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Radiative transfer theory applied to ocean bottom modeling
Jorge E. Quijanoa� and Lisa M. Zurk
Department of Electrical Engineering, Northwest Electromagnetics and Acoustics Research Laboratory,
Portland State University, Portland, Oregon 97201-0751

�Received 27 October 2008; revised 30 April 2009; accepted 20 July 2009�

Research on the propagation of acoustic waves in the ocean bottom sediment is of interest for active
sonar applications such as target detection and remote sensing. The interaction of acoustic energy
with the sea floor sublayers is usually modeled with techniques based on the full solution of the
wave equation, which sometimes leads to mathematically intractable problems. An alternative way
to model wave propagation in layered media containing random scatterers is the radiative transfer
�RT� formulation, which is a well established technique in the electromagnetics community and is
based on the principle of conservation of energy. In this paper, the RT equation is used to model the
backscattering of acoustic energy from a layered elastic bottom sediment containing distributions of
independent scatterers due to a constant single frequency excitation in the water column. It is shown
that the RT formulation provides insight into the physical phenomena of scattering and conversion
of energy between waves of different polarizations.
© 2009 Acoustical Society of America. �DOI: 10.1121/1.3203992�

PACS number�s�: 43.30.Ft, 43.20.Bi, 43.20.Fn, 43.30.Vh �JJM� Pages: 1711–1723

I. INTRODUCTION

Research on the interaction of acoustic energy with the
sea floor has gained importance due to its role on the perfor-
mance of sonar systems in shallow water and the demand for
more accurate models for remote sensing of the sea floor. In
the first case, a better understanding of this interaction can
help to differentiate sources in the water column from bot-
tom reverberation and improve estimates of bottom reflection
loss for navy applications. In the latter case, it can enhance
current techniques for inversion of geoacoustic parameters
and/or provide physical understanding of the structure of the
scattered field for bottom probing applications. The goal of
this work is to introduce the radiative transfer �RT� formula-
tion as an alternative method to the classic wave theory ap-
proach for computation of volume scattering.

Ocean bottom sediments are usually modeled as discrete
layers with rough interfaces containing volume inhomogene-
ities. Acoustic backscattering is divided in rough surface
scattering due to the contrast at the water-sediment interface
and volume scattering due to subbottom inhomogeneities.1

Although there are models that unify volume and rough sur-
face scattering into a single formulation,2,3 a simple model
that handles multiple layered sediments with embedded ran-
dom scatterers remains a challenge.

Several formulations based on the classic wave theory
have been developed to predict sediment backscattering, and
most of them are based on the integral method.1,3,4 This tech-
nique consists of writing the sound speed and the density as
constant mean values with random perturbations that depend
on the position in the media. The resulting homogeneous
wave equation for the perturbed media can be recast into a
heterogeneous wave equation with a “source” term that is a

function of the perturbations. With the integral method, the
statement of the problem is exact,3 but the solution of the
integral equation requires approximations that might limit its
range of applicability.

Examples of such approximations are the assumption of
weak scatterers2,5 or small fractional volumes.6 Due to high
sediment attenuation these assumptions simplify the math-
ematical formulation by considering only single scattering
events. In most cases these models have shown good agree-
ment with experimental backscattering data, but they have
underestimated volume scattering in certain environments7

and it has been suggested that this might be due to neglecting
of multiple scattering.

Other common approximation in current volume scatter-
ing models is the assumption of shallow acoustic penetration,
which allows to ignore contributions from deeper scattering
features but it constrains the model to frequencies higher
than 10 kHz and shallow grazing angles.1 Also, most of the
classic models neglect the often complicated contribution of
shear waves, which is not a good approximation for certain
types of consolidated elastic media.8

Contrary to the classic wave theory, the RT formulation
works with the propagation of energy rather than the fields
that carry it, and it is suggested that in general, its solution is
much simpler than the integral method approach from classic
wave theory.9 RT theory has been a dynamic area of research
in electromagnetic remote sensing, optic sensing, and more
recently it has been adapted to acoustic waves to model the
propagation of longitudinal and shear waves in elastic media,
with applications in seismics10 and ultrasound.11 In those ap-
plications, the environment consists of parallel layers with
embedded random scatterers, and this similarity with the sea-
bed motivates this work.12

Despite the common presentation of RT theory as a phe-
nomenological or heuristic statement of energy conservation,
the RT theory for parallel-plane homogeneous layers with
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random discrete scatterers can also be derived from formal
principles of wave theory.13,14 More recent developments in-
clude several approximate techniques to handle densely
packed discrete scatterers,15–17 gradients of the refractive in-
dex of background media,18 horizontally variable layered
environments,19,20 and time-dependent broadband
excitations.21,22

The RT equation presented in this work is the full elastic
solution which includes the effect of multiple scattering, at-
tenuation due to lossy scatterers or lossy background media,
and transformation of waves of different polarizations and
multiple parallel layers. Wave theory is still utilized to esti-
mate the scattering characteristics of the random particles,
but once the scattering and absorption cross sections are de-
fined, the problem reduces to solving the RT equation. Then,
the scattering media can be characterized by an extinction
factor �that accounts for scattering and loss mechanisms� and
an emission factor �which describes the scattering of energy
from neighboring particles into the direction of observation�.

In this paper, the main equations for the RT formulation
for acoustics as derived by Turner and Weaver11 are summa-
rized and applied to layered media containing low density
distributions of spherical voids. The focus of this paper is on
the steady-state RT formulation, which corresponds to a
monochromatic constant excitation. The notation introduced
in this paper will be extended in the future to the solution of
the transient RT formulation22 required to simulate finite
length pulses with the spectral characteristics commonly
used in sea experiments. It is shown that the RT solution
provides straightforward intuition into the physical problem
and that the effect of each scattering process can be isolated.

This paper is organized as follows: Sec. II explains the
scalar RT equation from a phenomenological perspective. In
Sec. III, the vector RT equation utilized in acoustics is intro-
duced for a finite layer with reflective boundaries, and Sec.
IV summarizes the procedure to solve this equation. Section
V presents the equations for the plane wave reflection/
transmission coefficients that are utilized in this paper as
boundary conditions for the water-elastic and the elastic-
elastic interface. In Sec. VI, the relation between the specific
intensity and the power flux is explained, and in Sec. VII
simulations for different combinations of background attenu-
ation and layering structure are presented. Section VIII cor-
responds to conclusions and a summary of the capabilities
and limitations of the RT model for random media.

