory 
 
 At the heart of any measure is validity. We want to be able to claim that 

we are in fact measuring what we purport to be measuring. While this may seem 

like an obvious goal, the reality is that establishing validity is often a complex and 

challenging aspect of measure design. In undergraduate science and mathematics 

fields, the concept inventory style of assessments represent a large step forward in 

terms of strengthening the connection between student conceptions and what is 

actually measured in an assessment. Concept inventories have flourished in 

undergraduate sciences and mathematics since the early work on the Force 

Concept Inventory (Hestenes, Wells, & Swackhamer, 1992) and the Mechanics 

Baseline Test (Hestenes & Wells, 1992). The growing number of concept 

inventories all share certain qualities: (1) multiple-choice format, (2) concept-

focused rather than procedurally focused assessment, and (3) connected to known 

student conceptions. If a concept inventory is valid, it should be shown to address 

concepts over procedures and elicit student responses that reflect the conceptions 

the measure was designed to target. However, beyond the stated goals, there exist 

implicit aspects related to validity. Are the questions related to the subject domain 

being targeted? Are the questions important to that subject area? A measure 

cannot cover all aspects of a given subject area and so the questions in the 

instrument must aim to be as representative and reflective as possible. This article 

presents a methodology developed to maximize validity through attention to 
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question selection, meaningfulness of responses and minimizing construct-

irrelevant variability. 

 The methodology shared in this paper was developed in order to maximize 

validity during the creation of an introductory group theory concept inventory, the 

Group Concept Inventory (GCI). The current concept inventories in mathematics 

exist within subject areas typically aligned with service courses. In fact, only the 

Calculus Concept Inventory (CCI) (Epstein, 2006) and Precalculus Concept 

Assessment (PCA) (Carlson, Oehrtman, & Engelke, 2010) were developed within 

mathematics departments. Calculus and Precalculus both have significant 

literature on student conceptions in their respective domains. In a non-service 

course such as a group theory, the literature base is less extensive leaving a large 

gap that needs to be traversed to establish a valid question set. This paper 

introduces a methodology created for the development and refinement of 

questions in the GCI. The methodology is divided into three parts: 

1. Domain analysis 
2. Question creation and selection 
3. Question refinement, replacement and elimination 

Examples from the GCI creation illustrate each of the steps with the overall goal 

of being transparent and systematic to best connect the methodology to validity 

goals. 

 Within these stages, I leveraged prior concept inventory creation 

methodologies when possible. For the domain analysis, I used an expert 

consensus protocol that has been previously used in the creation of a thermal and 

transport concept inventory (Streveler, Olds, Miller, & Nelson, 2003). This 
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protocol led to the selection of fundamental group theory topics. After a list of 

basic topics to cover, I explored them in two ways: through reviewing literature 

related to student conceptions and analyzing curricula using textbooks as a proxy.  

Both textbooks and literature have been used consistently to inform the process of 

creating concept inventories However, in general their use is often described 

vaguely with textbooks serving more to verify the existence of topics in 

curriculum rather than concretely analyzing both how concepts are approached 

and to what specific examples and representations students may have access.  The 

GCI creation outlines a careful approach to textbook analysis, a comprehensive 

approach to reviewing literature, and discussion as to how these steps directly 

informed the creation of the question set.  

 The second half of the process is shared in a manner to complement the 

creation process of the PCA (Carlson, et al., 2010). Experts are often used to vet 

questions in concept inventories. I leveraged experts to specifically address 

concerns of content validity, evaluate the questions for technical issues, and share 

their knowledge about how students may approach the questions. After ultimately 

selecting the questions with the greatest potential to unearth known student 

conceptions, I followed the process of going from open-ended questions to 

closed-form questions outlined in the PCA creation. I present the evolution of 

four questions with various paths ranging from direct adaptation from open-ended 

to closed-form (similar to the PCA question-creation process) to complete 

deletion and replacement of questions. Finally, I conclude with discussion of 
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traditionally used psychometric approaches and their limitations and strengths in 

the context of a diagnostic instrument such as a concept inventory. 

On Validity and Concept Inventories 

 In this section, I provide a background on validity concerns and test 

creation, as well as concept inventories in general and their creation processes.  

What does it mean for a test to be meaningful? Underlying any 

assessment are a multitude of subjective components that together determine the 

meaning of a given instrument. Pellegrino, Chudowsky, and Glasser (2001) 

presented these components in terms of three dimensions: observation, 

interpretation and cognition. If we are measuring cognition, we do so via 

observing students engaged in a set of tasks and interpreting what we are seeing. 

The cognition aspect relies on a “theory or set of beliefs about how students 

represent knowledge and develop competence in a subject domain” (p. 44). In 

concept inventories, this component frequently comes from prior studies and 

relevant theory for the educational research. We cannot access a student’s 

cognition directly, but we can use evidence to develop theories about how they 

conceive of various concepts.  The observation dimension “represents a 

description or set of specifications for assessment tasks that will elicit 

illuminating responses from the students about the target domain to be measured” 

(p. 48). The tasks, multiple-choice questions in the case of concept inventories, 

must succeed in two manners: unearthing student conceptions and representing 

the relevant domain. The tasks must connect to the theories of cognition, but then 

be interpreted correctly. The interpretation corner  “encompasses all the methods 
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and tools used to reason from fallible observations” (p. 48). It is the interpretation 

of the observation that is at the heart of validity. This is the place where meaning 

is added to what is observed. A valid instrument must coordinate these aspects. 

 Due to its complex nature, validity is often subdivided into a number of 

types. Broadly validity can be thought of in terms of external and internal factors 

(Lissitz and Samuelsen, 2007). Internal validity comes from the test itself. For 

example, think-aloud protocols can be utilized to add meaning to students’ written 

responses to bolster claims of their interpretations. External measures of validity 

come not from the test itself, but from its relationship to other measures and 

external usage. As argued by Lissitz and Samuelsen, this latter category is not 

essential to the meaningfulness of an instrument. An instrument with internal 

validity can stand independently and remain meaningful. For example, if group 

theory grades do not correlate with the GCI scores, the reasons may be more 

closely related to differences in what is measured rather than any validation issues 

with the GCI. The GCI targets concepts while a traditional course may only ever 

assess students’ ability to produce formal proofs. A lack of correlation would not 

lessen the meaning of the GCI, but rather only raise questions about the 

differences and connectedness of traditional assessment and conceptual 

understanding in the course.  

 Internal validity can divided into three categories: content, construct, and 

generalizability.  Before continuing, it is worth noting that the names given to 

types of validity vary considerably. I adopt Lindell, Peak, and Foster’s (2007) 

usage of content and construct validity from their meta-analysis of concept 
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inventories. Content validity is the “degree to which inventory measure the 

content covered in the content domain.” The content domain is whatever area is 

meant to be assessed. In the case of the GCI, the content domain is introductory 

group theory. In order to argue that an instrument has content validity, the test 

developer must determine what exists in a given content domain, as well as how 

that measure aligns with the domain.  Construct validity is defined as, “[t]he 

degree to which scores can be utilized to draw inference on the content domain.”  

This validity stems from the degree a student’s answer can be interpreted. The 

answer should connect to a student conception related to some aspect of the 

domain. Typically, student interviews are utilized to establish construct validity. 

This type of validity is consistent with what Messick (1995) terms the substantive 

aspect. Generalizability is the extent to which the test generalizes across time and 

place. Traditional measures of reliability such as parallel tests or internal 

consistency estimates fall under this umbrella. Variation in test scores should only 

be related to the construct the test intends to measure. If responses are affected 

substantially by other error, the test will not be reliable. Lissitz and Samuelson 

(2007) address all aspects of generalizability in their reliability factor of internal 

validity. A test must necessarily be reliable to be valid. While the constructs of 

validity and reliability are often treated as dual constructs, a more natural way to 

address reliability is to include it as a subcomponent of validity such as seen in 

both Lissitz and Samuelson, and Messick’s validity frameworks. 

Validity generally fails in one of two ways: construct underrepresentation 

and construct-irrelevant variance (Messick, 1995). Construct underrepresentation 



 

 96 

occurs when a measure does not include essential facets of the domain being 

assessed. Construct underrepresentation is directly related to content validity. In 

contrast a second issue can occur, construct-irrelevant variance, where extra 

pieces not related to the intended domain are being measured. This could be as 

simple as confusing wording causing students to pick an answer that is not 

representative of their underlying understanding of the concept. This could affect 

construct validity (ability to connect observed student responses to cognition) as 

well as generalizability (where certain samples of students may be more likely to 

make sense of a certain wording based on their instruction.) Avoiding validity 

pitfalls involves attending to each of the internal factors: content, construct, and 

generalizability. 

Concept inventory creation methodology. The methodologies for 

creating concept inventories vary from instrument to instrument. Lindell, Peak, 

and Foster (2007) conducted a meta-analysis of 12 physics-related concept 

inventories (including the Force Concept Inventory) to compare their respective 

methodologies. They found that typically the inventories followed a nine-step 

sequence: 

1. Identify a purpose 
2. Determine the concept domain 
3. Prepare test specifications 
4. Construct initial pool of items 
5. Have items reviewed - revise as necessary 
6. Hold preliminary field testing of items - revise as necessary 
7. Field test on large sample representation of the examined population 
8. Determine the statistical properties of item scores – eliminate 

inappropriate items 
9. Design and conduct reliability and validity studies (p. 15). 
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While these steps existed in some form across inventories, their explicitness and 

methods at each stage varied substantially. Lindell, Peak, and Foster noted that 

student conceptions (either from literature or through qualitative studies) were 

used to determine the concept domain in only six of the concept inventories they 

compared. Frequently, the researchers determined the concept domain based on 

their own views rather than connecting to student conceptions or other outside 

resources. This was the case in five of the concept inventory methodologies 

analyzed by Lindell, Peak, and Foster. This stage determines a great deal of the 

test’s content validity.  

 Messick (1995) referred to domain analysis, as the essential aspect in step 

2. Domain analysis involves identifying foundational concepts, essential tasks and 

established areas of difficulty. MisLevy, Steinberg, and Almond (2003) describe 

domain analysis as: 

...marshalling substantive information about the domain--bringing together 
knowledge from any number of sources and then beginning to organize 
beliefs, theories, research, subject matter expertise, instructional materials, 
exemplars from other assessments, and so on (p. 7). 

 
As noted by Messick, domain analysis provides the argument for task selection 

based on relevance and representativeness. Each task should be relevant to the 

domain at hand. However, it is insufficient for a measure to merely be relevant to 

the domain. It needs to also have a degree of representativeness. As it is 

impossible to cover every aspect of a given domain, tasks need to be selected to 

be functional - that is, reflect the types of activity actually associated with the area 

and to address expertise in the area. Tasks should serve to differentiate the novice 

and the expert. A domain analysis can be a rather daunting process depending on 
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how well explored a given area is. In cases like introductory group theory, 

without consensus on important topics (Burn, 1996; Dubinsky, Dautermann, 

Leron, & Zazkis, 1997; Suominen, 2014) and a relatively small education 

literature base, a systematic domain analysis is be a necessary first step. The 

domain analysis is essential for achieving content validity, but also matters in 

terms of other validity types. For example, the domain analysis includes 

determining what content students have access to. A test is not generalizable if it 

covers content that is unrepresented and not accessible to all of the population. 

This type of analysis allows for the test creator to determine what aspects of the 

domain should be represented. In the case of group theory, certain examples 

might exist in some curricula and not others. If the goal is to assess a student’s 

conceptions around isomorphism, but one of the groups used is the dihedral 

group, a student’s knowledge of the dihedral group likely supersedes their 

knowledge of isomorphism. As some textbooks do not address this example in 

detail, a student would not have access to this question despite the fact they might 

have formidable knowledge of isomorphism. This would immediately impact 

construct validity and generalizability.  

Currently, the CCI and PCA exist in the of field mathematics education. 

The researchers who created the inventories modeled their development after the 

Force Concept Inventory to varying degrees. Generally, the test creation followed 

the path of a beginning pool of open-ended items that were converted to multiple-

choice versions based on student responses. In both cases, interviews or “clinical 

labs” were used to refine questions and assure construct validity. In the CCI, 
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statistical measures (such as item discrimination) were used to determine if an 

item needed be discarded, altered, or replaced. In the PCA, items were refined 

based primarily on student interviews with a high emphasis placed on construct 

validity. In both methodologies, the final stage included estimating reliability and 

correlating the test to external measures.  

Besides question refinement differences, the largest divergence in 

methodology occurred in the initial question creation. In the CCI, a panel of 

experts determined the content to be covered and how the content should be 

measured. The panel then reviewed each item. The questions in the PCA were 

created based on extensive studies aimed to probe student understanding around 

concepts that are needed in calculus. This came from both the pre-existing 

literature and the researchers’ own studies. 

The methodology for the GCI creation combined the emphasis on student 

conceptions and usage of experts in the field. Experts provide important insight 

into what is valued and representative in a field. However, this knowledge must 

be connected to the areas of difficulty and genuine student conceptions about 

topics. This methodology aims to complement the work done by Carlson, et al. 

(2010). Their contribution carefully laid out a methodology for beginning with a 

set of assessment items, a taxonomy of student conceptions, and arriving at a 

valid multiple-choice measure. I used a similar methodology to develop multiple-

choice questions from open-ended versions. However, my methodology for 

developing the initial question set is centered in a careful domain analysis where 

experts are used in a systematic manner and paired with curriculum analysis and 
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literature on student conceptions to develop questions. Further, my focus is on 

how to better achieve generalizability and content validity with explanations of 

not just how questions were converted from open-ended to multiple-choice, but 

how and why questions were eliminated or completely replaced. 

The purpose: a discussion of conceptual understanding. As noted by 

Lindell et al. (2007), the precursor to domain analysis is identifying a purpose.  

For the case presented here, the goal is to capture a measure of conceptual 

understanding in group theory. I adopt Star’s (2005) approach where conceptual 

knowledge includes both Hiebert and Lefevre’s (1986) knowledge rich in 

relationships and “knowledge of concepts” (p. 408). Concepts in advanced 

mathematics have often been discussed in terms of objects. Understanding of 

objects can arise in various ways including compressing of processes, abstracting 

structure from experience, and working from a formal definition (see Tall’s 

(2004) three worlds of mathematics for a thorough discussion.) Knowledge needs 

to be compressed into thinkable concepts in order to “build a coherent connected 

mental structure to put significant ideas together” (Tall, 2007, p. 153). 

         Tall and Vinner’s (1981) seminal work on concept image and definition 

unveiled that student understanding of concepts extends far beyond their 

knowledge of definition and includes “all mental pictures and associated 

properties and processes” (p. 152). Further, concept images do not require 

coherence and often only portions are evoked at a given time. Concept inventories 

aim to capture a students’ degree of coherence. Savinainen and Viiri (2008) 

introduced a framework to reflect conceptual coherence as found in the Force 



 

 101 

Concept Inventory which included three dimensions: relating different concepts, 

being able to apply knowledge in appropriate contexts and being able to move 

between representations. This framework is similar to Biehler’s (2005) meanings 

of mathematical concepts where he identified the domain of application, relations 

to other concepts and representations available for working with the concept. 

These factors all serve to inform the eventual domain analysis. The rest of the 

paper focuses on the creation of the GCI with the underlying intention of 

capturing conceptual understanding.   

The Methodology 

 
Figure 15. Overview of GCI creation methodology. 

The creation and validation process for the GCI is illustrated below with 

focus on systematic domain analysis and the question creation and refinement 

process.  The domain analysis included: (1) using an expert consensus protocol 

(Delphi Process) to arrive at a set of fundamental concepts; (2) a textbook 

analysis focused on conceptual aspects of the selected concepts; and (3) a 

literature search focused on student understanding of the selected concepts. This 

process then informed the task creation and selection process which included: (1) 

the creation of an initial set of questions related to the tasks; (2) expert evaluation 

of questions; and (3) question selection for piloting. The latter half of the results 
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focus on how open-ended questions were converted into multiple-choice 

questions. I used four examples to illustrate different paths that questions can take 

including examples of direct adaptation, minor refinements, complete 

replacement, and deletion. For each stage of the question-creation process, I 

connect the methodology to the various validity goals and discuss which aspects 

can be generalized to all concept inventories. In the next sections, I elaborate on 

each of these stages of the GCI creation. Furthermore, I connect each stage to its 

validity purposes. Finally, I discuss how other test creators can leverage the 

methodology.  

 

Figure 16. Domain analysis triangle. 

Domain analysis. Many sources can provide information about what is 

important, valued, and relevant to a field. I used a triangulation of experts, 

literature on student conceptions, and textbooks to analyze the introductory group 

theory domain.   

Delphi study. Experts can be leveraged to address subjective questions 

such as what is important or difficult in a field. One model for arriving at 

consensus for an ill-defined problem is to utilize a Delphi study (Dalkey & 

Helmer, 1963). This technique has been used in a small number of concept 

inventories including the creation of the thermal and transport science concept 

inventory (Streveler, Olds, Miller, & Nelson, 2003).  In a Delphi study, experts 
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provide opinions on a given question through a series of rounds where they are 

able to consider each other’s responses after each round. 

In the GCI. My rounds closely followed those of Streveler, et al. (2003). 

The process consisted of four passes: 

Pass 1: Experts were asked to compile a list of concepts they think are 
essential in introductory group theory. 
 
Pass 2: A list was compiled of all concepts mentioned by at least two 
experts. The experts then rated each topic on a scale from 1-10 for 
difficulty and importance. 
 
Pass 3: The experts were provided with the 25th, 50th, and 75th percentile 
scores for both categories and asked to rate, again. During this pass, the 
experts provided justifications for any rating outside of the 25th-75th 
percentile range. 
 
Pass 4: Experts were provided with the same numerical information, as 
well as the justifications from pass 3 and asked to provide a final rating. 

 
The panel for the GCI had thirteen members who participated in at least three 

rounds including eleven members who provided final ratings. As the domain was 

introductory group theory, all panel members had taught the course at least two 

times.  The eleven panel members providing final rankings included four algebra 

textbook authors, eight mathematicians (with a range of specialties including 

math history, analysis and several group theory specialists), and five mathematics 

education researchers who have published related to abstract algebra pedagogy. 
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 I selected all topics with a mean importance of nine or greater for 

further analysis. This narrowed the original thirty-three topics to eighteen.2 Table 

5 provides the selected topics and their importance mean and difficulty mean. 

Table 5 
 
Important Topics in Group Theory Selected Through a Delphi Study 
Topic Importance Mean Difficulty mean 

1. First Isomorphism Theorem 9.91 8.82 

1. Homomorphism 9.91 6.82 

1. Associativity 9.91 2.25 

1. Inverses 9.91 2.09 

1. Identity 9.91 1.18 

1. ℤn 9.91 3.55 

1. Quotient groups, Cosets 9.91 8.64 

1. Subgroups 9.91 4.18 

1. Normal Subgroups 9.91 8.09 

10. Kernel 9.82 5.09 

11. Abelian Groups 9.64 2.64 

11. Isomorphism 9.64 6.82 

13. Cyclic Groups 9.55 5.27 

14. Binary Operations 9.45 2.27 

15. Group 9.36 5.00 

16. Lagrange’s Theorem 9.18 5.64 

17. Order of an element 9.09 3.55 

18. Order of a group 9.00 1.64 

                                                
2 The eighteen topics were expanded to nineteen as cosets and quotient groups were separated to 
be consistent with topic treatment in curriculum. Modular groups were an example group and 
therefore are used within questions, but did not receive tasks independent of other concepts. 
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Discussion. Experts are a powerful resource for establishing content 

validity. They have knowledge about what is valued in a given field. A Delphi 

study is unique in its ability to allow for experts to reflect on each other’s 

opinions while mitigating for perceived hierarchy. A round-table discussion may 

become biased because certain experts may have more status than others. A 

standard survey, while protecting anonymity, does not allow for experts to 

consider the opinions of other participants. The Delphi process both protects 

anonymity and allows for experts to consider the input of their fellow panelists.  

Beyond using the Delphi structure, the success of the protocol relied on 

having a heterogeneous panel. By choosing a panel representing various 

backgrounds, their opinions were more likely to be representative and therefore 

strengthen content validity. If the panel consisted of only people with similar 

backgrounds, they may value a particular aspect of the domain more than is 

generally valued amongst those active in the field. In addition, the instructors had 

a variety of approaches to teaching the introductory group theory course. By 

having instructors rate and discuss topics, I could explore the differences that 

existed across classrooms in terms of content coverage. If I used questions on 

content that is not universally covered, subsections of the population would not 

have access to those questions and subsequently score lower on the GCI than they 

may have otherwise.  

In other assessment development, the topics are often selected by the 

researchers themselves (Lindell, Peak, & Foster, 2007) or through a group of 
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experts (Delmas, Garfield, Ooms, & Chance, 2007; Epstein, 2007). Delphi studies 

provide a means for leveraging expert knowledge in a more universal manner. 

However, because of the nature of the survey, test developers may be limited in 

their ability to probe deeply into instructors’ opinions leaving decisions based on 

numbers alone. Furthermore, the process can be time-consuming for the panelists 

due to the number of rounds. This raises the possibility of high attrition rates. 

Despite these limitations, the Delphi process remains a powerful tool for 

determining a consensus on content in a way that maximizes validity.  

Textbook analysis. Textbooks frequently serve the purpose of informing 

concept inventories (Lindell et al., 2007; Stone et al., 2003; Wage, Buck, Wright, 

& Welch, 2005). However, their use is often limited to verifying whether a set of 

topics or sections exists or is otherwise vaguely described. Textbook analyses can 

be powerful for determining how a concept is treated in the written curriculum. 

