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(Received 25 August 2011; revised 24 January 2012; accepted 27 January 2012)

This paper applies Bayesian inversion to bottom-loss data derived from wind-driven ambient noise

measurements from a vertical line array to quantify the information content constraining seabed

geoacoustic parameters. The inversion utilizes a previously proposed ray-based representation of

the ambient noise field as a forward model for fast computations of bottom loss data for a layered

seabed. This model considers the effect of the array’s finite aperture in the estimation of bottom

loss and is extended to include the wind speed as the driving mechanism for the ambient noise field.

The strength of this field relative to other unwanted noise mechanisms defines a signal-to-noise ra-

tio, which is included in the inversion as a frequency-dependent parameter. The wind speed is

found to have a strong impact on the resolution of seabed geoacoustic parameters as quantified by

marginal probability distributions from Bayesian inversion of simulated data. The inversion method

is also applied to experimental data collected at a moored vertical array during the MAPEX 2000

experiment, and the results are compared to those from previous active-source inversions and to

core measurements at a nearby site. VC 2012 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.3688482]

PACS number(s): 43.30.Pc, 43.30.Ma, 43.60.Pt [AIT] Pages: 2658–2667

I. INTRODUCTION

Knowledge of seabed parameters such as sound speed,

density, attenuation, and the sub-bottom layering structure is

of primary importance for the development and validation of

ocean acoustic models and for improvement of the perform-

ance of sonar systems. Among several techniques for remote

sensing of the seabed, the use of wind-driven ambient noise

recorded at a vertical line array (VLA) has been proposed1

as a convenient method with potential advantages over

active acoustic and direct (core sampling) methods, such as

less restrictive hardware, simpler deployment procedures,

and minimal environmental impact.2 To the present, inver-

sion of experimental ambient noise data has been

approached by heuristic methods1 (i.e., manual search in the

parameter space) and optimization procedures such as

genetic algorithms,3 and studies of sensitivity of the noise

field to environmental and array effects are available.4

Although the Bayesian approach for inversion of ambient

noise has been explored in the past with simulated data,5 the

strength of the noise field was not considered in the forward

model, and results with experimental data have not yet been

published. Two goals are pursued in this paper: First, the

Bayesian framework is used to assess the impact of the sur-

face wind speed in the estimation of geoacoustic parameters

and their corresponding uncertainties in a study with simu-

lated data. Second, the application of the inversion frame-

work is demonstrated with experimental data collected in a

moored array, and the geoacoustic parameters obtained are

compared to simulations and to published results from active

remote sensing methods and cores in the same region.6

Models for the wind-driven surface ambient noise have

been developed7,8 and implemented,9 and the dependence of

the resulting noise field on seabed parameters and frequency

has been demonstrated.10 It has been shown with simulated

and experimental data that an estimate of the seabed power

reflection coefficient can be computed from the ratio of

upward to downward energy fluxes obtained by beamform-

ing ambient noise measured at a VLA.1,3 The resulting esti-

mate resembles the power plane-wave reflection coefficient,

smeared in angle due to the effect of the array’s finite aper-

ture.1 Alternatively, processing of the coherent noise field

can produce an image of the seabed layering structure,2 the

so called “passive fathometer,” with results that have been

confirmed by comparison to active surveys.11 Most of the

work in processing ambient noise to extract layering struc-

ture has been devoted to adaptive beamforming techniques

with the goal of improving the power to resolve fine

layers.2,11 In this paper, similar results are obtained by

adopting a forward model based on conventional beamform-

ing that represents the seabed as a series of fluid sediment

layers. The proposed forward model considers the impact of

signal-to-noise ratio (SNR), which is shown to have a strong

a)Author to whom correspondence should be addressed. Electronic mail:

jorgeq@uvic.ca
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effect on the uncertainties associated with the geoacoustic

parameters.

Due to the non-linearity and large dimensionality of the

problem, a numerical Bayesian framework is adopted in this

work; a similar approach has been applied successfully to

matched-field inversion12–14 and the inversion of reflection

coefficients6,15 measured using an active source, among

others. The Bayesian method samples the joint posterior

probability density (PPD) function of all model parameters

to provide parameter estimates and uncertainties. In this

work, simulated annealing16–18 with an exponential cooling

schedule is used to determine the maximum a posteriori
(MAP) model. Metropolis–Hastings sampling (MHS)19–21 is

applied to determine marginal probability densities. In both

cases, perturbations are applied in a principal-component pa-

rameter space, which is a rotated representation of the physi-

cal parameter space in which the axes align with the

dominant correlation directions.21,22 This rotation provides a

more efficient exploration of the parameter space and is par-

ticularly effective when strong correlations between parame-

ters are present.

