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ABSTRACT 

For life to arise from non-life, a metabolism must emerge and maintain itself, 

distinct from its environment. One line of research seeking to understand this emergence 

has focused on models of autocatalytic reaction networks (ARNs) and the conditions that 

allow them to approximate metabolic behavior. These models have identified reaction 

parameters from which a proto-metabolism might emerge given an adequate matter-

energy flow through the system. This dissertation extends that research by answering the 

question: can dynamically structured interactions with the environment promote the 

emergence of ARNs? This question was inspired by theories that place the origin of life 

in contexts such as diurnal or tidal cycles. To answer it, an artificial chemistry system 

with ARN potential was implemented in the dissipative particle dynamics (DPD) 

modeling paradigm. Unlike differential equation (DE) models favored in prior ARN 

research, the DPD model is able to simulate environmental dynamics interacting with 

discrete particles, spatial heterogeneity, and rare events. This dissertation first presents a 

comparison of the DPD model to published DE results, showing qualitative similarity 

with some interesting differences. Multiple examples are then provided of dynamically 

changing flows from the environment that promote emergent ARNs more than constant 

flows. These include specific cycles of energy and mass flux that consistently increase 

metrics for ARN concentration and mass focusing. The results also demonstrate 

interesting nonlinear interactions between the system and cycle amplitude and period. 

These findings demonstrate the relevance that environmental dynamics has to ARN 

research and the potential for broader application as well. 
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1. INTRODUCTION 

In the beginning of modern research into life’s origins, the great challenge was to 

determine what natural process could have produced the molecular building blocks of 

life. When Miller (1953) brought a spark of light to this darkness, it may have seemed 

like the answers would soon be found. Instead, their experiment revealed new challenges, 

and new gaps between the primordial soup and modern life. In the years since, some of 

those challenges have been resolved, in whole or in part, and new ones have arisen. 

Today, there are many known natural sources of organic molecules, from extra-planetary 

amino acids to geothermal nucleotides, but critical questions remain in the story of life’s 

emergence (Branciamore et al. 2009; Koonin & Martin 2005). 

One unanswered question is how, from the combinatorial sea of possible 

molecules, a living system could emerge that is composed of relatively few types, but is 

able to maintain itself amidst the variety. Life as we know it solves the problem with 

three interlinked internal subsystems: a metabolism to ingest and convert food (matter-

energy); information storage to serve as template to identity and allow replication, short-

term adaptation, and long-term (populational) evolution; and a membrane to create and 

control a boundary with the environment (Gánti 2003). These three systems appear to be 

inextricably linked, so none could exist without the others, and there is not yet an 

accepted model for how they might arise by natural process. 

Many of the candidate models for the Origin of Life (OOL) theorize the initial 

emergence of one subsystem before the others, as in the membrane-first ‘Lipid World’ 

(Segré et al. 2001), or of a single structure that fulfills multiple functions, as in the 

combined metabolism and template of the ‘RNA World’ (Higgs & Lehman 2015). Some 
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OOL models have been constructed around specific environments or conditions where 

life could have emerged, such as tide pools or deep-sea thermal vents. The environmental 

aspects of these models include factors that may have been critical to abiogenesis (life 

from non-life), such as mineral surfaces with specific catalytic properties, or a consistent 

source of energy and food (Corliss 1990; Russell & Hall 1997). Among these 

environments, those that contribute a structured, dynamic interaction to the chemistry of 

the model system are of particular interest, and are central to this dissertation. The 

dynamic structure of these features could derive from natural periodicity, such as the 

day/night cycle or the ebb and flow of tides, and could interact with the chemistry by 

providing free energy, by evaporation or condensation of a solution, and so on. To an 

emerging proto-life system, this type of dynamic interaction may act as a predictable 

source of variety or as a selective force, which is thought to be conducive to the 

emergence of complex adaptive systems such as life (Hazen 2005). For example, a 

periodic inflow of new molecules might drive a select set of chemical reactions, so that 

both reactants and catalysts remain in the system at levels far from equilibrium. A 

constant high flow would favor the new molecules, washing away the reaction products, 

while a constant low inflow would fail to drive the system, with catalyzed reactions 

undistinguished from steady-state level. Even a constant moderate flow, cumulatively 

equal to the periodic flow, could have a deficient outcome if it never provides the surge 

of metabolites that helps the set of reactions to become established, perhaps failing to 

focus mass into robust loops or larger molecular products. 

While some origin-of-life theories have explicit connections to an environment, 

many others do not. In the field of Artificial Life (ALife), models of life and of 
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emergence are typically simple and abstract, with little consideration for environmental 

interactions (Langton 1984). This can be by design, as some research seeks to discover 

the minimal system necessary for a behavior, or it may be pragmatic, limited by available 

computational power or laboratory tools. Within these limits, ALife models have been 

successful in a number of ways. One area of success has been the study of autocatalytic 

reaction networks (ARNs), which are sets of mutually catalytic molecules and reactions, 

able to form reinforcing feedback loops and thereby maintain higher concentrations than 

other molecule species, as long as the reactions continue to be driven (Bagley & Farmer 

1991; Bagley et al. 1991). The model systems in this research are sometimes analogized 

to amino acids or nucleotides (Kauffman 1986), but more often they use highly abstracted 

chemistries to investigate the behaviors of differential equation kinetics and graph-

theoretic relationships (Fraser & Reidys 1997; Hordijk & Steel 2004). Even so, research 

into ARNs has delivered promising results, and continues to push in new directions 

(Hordijk et al. 2014; Vasas et al. 2010). 

The challenge presented by these abstract findings is how to relate them to other 

research in the Origin of Life or in Artificial Life that uses different modeling paradigms, 

with different assumptions and different levels of physical validity (realism). The present 

research addresses this challenge, as it applies to the question of whether dynamically 

structured interactions with the environment promote the emergence of ARNs, by 

extending ARN research to another modeling paradigm. While the present research did 

not aim for strict physical or chemical validity, it was structured so that its qualitative 

findings could be generally applicable, and so the choice of modeling paradigm might 

enable increased physical realism in future work. Additional details are given below. 
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Research Objectives 

The primary objective of this dissertation project, as stated above, was to 

determine the extent to which dynamic environmental interactions can promote the 

emergence of autocatalytic reaction networks. The expected results for this objective 

were to identify dynamic interactions that increase both the probability of ARN 

emergence relative to base conditions, and also the variety of system parameters in which 

emergence occurs. (It was also expected that some dynamic interactions would decrease 

emergence or have little effect.) The emergence of an ARN within a system of artificial 

chemical reactions is marked by the ARN’s ability to maintain substantially higher 

concentrations of its molecules, relative to other molecules in the same system or a 

steady-state system without catalysis (Bagley & Farmer 1991). The distance of this 

separation from background or steady state levels also measures the strength of the ARN, 

and can be calculated in terms of concentration profile (mean counts of same-length 

molecules, simplified to a single scalar value) or mass focusing (how much of the 

chemical system’s mass is focused into the ARN, expressed as a percent or ratio) (Bagley 

& Farmer 1991). For either metric, measured values can be used to quickly compare 

instances of the model that have different parameters. 

In order to maximize the likelihood of success on the primary objective, it was 

determined that a preliminary step and objective would be necessary first. The 

preliminary step was the implementation of an ARN-capable system in a different 

modeling paradigm than what has been used in the existing research. The matching 

objective was to establish a basic level of comparability between the outputs of a model 

from the new paradigm and previously published results. The determination to switch 
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modeling paradigms was informed by general review of modeling techniques (Borshchev 

& Filippov 2004; Epstein 1999; Minar et al. 1996; Scholl 2001), by the specifics of the 

prior research, and by the research question at hand. Previous research into ARNs has 

primarily used models from the differential equation (DE) paradigm (Bagley & Farmer 

1991; Farmer et al. 1991), which have certain advantages and disadvantages. For 

example, DE models work well for large, well-mixed populations, and for system 

attributes measured at the aggregate level, as with concentrations or reaction rates 

(Borshchev & Filippov 2004). The disadvantages include difficulties in tracking 

individual particles, in modeling heterogeneity of location or attribute, and in local 

interactions between particles. These disadvantages limit the usefulness of the DE 

modeling paradigm for this project’s primary objective of identifying increased variety 

and for its focus on system-environment interactions. Research into available modeling 

paradigms instead suggested the use of a multi-agent (or agent-based) modeling 

approach. The multi-agent modeling approach facilitates qualitatively different system 

features than the DE approach, including spatial heterogeneity, local interactions, and 

greater sensitivity to small effects and randomness (Scholl 2001). Within the broader 

category of multi-agent models, the dissipative particle dynamics (DPD) model paradigm 

was selected to use in this dissertation, for its appropriateness (specialized in middle-

scale molecules) and generality (not overly constrained by physical chemistry) (Flekkøy 

& Coveney 1999), and for its current application to related topics in OOL research (the 

formation of protocells [Fellermann et al. 2007, Gazzola et al. 2007]). A particular DPD 

system was found (Gazzola et al. 2007), and experiments from foundational ARN 

literature were selected for replicating in the DPD model (Bagley & Farmer 1991). The 
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preliminary objective of replicating DE results in DPD models was undertaken to add 

credibility to the primary findings about the importance of environmental dynamics, and 

to give these findings greater relevance in the field of  ARN research. The models are 

explained further in the LITERATURE REVIEW and RESEARCH METHODS chapters. 

Summary of Findings 

The research was successful in both of its objectives. The preliminary objective 

was met, establishing qualitatively similar behaviors between the project’s new DPD-

based model and the DE-based models that dominate the literature. Using one of the 

foundational papers of ARN research (Bagley & Farmer 1991), the new model was able 

to demonstrate several of the DE model’s aggregate behaviors with little tuning or 

optimization. Differences in the model were not surprising, and served to elucidate 

differences between the systems, as well as weaknesses in the measurements used for 

quantifying deviations from the reference non-autocatalytic steady state. 

The main objective of the dissertation was successful in demonstrating sizeable 

differences in the emergence of ARNs when the DPD model’s artificial chemistry system 

was subjected to dynamically structured variations in energy and mass flux. The findings 

include a consistent increase in ARN strength for cyclic mass flux in a wide range of 

parameter values, and for energy cycles with small amplitude. The gathered results also 

suggest interaction effects between the dynamic parameters of period and amplitude (for 

both energy and mass) and other parameters of the system, perhaps as interaction 

between the various time-based aspects of the chemistry, such as catalyst binding time 

and reaction rates. The results also suggest possible limitations in the metrics of 
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concentration profile and mass ratio as reliable indicators of ARN strength or system 

behavior. 

These findings constitute a useful contribution by this dissertation to the research 

of ARNs and emergent metabolisms, as well as the encompassing areas of study, 

including  Origin of Life and Artificial Life. The dissertation also suggests a rich future 

of potential research directions that are likely to produce many publication-worthy results 

and other useful contributions.  
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2. LITERATURE REVIEW AND PROBLEM CONTEXT 

This project draws upon research in the fields of Artificial Life, Origin of Life, 

and Systems Science. As all of these are interdisciplinary fields, this project builds upon a 

wide variety of work. The primary phenomenon being researched here—the emergence 

of an autocatalytic reaction network—lives primarily in the field of ALife (Bagley & 

Farmer 1991). The dissipative particle dynamics model that was adapted for this research 

is most commonly used in chemistry and biology (Flekkøy & Coveney 1999), but the 

particular software arrived via an ALife project in protocell membrane formation 

(Gazzola et al. 2007). Models of the “hard science” DPD paradigm resemble the multi-

agent models of many “soft science” fields, from sociology to economics. The inspiration 

for the main research question, as well as much of the anticipated future work, comes 

from the variety of existing OOL theories (Hazen 2005), as well as from general 

principles in systems science and complexity theory (Ashby 1956; Emery & Trist 1965). 

Systems science is critical to the core ideas of the project, including the synthetic 

interdisciplinary approach and the emphasis on an explicit role for the environment in a 

model system, and its influence runs so deep that it cannot be properly represented in 

references.  

Origin of Life 

In his book on the origin of life, Robert Hazen (2005) describes four factors that 

contribute to the emergence of complexity: the concentration of agents, the 

interconnectivity of agents, an energy flow through the system, and a periodic cycling of 

that energy flow. He suggests that these four factors may combine through some 
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undetermined function to provide an upper bound on the complexity of a system. Of 

these four factors, he suggests that the role of cycling is “a frontier area of study,” and 

that the natural cycles of day and night, tides, and wetness may have contributed to the 

emergence of life. The first three of these factors contributing to the emergence of 

complexity are present in the previous research on ARNs (Bagley & Farmer 1991), but 

the fourth is noticeably absent. 

 
Figure 1. A simplified representation of the chemoton model. 
The three autocatalytic cycles present are (1) metabolism, (2) template replication, and 
(3) membrane. Food particles pass through the membrane into the metabolic cycle, and 
waste particles are allowed out. The metabolism and template cycles interact to maintain 
the membrane. The three cycles are shown as separate here, but may not be distinct. For 
instance, in a metabolism-first model, a single cycle would fill the roles of (1) and (2). 
(Adapted from Bersini [2010].) 

One of the most well known abstract models for a living system is the chemoton 

(Gánti 2003). According to this model, a living system must have three subsystems: 

metabolism, template replication, and enclosure by a membrane (Figure 1). Each of the 

subsystems in the chemoton is an autocatalytic cycle, and the three work together to 

maintain the whole. Matter and energy enter the chemoton from the environment, 

1

2
3
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selectively filtered by the membrane. The metabolism uses the material from the 

environment as food to maintain itself, and also to produce the raw materials that the 

template system and membrane need to maintain themselves. The template system stores 

the condensed information of the chemoton, used for maintaining identity, replicating, 

and directing the transformation of raw materials into specific forms, such as structural 

and catalytic elements. The membrane maintains the concentrations of the other particles, 

and selectively allows unneeded particles out, just as it lets food in. 

 
Figure 2. The three autocatalytic cycles of life, as Borromean rings. 
Removing any one of the rings unlinks the other two, and the triad disbands. 

Perhaps the biggest unanswered question in Origin of Life (OOL) research is: in 

what order did the three subsystems emerge? It appears that each needs the others, and 

could not exist without them. The three cycles act like a set of Borromean rings (Figure 

2), where each ring holds the other two together (Cromwell et al. 1998). Remove any one 

ring, and the other two are separated, or, in the present context, may not be able to 

persist: without metabolism, the other cycles cannot maintain themselves; without 

Membrane Metabolism

Template
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templates, the other cycles lose informational specificity; without a membrane, the other 

cycles cannot differentiate themselves from the environment. 

Many theories have a preference for which cycle appeared first: replication-first 

models, such as the RNA world, favor a template molecule with catalytic functions 

(Higgs & Lehman 2015); membrane-first models, such the Lipid world, suggest the 

formation of lipid-based vesicles first (Segré et al. 2001); and metabolism-first models, 

such as the iron-sulfur world, begin with the emergence of a self-maintaining set of 

reactions (Wächtershäuser 2006). Theories for OOL can also be distinguished by the 

location or conditions in which they are believed to have occurred. These locations 

include deep-sea thermal vents (Corliss 1990; Russell & Hall 1997), tide pools, mineral 

surfaces (Koonin 2007; Orgel 1998), subterranean minerals (Koonin & Martin 2005; 

Wächtershäuser 2006), the ocean surface (Dobson et al. 2000), and more. The models of 

both this dissertation and the prior research it draws upon most heavily (Bagley & Farmer 

1991) are perhaps most similar to metabolism-first theories. However, the ARN results 

may be just as applicable to metabolism emergence, regardless of order, and may also 

apply to autocatalytic networks of nucleotide polymers in the RNA World. 