One model for this is Mesa’s (2004) textbook analysis where she analyzed the 

intended conceptions of function. She explored function conceptions by attending 

to representation types, contexts and practices. Typically, textbooks are analyzed 

through an iterative coding process to identify the trends across books with 

relation to categories of interest. I introduce a systematic textbook analysis as a 

way to help determine the concept domain for an assessment targeted towards 

certain classes.  

 In the GCI. During the creation of the GCI, I analyzed textbooks to 

determine typical activity and tasks, valued examples, valued representations, and 

formal and informal definitions of topics. I identified the most commonly used 
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textbooks in order to analyze the most relevant curriculum. Of the 1,244 schools 

with a mathematics major, a random sample was surveyed with 294 schools 

responding. This sample3 allowed for a 95% confidence interval with error of +/- 

5%. If textbook information was not available through the course website, I 

contacted the mathematics department or most recent instructor to find out what 

textbook was used in their introductory group theory course (alternately called 

modern algebra, algebraic structures, or abstract algebra). In schools where the 

textbook was not uniform, I included the textbook most recently used. I then 

selected any textbook used by at least 20 schools for further analysis. This number 

was eventually lowered to include the fourth most popular textbook. Of the 

institutes responding, 32% used Gallian (2009), 15% used Fraleigh (2002), 8% 

used Gilbert and Gilbert (2008) and 6% used Hungerford (2012). There were a 

total of 32 textbooks in use, but no textbook was used at more than nine 

institutions beyond those top four. 

 For each textbook, I analyzed the sections that introduced the eighteen 

topics identified through the Delphi study. I used a thematic analysis (Braun & 

Clark, 2006) where each example and exercise was coded. They were coded 

within the categories of: (1) relevant concept, (2) representation, and (3) example 

purpose or expected student activity, and (4) group/map being used. The codes 

initially aligned with existing frameworks, but I created and adapted codes as 

appropriate for this context. The representation category was adapted from 
                                                

3 As in any random sample, there are limitations due to response bias. Particularly, institutions that 
did not have their textbooks available via their website were likely underrepresented as not all 
instructors responded to email requests for current textbook. 
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Mesa’s (2004) function representation codes with several codes remaining 

unaltered (symbolic, table, diagram) and many additional codes emerging related 

to groups. Maps were also coded similarly. Table 6 represents the stable set of 

representation codes after several rounds of adapting and refining. The trends for 

commonly used representations were overwhelming with a group being 

represented by a named symbol (such as ℤ for integers) or a verbal description 

(the set of integers) well over half of the time. A complete breakdown of the most 

common group representations can be found in Table 7. 

Table 6 
 
Representation Codes 
Group – Verbal Description Map – Symbolic Rule 
Group – Symbolic Name Map – Defined Element-wise 
Group – Table Map – Function Diagram 
Group – Elements and Operation Map – Defined on Generating Set 
Group – Set Builder Notation Map – Verbal Description 
Group – Cayley Digraph Map – Visual Other 
Group – Geometric Representation  
Group – Defined by Generating Set  

Table 7  
 
Percentages of Representations in Textbook Examples and Exercises 

 Gilbert & 
Gilbert (2008) 

Hungerford 
(2012) 

Fraleigh 
(2003) 

Gallian (2009) 

Name 69.1% 72.6% 89.3% 73.9% 

Verbal 
Description 

27.0% 14.6% 21.3% 27.4% 

Table 8.2% 6.7% 7.4% 4.7% 

Set of 
elements with 
operation 

27.6% 19.1% 6.1% 15.8% 
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The example purpose codes were similarly adapted from Fukawa-

Connelly and Newton’s (2014) study of example purposes in a group theory 

course. The example purpose codes can be found in Table 8. Certain examples 

served a lot of purposes throughout the textbooks. The modular addition groups, 

of the form ℤn, were one of the most leveraged types of example groups. This 

example either motivated or illustrated the definition of group in all four 

textbooks. In fact, a group of this type fulfilled an example purpose in nearly 

every section of every text. This was unsurprising in light of the results from the 

Delphi study where ℤn was the only example group that had a mean importance 

score above a 9.0. Other example groups were treated differently depending on 

the textbook. For example, the dihedral group ranged from being the group that 

motivated the definition of group (Fraleigh, 2002), to being a specific example 

that was rarely used for any example purposes (Gilbert & Gilbert, 2008). In fact, 

the group was not even named consistently across texts with the majority calling 

D4 (or D8) the dihedral group of order 8, whereas Gilbert and Gilbert label this 

group the Octic Group. 

Table 8 
 
Example Purpose Codes 
Example motivating a definition (EMD) 
Example of a concept following a definiton (EFD) 
Example illustrating a specific property a object does or does not have (EP) 
Example illustrating how to calculate or determine something (EC) 
Example illustrating a proving technique (ET) 
Example motivaitng a theorem (EMT) 
Example illustrating a theorem (EIT) 
Example using a theorem (EUT) 
Example illustrating a notation (EIN) 
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In addition to representation type and topic, I coded each exercise in terms 

of expected student activity (Otten, Males, & Gilbertson, 2014). While the 

expected activities ranged from concept to concept, the trends were consistent. 

Figure 17 illustrates the percentages of the most common concept related 

activities across textbooks. The most frequent expected student activity feel into 

the super category of proving an established statement. I further subdivided proof 

activities into a number of categories including: (1) Proving a Definition is 

Satisfied (PS), (2) Proving a Direct Consequence of a Theorem (PT), (3) Proving 

a Direct Consequence of a Definition (PD), (4) Proof by Counterexample (PC), 

and (5) Proof Advanced (PA). The Proof Advanced category captured expected 

proof activity that relied on advanced proof techniques, nontraditional arguments 

or pulling together many concepts in a way that was not immediately obvious 

from theorems and definitions alone.  While proving established statements far 

outnumbered evaluation (EV) activities, evaluating statements did exist across 

textbooks.  Evaluating statements related to single concepts often had students 

determine if a given instance satisfied the definition of a concept. Determining if a 

subset forms a subgroup or determining if a group is cyclic falls into this 

category. Other common activity types across textbooks include Determining or 

Calculating  (DC) such as finding the order of an element and changing 

representations such as moving from a set of elements and operation to a Cayley 

Table. 
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Figure 17. Percentages of Exercises with each type of the six most prevalent 
expected student activities.  

For reliability purposes, a mathematics education graduate student coded 

one section (on a different topic) from each book. They coded both exercises and 

examples. The inter-rater reliability was 83.4% for exercises and 81.4% for 

examples. These numbers represents the total number of codes identified by the 

second coder and first coder over the number of codes.  

In addition to coding exercises and examples, I analyzed the formal and 

informal definitions for each concept. Generally, textbooks did not provide 

informal definitions to accompany formal definitions beyond what was labeled a 

translation. I defined a translation as an unpacking of a definition into less formal 

language. In contrast, an informal definition was a description that provided some 

intuitive explanation of the concept. Isomorphism was atypical in having informal 
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definitions in all texts. Table 9 presents the formal, informal, and translation 

definition for isomorphism.  

While informal definitions were scarce and inconsistent, formal 

definitions, while also presented, were also occasionally inconsistent across texts. 

For example, the order of an element was defined in one of two ways: 

(1) (Gilbert & Gilbert, 2008; Fraleigh, 2003) “The order o(a) of an 
element a of the group G is the order of the subgroup generated by 
a. That is, o(a) = o(<a>)” (Gilbert & Gilbert, 2008, p. 167). 
 

(2) (Gallian, 2009; Hungerford, 2012) “The order of an element g in 
a group G is the smallest positive integer n such that gn=e. If no 
such integer exists, we say that g has infinite order. The order of an 
element g is denoted by |g|” (Gallian, 2009, p. 60). 

 
Differences in formal definitions also existed for modular arithmetic and normal 

groups. Generally, the alternate definition was a theorem or otherwise listed as a 

consequence of the definition. (See Paper 2 for a discussion of the differing 

modular arithmetic definitions.)   

 For each topic, I compiled an analytic report that summarized definitions, 

representation types, examples and their purposes and expected student activity.  

Discussion. The textbook analysis provided a way to explore intended 

conceptions around topics. The analysis served the dual purpose of exploring 

what was valued in the field and what students have access to. The examples 

found in books represent the conventional example space, the set of examples 

generally understood by the mathematics community (Zazkis & Leikin, 2008). 

The conventional example space is an important aspect of the concept domain 

highlighting what the community values. The conventional example space also 
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gives insight into what examples may be part of a students’ personal example 

space.  A personal example space is "the set of mathematical objects and 

construction techniques that a learner has access to as examples of a concept 

while working on a given task" (p. 291). Students need exposure to example 

groups before the groups can enter their personal example space. If tasks contain 

examples that the students do not have access to, then they will not be able to 

work in the task context.    

Table 9 
 
Types of Definitions in Textbooks 
Formal 
 

An isomorphism 𝜙 from a group G to a group G- is a one-to-one 
mapping (or function) from G onto G- that preserves the group 
operation. That is,  
𝜙(ab)=  𝜙(a)𝜙(b)  for all a,b in G. If there is an isomorphism from 
G onto G-, we say that G and G- are isomorphic and write G ≈ G- 
(Gallian, 2009, p. 123). 

Informal 
 
 

At first glance, the groups don’t seem the same. But we claim they 
are “essentially the same” except for labels on the elements 
(Hungerford, 2012, p. 214). 

Translation 
 
 

Every element of G is paired with a unique element in H (its new 
label.) In other words, there is a function f: G→ H that assigns to 
each r ∈ G its new label f(r) in H  (Hungerford, 2012, p. 215). 
 
An isomorphism is said to “preserve the operation,” since 
condition 2 of Definition 3.25 requires that the result be the same 
whether the group operation is performed before or after the 
mapping.” (Gilbert & Gilbert, 2008, p.177). 

  
 Similarly, the types of representations found across texts served as both 

what representations students should understand and what representations 

students have a fair opportunity to engage with. Students may not have been 

exposed to all representations, and so textbooks provide a way to determine what 
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representations are likely to be used frequently and consistently across different 

classes. Further, the frequencies of usage may reflect the level of value that each 

representation has within the field.  

 The differing definitions also have a huge impact on meaningfulness of 

questions. It is likely that students with differing definitions may interact 

differently with tasks. If an assessment was catered towards one definition over 

another, two differing classes could not be fairly compared.  

 The expected student activity analysis provided a detailed look into what 

type of applications existed related to the various important topics. These 

activities ranged in nature with procedural, conceptual and proof-based activity. 

The activities served less to address purpose, and more towards content validity- 

establishing what is valued in the domain.  

 By analyzing textbooks, I was able to explore both content and access 

issues related to the domain. Any assessment should aim to reach the goals of 

being valid for the entire population and be representative of what is actually 

valued in the domain. As no assessment can cover all aspects of a targeted 

domain, a textbook analysis can provide insight into what is most valued.  

 Textbook analyses do have some limitations. Textbooks represent only the 

intended curriculum (Travers & Westbury, 1989). They do not provide any 

evidence of what is actually occurring in classrooms – the enacted curriculum. 

Several institutions do not make use of textbooks at all. However, as noted by Zhu 

and Fan (2006): 
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…textbooks are a key component of the intended curriculum, they also, to 
a certain degree, reflect the educational philosophy and pedagogical values 
of the textbook developers and the decision makers of textbook selection, 
and have substantial influence on teachers’ teaching and students’ learning 
(p. 610). 

 
Textbooks serve both as a proxy for what occurs in the classroom and as an 

artifact of what is valued. 

 Literature review. The last leg of the domain analysis triangle was a 

literature review. Literature on student conceptions underlies the formation of 

many concept inventories (Lindell, et al., 2007; Hestenes, et al., 1992; Carlson, et 

al., 2010). I contribute a methodology for investigating literature systematically.  

In the GCI. Because the body of literature on student understanding in 

abstract algebra is relatively small, this could be done systematically and 

comprehensively. Literature was identified using the following steps: 

1. A full text search of relevant journals 
2. Title search of conference proceedings 
3. Broad subject search in relevant database 

For the case of the GCI, step one was accomplished by doing a full text search for 

the concepts selected from the Delphi study. For vague terms such as “group” the 

phrase “abstract algebra” was added. I searched each of the 35 journals identified 

by Special Interest Group of the Mathematical Association of America on 

Research in Undergraduate Mathematics Education as being research-based and 

relevant to undergraduate mathematics. Further, conferences that are research-

based and attend to undergraduate mathematics education were explored 

including: International Group for the Psychology of Mathematics Education, 

Research in Undergraduate Mathematics Education, Delta Conference on 
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Teaching and Learning of Undergraduate Mathematics and Statistics, Congress 

of European Research in Mathematics Education and International Congress on 

Mathematical Education. Finally, I searched the terms “Group Theory” and 

“Abstract Algebra” in the Education Resources Information Center (ERIC) 

database to assure no articles were overlooked in the earlier process. 

For each concept, I compiled a set of analytic notes that included any 

conceptions found in the literature and corresponding tasks found in publications. 

Additionally, I addressed overarching themes about how students understand 

concepts in group theory.  

Summary of literature on student conceptions. Much of the work related to 

student understanding in group theory was done in relation to the Action, Process, 

Object, and Schema (APOS) framework (Dubinksy & McDonald, 2002). The 

framework serves to deconstruct mathematical topics in terms of the action, 

process, object, and schema conceptions. An action is “repeatable physical or 

mental manipulation that transforms objects in some way” (Dubinsky, 

Dautermann, Leron, & Zazkis, 1994, p. 270). Whereas an action relies on running 

discretely through each step, the action can be interiorized into a process where 

the actions are thought of as a whole rather than a series of steps. This process can 

then be encapsulated such that it becomes an object that can be transformed in 

some way such as coordinating with other processes. Objects and processes can 

be coordinated, thematized, to become a schema. A schema consists of a set of 

related objects and processes that compose a concept. A well-developed 

understanding of a complex concept such as a group requires a schema conception 
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where the various associated objects and processes can be unpacked in relevant 

situations. Abstract algebra concepts decomposed in terms of this framework 

include: binary operation, groups, subgroups, cosets, quotient groups and 

normality (Asiala, Dubinsky, Matthews, Morics, & Oktac, 1997; Brown, Devries, 

Dubinsky, & Thomas, 1997; Dubinsky  et al., 1994). For example, Asiala et al. 

presented a genetic decomposition (set of mental constructions) of group. The 

group schema consists of coordinating three schemas: set, binary operation, and 

axioms. The axiom schema consists of the process of checking the axioms and 

four objects: the axioms themselves. To check axioms, the objects of the axioms 

must be de-encapsulated to processes to be utilized with the binary operation and 

set at hand. The four axiom processes must then be coordinated with the 

requirement that they are all satisfied in order for the set and operation to be a 

group. Groups can then be treated as an object to apply processes or actions such 

as determining if two groups are isomorphic or building the direct product of two 

groups. While experts might be expected to have well-developed schema 

regarding different concepts, Asiala et al. found that undergraduate students 

frequently struggle to coordinate and develop all the necessary mental 

constructions.  

Students struggle with topics in abstract algebra for a number of reasons 

including their complexity, abstraction, and formality. The complexity of the 

group schema can be seen above with the number of aspects that need to be 

coordinated. In Leron, Hazzan, & Zazkis’ (1995) exploration of isomorphism, 

they found that isomorphism contained many complexities leading to student 
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struggle. Understanding isomorphism involves leveraging both the group and 

function schemas. Further, isomorphism involves the map itself, the isomorphism, 

as well as the property groups can share of being isomorphic. There are also 

notable differences between showing two groups are isomorphic and showing 

they are not isomorphic and making sense of the general idea (that groups are the 

same) and how that comes to fruition in specific cases. The schemas and 

relationships amongst concepts are often quite complex in this setting. This is 

particularly problematic when paired with new levels of abstraction and rigor.  

Hazzan (1999) discussed several issues surrounding abstraction level. 

These played out in one of three ways. First, the process-object duality can be 

difficult to manage in a meaningful way. The researchers found students would 

often rely on the calculation or process for finding cosets rather than treating 

cosets as objects themselves. Second, the unfamiliarity of objects can lead to 

inappropriately borrowing from known objects. They present an example of a 

student determining that ℤ3 was not a group because the element 2 had no inverse. 

The student had mistakenly looked for 1/2, the inverse of 2, in the more familiar 

group: reals under multiplication. Additionally, they presented complexity 

reduction where, for example, a student may use a specific case in place of a 

general one. 

Connected to abstraction is the baggage that comes with the formal 

definition of concepts. Rather than describing existing objects, a definition 

stipulates an object. This means that quantifiers take on an enhanced meaning. For 

example, when providing an analysis of binary operations Novotná, Stehlíková, 
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and Hoch (2006) differentiated between levels of understanding where a student 

could correctly address the quantifier involved in the identity element definition. 

An element e is an identity for a given operation in a set if it fulfills the property 

ex=xe=x for all x in the set. An identity element cannot be different for differing 

elements of the set. Furthermore, the differences between intuitive understanding 

and formal definitions may cause issues in developing correct conceptions around 

topics. Lajoie and Mura (2000) found that many students utilized an intuitive 

definition of cyclic groups (repeatedly operating an element with itself) rather 

than the formal definition ({xn | n ∈ ℤ}) to arrive at the conclusion that ℤ is not 

cyclic. In formal mathematics courses, the differences between formality and 

intuition, as well as the dependence on quantifiers, provide a high level of 

difficulty associated with concepts. 

Discussion.  Using literature is an essential component of developing 

construct validity. If we wish to interpret students’ cognition, research on their 

cognition should be leveraged. One area of domain analysis is determining which 

aspects of the domain are associated with potential difficulties. The various 

theories of cognition provide important information about students’ cognition and 

the types of questions that may target important aspects of understanding. The 

foci of these studies also reflect what is valued in the field. 

The biggest issue that can be caused by the usage of literature is failing to 

triangulate with other sources. This is especially the case in group theory where 

the literature base is not particularly extensive. Several of the topics identified as 

fundamental from the Delphi study had little to no associated literature on student 
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conceptions. Furthermore, most studies are dependent on local samples and 

consequently the curriculum associated with their group theory course. For 

example, many tasks for studies use examples that are not universally treated in 

textbooks. Blindly leveraging these studies may prevent many students from 

having access to questions. Literature should serve as a guiding tool, but not a 

limiting one.  

Conclusion. The domain analysis unearthed information about what is 

valued in the field in terms of both topics and surrounding examples, 

representations, and activities. Additionally, the analysis provided information 

about known difficulties in the domain, previously studied tasks, and theories of 

student cognition. The results of the process serve to inform the question creation 

and selection through a list of starting tasks, known conceptions to target, and 

through leveraging what is representative and to what representations, examples, 

and definitions students likely have access.  

Question Creation and Selection 

 

Figure 18. Task creation and selection. 

Open-ended question creation. I created or adapted 42 open-ended 

questions for evaluation based on the domain analysis. In this section, I explain 

how the domain analysis informed this process. 
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 Topics. The topics identified in the Delphi study provided the starting 

ground for task creation. All of the topics identified by the panel existed within 

the introductory chapters of all the textbooks, so each topic was used in the 

question-creation process. Every open-ended question was created to directly tie 

to one of the eighteen topics. For each topic between one and three questions were 

created depending on the amount of literature provided and complexity of the 

topic. 

Representations. The analysis of representations in textbooks was 

leveraged in the question-creation process. Only representations found across 

textbooks and sections were used. Because verbal descriptions and symbolic 

names were dominant in all curricula, these were the primary representations used 

for the GCI. In the GCI, all symbolic names were accompanied by verbal 

descriptions to mitigate for any unfamiliarity and make the test more accessible to 

a general population. The table and a list of elements and operations were also a 

representation type found consistently through textbooks. Several GCI questions 

made use of a list of elements (particularly for subgroups which often lack either a 

symbolic or verbal description that would be universal) and one question uses the 

table representation for a group. If students are confronted with unfamiliar 

representations, they will not have access to the question and it will no longer be 

meaningful. However, representations are also an important aspect of concept 

understanding, so understanding which are valued was essential to determining 

which representations were used to use in questions. 
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Examples. Many GCI questions about groups involve reasoning in specific 

contexts about specific example groups. Both the Delphi study and textbook 

analysis informed the selection of examples for use in item design. During the 

Delphi study several example groups did not meet the threshold score for 

importance. The textbook analysis confirmed that these examples were 

inconsistently treated across textbooks. I did not include any unfamiliar example 

groups besides the modular addition group because of the low importance means 

and the treatment in textbooks.  

Activity. The task activities were informed by both the literature and 

textbook analysis. The evaluation type of activity was chosen as one of the 

primary question types for the GCI. This was done for several validity reasons. 

First, evaluate-type questions did exist in all curricula indicating some degree of 

value. Second, these types of questions are frequently used in studies that explore 

student conceptions and have been shown to illustrate a multitude of conceptions 

that vary from novice to expert (see Dubinsky et al., 1994; Leron, et al., 1995; 

Weber & Alcock, 2004). Further, evaluation questions are not prompts for proofs. 

The goal of the GCI was not to assess formal proving ability but understanding of 

concepts. From a utility standpoint, evaluate-type questions allowed for more 

conceptions to be probed as both “yes” and “no” responses unearthed differing 

reasons.  

Other activity types that were used for question development include the 

usage of a definition or usage of a theorem. Recognizing when a concept or 

theorem can be used is an essential part of understanding the concept. This falls in 
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the applying knowledge in appropriate contexts (Savinainen & Viiri, 2008) 

dimension of conceptual understanding. For example, suppose students are 

presented with a situation requiring conclusions about the image of a 

homomorphism. If someone has a strong understanding of the Fundamental 

Homomorphism Theorem, they would be able to recognize this context as related 

and apply the theorem. Understanding a concept is not limited to making sense of 

its definition but also involves being able to use the concept in conjunction with 

various situations.  