II. THE CONCEPT OF RT

The RT theory was initially formulated by astrophysi-
cists for study of stellar spectra,23 and several methods for
the solution of the RT equation have been proposed. Some
solution methods take advantage of symmetry of the random
media, and in this section the RT equation is summarized for
the specific case of parallel planes with discrete scatterers, as
described in the literature.11,24 With parallel-plane media, the
intensity I�� ,� ,z� propagating in the random media is a
function of depth z, azimuth �, and elevation angle �.

The interaction of energy with the layered media is il-
lustrated in Fig. 1, where the total intensity can be divided

into two components: the reduced intensity Iri, which repre-
sents the coherent energy that travels with a constant direc-
tion, and the diffuse intensity Id, which propagates in all di-
rections.

The reduced intensity is attenuated due to its interaction
with the scatterers and the multiple reflections in layer 1 as
well as absorption within the media. From conservation
laws, part of the attenuated energy will escape layer 1 and

this is determined by the transmission coefficients T̂10 and

T̂12 from media 1 to media 0 and 2, respectively �the subin-
dex notation follows Tsang et al.25 and the symbol ˆ refers to
the transmission/reflection coefficients for specific intensi-
ties, as explained in Sec. V�. Since the rest of the attenuated
energy becomes the diffuse intensity, the reduced intensity
can be regarded as a source of diffuse intensity, and the
amount of diffuse intensity depends on the nature of the vol-
ume scatterers.

In this paper, flat interfaces are assumed and the Fresnel
reflection coefficients are utilized. For a single interaction
with the bottom, the total upward intensity I�� ,� ,z� in the
direction ��m�� /2,�m� in layer 0 at z=0− is given by

I��m �
�

2
,�m,0−�

= T̂10Id�� �
�

2
,�m,0+� + �R̂01Iri0

↓ ��0,�0,0−�

+ T̂10Iri1
↑ �� − �1,�0,0+�����m − �� − �0�����m − �0� ,

�1�

where �� ,�� are the elevation and azimuth angles of the
diffuse intensity, Id and Iri1

↑ are the diffuse and upward re-
duced intensities in layer 1, respectively, Iri0

↓ is the incident
intensity, and � is the Kronecker operator to indicate that the
coherent intensity can be observed only in the specular di-
rection ��0 ,�0�. The reduced intensity includes the reflection

coefficient between layers 1 and 2, R̂12, and the attenuation
of energy due to interaction with the random scatterers.
Mathematically, it can be written as

z = 0

z = zb

z = z2

ẑ

x̂

θ0

θ1

π − θ0

π − θ1

π − θ0

θ

θm

θ2

I
↓

ri0
I
↑

ri0
= R̂01I

↓

ri0

Id

I
↓

ri1

I
↑

ri1

I
↓

ri2

cL0, ρ0

cL1, cT1, ρ1

cL2, cT2, ρ2

Layer0

Layer1

Layer2

Reflected TransmittedTransmitted
diffuse reduced

FIG. 1. Diagram of the reduced intensity Iri �solid arrows� and the diffuse
intensity Id �dashed arrows� in a layer containing random scatterers. In this
paper, �a is the diffracted angle for a wave in media a measured with respect
to the ẑ axis, with �0 denoting the incident angle of the energy from the

source in layer 0. The reflection coefficient for specific intensity, R̂ab, cor-
responds to a wave traveling and bouncing back to media a when the bound-
ary a �b is reached. Layer 2 is an infinite half space with z2=�.
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Iri1
↑ �� − �1,�0,0� = T̂01R̂12Iri0

↓ ��0,�0,0�exp�− 2
��zb

cos �1
	 ,

�2�

where zb is the thickness of the layer with random scatterers,
� is the density of scatterers, and � is known as the extinc-
tion coefficient, which is a characteristic of the scatterers and
the background attenuation and will be defined later. The
angle �1 results from diffraction when energy in layer 0 with
an incidence angle �0 is transmitted to layer 1, according to
Snell’s law. As expected, the intensity related to volume scat-
tering �Id� will be zero if �0 is greater than the critical angle
at the fluid-water interface since no energy can penetrate into
layer 1.

In the RT literature it is a common practice to define the
specific intensity as I�	 ,� ,z�, where 	=cos � is negative for
upward going intensity and positive for downward going in-
tensity. This convention will be adopted in this paper.

Figure 2 shows a differential volume containing a distri-
bution of � scatterers per m3.

The change in the total intensity I�	 ,� ,z� as a function
of the traveled distance dz /	 and the energy that arrives
from other directions ��� ,��� can be expressed as11,24

�I�	,�,z�
��z/	�

= − ���
 + �� + 2��I�	,�,z�

+
�

4�



−1

1 

0

2�

p�	,�;	�,���I�	�,��,z�d	�d��,

�3�

where I�	 ,� ,z�= Iri�	 ,� ,z�+ Id�	 ,� ,z� includes the re-
duced and diffuse intensities, 
 and � are the scattering
and absorption cross sections of a single particle normalized
by 4�, respectively, � is the attenuation of the back-
ground media in Np/m, and p�	 ,� ;	� ,��� is the scatter-
ing strength into direction �� ,�� for a single particle
when the incident energy arrives from direction ��� ,���.
Following the definition by Turner and Weaver,11 

= �1 /4���=4�p�	 ,� ;	� ,���d where �=4�� · d indi-
cates an integral over a solid angle of 4�.

The form of Eq. �3� assumes independent scattering,
where the total scattering is the product ��
+��. If the frac-

tional volume is large enough �typically 5%–10% or greater�,
the dense media radiative transfer formulation is used in-
stead, where the total scattering is substituted by an effective
scattering parameter.15,16

From Eq. �3�, the intensity within the volume is de-
creased by ���
+��+2�� and increased by the contribution
of energy coming from all directions and coupling into the
�� ,�� direction. This is represented by the integral over all
possible �� and �� angles.

The extinction cross section �= �
+��+2� /� is a mea-
surement of the amount of coherent energy that is trans-
formed into diffuse energy due to scattering and absorption
of the background media and the particles.

III. RT EQUATION IN ELASTIC MEDIA

In this section, the procedure developed by Turner and
Weaver11 to obtain a RT for ultrasound is outlined and modi-
fied for the case of a finite layer with reflecting boundaries at
the top and bottom.

