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We present a Monte Carlo-derived Green’s function for the propagation of partially spatially coherent fields.
This Green’s function, which is derived by sampling Huygens–Fresnel wavelets, can be used to propagate fields
through an optical system and to compute first- and second-order field statistics directly. The concept is illus-
trated for a cylindrical f/1 imaging system. A Gaussian copula is used to synthesize realizations of a Gaussian
Schell-model field in the pupil plane. Physical optics and Monte Carlo predictions are made for the first- and
second-order statistics of the field in the vicinity of the focal plane for a variety of source coherence conditions.
Excellent agreement between the physical optics and Monte Carlo predictions is demonstrated in all cases.
This formalism can be generally employed to treat the interaction of partially coherent fields with diffracting
structures. © 2009 Optical Society of America

OCIS codes: 030.5620, 030.1670, 030.6600, 110.4980, 170.3660.

1. INTRODUCTION
The propagation of light in complex, strongly scattering
random media is an important problem in diagnostic im-
aging and remote sensing [1–5]. Specific applications in-
clude laser communication through the atmosphere [1,2],
imaging in biological media and (underwater) littoral en-
vironments [3–5], and imaging in extreme environments
such as turbulent combustion.

Often, the scattering experienced on propagation is a
nuisance. Such is the case in optical telecommunications
within the atmosphere [1,2]. In other cases, the effects of
scattering are useful because they convey information
about the medium itself; the laser Doppler technique for
measuring velocity is a good example [6]. Many practical
situations involve a combination of these two; an object
that one seeks to observe is embedded in a scattering me-
dium that frustrates the observation. Confocal microscopy
is a good example of such a case [7]. Here, the source
fields are focused to a plane within the medium that one
wishes to image. In proceeding from the pupil to the focal
spot, however, the fields are subject to scatter that de-
grades the quality of focus. Moreover, the light backscat-
tered from the focal spot is subject to additional scatter in
its path back to the pupil.

Because of the complexity of the interaction in strongly
scattering media (such as biological tissue), physical op-
tics (PO) methods of analysis are infeasible. In such cases,
researchers have relied almost exclusively upon Monte
Carlo (MC) methods based on radiative transfer theory
[8–10]. Such methods employ an effective-medium con-
cept that views the medium as having certain scatter and
absorption characteristics that are otherwise uniformly

distributed. In other words, the medium is viewed as be-
ing homogeneous. Objects embedded within the medium
(about which information may be desired) are viewed as
having different scatter and absorption properties, but
are otherwise assumed homogeneous as well. While this
has been successful in mimicking empirical results, the
method conveys no information about the actual light–
matter interaction.

Traditional MC methods allow only single-point charac-
terizations of the observed field (intensity, polarization),
and assume that there is no correlated structure at the
scale of the wavelength within the propagation medium.
In general, a more complete statistical characterization of
the field (second-order moments and higher) is needed.
This is accomplished within the framework of optical co-
herence theory [11]. Accounting for coherence effects is
critical, as it is the spatial coherence of the field that af-
fects the quality of focus and ultimately imaging perfor-
mance (in confocal microscopy, for instance). In addition,
it has been shown that spatial coherence changes, even on
propagation through free space.

Ideally, then, a complete and efficient treatment of the
propagation of light in random media would involve the
application of MC methods (or ray tracing in general)
within the framework of optical coherence theory. There
have been several recent efforts along these lines, from
both analytical and numerical perspectives. Zysk et al.
[12] employed an eikonal formalism for propagating the
cross-spectral density of a special class of partially coher-
ent sources within the geometrical optics regime. Petruc-
celli and Alonso [13] conducted a general analytical study
of the propagation of the cross-spectral density using ray
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tracing. Douglas et al. [14] developed a ray-based simula-
tion for an optical interferometer that accounted for the
evolution of spatial coherence from an extended source,
but used systematic angular ray sampling and neglected
diffraction. A paraxial ray-based simulation was also de-
veloped by Riechert et al. [15], but they too used a system-
atic sampling algorithm, neglected diffraction, and did
not specifically treat the case of arbitrary coherence.

In a recent paper [16], we presented a Monte Carlo
(MC) method for propagating partially coherent field re-
alizations which integrates the physical optics (PO) de-
scription of light with ray-based propagation techniques.
The combination of the two methodologies preserves the
wave nature of light, which is essential for describing co-
herence phenomena, while exploiting the computational
simplicity and robustness of MC techniques [10–12,17],
allowing one to model complex phenomena that cannot be
treated by either approach individually.