Targeting conceptions. The tasks on the GCI were informed by the 

literature in one of two ways. I directly adapted tasks when available and 

consistent with examples and representations from the domain analysis. 

Otherwise, I created new tasks aimed at capturing student conceptions from the 

literature. A number of tasks came from the literature unaltered or slightly 

adapted such as the tasks in Paper 2. However, often tasks found in literature did 

not make good multiple-choice questions because they were either too complex or 

not accessible in terms of example groups or representations. Some papers 

contained relatively targeted misconceptions such as students failing to address 

both requirements for the definition of order of an element. Anderson et al. (1998) 

found that many mathematics majors defined order of an element, x, as an integer 

n such that xn=e or 1 without attending to n being the smallest integer such that 

this equation holds. I developed a specific open-ended question aimed at this 

conception: “If a6=e, what are the possible orders for a?” This allowed for 

multiple responses that reflected student conceptions around the idea without the 
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multiple-choice options giving away the answer. 

 Other literature around student conceptions provided more complex 

theories and frameworks that served to inform task creation. For example, 

quotient groups and cosets provided a rich ground for exploring student 

conceptions. Asiala, et al. (1997) provided a genetic decomposition of coset and 

quotient groups and the necessary mental constructions for a well-developed 

quotient group schema. This schema involves coordinating the coset schema, the 

binary operation schema, and the group schema. Students must be able to 

conceive of cosets as objects in order to form a set of sets. Operating on the sets 

requires the usage of representative elements or coset multiplication. The process 

of forming a coset must be deencapsulated to robustly use representatives (verify 

that operating on any elements from respective sets produces the same result) or 

coset multiplication (where all combinations of elements must be multiplied). 

Siebert and Williams (2003) explored some of this complexity in terms of 

modular addition groups. They found students had three conceptions around the 

cosets in this quotient group. The cosets could be viewed as infinite sets, they 

could be viewed as a representative element and a set, or just as the representative 

element. Quotient group tasks were created to address the complexity of dealing 

with elements in quotient groups as both elements (with representative structure) 

and sets. The trajectory of the question targeting quotient groups can be found in 

the Question Refinement section. 

 Additionally, not all literature was specific to a certain concept, but rather 

presented theories that transcend given topics. For example, in Hazzan’s (1999) 



 

 125 

theory about reducing abstraction, she explained that students often reverted to 

familiar groups when reasoning about unfamiliar ones. This idea was incorporated 

into the concept inventory in a number of tasks where unfamiliar binary 

operations might be reasoned about as if they acted as familiar operations. For 

example, students may inappropriately borrow a known identity, such as zero, to 

consider the identity related to an unfamiliar operation such as the one discussed 

in the Minor Refinements section.   

The creation. Underlying the creation of questions were the three 

components of internal validity: content, construct, and generalizability. The first 

set of open-ended questions were designed to (1) be accessible to a general 

introductory group theory student (based on representation and example type),  

(2) be related to an essential concept independent of proof, and (3) have the 

potential to connect to student conceptions in a multiple-choice format.  

 Expert evaluation. Experts are often used to evaluate the questions for 

concept inventories. As instructors, they have insight into whether tasks are 

relevant or important, and what student conceptions they may target.  

In the GCI. Each of the 42 open-ended questions were evaluated by at 

least two mathematicians with experience teaching the course and two 

mathematics educators who have published articles related to the teaching and 

learning of abstract algebra. The evaluators were prompted to address: 

1. Is this task relevant to an introductory group theory course?     
  

2. Does this task represent an important aspect of understanding 
[relevant concept]? 
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If you said NO to either of the above, indicate why. (For example, 
the task might be too advanced, capture prerequisite knowledge, or 
be unrelated to the targeted concept.)  
 

3. What student conceptions might this task capture? (You could 
speak generally, or provide samples of how you think students 
might respond.)  
 

The feedback from expert evaluations was analyzed using several 

dimensions: 

1) Minor refinement and wording alterations. 
2) Concerns about potential to become a multiple-choice question. 
3) Concerns about relevance/importance. 
4) Concerns about difficulty level. 

Discussion. The expert evaluations served two important purposes: 

determining which open-ended questions to move into the next round and 

evaluating the content validity of the questions. Further, as experts in 

mathematics, they addressed issues with wording and mathematical language that 

could lead to non-construct related variance. As in any usage of experts, there are 

limitations because of subjectivity. This could be mitigated with a larger group of 

evaluators. 

 Question selection. From the pool of open-ended questions, I selected a 

subset of 18 questions to pilot. These questions were selected to maximize 

validity.  

In the GCI. Within each topic, a single task was selected that met the 

criteria of being relevant and important by all evaluators when possible. Of tasks 

that met the criteria, any that were previously studied and found in the literature 

were selected first. If no tasks existed from the literature, the task was selected 

where experts felt the student conceptions were most aligned with the underlying 
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concepts and did not contain construct-irrelevant difficulty. At this point, the 

questions selected were altered to address the feedback from the evaluators when 

necessary. Most alterations were minor wording changes at this stage, although 

one question was replaced based on a substantial suggestion from a reviewer. In 

this case, the reviewer-suggested question both aligned with tasks in the 

curriculum and was related to a concept (kernel) that has no existing literature 

about student conceptions. 

Discussion. Any time questions are selected, there is a tension between 

depth, coverage and time constraints. For the GCI, I chose only one open-ended 

question per topic. The survey of 18 questions took roughly an hour for students 

to complete. It was not feasible to include more questions. The 18 questions were 

all evaluated as important and relevant to introductory group theory and the 

targeted concept. However, with only one question per topic, all topics are treated 

equally in this question set. Evaluators could consider whether all important 

aspects of concepts were considered and new questions may need to be developed 

to more appropriately address some of the more complex topics such as 

isomorphism.  

Question Refinement and Field Testing 

 
Figure 19. Open-ended (left) and multiple-choice (right) field testing. 
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For the open-ended round, students from 29 institutions representing five 

geographic regions of the United States (West, Midwest, Southeast, Northeast, 

and Mid-Atlantic) and varying levels of exclusivity were selected. Selectivity was 

based on acceptance percentage within categories of high (less than 25% 

accepted), mid-high (25-50% accepted), mid-low (50-75% accepted), and low 

(75% or greater accepted). For the closed-form version, I made an attempt to 

contact all instructors of abstract algebra courses in the United States during 

spring 2015. Any institution offering a mathematics major was part of the targeted 

population. Online schedules were used when available. If not, a member of the 

research team called the institution to find contact information of the current 

instructor. Institutions where group theory was addressed early in the term 

(quarter systems; group-first approach in semesters) were part of the pilot. Group 

theory classes that finished the material later in the term were part of the large-

scale round. The sample represented all geographic regions and all levels of 

selectivity (see Table 10 for breakdown of selectivity at each round.) 

The questions went through several stages of refinement during this time: 

1. Open-Ended Round 
a. Pilot (n=38) 
b. Follow-up Interviews (n=15) 
c. Large-Scale Field Testing (n=349) 

2. Multiple-Choice Round 
a. Pilot (n=77) 
b. Follow-up Interviews (n=15) 
c. Large-Scale Field Testing (n=376) 
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Table 10 
 
Selectivity of Sample Institutions 
 Least 

Selective 
(>75% 
admitted) 

Mid-Level 
Selective 
(50-75% 
admitted) 

More 
Selective 
(25-50% 
admitted) 

Most 
Selective 
(<25% 
admitted) 

Not 
classified 

Open-
Ended Pilot  
 

3 classes 
(23 
students) 

1 class 
(2 students) 

1 class 
(13 
students) 

0 classes 0 classes 

Open-
Ended Full 

13 classes 
(138 
students) 

12 classes 
(108 
students) 

4 classes 
(47 
students) 

1 class 
(57 
students) 

0 classes 
 
 

 
Multiple 
Choice 
Pilot 
 

 
2 classes 
(17 
students) 

 
0 classes 

 
3 classes 
(26 
students) 

 
4 classes 
(44 
students) 

 
0 classes 
 
 

Multiple 
Choice Full 

13 classes 
(131 
students) 

10 classes 
(128 
students) 

6 classes 
(84 
students) 

1 class 
(14 
students) 

2 classes 
(19 
students) 
 
 

Total 28 classes 
(286 
students) 

22 classes 
(236 
students) 

13 classes 
(157 
students) 

6 classes 
(119 
students) 

2 classes 
(19 
students) 

 
This process was adapted from Carlson, et al. (2010)’s methodology for 

the creation of the PCA. All questions were field tested as open-ended questions. 

The most common student responses became the options for the closed-form 

multiple-choice questions. I conducted follow-up interviews to validate the 

questions. These interviews asked students to explain their answer choices and 

connect them to their understanding of the underlying concept. After both the 

open-ended and multiple-choice rounds, I conducted 15 interviews follow-up 

interviews respectively. Questions were refined at each stage of the instrument 

development to increase internal validity of the instrument. This took a number of 
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forms, ranging from direct adaptation to complete question deletion.  Each of 

these paths is illustrated below with open-ended responses and interview excerpts 

as relevant. 

Table 11. 
 
Open-Ended Responses for Cyclic Question 

Response Category  Sample Student Response 

ℤ is cyclic because it 
can be generated by 
one element 

 

ℤ is cyclic because it 
can be generated by 
a finite set of 
elements 

 

ℤ is not cyclic 
because the elements 
do not cycle  

 

ℤ is not cyclic 
because no element 
will generate the 
whole set 

 
 
Direct adaptation. The ideal situation occurred when an open-ended 

question remained unchanged and the student responses were easily categorized 

into multiple-choice options. The question about cyclic groups was adopted 

directly from the literature: “Is ℤ a cyclic group?” (Lajoie & Mura, 2000). In the 

open-ended version, students were prompted to include their definition of cyclic 
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group to assure they shared some thinking beyond “Yes” and “No.” Each 

response was open-coded with every attempt to not be influenced by any pre-

existing ideas of student conceptions. This decision was made to avoid any 

distortion of the data to fit expected responses. This coding process led to the 

following categories of responses found in Table 11. 

As the responses categorized nicely, they became the options for the 

multiple-choice version. During field-testing the multiple choice version also 

contained the option “None of the above” to allow for relevant conceptions not 

uncovered in the first round. This was done to increase construct validity of the 

finalized version. The open-ended responses, combined with student interviews 

(following a think-aloud approach) and lack of students choosing “none of the 

above” served to provide a strong argument for construct validity of the question. 

A more detailed discussion of the question can be found in Paper 2. 

 
Figure 20. Multiple-choice version of cyclic group question. 

Minor refinements. More common than directly adapting were minor 

refinements based on student responses. This was largely done to address both 

construct and content validity issues. The questions needed to be related to the 

concept and varying student responses should be tied to the intended content. 

Further, the responses should be able to differentiate different student conception. 
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This version can be seen with the adaptation of the identity question. The original 

question was adapted from Novotna, Stehlikova and Hoch (2006).  

 

Figure 21. Open-ended version of the identity question. 

This question aims to probe whether students are conceiving of quantifiers 

correctly when addressing the identity element. If one were to solve x*e=x, they 

would arrive at an e that is dependent on the element x. This means that the 

“identity” would vary for each x. As an identity element must satisfy x*e=x for all 

elements, this binary operation would not have an identity over this set. Open-

ended responses generally fell into the categories found in Table 12.  

Two of these responses connect to the discussion from the literature that 

students may reduce abstraction level by inappropriately borrowing from known 

groups (or operations in this case.) Many students relied on the assumption that 

zero or one would be the identity or the only identity candidates. Zero and one are 

the identities for the familiar operations of addition and multiplication on the 

rational numbers. However, there is no reason the identity of an operation would 

need to be either. Consider the operation: 

x*y = x +y +1 

The identity element would be negative one because: 

a*(-1) =a +(-1)+1 =a and (-1)*a = (-1)+a+1 = a. 
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Table 12 
 
Open-Ended responses for identity question 
Response 
Category 

 
Sample Student Response 

Identifying 
familiar 
identity zero 
or one  

 
Tested 
familiar 
identities 
and rule 
them out 
 

 

Found 
identity 
dependent 
on element 
chosen 

 
Identified 
that the 
identity 
cannot 
depend on 
element 
chosen 

 
 

The open-ended version successfully unearthed a number of issues with 

the identity element: both the issues surrounding quantifiers as well as issues 

around unfamiliar operations. At this point, one alteration was made before 

writing the closed-form version. Several students were concerned that domain 

was the reason that zero could not be the identity (see Figure 22). This was not 

meant to be probed by the question and could lead to misinterpretation of student 
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conceptions in the closed-form version. For construct validity purposes, the 

domain was altered to avoid this issue. 

 

Figure 22.  Sample student work illustrating the problematic domain. 
 

 
Figure 23. Multiple-choice question on identity. 

Unlike in the first question discussed, “None of the above” was selected 

relatively frequently during the pilot highlighting that some conception was not 

being captured. Follow-up interviews and open-ended responses illustrated that 

this selection was not necessarily because of any issues with identity, but rather 

the complexity of the algebra involved. During an interview, one student 

explained that zero does not work because x times 0 would give you y/2 and not x. 

She explained for an element to be the identity, “x times the identity is x.” She 

went on to eliminate the second option because, “You can try it with x over 1+2x 
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and that – yeah, that doesn’t work.” Later she elaborated, “Something like the 

second option is valid and sensible even though it has x in it.” She did not take 

issue with identity relying on an element, but rather made a computational error. 

 The content of the question was altered to eliminate this unintended 

difficulty. Ability to isolate a variable was not part of the intended content 

domain, causing issues with content validity and construct validity. (Students 

have the targeted conception but are not selecting that answer for a different 

reason.) The equation was simplified to reduce the computational nature of the 

question.  

 
Figure 24. Revised multiple-choice question on identity. 

 Because “None of the above” was frequently selected in the pilot version, 

the option remained in the full-scale version, unlike the cyclic question where it 

was not needed. The alteration to the binary operation caused an additional issue 

with the set leaving “None of the above” as a popular selection. Because the 

potential identity element was –x/2, students were concerned that this element 

would not be in the domain of non-negative numbers. If any positive number were 

substituted for x, this expression would be negative. The finalized version of the 
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question altered the domain to rational numbers to prevent this issue from 

interfering with the intended conceptions being targeted.  

Replacement. While most questions were either directly adapted or 

altered in minor ways through the process (16 of 18 questions), two had more 

substantial changes necessary. In one case, a question was completely replaced 

between the open-ended pilot and the eventual open-ended large-scale round. This 

was done for construct validity reasons. The open-ended pilot question was meant 

to target conceptions around quotient groups with the expectation that students 

may not have complete conceptions regarding the elements and operation in 

quotient groups.  

Create an operation table for a two element quotient (factor) group formed 
from the group in the following table: 

 

Figure 25. Original quotient group question. 

The quotient group would be isomorphic to ℤ2. However, this can be 

arrived at with no understanding of quotient groups as illustrated by the following 

student comment, “I didn’t really know what it was asking for because I didn’t 

know what this meant, but I found these two things – the two-element groups.”  
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Figure 26. Student with correct 
conception of elements in quotient 
groups. 

 
Figure 27. Student with incorrect 
conception of quotient groups. 
 

This student found a two-element subgroup and presented it as the 

quotient group. This was entirely disconnected from their understanding of 

quotient group. As illustrated in Figure 26 and Figure 27, students were arriving 

at a similar (isomorphic) copy of the quotient group with a range from valid 

understanding of quotient groups to simply giving a subgroup with no connection 

to the topic. The quotient group created using the subgroup {e,b} and displayed 

using representative elements would be identical to the group provided by the 

student on the right. The student on the left explained e represented {e,b} and r 

was {c,a}. They were then able to operate the cosets to arrive at the table 

presented.  

Additionally, because the quotient group would contain two elements, and 

each coset would contain two elements, a conflation between coset size and group 

order would not be unveiled with this question. In order to alter the question 

sufficiently, a larger group would be needed. The question was initially simplified 

in response due to evaluator concerns that the question was too time intensive if 

the student must check all subgroups for normality. Additionally, the question 

becomes tied to a procedure for finding a quotient group, which may mask a 

conceptual understanding.  There are a number of ways the question could be 
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altered, such as changing the group from ℤ2xℤ2 to ℤ6, which would mean that the 

quotient group could not be made identical to a subgroup. Because of the potential 

to complicate the question, the question was replaced entirely. 

 The new version attempted to target the same student conceptions 

surrounding quotient groups in a different way where each response would be 

meaningful.  

 
Figure 28. New open-ended quotient group question. 

In this case, a student would need to attend to a particular coset as an 

element in the quotient group to find its order rather than only attending to the 

cardinality of the set. Further, the question aimed to pull out a third conception 

where only the representative element is used. If a student only attends to the 2, 

the representative and not the coset would determine then the order of the 

element. The new question tested well in the large-scale open-ended round. An 

exemplar from each case can be seen in Table 13. Based on open-ended surveys 

and interview data, four distinct conceptions existed for each numerical response: 

a. 2: A student is able to conceive of the elements in G/H as sets and 
elements.  

b. 3: A student only attends to the coset as a set, finding its cardinality. 
c. 4: A student finds the order of the group superficially using a memorized 

fact.  
d. 6: A student finds the order of the representative element in G, rather than 

consider 2+H. 
 
The replacement question was able to delineate between various student 

conceptions establishing construct validity and meaningfulness at the item level. 
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Further, each conception was connected to the targeted area and reflected 

understanding related to the domain of introductory group theory and the specific 

topic of quotient groups. 

Table 13 
 
Open-Ended Responses for the Revised Quotient Group Question. 
Response 
Category 

 
Sample Student Response 

2 

 
3 

 
4 

 
6 

 
  

Deletion. A question was entirely eliminated and not replaced for one 

topic: order of a group. The question read, “Can an infinite group have a finite 

subgroup?” This decision to remove the question (and subsequently the topic) was 

because: 1) The difficulty level was found to be low by the Delphi study with an 
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average difficulty of 1.64 out of 10; 2) There was no evidence from the open-

ended round that students struggled to appropriately deal with the concept of 

group order. The responses to the open-ended round were either correct or 

misconceptions were related to understanding of other topics. For example, many 

students indicated that an infinite group (ℤ) could have finite subgroups (ℤn), a 

misconception that mimics issues with the subgroup question (see Paper 2). The 

question failed to address the desired content area. Further, the concept of group 

order was reflected in a number of questions including the subgroup question and 

the Lagrange’s Theorem question where students articulated notions of the order 

of a group while interpreting questions and making arguments. At no point during 

the interviews or in the open-ended surveys did students reflect anything but an 

accurate understanding of group order. This is not surprising as the concept itself 

is not highly complex (counting the number of elements in a set) and does not 

provide natural interference between an intuitive and formal understanding. Some 

of the complexity lies in the set concept, particularly that elements cannot repeat. 

However, this is a non-issue in group theory where sets are generally pre-

packaged. Further, sets themselves were not identified as an important topic to 

explore further in this context based on the Delphi study. This question was 

markedly disconnected from its purpose and achieved no content validity. A 

concept that lacks a variety of incorrect conceptions does not meet the purpose of 

a test designed to probe understanding of various concepts and unearth student 

difficulties.  
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Discussion. While the domain analysis helped bolster content validity 

claims, students must engage in the tasks to make strong arguments of construct 

validity. Through analyzing student responses and conducting follow-up 

interviews, targeted conceptions can be connected to how students actually 

engaged in the tasks and thought about the underlying concepts.  

Additionally, testing tasks with a diverse sample of students can bolster 

arguments about generalizability. Many concept inventories were developed 

internally where only students from a single university comprised the sample. 

Recent concerns about the reliability of the Calculus Concept Inventory (Inglis, 

2015) reiterate the need to be transparent about the creation process. The test 

performed significantly differently in terms of both reliability and underlying 

factors when administered to a different population of students (Thomas et al., 

2015). For the GCI, multiple institutions were used at each stage to maximize 

representativeness in order to bolster generalizability. 

Psychometric Properties of the GCI 

 A number of psychometric analyses were used to evaluate the structure 

of the test after the completion of the large-scale round of field testing.  

Reliability. The most commonly used measure of reliability is Cronbach’s 

Alpha. Cronbach’s Alpha gives a measure of internal consistency by correlating 

items with the overall item score.  

 In the GCI. For the GCI, the Cronbach's Alpha was calculated giving a 

reliability estimate of .84 in the pilot and .65 for the large-scale round. The value 

of .84 indicated good internal consistency, while the .65 was acceptable. This may 
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reflect the low stakes of test takers. While many of the students received credit for 

completing the question set, there was no incentive for their performance. A high 

rate of guessing may account for a less-than-ideal reliability estimate. 

Notwithstanding, a value of .65 is still in the acceptable range and allows for 

some degree of cohesiveness. 

Discussion.  Cronbach’s alpha is the most commonly used measure of 

reliability. However, Cronbach’s alpha is sample dependent (Wallace & Bailey, 

2010). In the case of the CCI, Epstein (2007) found the reliability estimate to be α 

= .7.  However, in a recent plenary, Inglis (2014) reported reliabilities of α 

= .211, .326, and .397 with different samples of students. I purposefully selected a 

representative sample of students to try and contend with the limitations in 

homogeneous samples. While my reliability was lower with the more diverse 

sample, the sample was more reflective of the intended population. 

The decision to only have one question per concept also limited internal 

consistency and likely impacted the alpha estimate. The more questions in a test, 

the higher the alpha reliability estimate in general (Cortina, 1993). In the case of 

the GCI, each question targeted one underlying concept. The questions would 

likely have higher correlations if multiple questions targeted the same topic. 