This paper is organized as follows: Sec. II describes the

mathematical model for the ambient noise field. Section III

summarizes the Bayesian framework for geoacoustic inver-

sion. Section IV A investigates the effect of SNR on the abil-

ity to resolve seabed geoacoustic structure using simulated

data. Section IV B applies the Bayesian inversion to ambient

noise data measured in the MAPEX 2000 experiment, and

the results are compared to those obtained by active-source

methods. Section V presents conclusions.

II. FORWARD MODEL

In this section, a forward model for the computation of

seabed bottom loss (BL) is described, and the results are

compared to beamforming numerical simulations of the

noise field from OASN, the ambient noise module from the

wavenumber-integration model OASES.9

The quality of seabed reflection data derived from

ambient noise is strongly affected by the wind speed. The

magnitude of the surface wind ultimately determines the

signal level available to probe the seabed, which must com-

pete with isotropic electronic noise at the sensors as well as

other sources of additive errors, allowing the definition of a

frequency dependent SNR. The estimated reflection coeffi-

cients also contain artifacts introduced by beamforming,

which smears the plane-wave reflection coefficient over

angle. To include these distortion mechanisms in a forward

model, the ray representation of the noise covariance

developed by Harrison8 is adopted in this section and

extended to include the SNR as an unknown parameter to be

estimated.

This ray-tracing model for the covariance defines cs and

cb as the sound speed at the surface and bottom of the water

column, respectively, while cr is the mean sound speed along

the N elements of the VLA. When the VLA is located at a

depth of relatively constant sound speed, the noise covari-

ance matrix between elements a and b for rays arriving at

angle h0 (measured with respect to the horizontal) can be

approximated as

sab fð Þ ¼ 2p
ðp=2

�p=2

Q fð ÞA h0; fð ÞeikD a�bð Þ sin h0 cos h0dh0

1 < a; b < N; (1)

where D is the distance between elements, k ¼ 2pf=cr is the

wavenumber, f is the frequency in Hertz, and Q(f) is the

strength of the dipoles at the air-water interface due to the

surface wind. The amplitude term is defined as

A h0; fð Þ ¼

sin hs

1� R hb; fð Þj j2 Rs hs; fð Þj j2
if 0 <h0 < p=2

sin hs R hb; fð Þj j2

1� R hb; fð Þj j2 Rs hs; fð Þj j2
if � p=2 < h0 < 0;

8>>><
>>>:

(2)

where R hb; fð Þj j2 and Rs hs; fð Þj j2 are the power plane-wave

reflection coefficients at the bottom and at the surface,

respectively. The surface and bottom angles are related to

h0 by Snell’s law as hs¼ cos�1(cos(h0)cs/cr) and

hb¼ cos�1(cos(h0)cb/cr), and A(h0, f) can be obtained from

the plane-wave reflection coefficient for a stack of L layers.23

Because cs � 1524 m/s and cr � cb � 1512 m/s, there are

rays connecting the surface and the bottom at all angles

0� � hb� 90�, which might not be the case for environments

with more complicated sound speed profiles.1 Notice that

Eqs. (1) and (2) are the same as Eq. (8) from Harrison8 with

the terms m¼ 1, c¼ 90� and assuming zero volume

absorption. In addition, throughout this paper Rs hs; fð Þj j2
¼ 1. These assumptions are briefly discussed in the follow-

ing text.

By defining the array steering vector v(h, f)¼ [1,

e�ikD sin h,…, e�ik(N�1)D sin h]H (where H indicates Hermitian

transpose), the array response in direction h is

Y h; fð Þ ¼ 1

N2
vH h; fð ÞS fð Þv h; fð Þ;

S fð Þ ¼

s11 fð Þ s12 fð Þ � � � sNN fð Þ
s21 fð Þ s22 fð Þ � � � s2N fð Þ

..

. ..
.

� � � ..
.

sN1 fð Þ sN2 fð Þ � � � sNN fð Þ

0
BBBB@

1
CCCCA: (3)

With the change of variables x0 ¼ sin h0 in Eq. (1) and

x¼ sin h in Eq. (3), the product v
H(h, f)S(f) is a row vector of

the form

vH h; fð ÞS fð Þ ¼

2pQ fð Þ

Ð 1

�1
A x0; fð Þ

PN�1
n¼0 e�iknDx0eiknDxdx0Ð 1

�1
A x0; fð Þ

PN�1
n¼0 e�iknDxeik n�1ð ÞDx0dx0

..

