
Portland State University
PDXScholar
Computer Science Faculty Publications and
Presentations Computer Science

4-1995

Evolving Globally Synchronized Cellular Automata
Rajarshi Das
Santa Fe Institute

James P. Crutchfield
University of California - Berkeley

Melanie Mitchell
Santa Fe Institute

James M. Hanson
Santa Fe Institute

Let us know how access to this document benefits you.
Follow this and additional works at: http://pdxscholar.library.pdx.edu/compsci_fac

Part of the Computer Sciences Commons

This Working Paper is brought to you for free and open access. It has been accepted for inclusion in Computer Science Faculty Publications and
Presentations by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Citation Details
Das, Rajarshi, P. James, Melanie Mitchell, and James E. Hanson. "Evolving Globally Synchronized Cellular Automata." SFI Working
Paper 1995-01-005 (1995)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by PDXScholar

https://core.ac.uk/display/37774066?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/compsci?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=http://pdxscholar.library.pdx.edu/compsci_fac/123
http://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu

Evolving Globally Synchronized
Cellular Automata
Rajarshi Das
James P. Crutchfield
Melanie Mitchell
James E. Hanson

SFI WORKING PAPER: 1995-01-005

SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent the
views of the Santa Fe Institute. We accept papers intended for publication in peer-reviewed journals or
proceedings volumes, but not papers that have already appeared in print. Except for papers by our external
faculty, papers must be based on work done at SFI, inspired by an invited visit to or collaboration at SFI, or
funded by an SFI grant.

©NOTICE: This working paper is included by permission of the contributing author(s) as a means to ensure
timely distribution of the scholarly and technical work on a non-commercial basis. Copyright and all rights
therein are maintained by the author(s). It is understood that all persons copying this information will
adhere to the terms and constraints invoked by each author's copyright. These works may be reposted only
with the explicit permission of the copyright holder.

www.santafe.edu

SANTA FE INSTITUTE

http:www.santafe.edu

Evolving Globally Synchronized Cellular Automata

Rajarshi Das!,2, James P. Crutchfield3 , Melanie Mitchell!, and James E. Hanson!

To appear in the Proceedings of the Sixth International Conference on Genetic Algorithms.
April 5, 1995

Abstract

How does an evolutionary process interact with a decentralized, distributed system in order
to produce globally coordinated behavior? Using a genetic algorithm (GA) to evolve cellular au
tomata (CAs), we show that the evolution of spontaneous synchronization, one type of emergent
coordination, takes advantage of the underlying medium's potential to form embedded particles.
The particles, typically phase defects between synchronous regions, are designed by the evolu
tionary process to resolve frustrations in the global phase. We describe in detail one typical
solution discovered by the GA, delineating the discovered synchronization algorithm in terms of
embedded particles and their interactions. We also use the particle-level description to analyze
the evolutionary sequence by which this solution was discovered. Our results have implications
both for understanding emergent collective behavior in natural systems and for the automatic
programming of decentralized spatially extended multiprocessor systems.

1. Introduction

The spontaneous synchronization of independent processes is one of the more widely observed
dynamical behaviors in nature. In many such phenomena, synchronization serves a vital role
in the collective function of the constituent processes. The spiral waves exhibited during the
developmental and reproductive stages of the Dictyostelium slime mold [4], the morphogenesis of
embryonic structures in early development [11], the synchronized oscillations of neural assemblies
which have been thought to playa significant role in encoding information [8], and the marked
seasonal variation in the breeding activity of sexually reproducing populations are just a few
examples of the temporal emergence of global synchronization.

The importance of global synchronization has been recognized for decades outside of natural
science as well. From the earliest days of analog and digital computer design, the functioning
of an entire computing device has been critically dependent on achieving global synchronization
among the individual processing units. Typically, the design choice has been to use a central
controller which coordinates the behavior of all parts of the device. In this way, the interaction of
individual units is modulated so that the transfer of information among the units is meaningful.

But what if the option of a central controller is not available? Given the widespread ap
pearance of synchronization in decentralized and spatially extended systems in nature, evidently
evolution has successfully overcome this problem. Evolution has effectively taken advantage of

Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico, U.s.A. 87501.
Email: {raja.mm.hanson }@santafe.edu

2Computer Science Department, Colorado State University, Fort Collins"Colorado, U.S.A. 80523
3Physics Department, University of California, Berkeley, CA, U.S.A. 94720-7300.