It has been suggested that augmenting Origin of Life studies, and ARN models in 

particular, to include spatiality may be the key to uniting the phenomena involving 

metabolism and membrane (McMullin 1999). Regardless of which of these came first, or 

which gives rise to the other, the concept of a membrane is difficult to even consider 

without spatiality. If one holds the metabolism-first view, then spatiality must be added to 

the model for metabolism to give rise to a membrane. If one holds a membrane-first 

view, then spatiality precedes metabolism, and is an inherent part of the system. It has 
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even been argued that the ALife concept of autopoiesis can be characterized as 

“collective autocatalysis plus spatial individuation” (McMullin 1999). Autopoiesis 

(literally, “self-creating”) is a term coined to describe a general system capable of both 

self-making (creating the self as a bounded, individual entity) and self-maintenance 

(replenishing its parts by taking in matter and energy) (Varela et al. 1974). The term is 

meant to include Earth’s living systems, with enough abstraction to include non-

biological life. Reducing autopoiesis to autocatalysis and spatiality makes the point that 

the difference between a self-maintaining autocatalytic system and a self-making 

autopoietic system is intrinsically tied to spatiality. Though the current project does not 

attempt the unification of self-maintenance and self-making, it is a compelling direction 

for future work, and directly made feasible by the translation of the ARN system to the 

DPD model. One next step toward autopoiesis would be to integrate protocell-style, lipid-

like membrane components into an ARN system model. 

Artificial Life 

The field of Artificial Life (ALife) has much in common with OOL research, but 

with more concern for the general idea of “life-as-it-might-be,” rather than “life-as-we-

know-it” (Langton 1992). The overlap with OOL includes the subfield of “wet” ALife, 

which aims to create biochemical life from scratch, in the lab. There is also overlap 

between OOL and software-based “soft” ALife, with its computational models aimed at 

simulating particular aspects of living systems, or at breaking life down to its simplest 

components. While these models are all abstracted to a greater or lesser extent, from the 

ALife point of view this is a virtue. A major theme of ALife is to discover the generalities 
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and underlying rules of all living systems. This variety of purpose and method in ALife 

research has created a broad spectrum of models, from relatively realistic simulations of 

molecules forming protocells, to highly abstract self-reproducing cellular automata. 

Somewhere in the middle of this spectrum is the study of autocatalytic reaction 

networks (ARNs) (Bagley and Farmer 1991; Bagley et al. 1991; Farmer et al. 1986; 

Kauffman 1993). As described above, this work focuses on the emergence of a 

metabolism from a soup of prebiotic molecules, in the form of a network of autocatalytic 

reactions. A foundational work in this area is Bagley & Farmer (1991), which features a 

differential equation model with parameters of reaction rates and concentrations, with its 

varied configurations solved analytically. The Bagley & Farmer model (or B-F model, 

within this dissertation) attempts some amount of biochemical justification in the 

parameters of its artificial chemistry, and like a set of chemistry equations, it treats the 

“world” of its system as a formless space holding a large, well-mixed population of 

molecules. The B-F model has demonstrated emergence of a self-sustaining autocatalytic 

reaction network, given adequate levels of available energy and food concentration, as 

well as an artificial chemistry with catalysis, condensation-favoring reaction parameters, 

and so on. The B-F model does not address either the creation of a membrane, or the use 

or need for templates. The particle population is selected to be approximately the size of a 

bacterium, but there is nothing “outside” the non-spatial system to interact with or 

exclude. There is some discussion of the robustness of an ARN against the dramatic 

reduction of a member type, or against changes in the food set, but any information that 

facilitates this exists only in the population or the reaction graph. There is a brief mention 
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that the findings could also apply to RNA-like molecules, but there is no template 

function in the model.  

Further work with this model (Bagley et al. 1991) began to explore its potential 

for evolution. Small changes were made by stochastically selecting polymers from 

“nearby” autocatalytic subgraphs, and adding them to the reaction network. These altered 

networks were allowed to return to a steady state, and if the added subgraph was 

maintained at high concentrations, it was kept. By repeating this process, the research 

showed how a network of reacting chemicals could “evolve,” collecting variations that 

were favorable to system’s ability to maintain its distance from equilibrium. (This is not 

evolution in the Darwinian sense, but is perhaps more appropriately called adaptation.) 

As with other studies of emergent metabolism, the researchers suggest that the “genetic 

information” of these networks is distributed among the polymers that make them up. 

(This is similar to the “composome” idea in Lipid World research [Wu & Higgs 2008], 

though the Bagley et al. [1991] model does not use that term. This term will be revisited 

later.) The discussion accompanying Bagley et al. (1991) suggests the possibility of 

modeling multiple reaction networks, each in its own container with occasional 

interactions between them. However, it does not appear that this work has ever been 

published. 

For the most part, the study of autocatalytic reaction networks has been connected 

with the metabolism-first theories for the OOL. This class of models has been criticized 

for its lack of biochemical realism, because the entities in these models have limited 

potential for heredity (Anet 2004; Orgel 2008; Szathmáry 2006; Vasas 2010). However, 

findings in autocatalytic research may also be applicable elsewhere, despite their current 
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association with metabolism models. As the chemoton model in Figure 1 demonstrated, 

all three loops could be characterized as autocatalytic. Bagley and Farmer (1991), though 

they labeled their networks as metabolisms, were aware that the model’s components 

could have been nucleic acids such as RNA rather than amino acids and proteins. 

Even if the metabolism-first concept falls out of favor within OOL research, it 

may yet have other applications. Even if metabolisms did not emerge first, they did 

emerge from systems that did not possess metabolisms. Indeed, the replication-first OOL 

models could perhaps be faulted for their silence on how metabolism emerges. Because 

the transition to metabolism happened and was necessary for life as we know it, the study 

of the emergence of metabolism will continue to be relevant to OOL studies. 

And, within the field of ALife, where Earth’s actual history and biology carry less 

weight, the emergence of metabolism-first life continues to be a possibility that is 

interesting to explore. For these reasons and more, the study of autocatalytic reaction 

networks remains active and relevant (Benkö et al. 2009; Gordon-Smith 2009; Hordijk et 

al. 2014; Stassinopoulos et al. 1998; Wu & Higgs 2012). 

Autocatalytic Reaction Networks 

Briefly defined, an autocatalytic reaction network (ARN) is a set of molecules 

where every member is a participant (reactant or product) in a catalyzed reaction that 

involves only other members of the set as participants and catalysts. This 

interdependence can create a tightly bound group of reinforcing feedback loops whose 

reactions are able to dominate non-catalyzed reactions, in terms of activity or member 

populations. This is most relevant in a system that is being driven away from equilibrium: 
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since catalysis affects reaction rates rather than equilibrium levels, an ARN could not 

differentiate itself in a system at chemical equilibrium. 

In ARN research, the default is for reactions to be reversible, so that molecules on 

either side of an equation’s directional arrow are treated equivalently in the ARN 

definition. This leads to the interesting phenomenon that an ARN may possess a basic 

facility for self-maintenance: if a single molecule type is removed from a network, the 

stock of other molecules and their supporting reactions will replenish some of the lost 

type. Because of these behaviors—the ability to “out-compete” other reactions for food, 

and the simple self-maintenance—the emergence of an ARN has been described as the 

emergence of a simple metabolism (Bagley & Farmer 1991). Arguably, this simple 

“proto-metabolism” is only fulfilling the constructive aspect of a metabolism, as it builds 

structure and maintains itself from component parts, but does not demonstrate the 

destructive metabolism of organic life, where long molecules are broken down for energy 

and waste is produced. 

The reactions and molecule types of an ARN can be specified as a list of chemical 

equations or as a network graph. This specification separates the potential for reaction 

from the “actual” reactions that might happen in a simulation with energy, reaction rates, 

and molecule concentrations. In the literature, this aspect of an ARN is sometimes called 

the autocatalytic set, and some research focuses on the characteristics of these sets that 

make an ARN more or less likely to emerge (Hordijk & Steel 2004; Hordijk et al. 2014). 

Figure 3 depicts the graph of an autocatalytic set that is used extensively in Bagley & 

Farmer (1991). Since some of the results from Bagley & Farmer (1991) are targets of 

attempted replication in this dissertation, the graph is also the basis for most of the ARNs 
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and results presented here. This graph contains 13 reactions, each catalyzed by one 

member of the set. (Each reaction must have at least one catalyst to be in the ARN, but 

there is no restriction against multiple catalysts.) There are 2 food set molecules (the 

monomers A and B) and 13 polymer products of various lengths. Some of the reactions 

are catalyzed by their own products and so qualify as single-reaction ARNs, nested 

within the larger ARN. There may be other subset ARNs hidden in the graph as well.  

 
Figure 3. The autocatalytic network of Bagley and Farmer (1991). 
This network is used in many of the experiments in this dissertation, for purposes of 
replicating results in the literature, and for new research. Bullets are reactions, and arrows 
connect molecules to them, showing favored direction. Dashed lines show catalytic 
effects, and the circled particles are the food set. There are 15 molecule types and 13 
catalyzed reactions in this ARN. (Reprinted from Figure 2 of Bagley and Farmer [1991].) 

A simpler example of an autocatalytic set can be found in the reaction network 

graph of Figure 4. The autocatalytic set consists of the molecular species A, B, BA, BAA, 
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and BAAA (marked by ovals in the figure). By the definition above, an autocatalytic set 

must be all of the reacting molecules for a particular set of catalyzed reactions, for which 

all of the catalysts are also members of the set. “Reacting molecules” refers to all of the 

types on both sides of an equation, regardless of favored direction, but not the catalyst. 

The five types in the set meet these criteria: each is a reactant in a catalyzed reaction 

where all components are also in the set. For instance, BAA is a product of the reaction 

BAA+A!BAAA that is catalyzed by BA, and the other three participants (A, BA, BAAA) 

are also members of the set. On the other hand, BB and AA are not members of the set, as 

they don’t meet the criteria: BB is a catalyst, but is not a reactant in a catalyzed reaction; 

AA is reactant in a catalyzed reaction, but the catalyst (BB) is not in the set. 

 
Figure 4. A simple reaction network graph containing a small ARN. 
The graph shows only a subset of all possible combinations of A and B. Dots represent 
reactions, and solid lines connect them to reactants, with arrows showing favored 
direction. Dashed lines are catalytic effects. Molecule species marked with ovals 
comprise an ARN, or autocatalytic set. 

Thankfully, there are methods to algorithmically locate or verify autocatalytic sets 

within a reaction network. For instance, to decide on the presence of an autocatalytic set 

in a RN, a list may be created of all molecules from catalyzed reactions. A minimum 
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concentration or population may be used as a threshold for inclusion. Any particles that 

were not catalyzed by members of the list are removed. This process is repeated until all 

molecules on the list are catalyzed by other molecules on the list. If the resulting list is 

non-empty, it contains at least one autocatalytic set. More efficient algorithms exist as 

well (Hordijk & Steel 2004). 

The presence of an autocatalytic set is necessary but not sufficient for the 

emergence of an ARN. As Bagley & Farmer (1991, p.106) states, “We must emphasize, 

however, that the presence of an autocatalytic set in a reaction network, in and of itself, 

does not imply that there will be any interesting departures from equilibrium behavior. To 

achieve catalytic focusing it is critical that the kinetic parameters are favorable.” In this 

context, focusing refers to the effect where the mass of the system exists mostly in the 

relatively few molecule types that make up the autocatalytic set. Because the system is 

driven away from equilibrium, catalysis can cause this focusing effect, and maintain a 

higher fraction of the system’s mass in catalyzed products than would otherwise be 

possible. Bagley & Farmer (1991) suggests three “favorable” kinetic parameters that 

might be critical: strong catalytic effects; reaction energies that favor polymerization 

(increasing molecule length); and a driving force (such as a constant inflow of new 

particles). The claim for the necessity of these three parameters was not made strongly, 

though it was consistent with the results (Bagley & Farmer 1991). In the present research, 

a system configuration was encountered where it appears that the driving force is not 

necessary. This could not be proven within the scope of this dissertation, however. (See 

Result 1.3, especially Figure 11, Table 5, and the intervening discussion.) 
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While studying a particular ARN, it can be helpful to describe and measure 

certain other sets of molecules in the system. In the literature, the background set is the 

name for the set of all molecule types that are not members of the ARN. The chemistry of 

a typical model (such as the B-F model) allows for all possible reactions to occur, though 

most are not catalyzed. A chemical model with 2 monomer types has 2n polymer types of 

length n, and (2n+1 − 2) total types of length ≤ n. For the B-F model’s network (Figure 3), 

there are 15 types in the ARN’s set, and 32,751 (215 − 2 − 15) in the background set. 

(That count is only up to length 14 – background reactions aren’t limited in length.) 

Without a process that selects for some reactions to occur more than others, specific types 

become exponentially more rare with length.   

It is also useful to split the ARN itself into two sets: the food set and the ARN 

without the food set. (The latter has no convenient short name.) The food set contains all 

of the molecule types that are allowed by the model’s design to enter the system as mass 

flux. This mass flux is the driving force that pushes the system away from equilibrium, 

and that driving is what allows the ARN to focus mass. (A formal description of the 

relation between food set and catalytic reaction network is given in Hordijk & Steel 

[2004], along with an algorithm for detecting autocatalytic sets.) Separating the food set 

from the rest of the ARN makes it easier to study the effects of changes to the mass flux. 

For instance, in Figure 12 and Figure 13, the distribution of mass as a function of mass 

flux reveals relationships between food set, ARN without food, and background set, 

which could be obscured if the ARN were not separated in this way. 

There are no definitive measures or boundaries to decide whether the potential in 

an autocatalytic set has been fulfilled in a model and the ARN has “emerged.” The 
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literature states that an emerged ARN is “an autocatalytic set whose concentrations make 

significant departures from the values they would have if none of the reactions were 

catalyzed,” and at the same time admits that this definition is “vague” and “subjective” 

(Bagley & Farmer 1991, p.107). One attempt to measure emergence is the “concentration 

profile,” which condenses the populations of a set of molecules (ARN or background) 

down to a handful of points, with molecule types grouped by polymer length. An 

example is shown in Figure 5, using data from a simulation of the DPD model. 

 
Figure 5. Concentration profile of a single simulation run with the DPD model. 
The lines N and B show mean concentrations for ARN (Network) and Background sets, 
respectively, grouped by polymer length. The line E shows approximate concentrations in 
a non-catalyzed network at steady state. The legend includes Λ  values for each line, 
which are the slopes of best-fit lines for each set. (This figure is identical to Figure 9, and 
is explained further there, along with a similar B-F figure.) 

In Figure 5, the concentration profile for the ARN (N, for Network) is plotted on 

the same axes as the concentration profile for the background (B). There is also a third 
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line that represents a similar system without catalysis (marked E for Equilibrium in the 

literature, though “non-catalyzed steady state” may be a more accurate label). When an 

ARN has emerged, the difference in concentrations will be substantial, and the N-points 

will be far from the B-points. This may be especially apparent for longer polymers, since 

concentrations should drop off exponentially with polymer length. Note that the vertical 

axis uses a logarithmic scale, and the concentrations of the longest polymers in the ARN 

are a few orders of magnitude more common than the background in this figure. 