Increasing correlations between questions would cause positive effect on 

reliability in terms of an internal consistency estimate.  

Furthermore, because the sample was representative, the classes of 

students varied tremendously. The questions were created to maximize access, but 

with the variation in courses, it is not possible to do so flawlessly. Students may 
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have differing exposure to various groups, theorems and problem types. This may 

also contribute to the lower reliability, as students may not access certain 

questions similarly. If a student has less exposure to certain topics or groups, 

guessing rates may increase.  

  Many of these limitations are logistical consequences. The GCI takes 

roughly 45 minutes to complete, and adding additional questions per topic would 

make this test quite long for its purpose. By raising the stakes of the test, guessing 

may be reduced. However, the test was not intended for assigning grades as the 

purpose is diagnostic in nature and the set of questions is intentionally not 

comprehensive. Only questions with the power to unearth common incomplete 

and incorrect conceptions were used.  

Criterion-related validity. Another common way to address validity is to 

correlate the scores on a test with some related external measure.  

  In the GCI. Students who completed the question set also self-reported 

their course grades. I converted the course grades to A=4, B=3, C=2, D=1 and 

F=0. As not all institutions used a +/- grading scheme, scores such as A- or A+ 

were recorded as simply a 4. The course grades were strongly correlated to their 

performance on the GCI, r=.43, p<.001. 

  Discussion. Criterion-related validity can provide evidence that an 

assessment is related to some other construct. But this evidence is external to the 

test. Lissitz and Samuelsen (2007) argued that criterion validity is not a type of 

validity, but rather a measure for utility, an external factor.  An instrument that 

measures how many days of sunshine in a month and an instrument that measures 
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the rates of robbery may be correlated, however, they certainly do not measure the 

same thing. The validity of a test should stem from the creation process, the 

questions themselves, and the connections between the question responses and 

how students think about a given topic.   

Principle component analysis. Factor analytic methods, such as principle 

component analysis, provide a means for determining dimensionality of a test.  

In the GCI. Principle Component Analysis was used to examine 

correlations that may exist between question performances. The analysis found 

the test was largely unidimensional with only one factor with an eigenvalue 

significantly above one. Figure 29 illustrates this phenomenon with a clear elbow 

after one factor with the remaining factors accounting for minimal variation. 

There were generally low correlations between any items. This makes sense in 

terms of the test’s purpose: to capture different facets of student understanding 

related to the underlying concept of groups. The items were created to target 

different conceptions, so although they are related through the lens of groups, they 

each have independent aims.   
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Figure 29. Scree plot illustrating the number of components in the GCI.  

  Discussion. Factor-analytic approaches condense the differing responses 

into either correct or incorrect, which does not fully capture the scope of a 

concept inventory. This type of analysis is limiting in a situation where questions 

have value in their different responses and not just at the level of right and wrong.  

A more targeted exploration informed by theory may provide a better analysis of 

the relation between questions. For example, a number of question distractors 

through the GCI were related to students reducing abstraction and reverting to 

familiar groups. These distractors may be related even if the questions in their 

entirety did not have high correlations. 

Conclusion 

The methodology for the first rounds of GCI creation is intended to serve 

as a model for the initial question creation and refinement for concept inventories. 

The concept inventory was created in several stages: domain analysis, question 
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creation, and the field-testing of questions. At each stage, I aimed to incorporate 

the three factors of internal validity to maximize the meaningfulness of the GCI.  

 Recommendations. While psychometric analyses can provide important 

information about a test’s reliability and validity, it is important to consider the 

context before applying and interpreting them. The nature of test can determine 

their relative importance. For concept inventories, their meaning is at the 

individual item option level. Traditional test analysis techniques condense 

questions to right and wrong to address correlations. This differentiates students 

who appear to have correct conceptions from those with incorrect, but does not 

account for the nuances of these sorts of tests. For this reason, attention to 

generalizability and validity should inform the entire creation process rather than 

relying on oversimplified psychometric analyses. 

When creating assessments, the domain analysis is a critical step to 

establish content validity. The underlying assumption is that any measure is 

representative of the targeted domain. For measures aimed at specific course 

content, experts and textbooks can be leveraged to explore what is valued within a 

given domain. In the case of concept inventories, the purpose of the assessment is 

centered on conceptual understanding. A detailed textbook analysis can consider 

various aspects of concepts as valued by the field including representation types, 

examples, applications and definitions. Furthermore, this analysis provides a 

significant amount of background for creating questions that are accessible to the 

general population and not a particular subset of students in a given course. 

Additionally, this is the time to explore any literature about student conceptions. 
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The literature provides a source for tasks, theories on student conceptions, and 

further reflects the content that is valued in a field. Prior to the creation of any 

questions, the limits of the domain should be explored in order to bolster a 

question set’s representativeness, generalizability, and potential to unearth student 

conceptions.  

  During the stages of piloting questions, starting with open-ended versions 

is essential to build multiple-choice questions that are authentic to student 

conceptions. Rather than stemming from the test-creator, the options should stem 

from genuine student responses. Furthermore, these responses need to be 

interpretable. Interviews provide the opportunity to probe a student’s thinking and 

investigate interpretations of their answers. Answers need to clearly delineate 

between students with differing conceptions. If different conceptions can lead to 

the same answer, the question needs to be revised. The interviews also serve the 

purpose of providing warrant for the eventual diagnostic quality of the multiple-

choice questions. Interviews should be conducted both during open-ended rounds 

and closed-form rounds. This is done to assure that students choose multiple-

choice responses for the same conceptual reasons as the student responses to the 

open-ended questions. When field testing, the sample of students should represent 

the population that is being targeted. Limiting samples to a small number of 

institutions is likely to provide an incomplete view of student conceptions.  

  A strong assessment is meaningful. For a concept inventory, meaning 

needs to exist at both at the question level and at the test level. The test should 

represent the intended domain covering important and valued content. 
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Furthermore, the test should be connected to student conceptions. For each 

question, the responses should differentiate between students with differing 

conceptions and be clearly connected to alternate conceptions related to a topic. 

Additionally, these interpretations need to generalize beyond a given sample to 

the larger population; each questions must be accessible provide equal access and 

not be catered toward any particular subset of students.  

By attending to generalizability (in terms of access and using 

representative samples), construct validity (through using literature on student 

conceptions, beginning with open-ended questions, and conducting follow-up 

interviews), and content validity (through using an expert panel and textbook 

analysis), I created the GCI questions with the purpose of maximizing all three 

factors of internal validity. The questions covered fundamental topics in the 

domain, the tasks were accessible to a representative sample of students, and all 

of the question options reflected genuine student conceptions around related 

topics.  

Concept inventories continue to be a popular tool for a number of 

purposes including both diagnostic (unearthing student conceptions) and 

evaluative (assessing instructional efficacy). It is important to be transparent and 

systematic when creating an instrument intended for such broad usage. The 

creation of the GCI presents one model of this transparency with careful attention 

to developing both a useful and valid tool. 
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Paper 2: Scaling up and out: Reconsidering how students think about 
concepts in Group theory 

 
In replication you learn a lot about what is still needed. That is not 

understood. In mathematics, there is no replication. When you have proved it, it's 
proved. But we are not mathematicians; we are a human science. And so when 
somebody has shown something, we have to try to do it again to figure out what 
the critical variables were that determined it and what might possibly affect the 
result. Because the result might be an artifact (Silver & Kilpatrick, 1994, p. 738). 
 

In recent years, numerous behavioral science fields have called for an 

increase in replication studies (Burman, Reed, & Alm, 2010; Makel & Plucker, 

2014; Yong, 2012). The need to repeat findings is especially pertinent in the fields 

where small sample sizes dominate. Weber (2013) noted at his recent plenary 

address at the Conference for Research in Undergraduate Mathematics Education 

the dominance of small-scale and qualitative studies calling for quantitative and 

large-scale counterparts. Without scaling up (increasing numbers) or scaling out 

(using samples with differing characteristics), we are limited in terms of 

generalizability- leaving theories to stand without consideration to the role of 

time, place, and people involved. Theories risk being artifacts of their setting. Yet, 

a recent article in the Educational Researcher noted that only 0.13% of published 

articles in the major education journals are replication studies (Makel & Plucker, 

2014). Replication is a vital part of the scientific method where theories are to be 

both created and scrutinized. I address this call by building on smaller qualitative 

studies related to student understanding in group theory, scaling up and out to 

utilize the same (or similar) questions with a larger and more diverse sample. 

 In this study, I report on large-scale survey results around three questions 

that have been previously explored in earlier studies related to student 
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understanding in group theory. The first question addresses whether ℤ3 is a 

subgroup of ℤ6. This question was used to illustrate various student conceptions 

about both subgroups (Dubinsky, Dautermann, Leron, & Zazkis,1994) and 

Lagrange’s Theorem (Hazzan & Leron, 1996). A question about isomorphism, 

(“Are ℤ and ℚ isomorphic?”) from Weber and Alcock (2004), was initially used 

to illustrate proof strategies. In this study, I use the question to both re-explore the 

original theoretical contribution about proof strategies, as well as identify 

alternate approaches and conceptions related to isomorphism found in the larger 

and more representative sample. The third question comes from Lajoie and 

Mura’s (2000) exploration of cyclic groups where they found students struggling 

to mediate between their intuition of cycles and the formal definition of cyclic 

groups when determining if ℤ is a cyclic group. Within each question, I discuss 

the generalizability of the original results and present alternate conceptions that 

emerged from the larger sample. I explore several issues including: (1) validating 

previous theories, (2) establishing how widespread various student conceptions 

are, and (3) exploring how new results may inform previous theory. 

The Need for Replication 

         Schoenfeld (2007) listed replicability as an important aspect of 

trustworthiness in mathematics education research. He equated replicability to 

generalizability. That is, “the expectation is that the lessons learned from a study 

will apply, in some way, to other situations” (p. 87). Every classroom and every 

student is different and so, replicability is not just about identically recreating a 

study, but conducting further studies to replicate the lesson learned. 
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         Makel and Plucker (2014) differentiated types of replication into three 

categories adopted from Lykken’s (1968) classic work. The categories are: literal 

replications, operational replications, and constructive replications. Literal 

replications are studies that have been replicated exactly including taking a 

sample from the original sample pool. Operational replications differ slightly as 

the requirement to pull from the same sample pool is lessened, but the 

methodology stays unchanged. Constructive replications aim to develop a new 

study that would either confirm or challenge the findings from another study. For 

example, if a case study develops a specific theory of how students understand 

groups, a constructive replication study might use a different institution-type, 

utilize an alternate methodology and create new questions that also aim to address 

the conception types associated with groups. The results would either confirm or 

refute the theory developed in the initial study. The group theory understanding 

replication studies presented herein are constructive in nature.  

Makel and Plucker (2014) analyzed the top 100 education research 

journals (determined by impact factor) to identify the rates of replication studies. 

They found that 221 out of 164,589 articles (.13%) were in fact replication 

studies. A cursory look at the Journal for Research in Mathematics Education 

(JRME) and Educational Studies in Mathematics (ESM) reveals similar results. 

By searching the text for the term “replication” a number of studies were 

identified; however, most used replication in alternate contexts, did internal 

replication (that is reporting on a study and their replication of it), called for 

replication, or mentioned a different replication study in the literature background.  
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Of the 1,800 articles found in Google Scholar’s database for JRME, only 14 were 

replication studies. Of the 2,160 articles found in Google Scholar’s database for 

ESM, only two studies were replication studies.  

As early as 1975, Eastman lamented a lack of replication studies in 

mathematics education noting that, “we are all aware that one empirical study 

does not by itself answer a general question about the teaching or learning of 

mathematics” (p. 67). Despite reported calls for replication studies, these studies 

remain rare in educational research. The research in this paper aims to both 

address the call for replications and illustrate the ways that replication can serve 

to inform theory. 

Student Understanding in Group Theory 

The replication studies presented are situated in the context of student 

understanding of introductory group theory. Group Theory is a notoriously 

challenging course. As noted by Dubinsky, et al. (1994), “mathematics faculty 

and students generally consider it to be one of the most troublesome 

undergraduate subjects” (p. 268). Group theory is often the first time students 

have to reason about concepts from their formal definitions. Literature related to 

student understanding in group theory either highlights these difficulties, presents 

instructional innovations aimed to improve student understanding around 

concepts in the course, or a hybrid of the two (Weber & Larsen, 2008). The three 

questions explored in this replication study have been used in the past to illustrate 

student difficulties and provided the impetus for developing theory around student 
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conceptions in the subject area. I present background on each of these questions 

within the replication results section. The three questions are: 

1. Is ℤ3 is a subgroup of ℤ6? 

2. Is ℤ, the set of integers under addition, a cyclic group? 
3. Are ℤ, the integers under addition, and ℚ, the rationals under addition, 
isomorphic? 
 

Methods 

This study is part of a larger project developing a validated assessment 

tool in introductory group theory. The results reported in this paper reflect a 

constructive replication. That is, tasks from prior studies were utilized to 

determine if their findings were generalizable. However, the tasks were not 

always identical. The previous studies that used the prompt about whether ℤ3 was 

a subgroup of ℤ6 varied in form from a direct question to evaluating a classmate 

that claims ℤ3 is a subgroup of ℤ6. Furthermore, the studies were all open-ended 

whereas, the later rounds of this study included closed-form versions. Data 

collection took place in three rounds: large-scale open-ended, pilot closed-form 

and large-scale closed-form. During each stage, students from a variety of 

institution types participated.  

The Survey 

         The survey consisted of 18 questions related to topics determined to be 

essential by a panel of experts consisting of algebraist course instructors, non-

algebraists course instructors, textbook authors and group theory mathematics 

education researchers. The questions used in this survey derive from a detailed 

textbook analysis and from existing literature related to the group concept. (For a 
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more detailed discussion of this process see Paper 1).  Several of the 18 questions 

were adapted from previous studies. For the purpose of this paper, I present 

results from the aforementioned questions. 

The Participants 

         Instructors currently teaching introductory undergraduate abstract algebra 

courses were contacted across the United States. The Phase 1 sample was selected 

randomly within the classifications of region (West, Southeast, Northeast, 

Midwest, Mid Atlantic and New England) and selectivity (greater than 75% of 

applicants admitted; 50-75% admitted; 25-50% admitted, and less than 25% of 

applicants admitted.) The open-ended first round was limited to institutions with 

publically available course listings (about 90% of institutions provide that 

information). For the second and third round, an effort was made to contact all 

current introductory abstract algebra instructors at institutions that offer a 

mathematics major. When no course listing was available, a member of the 

research team called the institution to determine if a course was running and 

contacted the instructor. Geographic regions and selectiveness were leveraged to 

address how representative a given sample was. One of the major goals of 

replication is to address generalizability. This was particularly important in terms 

of selectiveness where the typical student at one of the most selective institutions 

has a significantly different background than the typical student at less selective 

institutions.  

         The open-ended round included 29 institutions (349 students). The closed 

form rounds (pilot and large-scale) included 8 institutions (87 students) and 32 
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institutions (376 students) respectively. The selectiveness breakdown can be 

found in Table 14. In the United States, there are many more institutions at the 

least selective and mid-level than in the categories of more and most selective. 

Table 14 
 
Selectivity of Sample Institutions 
 Least 

Selective 
(>75% 
admitted) 

Mid-Level 
Selective (50-
75% admitted) 

More 
Selective (25-
50% admitted) 

Most 
Selective 
(<25% 
admitted) 

Not 
classified 

Open-ended 
Round  

13 classes 
(138 students) 

12 classes 
(108 students) 

4 classes 
(47 students) 

1 class 
(57 students) 

0 classes 
 
 

Multiple 
Choice Pilot 

2 classes 
(17 students) 

0 classes 3 classes 
(26 students) 

4 classes 
(44 students) 

0 classes 
 
 

Multiple 
Choice 
Large-scale 

13 classes 
(131 students) 

10 classes 
(128 students) 

6 classes 
(84 students) 

1 class 
(14 students) 

2 classes 
(19 students) 
 
 

Total 28 classes 
(286 students) 

22 classes 
(236 students) 

13 classes 
(157 students) 

6 classes 
(119 
students) 

2 classes 
(19 students) 

 
Interviews 

During both the open-ended and closed-form rounds, interviews were 

conducted with 15 students (from 4 institutions for open-ended and 13 institutions 

for closed-form round) for a total of 30 interviews. The interviews served to 

strengthen the validity of interpretations of answers and allowed for deeper 

probing of conceptions. For each survey question, the student was asked to 

explain their thinking about the question by walking through their written 

response or explaining their multiple-choice option selection. If they did not 

address the meaning of a given concept, they were asked to explain their 

understanding of the relevant concept. The interview was semi-structured to allow 

for additional follow-up questions to better make sense of the students’ thinking. 
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The Analysis 

         The open-ended surveys were analyzed using a thematic analysis approach 

(Braunn & Clarke, 2006). An initial round of open-coding led to a development of 

themes within each question type. The themes were refined into a set of codes that 

were then applied to the entire set of questions. A subset of 270 student responses 

for each of the three questions in this paper, was then double-coded by a 

mathematics education graduate student for a reliability of 96% for the subgroup 

question, 94% for the cyclic group question, and 91% for the isomorphism 

question.  This percentage was calculated by summing the number of codes 

agreed upon divided by the sum of the highest amount of codes on each item. The 

closed-form versions were explored using descriptive statistics When appropriate, 

I compared the proportion of students with response types from the original 

studies to the replication rounds using a 2-sample proportion test in order to test 

the assumption that these proportions are the same in both samples. Student 

interviews were first analyzed based on the response conception corresponding to 

the open-ended coding categories. Each interview response was further analyzed 

in light of its relation to the theories from the original studies being replicated. If a 

student’s response was not consistent with the original studies, I marked the 

response, then re-analyzed it to address what the response means in terms of the 

original theory. 

Replication Results and Discussion 

 In this section, I provide the results for each of the three replicated 

questions. Within each question, I first explain the relevant mathematics in order 
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to make sense of the prompts and the student responses. I then consider the 

original findings. After providing this background, I present the results from the 

large-scale replication studies. In each case, I present various ways that the new 

replication studies can inform the refinement of prior theories. This is done 

through a combination of analyzing both the surveys and subsequent follow-up 

interviews. 

Replication: Is ℤ3 a subgroup of ℤ6?  

The groups ℤ3 and ℤ6 can be defined in one of two ways: as quotient 

groups or through clock arithmetic. Often the elements in ℤ3 and ℤ6 are treated as 

a subset of the integers with differing operations. So ℤ3 would be the set {0,1,2} 

under addition modulo 3. For example, 1+2 equals 0 in this group, as 0 would be 

the remainder when 1+2 is divided by 3. Similarly, ℤ6 would be {0,1,2,3,4,5} 

under addition modulo 6. Alternately, ℤ3 and ℤ6 can be thought of as quotient 

groups. ℤ6 would be ℤ/6ℤ and ℤ3 would be ℤ/3ℤ. The set {0,1,2} would be merely 

representative elements and better expressed as the set of cosets: 

{0+3ℤ,1+3ℤ,2+3ℤ} where 0+3ℤ = {...-6,-3,0,3,6,..}, 1+3ℤ= {...,-5,-2,1,4,7,..} and 

2+3ℤ = {...,-4, -1, 2, 5,...}. Similarly, ℤ6 would consist of the set: {0+6ℤ, 1+6ℤ, 

2+6ℤ, 3+6ℤ, 4+6ℤ, 5+6ℤ}. ℤ3 and ℤ6 are examples of a family of groups of the 

form ℤn. They share similar structure built around binary operations that differ 

only in the modulus.  

A subgroup is a subset of a group that forms a group itself under the same 

operation. Using the clock arithmetic interpretation, ℤ3 would be a subset of ℤ6. 

However the operation would be different. In ℤ3, 1+2=0, but in ℤ6, 1+2=3. A 
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subgroup is a subset that forms a group under the same operation. So, ℤ3 would 

not be a subgroup of ℤ6. Using the quotient group interpretation, ℤ3 is not even a 

subset of ℤ6. Consider the element representative element 1 in each group. In ℤ3 

this is the element 1+3ℤ= {...,-5,-2,1,4,7,..}, but in ℤ6, the respective element is 

1+6ℤ = {...,-11, -5, 1, 7,...}.  

However, ℤ6 does have a subgroup that is isomorphic to ℤ3. The subgroup 

{0,2,4} is isomorphic to ℤ3. In fact, because ℤ6 is cyclic, it is guaranteed to have 

subgroups of the form ℤn for all n that divide 6. This is sometimes stated as part of 

the Fundamental Theorem of Cyclic Groups which states that: (1). Every 

subgroup of a cyclic group is cyclic; (2). The order of every subgroup is a divisor 

of the order of the cyclic group; and (3). There is exactly one subgroup of each 

order that divides the order of the cyclic group.  

Prior results. The question of determining if ℤ3 is a subgroup of ℤ6 has 

been discussed numerous times in the mathematics education literature. The 

question initially served the purpose of theorizing how student conceive of 

subgroups and highlighting that that students note be coordinating both a set and 

operation. Notably, Dubinsky, Dautermann, Leron, and Zazkis (1994) presented 

exchanges with three students with varying levels of coordination ranging from 

identifying ℤ3 as a subgroup of ℤ6 with no attention to a differing operation to 

immediately stating this is not possible because of the differing operation. The 

researchers identified the coordination of operation and set as an essential aspect 

of understanding group and subsequently subgroup. Burn (1996) quickly 

challenged the use of this question noting that “there is something commendable 
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about suggesting that ℤ3 is a subgroup of ℤ6 ..., since every cyclic group of order 6 

has a cyclic subgroup of order 3” (p. 373). He was referencing the advanced 

conception of isomorphism where the set {0,2,4} could be thought of as the same 

as ℤ3 and therefore ℤ3 would in fact be a subgroup of ℤ6. Dubinsky, Dautermann, 

Leron, and Zazkis (1997) countered that this level of sophisticated thinking was 

not occurring as the students articulated that they were addressing the elements 

0,1 and 2.   