.Ð 1

�1
A x0; fð Þ

PN�1
n¼0 e�iknDxeik n�Nþ1ð ÞDx0dx0

0
BBBBB@

1
CCCCCA

T

; (4)

where T indicates transpose. It follows that Eq. (3) is
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Y h; fð Þ ¼ 2p
N2

Q fð Þ
ð1

�1

A x0; fð Þ

XN�1

q¼0

eikqDx
XN�1

n¼0

e�iknDxeik n�qð ÞDx0

 !" #
dx0: (5)

Notice that the quantity in square brackets isPN�1
n¼0 e�iknD x�x0ð Þ

h��� ���2 and that the limits of the integral can

be extended to 61 (since A(x0, f)¼ 0 for x0j j > 1). Then the

array response is

Y h; fð Þ ¼ 2p
N2

Q fð ÞA x; fð Þ �
XN�1

n¼0

e�iknDx

�����
�����
2

: (6)

where * is the convolution operator, yielding a forward

model that can be implemented efficiently using the fast

Fourier transform to compute the convolution.

In addition to the acoustic field established by the sur-

face wind (i.e., the signal in this paper), isotropic white noise

with power r2
w is also detected at the elements of the array.

The sensor noise contributes a diagonal term to the covari-

ance matrix, and the estimated BL in decibels is then

BL h; fð Þ ¼ �10 log
Y h; fð ÞN þ Q fð Þ10�SNRf=10

Y �h; fð ÞN þ Q fð Þ10�SNRf=10

����
����;

0 < h < p=2; (7)

where SNRf ¼ 10 log10 Q fð Þ=r2
w

� �
is the SNR in decibels.

The BL evaluated at V angles and F frequencies is collected

into a single vector as

dL mð Þ ¼

BL h1; f1ð Þ
BL h2; f1ð Þ

..

.

BL hV ; f1ð Þ
BL h1; f2ð Þ

..

.

BL hV ; fFð Þ

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: (8)

In Eq. (8), the subscript L indicates that the BL has been

computed for a seabed consisting of L layers (including an

under-lying half space) with the lth layer characterized by

the sound speed cl, density ql, attenuation al, and thickness

hl (the Lth layer is semi-infinite). These parameters are

arranged in the vector m as described in the following text in

Sec. III.

To test the accuracy of the forward model, simulated data

were generated using OASES at frequencies of 635, 800, 1008,

1270, and 1400 Hz with SNRs of �7.8, �7.1, �6.4, �5.6,

and �5.2 dB, respectively. The sediment for this simulation

consists of three layers with geoacoustic parameters given in

Table I. This environment was chosen to match the profile

estimated from the experimental data presented in Sec. IV B.

Figure 1(a) shows the sound-speed profile of the water

column (used throughout this paper) obtained from a CTD

measurement taken at the VLA during the MAPEX 2000

experiment.1 Figure 1(b) shows the percent error between

the BL estimated by beamforming of simulated ambient

noise data from OASES and from the forward model described

in the preceding text, at the five frequencies and angles from

13� to 89� spaced every 4� (i.e., F¼ 5 and V¼ 20). In all

cases, the model in Eq. (8) is consistent with the numeric so-

lution from OASES, giving percent errors smaller than 2.6%

and generally below 1%.

Because the SNRs are not known when considering

measured ambient noise, they are treated as unknown param-

eters in the Bayesian inversion. The distortion introduced by

this term is accentuated at angles close to normal incidence,

where the white noise tends to fill in regions of small reflec-

tion coefficient (high BL).

As mentioned before, some assumptions have been

made in the model to reduce the number of parameters in the

search space. First, although the sin hs term in Eq. (2) can be

written more generally8 as sin2m�1 hs, one of the strengths of

the approach in Eq. (7) is that it is relatively immune to the

noise directionality.1 To support this statement, a compari-

son between OASN-generated noise with m¼ 2 and the for-

ward model with m¼ 1 (not shown) revealed typical

differences of less than 4%.

A weak dependence of Eq. (7) to the surface power

plane-wave reflection coefficient was also found in prelimi-

nary simulations. To give a numerical example, the

Schulkin–Marsh model24 can be used to obtain reasonable

bounds for the amount of power loss due to rough surface

scattering. For wind speeds around 22 knots (kts), wave

TABLE I. Parameters for the three-layer model used to generate simulated

data.

Parameters

cl ql al hl

Layer (m/s) (kg/m3) (dB/k) (m)

1 1520 1542 0.2 0.8

2 1750 2306 1.5 0.8

3 1598 1813 0.4 1

FIG. 1. (a) Sound-speed profile in the water column measured during the

MAPEX 2000 experiment1 with depth extent of the VLA indicated. (b) Per-

cent error for the BL estimated from simulated data generated by OASES

and by the forward model, using the parameters in Table I.
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heights of 2.5 m have been suggested.24 For the frequency

range in this paper, losses from 3.7 to 5.5 dB/bounce can be

expected. This would introduce errors of 1% when estimat-

ing the bottom loss in Eq. (7), which is unlikely to signifi-

cantly affect the inversion.