The slope of a concentration profile line can also be used, further condensing the 

populations of a set of molecules down to a single value. For the ARN, this acts as an 

approximation for the strength of the network, summarizing its ability to maintain its 

members’ concentrations at levels higher than the background. This measure is labeled 

“Λ” (capital Greek lambda) in the reference literature (Bagley & Farmer 1991; Bagley et 

al. 1991). To computer the metric Λ , a line is fit to a concentration profile (ARN or 

Background) by a least-mean-squares method, and the slope of that line is taken to be Λ . 

The values for Λ  are always negative, since concentrations are measured as fractions of 

the total molecule count and then plotted in the profile on a logarithmic scale. Λ  values 

can be compared between simulations with different parameters, with larger (closer to 

zero) values suggesting higher concentrations. For ARNs, higher values imply greater 

separation from the background and from the steady-state value, which represents the 

concentrations of a non-catalyzed system. 

As a simple, single-value indicator for an entire population, the concentration 

slope Λ  is convenient for characterizing an ARN-capable system’s sensitivity to 
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variations in other parameters, such as mass influx rate, reaction rate, and probability of 

catalysis. This method of experimentation is prominent in the reference literature (Bagley 

& Farmer 1991), and because of that, it also figures prominently in this dissertation’s 

results. See the section COMPARING THE MODELS in the RESULTS chapter for specific 

examples of the measure Λ  being used for sensitivity analysis. 

Modeling ARNs 

The differential equation (DE) modeling paradigm is the typical structure for 

ARN simulation, including the B-F model, as mentioned previously. A DE model 

describes systems through a series of differential equations, and the behavior is 

characterized by rates of change and flows between populations. A model in the DE 

paradigm typically assumes that there are no spatial or distance effects; that members of 

populations are identical; and that fractional population quantities are acceptable. When 

used for molecular simulation, a DE model might be thought of as simulating a large 

population (on the order of 106 or more particles) that exists in a well-mixed container, 

such that every particle has equal opportunity to interact with every other particle. These 

models are typically deterministic, though random factors can be included (see OTHER 

RELATED MODELS, below). The DE paradigm is essentially identical to the system 

dynamics (SD) paradigm (Scholl 2001), though one term may be more common than the 

other in a particular domain.) 

The DPD modeling paradigm that is used in this dissertation can be considered a 

sub-type of the general category of Agent-Based Modeling (ABM). In the ABM 

paradigm, systems are modeled as a population of discrete, individually distinguishable 
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agents with well-defined states (Epstein 1999). These agents typically inhabit a simulated 

physical space in 2D or 3D, moving about and interacting in discrete time. The rules for 

interaction may be the same for all agents, or they may vary for different types of agents. 

Models in the ABM paradigm prefer smaller populations than can be modeled using DE, 

and typically require more computational resources relative to population. ABM models 

emphasize local effects and interactions, spatial variations, and sensitivity to random 

initial conditions. Because of random effects, experiments with ABM models often 

require multiple executions, the results of which are collected are described via statistical 

distributions. 

Models in the DPD paradigm specialize in simulating systems of chemical 

particles with more realism than a general ABM model. DPD modeling is most suitable 

for modeling mesoscopic systems (between microscopic and macroscopic) comprised of 

larger molecules or clusters of molecules, and the time- and space-scales over which such 

particles interact (Flekkøy & Coveney 1999). The related paradigm of molecular 

dynamics (MD) is designed for modeling much smaller systems and effects, close to the 

atomic scale, and is therefore not as useful for modeling at the scale of an ARN (Flekkøy 

& Coveney 1999). DPD models are also well suited to the study of hydrodynamic 

systems (like an ARN) and have been used to model the behaviors of lipids and lipid-like 

particles, including the formation of vesicles and protocells from these particles 

(Fellermann et al. 2007; Gazzola et al. 2007; Solé 2009). 

The specific DPD modeling software used in this dissertation is derived from a 

package that has been used in other ALife research (Gazzola et al. 2007). The source 

code for the software was generously made available, so that it could be modified as 
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necessary for the ARN simulations. It had previously been used for several different 

projects, most recently to study catalytic activity between lipid-like amphiphiles 

(molecules with both hydrophobic and hydrophilic parts) and smaller molecules, with 

some realistic aspects of chemistry included (Gazzola et al. 2007). 

Other Related Models 

Many other models used in ALife or OOL research have some relation to those 

used in ARN research, and so may find some relevance in the results of the dissertation. 

For instance, some work on the ‘RNA World’ concept has been influenced by the idea of 

a ‘mineral honeycomb’ whose inorganic compartments provide protection and spatial 

separation for replicators (Branciamore et al. 2009). That research used a cellular 

automaton model and differed greatly from the models of this project, and yet it is similar 

in the aspects of spatiality and an externally provided compartment. The use of the 

mineral honeycomb was influenced by OOL ideas involving deep-sea thermal vents and 

mineral surfaces (Koonin & Martin 2005; Wächtershäuser 2003), and this dissertation 

counts those same ideas among its influences. 

OOL research has also made use of spatial molecular dynamics models, especially 

in the study of protocells (Boerlijst & Hogeweg 1991; McCaskill et al. 2007; Morowitz et 

al. 1988; Segré & Lancet 2000). This research seeks to produce a minimal cell, either in 

simulation or in vitro. Much of the work is concerned with membrane formation, which is 

inherently spatial in its goal of creating a boundary that separates the interior of a cell 

from the rest of the world. Some protocell research uses the DPD modeling paradigm 

(Fellermann et al. 2007; Solé 2009), and the DPD models of this dissertation were 
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adapted from source code used in protocell research (Gazzola et al. 2007). This presents 

the possibility that the DPD paradigm could help to bring together protocell boundary 

research and the proto-metabolism of ARN research. Another potential bridge between 

protocell research and ARNs may exist in a greater role for peptides in protocell 

formation, on par with lipids (Fishkis 2007). Since peptides are more closely related to 

the amino-acid-like chemistry typical in an ARN, a protocell theory that includes 

peptides might be even more conducive to studying the linked emergence of membranes 

and metabolism. 

Another ALife model that is related to this project is the GARD model (Segré et 

al. 1998, 2001; Segré & Lancet 1999). GARD (for “graded autocatalytic replication 

domain”) is similar to the B-F model in several ways. It features an artificial chemistry 

with autocatalytic features, with reactions determined by differential equations or 

stochastic methods. However, the GARD model is more concerned with amphiphiles 

(molecules that both attract and repel water) and origin theories of The Lipid World. 

Much of the research with the GARD model relies upon the possibility of heredity that 

occurs via a composite genome, or composome. The idea of the composome is that 

templates in early life may have been characteristics of populations of molecules, rather 

than a single molecule like RNA or DNA (Wu & Higgs 2008). Though the GARD model 

is focused on membranes, the composome aspect is relevant to this research for its 

treatment of replication without a template. Some research using the GARD model has 

even considered the role of the environment, though in a different form than in this 

project (Shenhav et al. 2007). In that research, composomes were measured in models 

featuring environments of either infinite or finite size. In the finite model, variety in 
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composomes was found to correlate over time with aspects of the environment, while 

composome variety in the infinite model did not. 

Another common molecular modeling method is to use stochastic methods to 

simulate interactions. These models are referred to as stochastic molecular models or 

stochastic molecular collision models (Bagley et al. 1991; Farmer et al. 1986; Fernando 

et al. 2007; Segbroeck 2009). This paradigm is similar to the DE paradigm in that it 

models systems with no spatial aspect. However, it typically assumes smaller, whole 

number populations like an ABM paradigm model, which allows individual particles to 

be tracked. Interactions between particles are modeled by selecting candidates at random 

from the population, completing a reaction if conditions are right, then returning the 

results to the population. By repeating these steps many times for a large enough 

population, the results approximate those of a DE model with the potential for more 

realistic treatment of individual particles. A drawback of this discrete treatment of 

interactions is that parallel events become more difficult to model. Another drawback is 

that a stochastic molecular model has higher computational resource requirements than a 

DE model, and so has lower practical limits on system size. In this sense, it likely falls 

somewhere between the DE and ABM modeling paradigms, trading speed for the 

additional modeling capabilities. 

The subject of the stochastic molecular model in Fernando et al. (2007) is notable 

here for its other similarities to the present research. That work attempts to answer 

questions about the competing processes of elongation and replication in RNA, related to 

the RNA World concept. One issue in this area is to determine under what conditions 

replication may be favored over elongation, since this is required for RNA to serve the 
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template function in a prebiotic system. Fernando et al. (2007) specifically considers 

whether the effects of tidal cycles favor replication, as has been suggested elsewhere. By 

applying the stochastic molecular model (in some ways a compromise between the DE 

and ABM paradigms, as described above) to a problem featuring polymer formation and 

a cyclic environment, Fernando et al. (2007) is among the closest works to the present 

research. Though the differences are still sizeable, the similarities may prove useful if the 

two areas of research can be bridged, or can “cross-pollinate” each other. In particular, 

the dissertation attempts substantially less chemical realism than Fernando et al. (2007), 

and so might be able to learn from that line of research should such validity be sought in 

the future. 

The contrast between the ABM and DE paradigms has been made repeatedly, in 

areas of research from molecular dynamics to sociology and economics (Borshchev & 

Filippov 2004; Epstein 1999; Schieritz & Milling 2003; Scholl 2001). These comparisons 

often highlight how the two model types complement each other, and how their different 

strengths can be applied to the same problem for different research questions. The 

strengths mentioned typically are spatiality, individualism and emergence in ABM 

models, and feedback, causality and aggregation in DE models. 

Systems Science and Complexity 

The influence of Systems Science ideas exists throughout this research. The most 

obvious is the focus on the environment as a rich part of the model, rather than an 

implicit background for the system of interest, present only as simple parameters. In the 

models of this dissertation, the environment is considered as a source of causal texture. 
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This means that structured variation in the environment can cause change and create 

structure in the modeled system. In the work of Emery and Trist (1965), causal texture is 

classified into four types: 

1. unchanging, random, and inhabited by one system 
2. unchanging, clustered, and inhabited by one system 
3. inhabited by competing dynamic systems 
4. a dynamically changing environment, perhaps containing other systems, and 

perhaps structured at a higher level 

The previous models for ARNs would be classified as the first two types. The 

models in this dissertation were designed to have the fourth type of causal texture. This 

level of dynamism, where the world that the system inhabits undergoes structured 

change, can be a source of variety and order for the system. It is also a more reasonable 

approximation of the environments in which life is observed and is expected to exist. 

This idea of causal texture has been applied to the evolution of adaptive systems (Fletcher 

et al. 1997, 1998), where it was found that the structure of the environment had a strong 

effect on the ability of mobile agents to adapt. Though the structure of the environment 

was held constant for models in that work, agents were forced to move around, so that 

they experienced a dynamic structure. The information content of the environment, 

relative to agents’ abilities, was predictive of their adaptive success. 

This project was also inspired by Ashby’s Law of Requisite Variety (Ashby 

1956). This law says, roughly, that for a system to be able to regulate itself optimally, it 

must be able to respond (deterministically) to external disturbances with a variety of 

action that meets or exceeds the variety of disturbances. This suggests that a dynamically 

structured environment can be viewed as a source of selective pressure for adaptive 

systems. Any systems that lack the requisite variety to respond will have much less 
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chance of regulating themselves, and will therefore be less fit. This also suggests a 

drawback of modeling with a simple environment: the absence of selective pressure leads 

to less-fit systems. For instance, in a simple environment that provides constant abundant 

resources, any system may survive regardless of its fitness. In an environment that is 

constrained but still simple, the selective pressure is also simple. This may lead to a 

monoculture, with a single system that has the best response to the simple constraint. 

Such a system is unlikely to be adaptive, and probably could not self-regulate outside of 

the single, simple environment in which it emerged. Modeling this sort of system-

environment interaction might be providing insights that are only applicable in simple 

worlds, while the worlds that we inhabit are decidedly complex. 
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3. RESEARCH METHODS 

This chapter contains three sections. The first, Model Adaptation and Analysis, 

describes the process of adapting DPD modeling software to the purposes of this project, 

as well as the support and analysis tools that were created and used for the dissertation. 

The second section, Replication and Comparison Experiments, describes the methods 

used to complete the four experiments aimed at replicating results from the reference 

work in Bagley & Farmer (1991). The third section, Dynamic Environment Experiments, 

explains the methods used to answer the main research question through a series of four 

experiments. These experiments applied dynamic effects to the reaction network system 

in the form of cyclic mass flux or energy, varying in period and amplitude. 

Model Adaptation and Analysis 

The DPD models used in this dissertation were executed in software that was 

customized and adapted specifically for this project, beginning with a body of code that 

had been used for other DPD models in ALife (Gazzola 2007). The core of the existing 

code that handles particle movements and interactions was usable in its received state. 

Modifications to the software were necessary to improve the mechanism of catalysis, to 

implement the dynamic environmental interactions, and to enable data logging needed for 

the analysis. Other modifications were made to improve automation and performance.  

The software is written in the C programming language, and was compiled by the 

open-source compiler that is available for free with the Mac OS X operating system. (The 

software should also compile and run on a Linux-based operating system without 

substantial modification.) To run a single simulation, the compiled software is executed 
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from the command line with a configuration file that contains all desired parameters, both 

for the workings of the DPD paradigm and for model system. Output from the simulation 

is written as text to the console and saved into text files, and also displayed graphically in 

a separate window. The graphical output is designed to show a 2-dimensional view of the 

system’s particles and bonds, updated at a configurable frequency, though this may be 

limited by system resources. Among the modifications added for the dissertation is an 

option to disable the graphics within a simulation, which improves performance and 

simplifies execution during parallelization. 

The DPD software, before modifications, allowed for a form of catalysis  

(Equation 1) where one particle type (X) would be transformed to second type (Y) by 

reacting with a catalyst (E), with the catalyst treated as both reactant and product. 

However, this method of modeling catalysis was not feasible for the polymerization 

reactions of the B-F model or other ARN research. In these models, there may be 

exponentially many possible chains built from a few monomer types, which would be 

difficult to represent in the older catalyst system. That system would also make it difficult 

to track and conserve the monomers throughout a simulation. An example of the desired 

form of catalyzed reaction is presented in Equation 2, in which two chains of monomers 

(AABA and BA) form a bond, using the catalytic path provided by a third chain (BBB). 

Equation 1. Transformative catalysis in the original DPD software. X and Y are 
molecules, and E is the catalyst. 

𝑋 + 𝐸   → 𝑌 + 𝐸 

Equation 2. Catalyzed reaction between polymers. The polymer chains at left bond into 
the long chain at right by energetic preference. BBB is the catalyst. 

𝐴𝐴𝐵𝐴 + 𝐵𝐴
!!!