Leron and Hazzan (2006) and Hazzan and Leron (1996) addressed this 

idea when presenting their analysis of 113 computer science students responses to 

this question. They prompted, “A student wrote in an exam, ‘ℤ3  is a subgroup of 

ℤ6’. In your opinion is this statement true, partially true, or false? Please explain 

your answer” (Leron & Hazzan, p. 199). They found that many of their students 

were using an invalid form of the converse of Lagrange’s Theorem to state that ℤ3 

was a subgroup of ℤ6. They noted: 

[t]here is a sophisticated sense in which the statement “ℤ3 is a subgroup of 
ℤ6” is partially true, namely, that ℤ3 is isomorphic to the subgroup {0, 2, 
4} of ℤ6. We would of course be thrilled to receive this answer, but none 
of our 113 subjects had chosen so to thrill us (Leron & Hazzan, p.119).  

 
Leron and Hazzan (1996) concluded that their subjects were using superficial 

clues and consequently misapplying Lagrange’s Theorem.  

Brenton and Edwards (2003) contended that the confusion with this 

question could be attributed to mistreating the groups ℤ3 and ℤ6. Often when 

using modular arithmetic, both ℤ3 and ℤ6 are treated as subgroups of ℤ where only 

the operation differs. Brenton and Edwards suggest that ℤ3 and ℤ6 should be 
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treated as quotient groups. The simplification to elements of ℤ creates an 

unnecessary obstacle. “ℤ/3ℤ is naturally a quotient group, not a subgroup of ℤ and 

of ℤ/6ℤ. Students should then not mistake ℤ3 for a subgroup of ℤ6, since as sets 

they do not share even one element in common” (p. 35). While an interesting 

conjecture, it is possible that students may attend only to representative elements 

and still come to the incorrect conclusion that ℤ3 is a subgroup of ℤ6. In fact, 

Seibert and Williams (2003) found that students struggled when dealing with ℤn 

as a quotient group. They found that students did attend solely to representative 

elements even within the quotient group structure.    

Table 15 
 
Previous Results: Is ℤ3 a Subgroup of ℤ6? (Dubinsky et al., 1994); A Student 
Wrote in an Exam, ‘ℤ3  is a Subgroup of ℤ6’. In Your Opinion is this Statement 
True, Partially True, or False? Please Explain Your Answer (Leron & Hazzan, 
1996). 
 Dubinsky et al. 

(1994) 
n=3 

Leron & Hazzan 
(1996) 
n=113 

Yes 66.7% 64.6% 
         -Yes, by converse of Lagrange - 17.7% 
         -Yes, Other  46.9% 
No  33.3% - 

 
In both Dubinsky et al. (1994) and Leron and Hazzan (1996)’s studies, 

their sample was from a single institution. Therefore, it is impossible to generalize 

how widespread either of these issues are and perhaps, as suggested by Brenton 

and Edwards (2003), they are artifacts of the didactical treatment of the groups ℤ3 

and ℤ6. Further, Leron, and Hazzan lamented the lack of advanced treatment of 

the isomorphic copy of ℤ3 and ℤ6 amongst their 113 subjects. However, it is 

possible, and was found in the replication study, that introductory students are 
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capable of making this advanced argument. Table 15 represents the reported 

results on the respective ℤ3 / ℤ6 subgroup prompts from Dubinsky et al, (1994) 

and Leron and Hazzan (1996).  

 Methods for the replication study. As each of these studies is a 

constructive replication, there are alterations between the original study and the 

replication study. The original studies included two different questions, one that 

directly asked, “Is ℤ3 a subgroup of ℤ6?” and a second that had students evaluate a 

hypothetical student claim that ℤ3 was a subgroup of ℤ6. In the replication studies, 

the prompt initially was the same as the former asking directly, “Is ℤ3 a subgroup 

of ℤ6?” This question was used in the open-ended round with 349 students. In the 

closed-form round the question was altered to “Is the set 0, 1, 2   a subgroup of 

ℤ6?” This decision was made to be able to clearly delineate student conceptions 

based on their selection from the multiple-choice question. The multiple-choice 

nature of later rounds was another departure from the original studies. This was 

done to allow for a clean collection of data with minimal interpretation.  

 Results from the replication study. The results from the open-ended 

round, and the two closed-form rounds can be found in  

 
 
 
Table 16,  
Table 17, and Table 18 respectively. The remaining students not reported in the 

open-ended round provided responses that were not discernable as valid or invalid 

based on providing only an argument that 3 divides 6. 
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Table 16 
 
Open-Ended Round Results: Is ℤ3 a subgroup of ℤ6? 
 n =349 
Yes (valid reasoning) 7.4% 
Yes (invalid reasoning) 58.5% 
 Because 3|6 9.5% 
 Because ℤ3 is a subset of ℤ6. 7.1% 
 Because ℤ3 is a subset of ℤ6 and meets requirements 30.7% 
No (valid reasoning) 26.1% 
No (invalid reasoning) 2.6% 
 
Table 17 
 
Closed-Form Pilot Results: Is the Set 0, 1, 2   a Subgroup of ℤ6? 
 n =81 
Yes, because 0, 1, 2   is a subset of ℤ6. 10.3% 
Yes, because ℤ3 is a group itself contained in 
ℤ6. 

21.8% 

Yes, because 3 divides 6. 6.4% 
No, because the subset 0, 1, 2   is not closed. 60.3% 
None of the above 0% 
I don’t know 1.3% 
 
Table 18 
 
Closed-Form Large-Scale Results: Is the Set 0, 1, 2   a Subgroup of ℤ6? 
 n =376 
Yes, because 0, 1, 2   is a subset of ℤ6. 13.8% 
Yes, because ℤ3 is a group itself contained in 
ℤ6. 

36.7% 

Yes, because 3 divides 6. 6.1% 
No, because the subset 0, 1, 2   is not closed. 43.4% 
 

All of the student conceptions found in the prior studies existed to some 

degree in the replication rounds. I conducted a 2-sample proportion test to 

compare the proportion of students in Leron and Hazzan’s study who identified 

that ℤ3 is a subgroup of ℤ6 for reasoning unrelated to Lagrange’s Theorem to the 
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proportion of students who did this in the open-ended round of the replication 

study. The proportion of students saying that ℤ3 is a subgroup of ℤ6 with invalid 

reasoning was lower, although not significantly, in this sample with p=.378 

compared to Leron and Hazzan’s (1996) p=.469, z=-1.72, p=0.09. Comparing the 

number of students incorrectly applying the converse of Lagrange’s theorem was 

not possible in this round as many student responses could be interpreted as valid 

or invalid depending on context. For example, a statement such as “Yes, because 

3|6” would be invalid if referring to Lagrange’s Theorem, but valid if leveraging 

the fact that ℤ6 is a cyclic group. (See the previous discussion on the relevant 

mathematics for a more detailed treatment of this idea). However, the open-ended 

round results illustrated that some undergraduate students are capable of 

identifying the isomorphic copy of ℤ3 in ℤ6 with 7.4% providing a valid argument 

of this nature. 

Between the open-ended and closed-form rounds, the question was 

changed from, “Is ℤ3 a subgroup of ℤ6?” to, “Does the set 0, 1, 2   form a 

subgroup in ℤ6?” In this way, any argument based on 3 dividing 6 would in fact 

reflect an incorrect conception. In the closed-form rounds, only 5% and 6% of 

students, respectively, misapplied Lagrange’s Theorem. Using a 2-sample 

proportion test assuming equal proportions, the combined proportion of students 

misapplying an argument about divisors in the closed-form rounds (p=0.061) was 

significantly lower than the proportion of students doing so in Leron and 

Hazzan’s study (p=0.177), z=-3.97, p<.001. However, this difference could 
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potentially be attributed to the different question structure and the usage of a 

closed-form version. 

Dubinksy et al. (1994)’s findings were bolstered by the replication study 

as students consistently used incomplete conceptions of subgroups. Notably, 

many students just stated that ℤ3 was a subset and therefore a group. (Although, 

this may represent an incomplete response, rather than lack of attention to 

operation. If a student knows that ℤ3 is a group, they may just focus on checking 

that ℤ3 is a subset of ℤ6.) Many students provided reasoning similar to the cases 

reported in the original study: ℤ3 is a subgroup of ℤ6 because ℤ3 is both a subset 

and a group itself.  Approximately a third of the sampled students provided this 

type of reasoning. Shifting from asking if ℤ3 was a subgroup in ℤ6, to asking if 

0, 1, 2   was a subgroup in ℤ6 did not appear to mitigate the issue with a slightly 

higher proportion of students responding in that manner. It is worth noting that the 

most common response in both the pilot closed-form round (62%) and the large 

closed-form round (44%) was the correct response. These students used the 

correct operation (inherited from ℤ6) to explain that the subset was not closed. 

The discrepancy in these numbers is likely due to the overrepresentation of 

selective schools in the pilot while the full-scale round was more representative of 

national institutional breakdown in selectivity.   

The follow-up interviews allowed for the probing of two issues related to 

this question: 1) If students treated the elements as cosets, did they avoid the 

issue? and 2) Are students aware that they are using different operations when 

treating the subset 0, 1, 2   as ℤ3? The following discussion highlights some of the 
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ways that theory could potentially be refined through the usage of replication 

studies. In the first case, including a more representative sample allowed for 

exploring differences amongst sub-portions of a population who had different 

experiences with modular addition groups. While Brenton and Edwards (2003) 

suggest that students may not struggle with the question if they treat the modular 

addition groups as quotient groups, the previous studies did not allow for any 

empirical consideration of this suggestion. In the second case, I present evidence 

that potentially challenges the original interpretations of student understanding of 

subgroups. The preliminary follow-up interviews included responses that 

indicated students might not be failing to coordinate operation and subset, but 

rather lack a robust understanding of binary operation itself.  

A pedagogical difference: The treatment of ℤn as a quotient group. 

Although most students discussed ℤ3 in terms of clock arithmetic, one of the 

interviewed students, Bob, treated the elements as cosets during throughout his 

survey response and follow-up interviews.  

 
Figure 30.  Bob’s work on the quotient group question. 

  There are two pieces of Bob’s method worth noting. First, as can be seen 

in Figure 30, he has written these cosets as 1+ℤ rather than 1+6ℤ. While he 

clearly sees the elements as sets, he likely has some conceptual limitations about 
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coset formation. He may be seeing +ℤ as part of the ritual and using 

representative elements to treat this quotient group as if it were clock arithmetic. 

Furthermore, the fact that 1+ℤ looks the same in both ℤ3 and ℤ6 may be 

compounding the issue. When asked to discuss his written work on the quotient 

group question, Bob provided the following explanation: 

So I did you know, I used the question group for ℤ6. Integers, 1+ℤ etc. 
This is ℤ3 because you have three elements. And it follows all of the 
requirements. The only thing is here, I have 3+ℤ and 4+ℤ and you might 
say it’s not closed but those can be rewritten because 3+ℤ would just be ℤ 
and 4+ℤ would just be 1+ℤ. 
 

Based on his discussion around the elements, Bob indicated he recognized that 

these are different sets. He noted that in ℤ6, there is 4+ℤ, but switches to a 

different equivalence class structure because in ℤ3, 4 would be in the 1+ℤ [sic] 

coset. Rather than changing just the operation, he appeared willing to restructure 

the cosets, adapting to the structure of ℤ3.  

Bob’s approach was not an anomaly when compared to the open-ended 

surveys. Several students included equivalence class notation with a subscript 

three and six on the elements, respectively (see Figure 31). These differences in 

label did not appear to cause the students’ disequilibrium when identifying ℤ3 as a 

subgroup of ℤ6. These cases indicate that treating the modular arithmetic groups 

as quotient groups may not be an easy pedagogical fix. Quotient groups are a 

challenging and complex topic because students must conceive of a group whose 

elements are sets and make sense of what that means for the resulting operation 

(Asiala, Dubinsky, Matthews, Morics & Oktac, 1997; Johnson & Larsen, 2012; 

Siebert & Williams, 2003). Learning and understanding the quotient group 
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structure may be more difficult than directly addressing the differing operation in 

modular arithmetic cases. These results provide an example of the power of 

replication studies to inform theory by providing information about more diverse 

samples. The representative samples included students who received a diverse 

pedagogical treatment of the modular arithmetic groups.  

 
Figure 31. Student response to subgroup question with differing element notation. 

Challenging prior theory: effect of student conceptions of binary 

operation. In Dubinsky et al.’s (1994) study, they attributed students’ failure to 

recognize that ℤ3 was not a subgroup of ℤ6 as a result of failing to coordinate the 

operation with the subset. While students might not be attending to subgroups as 

subsets with operations inherited, there may be additional factors at play. The 

structure of ℤ3 and ℤ6 are quite similar beyond just their elements. In fact, it is 

likely that the modular arithmetic operation was defined for ℤn generally, which 

may mask the differing operations in ℤ3 and ℤ6. The only difference in their 

operation is that of what modulus is being used. Students may not realize that the 

similar structures are different with different binary operations. Students’ 

conceptions of binary operation might be the cause for failing to coordinate the 

operations in the desired ways. A binary operation differs if there are any 

elements that when operated with each other produce a different result (see the 
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previous section for discussion on the different operation in ℤ3 and ℤ6). The 

operations do seem similar in the generalized sense- they are versions of 

“addition.”  

 A number of the follow-up student interviews illustrated this issue. In both 

the open-ended round and the closed-form round, students addressed that the 

operation was “addition” without attending to the differences between addition 

modulo 3 and modulo 6. Elizabeth explained that ℤ3 is a subgroup of ℤ6 because, 

“It has to be a subset of ℤ6, which it satisfies. You already have the group’s 

operation you inherit from it. It must satisfy closure. And as long as it’s non-

empty.” As can be seen from explanation, she explicitly mentions that the group’s 

operation is inherited. 

         During the closed-form round, a student, Georgia, explained the definition 

for subgroups as, “We define it that, if H is a subset of G and H is a group using 

the same operation as G, then H is a subgroup.” She continued to the question 

explaining, “Then ℤ mod 3, if we assume is under modular addition still, it’s the 

same operation as our group, ℤ mod 6.” Several other students explicitly 

mentioned the operation in a similar manner. Students may see three different 

aspects of modular groups: the set, the operation, and the modulus. If a subset 

inheriting an operation is to mean that the containing group and the subset have 

the same operation, students need to be aware of what it means to have the same 

operation. This replication study raised questions as to the original interpretation 

of student responses. Follow-up studies that use sets with more obvious differing 

operations could serve to further determine whether the issue was a lack of 
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coordinating set and operation or was due to incomplete conceptions of binary 

operation.  

 Overall, the replications studies revealed that all of the conceptions 

identified by Dubinsky, et al. (1994) and Leron and Hazzan (1996) existed 

amongst the larger sample. However, many students engaged with the questions 

differently including a number of students providing a sophisticated isomorphism 

argument. Furthermore, the follow-up interviews revealed that students may have 

conceptual limitations around their understanding binary operation rather than a 

simple failure to coordinate set and operation. The replication studies served to 

validate previous theories, explore different facets of student responses, and raise 

challenges to prior interpretations.  

Replication: Is ℤ, the integers under addition, cyclic? 

A group G is cyclic if there exists an element, x such that {xn | n ∈ ℤ} = G. 

That element is referred to as a generator and it is said that x generates all of G. In 

finite groups, this would be equivalent to the elements that are generated by 

repeatedly operating x with itself. For example, consider ℤ6 (defined with clock 

arithmetic). ℤ6 has generator 1.  All of ℤ6 can be generated by 1 as follows: 

1 = 1  
1+1 =2  
1+1+1 = 3  
1+1+1+1 = 4  
1+1+1+1+1 = 5  
1+1+1+1+1+1 = 6 = 0 
 

However in an infinite group, such as ℤ, this is not the case as repeatedly adding a 

positive element only arrives at positive numbers. However, ℤ can be generated 
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by a single element, 1 (or -1) because 1 can be raised to positive or negative 

powers. The definition of generating has to be modified to account for additive 

notation. In ℤ, 5n would actually be 5+5+…+5. By definition, an element raised to 

a negative one power is its inverse. So, 1-1= -1 and 1-3 would represent -1+-1+-1 

or 3(-1)=-3. In this way, 1 can generate all of the elements. 

 Prior results. The question of whether ℤ under addition is cyclic, stems 

from a study conducted by Lajoie and Mura (2000). They identified a potential 

conflict between students’ formal and informal understanding of cyclic groups. 

They found students neglecting formal definitions in favor of intuition. Of 28 

student responses, they found 18 students thought ℤ was not cyclic. Through 

student interviews and subsequent surveys, Lajoie and Mura identified some 

informal conceptions of cyclic that students leveraged to address the prompt about 

ℤ.  This included believing that cyclic groups must “cycle.” That is, if one begins 

with a generating element and then operates it with itself, they should eventually 

return to the initial element. Many students concluded that all cyclic groups are 

finite. The researchers suggested that students should be redirected to the formal 

definition to counter this semantically caused issue. A breakdown of their results 

can be found in Table 19 and Table 20. 

Table 19 
 
Results From Lajoie & Mura’s (2000): For each of The Following Groups, Say 
Whether or Not It Is Cyclic and Justify Your Answer. (a) The Set ℤ under 
Addition. 
 n =29 
Yes 34.5% 
No 62.1% 
No Response 3.4% 
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Table 20 
 
Results from Lajoie & Mura’s (2000): The Following Remarks were Made by 
Students in an Algebra Course. For each One, Say Whether You Agree or 
Disagree and Explain Why. 
 n =29 
Agreed: In a cyclic group, you start with an element, 
go round all the elements, then return to the first one. 

51.7% 

 
Agreed: In a cyclic group, there is an element that 
yields all the other elements when it is repeatedly 
combined with itself. 

 
51.7% 

 
Agreed: All cyclic groups are finite. 

 
58.6% 

 
While this issue existed amongst students in this specific class, there is 

evidence that this may not be universal. In Weber and Alcock’s (2004) study, they 

interviewed four undergraduate students who did know that ℤ was cyclic. Each of 

these studies was limited to specific institutions, so the replication studies served 

to address the frequency of this issue amongst a more representative sample.   

Methods for the replication study. In the replication study, the question 

was more focused specifically on ℤ asking, “Is ℤ, the set of integers under 

addition, a cyclic group?”  In the original study, students were asked to address ℤ 

along with several other groups. They were also asked to agree and disagree with 

statements about cyclic groups independently of this question. These facets were 

condensed in the replication study. This question was largely unaltered between 

the open-ended rounds and the follow-up rounds. However, in the open-ended 

round, students were further prompted to explain,  “Why or why not?” and 

“address what it means to be cyclic in your answer.” This was done to ensure 

more than a “yes” and “no” response.  
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Results from the replication study. Table 21, Table 22, and Table 23 

present the result from the three rounds in the replication study. 

Table 21 
 
Open-ended Round Results: Is ℤ, the Set of Integers under Addition, a Cyclic 
Group? 
 n =349 
Yes 75.1% 
No 19.8% 
Infinite groups cannot be cyclic 4.9% 
Does not cycle 19.8% 
No element will generate whole set 7.7% 
Not answered 5.1% 
 
Table 22 
 
Closed-form Pilot Round: Is ℤ, the Set of Integers under Addition, a Cyclic Group 
 n =81 
Yes, because ℤ  can be generated by two elements 
(1 and -1). 

8.6% 

Yes, because ℤ  can be generated by one element 
(1). 

60.5% 

No, because ℤ  is infinite and elements do not 
cycle. 

17.3% 

No, because any element only generates part of the 
set (ex: 1 would only generate the positive 
integers.) 

13.6% 

None of the above 0% 
I don’t know 0% 
 
Table 23 
 
Closed-form Large-Scale Round: Is ℤ, the Set of Integers under Addition, a Cyclic 
Group 
 n =376 
Yes, because ℤ  can be generated by a set of two 
elements. 

12.0% 

Yes, because ℤ  can be generated by one element. 55.9% 
No, because ℤ  is infinite and elements do not 
cycle. 

18.4% 

No, because any element only generates part of the 
set (ex: 1 would only generate the positive 
integers.) 

14.8% 
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 In all three rounds of this study, a sizeable majority of students felt that ℤ 

was a cyclic group. This is not surprising as the set of integers under addition is a 

standard example of cyclic groups found across textbooks (Gallian, 2009; 

Hungerford, 2012; Gilbert & Gilbert, 2008; Fraleigh, 2002). I conducted a 2-

sample proportion test, assuming equal proportions, to determine if there was a 

significant difference between Lajoie and Mura’s students and the students in my 

replication study. The proportion of students identifying ℤ as cyclic in Lajoie and 

Mura’s (2000) study (p=.345) was significantly lower than the proportion of 

students in the replication studies (p=.717), z=-4.32, p<.001. In both the open-

ended round and closed-form round, students chose “no” for the same reasons 

identified by Lajoie and Mura, namely that cyclic groups cannot be infinite as 

they fail to cycle or that no element can generate all of the integers using a 

repeated operation approach. 

         Lajoie and Mura (2000) framed their discussion primarily around the 

disconnect between everyday language and formal mathematical definitions. They 

found their students using the idea of repeatedly operating on an element and 

“cycling” back to a starting point as their primary conception of cyclic groups. 

This led to many students incorrectly determining that ℤ was not cyclic. However, 

in this larger study, I found that the majority of students did feel that ℤ was cyclic. 