Regarding volume attenuation, the impact of water

absorption at frequencies of 10 kHz has been quantified as a

function of array depth.4 It was observed that for an array

below the middle of the water column, the water absorption

introduces artifacts in the bottom loss on the order of 1.5 dB

at most and typically less than 1 dB. Furthermore, the effect

of water absorption is mostly evident at low grazing angles

(i.e. h< 20�), which in this paper have been excluded. At the

lower frequencies in this work, water absorption is not likely

to have a significant impact on the inversions.

Section IV shows that low values of SNR limit the

power to resolve seabed parameters.

III. BAYESIAN INVERSION

This section summarizes the Bayesian inversion

approach following Dosso and Dettmer.14 For notational

convenience, all the parameters are collected into a single

vector m as

m ¼ c1 q1 a1 h1…cL qL aL SNR1 SNR2…SNRF½ �T : (9)

The vector of data d input to the Bayesian inversion has the

same form as Eq. (8) except that the predicted (modeled)

BL(h, f) is replaced by measured BL h; fð Þ, defined as

BL h; fð Þ ¼ �10 log10

vT h; fð ÞD fð Þv h; fð Þ
vT �h; fð ÞD fð Þv �h; fð Þ

����
����;

0 < h < p=2 (10)

where D(f) is the ambient-noise covariance matrix, estimated

by averaging over snapshots of the ambient noise in the fre-

quency domain, following Siderius et al.11 The difference

between the measured and the predicted data defines the

residuals r¼d� dL (m), which are here assumed to be zero-

mean Gaussian-distributed with data covariance matrix Cd.

The PPD is given by

P m dj ; Lð Þ ¼ P d mj ; Lð ÞP m Ljð Þ
P d Ljð Þ ; (11)

where P d m; Ljð Þ is the likelihood function, P m Ljð Þ is the

prior information (described in Sec. IV), and P d Ljð Þ is a nor-

malizing constant. Under the assumption of Gaussian- dis-

tributed residuals, the likelihood can be written as

P d m; Ljð Þ ¼ 1

2pð ÞN=2
Cdj j1=2

exp � 1

2
rTC�1

d r

� �
: (12)

For the experimental data in this paper, Cd was estimated

from the autocovariance function of residuals from a pre-

liminary inversion by the iterative procedure described in

Dosso et al.25 Once Cd is estimated, the PPD can be cal-

culated. Because analytical solutions for the PPD are gen-

erally not available for non-linear problems, Markov chain

Monte Carlo (MCMC) methods can be used to sample

from this distribution. Typical PPD properties that are

considered include marginal probability distributions

P ml d; Ljð Þ and the model covariance matrix Cm, which are

computed as

P ml d; Ljð Þ ¼
ð

d ml � m0l
� �

P m0 d;j Lð Þdm0; (13)

Cm¼
ð

m0�<m>ð Þ m0�<m>ð ÞTP m0 d; Ljð Þdm0; (14)

< m >¼
ð

m0P m0 d; Ljð Þdm0; (15)

while correlation coefficients are found by normalizing the

elements of the covariance matrix as Rij ¼ Cmij=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CmiiCmjj

p
.

In this paper, the MAP model mMAP was estimated by

maximizing Eq. (11) using simulated annealing16–18 with

principal-component rotation and an exponential cooling

schedule Tj¼ T0(100T0)�j/J, where T0 is the initial tempera-

ture set to T0¼ 10VF, j is the current temperature step, and J
is the total number of steps. PPD properties in Eqs. (13) to

(15) were estimated by applying MHS, using a principal-

component rotation and Cauchy proposal distributions scaled

by the square root of the principal-component variances to

increase efficiency.21

Model selection is carried out in this paper by minimiz-

ing the BIC defined as26

BIC Lð Þ ¼ �2 loge P mMAP d; Ljð Þ½ � þM loge Nð Þ; (16)

where M¼ 4 L� 1þF is the total number of model parame-

ters and N¼V F is the total number of data.

IV. INVERSION OF AMBIENT NOISE DATA

In this section, the effect of the surface wind speed in

geoacoustic parameter resolution is studied using Bayesian

inversion of simulated ambient noise data. Following this,

Bayesian inversion is applied to experimental data collected

at a moored VLA (Sec. IV B). The common features

between these inversions are described first here.

