
Portland State University
PDXScholar
Electrical and Computer Engineering Faculty
Publications and Presentations Electrical and Computer Engineering

8-28-2014

Formalization of Matrix Theory in HOL4
Zhiping Shi
Chinese Academy of Sciences

Yan Zhang
Capital Normal University

Zhenke Liu
Capital Normal University

Xinan Kang
Capital Normal University

Yong Guan
Capital Normal University

See next page for additional authors

Let us know how access to this document benefits you.
Follow this and additional works at: http://pdxscholar.library.pdx.edu/ece_fac

Part of the Electrical and Computer Engineering Commons

This Article is brought to you for free and open access. It has been accepted for inclusion in Electrical and Computer Engineering Faculty Publications
and Presentations by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Citation Details
Shi, Z., Zhang, Y., Liu, Z., Kang, X., Guan, Y., Zhang, J., & Song, X. (2014). Formalization of matrix theory in HOL4. Advances in
Mechanical Engineering, 6, 195276.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by PDXScholar

https://core.ac.uk/display/37773759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F240&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F240&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F240&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/ece?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F240&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=http://pdxscholar.library.pdx.edu/ece_fac/240
http://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F240&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F240&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu

Authors
Zhiping Shi, Yan Zhang, Zhenke Liu, Xinan Kang, Yong Guan, Jie Zhang, and Xiaoyu Song

This article is available at PDXScholar: http://pdxscholar.library.pdx.edu/ece_fac/240

http://pdxscholar.library.pdx.edu/ece_fac/240?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F240&utm_medium=PDF&utm_campaign=PDFCoverPages

Research Article
Formalization of Matrix Theory in HOL4

Zhiping Shi,1,2,3 Yan Zhang,1 Zhenke Liu,1 Xinan Kang,1

Yong Guan,1 Jie Zhang,4 and Xiaoyu Song5

1 Beijing Key Laboratory of Electronic System Reliability Technology, Capital Normal University, Beijing 100048, China
2 State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, 100190, China
3 Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, 541004, China
4College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
5 Electrical and Computer Engineering, Portland State University, Portland, OR 97201, USA

Correspondence should be addressed to Zhiping Shi; shizhiping@gmail.com

Received 11 January 2014; Accepted 14 March 2014; Published 28 August 2014

Academic Editor: Hongxing Wei

Copyright © 2014 Zhiping Shi et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Matrix theory plays an important role in modeling linear systems in engineering and science. To model and analyze the intricate
behavior of complex systems, it is imperative to formalize matrix theory in a metalogic setting. This paper presents the higher-
order logic (HOL) formalization of the vector space and matrix theory in the HOL4 theorem proving system. Formalized theories
include formal definitions of real vectors and matrices, algebraic properties, and determinants, which are verified in HOL4. Two
case studies, modeling and verifying composite two-port networks and state transfer equations, are presented to demonstrate the
applicability and effectiveness of our work.

1. Introduction

The matrix theory is a core subbranch of linear algebra.
Matrices as operators of linear space transformations play
important roles in modeling linear systems. The matrix
theory has extended applications in most of science fields.
In many branches of physics, including classical mechanics,
optics, electromagnetism, quantummechanics, and quantum
electrodynamics, thematrix theory is used to analyze physical
phenomena, such as the motion of rigid bodies. In com-
puter graphics, matrices are used to perform 2-dimensional
and 3-dimensional projection transformation. In robotics,
matrices are used to address robot kinematics and dynamics.
In probability theory and statistics, stochastic matrices are
used to describe sets of probabilities; for instance, matrix
decomposition supports modeling information compression,
reconstruction, and retrieval. Matrix calculus generalizes
classical analytical notions such as derivatives and exponen-
tials to higher dimensions. Furthermore, the modern matrix
theory covers subjects related to many other important
mathematical branches such as graphs, combinatorics, and

statistics. MATLAB’s success is the typical sample of matrix
applications.

Traditionally, a number of efficient numerical analysis
algorithms were developed for matrix computations in order
to improve the accuracy of results, yet the absolute precision
in the real number field can never be reached because of
round-off error, approximate algorithms to address large-
scale issues, and so on. On the other hand, the property
analysis of linear system based models has been done using
paper-and-pencil proof methods, which is quite error prone.
A tiny error or inaccuracy, however, may result in failure
or even loss of lives in highly sensitive and safety-critical
engineering applications. Mechanical theorem proving, on
the contrary, is capable of performing precise and scalable
analysis.