Through follow-up interviews, I found that many students still relied on a similar 

intuitive understanding of cyclic groups, but found ways to adapt their image to 

incorporate the infinite case, ℤ. By interviewing students who felt ℤ was cyclic, I 
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was able to address whether the intuitive understanding had the limiting 

implications suggested in the original study. 

         Reconciling the intuitive definition of cyclic with infinite groups. Of the 

thirty students interviewed, twenty of the students explained their concept of 

generating as repeatedly operating an element with itself. While this was 

unsurprising for students that determined ℤ was not cyclic, this intuitive idea was 

quite prevalent with “Yes” responses with twelve of those twenty students 

responding that ℤ was cyclic. In ten of those twelve cases, the students used the 

fact that ℤ can be built by using 1 and -1. While just operating 1 with itself 

produces the positive integers, operating -1 with itself will produce all of the 

negative integers. Furthermore, if you add 1 to -1, you arrive at 0. So, 1 and -1 

could generate the whole set by just operating combinations of those two 

elements. When asked why -1 could also be used if 1 is the generator, three 

different explanations emerged: ℤ is a group (and so 1 has an inverse), the set 

generated by 1 must be a group, and a return to the formal definition of cyclic. 

         In the first case type, the student used the fact that ℤ is a group to explain 

why the inverse of 1 would be in the set generated by 1. For example, Stan 

explained that all the elements in ℤ can be generated by adding 1s and -1s. He 

elaborated that, “when you have one, you automatically have negative one.” 

When prompted to explain why the negative one was automatic, he continued, 

“[w]ell, ℤ is a group right? And based on the definition a group, there exists 

inverses.” This return to ℤ’s group properties was not uncommon when students 

were pushed to explain why they could use -1 to build ℤ. However, this is not a 
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valid approach. At this point the student is dealing with two separate sets: the 

group itself (ℤ) and the set of elements generated by 1. The student is borrowing 

from the properties of ℤ to make an argument about the second set. While 

mathematically they are the same set, this argument for why is circular. These 

students are arguing that the set generated by 1 is ℤ by only addressing properties 

of ℤ appeared to be disconnected from the set they should be discussing. 

         In contrast, another student, Chad, debated whether -1 could be used in 

conjunction with 1 to build the integers. He first worried that, “the inverse of one 

won’t be in there because you will never go forward enough.” This, again, mimics 

the concern that 1 will never cycle back. However, he decides,  “[i]t would be 

really dumb for us not to include the inverse in the group generated by, otherwise 

it wouldn’t be a group.” He had familiarity with generating sets and their 

relationship with groups and continued, “[w]hat we are generating better be a 

group, so we better include inverses. It’s just -it should be this way, it doesn’t 

mean it necessarily is.” While Chad remained unsure of -1’s place in the set 

generated by 1, he immediately recognized the utility of including it. Unlike the 

case above, Chad was not using ℤ to argue about this set, but rather he was 

struggling to reconcile his intuitive understanding of generating and his 

knowledge that a set generated by an element should be a group. It may be worth 

noting that historically, cyclic groups were described in the finite case and relied 

on products of elements (Kleiner, 2007). Products are defined in terms of taking 

combination of elements and operating on them. This repeated operation works 

for finite groups as illustrated in the background section. It is likely this utility 
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that led to products including negative powers, which are defined as powers of the 

inverse. This was a convention decision and not a direct consequence of the 

meaning of powers. Chad’s thinking could be quite powerful for connecting to the 

necessity of the formal definition relying on powers of elements. If we want all 

elements to generate groups, and not just those with finite orders, it is necessary to 

define power in such a way that it is not just repeatedly operating on an element 

with itself.  

In a third case, Isaac was able to connect -1 to the formal definition of 

cyclic. He explained, “it’s generated in the way you take powers of one or in this 

case, you take one plus one plus one and inverses and you get the whole set 

back.” When asked why inverses are also used, he explained: 

Because, generating means - generating by definitions is all possible 
products, if you take a set and use it to generate a group, then you take all 
possible products. You want to make sure the group axiom of closure 
holds. You take n powers of all elements in and n can include negative 
powers and inverses. 
 

Like the other students, Isaac discussed repeated addition of ones, but connected 

this to the idea of powers. His intuitive process approach to generating the set of 

integers did not seem to interfere with his ability to leverage a more formal 

definition of generating. In fact, he leveraged this formal definition to validly 

explain the use of both one and its inverse to build the set. 

While the proportion of students recognizing that ℤ is cyclic was 

significantly higher in the replication studies than the original, the intuitive 

underpinnings of an iterative process to build the group were still present in the 

replication study. In a number of the interviews, students acknowledged they 
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knew ℤ was cyclic because they had established the fact in class. To make sense 

of this, many of the students used their informal understanding to allow for sums 

of 1s and -1s to build the group. Their intuitive understandings might not be a 

hindrance, but rather have the potential for building a better understanding of 

powers of elements in groups.  This informal understanding of generating can be 

reconciled with the formal definition through consideration to what it means to 

take an element to a negative power within a group. These preliminary results 

challenge the implications from the original study by showing that intuitive 

understanding might be leveraged rather than abandoned for a more formal 

understanding.  

Replication: Are ℤ, the integers under addition, and ℚ, the rationals under 
addition, isomorphic? 
 

Two groups are isomorphic if they are essentially the same. Formally, this 

means that there exists a bijective homomorphism from one group to the other. A 

bijective map is one that is 1-1 and onto. A map is a homomorphism if it 

preserves the operation- that is, if we have a map f from group G to H, for any a 

and b from G, f(a)f(b)=f(ab). Informally, the isomorphic groups are equivalent 

and can be thought of just renamings of one another. All elements can be matched 

up and the operation functions in the same manner in both groups. Any structural 

property differing between two groups would assure that they are not isomorphic. 

ℤ and ℚ are not isomorphic for a number of reasons including that ℤ is cyclic and 

ℚ is not. Another property that differentiates them is solutions to the equation 

x+x=b. In ℚ, this equation will have a solution for any b, namely b/2. However, 
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in ℤ, not all numbers can be divided in half and still remain in the set. For 

example, x+x=3 would have no solution in ℤ. See Figure 32 for a formal proof 

that this property is structural. Alternately, one could show that two are not 

isomorphic if one could argue that no maps can be created that meet the 

requirement of both being a bijection (1-1 and onto) and operation-preserving. 

 
Figure 32. Proof that having a solution for x+x=b for all elements b in a group is a 
structural property. 

ℤ  and ℚ do have some commonalities that could lead to unfruitful 

explorations. They are both abelian, both have the same cardinality (countably 

infinite), and they are defined under the same operation (when the operation in ℚ 

is restricted to ℤ). A bijection can be built between ℤ  and ℚ because they have the 

same cardinality. A bijective map is illustrated in Figure 33 and Figure 34. Notice 

this map is not a homomorphism because the operation is not preserved (i.e. 

f(2)+f(3) = 2/1 + 1/2 = 5/2, but f(2+3) = f(5) = 4/1.)  
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Figure 33. An ordering of the rationals to show they are countably infinite. 

Bijective Map f:  ℤ → ℚ 

ℤ 0 1 -1 2 -2 3 -3 4 -4 5 … 

â â â â â â â â â â â  

ℚ 0 1/1 -1/1 2/1 -2/1 ½ -1/2 -3/1 3/1 4/1 … 

Figure 34. A bijective map from ℤ to ℚ. 

Prior results. This question finds its origin in two landmark papers related 

to student proving processes, namely Weber (2001) and Weber and Alcock 

(2004). Weber initially used this question when arguing that undergraduates often 

lacked the strategic knowledge needed to produce proofs. He provided data on 

eight tasks with four undergraduate and four doctoral students’ responses. He 

found that even when the undergraduate students had the basic proof skills, and 

prerequisite knowledge, they frequently lacked the strategic knowledge to know 

when to use appropriate facts and strategies. When evaluating whether ℤ and ℚ 
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are isomorphic, he found two of the undergraduate students had all the 

prerequisite knowledge, but could not produce a proof, while the other two lacked 

the necessary prerequisite knowledge. It is worth noting that the two students who 

had knowledge of the needed facts could produce a proof when reminded of them. 

(Factual knowledge was previously evaluated using a multiple-choice test.) In 

contrast, the four doctoral students correctly addressed the prompts with valid 

proofs.  

Weber and Alcock (2004) revisited this prompt when introducing their 

framework on syntactic and semantic proof production. They found the four 

undergraduates in their study all relied on recreating a diagonalization argument 

(see Figure 33) to prove ℤ  and ℚ are isomorphic. They noted that rather than 

attending to the operation-preserving aspect of an isomorphism, the undergraduate 

students relied exclusively on constructing a bijection between the two groups. In 

contrast, all of the doctoral students were easily able to show the groups were not 

isomorphic, referencing ℤ  being cyclic and ℚ not being cyclic. This was a fact 

that all four undergraduates were aware of, but did not make use of when 

attending to this prompt. Weber and Alcock used the differing approaches to 

illustrate the difference between syntactic and semantic proof production. Where 

the undergraduates attempted to stay in one formal representation system, a 

syntactic approach, the doctoral students explored the groups ℤ and ℚ informally. 

This allowed them to use their conception of isomorphism as structural sameness 

to explore properties and potential issues in their respective structures. Table 24 

summarizes Weber and Alcock’s (2004) expert-novice study. 
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Table 24 
 
Weber & Alcock’s (2004) Results: Prove or Disprove: ℚ is Isomorphic to  ℤ 
 Undergraduates 

n=4 
Graduates 

n=4 
Syntactic Proof Production (Building 
a bijective map) 

100% 0% 

Semantic Proof Production (ℤ is 
cyclic, ℚ is not) 

0% 100% 

 
Weber and Alcock (2004) likened these approaches to several parallels in 

theory including proofs that explain and proofs that convince (Hanna, 1990), and 

instrumental and relational understanding (Skemp, 1976). They claim 

semantically produced proofs have both the power to convince and explain 

whereas syntactically produced proofs might just convince. By staying entirely in 

the formal system, students can create valid proofs through a series of logical 

manipulations that may or may not be fully connected to their conceptual 

understanding of the topics at hand. Similarly, they claim semantic proof 

productions involve relational understanding (the how and the why), whereas 

syntactic proofs can be produced with only an instrumental understanding (the 

how). Their case studies illustrated this phenomenon where the undergraduates 

had no informal understanding of isomorphism and the graduate students viewed 

isomorphism as “structurally the same.” 

These expert-novice case studies illustrated a clear divide between 

undergraduate and doctoral cases. Furthermore, the case studies successfully 

identified two potential issues: syntactic vs. semantic proof production and a lack 

of strategic knowledge. By scaling up, I explore how generalizable these results 

are and whether other issues may contribute to incorrectly or correctly evaluating 
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or arguing about the prompt. These results also allowed me to re-explore the 

connections between (a) syntactic and semantic proof production and (b) the 

parallel theories of relational and instrumental understanding and proofs that 

convince and proofs that explain. 

Beyond the studies connected to this question, there is some other work 

that deals with how students determine if two groups are isomorphic. Leron, 

Hazzan, and Zazkis (1995) explained some of the many complexities involved in 

understanding isomorphism. For example, they found that students often relied on 

order type to determine if two groups are isomorphic. The order type refers to the 

orders of the various elements in a group. So the order type of ℤ4 would be 1, 2, 4, 

4. This approach would only be valid to show two groups with different order 

type are not isomorphic. Leron, et al. attributed this confusion to one of three 

causes: neglecting all other properties for the simple and comfortable one, the fact 

that order type is sufficient for many small finite groups, or a confusion between a 

statement and its converse. Regardless of the reason, these students adapted a 

process that does not capture a complete view of isomorphism and only works in 

select cases. 

Small-scale studies with convenience samples provided the needed 

impetus to develop theories that have been shown to be quite fruitful in explaining 

student thinking related to proving in advanced mathematics. However, little can 

be said in terms of how widespread particular issues are and how dependent they 

are on their given context. 
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Replication methods. In the replication studies, students were prompted 

to answer, “Is ℤ, the integers under addition, and ℚ, the rationals under addition, 

isomorphic?” In the case of the previous studies, the participants were interviewed 

with extended attention to this prompt. In the replication study, most students 

were surveyed only with the 30 students participating in follow-up interviews.  

Between the open-ended round and closed-form round, one frequently 

presented student response was not included in the closed-form version.  In the 

closed-form round, ℤ being cyclic and ℚ not being cyclic was not an option. This 

was done to mitigate for the fact that many students were unaware that ℤ is cyclic. 

Instead, a less common structural property was presented: “x+x=b has a solution 

for all b in ℚ, but does not for all b in ℤ.” This is a property that can be explored 

semantically, but is less likely to be on a list of properties memorized from a 

textbook. In the closed-form rounds, I could explore the slightly altered version. 

Removing the response that was used by the experts in Weber and Alcock’s 

(2004) study raised a number of questions about the original theory.   

 Replication results.  

Table 25, Table 26, and Table 27contain the results from the replication rounds. 

In these rounds, students were to determine whether ℚ and ℤ are isomorphic. 

  When this prompt was given to students across the country, a variety of 

responses appeared. While Weber and Alcock (2004) found that the four students 

they talked to worked syntactically by attempting to build a map between groups, 

this was not always the case with the larger sample. Under 30% of students 

attempted to build a bijection or stated that a bijection existed as part of their 
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reasoning in the replication rounds. Students who made an argument about the 

sizes of the groups or building a bijective map had one of two conceptions: a 

genuine belief equal-sized groups guarantees an isomorphism, or a belief that 

looking for the map is the correct next step once you know the size. The first is an 

issue of content where students have not developed a strong understanding of 

isomorphism and the necessity of checking that a map is a homomorphism. In the 

second category, the students likely lacked the strategic knowledge (as discussed 

in Weber, 2001), inappropriately relying on a syntactic approach rather than 

exploring the groups. However, because most of this data comes from surveys, it 

is not always possible to differentiate between the two cases. 

 Through replicating the study, I identified new ways students approached 

this prompt. Many students determined that ℤ and ℚ were not isomorphic because 

ℤ had fewer elements. This is an issue that may be more related to cardinality than 

isomorphism. However, a bijective map is intimately tied to understanding of 

cardinality. Two groups have equal cardinality, or equal size, if a bijection can be 

created between them. The apparent size difference can likely be attributed to ℤ 

being a proper subset of ℚ. If a group is finite, a proper subgroup could not be of 

the same size. However, this not true in the infinite case. A simpler example 

would include ℤ and 2ℤ. A bijection can be formed from ℤ to 2ℤ where the map 

takes an element x and maps it to the element 2x. This map is a bijection and a 

homomorphism, so ℤ and 2ℤ are isomorphic. When using one group being a 

proper subgroup of another to state that groups are not isomorphic, they are 
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relying on an apparent difference that is, in fact, not a difference at all. 

Table 25 
 
Open-Ended Survey Results: Are ℤ, the Integers under Addition, and ℚ, the 
Rationals under Addition, Isomorphic? 
 n =349 
No, ℤ is cyclic, ℚ is not 17.8% 
No, Other valid 1.3% 
No, ℤ is smaller than ℚ 21.8% 
Yes, Bijection exists between them (same size) 22.2% 
Yes, Other 11.9% 
 
 In the open-ended round, 17.8% of students determined that ℤ and ℚ are 

not isomorphic because ℤ is cyclic and ℚ is not. Follow-up interviews indicated 

students were taking a semantic approach that none of the undergraduates had 

used in Weber and Alcock’s (2004) study. A number of students articulated 

notions of “structural sameness.” The fact that many students were able to take 

this approach suggests that perhaps the gap between novice and expert is not as 

wide as indicated by the strict dichotomy in Weber and Alcock’s study. 

Table 26 
 
Closed-Form Pilot Results Are ℤ, the Integers under Addition, and ℚ, the 
Rationals under Addition, Isomorphic? 
 n =87 
Yes, because there exists a bijective map between them. 27.6% 
Yes, because they both have infinite order, have 
operation addition and are abelian. 

5.8% 

No, because ℤ  is a proper subset of ℚ  and so no bijection 
can exist between them. 

18.4% 

No, because x+x=b has a solution for all b ∈ ℚ  but 
x+x=b does not have a solution for all b ∈ ℤ 

32.2% 

None of the above 14.9% 
0% I don’t know 
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Table 27 
 
Closed-Form Large Round Results: Are ℤ, the Integers under Addition, and ℚ, 
the Rationals under Addition, Isomorphic? 
 n =376 
Yes, because there exists a bijective map between them. 21.0% 
Yes, because they both have infinite order, have operation 
addition and are abelian. 

12.0% 

No, because ℤ  is a proper subset of ℚ  and so no bijection can 
exist between them. 

31.6% 

No, because x+x=b has a solution for all b ∈ ℚ  but x+x=b 
does not have a solution for all b ∈ ℤ 

12.0% 

No, but the above responses did not consider the necessary 
property. 

23.4% 

  
In the closed-form pilot round, 32.2% of students picked the correct 

response with 14.9% picking “none of the above.” The selection of the correct 

answer dropped noticeably in the larger round with 12.0% of students picking the 

correct response. This is likely an artifact of the differing characteristics of the 

sample. In the pilot round, highly selective institutions were significantly 

overrepresented with over half of the students coming from institutions that 

accept less than 25% of the applicants (see Table 14). The large-scale round was 

more representative of the typical breakdown of institutions in the United States. 

This difference illustrates the importance of exploring the impact of a given 

sample’s characteristics when making claims. 

Testing the relationship of the original study’s theory and other 

theories. Weber and Alcock (2004) used their cases to illustrate the hugely 

impactful framework of semantic and syntactic proof production. By staying 

entirely in the formal system, the undergraduate students were not able to 

recognize that ℚ and ℤ were not isomorphic. Their graduate counterparts explored 
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the properties of the groups semantically and were able to quickly discover they 

were not isomorphic.  Weber and Alcock further associated semantic proof 

production with proofs that explain and syntactic with those that convince. They 

also connected this theory to the parallel between instrumental and relational 

understanding. 

         In the replication study, preliminary results reflected that students may 

work semantically and successfully without necessarily having the robust 

understandings attributed to successful semantic proof production. I used 

interview excerpts to illustrate several potential areas of nuance in semantic 

approaches. I outline three cases: (1) students who appeared to have 

proceduralized their semantic approach; (2) students who worked semantically 

building on intuition in some instances but not others; and (3) students who 

appeared to have a similar rich semantic approach to the experts from the original 

study. In each case, students engaged with the task semantically, but had 

significant differences illustrating potential routes of theory refinement and 

exploration of the original theory’s relationship to other theories.   

Of the three interview students who stated that ℤ and ℚ were not 

isomorphic because one was cyclic and other was not, two attributed this 

approach to using a list provided by the textbook rather than any informal 

understanding of isomorphism. Tony explained that he thinks his answer is right: 

[B]ut I’m not sure how I made that logic leap. I might have just read that 
in the book and noted it in my mind. Or at least noted in this text we were 
using. “Well, to prove something is isomorphic or not is actually kind of 
difficult, but here are some things you can look out for.” One might have a 
single generator and I knew the integers did. 
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He was working semantically in that he was able to use an instantiation of ℤ and 

ℚ and determine that one had a single generator and the other did not. While this 

may on the surface look similar to the rich semantic approaches described by 

Weber and Alcock (2004), this student did not appear to have an understanding of 

why, but rather a proceduralized semantic approach. Tony was unable to connect 

his list of properties to his conception of isomorphism. This is similar to Leron, 

Hazzan, and Zazkis’ (1996) study where they found students relied on a list of 

properties including order type and commutativity to determine if groups were 

isomorphic. Isomorphism is a complex topic, and so students may rely on 

procedural or syntactic approaches that may not address the underlying why 

behind evaluating if groups are isomorphic. 

During follow-up interviews for the closed-round version, this same idea 

manifested. In this case, a student was unable to recognize the structural property 

that was not on their textbook list. He noted: 

It didn’t follow from anything I had done in class. Sorry, I’m referring to 
[the fourth choice]. It didn’t follow from anything I studied in class. Like 
if it has a solution for b and this didn’t have a solution for b, that wasn’t 
something we studied for isomorphism. 
 

When confronted with a property not available in class, he did not see the 

relevance to isomorphism. The proceduralized list checking may be limiting in 

terms of flexibly considering atypical structural properties. 

During the closed-round interviews, one student, Molly, was able to 

connect cyclic groups to her informal understanding of isomorphism. Her 

explanation was a departure from the above as she articulated informal notions of 
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isomorphism that were cohesive with the cyclic property she addressed. Molly 

explained, “I had said ‘No’ because the integers are cyclic and the rationals aren’t 

cyclic because they don’t have a generator or a finite set of generators, I would 

think.” She also provided a standard formal definition for isomorphism. When 

asked how that related to a group being cyclic, Molly explained, “We’ve been 

thinking about isomorphism as the definition of the structure of a group. And a 

non-cyclic group cannot be isomorphic to a cyclic group.” She relied on an 

informal understanding, that of structural-sameness, to explain. She also 

explained that cyclic was a property used in class. However, when prompted to 

look at the property in the fourth option (that of solutions to x+x=b), Molly did 

not think it was relevant declaring, “it just seemed like a random something.” 

Molly could link her understanding of isomorphism to a known property, but at 

this point did not flexibly address an unfamiliar property. This raises questions 

about whether a semantic approach guarantees a deep relational understanding. 

Additional research into this question could further explore the relationship 

between semantic approaches and a flexible relational understanding. 