Email: chaos@gojira.berkeley.edu

1

mailto:chaos@gojira.berkeley.edu
http:santafe.edu

the spatially local dynamics in its production of organisms which, on the one hand, consist of
potentially independent subsystems, but whose behavior and survival, on the other hand, rely
on emergent synchronization. These observations leave us with an unanswered but biologically
significant question. By what mechanisms does evolution take advantage of nature's inherent
dynamics?

We explore this question in a simple framework by coupling an evolutionary process-a ge
netic algorithm (GA)-to a population of behaviorally rich dynamical systems-one-dimensional
cellular automata (CAs). In this scheme, survival of an individual CA is determined by its ability
to perform a synchronization task.

Recent progress in understanding the intrinsic information processing in spatially extended
systems such as CAs has provided a new set of tools for the analysis of temporally and evolu
tionarily emergent behavior [1, 6, 7]. Beyond describing solutions to the computational task, in
this paper we use these tools to analyze in some detail the individual CA behavioral mechanisms
responsible for increased fitness. We also analyze how these mechanisms interact with selection
to drive the CA population to increasingly sophisticated synchronization strategies.

2. Cellular Automata

CAs are arguably the simplest example of decentralized, spatially extended systems. In spite
of their simple definition they exhibit rich dynamics which over the last decade have come to
be widely appreciated [5, 12, 13]. A CA consists of a collection of time-dependent variables sL
called the local states, arrayed on a lattice of N sites (or cells), i O,l, ... ,N-l. We will
take each to be a Boolean variable: s~ E {O, 1}. The collection of all local states is called the
configuration: St = s? s: ... Sf-I. So denotes an initial configuration (IC). Typically, the equation
of motion for a CA is specified by a look-up table ¢ that maps a site's neighborhood 1]: to a new
local state for that site at the next time step : S~+l = ¢(1]~), where 1]; = S~-T ••• s~ ... S~+T and
r is called the CA's radius. (In contexts in which i and t are not relevant, we will simply use 1]
with no sub- or superscripts to denote a neighborhood.) The global equation of motion ~ maps
a configuration at one time step to the next: St+l = ~(St), where it is understood that the local
function cp is applied simultaneously to all lattice sites. It is also useful to define an operator
~ that operates on a set of configurations or substrings of configurations-that is, on a formal
language-by applying ~ separately to each member of the set.

The CAs in the GA experiments reported below had r = 3, N = 149, and spatially periodic
boundary conditions: s~ = s~+N

3. The Synchronization Task

Our goal is to find a CA that, given any initial configuration So, within M time steps reaches a
final configuration that oscillates between all Os and all Is on successive time steps: ~(1 N) = ON
and ~(ON) = IN. M, the desired upper bound on the synchronization time, is a parameter of the
task that depends on the lattice size N. This is perhaps the simplest non-trivial synchronization
task for a CA.

The task is nontrivial since synchronous oscillation is a global property of a configuration,
whereas a small-radius (e.g., r 3) CA employs only local interactions mediated by the sites'

2

neighborhoods. Thus, while the locality of interaction can directly lead to regions of local syn
chrony, it is more difficult to design a CA that will guarantee that spatially distant regions are
in phase. Since regions that are not in synchrony can be distributed throughout the lattice,
a successful CA must transfer information over large space-time distances (~ N) to remove
phase defects separating regions that are locally synchronous, in order to produce a globally
synchronous configuration.

For reference, consider a simple benchmark radius 3 CA CPosc, which is a naive candidate
solution with q>osc(1N) = ON and q>osc(ON) = IN. Its look-up table is defined by: CPosc(ry) = 1 if
1] 07

; CPosc(1]) = a otherwise.

We defined the performance pfi (cp) of a given CA cP on a lattice of size ~N to be the fraction
of](randomly chosen initial configurations on which cP produces correct final behavior. We then
measured Pfo4 (CPosc) to be 0.54, 0.09, and 0.02, for ~N = 149, 599, and 999, respectively. (The
behavior of a CA on these three values of N give a good idea of how the behavior scales with
lattice size.)

CPosc is not a successful solution precisely because it is unable to remove phase defects. A
more sophisticated CA must be found to produce the desired collective behavior. It turned out
that the successful solutions discovered by our GA were surprisingly interesting and complex.