For acoustics, the specific intensity I�� ,� ,z� can be di-
vided in longitudinal and shear waves. From the definition of
Stokes parameters, five specific intensities can be defined: IL,
Ix, and Iy represent the total energy due to longitudinal, shear
horizontal, and shear vertical waves, respectively, and IU and
IV represent correlations between the shear waves. As in Sec.
II the total intensity is the summation of the reduced and the
diffuse intensities. Since these intensities have different po-
larizations, they are orthogonal to each other and Eq. �3� can
be applied to each one independently:

	
�IL�	,�,z�

�z
= − ��LIL�	,�,z�

+
�

4�



−1

1 

0

2� ��
b

PLb�	,�;	�,���

�Ib�	�,��,z�	d	�d�� �4�

for the longitudinal component and

	
�Ia�	,�,z�

�z
= − ��TIa�	,�,z�

+
�

4�



−1

1 

0

2� ��
b

Pab�	,�;	�,���

�Ib�	�,��,z�	d	�d�� �5�

for any of the four transversal components, where b
� �L ,x ,y ,U ,V� and a is any of the shear specific intensities
�x, y, U, or V�. The longitudinal and shear extinction cross
sections are defined as �L=
L+vL+2�L /� and �T=
T+vT

+2�T /�, respectively. The term Pab�	 ,� ;	� ,��� represents
the coupling of energy from a wave with b polarization into
a wave with a polarization. Conceptually, it is similar to the
scattering function p�	 ,� ;	� ,��� for the scalar case, except
that Pab�	 ,� ;	� ,��� includes the rotation of Stokes param-
eters about an axis, which is a step required to align the

ẑ

x̂
θ

θ
′

I(µ, φ, z
+

dz)

I(
µ
′ , φ

′ , z
)

I(µ, φ, z)

dz/µ

FIG. 2. Diagram of the interaction of an energy beam traveling in the �� ,��
direction with scatterers within a differential volume. The intensity at the
output of the volume, I�	 ,� ,z+dz�, results from the attenuation of the input
intensity I�	 ,� ,z� and the reinforcement due to energy coming from other
directions ��� ,���.
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incident and scattered intensities with an arbitrary scattering
plane.11,13

Equations �4� and �5� have the same form, and it is con-
venient to define a vector RT equation that can be solved
more efficiently. Also, in RT literature the variable �=�
Tz is
defined as a normalized depth. After this substitution,

	
�I��	,�,��

��
= − �̃� I��	,�,��

+
1

4�
T



−1

1 

0

2�

P� �	,�;	�,���

�I��	�,��,��d	�d��, �6�

where the underbar denotes vector/matrix quantities and

I��	,�,�� =�
IL

Iy

Ix

U

V
� , �7�

�̃� =�
�̃L 0 0 0 0

0 �̃T 0 0 0

0 0 �̃T 0 0

0 0 0 �̃T 0

0 0 0 0 �̃T

� , �8�

with �̃L=�L /
L and �̃T=�T /
L. The term P� �	 ,� ;	� ,��� is
the 5�5 Mueller matrix11 for a single scatterer:

P� �	,�;	�,��� =�
PLL PLy PLx PLU PLV

PyL Pyy Pyx PyU PyV

PxL Pxy Pxx PxU PxV

PUL PUy PUx PUU PUV

PVL PVy PVx PVU PVV

� �9�

�the angular dependence of the elements in the matrix
P� �	 ,� ;	� ,��� has been suppressed for brevity�. Except for
the addition of the background attenuation � and the assump-
tion of steady-state conditions, Eq. �6� is identical to Eq. �48�
from Turner and Weaver.11 In analogy to the scalar case,


L =
1

4�



=4x

�PLL + PxL + PyL�d ,


T =
1

8�



=8x

�PLy + Pyy + Pxy + PLx + Pyx + Pxx�d .

�10�

For a finite layer 1 of thickness zb and reflecting bound-
aries, the boundary conditions are defined as

I��	 � 0,�,0+� = I�src + I�10�	 � 0,�,0+�, z = 0+ downward,

I��	 � 0,�,�b
−� = I�12�	 � 0,�,�b

−�, z = zb
− upward, �11�

where

I�src�	,�,0+� =�
T̂01

LLKL0��� − �1
L1�

T̂01
LyKL0��� − �1

y1�
0

0

0

� �12�

results from the coupling of energy from the water column
into the sediment. KL0 is the amplitude of the incident power
flux at z=0 due to an acoustic source in the water column.
This flux is assumed to be a collimated beam in the direction
��o

L1 ,�o� and it diffracts into longitudinal and shear specific
intensities in the sediment, with amplitude determined by the

specific intensity transmission coefficients T̂01
LL �longitudinal-

to-longitudinal� and T̂01
Ly �longitudinal-to-shear vertical�;

there is no longitudinal-to-shear horizontal coupling, so T̂01
Lx

=0. As a convention, the superindex in the reflection/
transmission coefficients indicates the change in polarization
and the subindex indicates the layers at the interface.

The angle of the diffracted waves is indicated by 	1
L1

=cos �1
L1 and 	1

y1 =cos �1
y1, where as in Fig. 1, the subindex

corresponds to the layer. The superindex has been introduced
to indicate whether the angle describes a longitudinal or a
shear vertical intensity. As explained in Sec. IV, multiple
interactions of the intensity with the boundaries of the layer
result in the alignment of the coherent intensity along several
directions of propagation that are indicated with a numerical
value in the superindex. For example, �1

L1 and �1
L2 correspond

both to longitudinal coherent intensities in layer 1, traveling
in two different angles that are labeled as L1 and L2. Simi-
larly, �1

y1 and �1
y2 are shear vertical coherent intensities in

layer 1 along two angles labeled as y1 and y2.
The vectors I10 and I12 are the reflected specific intensi-

ties at �=0 and �=�b, respectively, and are defined as

I�10�	 � 0,�,0+�

= �
R̂10

LLIL�− 	,�,0+� + R̂10
yLIy�− 	1

yA,�,0+�

R̂10
LyIL�− 	1

LA,�,0+� + R̂10
yyIy�− 	,�,0+�

Ix�− 	,�,0+�

R̂10
UUIU�− 	,�,0+� + R̂10

VUIV�− 	,�,0+�

R̂10
UVIU�− 	,�,0+� + R̂10

VVIV�− 	,�,0+�
� , �13�

I�12�	 � 0,�,�b
−�

= �
R̂12

LLIL�− 	,�,�b
−� + R̂12

yLIy�	1
yA,�,�b

−�

R̂12
LyIL�	1

LA,�,�b
−� + R̂12

yyIy�− 	,�,�b
−�

Ix�− 	,�,�b
−�

R̂12
UUIU�− 	,�,�b

−� + R̂12
VUIV�− 	,�,�b

−�

R̂12
UVIU�− 	,�,�b

−� + R̂12
VVIV�− 	,�,�b

−�
� , �14�

where R̂cd
ab is the reflection coefficient for an incident wave

with polarization a into a wave with polarization b at the
boundary between media c and d. The variables 	1