Mechanical theorem proving has been considered a
promising and powerful method of formal proofs in pure
mathematics or system analysis and verification [1–5]. Sys-
tems or any proof goals need to be modeled formally before
they are verified by theorem provers, and theorem provers
work based on logic theorem libraries of mathematics. The

Hindawi Publishing Corporation
Advances in Mechanical Engineering
Volume 2014, Article ID 195276, 16 pages
http://dx.doi.org/10.1155/2014/195276

http://dx.doi.org/10.1155/2014/195276
http://ade.sagepub.com/

2 Advances in Mechanical Engineering

Table 1: Some HOL4 notations and their semantics.

Meaning HOL4 notations Standard notations
Truth T T
Falsity F ⊥

Negation ∼t ¬𝑡

Disjunction t1⋁t2 𝑡1 ∨ 𝑡2

Conjunction t1⋀t2 𝑡1 ∧ 𝑡2

Implication t1==>t2 𝑡1 ⇒ 𝑡2

Equality t1=t2 𝑡1 = 𝑡2

∀-quantification !x.t ∀𝑥.𝑡

∃-quantification ?x.t ∃𝑥.𝑡

Lambda \x.t 𝜆𝑥.𝑡

̇U ̇U1 =
󳰀

1
̇U ̇U
󳰀

2

󳰀󳰀

1

̇I ̇I1 =
󳰀

1

P1 P2

̇I
󳰀

2
̇I
󳰀󳰀

1
̇I ̇I
󳰀󳰀

2
=

2

̇U ̇U
󳰀󳰀

2
=

2

+ + +

− − −

+

−

Figure 1: Two ports connected in a cascade connection.

more mathematic theorem libraries there are, the wider the
scope of application of the theorem provers is [5]. It is
significant to formalize matrix theory in theorem provers
for extending theorem proving applications. The parts of
the matrix theories have been formalized in some theorem
provers. Nakamura et al. [6] presented the formalization of
the matrix theory in Mizar in 2006. The COQ system has
also started to provide matrices in recent years [7]. Harrison
presented the formalization of Euclidean space in the HOL-
light system in 2005 [8]. In Isabelle/HOL [9], some basic
matrix theory has been formalized in [10, 11]. However, the
HOL4 [12], which is the latest version of the HOL theorem
prover, does not yet have a matrix theory in its formalized
theories collections. Furthermore, no successful conversion
ofmatrix theory from any other theorem prover can be found
in the current literature. For this reason, diverse applications
are not available to be verified using HOL4. For example,
Liu et al. [13] presented a sophisticated formalization in
HOL4 for the finite-state discrete-timeMarkov Chain theory
which is widely used to model random processes in physical
and informational systems. Without the formalized matrix
theory, the state transition matrix was formalized by the
list type instead of the matrix type. If our matrix theory
were used to supply the formalization of Markov chain,
the work in [13] would be enhanced to efficiently address
scalable systems. Hence, formalizing the matrix theory in
HOL4 enables formally analyzing linear systemmodels using
this theorem prover, as well as benefiting the development of
enormous other theories, such as Markov chain.

We will formalize the matrix analysis theories by stages.
This paper presents a systematic formalization of the matrix
algebraic theory in the HOL4 system. It includes the formal-
ization of vectors and matrices and proofs of their relevant
algebraic properties.The vector and matrix are defined based
on the finite Cartesian products (FCP) library of HOL4.

̇U1

̇U
󳰀

1
̇U
󳰀

2

̇U
󳰀󳰀

2

̇U
2

P1

P2

̇I
󳰀

2
̇I
󳰀

1

̇I
󳰀󳰀

1
̇I
󳰀󳰀

2

̇I
󳰀󳰀

2

̇I
󳰀

2
̇I
󳰀󳰀

1

̇I
󳰀

1

+

+

−

−

̇U
󳰀󳰀

1

+

−

+

+

−

−

Figure 2: The two ports connected in a parallel-parallel configura-
tion.