4. Details and Results of G A Experiments

We used a GA, patterned after that in our previous work on density classification [2, 3, 10],
to evolve CAs that perform the synchronization task. The GA begins with a population of P
randomly generated "chromosomes"-bit strings encoding CAs by listing each cP's output bits in
lexicographic order of neighborhood configuration. For binary r = 3 CAs, the chromosomes are
of length 128(= 22r+l). The size of the space the GA searches is thus 2128-far too large for any
kind of exhaustive search.

With the lattice size fixed at N = 149, the fitness F1(cp) of a CA in the population is calculated
by randomly choosing] ICs that are uniformly distributed over po E [0.0,1.0] (where po denotes
the fraction of 1s in so) and iterating cP on each IC for a maximun1 of M time steps. F1(cp) is the
fraction of the] ICs on which cP produces the correct final dynamics: an oscillation between ON
and IN. No partial credit is given for incompletely synchronized final configurations.

In our experiments, we used F1(cp) as an estimate of P{f (cp) with] ~](and N = 149. It
should be pointed out that sampling ICs in FI(cp) with uniform distribution over po E [0.0,1.0]
is highly skewed with respect to the unbiased distribution of ICs in pfi (cp), which is binomially
distributed over po E [0.0,1.0] and very strongly peaked at po = 1/2. Preliminary experiments
indicated that while both kinds of distributions allowed the GA to find high performance rules,
the uniform distribution helped the GA to make more rapid progress in early generations.

In each generation the GA goes through the following steps. (i) A new set of] ICs is generated
from the uniform distribution. (ii) F1(cp) is calculated for each cp in the population. (iii) The
population is ranked in order of fitness; equally fit CAs are ranked randomly relative to one
another. (iv) E of the highest fitness ("elite") CAs are copied without modification to the next
generation. (v) The remaining (P E) CAs for the next generation are formed by single-point
crossovers between pairs of elite CAs chosen randomly with replacement. The offspring from each
crossover are each mutated m times, where a mutation consists of flipping a randomly chosen bit

3

in a chromosome. This defines one generation of the GA; it is repeated G times for one GA run.

Fr(tP) is a random variable since its value depends on the particular set of I ICs selected to
evaluate tP. Thus, a CA's fitness varies stochastically from generation to generation. For this
reason, we choose a new set of ICs at each generation

For our experiments we set P 100, E = 20; I = 100, m = 2; and G = 50. M was chosen
from a Poisson distribution with mean 320 (slightly greater than 2lv). Varying M prevents
selecting CAs that are adapted to a particular M. A justification of these parameter settings is
given in [9].

We performed a total of 65 GA runs. Since F lOO (tP) is only a rough estimate of performance,
we more stringently measured the quality of the GA's solutions by calculating Pr!o4 (tP) with
N E {149, 599, 999} for the best CAs in the final generation of each run. In 20% of the runs
the GA discovered successful CAs (Pr!o4 = 1.0). More detailed analysis of these successful CAs
showed that although they were distinct in detail, they used similar strategies for performing the
synchronization task. Interestingly, when the GA was restricted to evolve CAs with '{' = 1 and
'{' = 2, all the evolved CAs had Pr!o4 ~ 0 for N E {149, 599, 999}. (Better performing CAs with
'(' = 2 can be designed by hand.) Thus'{' = 3 appears to be the minimal radius for which the GA
can successfully solve this problem.

. . . .
J.l •

"(~ -:=-:
-:=-: -".: 8

Site 74 0 Site 74
(a) Space-time diagram. (b) Filtered space-time diagram.

Figure 1: (a) Space-time diagram of <Payne starting with a random initial condition. (b) The same space
time diagram after filtering with a spatial transducer that maps all domains to white and all defects to
black. Greek letters label particles described in the text.

Figure la gives a space-time diagram for one of the GA-discovered CAs with 100% perfor
mance, here called tPsync' This diagram plots 75 successive configurations on a lattice of size
N 75 (with time going down the page) starting from a randomly chosen IC, with I-sites col
ored black and O-sites colored white. In this example, global synchronization occurs at time step
58.

How are we to understand the strategy employed by tPsync to reach global synchronization?
Notice that, under the GA, while crossover and mutation act on the local mappings comprising a

4

CA look-up table (the "genotype"), selection is performed according to the dynamical behavior
of CAs over a sample of rcs (the "phenotype"). As is typical in real-world evolution, it is very
difficult to understand or predict the phenotype from studying the genotype. So we are faced
with a problem familiar to biologists and increasingly familiar to evolutionary computationalists:
how do we understand the successful complex systems (e.g., ¢>sync) that our GA has constructed?