In this paper, we present an extension that involves
MC computation of the Green’s function for the overall
system. The Green’s function can be used to propagate in-
dividual realizations and compute arbitrary moments of
the propagated field, as in [16]. Unlike the previous tech-
nique, however, it can also be used to propagate the cross-
spectral density (a second-order moment) directly, at a
substantial computational savings. We illustrate our
Green’s function technique using an f/1 imaging system.
It should be noted, however, that our technique can be ap-
plied to any complex medium for which the light–matter
interaction can be modeled as either the absorption or re-
direction (i.e., scattering) of a light ray. The case of propa-
gation through a multiple-scattering medium will be
treated in a future paper.

2. GREEN’S FUNCTION FORMULATION
The optical configuration that we address herein is that of
a two-dimensional f/1 imaging system, although the for-
malism is generally applicable. We assume that the field
within the pupil of the system is partially coherent. We
discuss the analytic theory describing such a configura-
tion and present a Green’s function implementation of the
calculations that are subsequently carried out by numeri-
cal integration for the PO case and by MC ray trace.

Consider a focused cylindrical wave of frequency � that
is exiting an aperture of width 2a in a plane screen (see
Fig. 1). The axial coordinate is z, y is parallel to the long
axis of the cylindrical wave, and x is across the slit. The
origin O of the coordinate system coincides with the geo-
metrical focus. The amplitude of the field in the aperture
is U�0��r� ,��, r� being the position vector of typical point
Q�r��. The field at a point P�r� in the focal region is, ac-
cording to the Huygens–Fresnel principle, expressed in
two dimensions as [18]

U�r,�� =
i�

�
�

−a

a

U�0��r�,��exp�− ik�f2 + x�2�
z

s
H1

�1��ks�dx�,

�1�

where � is the wavelength, k=2� /� is the wavenumber, f
is the focal distance, s= �r−r�� denotes the distance QP,
and we have suppressed the periodic time-dependent fac-

tor exp�−i�t�. Alternatively, the field can be expressed in
the form

U�r,�� =�
−�

�

U�0��r�,��G�r,r��dx�, �2�

where

G�r,r�� = �
i�

�
exp�− ik�f2 + x�2�

z

s
H1

�1��ks�, �x�� � a

0, else
� .

�3�

G�r ,r�� is the Green’s function of the system.
A partially coherent wave field is characterized by its

statistical moments. One such (second-order) moment is
the cross-spectral density function, which describes first-
order correlations in the field ([11], Sect. 2.4.4) and is de-
fined at the points P�r1� and P�r2� by

W�r1,r2,�� = �U*�r1,��U�r2,��	. �4�

Here the angle brackets denote the average, taken over a
statistical ensemble of monochromatic, i.e., time coherent
realizations U�r ,��exp�−i�t� ([11], Sect. 4.7), and the as-
terisk denotes the complex conjugate. One can also define
the spectral density and spectral degree of coherence, re-
spectively, as

S�r� = W�r,r�,

��r1,r2� = W�r1,r2�/
S�r1�S�r2��1/2, �5�

Substituting Eq. (2) into Eq. (4), we find that the cross-
spectral density of the observation plane field has the
form

W�r1,r2,�� =�
−�

� �
−�

�

W�0��r1�,r2�,��

�G*�r1,r1��G�r2,r2��dx1�dx2� , �6�

where W�0��r�1 ,r�2 ,�� is the cross-spectral density of the
field in the aperture. For the source fields used herein, we
assumed a Gaussian Schell-model with uniform ampli-
tude ([11], Sec. 5.3), i.e.,

•
•

2a

rx'

z

f

sQ(r')

O

x

•

P(r)

Fig. 1. Illustration of geometrical configuration.
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W�0��r�,r�� = W�0��x�,x�� = exp�−
�x� − x��2

2�g
2  , �7�

where x� and x� are points on the wavefront in the aper-
ture and �g is a positive constant that is a measure of the
effective spectral coherence length of the field in the ap-
erture.