The properties of vectors, matrices, and determinants are
characterized in accordance with linear space properties. As
case studies of applications, the formalmodeling and proof of
the parameterized two-port networks and high-speed power
of matrix solution to state transfer equations are presented.
In this paper, we use HOL4 notations, and some notations
are listed in Table 1.

This paper is organized as follows. Section 2 proposes the
formalization of the vector space. Then, the formalization
of the fundamental matrix theory is presented in Section 3.
Two applications of modeling and verifying by the proposed
approach are presented in Section 4. Section 5 concludes the
paper.

2. Formalization of Vector Space

Matrices are transforming operators in the vector space.
In this section, vectors and their algebraic operations are
formalized based on the FCP library in HOL4, and the linear
properties of vector space are proven.

2.1. Defining theData Type of Vectors. 𝑁-dimensional vectors
are elements of an 𝑁-dimensional vector space, denoted
by 𝐴
𝑁, where 𝐴 is the element type and 𝑁 is a number

variable for the dimension. 𝐴𝑁 can be constructed by the𝑁-
dimensional Cartesian products of 𝐴. The function space is
as follows:

𝐴 󳨀→ 𝑁 󳨀→ 𝐴
𝑁
. (1)

It is not trivial to define the compound type in the HOL4
system based on a simple type theory where a compound
type can only depend on other types and not on terms.
Harrison [8] introduced an elegant method of defining the
vector type in the HOL-light theorem prover. We define 𝑛-
dimensional vectors in HOL4 following Harrison’s method,
with the cardinality of the type being the dimension of the
Cartesian product. The FCP theory was implemented and
named the fcpTheory in HOL4. Assuming𝐴 to be a real type
and 𝑛 the index type, the real vector type is constructed based
on the fcpTheory in HOL4 as follows:

Hol
−
type : real ['n] −−> 'n vector, (2)

where 'n stands for a type variable, which can be instantiated
by a certain type. The elements of a vector are operated

http://ade.sagepub.com/

Advances in Mechanical Engineering 3

Ta
bl
e
2:
Th

ef
or
m
al
iz
at
io
n
of

th
ea

lg
eb
ra
ic
pr
op

er
tie

so
fv
ec
to
rs
.

Th
eo
re
m

na
m
e

Fo
rm

al
iz
at
io
n
in

H
O
L4

M
at
he
m
at
ic
fo
rm

V
EC

TO
R
A
D
D

IN
D
EX

|-
!v
1v

2
i.
i<

di
m
in
de
x
(:'
n)

==
>
((
v1

+
v2
)'
i=

v1
'i
+
v2

'i)
(
v1

+
v2

)
𝑖
=
v1
𝑖
+
v2
𝑖

V
EC

TO
R
SU

B
IN

D
EX

|-
!v
1v

2
i.
i<

di
m
in
de
x
(:'
n)

==
>
((
v1

−
v2
)'
i=

v1
'i

−
v2

'i)
(
v1

−
v2

)
𝑖
=
v1
𝑖
−
v2
𝑖

V
EC

TO
R
A
D
D

CO
M
M

|-
!v
1v

2.
v1

+
v2

=
v2

+
v1

v1
+
v2

=
v2

+
v1

V
EC

TO
R
A
D
D

M
U
L
LK

|-
!v
1v

2
k.
k
∗
∗
(v
1+

v2
)=

k
∗
∗
v1

+
k
∗
∗
v2

𝑘
(
v1

+
v2

)
=

𝑘
⋅
v1

+
𝑘
⋅
v2

V
EC

TO
R
LM

U
L
C

A
SS
O
C

|-
!k
lv
.k

∗
l∗

∗
v
=
(k

∗
l)

∗
∗
v

𝑘
⋅
𝑙
⋅
v
=

(
𝑘
⋅
𝑙)

⋅
v

V
EC

TO
R
A
D
D

A
SS
O
C

|-
!v
1v

2
v3
.v
1+

v2
+
v3

=
v1

+
(v
2
+
v3
)

v1
+
v2

+
v3

=
v1

+
(
v2

+
v3

)

V
EC

TO
R
EQ

|-
!v
1v

2.
(v
1−

v2
=
ve
ct
or

0)
<
=>

(v
1=

v2
)

(
v1

−
v2

=
0)