5. Computational Mechanics of Cellular Automata

Our approach to understanding the computation performed by the successful CAs is to adopt the
"computational mechanics" framework for CAs developed by Crutchfield and Hanson [1, 6, 7].
This framework describes the "intrinsic computation" embedded in the temporal development of
the spatial configurations in terms of domains, particles, and particle interactions. A domain is,
roughly, a homogeneous region of space-time in which the same "pattern" appears. For example,
in Figure la, two types of domains can be seen: regions in which the all-Is pattern alternates
with the all-Os pattern, and regions of jagged black diagonal lines alternating with jagged white
diagonal lines. The notion of a domain can be formalized by describing the domain's pattern
using the minimal deterministic finite automaton (DFA) that accepts all and only those spatial
configurations that are consistent with the pattern.

Since the domains in Figure Ia are described by simple DFAs, they represent relatively simple
patterns. Once the domains have been detected, nonlinear filters can be constructed to filter
them out, leaving just the deviations from those regularities (Figure 1 b). The resulting filtered
space-time diagram reveals the propagation of domain boundaries. If these boundaries remain
spatially localized over time, then they are called particles. (For the discussion later, we have
labeled some of the particles in Figure 1 b with Greek letters.) These "embedded" particles
are one of the main mechanisms for carrying information over long space-time distances. This
information might indicate, for example, the partial result of some local processing which has
occurred elsewhere at an earlier time. Logical operations on the information particles carry are
performed when they interact. The collection of domains, domain boundaries, particles, and
particle interactions for a CA represents the basic information-processing elements embedded in
the CA's behavior-the CA's "intrinsic" computation.

In the example presented in Figure Ia the domains and particles are easy to see by inspection.
However, often CAs produce space-time behaviors in which regularities exist but are not so
easily discernible. Crutchfield and Hanson have developed automatic induction methods for
"reconstructing" domains in space-time data and for building the nonlinear filters that reveal
the hidden particles, allowing the intrinsic computation to be analyzed. In Figure 1 b, the filtering
not only allows us to determine the location of the particles in the space-time diagram, but it
also helps in readily identifying the spatial and temporal features of the particles.

To perform the synchronization task, ¢>sync produces local regions of synchronization (alter
nating 1* and 0* patterns, where w* represents some number of repetitions of string w). In
many cases, adjacent synchronized regions are out of phase. Wherever such phase defects occur,
¢>sync resolves them by propagating particles-the boundaries between the synchronized regions
and the jagged region-in opposite directions. Encoded in ¢>sync'S look-up table are interactions
involving these particles that allow one or the other competing synchronized region to annihilate
the other and to itself expand. Similar sets of interactions continue to take place among the
remaining synchronized regions until the entire configuration has one coherent phase.

5

o
o

0.8

!:S 0.6
V)

gs
~ 0.4

~
..0 0.2

o
~
_:n'

:.JI r .. ~

~.':!!.r" Ii ~~~
:~:

~ ~

~ !ir9 ~~

~ ~ ~

10 20
148

30 0 Site 148 0 Site 148

o

148 o

generations
(a)

She 148 0
(d) $2 (gen. 5)

Suppression of SS particles.

(b) $0 (gen. 0)
Growth of disordered regions.

Site 148 0
(e) $ (gen. 13)

Refineme~t of SS velocities.

(c) $ I (gen. 1)
Stabilization of the S domain.

Site
(f) $ (gen. 20)
- 4

SS creates domain D.

Figure 2: Evolutionary history of ¢;3ync: (a) FlOO versus generation for the most fit CA in each population.
The arrows indicate the generations in which the GA discovered each new significantly improved strategy.
(b)-(f) Space-time diagrams illustrating the behavior of the best ¢; at each of the five generations marked
in (a). The lCs are disordered except for (b), which consists of a single 1 in the center of a field of Os. The
same Greek letters in different figures represent different types of particles.

148

In the next section we will make this intuitive description more rigorous. In particular, we
will describe the evolutionary path by which our GA discovered ¢sync, using the computational
mechanics framework to analyze the mechanisms embedded in the increasingly fit CAs created
by the GA as a run progresses.