The prior information P m Ljð Þ used in all inversions

consists of uniform distributions with bounds cl [ [1450,

1950] m/s, ql 2 [1350, 2400] kg/m3, al [ [0, 1.7] dB/k, and

hl [ [0.1, 1.5] m; 8l � L. Due to the availability of a core

sample near the location of the array, the sound speed limits

for the top layer were set to c1 [ [1450, 1600] m/s. In addi-

tion, a mutual constraint among density, attenuation, and

sound speed was imposed based on a collection of laboratory

measurements from sediments of different grain size (see

Figs. 5.2 and 5.9 from Jackson et al.27). This constraint lim-

its the search domain to plausible solutions in which sedi-

ments with higher densities are likely to exhibit higher

attenuations and sound speeds. Given a density ql, the sound

speed and attenuation are bounded between c�l ; c
þ
l

� �
and

a�l ; a
þ
l

� �
defined as
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cþl ¼ 1529:4 1:7� 0:98
ql

1000
þ 0:38

ql

1000


 �2
� �

;

c�l ¼ 1529:4 1:6� 0:98
ql

1000
þ 0:34

ql

1000


 �2
� �

;

aþl ¼ 1:5294 0:00332e0:00275ql þ 0:1
� �

;

a�l ¼ 0:

(17)

A. Geoacoustic resolution as a function of wind
speed

Simulated ambient noise data were generated from Eq.

(8) using the environment described in Table I and the sound-

speed profile in Fig. 1(a). The frequency-dependent source

strength was computed according to Ingenito et al.10 as

Q(f)¼ 10[44.58þ(0.14)f 0.37Vs]/10, where Vs is the surface wind

speed in knots. Wind speeds of 5, 10, and 15 kts are consid-

ered here.

Similar to the experiment described in Sec. IV B, the

water column is 130-m deep and the receiving array has 32

elements spaced by 0.5 m from 88-104 m depth. The level of

isotropic white noise [relative to Q(f)] at the array is fixed to

10 log10 r2
w ¼ 60 dB, and uncorrelated Gaussian errors with

r2
d ¼ 0:2 were added to the simulated data. For all wind

speeds, the same realization of Gaussian errors was added to

the simulated data, and therefore the misfit at the true model

is the same in all cases. The goal of these simulations is to

study the effect of the wind speed and the SNR on the ability

to resolve geoacoustic parameters.

Simulated datasets are presented in Fig. 2. Each curve

corresponds to data at one of the three wind speeds and five

frequencies selected for inversion, with grazing angles from

13� to 89� at each frequency. The corresponding predicted

data computed for the MAP models obtained from the simu-

lated annealing optimization are plotted as solid lines. In all

cases, the model fits the data, yielding statistically independ-

ent residuals of variance approximately r2
d in agreement

with the uncorrelated Gaussian errors added to the simulated

data. Differences in the resulting MAP models and sediment

profiles can be thought as caused by a reduction in the infor-

mation content of the data regarding the geoacoustic parame-

ters as the wind speed decreases.

The variation in information content with wind speed

can be observed from the marginal probability profiles in

Fig. 3, obtained from MCMC sampling. The parameters of

the top layer are in good agreement with the true model even

in the worst case of low wind speed [Fig. 3(c)]. Deeper

layers are still resolved for wind speeds of 15 and 10 kts for

FIG. 2. Simulated data (dots) and data predicted for the MAP model (solid

lines) for wind speeds of 5, 10, and 15 kts (bottom, middle, and top curve in

each panel, respectively).

FIG. 3. (Color online) Marginal probability profiles for the layer thickness,

sound speed, density, and attenuation obtained from simulated data with (a)

Vs¼ 15 kts, (b) Vs¼ 10 kts, and (c) Vs¼ 5 kts. Dashed lines indicate the true

model from Table I. The profiles are normalized to have a maximum of 1;

profiles for c, q and a are normalized independently at each depth.

2662 J. Acoust. Soc. Am., Vol. 131, No. 4, April 2012 Quijano et al.: Bayesian inversion of ambient noise data

 



which the SNR is greater than 0 dB at almost all frequencies.

However, at 5 kts, all SNRs are lower than �5 dB, resulting

in loss of geoacoustic resolution for all parameters. In Figs.

3(a) and 3(b), the marginal PPDs for sound speeds and thick-

nesses are compact, indicating good geoacoustic resolution.

On the other hand, the support of the PPDs for densities and

attenuations tends to fill a greater proportion of their prior

distributions. This behavior can be explained from the

frequency-angle structure of the bottom loss, in which the ra-

tio between layer thickness and sound speed determines the

location of periodic fringes. The attenuation and the density

remain as parameters that mostly influence the energy level,

which is a weaker feature of the bottom loss.