Recently [16], we presented a method for propagating
individual field realizations using Eq. (1). That method
involved generating input (or aperture) field realizations
corresponding to a prescribed cross-spectral density using
a Gaussian copula algorithm [19,20], propagating each
field realization by MC sampling of Eq. (1) and averaging
over the field ensemble at the output plane [in accordance
with Eq. (4)] to compute the cross-spectral density. The
computational demands imposed by this method would
make it appear that generalization to higher-dimensional
problems (three-dimensional waves, polarization, mul-
tiple scattering) may be computationally infeasible.

However, it is clear from Eq. (2) that a more expedi-
tious procedure would be to precompute the system
Green’s function by MC sampling of Eq. (3). This Green’s
function then could be used to propagate each field real-
ization. Furthermore, if one is interested only in second-
order statistics (i.e., the cross-spectral density), the pre-
computed Green’s function can be used in Eq. (6) directly.
Since the waves are cylindrical, the pupil plane fields may
be represented in terms of an N��1 vector, the focal
plane fields by an N�1 vector, and the Green’s function
by an N�N� matrix. Propagation of the individual field
realizations then amounts to a series of matrix multipli-
cations:

U = GU�0�. �8�

3. NUMERICAL IMPLEMENTATION
In this section we describe the MC procedure for comput-
ing the system Green’s function, the copula method for
generating field realizations conforming to the Gaussian-
Schell model, direct calculation of the first- and second-
order statistics of the field from the Green’s function, and
the corrections needed in the PO calculation to account
for the finite size of detector elements.

A. Monte Carlo Ray Tracing
The Green matrix, G, is generated by tracing rays from
the pupil to the detector; the Gij element is the coherent
sum of all fields starting at the jth source element and
reaching the ith detector element. Equal numbers of rays
are launched from each source element. The initial field
associated with each ray has unit amplitude and zero
phase. The starting location of each ray is randomly cho-
sen across each source element (simply launching from
the center would create a diffraction grating).

The initial direction of the ray is chosen to randomly
sample the emerging Huygens–Fresnel wavelet. If 	 is a
uniform random deviate over the interval [0, 1], then the
initial angle might be 
=2�	. Such a launch angle would
obviously be inefficient because most rays would not
reach the detector. Instead, if the minimum and maxi-

mum angles 
min and 
max between the current location
and the next aperture are calculated, then the launch
angle might be


 = 
min + 	�
max − 
min�. �9�

This ensures that every ray passes through all apertures,
but also contains a subtle sampling bias because the num-
ber of rays/radian varies with the subtended angle 
max
−
min. This is corrected by multiplying the field amplitude
associated with each ray by the subtended angle. No other
corrections are needed. For example, the typical 1/�r fall-
off in a cylindrical field is implicitly included because the
number of rays reaching a particular location will dimin-
ish with distance. Obliquity factors are also not needed.

The field associated with a ray that has traveled a dis-
tance d must have the phase of its field increased by kd. If
the field passes through a lens having a focal length of f,
then the phase is decreased by k�x2+ f2, where x is the in-
tersection point of the ray with the lens.

Slightly different observation plane sampling is used
depending on whether axial or transverse field informa-
tion is being collected. The transverse case uses the point
of intersection in the focal plane to determine the proper
detector element to increment by the ray’s field. The axial
case uses N detector elements distributed at uniform in-
tervals near the focal point. Each axial element is then
treated as if it were a transverse detector with a single
element.

The modulus and phase of the PO and MC Green’s
functions are displayed, respectively, in Figs. 2 and 3.
Each display corresponds to a matrix with N�=51 source
points (columns) and N=201 focal plane points (rows). In
this example, the extent of the focal plane dimension is
limited to ±2.5�. For the MC Green’s function, a total of
108 rays are traced. For the PO Green’s function, a nu-
merical evaluation of Eq. (3) is used. For purposes of com-
parison in Figs. 2 and 3, a measurement function (see
Subsection 3.D) is applied to the PO Green’s function.

B. Generation of Partially Coherent Field
Realizations
Using the Gaussian copula algorithm [16,20] we generate
a series of zero mean circularly complex Gaussian field re-
alizations having prescribed amplitude and correlation
properties. We briefly review this algorithm.