6. The Evolution to Synchronization

Figure 2a plots the best fitness in the population versus generation for the first 30 generations
of the run in which ¢sync was evolved. The figure shows that, over time, the best fitness in the
population is marked by periods of sharp increases. Qualitatively, the overall increase in fitness
can be divided into five "epochs". The first epoch starts at generation 0 and each of the following
epochs corresponds to the discovery of a new, significantly improved strategy for performing the

6

synchronization task. Similar epochs were seen in most of the runs resulting in CAs with 100%
performance. In Figure 2a, the beginning of each epoch is labeled with the best CA in the
population at that generation.

Epoch 0: Growth of Disordered Regions. To perform the synchronization task, a CA
¢ must have ¢(07) = 1 and ¢(17) = O. These mappings insure that local regions will have
the desired oscillation. Such a synchronized region is a domain-denote it S-with a temporal
periodicity of two: 0* = ~(1 *), and 1* = ~(O*). Since the existence of the S domain is guaranteed
by fixing just two bits in the chromosome, approximately 1/4 of the CAs in a random initial
population have S.

However, S's stability under small perturbations depends on other output bits. For example,
¢o is a generation 0 CA with these two bits set correctly, but under ¢o a small perturbation in S
leads to the creation of a disordered region. This is shown in Figure 2b, where the IC contains a
single 1 at the center site. In the figure, the disordered region grows until it occupies the whole
lattice. This behavior is typical of CAs in generation 0 that have the two end bits set correctly.
Increasing the number of perturbation sites in S leads to a simultaneous creation of disordered
regions all over the lattice, which subsequently merge to eliminate synchronous regions. Thus,
CAs like ¢o have zero fitness unless one of the test ICs has po = 0.0 or Po = 1.0.

Epoch 1: Stabilization of the Synchronous Domain. The best CA at generation 1,
¢l, has FlOO ~ 0.04, indicating that it successfully synchronizes on only a small fraction of the
lCs. Although this is only a small increase in fitness, the space-time behavior of ¢l (Figure 2c)
is very different from that of ¢o. Unlike ¢o, ¢l eliminates disordered regions by expanding (and
thereby stabilizing) local synchronous domains. The stability of the synchronous regions comes
about because ¢1 maps all the eight neighborhoods with six or more Os to 1, and seven out of
eight neighborhoods with six or more Is to O. Under our lexicographic ordering, most of these
bits are clustered at the left and right ends of the chromosome. This means it is easy for the
crossover operator to bring them together from two separate CAs to create CAs like ¢l.

Figure 2c shows that under ¢l, the synchronous regions fail to occupy the entire lattice. A
significant number of constant-velocity particles (here, boundaries between adjacent S domains)
persist indefinitely and prevent global synchronization from being reached. Due to the temporal
periodicity of the S domains, the two adjacent S domains at any boundary can be either In
phase or out-of-phase with each other. We will represent the in-phase and the out-of-phase defects
between two S domains as SS and S8 respectively. A more detailed analysis of ¢l'S space-time
behavior shows that it supports one type of stable S8 particle, a, and three different types of
stable SS particles: (3, " and 8, each with different velocities. Examples of these particles are
labeled in Figure 2c, and their properties and interactions are summarized in Table 1. (We should
note that we have used the same set of Greek letters to represent different types of particles in
different rules.)

For most ICs, application of ¢l quickly results in the appearance of these particles, which then
go on to interact, assuming they have distinct velocities. A survey of their interactions indicates
that the a particle dominates: it persists after collision with any of the S S particles. Interactions
among the three SS particles do take place, resulting in either a single (3 or a pair of a's. Thus,
none of the interactions are annihilative: particles are produced in all interactions. As a result,
once a set of particles comes into existence in the space-time diagram, one can guarantee that at
least one particle persists in the final configuration. For almost all values of po, ¢l'S formation

7

of persistent particles ultimately prevents it from attaining global synchrony. Only when Po is
very close to 0.0 or 1.0 does (PI reach the correct final configurations. This accounts for its very
low fitness.