LA

=cos �1
LA and 	1

yA =cos �1
yA indicate off-axis contribution due
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to conversion from longitudinal and shear vertical polariza-
tions and are defined as

�1
LA = sin−1� cL1

cT1
sin ��, �1

yA = sin−1� cT1

cL1
sin �� ,

� = cos−1�	� . �15�

IV. SOLUTION TO THE RT EQUATION

In general, Eq. �6� must be solved numerically but in
some cases �like single scattering solutions11�, analytical so-
lutions can also be obtained. For any of those approaches,
the reduced intensity must be found first so it can be used as
a source for the diffuse intensity.

A. The reduced intensity for a finite layer

For the general case of a finite layer with reflecting
boundaries, the reduced intensity has upward and downward
components.24 Due to the refraction of longitudinal waves
into shear waves and vice versa, the resulting reduced inten-
sity can be collimated along eight different angles, as shown
in Fig. 3.

Each diagram in Fig. 3 represents a possible combina-
tion of multiple reflections of the energy within the sediment.
The notation for the reduced intensity is similar to the nota-
tion for angles in Eq. �12�: the subindex ri1 stands for re-
duced intensity in layer 1, and the superindices L1 ↓ and L2 ↓
stand for downward longitudinal intensities collimated with
two different angles �L1 and L2, respectively�, and a similar
interpretation applies to the other terms. A closed form ex-
pression for each combination of multiple reflections can be
found by writing an infinite summation of terms and simpli-
fying the resulting geometric series,24 which is a useful result
for the steady-state solution that is the subject of this paper.
However, writing each of the interactions as a separate term
will allow the extension of the notation in preparation for the
transitory solution of the RT equation, which can be accom-

plished by following the procedure found in the literature22

and it will be the subject of a future communication.
The first eight interactions of the coherent excitation

with the layer boundaries are

Iri1

L1↑�	,�,�� = A1
L1↑�	�e−�̃L�/	��� − �� − �1

L1����� − �o� ,

Iri1

L2↑�	,�,�� = A1
L2↑�	�e−�̃L�/	��� − �� − �1

L2����� − �o� ,

Iri1

y1↑�	,�,�� = A1
y1↑�	�e−�̃T�/	��� − �� − �1

y1����� − �o� ,

Iri1

y2↑�	,�,�� = A1
y2↑�	�e−�̃T�/	��� − �� − �1

y2����� − �o� ,

�16�

where

A1
L1↑�	� = KL0T̂01

LLR̂12
LL exp�2�̃L�b

	
	 ,

A1
L2↑�	� = KL0T̂01

LyR̂12
yL exp�− �b� �̃T

	1
y1

−
�̃L

	
�	 ,

A1
y1↑�	� = KL0T̂01

LyR̂12
yy exp�2�̃T�b

	
	 ,

A1
y2↑�	� = KL0T̂01

LLR̂12
Ly exp�− �b� �̃L

	1
L1

−
�̃T

	
�	 �17�

are the amplitude terms. Similarly, the expressions for the
downward reduced intensities are

Iri1

L1↓��,	,�� = A1
L1↓�	�e−�̃L�/	��� − �1

L1���� − �o� ,

Iri1

L2↓��,	,�� = A1
L2↓�	�e−�̃L�/	��� − �1

L2���� − �o� ,

Iri1

y1↓��,	,�� = A1
y1↓�	�e−�̃T�/	��� − �1

y1���� − �o� ,

Iri1

y2↓��,	,�� = A1
y2↓�	�e−�̃T�/	��� − �1

y2���� − �o� , �18�

where

A1
L1↓�	� = KL0T̂01

LL,

A1
L2↓�	� = KL0T̂01

LyR̂12
yLR̂11

LL exp�− �b� �̃T

	1
y1

+
�̃L

	
�	 ,

A1
y1↓�	� = KL0T̂01

Ly ,

A1
y2↓�	� = KL0T̂01

LLR̂12
LyR̂11

yy exp�− �b� �̃T

	1
L1

+
�̃L

	
�	 . �19�

The variables 	1
L1 ,	1

y1 ,	1
L2 ,	1

y2 are the cosines of the angles

�1
L1 = sin−1� cL1

cL0
sin �0

L1	, �1
y1 = sin−1� cT1

cL0
sin �0

L1	 ,

θ
L1
0

θ
L1
0

θ
L1
0

θ
L1
0

θ
L1
1

θ
L1
1

θ
L1
1

θ
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1

π − θ
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θ
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1
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FIG. 3. The reduced intensity can be collimated in eight different directions.
�a� The upward longitudinal intensities Iri1

L1↑ and Iri1
L2↑ result from the trans-

formations L−L−L and L−y−L, respectively, where L stands for longitudi-
nal and y for shear vertical, �b� Similar to �a� for Iri1

y1↑ �L−y−y� and Iri1
y2↑

�L−L−y�; �c� The downward longitudinal intensities Iri1
L1↓ and Iri1

L2↓ corre-
spond to the transformations L−L and L−y−L−L, respectively, �d� Similar
to �c� for Iri1

y1↓ �L−y� and Iri1
y2↓ �L−L−y−y�.
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�1
L2 = sin−1� cL1

cT1
sin �1

y1	, �1
y2 = sin−1� cT1

cL1
sin �1

L1	 ,

�20�

where cLa and cTa are the longitudinal and shear sound
speeds in the ath layer, respectively.