Consider two uniformly distributed, statistically inde-
pendent random variables (RVs), X1 and X2. From this
pair, the Box–Muller transformation [21] produces a new
pair of RVs,

Y1 = �− 2 ln X1 cos�2�X2�,

Y2 = �− 2 ln X1 sin�2�X2�, �10�

that are jointly Normal with zero correlation coefficient,
N�� ,� ,r�=N�0,1,0�. Next, making use of the scaling and
rotation operations,
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�Z1

Z2
 =

1

�2
�1 − 1

1 1��1 + r 0

0 �1 − r�Y1

Y2
 , �11�

we find that the RV’s, Z1 and Z2, are correlated, bivariate
Normal, N�0,1,r�. The Box–Muller transformation and
the scaling and rotation constitute the copula that links
the marginal distributions on X1 and X2 into the bivariate
distribution on Z1 and Z2.

Spatially band limited random field realizations [20,22]
are synthesized using the following procedure: Create an
L�L element matrix of zeros and fill the central circular
region of diameter K elements with complex numbers of
unit amplitudes and phases that are effectively uniformly
distributed over �0,2��. Upon Fourier transforming the
L�L array, one obtains a synthetic field pattern having a
Rayleigh probability distribution. The ratio of L to K sets
the length of the spatial autocorrelation of the field real-

ization. For example if L=2K, the Nyquist criterion is met
and the length of the autocorrelation is of the order of two
pixels. Use of the phases �1=2�mz1, �2=2�mz2 in this
procedure, where z1 and z2 are effectively uniformly dis-
tributed samples (see Appendix A for a discussion of this
detail) as in the preceding discussion and m is a real con-
stant, produces a pair of correlated field realizations. The
actual correlation between these two realizations from
the complex Gaussian moment theorem [23] is given by

� = exp�−
1

2
���

2 � , �12�

where ���
2 =var��1−�2� is the variance of the phase differ-

ence. Using a sequence of N� correlation values between
r=1 and r=−1 [see Eq. (11)] produces a K�K�N� cube of
field realizations that slowly decorrelate between the first
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Fig. 2. Normalized modulus of Green’s function from numerical evaluation of Eq. (3) (left) and of MC ray trace (right). For the MC
Green’s function, a total of 108 rays were traced. For purposes of this comparison, a measurement function (see Subsection 3.D) was
applied to the PO Green’s function.

Fig. 3. Phase in radians of Green’s function from numerical evaluation of Eq. (9) (left) and of MC ray trace (right). These displays are
relative to the zero phase value at (0, 0). For purposes of this comparison, a measurement function (see Subsection 3.D) was applied to
the PO Green’s function.
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K�K element and the last K�K element. Elements of
this field cube can be interpreted [16] as K2 one-
dimensional ensemble members, each of length N�.

Following this procedure, ensembles of line source re-
alizations having prescribed spatial correlation properties
are synthesized. These ensembles contain �256�2 realiza-
tions (each with 51 elements) with correlation lengths of
�g /a=2.0, 1.0, 0.6, 0.4, 0.2, and 0.1.

C. Propagation of the Statistics
As suggested in Section 2, the Green’s function approach
could be used to propagate the individual field realiza-
tions via a series of simple matrix multiplications. A fur-
ther simplification is possible through consideration of
the cross-spectral density matrix of the observation fields.

To begin, we consider the vector matrix expression of
Eq. (8), U=GU�0�, where U and U�0� are now assumed to
be N�Nf matrices and Nf is the number of realizations of
the field ensemble. The matrix analog of the relationship
shown in Eq. (6) is given by

W = �1/Nf�UU† = �1/Nf��GU�0���GU�0��†

= G
�1/Nf�U�0�U�0�†�G† = GW�0�G†, �13�

where the dagger denotes the conjugate transpose. Note
that the matrices W�0� and W are specific expressions of
the general cross-spectral densities W�0��ri ,rj� and
W�ri ,rj�. It is seen that the cross-spectral density of the
observation plane field is given by simple left and right
Green’s matrix multiplications of the source cross-
spectral density matrix.

In Fig. 4, we illustrate the source and focal plane cross-
spectral density matrices for the case �g /a=0.6. These
matrices incorporate the complete first- and second-order
statistics of the field. Specifically, the spectral densities
are the diagonals of the respective matrices, and the spec-
tral degree of coherence in symmetric form
��−x ,0 ,0 ;x ,0 ,0� are the cross-diagonals (from northwest
to southeast) divided by the spectral densities. Note that
these matrices are displayed in Cartesian rather than
standard matrix format. The asymmetric form of the
spectral degree of coherence, ��0,0,0;x ,0 ,0�, is simply

the central row or column of the cross-spectral density
matrix divided by the square root of the product of the
spectral density trace and the spectral density at the cen-
ter of the matrix �S�x ,0 ,0�S�0�. The corresponding axial
cross-spectral density matrix in the vicinity of the focal
plane is shown in Fig. 5.