𝐴𝐴𝐵𝐴𝐵𝐴 
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To implement this in the DPD software, additional logic was added to the 

functions that determine whether two particles might bond (if separate) or cleave (if 

already bonded). The existing algorithm for this determination was based on factors such 

as distance, forces between the particles, and configurable reaction probabilities. The new 

logic adds a check for whether the reaction has potential catalysts, and if so, whether any 

are nearby and available for reaction. If all conditions are met, the catalytic efficiency of 

that catalyst is factored into the reaction probability. The probability is tested against a 

generated random number, and if the reaction occurs, the catalyst is marked as ‘bound’ 

along with the reactants. This lasts for a small, parameterized amount of time, during 

which the participants are bound together and unable to engage in other reactions. 

Besides the logic added to include catalysis in reactions, options were added to the input 

file format for specifying catalyst properties, and data structures were built into the 

software to efficiently maintain the list of possible catalyzed reactions. 

The other major modification to the software added the functionality of dynamic 

values for mass flux and free energy. For both of these dynamic interactions, the 

configuration options allow for choosing a cycle type and specifying its parameters. The 

only cycle type that is currently implemented is a sine wave with parameters for period, 

amplitude, and phase offset. (The code is structured so that other functions can be added 

easily.) Both sorts of dynamics build upon existing model parameters, which provide 

static values that are combined with results of the cycle calculation. The cycle parameters 

are used to calculate a time-dependent amount to be combined with the static value. 

For mass flux, the previously existing parameter is a base rate that specifies the 

inflow to the system in mass per time, in the form of molecules drawn randomly from the 
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food set. By design, any inflow of mass is balanced by an equal outflow, taken at random 

from the system. In the DPD model, the location of inflow and outflow could be relevant 

to results, but this was controlled for in the current experiments by randomizing inflow 

location and outflow selection. The conservation method for the DPD model is analogous 

to the system “spilling over.” Polymers are removed while total mass exceeds the desired 

set point. If the outflow of a long chain overshoots the set point, no additional outflow 

occurs until inflow “refills” the system. The matched inflow and outflow effectively 

conserve mass in the system, which is equivalent in these models to maintaining 

monomer population, since all monomers have equal mass. These built-in assumptions 

serve to simplify the experimental design by controlling for those properties. 

The addition of the cyclic inflow to mass flux was relatively straightforward to 

implement in the code, since the two values have the same units and are combined 

additively, maintaining the inflow/outflow balancing process and all other code for 

handling particle population. The implementation of cyclic energy was not as 

straightforward, in conception or in implementation. 

In standard chemistry, the most direct way to manipulate a system’s energy is 

arguably through temperature, and this is the form of dynamic energy that was selected 

for the model. In hydrodynamic systems such as these, an increase in temperature 

generally causes an increase in reaction rate, and a decrease in temperature causes a 

decrease in rate. The quantification of the rate change can be approximated with the 

Arrhenius equation (Equation 3) as a function of the reaction’s rate constant and 

activation energy, and the system’s temperature (Housecroft & Constable 2010). The 
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Arrhenius equation provides a guideline that reaction rate doubles for each 10 K rise in 

temperature, approximately accurate within a limited temperature range. 

Equation 3. The Arrhenius equation. k=reaction constant, A=frequency factor, 
Ea=activation energy, R=molar gas constant, T=temperature. 

𝑘 = 𝐴𝑒!!!/!" 

Equation 4. Cumulative distribution function for the exponential distribution. The 
parameter in the equation, λ, is a rate parameter. 

𝐹 𝑎 = 1− 𝑒!!" ,    for  𝑎 ≥ 0 

Equation 5. “Pseudo-code” equation for probability of reaction in the DPD model. 
Configuration parameters for reaction constant and catalytic efficiency (see Table 3) 
have been converted to factors. The equation, similar to Equations 3 and 4, combines the 
factors with a dynamic energy factor to compute an adjusted reaction probability.  

Prob reaction = 1− 𝑒!(reaction  rate)(energy  factor)(catalysis  factor) 

In the DPD model, reactions are parameterized with probabilities rather than rate 

constants, and the doubling relationship is not directly applicable. However, this gap can 

be bridged using the relationship between an event’s probability and the chance of it 

occurring in a given time. The constant-rate aspect of the event can be modeled as a 

Poisson process, and the probability of such an event is then described by an exponential 

distribution function (Equation 4) (Dekking et al. 2005). This function is notably similar 

to the Arrhenius equation, both featuring the negative event rate in the exponent. The 

guideline described above—a doubling of rate for a linear increase in temperature—is in 

fact a property of the exponential component in these equations. These relationships 

suggested the method for implementing dynamic energy as temperature change in the 

DPD model. The implementation is designed so that a parameterized energy cycle 

function acts as a model for variation in the temperature of the system. The value from 

the cycle function is dynamically converted into a factor that can be combined with 
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factors for the base reaction rate and for any catalytic effect (Equation 5). This equation is 

used to calculate the  probability of a given reaction occurring within an integration step 

The software was also modified to collect and output additional data during a 

simulation, to monitor the new additions described above and also to serve other 

requirements of the dissertation’s experiments. The output of reaction counts was 

modified to include catalysts when present. The census and reaction outputs were both 

modified to make it easier to read and process their data, over many simulations and 

experiments. To work with the new options of catalysis and dynamics, the logged control 

file and the onscreen run-time output were also modified. 

Throughout the process of adapting the DPD modeling software to the needs of 

the dissertation, there were challenges in understanding the history and purpose of the 

code. The code had been created and modified for multiple purposes by different authors, 

and it was at times necessary to trace and disentangle that history to understand the 

existing code before making changes. On the other side of this issue, it remains to be 

determined whether the modifications for this dissertation should be integrated back into 

the code that other authors may be using still. Nor is it clear if the source code can be 

shared publicly. That decision may depend on the licensing and ownership claims of the 

various contributors and their institutions. The preferred solution would allow for the 

sharing of the source code along with the data and configuration files for the simulations, 

so that the findings have the potential to be confirmed and extended by the community. 

As designed, this dissertation called for a large number of runs with the DPD 

software, due to the many separate sets of parameters and also to repeated runs of each 

parameter set. Many of the different parameter sets are detailed in the sections below, and 
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many others were run while testing code modifications or building understanding of the 

models. The repeated runs of each parameter set are needed to determine a distribution of 

behavior, due to the random effects in the model. As described in the LITERATURE 

REVIEW, models from the DPD paradigm (and more general ABM paradigm) are 

typically not deterministic, so that data must be gathered from many runs to gain 

confidence in the statistical findings. For the majority of simulation configurations in the 

dissertation, 10-20 runs were completed and analyzed together. This provided enough 

statistical strength (for example, in the form of standard errors, as in Figure 22) to meet 

the objectives of the research by identifying trends and demonstrating proofs-of-existence 

for behaviors of interest. If the goal had been to focus on a specific quantification of the 

results, additional runs may have been required to achiever greater understanding and 

confidence. 

The large number of model runs created a need for automated systems to monitor 

those runs, organize their outputs, and then gather and analyze the data. This was 

accomplished using several different tools. Short ‘script’ programs were created with the 

python programming language and with the command-line shell, both included with the 

Mac OS X operating system. Some of the scripts simplified file-handling tasks such as 

synchronization, archiving, and duplicating. Other scripts were created and used to run 

the simulations in parallel on a workstation, by managing queues and maintaining a 

desired (high) level of processor utilization. After sets of simulations were completed and 

their data files gathered together, most of the analysis was completed in Mathematica 

(Wolfram Research 2015). Mathematica code was created to parse the various log files, 

extracting data as single events or as time series, for single simulations or for repeated 
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sets, and across multiple variations of model parameters. For instance, when performing a 

sensitivity analysis, a basic control file would be cloned and modified into multiple 

variations for each parameter value (also in Mathematica). The control files were then 

entered into the queue on the parallel workstation, executed by scripts as processor time 

became available, and then transferred to an analysis directory upon completion. The 

analysis code then could extract select time series of data from each repetition of each 

parameter variation. This data might consist of simulation outputs from 200 time points 

for each of 20 repetitions and 10 parameter values. The outputs at a time point include a 

count of all polymers in the system, a summary of all of the reactions that occurred since 

the previous output, and a few summary values. Approximately 20,000 simulations were 

run in total, producing more than 4GB of data. The majority of the simulations took place 

in the testing, optimization, and exploration phases of the research. These were often 

shorter runs, taking less than 30 minutes of processor time each. The results presented in 

the dissertation represent around 2,000 simulations, with most taking 45-60 minutes of 

processor time on a workstation. Though these only represent around 10% of the 

simulations, they account for about 25% of the data, due to longer runs and more frequent 

data recording. 

Replication and Comparison Experiments 

The preliminary dissertation objective was to establish grounds for comparison 

between the DPD model that would be employed for the main objective and the DE 

models more common in the literature. One of the foundational publications in the study 

of ARNs (Bagley & Farmer 1991) was selected as the target for this comparison, and it 
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was then necessary to select a few results for replication from the many results presented 

in that work. Four results were eventually selected, which are summarized in Table 1. All 

four results are presented graphically and were judged to be amenable to qualitative 

description and comparison. This was necessary, since a quantitative calibration and 

validation between the DPD and DE models would be beyond the scope of this 

dissertation. Three of the four results use the 13-reaction network described in Figure 3, 

which was the only reaction network fully specified for the B-F models, and one of the 

few points of complete translation between the models. The reactions that make up this 

autocatalytic set are also listed completely in Table 2. 

Table 1. Summary of replicated experiments. 
Experiment Result title B-F Result from 

DE model 
Dissertation Result 
from DPD model 

1.1 Polymer concentrations 
over time 

Figure 6 Figure 7 

1.2 Concentration profile of 
a single simulation run 

Figure 8 Figure 9 

1.3 Sensitivity of 
concentration slope Λ  
to varying mass flux 

Figure 10 Figure 11 

1.4 Sensitivity of mass 
distribution to varying 
mass flux 

Figure 12 Figure 13 

 

The first of the four selected results demonstrates how the concentrations of 

particle in a system with an ARN approach a steady state over time. This result was 

selected because it clearly presents behavior typical of a DE model, but it is also the type 

of behavior that should be relatively easy to replicate in the DPD model, at least 

qualitatively. Differences in these results would likely be instructive about how the two 

model paradigms differ, and how they compare favorably. This was the only result 

selected that did not use the 13-reaction network of Figure 3. The content of the B-F 
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figure was not completely described, nor was the reaction network that was used, so this 

replication could not aim for a highly detailed comparison. 

The second result selected for replication is a plot of the concentration profile for 

a single simulation. This result was selected because it explains the derivation of the 

frequently used ARN metric Λ , or concentration slope, the details of which can be 

difficult to understand. This result is also heavily dependent on the reaction network 

graph that is used, which was perhaps the most translatable feature from the DE model to 

the DPD model. This result specified its parameters clearly, and although they can’t be 

translated directly to the DPD model, their relation to other parameters given in Bagley & 

Farmer (1991) provided confidence that the figure represents typical results, which the 

DPD model would likely be able to approximate. (See Table 3 below for discussion of 

the difficulty in translating system parameters.) 

The remaining two results show sensitivity analyses for the concentration slope Λ  

and for the distribution of mass, each as a function of mass flux (the flow of particles 

through the system: food set enters, arbitrary molecules leave). These analyses were 

selected for their concise and informative results, showing qualitatively distinct responses 

to mass flux. The range of mass flux values common to both figures includes rates too 

low to drive the system and too high for any reaction network to persist. The transitions 

from those extremes to the central ‘sweet spot’ where the ARN can differentiate itself are 

deeply informative, both about ARN behavior and about the different ways to measure it. 
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Table 2. The 13-reaction autocatalytic network used in all dissertation experiments. 
The network is adapted from Bagley & Farmer (1991), as in Figure 3 and the simulations 
resulting in Figure 8, Figure 10, and Figure 12. Monomers A and B are this network’s 
food set types, which ‘feed’ the system via mass flux. The network’s background set 
contains all other polymer permutations, since all polymerization reactions are possible, 
though the vast majority are not catalyzed. All reactions are reversible. 
Cleavage 
Product 1 

Cleavage 
Product 2 

Bonding Product Catalyst 

BAABA BAABAAB BAABABAABAAB ABBAAB 
BAAB AAB BAABAAB ABBAAB 
BAAB A BAABA AAB 
BAABAAB B BAABAABB BAABAAB 
B AAB BAAB AB 
AAB AB AABAB BAABAAB 
A AB AAB AAB 
BAAB B BAABB BAABA 
A B AB B  
A AABABBAAB AAABABBAAB AB 
AB BAAB ABBAAB ABBAAB 
AAB ABBAAB AABABBAAB AABABBAAB 
BAABB AABABBAAB BAABBAABABBAAB BAABBAABABBAAB 
 

The two metrics for ARN emergence/strength that are used throughout this 

dissertation, and taken from the literature, are the concentration slope Λ  and the mass 

ratio R. The slope Λ , as described in the LITERATURE REVIEW with Figure 5 as example, 

is the slope of a line fitted to the mean concentrations of the particles in a set, gathered by 

length. There are multiple intricacies to the process of calculating this value. First, the 

points to which the line is fit, and which make up the jagged curves in the figure, each 

represent a mean of the concentrations of a group of particles. That is, not the 

concentration itself, which would be the count of all particles of that length, divided by 

the total particles in the system. Instead, each point is the mean of the concentrations of 

all types of the given length from the set of interest (either the ARN or its complement, 

the background set). However, the calculation only includes the types that have positive 

counts in the system, so that zero-count types do not affect the mean concentration. The 
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line is fit to the points using a standard least-squared-error method, as is available in most 

statistical software. (The calculations for DPD models were carried out in Mathematica, 

along with the rest of the analysis.) The line-fitting step can also be problematic, such as 

when only a few particle types exist. In these cases, Λ  can be highly variable over small 

changes in concentration, and this may not be apparent when aggregating results. For 

example, this behavior occurs when the system only contains polymers of length 1 and 2, 

such as when the mass flux is very high. Further, Λ  is not defined when only one type is 

present. These subtleties make it difficult to describe a clear definition for Λ , and 

occasionally lead to values that are hard to understand. This frequently arises near 

extremes of system behavior, such as very high or very low mass flux. 

The metric for mass ratio R is easier to understand and compute. Put simply, R is 

a ratio of the entire reaction network split into two groups. Because all molecules in the 

network are included, calculating the mass of the two parts is equivalent to finding the 

mass of one part and knowing the total mass. The separation rule to create the two groups 

is the core of the metric, and the only point of likely confusion. R is defined as the mass 

of the ARN set minus the food set, divided by the remainder of the network’s mass. That 

remainder is, by necessity, the combined mass of the food set and the background set. 

The two groups are defined in Equation 6, and the ratio R is described using various 

combinations of their calculated masses. The food set is counted separately from the 

ARN to clarify certain system states. For instance, a system with high mass flux will be 

dominated by the food set, and the total mass of the ARN would appear very high with 

the food set included, though no other ARN species are maintained.  
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Equation 6. Calculation of the mass ratio R for a reaction network. 

𝐴 = 𝑝     𝑝 ∈ ARN− Food} 

𝐵 = 𝑝     𝑝 ∈ Background ∪ Food  

𝑚! = Mass(𝑎)
!∈!

 

𝑚! = Mass(𝑏)
!∈!

 

Total  Mass = 𝑚! ≡ 𝑚! +𝑚! 

𝑅 =
𝑚!

𝑚!
=

𝑚!

𝑚! −𝑚!
=
𝑚! −𝑚!