B. The RT equation for the diffuse specific intensity

The procedure to solve Eq. �6� consists of writing the
total specific intensity as the summation of the reduced and
the diffuse intensity:

I��	,�,�� = I�ri�	,�,�� + I�d�	,�,�� , �21�

where

I�ri�	,�,�� =�
Iri1

L1↓�	,�,�� + Iri1

L2↓�	,�,�� + Iri1

L1↑�	,�,�� + Iri1

L2↑�	,�,��

Iri1

y1↓�	,�,�� + Iri1

y2↓�	,�,�� + Iri1

y1↑�	,�,�� + Iri1

y2↑�	,�,��

0

0

0

� ,

�22�

and

I�d�	,�,�� = �
Id1

L �	,�,��

Id1

y �	,�,��

Id1

x �	,�,��

Id1

U �	,�,��

Id1

V �	,�,��
� �23�

is the vector of diffuse intensities to be found. Note that for
any specific angle 	 only one term in the sum �22� will be
non-zero due to the � operands in Eqs. �16� and �18�. Sub-
stitution of Eq. �21� into Eq. �6� results in an expression for
I�d�	 ,� ,�� with sources of longitudinal and transversal spe-
cific intensities:

	
�I�d�	,�,��

��

= − �̃I�d�	,�,��

+
1

4�
T
�


−1

1 

0

2�

P� �	,�;	�,���I�d�	�,��,��d	�d��	
+ S� 1

L1↓�	,��e−�̃L�/	1
L1

+ S� 1
L2↓�	,��e−�̃L�/	1

L2

+ S� 1
y1↓�	,��e−�̃T�/	1

y1
+ S� 1

y2↓�	,��e−�̃T�/	1
y2

+ S� 1
L1↑�	,��e�̃L�/	1

L1
+ S� 1

L2↑�	,��e�̃L�/	1
L2

+ S� 1
y1↑�	,��e�̃T�/	1

y1
+ S� 1

y2↑�	,��e�̃T�/	1
y2

, �24�

where

S� 1
L1↓�	,�� =

1

4�
T
P� �	,�;	1

L1,�o��
A1

L1↓�	1
L1�

0

0

0

0
� , �25�

S� 1
L2↓�	,�� =

1

4�
T
P� �	,�;	1

L2,�o��
A1

L2↓�	1
L2�

0

0

0

0
� , �26�

S� 1
y1↓�	,�� =

1

4�
T
P� �	,�;	1

y1,�o��
0

A1
y1↓�	1

y1�
0

0

0
� , �27�

S� 1
y2↓�	,�� =

1

4�
T
P� �	,�;	1

y2,�o��
0

A1
y2↓�	1

y2�
0

0

0
� , �28�

and the upward source terms S� 1
L1↑�	 ,��, S� 1

L2↑�	 ,��,
S� 1

y1↑�	 ,��, and S� 1
Ly2↑�	 ,�� can be obtained from Eqs.

�25�–�28� by substituting “↓” by “↑” and 	1
ab by −	1

ab in the
phase matrix P� �	 ,� ;	1

ab ,�o�.
For the diffuse intensity in Eq. �24� the same boundary

conditions as in Eqs. �13� and �14� can be used, and the
solution of the diffuse intensity is outlined in the Appendix.

V. PLANE WAVE REFLECTION COEFFICIENTS FOR
AN ELASTIC-ELASTIC INTERFACE

For simplicity, in this paper the plane wave reflection
and transmission coefficients for elastic media are utilized to
define the boundary conditions for the RT differential equa-
tion. For the water-sediment interface, the incident longitu-
dinal wave from the water column results in a reflected lon-
gitudinal wave and transmitted longitudinal and shear
vertical waves. Expressions for the reflection and transmis-
sion coefficients at the water-sediment interface were pre-
sented elsewhere.12 For the sand-limestone interface, shear
and longitudinal waves are supported in both interfaces.
From Brekhovskikh,26 the reflection/transmission coeffi-
cients for a longitudinal wave in media 1 with incidence
angle �1

L are

�R12
LL = �1

2 − �1�2
2/�1 + ��2/�2��B1

2 − �1B2
2/�1�

+ m��2/�1 − �2/�1��
1
4/4�4� , �29�

− �/2R12
Ly = �1�2 + ��2/�2�B1B2, �30�

�T12
LL = �
2

2/�2���1 − B2� , �31�
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�T12
Ly = �
2

2/�2���2 + �2B1/�2� , �32�

where

� = �1
2 + �1�2

2/�1 + ��2/�2��B1
2 + �1B2

2/�1�

+ m��2/�1 + �2/�1��
1
4/4�4� , �33�

�1 = n2 − mp2/� ,

�2 = �n2p1 − mp2�/�1,

B1 = �n2 − m��2/� ,

B2 = ��2/�1��n2p1/� − m� , �34�

and

n =
cT1

cT2
, m =

�1

�2
, � = � �

cL1
�sin �1

L,

�1 = � �

cT1
�cos �1

y, �2 = � �

cT2
�cos �2

y ,

�1 = � �

cL1
�cos �1

L, �2 = � �

cL2
�cos �2

L,

p1 = ��2 − � �

cT1
�21

2
	�−1, p2 = ��2 − � �

cT2
�21

2
	�−1.

�35�

The angles �1
L, �1

y, �2
L, and �2

y are related by Snell’s law:

sin �1
L

cL1
=

sin �1
y

cT1
=

sin �2
L

cL2
=

sin �2
y

cT2
. �36�

A vertical shear wave will also excite longitudinal and
vertical shear waves in both elastic media, and it will be
characterized by the corresponding R12

yL, R12
yy, T12

yL, and T12
yy

coefficients.26 Finally, a shear horizontal wave in the sedi-
ment can only excite reflected and transmitted shear horizon-
tal waves, so it is completely characterized by two coeffi-
cients R12

xx and T12
xx.

Since the main quantity for the RT equation is the spe-
cific intensity, the coefficients for the specific intensity must
be utilized instead. Table I shows the relationship between
the plane wave coefficients and its counterpart for specific
intensity in an elastic-elastic interface. For the water-
sediment interface, the corresponding coefficients can be
found in the literature.27

Table II shows the value of the geoacoustic parameters
for a sandy sediment and a limestone layer.

Simulations for the power transmission and reflection
coefficients from a sand-limestone interface are shown in

Figs. 4�a� and 4�b�. The relations �R̃12
LL�+ �R̃12

Ly�+ �T̃12
LL�+ �T̃12

Ly�
=1 and �R̃12

yL�+ �R̃12
yy�+ �T̃12

yL�+ �T̃12
yy�=1 can be verified at any

angle, but this relation does not hold for the specific intensity
coefficients. Similar simulations for the water-sediment inter-
face were presented in a previous paper.12

As discussed in Sec. IV the transmitted/reflected re-
duced intensity �shown in terms of transmission/reflection

coefficients in Fig. 4� gives rise to additional sources of co-
herent upward and downward intensities that have the poten-
tial to be transformed into diffuse intensity. The complex
behavior of the transmission and reflection of energy at the
sand-limestone interface modulates the amplitude of those
sources. This will be evident in Sec. VII when the volume
scattering from a finite layer on a water-sand-limestone ar-
rangement is compared to the scattering levels with the lime-
stone layer replaced by sand.