In two of the interviews, students did think flexibly about groups as 

structurally similar and recognized the new property presented in fourth option as 

structural. One of the students, Fionna, explained that when two groups are 

isomorphic: 

There’s a bijection that preserves the operation of the group. Intuitively, 
it’s the same structure just described in a different way. So any property 
[referring to x+x=b’s solutions] that holds in one structure would have to 
hold in the other one as well. 
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Fionna used what Weber and Alcock (2004) might have identified as similar to 

their expert approaches. She was able to attend to a new structural property (of 

x+x=b’s solutions) and determine that it would mean that the structure of ℚ and ℤ 

could not be the same.  

 By providing students with different response options, the replication 

studies unveiled some potential nuances between the original theory connections 

and how students engaged with the prompts. Students appeared to be able to 

prove semantically without necessarily having a deep relational understanding of 

isomorphism. There were also cases of students able to address familiar properties 

and connect them to their conceptual understanding, but did not successfully 

address the unfamiliar properties. Furthermore, in the replication study, several 

students used the expert approach that was not used by any undergraduates in the 

original study. The apparent differences in semantic approaches can provide 

impetus for additional studies that may elaborate on the previous framework. 

 Both the large-scale round results and the follow-up interviews illustrated 

that there were many different ways students may approach this prompt. The 

large-scale frequencies reflect the prevalence of certain response types amongst 

students at the introductory group theory level. The follow-up interviews provided 

starting grounds for exploring the generalizability of Weber and Alcock’s (2004) 

work and highlighted some nuances within the theory. Notably, the relationship 

between semantic proving and rich relational understanding may not be as clear-

cut as suggested by the original study.  
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Conclusion 

Pairing large-scale studies with interviews allowed for both holistic 

pictures and more detailed probing into the thinking of individual students. Rather 

than interviewing a few students, the large-scale results were used to select 

students with a range of conceptions to interview. The interviews served the dual 

role to bolster validity of interpreting student survey responses, and allow for 

deeper theoretical explorations. Replications allow for broader sampling of a 

population in order to evaluate the generalizability of any theory. For each of 

these cases, the replication studies unearthed differences in frequencies of various 

conceptions and provided additional insight into how a theory might be refined or 

elaborated. In any field, it is essential that we test the generalizability and 

repeatability of results in the field. Small-scale studies and studies using 

convenience samples can be very powerful in exploring student conceptions; 

however, they should not be the end point in an exploration.  

The replication studies were valuable in a number of ways. First, 

replication served to validate theories by reproducing a number of the original 

results in all three questions. The validation was further bolstered because these 

samples were representative of the general population. The replication studies 

also served to document frequencies of different student conceptions within the 

greater population. Within the larger samples, a number of new conceptions 

emerged such as students struggling with the cardinality of ℚ and ℤ.  

The replication studies also served to inform theory and raise new 

questions about generalizability and original interpretations. This took a number 
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of forms including exploring different pedagogical treatment of modular 

arithmetic groups, and challenging whether students truly are failing to coordinate 

operation and sets in the case of ℤ3 being a subgroup of ℤ6. The replication studies 

also allowed for informing theory through unearthing some unconsidered nuances 

such as re-exploring how semantic and syntactic proof production aligns with 

other theories. Finally, replication studies can be used to re-examine implications 

from prior studies. This occurred when re-exploring the prompt, “Is ℤ, the set of 

integers under addition, a cyclic group?” Students were able to appropriately deal 

with the infinite case while still maintaining their intuitive ideas of generating. 

While replication studies are largely non-existent in education, their value 

is considerable. In the social sciences, much of theory and results stems from 

subjective interpretations greatly informed by the time, place, and participants in a 

given study. The results from these replications highlight just how important it is 

to re-examine prior results to consider their generalizability amongst the 

population of interest.  
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Paper 3: A tool for unearthing student conceptions in group theory 

The Group Concept Inventory (GCI) is a tool created to provide 

instructors, mathematics departments, and researchers a way to assess student 

understandings in a both a quick and meaningful way. The GCI incorporates 

knowledge of genuine student thinking about group theory concepts stemming 

from prior educational studies as well as validation studies conducted during its 

creation. 

 While there is a growing community of mathematics educational 

researchers studying student learning and teaching within the undergraduate 

contexts, their research largely does not filter down into the hands of the courses’ 

instructors. This likely reflects a major difference in research methodology and 

goals. Mathematics education research has more commonalities to psychology 

than mathematics research. There is a divide between the mathematics and 

mathematics education communities that should be addressed in order to improve 

instruction within our mathematics courses.   

This gap is being bridged in a number of ways in the sciences. One model 

of bringing education research to instructors in in the form of concept inventories 

and other similarly styled measures. These tools can be utilized for diagnostic 

purposes so that lessons learned from researching student thinking become 

immediately applicable in the classroom. In general, the instruments consist of a 

set of multiple-choice question set that is developed to target conceptual 

understanding over procedural fluency. Starting with Hestenes, Wells, and 

Swackhamer’s (1992) Force Concept Inventory (FCI), many assessment 
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instruments have been built within various STEM subject areas that incorporate 

genuine student conceptions about major ideas in various introductory courses.  

The FCI is credited as an impetus for major changes in physics education 

as the measure unearthed a variety of incorrect intuitive understandings that could 

be hidden when students have strong procedural knowledge. Concept inventories 

can be used in classrooms to quickly gather information about how students are 

conceiving of topics. Concept inventories are not as widespread in mathematics 

courses with their existence limited to the Calculus Concept Inventory (CCI) 

(Epstein, 2006) and the Precalculus Concept Assessment (PCA) (Carlson, 

Oehrtman, & Engelke, 2010). No such instruments have been introduced for 

proof-based courses such as abstract algebra. The GCI aims to fill that gap in 

introductory group theory by providing a tool that instructors and departments can 

use to evaluate and make sense of student thinking.  

 In the last twenty years, there has been a small, but important, body of 

literature addressing some of the conceptions students have in introductory 

abstract algebra courses. For example, I suggest asking your students if ℤ3 is a 

subgroup of ℤ6. While the question seems trivial (no, they either have different 

elements or a different operation depending on how ℤn is defined in your course), 

students will frequently attend to different aspects than experienced 

mathematicians might assume. ℤ3 is a group in itself. Its elements look like they 

belong in ℤ6. Dubinsky, Dautermann, Leron and Zazkis (1994) illustrated this 

phenomenon as part of larger study aiming to provide decompositions of how 

students think about fundamental concepts in group theory. This is a powerful 



 

 195 

question that may reflect that students are not coordinating their operation and set 

in the ideal way. In fact, the question also unveiled that many students were 

misapplying Lagrange’s Theorem to arrive at the same conclusion (Hazzan & 

Leron, 1996). In my recent work, I found that 37.8% of a sample of 384 students 

stated that ℤ3 is a subgroup of ℤ6 with invalid reasoning.4 Questions of this nature 

can provide powerful insight into student thinking around fundamental group 

theory concepts. 

 The GCI tool serves two purposes:  

(1) usage by mathematics departments and researchers to evaluate 
programs and instructional innovations; 

(2) usage by instructors to arrive at diagnostic information about their 
students’ understandings 
 

Abstract algebra is a notoriously challenging course. “[M]athematics 

faculty and students generally consider it to be one of the most troublesome 

undergraduate subjects” (Dubinsky, et al., 1994, p. 268). For many students, this 

course is the first time concepts are to be reasoned about formally based on their 

properties (Hazzan, 1999). Research on student understanding in group theory 

unanimously illustrates that students struggle with the underlying concepts in 

introductory group theory. 

Why Should We Care about Student Understanding of Concepts in Proof-
Focused Courses? 

 
         The aim of the GCI is to assess conceptual understanding independent of 

proof skills. While strong proof skills are essential in advanced courses, well-

                                                
4 Note: Some students with an advanced conception of isomorphism correctly identified {0,2,4} as 
a copy of ℤ3 in ℤ6. Those students are not included in this percentage.  
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developed understanding of concepts is also vital for continued success in 

mathematics. Proof is often the focus of assessment in advanced mathematics, 

ignoring the role of strong conceptual understanding. Attending to concepts is 

important for several reasons: 

1. Understanding concepts in group theory is not trivial. 
2. Understanding concepts is an essential part of advanced mathematics. 
3. Understanding concepts is a necessary for a high degree of success in 

proving. 
 

         The small body of literature related to abstract algebra documents the 

difficulty of complete conceptual understanding of the various topics. Students 

must reason about objects that are brought into existence through definition rather 

than describing known objects. Dubinsky (1997) and his colleagues established 

that students frequently lacked advanced conceptions of topics in group theory 

ranging from groups to normality and quotient groups. Hazzan (1999) found that 

students struggled with abstraction level when dealing with objects in algebra 

defined solely by their properties. Students might substitute information about 

familiar groups such as the real numbers, to reason about unfamiliar groups such 

as modular groups. For example, students may determine that 2 does not have an 

inverse in ℤ3 because they checked for the element 1/2. Leron, Hazzan and Zazkis 

(1995) documented the struggles students have when coordinating the complexity 

of isomorphism, such as differentiating between the idea of isomorphic groups 

and an isomorphism map, or differentiating between how to show groups are 

isomorphic versus how to show groups are not isomorphic. The complexity, 
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formality, and abstract nature of the concepts in group theory provide a significant 

hurdle for students to overcome.  

         Concepts play a vital role both in the formal proving process and 

independent from it. While formal proof may dominate assessment at the 

advanced level, it is not the only important activity.  Hanna (1999) warned, 

“competence in mathematics might readily be misperceived as synonymous with 

the ability to create the form, a rigorous proof” (p. 60).  In fact, as 

mathematicians, a lot of the work done is related to bigger conceptual 

understanding rather than just rote formal proofs. Weber and Mejia-Ramos (2011) 

recently confirmed that when reading proofs, mathematicians rarely verified they 

formal deductive steps. Rather, they were tested examples, determined the big 

ideas and evaluated methods for their own use. These activities all require an 

understanding of concepts, instantiations of them (such as tables, diagrams, and 

examples), and relationships between ideas.  

         Even if the focus of a course is entirely on producing formal proof, 

conceptual understanding can be a mitigating and necessary component in the 

creation of valid proofs (Tall & Vinner 1981; Moore, 1994; Hart, 1994).  Through 

a series of interviews with both students and mathematicians, Weber and Alcock 

(2004) found that undergraduates often relied on purely syntactic (symbol-

pushing) proving strategies. As a result, they were limited with their approaches 

to proofs and what statements they could prove. In contrast, advanced graduate 

students would often utilize semantic strategies, that is, leaving the formal system 

and reasoning with instantiations. When prompted to assess whether groups (ℚ 
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and ℤ) were isomorphic, undergraduates were limited to trying to create a map 

and so failed to show groups were not isomorphic. Their graduate counterparts 

were able to reason about properties and easily determine the two groups were not 

isomorphic.  Weber and Alcock identified several requirements for successful 

proving related to concept understanding including instantiating rich and accurate 

reflections of “the object and concepts they represent” (p. 229). Further students 

need to be able to connect the formal definitions with instantiations. Having the 

formal definition of group and isomorphism was not a sufficient condition for 

students to be able to describe either informally or utilize intuition to explore 

conjectures. 

         Moore (1994) explained several ways that understanding of concepts 

becomes important when proving. He gathered data from observing a transition to 

proof course and interviewing students from the class. He found the students had 

a multitude of concept-based errors. These include not being able to generate 

examples, lacking an intuitive understanding, not being able to use concept 

images to create formal proofs, and not knowing the appropriate definitions. 

         Concepts play an important role in advanced mathematics. As objects are 

now defined solely on properties, students often struggle to achieve complete 

understanding of concepts. Mathematical activities, such as using examples to 

make sense of formal statements or test conjectures, often rely on underlying 

conceptual understand. Having syntactic strategies alone has been shown to be 

insufficient in many cases. The GCI can provide complementary information 
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about student understanding of concepts that may explain their success or lack of 

success when producing and evaluating proofs beyond just logic skills. 

 

How was the GCI Created?  

The tool was created using a rigorous methodology to assure both validity 

and reliability. Further, each multiple-choice option reflects an alternate 

conception about the topic from genuine student responses. At this point, I must 

caution that this tool was not created for students to be given a grade, but rather a 

tool for the class level and to provide quick formative feedback for mathematics 

instructors.  

 The first step in creating such an instrument was to identify the 

fundamental topics in an introductory group theory. This was done through a 

Delphi Study (Dalkey & Helmer, 1963), a protocol for expert consensus, amongst 

a panel of group theorists, non-group theorists mathematicians, textbook authors 

and mathematics educators who have published pedagogy articles related to group 

theory. The final list of topics included: Associative Property, Inverses, Identity, 

Binary Operation, Group, Isomorphism, Homomorphism, Lagrange’s Theorem, 

The First Isomorphism Theorem, Cyclic Groups, Abelian Groups, Cosets, 

Quotient Groups, Order of an Element, Order of a Group and Modular 

Arithmetic. These topics represent a significant subset of the topics recommended 

by the Committee on Undergraduate Programs in Mathematics (Isaacs, Bahls, 

Judson, Pollastek, & White, 2015). It is impossible for any assessment to cover 
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the entirety of a domain, and so the GCI was created such that each of these 

concepts were directly reflected in one question. 

 Using this list of concepts, textbooks were analyzed as a tool to explore 

curriculum across the country. While the textbooks do not perfectly reflect what 

happens in classes, they do give insight into general trends across courses. Within 

introductory abstract algebra classes, the most common textbooks included: 

Gallian (2009), Fraleigh (2002), Gilbert and Gilbert (2008), and Hungerford 

(2012). These books were identified through a random survey of 294 institutions 

with mathematics majors. The textbook analysis gave insight into what types of 

examples students uniformly had access to, what formal and informal definitions 

were provided and what type of exercises and activities were typical and valued. 

Using the results of this analysis and leveraging what currently exists in literature 

about student understanding in group theory, a set of 42 open-ended questions 

were created. At least two mathematicians who had experience teaching the 

course and two mathematics educators who had published articles related to group 

theory pedagogy evaluated every task. A subset of 18 tasks was then given to 383 

students who were completing the group theory component of an introductory 

algebra course. Each of the student responses were analyzed to identify the most 

common conceptions, correct and incorrect, related to each question. These 

responses became the options for a multiple-choice version. Methods from 

classical test theory were utilized to refine the questions to maximize reliability. 

At each stage, 15 students were interviewed to bolster validity that the responses 

were being chosen for the reasons hypothesized. Further, the tool was correlated 
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with grades (self-reported) to achieve criterion-related validity (See Paper 1). 

Figure 35 includes an overview of the GCI creation process. 

 
Figure 35. Overview of GCI creation stages. 
 

How Can the GCI be Utilized? 

 The GCI can be a powerful tool for both individual instructors and 

departments. At the class level, the tool can be used to evaluate the impact of 

instructional innovations. There are a number of innovative curriculums that exist 

in abstract algebra geared towards helping students develop a better understanding 

of group theory topics (Larsen, Johnson, & Weber, 2013; Dubinsky, 1997).  

Departments can use such tools to collect data over time to evaluate a 

class’s impact on students’ conceptual understanding. In the Mathematical 

Association of America’s study of successful undergraduate mathematics 

programs, they recommended, “A mathematics department that is trying to take 

stock of its undergraduate program is well advised to undertake a systematic 

program assessment” (Tucker, 1995, p. 18). One way this can be supported is 

through the usage of concept inventories. In fact, an institution recently identified 

as a model for a highly successful calculus program, was notable for utilizing the 

CCI (Epstein, 2006) to evaluate student learning as pedagogical changes were 

being made (Larsen, Glover, & Melhuish, 2015). The CCI supported their aims to 
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focus on data about student learning and allowed them to leverage that 

information and provide evidence that their pedagogical decisions improved 

student understanding of calculus concepts.  

 As recommended in CUPM’s guidelines for assessment, assessment of 

student learning can provide powerful feedback on student learning and provide 

data for a department, but, “[a]ssessment should be used to improve teaching and 

learning for all students, not to filter students out of educational opportunities” 

(Anderson, Marion, & Maki, 2006, p. 232). A concept inventory directly ties to 

these goals as the questions are not developed to identify right and wrong 

answers, but unearth incorrect and incomplete conceptions that might otherwise 

be hidden. 

This diagnostic usage is even more powerful for individual instructors. 

There has been an overarching call for formative assessment in classrooms 

especially in undergraduate mathematics and science classes where lecture is the 

dominant form of pedagogy. Instructors can quickly gauge incorrect conceptions 

that might exist in their classes by incorporating questions that are fast and 

provide immediate feedback. With the rise of clicker technology, there is a need 

for multiple-choice questions that will provide genuine information about 

students’ thinking (Caldwell, 2007). Caldwell elaborates that strong questions can 

offer a powerful formative assessment, providing opportunities to capture student 

understandings of certain material, reveal potential misunderstandings, inform 

decisions around future lectures, and provide students with a way to “assess their 
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own level of understanding” (p. 11). By incorporating such questions, students 

have the opportunity to reassess their own levels of understanding. 

 With its widespread usage, the FCI provides an image of the type of 

impact concept inventories and their questions can have on pedagogy. Concept 

inventories have the power to evaluate students in the moment, but also more 

generally influence instruction of the course. Instructors have used the FCI itself 

to purposefully teacher content with the intention of confronting incorrect 

conceptions and helping develop correct intuition around concepts (Savinainen & 

Scott, 2002b; Savinainen & Viiri, 2008). Similarly, the GCI is an artifact of 

known student conceptions and can shape the instruction of a course to confront 

and address potential issues before they arise.  (See Paper 1 for a discussion on 

pedagogical power of building on student intuition around cyclic groups.)  

Sample Items 

The following sample items illustrate the utility of the concept inventory. 

Every question in the GCI began as open-ended questions. Through extensive 

surveying and interviewing students, genuine student responses became the 

options for the multiple-choice version. 

Returning to our prior example, the question of whether ℤ3 is a subgroup 

of ℤ6 eventually became the multiple choice question seen in Figure 36. The 

question was altered to ask specifically about the subset {0,1,2} in order to assure 

that students are considering the same set. (Asking about ℤ3 allowed for the 

freedom to address the isomorphic copy {0,2,4}.) 
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Figure 36. Question on Subgroups 

 Each of these responses reflects a different conception related to 

subgroups. The first response attends only to the subset aspect of the set without 

attention to the operation. The second response alters the binary operation from 

addition modulo 6 to addition modulo 3. This may reflect that students are not 

properly attending to operation and what it means to restrict an operation to a 

subset. The third option likely reflects a surface level understanding and 

misapplication of Lagrange’s Theorem. Finally, a student is likely to pick the forth 

response if they are appropriately coordinating the operation and set attributes of 

subgroup. 

This question has been discussed in a number of studies. If you are 

interested in learning more about how students may conceive of this question, 

Dubinsky, et al. (1994), provide theory about the mental constructions needed to 

make sense of subgroups with illustrations from students answering this prompt. 

Hazzan and Leron (1996) provide a discussion of students’ misapplying 

Lagrange’s Theorem to this problem. Further, discussion about results from both 

the open-ended and closed-form GCI versions can be found in Paper 1.  

While many questions in the inventory have been explicitly studied 

previously, other items were newly developed with the intention of probing 
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known incorrect or incomplete understandings of a concept. The question 

focusing on the quotient group was developed in this manner. (See Figure 37.) 

Figure 37. Question of Quotient Groups 

This questions aims to address known issues of coordinating elements in 

quotient groups. These elements are particularly challenging as cosets are 

simultaneously sets themselves and elements of quotient group. Further, cosets 

are often explored using representative elements, which may obscure their set 

structure. To successfully answer this question, a student must make sense of the 

coset 2+H as both an element and a set. The first response captures this 

coordination. They are able to recognize that 2+H represents an element with an 

order in the group G/H. Further, they can recognize that (2+H)2=H. This involves 

making sense of the identity element as the set {0,4,8} in the quotient group. If a 

student selects order 3, they are likely attending to the set part of coset. Despite 

the intentional use of term “order of element,” the student is attending to the 

cardinality of the coset without attending to its role in the quotient group. If the 

student selects 4, then the student is likely identifying the number of elements in 

G/H. Students selecting this response are likely applying a memorized fact in a 

superficial manner. Rather than determining the order of the element, they are 

providing the index. The final response likely reflects attention only to 
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representative elements. Instead of seeing 2 as a member of a coset and the 

identity as H, they are seeing 2 as an element, and not a representative, finding the 

n such that 2n=0 in the original group structure G.  

The complexities of understanding quotient group elements have been 

explored in several studies. If you are interested in learning more about why this 

issue may be occurring, several studies address student conceptions of quotient 

groups including Asiala, Dubinsky, Mathews, Morics, and Oktac (1997) who 

have outlined the mental constructions students may need to build to understand 

quotient groups and illustrated students at various points in this process. Further, 

Larsen and Lockwood (2013) recently provided a local instructional theory and 

task sequence that allows for students to reinvent quotient groups from a more 

intuitive starting space: odds and evens.  

Companion Website 

 In order to make the GCI of the most use, the instrument has a companion 

website that includes explanations of the various questions, links to mathematics 

education articles that may further illustrate some of the conceptions captured, 

and links to alternate curriculums that may help students better come to 

understand these concepts. (See Figure 38 for a sample website page.) If you have 

any resources you would like to add or if you are interested in your class using the 

inventory, please contact the author at the provided email address.  
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Figure 38. Group Concept Inventory instructor resource website 

Concluding Remarks 

 Each of the above questions illustrates the potential for a multiple-choice 

question to unearth various student understandings. One of the defining features 

of concept inventories is meaningfulness of various response types. Unlike 

traditional multiple-choice tests, each of the designed responses capture different 

possible student conceptions related to a group theory topic. Frequently, multiple-

choice test responses are related to procedural errors or are only superficially 

related to the problem. Tools like concept inventories help to bridge the gap 

between education research and current instructional practices. The GCI is not 
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meant to provide grades, but rather aid instructors and departments in addressing 

their students’ learning. The nature of the questions makes them quick and easy to 

be use in a diagnostic capacity. Furthermore, the GCI provides a validated tool for 

departments to track to student learning and test the effectiveness of instructional 

innovations within introductory group theory courses. It can provide 

complementary information to proof production and has the power to highlight 

underlying conceptual issues that may be interfering as students attempt to grow 

in the formal mathematical world.  
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Conclusion 

The GCI meets a major need in the field of research on student 

understanding in group theory: a validated instrument that can be easily 

administered to large samples of students. This allows for evaluating instructional 

innovations and exploring the general state of understanding amongst the 

population of group theory students.  