Considering joint marginal PPDs illustrates the correla-

tions between parameters. Figure 4 shows joint marginal

PPDs for SNR and layer thickness for wind speeds of

Vs¼ 15 and 5 kts. The trade off between sediment thickness

and SNR resolution is observed: At high SNR (Vs¼ 15 kts),

the estimated bottom loss in Eq. (7) is dominated by Ys(h),

giving a narrow range of potential solutions for h1, which is

constrained by the angle-frequency structure of the bottom

loss. At low SNR (Vs¼ 5 kts), the information in the data is

dominated by the frequency-dependent SNR, resulting in

tight uncertainties for the estimated SNR and low resolution

for the geoacoustic parameters. Other marginal PPDs are

shown in Sec. IV B and compared to those obtained from ex-

perimental data.

B. Experimental data

Ambient noise data were collected on November

22, 2000, during the MAPEX 2000 experiment,11 carried out

on the Malta Plateau using a moored VLA located at

(36.44357 N lat., 14.77618 E long.). During the experiment,

ambient noise was recorded at a sampling rate of 6000 Hz

with an 80-element array consisting of three sub-arrays. The

data used in this paper correspond to the middle subarray

with 32 equally spaced elements spanning 88–104 m depth.

The sound-speed profile is shown in Fig. 1(a), and the wind

speed was measured to be 20–22 kts.

Pre-processing of the experimental data to obtain BL was

carried out using conventional beamforming of the covariance

matrix, estimated from 7 min of recorded data by averaging

over snapshots in the frequency domain. Each snapshot was

computed from 1.4 s of data, following Siderius et al.11

To determine the optimal seabed parametrization, a BIC

study26 which considered from two to five layers was carried

out by evaluating Eq. (16). Figure 5 shows that the BIC has

a minimum at three layers (including the halfspace), indicat-

ing that this is the optimal parameterization. Figure 6 shows

the fit to the experimental data for the three-layer MAP

model. For the inversion results shown here, the errors

between the measured and modeled data are assumed to be

Gaussian distributed with covariance matrices Cd at each

frequency, estimated as mentioned in Sec. III. Figure 7

shows the estimated covariance matrices as well as the auto-

correlation of the residuals. At each frequency, the covari-

ance matrices correspond to correlated residuals with angle-

dependent variances, indicated by the varying amplitude

along the main diagonal. The autocorrelation of the raw

residuals (dashed line) has a relatively wide center peak at

most frequencies, indicating correlation between residuals.

The autocorrelation for the standardized residuals (solid

line) indicates improvement, producing narrower peaks and

reducing the amplitude of the tails, which supports the use of

the full estimated data covariance matrix in the inversion. In

addition, the standardized residuals also pass the

Kolmogorov–Smirnov (KS) test for Gaussianity and the runs

FIG. 4. (Color online) Joint marginal PPDs of h1 vs SNR1 for wind speeds

of Vs¼ 15 and Vs¼ 5 kts. Dashed lines indicate true values.

FIG. 5. (a) BIC for the experimental data as a function of the number of

layers in the forward model; (b) corresponding likelihood function.

FIG. 6. Experimental BL (dots) compared to the predicted BL data eval-

uated at mMAP corresponding to the 3-layer model (solid lines).
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test for randomness at a 0.05 level, with the P values given

in Table II. Thus there is no evidence against the initial

assumption of Gaussian statistics for the residuals.

The marginal probability profiles from Bayesian inver-

sion of the data are shown in Fig. 8(a). These PPDs resemble

the results from the simulated inversions with Vs¼ 15 kts

and Vs¼ 10 kts in Fig. 3: All geoacoustic parameters are

well determined over the top layer, and then the distributions

widen with depth particularly for density and attenuation. In

Fig. 8(a), measurements of the sound speed and the density

from core samples from a nearby area are plotted overlying

the probability profile. The marginal PPDs for sound speed

and density are in good agreement with the corresponding

cores up to 0.9 m depth for the sound speed (total core depth)

and to 1.5 m deep for the density. Beyond this depth, the

estimated density decreases but the core measurement

remains at a value	 2100 kg/m3. This disagreement in the

density is also observed in the profile in Fig. 8(b), obtained

by Bayesian inversion of active-source spherical reflection

coefficient data (details of this active- source experiment can

be found in Dettmer et al.6) This suggests a possible problem

with the core sample (e.g., compaction of the lower part of

the core) because both profiles were obtained from inde-

pendent acoustic measurement methods.

The active measurements used to produce Fig. 8(b)

were collected at eight frequencies ranging from 300 to

1600 Hz using a towed source and a single stationary

receiver located at (36.4441 N lat., 14.7804 E long.), i.e.,

	400 m away from the moored array used in this study.