<
=
>

(
v1

=
v2

)

V
EC

TO
R
EQ

2
|-
!v
1v

2.
(v
1=

v2
)<

=>
!i.
i<

di
m
in
de
x
(:'
n)

==
>
(v
1'
i=

v2
'i)

(
v1

=
v2

)
<
=
>
v1
𝑖
=
v2
𝑖
𝑖
=

0
,
.
.
.
,
𝑛
−

1

V
EC

TO
R
A
D
D

LZ
ER

O
|-
!v.

ve
ct
or

0
+
v
=
v

0
+
v
=
v

V
EC

TO
R
A
D
D

RZ
ER

O
|-
!v.

v
+
ve
ct
or

0
=
v

v
+
0

=
v

V
EC

TO
R
A
D
D

N
EG

|-
!v.

v
+

∼
v
=
ve
ct
or

0
v
+

(
−
v)

=
0

V
EC

TO
R
SU

B
A
D
D

|-
!v
1v

2.
v1

−
v2

+
v2

=
v1

v1
−
v2

+
v2

=
v1

V
EC

TO
R
D
O
T
CO

M
M

|-
!v
1v

2.
v1

∗
∗
v2

=
v2

∗
∗
v1

v1
⋅
v2

=
v2

⋅
v1

V
EC

TO
R
A
D
D

LD
IS
TR

IB
|-
!v
1v

2
v3
.v
1∗

∗
(v
2
+
v3
)=

v1
∗
∗
v2

+
v1

∗
∗
v3

v1
⋅
(
v2

+
v3

)
=
v1

⋅
v2

+
v1

⋅
v3

V
EC

TO
R
A
D
D

M
U
L
RK

|-
!v
1v

2
k.
(v
1+

v2
)∗

∗
k
=
v1

∗
∗
k
+
v2

∗
∗
k

(
v1

+
v2

)
𝑘

=
v1

⋅
𝑘
+
v2

⋅
𝑘

V
EC

TO
R
A
D
D

N
EG

2
|-
!v
1v

2.
v1

+
∼
v2

=
v1

−
v2

v1
+

(
−
v2

)
=
v1

−
v2

V
EC

TO
R
A
D
D

RD
IS
TR

IB
|-
!v
1v

2
v3
.(
v1

+
v2
)∗

∗
v3

=
v1

∗
∗
v3

+
v2

∗
∗
v3

(
v1

+
v2

)
⋅
v3

=
v1

⋅
v3

+
v2

⋅
v3

V
EC

TO
R
D
O
T
LM

U
L
K

|-
!v
1v

2
k.
k
∗
∗
v1

∗
∗
v2

=
(k

∗
∗
v1
)∗

∗
v2

𝑘
⋅
v1

⋅
v2

=
(
𝑘
⋅
v1

)
⋅
v2

V
EC

TO
R
D
O
T
RM

U
L
K

|-
!v
1v

2
k.
v1

∗
∗
k
∗
∗
v2

=
(k

∗
∗
v1
)∗

∗
v2

v1
⋅
𝑘
⋅
v2

=
(
𝑘
⋅
v1

)
⋅
v2

V
EC

TO
R
LN

EG
U
N
IQ

|-
!v
1v

2.
(v
1+

v2
=
ve
ct
or

0)
<
=>

(v
1=

∼
v2
)

(
v1

+
v2

=
0)

<
=
>

(
v1

=
−
v2

)

V
EC

TO
R
M
U
L
BA

SI
S

|-
!v
k.
k
<
di
m
in
de
x
(:'
n)

==
>
(v

∗
∗
ve
ct
or

ba
sis

k
=
v
'k
)

v
⋅
ve
ct
or

ba
sis

𝑘
=
v 𝑘

V
EC

TO
R
M
U
L
K

EQ
|-
!v
k.
v
∗
∗
k
=
k
∗
∗
v

𝑘
⋅
v
=
v
⋅
𝑘

V
EC

TO
R
M
U
L
L1

|-
!v.