In Paper 1, I introduced an assessment design methodology as a new 

model for incorporating literature, curriculum and experts in order to best create 

questions in an area without an extensive literature base on student conceptions. 

By leveraging multiple sources, using student responses from open-ended 

versions for the multiple-choice distractors, and pairing field-testing with student 

interviews, I attended to various forms of validity. The most important aspects of 

a strong assessment include content and construct validity. The items should be 

relevant to the domain being tested. The items should be important to the domain 

being tested. Furthermore, the items should accurately capture student 

conceptions related to domain. Attending to both of these makes the results for the 

GCI meaningful, both at the item level and at the test level.   

Through both the open-ended and closed-form rounds, the creation 

process also allowed for continued exploration of student thinking related to 

introductory group theory. In Paper 2, I explored how my large-scale results 

compared to smaller studies done on three questions that were replicated from 

earlier studies and became part of the GCI. Larger samples unearthed a number of 

new conceptions such as building infinite cyclic groups from both an element and 
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its inverse. Further, they validated many of the claims about student thinking in 

the smaller studies such as the prevalence of thinking that ℤ3 is a subgroup of ℤ6. 

The larger samples provided a better sense for the frequencies of different 

conceptions. Paired with student interviews, I analyzed how these new responses 

could inform the original theory. For example, I found that semantic and syntactic 

proof production may not have as clear of a relationship between relational and 

instrumental understanding as found in the original study. These results provide 

additional information about how students are thinking about concepts in these 

courses. 

By writing a complementary practitioner paper, I am attempting to bridge 

the gap between researchers and instructors of the course. We have learned a lot 

about how students conceive of various group theory topics, but often these 

theories remain in journals that are typically only read by fellow mathematics 

education researchers. By writing an article for a commonly read mathematics 

journal, mathematicians can connect to some of the research on student 

conceptions.  

The GCI is not just a research tool, but also ideally serves a dual purpose 

for instructors to better connect to the conceptions their students have about group 

theory topics. By carefully liking student conceptions to the multiple-choice 

items, and using expert instructors to evaluate the importance and relevance of 

items, the inventory is both meaningful and useful.  
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Directions For Future Research 

 In its current state, the GCI consists of a set of seventeen questions that 

have gone through a careful creation and refinement process. However, the GCI 

should be further refined through both continued field-testing and leveraging 

experts in the field.  

The reliability estimates are adequate, but ideally could be raised. Some 

ways to increase reliability include exploring individual items that are not 

correlated strongly with the overall test score. For example, the isomorphism 

question is currently correlated with the item-corrected score at .051. The item-

correct score means the correlation between student’s item score (1 or 0) and the 

average score of the remaining 16 questions. This is a measure of item 

discrimination. While positive, the correlation is quite low. One potential 

explanation is that the question is too complex. While all of the distractors are 

related to isomorphism, they may inappropriately condense a number of different 

issues that may emerge. (See Paper 2.) Rather than a single question, this question 

may benefit from being split into two questions. One question can target issues 

with the cardinality of infinite groups. One question can target a flexible 

understanding of structural properties.  

Isomorphism Question A: Does an isomorphism exist between ℤ, the integers 
under addition, and 4ℤ, the multiples of 4, under addition? 
 
Hypothetical answers: 

• No, because 4ℤ is a proper subgroup of ℤ, and therefore no 
bijection can exist between them. 

• No, because the map f(x)=(4x+2) from ℤ to 4ℤ is a bijection, but 
does not preserve the operation. 

• Yes, because ℤ and 4ℤ have the same cardinality. 
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• Yes, because there exists a map between ℤ and 4ℤ that is bijective 
and perserves the operation. 
 

Isomorphism Question B: Consider the following student argument about ℚ, the 
rationals under addition, and ℤ, the integers under addition: 
“ℚ and ℤ are not isomorphic because the equation x+x=b has a solution for x for 
any b you pick in ℚ, but that’s not true in ℤ.” Do you agree or disagree with this 
reasoning? 
 
Hypothetical answers: 

• I disagree because this equation is not relevant to whether ℚ and ℤ 
are isomorphic. 

• I disagree because ℚ and ℤ are isomorphic. 
• I agree because this argument means ℚ and ℤ have different 

structures. 
 

The complexity of isomorphism is well-documented (Leron, Hazzan, & 

Zazkis, 1996). By splitting this question, both the intuitive and formal ideas 

surrounding isomorphism can be targeted without any exclusion to one another.  

There are also three questions where “none of the above” has not been 

eliminated as answer. The number of students selecting the choice remains above 

5%. These questions may need some refinements to their wording such as 

changing the set used in the identity question. (See Paper 1 for an elaboration of 

this idea.) The next round will likely be a hybrid of multiple choice and open-

ended to allow for the testing of new questions (such as the one above) and to 

allow students to explicate their reasoning for selecting “none of the above.” In 

this way, the option can be changed to best reflect student reasoning. 

Besides question refinement, more complex psychometric techniques may 

be better equipped to handling this data set. Lower reliability may reflect too 

much guessing. This is going to be a natural issue with a low consequence test. If 

possible, the question set should be used to some degree of consequence such as 
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extra credit based on actual correctness, or as a small class quiz with some value. 

Other than changing the testing consequences, using item response models that 

allow for guessing may be more appropriate. However, this would require 

additional data and powerful software. While a viable option in the future, the 

limitation on numbers may be insurmountable. Generally, only mathematics 

majors take introductory group theory and the average class size at each round has 

hovered around 11 students. The number of classes needed to arrive at a dataset 

large enough for that complex of item modeling may not be feasible. 

The next stage in GCI development would also include a return to experts. 

While an argument has been established that the current items are important, they 

should also be reevaluated in terms of representing the domain. In the model of 

the CAOS test, experts could evaluate the items and determine if any fundamental 

concepts are not included. Potentially more items might be created to fill in gaps. 

Several concepts were just under criteria for importance including equivalence 

classes and permutations. By having a panel of experts (experienced group theory 

instructors) evaluate the question set’s representativeness, new questions may be 

formulated.  

The creation of a concept inventory is an iterative process that involves 

continued attention to the validity and reliability of the instrument. The current 

version of the GCI has undergone a strong validation process with careful 

attention to generalizability. However, over the next years, the GCI should 

continue to be field tested and evaluated in order to best meet the needs for a 

validated instrument.  
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Appendix A 

Textbook Analysis Codes 

Table A.1 
 
Representation Codes for Groups 
Representation Code   Example 
Group Name GN ℤ or <ℤ,+> 

(integers under addition) 
Set Builder GS {πn | n ∈ ℤ  }under multiplication 
Subgroup 
Diagram 

GD 

 
(Klein-4) 

Generators 
(Group 
Presentation) 

GP <1> 
(Integers under addition) 

Cayley Table GT 

 
(U(10)) 

List of Elements GE {1,3,7,9} under multiplication modulo 10 
(U(10)) 

Verbal 
Description 

GV All n x n diagonal matrices under matrix multiplication. 
Geometric Image GG 

 
(Rotations of a Square) 

Left Regular GL (I) 
(R, R2, I)(FR2, FR,F) 
(I,R2,R)(F,FR,FR2) 
(I, F)(FR2,R2)(FR,R) 
(FR,I)(F,R2)(FR2,R) 
(F,R)(FR,R2)(R,I) 
(Dihedral group of order 6) 
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Cayley Digraph GC 

 
(Dihedral group of order 8) 

Matrix GM 

 
(Klein-4) 

Permutation GP 

 
(U(10)) 

 
 

Isomorphisms/ Homomorphisms / Mappings 
 
Table A.2 
 
Representation Codes for Maps 
Representation Code Example 
Function Diagram FD 

 
Symbolic defined 
function 

FS 𝜃 𝑥 + 𝑦 = 2!" 
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Function defined 
element-wise 

FR 

 
Function defined on 
generating set 

FG φ is an automorphism of D4 such that φ(R90)=R270 and φ(V)=V 
Function defined 
verbally 

FV For any f in R[x], let f’ denote the derivative of f. 

 
 
 
 
Table A.3 
 
Expected Student Activity Codes 
Code Expected Activity Description 
RC Change 

Representation 
Changing between representations such as going from a 
description of a group to a table 

DC Determine/Calculate Computational questions such as finding order, number of 
subgroups, etc. 

EV Evaluate Determine if a statement is true or false or if something is an 
instance of concept or not. Generally true or false or yes or no 
questions. 

RE Recall Correcting or recalling a definition or theorem without usage 
CO Conjecture Determine the response to an open-ended question requiring a 

mathematical statement 
EX  Provide Example Provide an example that meets some criteria. This might get 

double-coded as PC if the exercise addresses that this example is 
a counterexample to some statement. 

PS  Prove Definition 
Satisfied 

Show that a given example meets the definition of a concept or 
satisfies the definition of having some property.  

PC  Prove by 
Counterexample 

Show a statement is false via example. 

PT  Proof Direct 
Consequence of 
Theorem 

Show a direct consequence of one of the identified theorems. 

PD  Proof Direct 
Consequence of 
Definition   

(This is not saying something satisfies a definition, but rather is 
some conclusion you can get to by just using the definition of a 
topic. For example, phi(x^3)=phi(x)^3 is a direct consequence of 
the definition of homomorphism.) 

PA  Proof Advanced  Proofs that rely heavily on advanced proof techniques, putting 
things together in nontraditional manners or pulling together 
many concepts in a way that is not immediately obvious from 
theorems and definitions alone 

PN  Proof near concept in 
other manner 

Proving something that seems still intimately tied to a concept 
other than the ways above. (This is sort of a back up code to 
capture exercises that still seem essential)  

PP Show not isomorphic  Use a structural property to show two groups are not 
isomorphic.  
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OA   Other Activity  
 
 
Table A.4 
 
Example Codes 
Code Description 
X Example    
NX Non-example    
EMD Example motivating a definition   
EFD Example of concept following definition   
EP Example illustrating a specific property a concept does or does not have  
EC Example illustrating how to calculate or determine something  
ET Example illustrating a proving technique  
EMT Example motivating a theorem  
EIT Example illustrating a theorem  
EUT Example using a theorem  
EIN Example illustrating a notation  
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Appendix B 

Sample Analytic Report from Textbook Analysis 

 
Isomorphism 
 
Formal Definition 
 
Let G be a group with respect to ∗, and let G’ be a group with respect •. A mapping 
𝜙: G →G’ is an isomorphism from G to G’ if 
1. 𝜙 is a one-to-one correspondences from G to G’, and  
2. 𝜙(x∗y) = 𝜙(x)• 𝜙(y) for all x and y in G.  
 
Formal definitions are pretty consistent.  
 
Informal Description 
 
Informal descriptions exist in all textbooks of some form where it is only “names” or 
“labels” that are different. Three of the texts used operation tables to illustrate the 
sameness. 

 
 
 
Table A.5 
 
Representations of Maps Across the Textbook 
 

Function 
Diagram 

Function 
Described 
Verbally 

Function 
Described by 
Symbolic 
Rule 

Function 
Defined 
Element-
Wise 

Function 
Defined on 
Generators 

Fraleigh 
Examples 0% 5.26% 78.95% 10.53% 5.26% 
Hungerford 
Examples 0% 0% 92.86% 7.14% 0% 
G & G 
Examples 0% 0% 81.82% 9.09% 9.09% 
Gallian 
Examples 12.5% 0% 87.5% 0% 0% 
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Examples 
Average 3.13% 1.32% 85.28% 6.69% 3.59% 
Fraleigh 
Exercises 0% 4.05% 79.73% 4.05% 12.16% 
Hungerford 
Exercises 0% 4.35% 95.65% 0% 0% 
G & G 
Exercises 0% 0% 100% 0% 0% 
Gallian 
Exercises 0% 6.45% 77.42% 3.23% 12.9% 
Exercises 
Average 0% 3.7% 88.2% 1.8% 6.3% 
 

Examples 
 
Table A.6 
 
Example Motivating Definition 

Author Examples 

Fraleigh French Numbers, Three Element tables 

Gallian German numbers 
D4 (described geometrically vs. permutations) 
cyclic group isomorphic to modular groups 
U(43), U(49) 
<a> 

Hungerford Roman numerals 
{1,i,=i,-1} and U5 

G & G cyclic group order 4 
D3, S3 

 

Table A.7 

Example Following Definition 

Author Examples 

Fraleigh R,+  and R+,*  
Z and 2Z 

Gallian 3 element group and image under isomorphism 
R,+  and R+,* 
infinite cyclic groups and Z 
U(10), Z4 and U(5) 
SL(2,R) to itself with conjugation map 
R+  C+  
C,*, C,* with |1| 
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Hungerford U8 and  Z2xZ2 
2Z and  Z 
R,+  and R+,* 
identity map 
automorphisms 
inner automorphisms 

G & G {1,i,-1,-i}  and Z4   
3x3 permutation matrices and S3 

 

Table A.7 
 
Non-Examples 

Author Examples 

Fraleigh Q and R 
Z and  Z+ 
Q and Z 
C and R 
M2(R) and R 

Gallian R+ : x->x3 
U(10) and U(12) 
Q*and Q+ 
R* and C* 

Hungerford Z5 and Z10 
S3 and S6 
Z4 and Z2xZ2 

G & G none 
 
 
Exercises 
 
Table A.8 
 
Exercise Types 
 

Show 
Map 
is Iso 

Show 
Groups 
are Iso 

Show 
Map 
is not 
Iso 

Show 
groups 
not Iso 

Evaluate 
if groups 
are iso 

Find Iso 
between 
groups 

Properties 
preserved 

Find 
Iso 
group 

Eval 
if 
map 
is iso 

Fraleigh X X X 
  

X X 
 

X 

Gallian x X X X 
 

x x x 
 

Hungerford X X x X x 
    

G & G X X 
  

X X X 
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Note: x=single exercise, X=multiple exercises 
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Appendix C 

Sample Literature Review Report 

Table A.10 
 
Literature Report on Order of an Element 

APA citation 
Student 
Conception/Results Task 

Hazzan, O., & Leron, U. (1996). Students' 
use and misuse of mathematical theorems: 
The case of Lagrange's theorem. For the 
Learning of Mathematics, 23-26. 

• Applying Lagrange’s 
Theorem to find 
elements of a certain 
order.  

• Believing the a7=e 
implies a8 =e. 

True or false? 
Please justify 
your answer. 
"In S7 there is 
no element of 
order 8." 

Brown, A., DeVries, D. J., Dubinsky, E., & 
Thomas, K. (1997). Learning binary 
operations, groups, and subgroups. The 
Journal of Mathematical Behavior, 16(3), 
187-239. 

• Randomly trying all 
combinations of 
elements 

• No Progress 
• Leveraging the LCM 

relationship 

Find an 
element of 
order 6 in 
commutative 
group with 
element of 
order 2 and 3. 

Anderson, J., Austin, K., Barnard, T., & 
Jagger, J. (1998). Do third year 
mathematics undergraduates know what 
they are supposed to know? International 
Journal of Mathematical Education in 
Science and Technology, 29(3), 401-420. 

• Few could do so  
• Only consider xn=e 

without the minimum 
requirement 

Define the 
order of an 
element. 

Nardi, E. (2000). Mathematics 
Undergraduates' Responses to Semantic 
Abbreviations,‘Geometric’Images and 
Multi-Level Abstractions in Group 
Theory.Educational Studies in 
Mathematics, 43(2), 169-189. 

• Not understanding 
how elements and 
groups have order 

• Not seeing the 
connection between 
order of element and 
set generated by 
element 

• Order of an element is 
both static (the 
number of elements) 
and process (how to 
generate these 
elements) 

Working 
through a proof 
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Appendix D 

Expert Evaluation Summary 

  
Table A.10 
 
Expert Evaluation for Abelian Groups Task 1 
Evaluator Important Relevant What might students do? Other Notes 
1 Y Y Informally think of ability to “collect 

terms” 
Formally, a recursive/inductive argument 

 

2 Y Y Borrowing from familiar groups Easy 
3 Y Y Leverage definition Consider switching from n to 

concrete number 
Connects to difference between 
Abelian and non-Abelian groups  

4 Y Y Borrowing from familiar groups  
5 Y Y Borrowing from familiar groups Consider switching from n to 

concrete number 

 
 

 
Table A.11 
 
Expert Evaluation for Abelian Groups Task 2 
Evaluator Important Relevant What might students do? Other Notes 
1 N N  Too vague 
2 Y Y Might not know where to start Too vague 
3 N N Consider things not related to abelian Too vague 
4 Y Y Students may assume non-abelian is 

inherited 
 

5 Y N  Too vague 
About non-abelian not abelian 
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Appendix E 

Item Analysis 

Table A.12 
 
Item Analysis Statistics 

Item 
Number Topic Item 

Difficulty 

Corrected 
Item 
Correlation 

Cronbach’s 
Alpha if 
Deleted 

Question 
Evaluation 

1 Abelian Groups .49171 .332 .620 Optimal 

2 Group .1883 .068 .653 Consider 
Revising 

3 Identity .2679 .272 .629 Difficult 

4 Isomorphism .1220 .051 .652 Consider 
Revising 

5 Homomorphism .3634 .119 .650 Difficult 

6 Lagrange’s 
Theorem .5385 .257 .631 Optimal 

7 Cyclic Groups .5597 .152 .646 Mid 

8 Kernel .5066 .389 .612 Optimal 

9 Associativity .3263 .347 .619 Difficult 

10 First Isomorphism 
Theorem .1989 .194 .639 Consider 

Revising 

11 Subgroup .4350 .391 .612 Optimal 

12 Cosets .3077 .305 .625 Difficult 

13 Quotient Groups .2228 .077 .653 Consider 
Revising 

14 Inverse .7029 .201 .639 Optimal 

15 Order of an 
Element .4642 .361 .616 Optimal 

16 Normal Groups .3660 .368 .615 Difficult 

17 Binary Operation .5464 .258 .631 Optimal 
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Appendix F 

Principal Component Analysis - % of Variance 

Table A.13 
 
PCA Loadings 
 Initial Eigenvalues Extraction Sums of Squared 

Loadings 
Rotation Sums of Squared 
Loadings 

 Total % of 
Variance 

Cumulative 
% 

Total % of 
Variance 

Cumulative
 % 

Total % of 
Variance 

Cumulative 
% 

1 2.793 16.432 16.432 2.793 16.432 16.432 1.931 11.357 11.357 
2 1.222 7.186 23.618 1.222 7.186 23.618 1.565 9.205 20.562 
3 1.191 7.009 30.627 1.191 7.009 30.627 1.443 8.488 29.049 
4 1.163 6.844 37.470 1.163 6.844 37.470 1.220 7.179 36.228 
5 1.103 6.487 43.957 1.103 6.487 43.957 1.196 7.035 43.263 
6 1.016 5.976 49.933 1.016 5.976 49.933 1.134 6.670 49.933 
7 .951 5.597 55.530             
8 .949 5.585 61.115             
9 .941 5.535 66.650             
10 .874 5.140 71.790             
11 .828 4.871 76.662             
12 .742 4.365 81.027             
13 .728 4.280 85.307             
14 .695 4.091 89.397             
15 .648 3.815 93.212             
16 .595 3.499 96.711             
17 .559 3.289 100.000             
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Appendix G 

Distractor Frequencies 

Table A.14 
 
Percentage of Students Selecting Each Answer 
Item Number Topic Percentage of students selecting 

each response 
1 Abelian Groups a. 15% 

b. 14% 
c. 59% 
d. 12% 

2 Group a. 19% 
b. 38% 
c. 18% 
d. 10% 
e. 14% 

3 Identity a. 30% 
b. 16% 
c. 13% 
d. 27% 
e. 14% 

4 Isomorphism a. 21% 
b. 12% 
c. 30% 
d. 13% 
e. 24% 

5 Homomorphism a. 44% 
b. 37% 
c. 12% 
d. 7% 

6 Lagrange’s 
Theorem 

a. 8% 
b. 38% 
c. 54% 

7 Cyclic Groups a. 13% 
b. 56% 
c. 17% 
d. 14% 

8 Kernel a. 28% 
b. 10% 
c. 51% 
d. 11% 
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9 Associativity a. 28% 
b. 22% 
c. 17% 
d. 32% 

10 First 
Isomorphism 
Theorem 

a. 20% 
b. 30% 
c. 28% 
d. 23% 

11 Subgroup a. 14% 
b. 36% 
c. 7% 
d. 44% 

12 Cosets a. 10% 
b. 44% 
c. 31% 
d. 16% 

13 Quotient 
Groups 

a. 22% 
b. 35% 
c. 29% 
d. 15% 

14 Inverse a. 70% 
b. 14% 
c. 9 
d. 8% 

15 Order of an 
Element 

a. 36% 
b. 45% 
c. 12% 
d. 6% 

16 Normal Groups a. 43% 
b. 37% 
c. 14% 
d. 6% 

17 Binary 
Operation 

a. 10% 
b. 20% 
c. 17% 
d. 54% 

Note: Bolded response represents correct answer 
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