Comparison of the “passive” and “active” PPDs in Fig. 8

reveals similarity in a general sense: There is a dominant top

layer of thickness 	0.9 m followed by a sharp increase in

the density and sound speed down to 1.5 m, and deeper

layers with lower density and sound speed. The BIC for the

active data indicated a model with six layers (including the

bottom halfspace) rather than three layers as in the results in

this paper. The upper-most sediments in the “passive” profile

are represented by a single layer 	0.8 m deep, as opposed to

three sublayers in the “active” profile. This could be due to

differences in the information content from the active data

set compared to the ambient noise as well as geographic

TABLE II. Results of KS and runs tests for the standardized and the raw (in

parenthesis) residuals.

Frequencies (Hz)

635 800 1008 1270 1400

Runs 1.0 (1.0) 1.0 (0.1) 0.9 (0.9) 0.1 (0.01) 0.1 (0.1)

KS 0.5 (0.9) 0.9 (1.0) 0.6 (0.3) 0.9 (0.7) 0.4 (0.7)

FIG. 8. (Color online) (a) Marginal probability profiles from the experimen-

tal bottom loss inversion. The dots are sound speed and density core measure-

ments taken at a location 	400 m away from the array; (b) similar profile

from Dettmer et al.6 obtained by active-source methods with lines indicating

the same core measurements as in (a). Note that the higher bounds for the

density and the attenuation in (b) are 2200 kg/m3 and 1 dB/k, respectively.

FIG. 7. (Color online) Estimated data covariance matrix Cd at each of the

five frequencies and corresponding autocorrelation of the standardized

(solid) and raw (dashed) residuals. Each plot is normalized to a maximum

of 1.
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variability of the seabed structure. It is noted that the physi-

cal constraints between density, sound speed, and attenuation

from Eq. (17) were not utilized in the inversion of active

data,6 and this could explain the differences in the estimated

sediment attenuation between 0.9 and 1.5 m.

To further investigate the ambient-noise geoacoustic

inversion results, Fig. 9 shows the measured active-source

reflection coefficient data6 (dots) compared to predicted

data. To produce this figure, the sampled models illustrated

in the marginal distributions from Fig. 8(a) were used to

compute spherical reflection coefficients, which are pre-

sented as a mean (solid line) 63 standard deviations (dashed

lines) on top of the experimental active-source measure-

ments. The proposed model from passive inversion fits the

active dataset very well at low frequencies but starts to

diverge at 635 Hz. This could be due to requiring more reso-

lution at higher frequencies, suggesting that the “passive”

and “active” models are equivalent at a coarse scale level. In

all cases, the fit is better at low grazing angles, although in

almost all cases the predicted reflection coefficients follow a

similar trend of minima and maxima as the active-source

data. The active data in Fig. 9 should not be taken as ground

truth to judge the accuracy of the passive technique pre-

sented here, because other factors such as range-dependent

variability of the sediment structure could play a fundamen-

tal role in this geographic area.

The importance of considering SNR in ambient noise

inversion can be quantified by study of parameter correla-

tions. Figure 10 shows the correlation coefficient matrices

for the inversion of measured data and simulated data with

Vs¼ 15 kts. In both cases, there is significant correlation

between some of the SNR parameters at different frequen-

cies and between SNR and layer thicknesses, sound speeds,

and densities. For example, the pairs SNR1 vs q1 and SNR1

vs c1 in Fig. 10(a) exhibit correlations of �0.66 and 0.64,

FIG. 9. Spherical reflection coefficients for the three-layer model from Fig.

8, compared to active-source measurements (dots) from Dettmer et al.6 The

lines represent the mean reflection coefficient (solid line) 63 standard devia-

tions (dashed lines).

FIG. 10. Parameter correlation matrices from the inversion of measured

(top) and simulated (bottom) data with wind speeds of 	20–22 and 15 kts,

respectively. For simplicity, only the upper triangle of the symmetric matrix

is plotted.
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respectively. On the other hand, the correlations between

SNR and attenuations are weaker (smaller than 0.37) in both

simulated and experimental cases. It is interesting to see sim-

ilar correlation patterns when comparing the modeled

(Vs¼ 15 kts) and the measured cases, in particular those

involving parameters of layer 1 as well as the correlations

between SNRs. The parameter correlations obtained from

inversion of simulated data with Vs¼ 10 and 5 kts (not

shown in this paper) gradually differ from Fig. 10 as the

wind speed decreases.