1/ Cellular Automata 1/ Particles and Interactions

Chromosome Generation Label Domain Temporal Velocity
(1~l49 1'599 1'999)

.104 , 1 04 ' 1 0 4 Boundary Periodicity

<Pl 1 a SS 2 -112
F8A19CE6 f:! ::>::> 4 -1 4
B65848EA (0.00, 'Y SS 8 -1 '8
D26CB24A 0.00, () 55 2 C
EB51C4AO 0.00) fJ + a -+ a, 'Y + a -+ a, b + a -+ a

<P2 = 5 a I SS 2 -1/2
F8A1AE2F fJ SS 6 0
CF6BC1E2 (0.33,
D26CB24C 0.07, f3+a-+0
3C266E20 0.03)

<P3 13 a SS 4 -3 /4
F8AIAE2F f:! SS 6 U
CE6BC1E2 (0.57, 'Y SS 12 1/ 4
C26CB24E 0.33, b SS 2 1/2
3C226CAO 0.27) fJ + a -+ I,!}, f + a -+ I,!}, b + a -+ I,!}

¢Jayne = 100
i

a SS - 0
FEB1C6EA fJ 1)::> 2 1
B8EOC4DA (1.00, 'Y SD 2 -1
6484A5AA 1.00, b 1)::> 4 -3
F410C8AO 1.00) J.l SD 2 3

1I DD 2 -1
Decay:a --oj. f + j Annihilatlve: f + b --oj. I,!}, J.l + fJ --oj. I,!}

!teactIve: fJ + f --oj. 1I ld mod 4 = 1), 1I + b --oj. (j, J.l + 1I --oj. 'Y
Reversible: f3 + 'Y --oj. b + J.l (d mod 4 :f. 1), J.l + {; --oj. 1+ fJ

Table 1: ¢Jayne and its ancestors: Particles and their dynamics for the best CAs in early generations of the
run that found ¢Jayne' The table shows only the common particles and common two-particle interactions
that playa significant role in determining fitness. 0 indicates a domain with no particles. Each CA <P is given
as a hexadecimal string which, when translated to a binary string, gives the output bits of <P in lexicographic
order (TJ = 07 on the left).

Epoch 2: Suppression of In-Phase Defects. Following the discovery of <PI, the next
sharp increase in fitness is observed in generation 5, when the best CA in the population, CP2,
has FlOo ~ 0.54. The rise in fitness can be attributed to CP2'S ability to suppress in-phase (55)
defects for ICs with very low or very high po.

The space-time behavior of CP2 is dominated by two new and different 55 particles, labeled
a and (3 (see Table 1; examples are labeled in Figure 2d). In addition to the suppression of
55 boundaries, a and (3 annihilate each other; even on some Ies with intermediate po, CP2 is
able to reach synchronous configurations due to these annihilations. However, since the velocity
difference between a and (3 is only 1/2, the two particles might fail to annihilate each other
before the maximum of M time steps have elapsed.

In spite of these improvements, CP2 still fails on a large fraction of its fitness tests. Often the
same type of particle occurs more than once in the configuration. Since they travel at the same
velocity, these identical particles cannot interact, so they persist in the absence of particles of a
different type. Global synchrony is achieved (possibly in more than M time steps) only when the

8

number of a particles and /3 particles in any configuration are equal. Our studies of rP2 show that
the probability of occurrence of /3 is about twice that of a, so their numbers are often unequal.

From the standpoint of the genetic operators acting on the CA rules, a small change in the
relevant entries in rP is sufficient to significantly modify the properties of the domain boundaries.
As a result, it is the mutation operator that seems to play the primary role in this and subsequent
epochs in discovering high-performance CAs.

Epoch 3: Refinement of Particle Velocities. A much improved CA, rP3, is found in
generation 13. Its typical behavior is illustrated in Figure 2e. rP3 differs from rP2 in two respects,
both of which result in improved performance. First, as noted in Table 1, the velocity difference
between a and " the two most commonly occurring particles produced by rP3, is larger (1 as
compared to 1/2 in rP2), so their annihilative interaction typically occurs more quickly. This
means rP3 has a better chance of reaching a synchronized state within M time steps. Second, the
probabilities of occurrence of a and, are almost equal, meaning that there is a greater likelihood
they will pairwise annihilate, leaving only a single synchronized domain.

In spite of these improvements, it is easy to determine that rP3 's strategy will ultimately fail
to synchronize on a significant fraction of ICs. As long as S5 particles exist in the space-time
diagram, there is a non-zero probability that a pair of S S defect sites would be occupied by
a pair of identical particles moving in parallel. In the absence of other particles in the lattice
such a particle pair could exist indefinitely, preventing global synchrony. Thus a completely new
strategy is required to overcome persistent parallel-traveling particles.