𝑚!
 

The main set of parameters that are used to configure both the DE model and the 

DPD model are listed in Table 3. Because of differences in the two paradigms, several of 

the parameters take different forms in the two models. Reaction rate constants from the 

DE model are not applicable to the discrete events of the DPD model, and are replaced by 

reaction probabilities. The unbinding constant is also a rate in the DE model, but is 

implemented as a constant time in the DPD model, as a simplification. Mass flux is most 

easily translated of these, as a simple rate of particle inflow per time in both systems. 

Catalytic efficiency is almost comparable between the two models, since it functions as a 

factor in reaction equations in both cases. However, the equations differ in their terms—

rates vs. probabilities—as well as their calibrations, so the factors have different effects 

and different scales. The three related system properties of monomer population, density, 

and volume are interdependent, with only two degrees of freedom. Both models hold 

monomer population constant as a convenience. (Since all monomers are modeled with 

equal mass, this assumption simplifies multiple calculations and experimental design 
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issues. When mass flux would increase the population, random particles are selected to 

flow out of the system until balance is restored.) The DE model chooses density as the 

remaining configurable parameter, while in the DPD model it made more sense to 

manipulate volume.  

Table 3. Analogous parameters for the DE and DPD models that approximately 
maximize Λ . DE values are from Table 2(a) of Bagley & Farmer (1991). DPD values 
are the result of an optimizing search, and are at best a local maximum. 

Parameter DE value DPD value 
Forward reaction parameter 6.490 × 102 

(rate constant) 
1.0 × 10-5 
(probability) 

Reverse reaction parameter 2.50 
(rate constant) 

9.5 × 10-8 
(probability) 

Catalytic efficiency 8.97 × 105  (factor 
change to reaction rate)  

1.35 × 104
  (factor 

change to reaction rate) 
Unbinding parameter 5.00 × 104 

(rate constant) 
2.0 
(time) 

Mass flux (rate, both in and 
out) 

1.79 × 101  
(monomer masses / time) 

2.0 
(monomer masses / time) 

Density or Size (only one 
needs to be specified)  

2.0 
(density) 

6 × 6 × ~0 
(size; essentially 2D) 

 

The parameter values given in Table 3 for the DE model were selected from a 

series of multivariate sensitivity analyses, as approximate values that maximized Λ  in 

those results. (This is the described in the caption of Table 2(a) from Bagley & Farmer 

[1991].) The analogous values for the DPD model were found through an optimizing 

search, in a process that varied the parameters by small amounts, keeping those variations 

that resulted in an improvement of the metric Λ . The parameters were selected in random 

order, and changed by a small random amount. Each parameter set was simulated 10 

times and the mean of the results was taken. The results had a large random component, 

and the search was certainly not exhaustive, and at best may have reached a local 

maximum. Even so, the process was able to improve Λ  substantially, going from an 
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initial value of –0.19 to a final value of –0.092 in one search process. That result was 

found in the 63rd iteration of that particular search, which was ended after 100 steps 

when no better values had been found. No claim is made that these parameters are closely 

analogous to the DE model parameters. Instead, the goal of the search process was to find 

a set of parameters for which some attempt at optimization had been made, so that the 

experiments of the dissertation could be initialized with values that had a better than 

random chance of producing emergent ARNs. 

Dynamic Environment Experiments 

The research method for the experiments in dynamic environmental interactions is 

relatively simple compared to the series of steps required to get to this point. Once the 

capability for dynamic interactions was successfully added to the DPD software (as 

described above), what remained was to run many simulations with dynamic free energy 

or mass flux while varying the cyclic parameters, and then to analyze the results. The 

objective for these experiments is to demonstrate an increase in ARN deviation from the 

background in terms of the two metrics R (mass ratio) and Λ  (concentration slope). An 

increase in these deviations will be taken as a potential step toward ARN emergence, 

putting aside considerations of step size and determination of emergence for now. 

The experimental plan that was carried out called for four sets of simulations, 

each of which varied one of two parameters (amplitude or period) for one of the two 

dynamic effects. All four sets of simulations used the same control file and non-dynamic 

parameters as a starting point for their variations, so that the results could be compared to 

that system as a baseline, as well as to each other. The baseline parameter values were 
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selected from the earlier simulations, including those from the model replication phase, to 

determine a system where ARN emergence was likely, but not where the metrics were 

maximized. That is, the values previously found to result in a (local) maximum for R or 

Λ  were avoided, so that the experiments would not have a bias toward lower metrics 

from starting at a maximum value. Parameters that were associated with very poor 

metrics were likewise avoided, so the experiments wouldn’t have a bias toward success 

either.  

The four sets of simulations are summarized in Table 4, along with the baseline 

experiment. For each experiment, an initial range of dynamic parameter values was 

selected and simulated and the results analyzed. The ranges were then extended or 

narrowed as necessary, so that the following simulations would span a range of parameter 

values and a variety of results. In this exploration of the parameter ranges, only a few 

values were dropped, as the initial ranges seemed to provide satisfactory variety, whether 

by luck or by generality of that variety. As more repetitions were completed and 

analyzed, potentially interesting results started to appear, such as a sharp change between 

two sequential parameter values. In some of these cases, extra simulations were added 

with intermediate parameter values, to confirm and refine the results. An example of this 

can be seen in Figure 22, in which the R value at the mass flux amplitude of 80 showed a 

sharp drop from the two adjacent amplitude parameter values of 60 and 100. Simulations 

with the intermediate values of 70, 75, 85, and 90 were completed, and the results 

confirmed the interesting sharp drop near amplitude = 80.  
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Table 4. Summary of experiments with varied environmental dynamics. 
Experiment Cycle Varied 

parameter 
Values for varied parameter  
 
* effective baseline value 

Cycle’s 
associated static 
parameter 

2.0 None None None None 
2.1 Energy Amplitude 1*, 1.15, 1.3, 1.5, 1.7, 2, 3, 

4, 6, 8 
Period = 1000 

2.2 Energy Period 0*, 50, 100, 150, 200, 250, 
350, 500, 800, 950, 1100, 
1250, 1400, 1700, 1850 

Amplitude = 10 

2.3 Mass Flux Amplitude 0*, 10, 20, 40, 60, 70, 75, 
80, 85, 90, 100 

Period = 1000 

2.4 Mass Flux Period 0*, 100, 200, 350, 500, 800, 
950, 1100, 1250, 1400, 
1550, 1700, 1850 

Amplitude = 50 

 

All of the varied-parameter simulations are listed in Table 4, and these same 

experiments provide all data for the EFFECTS OF ENVIRONMENTAL DYNAMICS section in 

RESULTS. For every varied parameter value in Table 4, 20 repetitions of the simulation 

were run with random initial conditions, each extending for 10,000 time steps. For the 

majority of the cases, data would only be used from the last 4,000 steps, so that the 

system had a chance to reach an approximation of a dynamic steady state. In experiments 

where the varied parameter was a cycle period, a time span of fewer than 4,000 steps was 

used when necessary to include a whole number of cycles in the data range. This was 

done to ensure that no bias was introduced by data from a fractional number of cycles. 

For each set of simulations and its associated time range, the data that had been 

recorded by the model were extracted and grouped together. Of the outputs that the DPD 

software can produce, the main source of data for these analyses was the ‘census,’ which 

provides a list of all existing particle types with quantities. This list, along with contents 

of the corresponding network graph (Table 2 or Figure 3), provides all of the information 

that is required to calculate both metrics of interest: the mass ratio R and the 
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concentration profile Λ . The metrics can be computed for each point in time when the 

census was recorded, which was typically specified to be every 20 times steps for these 

experiments. In the span of 4,000 time steps, there would be 200 samples of the census 

data, each resulting in counts of all polymers and values for R and Λ . The metric values 

could also be computed statistically over a time series with basic tools such as mean, 

standard error, variance, or a moving average. Alternatively, the metrics could be 

aggregated across the 20 repetitions to find how behavior varies statistically over the 

random initial conditions. The time series for either metric could be plotted for an entire 

set of repetitions to get a visual understanding of the behavior and variation, along with 

the mean time series created by aggregating the repetitions at every time point. The mean 

time series might also be plotted along with the analogous curves for other parameter 

values, as well as the values from the non-dynamic baseline system. Figure 14 is an 

example of data condensed across time and repetitions to a few values, allowing for the 

comparison of behavior from different parameter values. Figure 17 provides a less 

condensed view, showing more detail in the form of time series, though fewer parameter 

values can be viewed at once. The combinations and variations of these analytical steps 

provided all of the results that appear in the EFFECTS OF ENVIRONMENTAL DYNAMICS 

section of the RESULTS chapter. 
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4. RESULTS 

The results of this dissertation are presented here in two sections. The first section 

provides the results of experiments designed to show that a dissipative particle dynamics 

(DPD) model of an autocatalytic network is comparable to other models in the literature, 

specifically the differential equation model of Bagley and Farmer (1991). These results 

show substantial similarities between the models in aggregate, qualitative behavior, 

despite the fundamental differences in the modeling paradigms. The second section 

presents the results of the experiments designed for the main objective: discovering 

whether dynamic environmental interactions can promote ARN emergence by increasing 

both the probability of ARN emergence and the variety of conditions in which ARNs 

emerge. This objective has been met multiple times by the results from DPD model 

simulations with dynamic environment flows of both energy and matter, in terms of the 

aggregate measures established in the ARN literature. 

The two principal metrics used here for quantifying ARNs are concentration 

slope, denoted Λ  (the slope of a linear fit to a molecule set’s mean concentrations, as a 

function of polymer length) and mass ratio, denoted R (the ratio of mass in the ARN 

without the food set over the combined mass of the background and food sets). 

Concentration slope is by definition negative, with larger (less negative) values signifying 

higher concentrations than a set with a smaller, more negative Λ . For an ARN to 

demonstrate emergence, or separation from the state of the rest of the system, Λ  for the 

ARN can be compared to Λ  for the background set in the same simulation, or to a Λ  

value for the dynamic steady state of a reaction network without catalysis. For these 
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experiments, both the background and the steady state values for Λ  are near –0.4, while 

an emerged ARN may have Λ  closer to –0.2. The background value varies in simulation, 

in response to the ARN or to system parameters, though Λ  for the ARN is likely to see 

more variation. Because of this interactive variability, concentration slope is typically 

compared between ARN and background, rather than the steady state, since the ARN and 

background are likely to be responding to the same system parameters or to each other. 

Unlike Λ , the mass ratio R is a single-value measure for an entire reaction network, 

rather than measuring a specific set of molecules. Mass ratio ranges from 0 to 1, with 

higher values marking a healthier ARN in control of more of the system’s mass. A typical 

R measurement of a “strong” ARN might be 0.5 or higher. These two metrics will be 

explained further in context, below. They are also detailed in the LITERATURE REVIEW 

(p.15) and RESEARCH METHODS (p.38), and their advantages and disadvantages as 

metrics are addressed in the DISCUSSION chapter. 

Comparing the Models 

As described in RESEARCH METHODS, four of the graphical results from Bagley & 

Farmer (1991) were selected as focal points for replication, to establish a comparison 

between the DE and DPD models. These four results were selected for being the most 

informative, for being the most detailed in the source paper, and for having the highest 

chance of success. There are still several sources of uncertainty for the replication goals 

from the B-F methods. These include certain details of DE model execution, of metric 

calculation, of parameter implementation, and particularly of the optimization process 
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used for finding optimal parameter sets. The replication targets were selected to minimize 

the effects of these uncertainties, but they could not be avoided entirely. 

The four results cover several aspects of the behavior of the DE model for 

reaction networks containing ARNs. Each of the original four figures is included below 

(with permission) along with an analogous plot of data from experiments with the DPD 

model. The text accompanying each pair of figures provides detailed explanation and 

comparison of the results, though the majority of the interpretation is concentrated in the 

DISCUSSION chapter. Additional details of the replication process that are not relevant to 

the results were described in the RESEARCH METHODS chapter. 

The first two plots, Figure 6 and Figure 7, show the concentrations of molecule 

types over time within a single simulation run. Figure 8 and Figure 9 show concentration 

levels by polymer length, from which the concentration slope Λ  is computed. In Figure 

10 and Figure 11, the sensitivity of the concentration slope Λ  is plotted against changes 

in mass flux, with data collected from separate simulations for a series of flux rates. 

Using the same set of simulations, Figure 12 and Figure 13 plot the impact of mass flux 

on where the mass resides in the system. In this single case, the B-F result deconstructs 

the mass ratio R into its components of Network, Food Set, and Background to see how 

the proportion of each varies with the changes to mass flux. 

Result 1.1. Polymer Concentrations 

The B-F plot in Figure 6 demonstrates the behavior of a system transitioning from 

an early state with few polymer types present to a dynamic steady state in which an ARN 

has emerged. In this model, the system was initialized with only food set types (of length 
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1), and it reaches a steady state with 22 molecule types present above the threshold level. 

The threshold level in the DE model is the concentration for which at least one molecule 

is consistently present in the system. For instance, in a model that represents 10,000 

molecules, only types with a concentration of (1/10,000) are considered present. This rule 

is necessary because the DE paradigm uses continuous values for population counts, 

which can cause quirks such as fractional molecules. 

 
Figure 6. Polymer concentrations over time (DE model). 
Each curve plots the concentration of a molecule type, through a single run of the DE 
model. The x-axis is Log10 Integration Steps and the y-axis is Log10 Concentration, 
measured as the molecule type’s fraction of the total reacting particle count. (Reprinted 
from Figure 3 of Bagley and Farmer [1991].) 

The figure begins 100 time steps into the simulation, with curves for the 

concentrations of each the 8 molecule types already present. Most likely, the uppermost 

curves are for the concentrations of short food-set monomers, which have concentrations 

between 0.1 and 0.4, and which together make up the majority of the reaction network. 
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The remaining curves represent types that derive from reactions within the food set. 

These are likely to be short molecules from the ARN that are closest to the food types in 

the reaction graph. (The ARN reaction graph for this simulation is not the same as in the 

models below and is not specified in the literature, thus the ambiguity in the molecule 

types.) The lowest line at this time marks a concentration below 1/10,000, with the next 

lowest around 1/1000. When existing molecules achieve high enough concentration to 

produce another new type above threshold level, that new type enters the plot from the 

bottom. The typical arc for each of these is a rapid rise in concentration until it too begins 

engaging in condensation reactions, at which point the curve levels off, perhaps with a 

slight decline. The right-hand edge of the plot shows 22 types in existence after 104.5 

(approximately 31,000) time steps, and the system is described as reaching its steady 

state with that set of types (Bagley & Farmer 1991). 

The results from the DPD model (Figure 7) show behavior that is qualitatively 

similar to the results from the DE model, but with conspicuous differences, such as the 

variability—or lack of smoothness—in each curve. This figure displays data from a 

single run of a DPD model that was started with only food-set particles, as with the DE 

model above. In both figures, the results show high concentrations in the food set at the 

start, accompanied by a few other particle types that are nearby on the reaction graph. As 

time passes (moving from left to right), new types appear and rise in concentration. The 

types that dominated at the start decrease in concentration as their molecules react to 

produce other, longer types, just as in the previous results. 