VI. CONSERVATION OF POWER FOR AN INCIDENT
COHERENT BEAM

One of the main features of the RT model is the conser-
vation of power. This can be used to test the accuracy of the
RT computer simulation and to provide the contribution of
longitudinal and shear waves in units of power rather than
specific intensity. The relationship between specific intensity
Ifg

e↑�	 ,� ,z� and the upward power flux Ffg

e↑�z� normal to layer
g at any depth z is13

TABLE I. Power � ˜� and specific intensity � ˆ� reflection/transmission coef-
ficients for the elastic-elastic interface.

Inc. Power coefficient Specific intensity

L R̃12
LL= �R12

LL�2 R̂12
LL= R̃12

LL

R̃12
Ly = �R12

Ly�2
tan �1

L

tan �1
y R̂12

Ly = R̃12
Ly cL1

2

cT1
2

T̃12
LL= �T12

LL�2
�2 tan �1

L

�1 tan �2
L T̂12

LL= T̃12
LLcL1

2

cL2
2

T̃12
Ly = �T12

Ly�2
�2 tan �1

L

�1 tan �2
y T̂12

Ly = T̃12
Ly cL1

2

cT2
2

SV R̃12
yy = �R12

yy�2 R̂12
yy = R̃12

yy

R̃12
yL= �R12

yL�2
tan �1

y

tan �1
L R̂12

yL= R̃12
yLcT1

2

cL1
2

T̃12
yy = �T12

yy�2
�2 tan �1

y

�1 tan �2
y T̂12

yy = T̃12
yy cT1

2

cT2
2

T̃12
yL= �T12

yL�2
�2 tan �1

y

�1 tan �2
L T̂12

yL= T̃12
yLcT1

2

cL2
2

SH R̃12
xx = �R12

xx�2 R̂12
xx = R̂12

xx

T̃12
xx = �T12

xx�2
�2 tan �1

x

�1 tan �2
x T̂12

xx = T̃12
xx cT1

2

cT2
2

TABLE II. Acoustic properties of the sediment, limestone, and water col-
umn used in this paper.

Variable Sedimenta Water Limestoneb

�s �kg /m3� 2023.2 1027 2200
cL �m/s� 1689 1500 4390
cT �m/s� 117 0 2570

�L �dB/m at 10 kHz� 5.24 0 0.2
�T �dB/m at 10 kHz� 178 0 0.7

aReferences 28 and 29.
bReferences 30 and 31.
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Ffg

e↑�z� = 

2�

Ifg

e↑�	,�,z�	d, − 1 � 	 � 0, �37�

where d is a solid angle and 0���2�, the subindex f
refers to reduced �ri� or diffuse �d� and the superindex e
could be L1, L2, y1, etc. Similarly, the downward power flux
normal to layer g at any depth z is

Ffg

e↓�z� = 

2�

Ifg

e↓�	,�,z�	d, 0 � 	 � 1. �38�

As an example,

Fri1

L1↑�z� = 

2�

Iri1

L1↑�	,�,z�	d, − 1 � 	 � 0 �39�

is the upward power flux due to the coherent longitudinal
specific intensity Iri1

L1↑�	 ,� ,z�, while

Fd1

L↓�z� = 

2�

Id1

L↓�	,�,z�	d, 0 � 	 � 1 �40�

is the downward flux due to the diffuse specific intensity
Id1

L↓�	 ,� ,z�. If the attenuation of the background media in
layer 1 is zero and the scatterers are lossless, the conserva-
tion of the normal component of power flux can be stated as

��Fri0

L1↓ − Fri0

L1↑��z=0
�incident-reflected�

= ��Fd1

L↑ + Fd1

T↑��z=0 + ��Fd1

L↓ + Fd1

T↓��z=zb
�diffuse/volume scat.�

+ ��Fri1
L1↑ + Fri1

L2↑��z=0 + ��Fri1
L1↓ + Fri1

L2↓��z=zb
�coherent L�

+ ��Fri1
y1↑ + Fri1

y2↑��z=0 + ��Fri1
y1↓ + Fri1

y2↓��z=zb
�coherent T�,

�41�

where

Fri0

L1↓�z� = 

2�

Iri0

L1↓�	,�,z�cos �d ,

Fr
L1↑�z� = 


2�

Iri0

L1↑�	,�,z�cos �d �42�

are the normal fluxes due to the coherent incident and re-
flected specific intensities in the water column. The relation
in Eq. �41� states that all energy provided to the sediment
must manifest itself in either diffuse or upward/downward
reduced intensities. The incident and reflected specific inten-
sities are defined as

Iri0

L1↓�	,�,�� = KL0��� − �0
L1���� − �0� ,

Iri0

L1��	,�,�� = R̂01
LLKL0��� − �� − �0

L1����� − �0� . �43�

In Sec. VII, simulated results are presented in terms of
the normal power fluxes in Eq. �41�.

VII. RESULTS

Simulations were run for KL0=1 W /m2 with different
combinations of sediment attenuation and boundary condi-
tions. The scatterers are spherical cavities, and the scatter-
ing terms in Eq. �9� were computed using the Mie analytical
solution �see Eq. �86� from Turner and Weaver27�. In all
simulations, the frequency f =10 kHz, the particle radius a
=0.01 m, zb=1 m, and the particle density �=2388
scatterers /m3.

Figures 5 and 6 were computed to show the conservation
of the outward power flux that is normal to the boundaries of
the layer containing scatterers when �L=
L and �T=
T �no
background attenuation or scatterer absorption�. In both
cases, the conservation of the normal power flux established
in Eq. �41� can be confirmed at each incidence angle �0

L1.
Comparison between Figs. 5 and 6 also shows the effect

of the contrast between layer 1 and the bottom halfspace.
Figure 5 corresponds to a sand bottom half space �no con-
trast between layers 1 and 2�, while Fig. 6 shows the result-
ing power flux when the limestone bottom half space is in-
troduced.