Epoch 4: The Final Innovation. In the 20th generation a final dramatic increase in fitness
is observed when rP4 is discovered. rP4 has FlOG ~ 0.99 and displays quite different space-time
behavior (Figure 2f). Following the discovery of rP4 and until the end of the run in generation
100, the best CAs in each generation have FlOG = 1.00. Also, no significant variation in the
space-time behavior is noticeable among the best CAs in this run. In particular, rP4'S strategy is
very similar to that of rPsync, a perfected version of rP4 that appeared in the last generation. Here
we will make our earlier intuitive description of rPsync'S strategy more rigorous.

As can be seen in Figure la, after the first few time steps the space-time behavior of rPsync
is dominated by two distinct types of domains and their associated particles. While one of the
domains is the familiar S, the other domain-denoted D in Table 1- consists of temporally
alternating and spatially shifted repetitions of 1000 and 1110. The result is a pattern with
temporal and spatial period 4. In terms of the domain's regular language, though, D has temporal
period 2: (1000)* = ~((1110)*) and (1110)* = <P((1000)*).

Using a transducer that recognizes the Sand D regular languages, Figure la can be filtered to
display the propagation of the particles embedded in the space-time behavior of rPsync (Figure 1 b).
As pointed out earlier, such filtered space-time diagrams allow us to readily analyze the complex
dynamics of 4>sync'S particles and their interactions. As shown in Table 1, 4>sync supports five
stable particles, and one unstable "particle", a, which occurs at S5 boundaries. a "lives" for
only one time step, after which it decays into two other particles, , and /3, respectively occurring
at SD and D5 boundaries. /3 moves to the right with velocity 1, while, moves to the left at
the same speed.

The following simple scenario illustrates the role of the unstable particle a in ¢sync'S synchro
nization strategy. Let rPsync start from a simple IC consisting of a pair of S5 domain boundaries
which are a small distance from one another. Each S5 domain boundary forms the particle a,

9

which exists for only one time step and then decays into a f3-, pair, with f3 and, traveling at
equal and opposite velocities. In this example, two such pairs are formed, and the first inter
action is between the two interior particles: the f3 from the left pair and the , from the right
pair. As a result of this interaction, the two interior particles are replaced by 8 and j.L, which
have velocities of -3 and 3, respectively. Due to their greater speed, the new interior particles
can intercept the remaining f3 and ,particles. Since the pair of interactions, + 8 ---t 0 and
j.L + f3 ---t 0 are annihilative, and because the resulting domain is S, the configuration is now
globally synchronized4• The bask innovation of 41sync over 413 is the formation of the D domain,
whkh allows two globally out-of-phase S domains to compete according to their relative size and
so allows for the resolution of global phase frustration. D achieves this by replacing S domains
with itself-a nonsynchronizable region.

The particle interactions in the filtered space-time diagram in Figure 1b (starting from a
random IC) are somewhat more complicated than in this simple example, but it is still possible
to identify essentially the same set of particle interactions (f3 +, ---t 8 + j.L, f3 + , ---t v, and
, + 8 ---t 0) that effect the global synchronization in the CA.

7. Concluding Remarks

In summary, the GA found embedded-particle CA solutions to the synchronization task. Al
though such perfectly performing CAs were distinct in detail and produced different domains
and particles, they all used similar strategies for performing the task. It is impressive that the
GA was able to discover complex orchestrations of particle interactions resulting in 100% correct
solutions such as that described for 41sync. The computational mechanics framework allowed us
to "deconstruct" the GA's solutions and understand them in terms of particle interactions. In
general, particle-level descriptions amount to a rigorous language for describing computation in
spatially extended systems.

Several issues, important for putting the preceding results in a more general context, should
be mentioned in closing. First, implicit in the definition of a CA is a globally synchronous update
clock. That is, a CA's local states are updated at the same time across the lattice. (And this
is a fundamental architectural difference with many of the natural processes mentioned in the
introduction.) But since each site has a processor 41 whkh determines local behavior and site
to-site interactions, the effect of the underlying global update need not be manifest directly in
globally synchronous configurations5 • In this light, our choice of the synchronization task means
that we have considered one partkular aspect of how this dynamical behavior might emerge: i.e.,
can local information processing and communication be designed by a GA to take advantage of
the globally synchronous update signal?

Second, this observation suggests an alternative and potentially more important study to
undertake: the evolution of a decentralized, distributed system whose components are fully

40ne necessary refinement to this explanation comes from noticing that the (3-1 interaction depends on the
inter-particle distance d, where 0 S; d S; 2r. If d mod 4 =f. 1, then we have the interaction (3 + 1 ~ 6 + J-l. But if d
mod 4 1, then we have (3 + 1 ~ v. The particle v is essentially a defect in the D domain.