D. Measurement Function
The MC method intrinsically predicts the output of a
physical detector, whereas the PO method does not. In or-
der to directly compare the two, the PO results must be
related to measurable quantities. This is accomplished by
operating on the native PO results with a so-called mea-
surement function. This measurement function explicitly
accounts for the local propagation direction of the field
with respect to the detector surface normal so that the
relevant physical quantities (e.g., the irradiance) are
properly calculated. Application of the measurement func-
tion involves calculating a flux vector from which the de-
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tected intensity and cross-spectral density are deter-
mined. This parallels electromagnetic theory, where the
Poynting vector (a flux vector calculated from the electric
and magnetic fields) is used to determine energy absorp-
tion. In the deterministic case, the flux density vector cor-
responding to the field U is given by

F�r� = 1/2ik
U�r� � U*�r� − U*�r� � U�r��, �14�

where � is the gradient operator. The measurable, in this
case the irradiance, is then calculated by taking the sca-
lar dot product of the flux density with the normal to the
detector surface. For random fields, the development pro-
ceeds along the same lines. One can define a cross-
spectral flux density vector by [13]

Fc�r1,r2� = 1/2ik�U*�r1��2U�r2� − U�r2��1U*�r1�	

= 1/2ik��2 − �1�W�r1,r2�. �15�

Equation (15) reduces to a (spectral) flux density vector
[Eq. (14)] when r=r1=r2. The measurement function MPO
for the PO cross-spectral density is then given by

MPO
WPO�r1,r2�� = 
Fc�r1,r2��PO · n̂D, �16�

where n̂D is the normal to the detector surface. For non-
paraxial fields, it is the quantity defined by Eq. (16) that
must be compared with the MC results. For paraxial
fields, application of the measurement function is not nec-
essary, as the propagation directions are effectively paral-
lel to the optical axis. When n̂D= ẑ, application of the mea-
surement function results in a difference expression
involving two terms, the partial derivative of the cross-
spectral density with respect to z2 and the partial deriva-
tive of the cross-spectral density with respect to z1. To
compute these derivatives numerically, the cross-spectral
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propagation of 65,536 field realizations.
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density must be calculated at two nearby planes (a small
distance �z apart) located symmetrically with respect to
the focus. This necessarily involves the use of two differ-
ent Green’s functions for propagation of the field realiza-
tions to the two planes, respectively.

4. RESULTS
Here we present the results of propagating the source
cross-spectral density to the focal plane via physical op-
tics (PO) means and by MC ray trace. For the PO calcu-
lations, the individual field realizations are propagated
according to Eqs. (3) and (8) and the cross-spectral den-
sity matrix calculated subsequently. No differences are
observed for the alternative approach using Eq. (13). For
the MC calculations, Eq. (13) is used with the ray-trace-

derived Green’s function. The focusing configuration was
f/1, as before. Results are summarized in terms of the
spectral density and spectral degree of coherence for vary-
ing degrees of coherence within the pupil.

A. Focal Plane Behavior
Within the focal plane, we use

s = �f2 + �x − x��2, �17�

and the observed fields are characterized in terms of the
normalized spectral density S�x ,0 ,0� /S�0,0,0� and spec-
tral degree of coherence ��0,0,0;x ,0 ,0�. Results for
propagating the source cross-spectral density via the PO
and MC Green’s function methodology are shown in Fig.
6. We note that for the PO computations, the standard bi-

σg/a = 0.6 σg/a = 0.4
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| µ(0,0,0;0,0,z) | (MC)
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(e) (f )

1.0

10

Fig. 7. (Color online) Spectral degree of coherence ��0,0,0;0,0,z� and normalized spectral density S�0,0,z� /S�0,0,0� for various values
of �g /a: (a) �g /a=2.0, (b) �g /a=1.0, (c) �g /a=0.6, (d) �g /a=0.4, (e) �g /a=0.2, (f) �g /a=0.1. MC and PO results are for propagation of
65,536 field realizations.
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nomial approximation of the expression in Eq. (17) was
not used because it is inaccurate for the f/1 configuration.
These results are to be compared with Fig. 7 of Fischer
and Visser [24], who numerically computed the PO re-
sults for the corresponding three-dimensional problem.
While the dimensionality of the problem treated herein is
different from that of Fischer and Visser, the behaviors
are qualitatively the same. Good correspondence is shown
between the PO and MC propagation.