Unlike the DE model described in Figure 6, the concentration curves from the 

DPD model do not appear to be smoothly approaching a steady state. Each curve remains 
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variable throughout the timespan of the simulation and experiences many inflection 

points, as opposed to 0-2 in the DE model. Another difference between the results is seen 

in the curves in Figure 7 that rise from the bottom of the plot and later return to the 

bottom. These represent molecule types that exist in the system temporarily but whose 

concentration later returns to zero, after all molecules of that type are consumed in 

reactions. (They could also be removed from the system by the mass flux, typically with 

a much lower probability.) The DE model does not exhibit this behavior, and perhaps 

cannot, due to the paradigm’s larger populations and deterministic reactions, as well as 

the threshold rule. 

 
Figure 7. Polymer concentrations over time (DPD model). 
Each curve describes the concentration of a molecule type over a single run of the DPD 
model. Early in the run, food types are most common (at top), and only a few types are 
present. As time continues, food concentration drops and more, longer types exist. The 
rising “floor” to the right shows how the minimum concentration rises, as there are fewer 
molecules in the system. Mass is conserved, so average molecule length must increase. 
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Some of the difference between the two models could perhaps be corrected with a 

looser definition of “steady state,” or by smoothing the DPD data over time or across 

multiple simulations. Such repetition is standard in the DPD paradigm, where each model 

configuration is run many times with different (random) initial conditions, and the set of 

results are combined to give a statistical description of system behavior. That method is 

used throughout this dissertation, for most of the results that follow. However, in this 

case it is useful to look at the results of a single simulation run, to demonstrate and 

understand some of the key differences. The variability in the DPD model’s 

concentrations is intrinsic to the paradigm, and it enables interesting behavior that is not 

possible in the DE model, such as the types that exist briefly and randomly. Results that 

showed only the mean concentrations of many runs would seem to dampen the variability 

of the DPD model, and might therefore look more similar to Figure 6, but such results 

would be incomplete and potentially misleading. 

Result 1.2. Concentration Profiles 

Another visualization of the steady state of a DE model run is presented in Figure 

8, as the second result to be replicated from Bagley & Farmer (1991). This plot describes 

the “concentration profile” of a single simulation through two lines, one for the ARN (N) 

and one for the background (B). Each line plots the mean concentrations of member 

polymers grouped by length, which is on the horizontal x-axis.. The graph also includes a 

line (E) that marks what the concentrations would be for a non-catalyzed version of the 

system, as reference. For both the model lines and the non-catalyzed line, the 

concentration values are taken from a system that has reached a dynamic steady state. 
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Each line can be reduced to a single value by calculating its slope, or the slope of its least 

squares linearization, for the jagged lines. This single value is the measure Λ , or 

concentration slope, which can be used to concisely describe an ARN or other set. 

 
Figure 8. Concentration profile of a single simulation run (DE model). 
This plot shows mean concentrations for an ARN (N) and its Background (B), and also a 
non-catalyzed system for reference (E). Precise Λ values were not provided with this 
figure, but manual measurement suggests Λ  for N is near –0.1, and near –0.3 for both B 
and E. The x-axis is Polymer Length (from 0 to 15), and the y-axis is Log10 of Mean 
Concentration (from -10 to 0). (Reprinted from Figure 6 of Bagley & Farmer [1991].) 

The analogous plot for a DPD model appears in Figure 9. The ARN reactions in 

both models are defined by the same reaction graph (Figure 3), but they differ 

substantially in their kinetic parameters. This is due to model paradigm differences and 

the inability to match unknown aspects of the DE model, such as the method for selecting  
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the ‘optimal’ parameter set from a large state space. Despite the differences, the 

concentration profiles in the two plots are qualitatively similar, especially in the way the 

segments of the ARN profile alternately climb and fall through their first seven points in 

both figures. The ARN profile for the DPD model is more jagged and angular, but it is 

still quite similar to the DE model results. 

 
Figure 9. Concentration profile of a single simulation run (DPD model). 
This plot shows mean concentrations for molecules in the ARN (N) and its Background 
(B). Also plotted is an approximate value for the concentrations of a non-catalyzed 
system (E). This model used the same parameter configuration as the models for Figure 
11 and Figure 13, with a Mass Flux of 2.0. 

The similarity between the Network and Background slopes within each figure is 

also comparable between the two, even though the parameters of each are derived from 

separate optimization processes. The Λ  quantities appear to be different between the two 

systems, but this is not surprising. Some similarities could be predicted, like the zigzag of 
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the ARN profile that derives largely from the shared ARN reaction graph. In other cases, 

quantitative similarity was not expected, as with the slopes of the background and non-

catalyzed lines. These lines are determined by the kinetic parameters of the artificial 

chemistry, such as the ratio between forward and backward reaction rates, and these were 

known to be different between the models. 

The two figures do have some differences. The Network line in the DPD model 

(Figure 9) is shorter, only reaching to polymer length 12, while the DE model reached to 

length 14. This is likely to be due to the smaller population of the DPD model. Given that 

the longest polymer types are absent and that the population is between 1 and 2 orders of 

magnitude smaller in the DPD model, it is interesting that the results are as similar as 

they are. The other significant difference is that the Background line for the DPD model 

is not straight, though it appears to be in the DE model’s figure. This could be attributed 

to the increased variability in the DPD model’s chemical reactions, or again, to the 

differences in population size. 

Result 1.3. Sensitivity of Concentration Slope to Mass Flux 

The third result selected for replication is a sensitivity analysis of the 

concentration slope Λ  to variation in mass flux. Mass flux (denoted δ in B-F figures) is a 

key parameter in both models, as described in RESEARCH METHODS. It is the rate at which 

new mass enters the system, and that influx is one way in which the system is driven 

away from chemical equilibrium, which is necessary for ARN emergence. New mass 

enters the system in the form of particles drawn randomly from a “food set” of simple 

types, which are usually monomers or short chains. Because mass (and monomer count, 
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in these models) is designed to be constant, the rate of incoming mass is matched by the 

rate of exiting mass, which works by selecting particles randomly for removal. As a 

consequence of this, a higher mass flux translates to a higher probability of displacing 

existing molecules. If the incoming mass consists of monomers, as is typical, the 

displaced molecules are more likely to be longer (since they can’t be shorter), and so 

mass flux can have a diluting effect. As mentioned above, some minimum level of mass 

flux is required to drive the system away from equilibrium, and that driven separation is 

what allow catalyzed reactions to process (or focus) more than their share of the mass in 

the system. 

 
Figure 10. Sensitivity of concentration slope Λ  to varying mass flux (DE model). 
Lines mark Λ for the ARN Network (N, solid), the Background (B, dotted), and a non-
catalyzed Steady State (E, dashed), from a DE simulation for each mass flux value. The 
x-axis is Log10 of Mass Flux, and the y-axis is the concentration slope Λ . (Reprinted from 
Figure 7 of Bagley and Farmer [1991].) 
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These issues at extreme values of mass flux suggest a “sweet spot” in the middle 

where ARN emergence is most likely. This sweet spot is apparent in the results of the 

sensitivity analysis of Λ to mass flux, shown for the DE model in Figure 10 (Bagley & 

Farmer 1991). The upper values for mass flux seem to overwhelm the system, so that Λ  

for both Network and Background drop off the chart. (Such low slope values are the 

result of the system being dominated by monomer food types. The “linear fit” to get slope 

becomes less meaningful when there are very few points to fit.) At the low end of the 

mass flux range, Network and Background again have equal Λ  values. At such a low 

flux, there is no “drive” to the system to give the catalyzed reactions their advantage. 

 
Figure 11. Sensitivity of concentration slope Λ  to varying mass flux (DPD model). 
Values are for the ARN (Net) and Background (Bg), averaged across 20 DPD simulations 
for each mass flux value. The Steady State Λ  of approximately –0.4 is not pictured. 
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When a similar sensitivity analysis was executed with the DPD model, the results 

included the only substantial difference between the two models (Figure 11). As with the 

DE model, the highest values of mass flux are associated with a precipitous drop in Λ  for 

both the ARN and the Background sets. However, unlike the DE model, the DPD model 

shows the ARN maintaining a Λ  value well above the Background level, even at a very 

low mass flux. The reason for this is not certain, but investigation of these simulations 

suggests that it is due in whole or part to spatial aspects of the DPD model.  

As noted previously, a system needs to be driven to have the potential for ARN 

emergence (among other conditions). In both the B-F models and the dissertation’s 

models, the design is for the driving force to be an influx of mass. This ongoing influx 

makes it possible for catalyzed reactions to be more “productive” than non-catalyzed 

reactions, effectively changing the equilibrium point of those (catalyzed) reactions, since 

the system is being pushed away from equilibrium. In a standard chemical system (that 

isn’t being driven), catalysis changes the rate of reactions but not the equilibrium point, 

and the system reaches the same dynamic steady state eventually, whether or not catalysis 

occurs. The understanding of this behavior is built into the design of the DE model and 

the research method around it, and it has been carried over into this dissertation. 

However, these features of chemical kinetics may rely on assumptions that have been 

violated in the process of translation from DE to DPD, or even in the creation of the DE 

model itself. This requirement that a system must be driven as prerequisite for ARN 

emergence may be based on assumptions that no longer apply. Specifically, it appears 

that the DPD model as parameterized in this experiment is very far from “well-mixed” 
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due to its flattened spatial geometry, so that it is effectively two-dimensional. Particles 

are only able to react with those nearest them, and the supply of neighbors is not 

replenished quickly (perhaps because mixing is slower than reacting), which means that 

the increased reaction rate (or probability) of the catalyzed reactions has an effect that 

lasts over time. It may be that the local region around a cluster of catalyzed reactions gets 

“driven” by the wider neighborhood, as particles happen to migrate into range and enter 

into the ARN. 

This analysis is not complete, as the existing set of simulations doesn’t provide all 

of the data necessary to understand what happened, and running a complete new set of 

simulations is beyond the scope of the dissertation. However, the hypothesis above does 

suggest a quick test that could falsify it. If the elevated Λ  at low mass flux is due to the 

spread-out 2D spatiality of the DPD model, then a comparable 3D configuration ought to 

behave differently. An ad hoc addition to the Research Method was devised to test this, 

and a limited set of simulations was designed and run. The DPD model of Figure 11 has 

dimensions of 6×6×1, though the 1 acts much like a 0 due to other parameters. Three new 

configurations were generated from one of those used above (with mass flux = 0.2), but 

with a proper third dimension and depth values of 2, 4, and 6. This progression allowed a 

prediction that Λ  should get smaller as geometry changes and mixing becomes more 

prevalent, if the hypothesis is correct. If there were no change, or no clear progression, 

the hypothesis would be less likely. The results of the ad hoc simulations are in the table 

below, along with the comparable ARN value from Figure 11. The results do not 

invalidate the hypothesis that spatiality is the cause, nor do they fully explain the 
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discrepancy, though they show a pattern of increasing Λ . The remaining difference may 

be due to the density of the particles in the system, which decreased as depth increased 

and other values remained constant. Exploration of this possibility is left for future work. 

Table 5. Summary of Results for ad hoc Dimensionality Experiments. 
Dimensions Λ  
6×6×1 (Figure 11) −0.0943 
6×6×2 −0.170 
6×6×4 −0.199 
6×6×6 −0.213 
Non-catalyzed −0.4 

 

Result 1.4. Sensitivity of Mass Distribution to Mass Flux 

The final result targeted for replication is also a sensitivity test as a function of 

mass flux, this time characterizing the distribution of system mass as fractions of the 

whole, by molecule set. The results for this experiment were extracted from the same 

simulations as in the previous experiment, for both the DE and DPD models. The system 

is measured this time in terms of mass, and how the total reactant mass is split between 

three different portions: the Background, the Food Set, and the ARN, or Network. 

Previously, when calculating Λ  or defining the ARN’s network graph, the Food set has 

been defined to be part of the ARN set. They are counted separately here so that the 

sensitivity to mass flux can be more clearly seen, especially at high or low flux. (These 

results differ from the Part 2 analyses that use the metric R or mass ratio, which is a 

scalar value that characterizes system mass in a different way.) The values in Figure 12 

and Figure 13 are simply counts of the total number of monomers in each set, displayed 

as fractions of the (constant) total in the system.  
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Figure 12. Sensitivity of mass distribution to varying mass flux (DE model). 
Values are for the molecule sets of the ARN minus Food (N, solid), Background (B, 
dashed), and Food (F, dotted). The x-axis is Log10 mass flux, and the y-axis is mass 
fraction. (Reprinted from Figure 7 of Bagley and Farmer [1991].) 

The mass distribution results for the DE model appear in Figure 12 as three 

curves, each tracking the fraction of mass held in a particular set. Since the three sets 

cover all possible molecules without overlapping, their curves sum vertically to 1.0 at all 

points. From left to right, the notable behavior includes the decline of the Background 

fraction from its maximum near 1.0, while the ARN set increases like a mirror image. 

Those two curves intersect, still mostly symmetric, but at higher flux values the Food set 

begins to rise noticeably. Continuing to the right, and even higher mass flux, the 

Background fraction bottoms out near zero mass. The ARN fraction peaks near 0.9 then 

drops, as the mass influx fuels the continued rise of the Food set. At the high end of the 

tested mass flux range, the Food set overtakes the Network set, as expected, and is likely 

to dominate mass distribution at all higher flux values. In this high-flux range, the inflow 
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of mass particles at every time step is approaching the order of magnitude of the system 

population, so that the population is replaced too frequently for longer chains to have 

time to form. Essentially, the inflow is flooding the system, washing the contents away 

faster than reactions can happen. 

The DPD model’s mass distribution results (Figure 13) appear to replicate those 

from the DE model very well. The qualitative behaviors described above are all present, 

though with more variability and without the asymptotic approaches to the upper and 

lower bounds. The two figures almost seem to be aligned on the mass flux scale, with 

similar behavior near the middle (where Net and Background cross, near Log10 Mass 

Flux = 2). The two sets of results are not aligned elsewhere, though, and there is little 

reason to expect that they should match in this way given their many differences. One 

feature that the results do have in common is their relation to the figures of Result 1.3. 

For both the DE and the DPD models, the Λ  value of the ARN drops at a lower mass flux 

than the ARN’s mass fraction does. In the DE model, Λ  peaks at a flux just below 102, 

while ARN mass peaks around 103.5 – just as Λ  is dropping most precipitously. The DPD 

results are similar, with Λ  declining rapidly between 102 and 103, the same interval in 

which ARN mass rises to its peak. In both cases, this interval may mark a transition from 

a region of lower mass flux in which the ARN is able to take in new particles and spread 

them through its reactions, and a region of slightly higher flux in which the ARN is still 

capable of absorbing the new particles, but perhaps cannot move them through the 

network of reactions quickly enough to counteract the attrition to longer particles caused 
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by the increased out-flux. This is merely a hypothesis at this point, as this behavior was 

not investigated in depth as part of the dissertation. 

 
Figure 13. Sensitivity of mass distribution to varying mass flux (DPD model). 
Values are for the molecule sets of the ARN minus Food (Net), Background (Bg), and 
Food (F), averaged across several DPD simulations for each Mass Flux value. 