5Indeed, one of the earliest mathematical articulations of a similar synchronization problem in a distributed
system-the firing-squad synchronization problem (FSSP)-uses a globally synchronous update clock. In spite
of the global update mechanism, it is the site-to-site interactions among the individual processors in the FSSP
that makes the problem interesting and difficult. Although FSSP was first proposed by Myhill in 1957, it is still
being actively studied [14].

10

asynchronous. We hope to return to this more difficult GA study in the future.

Third and finally, biological evolution is a vastly more complex process than the restricted
framework we've adopted here. Its very complexity argues for new methods of simplifying its
analysis-methods that are sensitive to the interaction between the nonlinear dynamics of indi
vidual behavior, on the one hand, and population dynamics guided by natural selection, on the
other. Our goal is to delineate the evolutionary mechanisms that drive the emergence of useful
structure. Given this, we believe that detailed analysis of simplified models, such as the one
presented above, is a prerequisite to understanding the emergence and diversity of life.

Acknowledgments

We thank Dan Upper for suggesting the synchronization task and for helpful discussions. This
research was supported by the Santa Fe Institute, under the Adaptive Computation and External
Faculty Programs and under NSF grant IRI-9320200 and DOE grant DE-FG03-94ER25231. It
was supported by the University of California, Berkeley, under the ONR Dynamical Neural
Systems Program and AFOSR grant 91-0293.

References

[1] J. P. Crutchfield and J. E. Hanson. Turbulent pattern bases for cellular automata. Physica D,
69:279-301, 1993.

[2] J. P. Crutchfield and M. Mitchell. The evolution of emergent computation. Technical Report
94-03-012, Santa Fe Institute, Santa Fe, New Mexico, 1994.

[3] R. Das, M. Mitchell, and J. P. Crutchfield. A genetic algorithm discovers particle-based computa
tion in cellular automata. In Y. Davidor, H.-P. Schwefel, and R. Manner, editors, Parallel Problem
Solving from Nature~PPSN III, volume 866, pages 344-353, Berlin, 1994. Springer-Verlag (Lecture
Notes in Computer Science).

[4] P. Devreotes. Dictyostelium discoideum: A model system for cell-cell interactions in development.
Science, 245:1054, 1989.

[5] H. A. Gutowitz, editor. Cellular Automata. MIT Press, Cambridge, MA, 1990.

[6] J. E. Hanson and J. P. Crutchfield. The attractor-basin portrait of a cellular automaton. Journal
of Statistical Physics, 66:1415, 1992.

[7] J. E. Hanson. The Computational Mechanics of Cellular Automata. PhD thesis, University of
California, Berkeley, 1993. published by University Microfilms Intl., Ann Arbor, MI.

[8] G. Laurent and H. Davidowitz. Encoding of olfactory information with oscillating neural assemblies.
Science, 265:1872 1875, 1994.

[9] M. Mitchell, J. P. Crutchfield, and P. T. Hraber. Evolving cellular automata to perform computa
tions: Mechanisms and impediments. Physica D, 75:361 391, 1994.

[10] M. Mitchell, P. T. Hraber, and J. P. Crutchfield. Revisiting the edge of chaos: Evolving cellular
automata to perform computations. Complex Systems, 7:89-130, 1993.

11

[11] D. W. Thompson. On Growth and Form. Cambridge University Press, Cambridge, 1917.

[12] T. Toffoli and N. Margolus. Cellular Automata Machines: A new environment for modeling. MIT
Press, Cambridge, IvlA, 1987.

[13]

[14]

S. Wolfram, editor. Theory and applications of cellular automata. World Scientific, Singapore,
1986. I

I

J. B. Y~nes. Seven-state solutions to the firing squad synchronization problem. Theoretical Com
puter SCience, 127:313 - 332, 1994.

* References [1,6, 7] and [2,3, 10] are available over the internet at the world wide web sites
http://www.santafe.edu/projects/Complvlech/ and http://www.santafe.edu:/projects/evca/ re
spectively.

12

http://www.santafe.edu:/projects/evca
http://www.santafe.edu/projects/Complvlech

	Portland State University
	PDXScholar
	4-1995

	Evolving Globally Synchronized Cellular Automata
	Rajarshi Das
	James P. Crutchfield
	Melanie Mitchell
	James M. Hanson
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1407863617.pdf.NGVD7