B. Axial Behavior
To evaluate the behavior along the axis near the focus, we
use

s = ��f − z�2 + x�2, �18�

and the observed fields are characterized in terms of the
normalized spectral density S�0,0,z� /S�0,0,0� and spec-
tral degree of coherence ��0,0,0;0,0,z�. Results are sum-
marized in Fig. 7. These results are to be compared with
Fig. 5 of Fischer and Visser [24]. Once again, there is very
good agreement between the PO and MC predictions.

C. Application of Measurement Function
The PO results displayed in Figs. 6 and 7 include a cor-
rection due to the measurement function. The magnitude
of this correction can be seen if we compare the native PO
results with the corrected PO results. In Figs. 8(a) and

8(b), we have repeated the results of Figs. 6(d) and 7(d)
for the transverse and axial spectral degrees of coherence,
respectively, for the case �g /a=0.4. In addition, in both
figures we have also plotted the native PO results (before
the application of the measurement function). It is seen
that application of the measurement results in a notice-
able correction to the spectral degree of coherence. Fur-
thermore, this correction will increase as the numerical
aperture (NA) of the system is increased (here it is 0.45)
or the transverse coherence length of the incident illumi-
nation is decreased. It should be noted that, while not il-
lustrated here, application of the measurement function
also has an effect on the spectral density. It results in a
cosine weighting of the spectral density, but this weight-
ing is not apparent over the limited plot range of Figs. 6
and 7. The correction to the spectral degree of coherence
is probably greater because the spectral degree of coher-
ence involves the ratio of two corrected quantities.

D. Convergence Issues
By the Green’s function formalism we have adopted
herein, the issue of convergence of the field statistics has
been simplified somewhat [16]. Previously, the conver-
gence of the statistics of the observation plane fields de-
pended on the number of rays per source field realization
and the number of realizations. With the current formal-
ism, the number of rays traced is of consequence only for
estimation of the Green’s function; the number of source
realizations is a separate issue altogether.

Convergence of the estimate of the Green’s matrix is ex-
plored through evaluation of its local standard deviation.
For a specified total number of rays traced, the Green’s
matrix is estimated nine separate times, in each instance
with a different initial random number seed. For each en-
try in the Green’s matrix we then compute the standard
deviation across all nine estimates. These standard devia-
tions are computed with the formula

�ij
2 =

1

8�
k=1

9


�Gij
�k�� − �Ḡij��2, �19�

where i is the index on the detector pixel, 1 iN; j is the
index on the source pixel, 1 jN�; and Ḡij is the mean
Green’s function computed over the nine estimates. Fig-
ure 9 shows the resulting distributions of these standard
deviations for various numbers of traced rays. This figure
illustrates that as the number of traced rays increases,
the distribution becomes narrower and the mode shifts
downward. For each distribution an average is computed;
results are shown in Fig. 10. Also shown in this figure is
the 1/�Nr asymptote, where Nr is the number of rays
traced. These results suggest that the fidelity of the
Green’s matrix can be established through inspection of
the global mean of the local standard deviations.

We further explore the effect of the number of rays
traced and the number of field realizations propagated.
This evaluation is in the context of the effect on the spec-
tral density. Results are compared with those computed
using PO. As a representative example we choose the par-
tial coherence case of �g /a=0.6. Figure 11 is a display of
the PO–MC residuals for the focal plane spectral density
computed as follows:

Fig. 8. (Color online) Comparison of the native and corrected
PO results for the transverse (a) and axial (b) spectral degrees of
coherence for the case �g /a=0.4.
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�PO–MC
2 =

1

N − 1�
i=1

N �SPO�xi,0,0�

SPO�0,0,0�
−

SMC�xi,0,0�

SMC�0,0,0� 2

,

�20�

where the summation is over the N detector elements.
These residuals are plotted against a fit model,

�̂PO–MC
2 = �30.1

�Nr
�2

+ �0.895

�Nf
�2

, �21�

where Nr and Nf, are respectively, the number of rays
traced and the number of field realizations propagated.
This model explains the residuals well and demonstrates
the independence of the number of rays and the number
of field realizations (due to the additivity of the vari-
ances). Not surprisingly, errors in the Green’s function
have a greater influence on the final result than the num-
ber of fields propagated.