In the results of Figure 13, there is again a slightly elevated strength to the ARN 

at the lowest flux values, relative to the DE model’s results. This appears to be the same 

issue as in the previous experiment (Figure 11), which in that case caused Network Λ  to 

be elevated above Background Λ  in the same range of low flux values. This issue is not 

explored any further here, as it was addressed substantially in the previous results.  
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Effects of Environmental Dynamics 

The second sequence of experiments was designed to answer the dissertation’s 

main question: can structured environmental dynamics promote the emergence of ARNs 

in a simulation of artificial chemical reactions? The experiments focus on two types of 

dynamic contributions to the chemical system by its environment: free energy and mass 

flux. Both interactions are given the form of sine waves, and the system is tested for 

sensitivity to variations in the amplitude or period of these waves. Those two parameters 

are varied singly, in separate sets of simulations, for each of the two interaction types. 

That is, either period or amplitude is varied while the other is held constant, for either 

mass flux or energy, for a total of four sets of simulations. As a control and baseline, a 

fifth set of simulations was run without variation in either free energy or mass flow, using 

the parameter values common to the other simulations. For all of these simulations, all 

other configuration parameters are identical and held constant. As described in RESEARCH 

METHODS, these base settings were selected to be within a range where ARN emergence 

occurs. However, the “optimal” parameters from earlier results were purposefully 

avoided, so that these experiments did not begin at a (possible) local maximum, which 

might bias the results toward lower metric values. 

Sensitivity to each of the dynamic variations is described below, in terms of the 

metrics R (mass ratio) and Λ  (concentration slope). These two metrics are considered 

separately for each set of simulations as well as together, to reveal which conditions 

affect the metrics independently, and which seem to exhibit an interaction between R and 

Λ . The sensitivity analysis is presented in overview for all tested cycle parameters, and 
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then focused attention is given to selected specific values. Throughout all four sets of 

experimental variations (free energy amplitude, free energy period, mass flux amplitude, 

and mass flux period), baseline values from the static (in energy and mass flux) control 

system are included as common reference points. These baseline values appear at energy 

amplitude of 1, and energy period, mass flux amplitude, and mass flux period of 0. (The 

value is ‘1’ for energy amplitude because it has a multiplicative effect in the model, while 

the other parameters are additive.) Each of the dynamically varying contributions is 

approximately conserved over the length of each simulation, so that the total free energy 

and total mass flux is comparable between any of the simulations, including the non-

dynamic baseline. 

Table 6. Summary of Results for Experiments with Dynamic Environments. 
Experiment Cycle Varied parameter Static cycle parameter 
2.1 Energy Amplitude Period = 1000 
2.2 Energy Period Amplitude = 10 
2.3 Mass Flux Amplitude Period = 1000 
2.4 Mass Flux Period Amplitude = 50 

 

The four dynamic-environment experiments are summarized again in Table 6, 

with their varied parameters. Further details of the design are given in RESEARCH 

METHODS, and the results are explained in depth below. The default format for the 

measures R and Λ  in the results below is as a mean over a time series of values and over 

many simulation repetitions, often with the standard error of the mean as an indicator of 

mean variability. The simulations for Part 2 were given at least 20 repetitions each, and 

values drawn from time series typically include the last 4000 time steps from a run of 

10,000 steps. The number of time steps is modified to include a whole number of cycle 

periods when necessary, so that results are not biased by partial cycles. The repetitions 
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are necessitated by the randomness and variation inherent to the DPD modeling 

paradigm. Additional details on these decisions are provided in RESEARCH METHODS. 

Assessing an ARN’s deviation from the background can be ambiguous, as 

witnessed by the literature’s definition of ARN emergence that is based on a “significant 

departure” from the non-catalyzed steady state, and is described as “subjective” and 

“vague” (see LITERATURE REVIEW section AUTOCATALYTIC REACTION NETWORKS; 

Bagley & Farmer 1991). The two metrics from the literature that have been selected for 

measuring the strength of ARN emergence—R and Λ—are not completely independent, 

and are of varying descriptive value depending on the system’s state. Because of the lack 

of a clear and objective metric, the results presented below rely on comparisons of R and 

Λ  values between configurations within an experiment and to non-dynamic baseline 

values. An increase in both measures could be considered the best signifier of 

improvement in ARN emergence, though the results more often exhibit an increase in 

only one metric. Therefore, simulations that show a substantial increase over the baseline 

in one or both metrics are taken to signify a positive result toward the dissertation’s 

objective. Findings are also identified where the metrics demonstrate consistent trends 

across several sequential parameter values. Success for the environmental dynamics 

objectives requires only the demonstration of the existence of conditions that promote 

ARN emergence beyond what occurs at baseline levels, even if a detailed understanding 

of the distribution of such results and their causes is not readily apparent. Additional 

results of interest will be noted as appropriate, as sources of interesting hypotheses or as 

inspiration for future work. 
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Result 2.1. Dynamic Free Energy, Varying in Amplitude 

In this experiment, the free energy of the system is varied cyclically throughout 

each simulation, and the amplitude of the cycle is varied between simulation sets. Of 

these four experiments in Part 2, this one features a slightly different method for applying 

the environmental dynamic to the system. Due to the internals of the DPD model’s 

chemistry, changes in free energy must be made as multiplicative factors rather than 

additive offsets. The result of the multiplication is transformed into a reaction probability 

via an exponential formula similar to the Arrhenius equation (see Equation 3 and the 

surrounding explanation in RESEARCH METHODS). 

 
Figure 14. Sensitivity of R to varied amplitude of dynamic free energy. 
Each bar represents a mean (at center) and its standard error for a set of simulations. Each 
of these sets shared identical parameters but some different random values, such as initial 
molecule positions. The amplitude of a cycle energy (heat) component was varied 
between the sets of simulations, and this value is marked on the horizontal axis. The bar 
at amplitude=1 shows the results for a system with a non-dynamic energy level, for 
reference. (Colors have no significance here, other than to differentiate the bars.) 
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The first positive finding appears when varying the amplitude of free energy 

(Figure 14), which gives the system a small positive increase in R over a small range near 

the baseline value of 1, and above that range, R declines consistently and smoothly. 

 
Figure 15. Sensitivity of Λ  to varied amplitude of dynamic free energy. 
As with Figure 14, each bar here is the mean and standard error of values from a set of 
simulations. Here, the values are the concentration slope Λ , which provide a measure of 
the ensemble concentrations for the ARN. A higher value for a system suggests that the 
ARN is maintaining concentrations at higher levels than for non-ARN molecule types. 
Variations that increase Λ  over the non-dynamic reference value (shown at amplitude=1 
here) are evidence that cyclic energy with those parameters is beneficial to the emergence 
of an ARN. As before, the colors of the bars are here only to help differentiate the results. 

A second positive result is found in Figure 15, also among the smaller values for 

amplitude, but in this case correlating with an increase in Λ  relative to the baseline value 

shown at amplitude=1. These results for Λ  have much larger standard error values than 

were found for R, relative to the differences between means, and the trend among the 
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means is not as smooth. Throughout the results below, the slope metric frequently shows 

more variance than the mass metric, but rarely is the inverse true. 

 
Figure 16. Sensitivity of R and Λ  to varied amplitude of dynamic free energy. 
Extending Figure 14 and Figure 15, each crossbar here marks the means and standard 
errors for the same sets of simulations, but now combining the values from those 
previous figures. Each crossbar is labeled with an amplitude value, which was marked on 
the horizontal axis previously. The crossbar at amplitude=1 continues to mark the 
reference value of a system with a constant energy level, without cycles. This figure 
makes it easier to see which amplitude values gave the best results in both parameters. 
The colors of the bars are arbitrary, but consistent between like figures. 

In Figure 16, the results in R and Λ  have been combined into a single plot. This 

format can make it difficult to see the sequence in the varied parameter (energy 

amplitude), but it clarifies which of the values are improvements in one or both metrics 

relative to the baseline crossbar. In this case, no values show clear improvements in both 

metrics, though the values for amplitude 1.3, 1.5, and 1.7 come close. 
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Figure 17. Time series of R response to varied amplitude of dynamic free energy. 
Each line is the mean of 20 simulations. The mean of the static baseline is included for 
reference, with thickness showing ± standard error. The “Cycle Phase” at bottom shows 
the phase of the dynamic energy. 

Figure 17 and Figure 18 display time series for the metrics R and Λ  respectively, 

for a few select values of energy amplitude. They also include the baseline values for a 

system with static (non-dynamic) energy, like the previous figures, but instead of a 

crossbar, the standard error is now shown as line thickness. Also in Figure 17, a sine 

wave of arbitrary amplitude is included to show the phase of the free energy cycle. These 

figures don’t necessarily reveal new positive findings, but they help to understand the 

behavior of the system. For instance, it appears that the rising wave of the energy cycle 

coincides with a sharp rise and fall in R, especially at higher amplitudes. In Figure 18, the 

curves for amplitudes 4 and 8 experience sharp highs and lows, but it is difficult to 

distinguish their mean behaviors from each other, or the mean of the static baseline. It 

appears that the system with energy amplitude of 1.3 improves in both metrics when the 
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energy cycle is low, and is able to hold onto those gains more often than losing ground 

when energy is higher. 

 
Figure 18. Time series of Λ  response to varied amplitude of dynamic energy. 
Each line is the mean of 20 simulations. The mean of the static baseline is included for 
reference, with thickness showing ± standard error. (The cycle phase, not shown, is the 
same as in Figure 17.) 

Result 2.2. Dynamic Energy, Varying in Period Length 

In this set of experiments, the varied parameter is the period of the dynamic 

energy interaction from the environment. It is varied over a wide range while the 

amplitude is held constant with a value of 10. Given that, and the results above that 

showed R only responded well to low amplitude free energy, the results in Figure 19 are 

not surprising. (The many replications for these experiments take a long time, and many 

were conducted in parallel; otherwise, the parameter ranges for the dynamic energy 

experiments might have been adjusted.) The results in R do not demonstrate 

improvement over the baseline here, but they do show a dramatic shift between very low 
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R values for short period energy cycles and the better (but still low) R values for longer 

periods, suggesting a strong interaction effect or perhaps a type of phase transition. 

 
Figure 19. Sensitivity of R to variation in period of dynamic free energy. 
Each bar represents a mean and standard error for a set of simulations. The bar at 
period=0 marks the baseline value for a system with a static energy level. (Colors here 
are only for differentiation.) 

In Figure 20, the results show a definite positive finding for Λ  for short periods in 

the energy cycle, relative to the non-dynamic baseline value (at period 0). These 

improved values for concentration slope occur for exactly the periods where the mass 

ratio was lowest. In that range, for both R and Λ , periods of 50, 100, and 200 have the 

most extreme values, while the period of 150 in the middle has a pronounced, less 

extreme response. These oddities suggest an interaction between period and other time-

based parameters of similar scale, which could be worthy of future investigation. 
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Figure 20. Sensitivity of Λ  to variation in period of dynamic free energy. 
Each bar represents a mean and standard error for a set of simulations. The bar at 
period=0 marks the baseline value for a system with a static energy level. (Colors here 
are only for differentiation.) 

The plot of combined results in Figure 21 reveals a little more about the 

interaction between R, Λ , and the energy cycle period, showing a tight cluster of 

responses for the longer periods, a small cluster of short periods that behave very 

differently (with improved concentrations slopes and lower mass ratio), and two results 

(periods 150 and 250) that seem to bridge the other two clusters.  
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Figure 21. Sensitivity of R and Λ  to variation in period of dynamic free energy. 
Each crossbar represents means and standard errors for one set of simulations, labeled 
with energy period value. The crossbar at period=0 marks the baseline value for a system 
with a static energy level. (Colors here are only for differentiation.) 

Result 2.3. Dynamic Mass Flux, Varying in Amplitude 

The results in dynamic mass flux, both in amplitude and in period, show more 

consistent positive findings than the variations in free energy did above. Of course, this 

may be due to chance in the selection of parameters to explore, since the goal was to find 

evidence of existence for the ARN-supporting dynamics, rather than surveying a wide 

breadth of values or gaining a deep understanding of the interactions. Even so, the 

following results for dynamic mass flux provide promising suggestions for future 

research directions. 
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Figure 22. Sensitivity of R to varied amplitude of dynamic mass flux. 
Each bar represents a mean and standard error for a set of simulations. The bar at 
amplitude=0 marks the baseline value for a system with a static mass flux. (Colors here 
are only for differentiation.) 

The overall results for variations in amplitude of mass flux are presented in Figure 

22 and Figure 23, for R and Λ  respectively. Considering both figures, the main positive 

finding seems to be that each of the tested variations in dynamic mass flux result either in 

improvement or no change, for both metrics. This result might not be universal, of 

course, but it is nonetheless very promising. There also appears to be some correlation 

between the responses in R and Λ , suggesting that a mechanism for boosting ARN 

emergence doesn’t necessarily require a choice between the two metrics.  
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Figure 23. Sensitivity of Λ  to varied amplitude of dynamic mass flux. 
Each bar represents a mean and standard error for a set of simulations. The bar at 
amplitude=0 marks the baseline value for a system with a static mass flux. (Colors here 
are only for differentiation.) 

Another finding in the results of Figure 22 and Figure 23 is the apparent pattern 

around amplitude 80. For both metrics, but especially mass flux, the result for mass flux 

amplitude of 80 is depressed relative to the values around it. This anomaly inspired the 

addition of simulations to this experiment to explore the gaps between 80 and the 

(original) neighboring values of 60 and 100. (Because the unusual value was noticed 

early on, it was possible to include these simulations.) The additional results revealed a 

distinct dip in the R values, which also appears in Λ  but with a different shape. This 

structure in the results suggests an interaction effect between mass flux amplitude and 

another aspect of the model. The results also hint that further structure could be hiding 

here. For instance, there may be additional complexity in R between the amplitude values 

of 20, 40, and 60. 
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Figure 24. Sensitivity of R and Λ  to varied amplitude of dynamic mass flux. 
Each crossbar represents means and standard errors for one set of simulations, labeled 
with amplitude values. The crossbar at amplitude=0 marks the baseline value for a system 
with a static mass flux. (Colors here are only for differentiation.) 

The combined plot of Figure 24 reinforces the earlier observation that dynamic 

mass flux appears to have only positive or neutral effects upon the metrics of R and Λ . 

While several of the results intersect with the non-dynamic baseline value in standard 

error and the anomaly at amplitude of 80 is nearly identical to the baseline, it appears that 

none of the tested values have a substantial negative impact on the ARN. 

Figure 25 presents a detailed view of the mass ratio response to dynamic mass 

flux over time. This graphic includes averaged data for 3 sets of simulations. The results 

for mass flux amplitude of 10 remain consistently higher than the static baseline value, 

but it isn’t clear if that line is synchronized with the cycle’s phase. The other two lines are 

clearly synchronized with the mass flux cycle, and both seem to show the same offset to 

the phase. The curves for amplitude 80 and 100 don’t seem profoundly different, except 
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for the fact that the former stays close to the non-dynamic mean and the latter is mostly 

above it, and perhaps is even on an upward trajectory.  

 
Figure 25. Time series of R response to varied amplitude of dynamic mass flux. 
Each line is the mean of 20 simulations. The static baseline value and energy phase are 
included for reference. The thickness of the non-dynamic bar shows ± standard error. 