In Fig. 5, the selection of the same background material
for layers 1 and 2 results in the suppression of the upward
coherent specific intensities since R12

LL=R12
Ly =0, and for this

simulation, the amount of volume scattering coming out of
the layer at z=zb, ��Fd1

L↓+Fd1

T↓��z=zb
, is higher than the volume

scattering at z=0, ��Fd1

L↑+Fd1

T↑��z=0. The critical angle for the
longitudinal energy that couples into the sediment is 62°, and
above this angle the volume scattering is negligible. Because
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FIG. 4. �Color online� Power reflection/transmission coefficients at the

sand-limestone interface. �a� Coefficients R̃12
LL, R̃12

Ly, T̃12
LL, and T̃12

Ly for an inci-
dent longitudinal wave, as shown in the inserted diagram. �b� Coefficients

R̃12
yy, R̃12

yL, T̂12
yy, and T̃12

yL for an incident shear vertical wave, as shown in the
inserted diagram.
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the shear sound speed in the sediment is smaller than the
sound speed in the water, there is always some minimum
amount of transversal energy penetrating into the finite layer.
Nevertheless, the total contribution to volume scattering re-
lated to the shear polarization is small �note scale in Fig.
5�d�� since the transmission coefficient from the water col-
umn into the sediment, T01

Ly, is very small compared to T01
LL.

In Fig. 6, the high acoustic contrast between sand and
limestone results in a complex structure for R12

LL and R12
Ly, as

shown in the reflection-transmission coefficients in Figs. 4�a�
and 4�b�, and the dominant coherent excitations are Iri1

L1↓, Iri1
L1↑,

and Iri1
y2↓. Note that since T01

Ly is small for the water-sediment
interface,12 the coherent excitations Iri1

L2↑, Iri1
y1↑, Iri1

L2↓, and Iri1
y1↓

are negligible.
The upward source term S1

L1↑ results in an increase in the
volume scattering at z=0 with respect to the simulation in
Fig. 5. Some of the features of these coefficients can be
observed in the diffuse power flux in Fig. 6�a�. For example,
the sharp increase in the power flux ��Fd1

L↑+Fd1

T↑��z=0 at the
incidence angle �0

L1 =20° is caused by the transformation
from coherent into diffuse energy of the source Iri1

L1↑. The
amplitude of this source is determined by the reflection co-
efficient R12

LL, which exhibits a peak at �1
L1 =22.7° �see Eq.

�20� and Fig. 4�a��.
The contribution of each of the coherent sources can

also be explored by comparing the full solution of the RT
equation in Eq. �24� to the solution obtained by forcing the
selected coherent source to zero. For example, Fig. 7 shows
the outgoing diffuse flux ��Fd1

L↑+Fd1

T↑��z=0 when source terms
S1

L1↑ or S1
L1↓ set to zero, compared to the full solution taken

from Fig. 6�a�. When S1
L1↓ is zeroed, most of the power de-

creases, but the sharp peak at �0
L1 =20° is still present. This

indicates that most of the volume scattering is caused by the
coherent intensity Iri1

L1↓, while Iri1
L1↑ contributes mostly at �0

L1

=20° and for �0
L1 �36°, which is when the reflection coeffi-

cient R12
LL starts to pick up at �1

L1 =45°. When S1
L1↑ is forced to

zero, most of the power remains the same except at the
angles previously indicated.

A similar exploration can be done by removing the
sources of coherent shear vertical intensity S1

y2↑ or S1
y2↓ with

the result shown in Fig. 8. From this figure one can conclude
that the main contribution of the shear vertical coherent in-
tensity to the total diffuse power ��Fd1

L↑+Fd1

T↑��z=0 is between
�0

L1 =21° and �0
L1 =39°. Even though for this particular simu-

lation this contribution is small, it illustrates the importance
of considering shear propagation since it could be relevant
for other kinds of background media such as sedimentary
rock.8

The volume scattering levels observed in Figs. 5 and 6
are unrealistic for a field measurement due to the lack of
background attenuation. Figure 9 includes the attenuation
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from Table I for the sand layer, and this strongly reduces the
amount of volume scattering as it would be expected with
experimental data. In this simulation, the effect of the attenu-
ation on the source S1

L1↑ is stronger than for S1
L1↓ because of a

larger traveling path through the finite layer. This can be
observed by comparing Fri1

L1↑ and Fri1
L1↓ in Fig. 9 with respect

to Fig. 6. Also, the attenuation smoothes some of the sharp
features in Fd1

L↑+Fd1

T↑ and Fd1

L↓+Fd1

T↓, introduced by the reflec-
tion off the sand-limestone interface.

VIII. CONCLUSION

The transport equation for acoustics has been solved for
a finite layer with random scatterers and fully elastic flat
boundaries, allowing multiple conversions of longitudinal
and shear coherent energy. Each interaction of the coherent
energy with the boundaries of the finite layer can be used as
a source for diffuse intensity, which increases the amount of
volume scattering. The RT equation has been extended to
include eight sources that represent all possible propagation
angles for the reduced intensity when flat boundaries are as-
sumed. The preliminary simulations presented in this paper
show the flexibility of the RT formulation in isolating and
interpreting the effect of geoacoustic parameters such as lay-
ering structure and background attenuation.

In this paper, the results provided by the RT theory in
units of specific intensity have been converted to power flux,
which is required for further comparison with experimental
data. The conservation of the normal component of this flux
was demonstrated with simulations of the propagation of en-
ergy within a lossless finite layer of sand.

For simplicity, the RT formulation presented in this
work corresponds to an environment of parallel layers of
infinite extent with no lateral variation in statistical proper-
ties in the x-y plane. Some of the features of the RT formu-
lation can be appreciated under this ideal scenario, such as
the incorporation of multiple discrete layers with random
discrete scatterers and transformations of longitudinal and
shear polarizations at the boundaries of the layers and at the
scatterers. More complex scenarios of finite layers with hori-
zontal variability have already been considered in other dis-
ciplines of electromagnetic remote sensing using the RT ap-
proach and will be used to extend the proposed model.