5. DISCUSSION AND CONCLUSIONS
We have presented some recent results of our efforts to-
ward the development of a Monte Carlo formalism for
propagating fully stochastic sources through free space
and in the presence of diffracting structures. Use of the
Green’s function formalism has some obvious benefits,
aside from the commonly recognized features of such MC
calculations (simplicity, ease of treating complex bound-
ary conditions, etc.). In a previous paper [16], we ad-
dressed the issue of convergence of the estimates for
propagation of an ensemble of field realizations. We
showed that based on the first-order statistics of the de-
tector plane field, one could distinguish between conver-
gence of the field estimates from the numerical propaga-
tion effects. With the Green’s function formalism, one
explicitly separates the issue of convergence of the MC al-
gorithm from the statistical behavior of the detector plane
fields. Another benefit of the MC Green’s function concept
(and the MC ray trace concept in general) is that there is
no spatial quantization aside from that of the source and
detector planes. As a result, no explicit consideration need
be given to adequate sampling of the steeply sloped wave-
fronts as seen in high NA configurations.

We have chosen a problem for which the MC and PO
calculations are relatively straightforward. For such a
case, the MC calculations can be verified with direct nu-
merical integration of the PO integrals. The end result is
validation of the MC method of propagating partially co-
herent fields. The real utility of the MC Green’s function
concept, however, lies in more interesting situations (high
NA imaging systems, three-dimensional problems,
strongly scattering media, etc.). These problems are ones
for which PO calculations become difficult or impossible.
Nevertheless, it is these problems that lend themselves to
treatment using the MC Green’s function approach. Hav-
ing established the validity of this new approach, the sub-
stantiating PO calculations become unnecessary. The for-
malism that we have developed obviates some of the
shortcomings of PO approaches, is straightforward to
implement numerically, and lends itself to parallel com-
putation. For complex scattering media, the effective-
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medium of conventional MC approaches must be sup-
planted by a structured model such as the phase screen
paradigm [1] used for propagation through atmospheric
turbulence. Our current MC approach is entirely capable
of describing diffraction from such structures, and the
copula algorithm is well suited for generating realizations
of structured stochastic media. This ongoing research will
be the subject of future publications.

The interaction of light with matter is fundamental to
the understanding of our physical surroundings; electro-
magnetic energy is an observable that carries with it the
fingerprint of its interaction with matter. As a result, the
features of this light are the means by which we under-
stand the universe around us. Yet the propagation of light
within highly scattering media is not well understood. A
thorough understanding of this phenomenon is therefore
requisite for any endeavor that attempts to characterize a
physical medium, whether biological tissue, earth’s atmo-
sphere, or interstellar space. The efforts described in this
paper, which represent an attempt to directly link the
theory of light as a coherent wave phenomenon with ra-
diometric methods as embodied in MC studies of light
propagation, are aimed at developing a formalism for
studying such a wide ranging class of problems that can-
not be treated with either one approach or the other by
itself.

APPENDIX A
Consider the phasor summation

U =
1

�N
�
k=1

N

exp�i�k�. �A1�

It is easily demonstrated [22] that if the �k is independent
and each is uniformly distributed on the interval �−� ,��,
then U is a circular complex Gaussian random variable of
zero mean and unit variance. This is the requirement, for
example, for a laser speckle pattern to be considered
“fully developed.” Thus it would seem that the require-
ment on the phase distribution (of the �k) is fairly strin-
gent. In fact, it is not. It is sufficient that the phase dis-
tribution effectively span the fundamental interval. For
example, consider the phase distribution illustrated in

Fig. 12. The phases outside the fundamental interval are
wrapped into the interval �−� ,��, thus producing a phase
that is effectively uniformly distributed. Another example
might be the case in which the phases have a zero-mean
Gaussian distribution. It is straightforward to show that
for the standard deviation exceeding approximately �, the
phase is effectively uniformly distributed and thus the
phasor sum [Eq. (A1)] has circular complex Gaussian sta-
tistics.
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