Result 2.4. Dynamic Mass Flux, Varying in Period Length 

The final set of results presents the response of the DPD model to variations in the 

period of dynamic mass flux. As described for the variations in mass flux amplitude, the 

positive findings in these results are obvious and promising. Like those earlier results, it 

appears that variations in the period of dynamic mass flux either have no effect or, more 

commonly, provide a boost to both ARN metrics. Figure 26 and Figure 27 display the 

simulation results in terms of R and Λ , respectively. In R, it appears that only a single 

value for period (1400) caused a neutral response, with all others being positive. For Λ , a 

few period lengths give results approximately equal to the baseline, and one comes close 

to being worse (1550), but half of the tested periods yield improvements. A few of the 
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results in these figures hint at patterns like the sharp decrease seen in Figure 22 (at 

amplitude 80), but there is no example here of the same clarity. The odd R response near 

the period of 1250 is intriguing, for instance, and will likely be a target for future work, 

similar to the results behind Figure 22. 

 
Figure 26. Sensitivity of R to variation in period of dynamic mass flux. 
Each bar represents a mean and standard error for a set of simulations. The bar at 
period=0 marks the baseline value for a system with a static mass flux. (Colors here are 
only for differentiation.) 
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Figure 27. Sensitivity of Λ  to variation in period of dynamic mass flux. 
Each bar represents a mean and standard error for a set of simulations. The bar at 
period=0 marks the baseline value for a system with a static mass flux. (Colors here are 
only for differentiation.) 

The combined results in Figure 28 are again similar to the mass flux amplitude 

simulations (Figure 24). As with the earlier graphic, this plot provides clear evidence that 

the effect of dynamic mass flux is predominantly positive, with essentially all of the 

dynamic system values clustered together, above and to the right of the baseline value at 

period 0. These results are further evidence that parameter variation can result in a boost 

to both the mass ratio and the concentration slope of an ARN.  
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Figure 28. Sensitivity of R and Λ  to variation in period of dynamic mass flux. 
Each crossbar represents means and standard errors for one set of simulations, labeled 
with period values. The crossbar at period=0 marks the baseline value for a system with a 
static mass flux. (Colors here are only for differentiation.)  
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5. DISCUSSION 

The most important finding of this dissertation is the clear, positive answer to the 

primary objective: yes, dynamically structured (specifically, cyclic) interactions with the 

environment can promote the emergence of ARNs. Although much investigation remains 

to be done into these interactions, the findings present multiple demonstrations of the 

existence of these effects, which successfully achieves the main research objective. 

Specifically, the findings include positive results for a wide range of dynamic mass flux 

parameters, to the extent that all of the parameter values attempted resulted in positive or 

neutral changes to both metrics. The results for dynamic free energy showed positive 

impact on the ARN only for a limited range of values. These results suggest multiple 

future research paths, including investigation into the mechanisms of the effects, and 

application of the findings to other models and domains. 

The dissertation’s other objective was to establish a comparative relationship 

between the DPD model and the DE models common in the literature, and this too was 

achieved. The DPD model was applied to four findings from the foundational work in 

Bagley & Farmer (1991). The results matched fairly well between the DPD model and 

the DE model, with very strong matches for two results, and interesting differences in the 

two that did not match as well. 

Model Comparison 

Result 1.2 (concentration profile analysis) and Result 1.4 (sensitivity of mass 

distribution to mass flux) showed strong agreement between the two models. In Results 

1.2, the two figures showed nearly identical directionality of variation across polymer 
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concentrations, so that both ARN profile plots turned up or down at the same lengths. 

This seems to show that both models are implementing the network of relations in the 

same way, and that the chemical kinetics in both causes reasonably similar simulations. 

The comparison of polymer concentrations over time (Result 1.1) matched well overall, 

though the dissertation’s DPD model results showed substantially more high-frequency 

variation in concentration. However, the difference between the two results was expected 

and even desirable, and served to demonstrate how the two model paradigms differ. 

The remaining comparison, Result 1.3 (the sensitivity of Λ  to mass flux) had the 

weakest match between the two models. The results included an apparent anomaly in the 

slope metric Λ  for low mass flux values, with the ARN maintaining substantially higher 

levels in the DPD model. In the DE model of Bagley & Farmer (1991) the ARN becomes 

indistinguishable from the background in the analogous simulations. Closer examination 

of the DPD model’s results suggested that the anomaly was not necessarily problematic 

and may even represent an unexpected finding. Working from the hypothesis that the 

anomaly was caused by the spatial parameters of the DPD model, a quick set of ad hoc 

simulations was run to test the idea. While not definitive, the simulation results (Table 5) 

were able to explain at least half of the anomaly in the low-mass-flux behavior. These 

simulations have only been carried out for a single value of mass flux, however, so 

further testing is required to confirm the hypothesis and understand the behavior. 

Multiple possible explanations for the discrepancy were investigated without 

finding a definite cause. The leading hypothesis is that the difference is due (at least in 

part) to the geometry used in that DPD model, which was essentially 2-dimensional and 
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very different from the well-mixed conception of a DE model. A small number of ad hoc 

tests were carried out, transitioning from the 2-D geometry to a cube in the zone of low 

mass flux, where Λ  was unexpectedly elevated. The results showed a substantial and 

progressive reduction in Λ , reducing the discrepancy by about half. These tests were not 

definitive, and further experiments will be needed across the range of mass flux values, 

testing both for “3-D-ness” and for total system size (or density). Still, the ad hoc results 

are promising for the suggestions of a possible explanation, and more so for the hint that 

a 2-D geometry might have qualitatively different properties than 3-D geometries. This is 

especially relevant to certain ALife/OOL models, such as those set within narrow mineral 

cracks or thin films on surfaces. If this discrepancy turned into a finding that ARNs can 

emerge from non-driven systems, it could be a very interesting surprise.  

Environmental Dynamics 

Each of the four experiments demonstrated findings that give a positive answer to 

the dissertation’s main objective. The experiments with mass flux dynamics showed good 

results in both metrics that were considered, across many parameter values. The results 

for energy dynamics were not as consistently positive, but still included positive findings. 

The negative effects were expected to some extent, since increasing the energy in the 

system would increase the rates of all reaction, catalyzed or note, much like an increase 

in temperature. When all reaction rates increase, the relative advantage of catalyzed 

reactions is weakened. Additional findings of interest in the results include apparent 

interaction effects between some of the environmental dynamics and other aspects of the 
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reaction network. These appear as nonlinear changes in the result metrics, and they 

suggest the possibility of resonance between the multiple time-based aspects of the 

model. 

The findings for mass flux dynamics showed very good results, with neutral or 

positive changes in both metrics over the entire range of parameter values. It is of course 

possible that this result is limited to the range that was tested, and the consistency of the 

results is due to chance. Nonetheless, the effect does exist in this range, proving that it is 

at least possible for a dynamic environmental interaction to be not only beneficial, but 

completely non-harmful within some domain. It also appears that the sensitivity of the 

two metrics to the parameters is not monotonic, and that some interaction causes the 

metrics to vary up and down over time. It appears possible that this interaction involves 

the time-based parameters of the model. Mass flux is itself temporal, even without the 

dynamic variation, and the ARN’s potential to take advantage of it should depend in part 

on reaction rates, catalyst unbinding time, particle movement rates, and any other time-

based behaviors in the system. The interaction of these time-based functions is perhaps 

the next step in the research that would be most relevant to extending and understanding 

the dissertation’s results. 

The findings for environmental dynamics of free energy in the system were not as 

uniformly positive as those for dynamic mass flux, but the positive results are still 

interesting and are proof of existence. In general, the effect of increased energy (in the 

form of temperature) on chemical reactions is to increase their rate, which should reduce 

the relative effect of catalysis. This is what the findings show for high-amplitude dynamic 

energy. The expectation for dynamic energy was that positive findings might arise from 
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parameters that describe conditions near the edge of emergence, where the potential 

benefits of exploration could outweigh any ill effects from increased energy. This may be 

what happened in Figure 14, for instance, for energy amplitudes between 1 and 2. The 

positive results for varying amplitude occur at low levels, where they show a small but 

consistent trend of improvement in R, and an increase in Λ  over a wider range of values, 

with a possible nonlinear interaction effect in the middle of that range. The findings for 

variations in the period of dynamic energy show a different type of nonlinear behavior. 

For a narrow range of values on the low end of those tested, the Λ  metric sees a large 

increase while R experiences a large decrease. Even within this narrow band, there 

appears to be bump in the middle of the five data points, moving in the opposite direction 

of the others. Beyond that range, in the longer periods, both metrics experience smaller 

changes relative to the earlier variations. Within the longer periods, there may also be 

interaction or resonance effects, but at a much smaller scale than in the short periods.  

Relevance of Results 

The findings of this dissertation, though limited in scope and not yet fully 

explained, also have the potential to be generalized and applied to many domains. 

Certainly, when the results are verified and better explored, they could be applicable to a 

number of models within the field of ALife and the study of the Origin of Life. Several 

theories for OOL seem ready for direct application of the findings, such as those with 

unusual geometric features or regular exposure to external dynamics. Among these 

settings are mineral surfaces (Koonin 2007; Orgel 1998), in subterranean minerals 
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(Koonin & Martin 2005; Wächtershäuser 2006), on the ocean surface (Dobson et al. 

2000), and in deep-sea thermal vents (Corliss 1990; Russell & Hall 1997). Other models 

that feature polymer reactions may also find use for these results, including the many 

variations of The RNA World (Higgs & Lehman 2015). It is also possible that the 

findings could be useful to models with very different types of reactions, such as models 

of protocell formation (Fellermann et al. 2007; Solé 2009) and those in The Lipid World 

(Segré et al. 2001). 

Another area of relevance might be in the area of ecosystem research, and the 

more general parallels between living systems at different scales, from ecosystems to 

animal groups to individual organisms to single cells. Ecosystem research has been one 

of the most active areas for studying energy and nutrient cycling, system-environment 

interdependency, and sources of variety, and it is a field with a strong component of 

computational simulation (DeAngelis 1980; Fletcher et al. 1997, 1998; Kaufmann 1993; 

Patten 1985). The parallels between living systems of various scales are somewhat 

widely known, at least as metaphors, but comparisons of experimental results are more 

rare. Such a line of research might one day validate the parallels between the real-world 

systems. Well before that, it could connect two very active areas of simulation research, 

perhaps enabling each to leverage the efforts of the other. 

Limitations, and Issues of Validity 

The present research primarily sought to demonstrate proof of the existence of 

certain behaviors, with the additional goal of providing a hint at the generality or 

frequency of those behaviors, at least by showing that the findings were not a “one-off” 
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or “lucky break.” This was achieved, to an extent, by demonstrating multiple scenarios 

where the behaviors of interest emerge, and by showing that the behaviors can take on 

different, potentially interesting forms. However, this research also features uncertainty at 

nearly every level, and it is quite likely that some of the specifics of the findings will 

require revision or even discarding once validity is pursued more vigorously. For 

instance, the simulations were performed with software that had been recently acquired 

and modified, and little outside assistance was used in the process. Though the 

“replication” results came out quite well, the simulation systems differed so substantially 

that their behaviors may inhabit entirely different parts of state space, despite the 

apparent similarity in outputs. 

Beyond the parameter translation issues, the space of possible system parameters 

is quite vast, and caution should be taken in drawing conclusions about the generality or 

frequency of the results. While it appeared to be relatively simple to find parameters that 

gave reasonable results, it could still be related to the limited number of experiments. In 

addition, researcher bias is always present, though much effort was undertaken to avoid 

bias in this process.  

The use of custom software—built from source code—gave the research an 

impressive amount of flexibility, from simulation features to debugging. The unfortunate 

side effect of this is that the ownership and attribution of the code is still uncertain, as is 

the potential for posting the code online or otherwise sharing it. In order to be able to 

revisit the code at a future date, the source files and their surrounding project details will 

need to be retained and maintained. Operating systems, compilers, and graphics libraries 
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all might change, and yet the desire would be to keep this code in a format that is 

available to this researcher and to others for years to come. 

Future Directions 

These results have created many opportunities for future research. The most 

appropriate next steps might be those that provide a better understanding of the 

mechanisms underlying the dissertation’s results, both for the main results of increased 

ARN emergence, and also for the ancillary findings, such as the apparent interaction 

effects between the environmental dynamics and the system’s structure, and the not-yet-

explained behavior in the DPD model at low mass flux. These secondary findings will 

first require additional simulations and analysis to establish their existence, given the 

smaller number of runs that went into those experiments. Even the main results would 

benefit from additional simulations, and this may be the best way to provide confidence 

in the findings. Doing more runs for existing parameter configurations could give a better 

understanding of consistency while reducing error, and runs with new parameters could 

allow for the confirmation of perceived trends and suspected interaction effects. Results 

such as those in Figure 14 would be improved by narrowing the parameter range to the 

region nearest the “baseline” value, in the small zone where the energy cycle appears 

beneficial and the metrics show an inflection. Other results, such as Figure 20 and Figure 

23, could be improved by filling in gaps to understand nonlinearities, or by extending the 

parameter range further from the baseline, to determine if the interesting behavior 

extends into other regions. 
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Other directions for future research might start by identifying research partners 

for collaboration, particularly those who are more experienced with some model that 

could be used to verify, replicate, or extend the present findings. This could be very 

productive, whether it involved the same DPD model or a different implementation, or 

some other model for ARN research, or even a model in another domain. For instance, it 

would be interesting to apply the environmental dynamics to a DPD or ABM model 

whose behavior is better understood, and preferable well validated, regardless of its 

connection to the ALife field. This could help to begin determining how well the results 

on cyclic dynamics generalize. Working with a model that is better established might also 

make it easier to gain a deeper understanding of results such as the sensitivity analyses, if 

typical behavior is more well known, and the inner workings of the model are better 

understood. 

This dissertation was designed to build upon and replicate the early work from a 

line of research that is now more than 25 years old. As described in the LITERATURE 

REVIEW chapter, this body of work contains numerous other results, and these could 

potentially be translated to the DPD model for further comparison. The dynamic 

interaction effects could also be translated to other existing models of autocatalysis, to 

confirm in which specific cases the differences in the modeling paradigms give different 

results. It may be that a DE model with stochastic elements and imposed cycling is able 

to exhibit some of the results observed in the present work, but not others, and the 

continuance of this comparison ought to be part of any future work. 

There are a number of future directions for ARN research that will likely be much 

more difficult for models other than the type in the present research. Early in the course 
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of the present work, a wider literature review and unconstrained long-term vision 

together suggested many such research opportunities. These potential paths include 

multiple ways to connect the present work to the Origin of Life theories that have been 

mentioned above. The theories that best map to environmental dynamics—tide pools, 

deep-sea vents, geysers, mineral surfaces—could all be simulated with extensions of the 

DPD model, to various levels of fidelity. Many interesting variations of these scenarios 

could be simulated through a model with multiple chemical systems in parallel, separated 

by spatial structures that limit interactions in different ways. These interactions could 

model behaviors such as competition for resources, cooperation, adaptation to niches, and 

so on. With the spatial capabilities of the DPD model, these proto-life systems could be 

designed to simulate conditions such as: cracks or pores in minerals, deep-sea vents, 

puddles subjected to evaporation and condensation, or foam on the ocean surface. These 

are all potentially complex systems, and they will likely be a challenge to simulate and 

understand. The present work begins the task of making such work approachable, in the 

results that it has provided and in the methods used, from the automation of parallel 

execution, to the streamlining of the model code, to establishing structures for deriving 

analysis efficiently. 
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