The simulations presented here correspond to single fre-
quency and steady-state excitations. Nevertheless, the RT
formulation can also handle arbitrary broadband excitations
by means of the transient RT solution. Research on the tran-
sitory behavior of the RT is still on development in
electromagnetics21,32 and acoustics22 applications. The solu-
tion of the transient RT equation is interpreted as the re-
sponse of the random media to a very short impulse of
energy,22 and it is argued that the solution to more compli-
cated excitations such as linear chirps can be obtained by
convolution with this “impulse” response. The extension of
the presented model to transitory excitations is the subject of
future research.
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APPENDIX: SOLUTION OF THE RT EQUATION BY A
NUMERICAL METHOD

Equation �24� can be solved by applying a Fourier azi-
muthal decomposition in 2M +1 terms of the Mueller matrix
and the specific intensity. The corresponding Fourier series
representation is

P� m�	,	o� =
1

2�



0

2�

P� �	,	0,� − �o�eim��−�o�d�� − �o� ,

I�dm�	,�� =
1

2�



0

2�

I�d�	,� − �o,��eim��−�o�d�� − �o� ,

�A1�

which allows the representation of the source terms as

S� 1m
L1↓�	� =

1

4�
T
P� m�	,	1

L1��
A1

L1↓�	1
L1�

0

0

0

0
� �A2�

for Eq. �25� and in a similar way for Eqs. �26�–�28�. The �
dependency can be simplified with the Gaussian quadrature
method by discretizing the variable � in 2N angles, as de-
scribed by Turner and Weaver.11 Following their notation,
Eq. �24� is transformed to
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L1↑ is more strongly affected by the sediment attenuation
than Fri1

L1↓. The downward coherent power flux �Fri1
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�not shown� is
negligible due to the high shear attenuation �T.
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�Idm���
��

+ WmIdm���

= S1m
L1↓ exp�−

�̃L�

	1
L1
	 + S1m

L2↓ exp�−
�̃L�

	1
L2
	

+ S1m
y1↓ exp�−

�̃T�

	1
y1
	 + S1m

y2↓ exp�−
�̃T�

	1
y2
	

+ S1m
L1↑ exp� �̃L�

	1
L1
	 + S1m

L2 exp� �̃L�

	1
L2
	

+ S1m
y1↑ exp� �̃T�

	1
y1
	 + S1m

y2↑ exp� �̃T�

	1
y2
	 , �A3�

where

Idm��� = �
I�dm�	−N,��

I�dm�	−N+1,��
·

·

·

I�dm�	N−1,��
I�dm�	N,��

� , �A4�

S1m
�L1,2/y1,2��↑,↓� = �

S� 1m
�L1,2/y1,2��↑,↓��	−N�/	−N

S� 1m
�L1,2/y1,2��↑,↓��	−N+1�/	−N+1

·

·

·

S� 1m
�L1,2/y1,2��↑,↓��	N−1�/	N−1

S� 1m
�L1,2/y1,2��↑,↓��	N�/	N

� , �A5�

and Wm is defined by Turner and Weaver.11 The solution to
Eq. �A3� consists of a particular solution for each of the eight
sources and a homogeneous solution. The particular solution
is

Ipm��� = H1m
L1↓ exp�−

�̃L�

	1
L1
	 + H1m

L2↓ exp�−
�̃L�

	1
L2
	

+ H1m
y1↓ exp�−
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	1
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�̃T�

	1
y2
	

+ H1m
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y1↑ exp� �̃T�
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y2↑ exp� �̃T�

	1
y2
	 , �A6�

where D is the 10N�10N identity matrix,

H1m
L1↓ = �Wm − D

�̃L

	1
L1
�−1

S1m
L1↓,

H1m
L2↓ = �Wm − D
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S1m
L2↓,

H1m
y1↓ = �Wm − D

�̃T

	1
y1
�−1

S1m
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S1m
y2↓ �A7�

correspond to the downward source terms and

H1m
L1↑ = �Wm + D

�̃L

	1
L1
�−1
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	1
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�−1

S1m
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correspond to the upward terms.
The homogeneous solution can be found by solving an

eigenvalue problem with eigenvectors gmn and eigenvalues
�mn. The full solution for the mth Fourier expansion term of
the diffuse intensity is written as

Idm��� = Ipm��� + �
n=1

10N

Cmngmne−�mn�, �A9�

where the constants Cmn must be found from the boundary
conditions.

The intensity vector Idm can be divided into upward
�Idm

+ ,	�0� and downward �Idm
− ,	�0� intensities, and it is

evaluated at �=0+ and �=�b
−, so the top boundary condition

Idm
− ��=0+�= R̂10Idm

+ ��=0+� yields the equation

�
n=1

10N

Cmngmn
− + Ipm

− �0+� = R̂10��
n=1

10N

Cmngmn
+ + Ipm

+ �0+�� ,

�A10�

and the bottom boundary condition Im
+ ��b

−�= R̂12Im
− ��b

−� yields

�
n=1

10N

Cmngmn
+ e−�mn�b + Ipm

+ ��b�

= R̂12��
n=1

10N

Cmngmn
− e−�mn�b + Ipm

− ��b�� , �A11�

where

R̂10 =�
0 0 0 ¯ 0 0 R̂� 10�	−1�

0 0 0 ¯ 0 R̂� 10�	−2� 0

·

·

·

0 R̂� 10�	−N+1� 0 0 0 0 0

R̂� 10�	−N� 0 0 0 0 0 0

� , �A12�
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R̂12 =�
0 0 0 ¯ 0 0 R̂� 12�	N�

0 0 0 ¯ 0 R̂� 12�	N−1� 0

·

·

·

0 R̂� 12�	2� 0 0 0 0 0

R̂� 12�	1� 0 0 0 0 0 0

� , �A13�

with the matrix of reflection coefficients R̂� ab defined as

R̂� ab =�
R̂ab

LL R̂ab
yL 0 0 0

R̂ab
Ly R̂ab

yy 0 0 0

0 0 R̂ab
xx 0 0

0 0 0 R̂ab
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0 0 0 R̂ab
UV R̂ab

VV

� . �A14�

Equations �A10� and �A11� can be written in matrix form as

G−�0�Cm + Ipm
− �0� = R10

̂�G+�0�Cm + Ipm
+ �0�� ,

G+��b�Cm + Ipm
+ ��b� = R12
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− ��b�� , �A15�

where
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�A17�
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Cm1

Cm2

. . .

Cm10N

� . �A18�

The equations in Eq. �A15� are grouped to form a single
matrix equation

G1Cm + P = RGCm + RP, �A19�

where

G1 = �G−�0�
G+��b�

� , �A20�

P = � Ipm
− �0�

Ipm
+ ��b�

� , �A21�

RG = � R̂10G
+�0�

R̂12G
−��b�

� , �A22�

RP = � R̂10Ipm
+ �0�

R̂12Ipm
− ��b�

� . �A23�

Solving for Cm,

Cm = �G1 − RG�−1�RP − P� . �A24�
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