Examination of joint marginal PPDs in Fig. 11 also

reveals strong dependencies between parameters. In this fig-

ure, the left column shows the marginals derived from the

Bayesian inversion of the experimental data, while the right

column corresponds to similar results obtained from the

simulated data at Vs¼ 15 kts. The exact values of the SNRs

may be difficult to match between experiment and simula-

tion because the true level of isotropic noise is unknown in

the experimental data. Nevertheless, these joint PPDs dem-

onstrate that fixing the SNR to an arbitrary value or assum-

ing infinite SNR could lead to biased estimates of the

geoacoustic parameters.

Finally, using the MAP model obtained from measured

data, the bottom loss was computed at frequencies from 600

to 1500 Hz and angles from 0� to 90�, as a test of the capa-

bility of the MAP model to match data at frequencies and

angles other than those used for the inversion. The result is

presented in Fig. 12 compared to the experimental bottom

loss, and both plots share similar characteristics in the criti-

cal angle, location of the main fringes, and loss levels.

V. CONCLUSIONS

The results in this paper indicate significant potential for

the use of ambient noise for geoacoustic inversion. The pro-

posed method resolves geoacoustic profiles quite well under

typical wind-speed conditions, it is inexpensive, unobtrusive,

and with low environmental impact.

Consideration of the SNR as a free parameter was found

to be a critical step in the inversion. It is evident that low

SNR tends to smooth the small-scale details in the bottom

loss curves, resulting in loss of information in the data about

geoacoustic parameters of deeper layers. This suggests an

improvement of data quality with wind speed, up to a point

in which rough weather conditions would prevent the estab-

lishment of a large (infinite) layer of surface sources as

required by the theory. Extremely high wind speeds would

probably result in range- and azimuth-dependent distribu-

tions of surface sources, which is a topic that has not been

explored yet.

One important characteristic of the proposed method is

that specific prior knowledge of the SNR is not required, and

uniform (non-informative) prior distributions are sufficient

for the inversion. The estimated frequency-dependent SNR

for the simulated data was in agreement with the theoretical

model, but this should not be interpreted as a way to estimate

the wind speed when working with experimental data

because other factors such as the frequency-dependent sensi-

tivity of the array elements, sensor pre-amplifiers and accu-

racy of the recording system have a cumulative effect on

what is considered the isotropic noise level.

The three examples using simulated data suggest that

good conditions for this approach require SNR generally

greater than zero. Inversions at Vs¼ 10 kts exhibit tight dis-

tributions, and in this case, the theoretical SNRs are

SNR1¼�0.2, SNR2¼ 1.2, SNR3¼ 2.7, SNR4¼ 4.3, and

SNR5¼ 5.0 dB. As the SNR increases, the marginal

FIG. 11. (Color online) Selected joint marginal PPDs derived from the

Bayesian inversion of (a) the experimental data and (b) the simulated data at

Vs¼ 15 kts.

FIG. 12. (Color online) BL computed from measured data (top) and from

the forward model evaluated at mMAP (bottom).
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distributions become more compact until the SNR terms

become negligible compared to signal terms.

The Bayesian approach quantifies how well the various

geoacoustic parameters are resolved as a function of depth

and wind speed. For example, for deeper layers and low

wind speed the parameters have wide non-informative distri-

butions, indicating no resolution of geoacoustic structure.

Statistical tests of residuals, as well as similar marginal

distributions and parameter correlations obtained from ex-

perimental (Vs	 20 kts) and simulated (Vs¼ 15 kts and

Vs¼ 10 kts) data, suggest that the forward model can accu-

rately represent the ambient noise field recorded at the VLA.

There is good agreement between the parameters obtained

from ambient noise data in this paper and a previous inver-

sion using active-source data: In both cases, similar marginal

probability profiles with tight distributions for sound speeds

and layer thicknesses were observed. The experimental mar-

ginal PPDs also agree reasonably well with core samples to

	1.5-m depth. Discrepancies in density between the core

and the active and passive inversions below 	1.5 m could

suggest a problem with the core sample.

The power of the method presented in this work to

resolve layers is strongly dependent on the sensitivity of the

BL to changes in the layering structure. It is expected that by

inverting data mostly at low frequencies, deeper and coarser

sediment profiles would be found as opposed to inverting

high frequency data, which would provide finer structure at

the top layers before the frequency-dependent attenuation

becomes a limiting factor in resolving deeper layers. Follow-

ing this argument, it is advantageous to include a wide range

of frequencies to increase the information content on the

data.

The inversions presented in this paper take advantage of

a moored array for which several unknowns such as array

vertical displacement, tilting, and positioning errors are not

likely to play a significant role in introducing artifacts.

Although these potential challenges must be considered with

non-fixed configurations, previous work on the passive fa-

thometer11 indicates that the ambient noise covariance ma-

trix can also be accurately estimated from data collected in a

slowly drifting array.
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