1∗
∗
v
=
v

1
⋅
v
=
v

V
EC

TO
R
M
U
L
LR

A
D
D

|-
!v
k
l.
(k

+
l)

∗
∗
v
=
k
∗
∗
v
+
l∗

∗
v

(
𝑘
+

𝑙)
⋅
v
=

𝑘
⋅
v
+

𝑙
⋅
v

V
EC

TO
R
M
U
L
N
EG

|-
!v
1v

2.
∼
v1

∗
∗
v2

=
v1

∗
∗

∼
v2

−
v1

⋅
v2

=
v1

⋅
(
−
v2

)

V
EC

TO
R
M
U
L
RR

A
D
D

|-
!v
k
l.
v
∗
∗
(k

+
l)
=
v
∗
∗
k
+
v
∗
∗
l

v
⋅
(
𝑘
+

𝑙)
=
v
⋅
𝑘
+
v
⋅
𝑙

V
EC

TO
R
N
EG

|-
!v.

∼
v
=

−
1∗

∗
v

−
v
=

−
1
⋅
v

V
EC

TO
R
N
EG

N
EG

|-
!v.

∼
∼
v
=
v

−
−
v
=
v

V
EC

TO
R
RN

EG
U
N
IQ

|-
!v
1v

2.
(v
1+

v2
=
ve
ct
or

0)
<
=>

(v
2
=

∼
v1
)

(
v1

+
v2

=
0)

<
=
>

(
v2

=
−
v1

)

V
EC

TO
R
SU

B
LZ

ER
O

|-
!v.

ve
ct
or

0
−
v
=

∼
v

0
−
v
=

−
v

V
EC

TO
R
EX

IS
T
N
EG

|-
!v.

?v
'.v

+
v'
=
ve
ct
or

0
∃
v’,

v
+
v’
=
0

V
EC

TO
R
D
O
T
FC

P
|-
($
FC

P
f∗

∗
v
=
su
m

(0
,d
im

in
de
x
(:'
n)
)(

\
i.
fi

∗
v
'i)

)∧
(u

∗
∗
$F

CP
f=

su
m

(0
,d
im

in
de
x
(:'
n)
)(

\
i.
u
'i

∗
fi
))

f⋅
v
=

∑
𝑖=
1
,.
..
,𝑛
(
𝑓
𝑖
×
V 𝑖
)

/
/
fi
sa

fu
nc
tio

n
u

⋅
f=

∑
𝑖=
1
,.
..
,𝑛
(
𝑢
𝑖
×

𝑓
𝑖
)
//v

,
u
ar
ev

ec
to
rs

V
EC

TO
R
M
U
L
M
E

|-
!v.

v
∗
∗
m
at
rix

E
=
v

v
⋅
E

=
v,
E
is
th
eu

ni
tv
ec
to
r

http://ade.sagepub.com/

4 Advances in Mechanical Engineering

Ta
bl
e
3:
Th

ef
or
m
al
iz
at
io
n
of

th
ef
un

da
m
en
ta
la
lg
eb
ra
ic
pr
op

er
tie

so
ft
he

m
at
rix

op
er
at
io
n.

Th
eo
re
m

na
m
e

Fo
rm

al
iz
at
io
n
in

H
O
L4

M
at
he
m
at
ic
fo
rm

M
AT

RI
X

A
D
D

CO
M
M

|-
!A

B.
A
+
B
=
B
+
A

A
+
B

=
B

+
A

M
AT

RI
X

A
D
D

A
SS
O
C

|-
!A

B
C.

A
+
B
+
C
=
A
+
(B

+
C)

A
+
B

+
C

=
A

+
(
B

+
C)

M
AT

RI
X

A
D
D

LD
IS
TR

IB
!A

B
C.

(A
+
B)

∗
∗
C
=
A

∗
∗
C
+
B

∗
∗
C

(
A

+
B)

⋅
C

=
A

⋅
C

+
B

⋅
C

M
AT

RI
X

M
U
L
A
SS
O
C

|-
!A

B
C.

(A
∗
∗
B)

∗
∗
C
=
A

∗
∗
B

∗
∗
C

(
A

⋅
B)

⋅
C

=
A

⋅
B

⋅
C

M
AT

RI
X

M
U
L
V
EC

RA
D
D

|-
!A

v1
v2
.A

∗
∗
(v
1+

v2
)=

A
∗
∗
v1

+
A

∗
∗
v2

A
⋅
(
v1

+
v2

)
=
A

⋅
v1

+
A

⋅
v2

M
AT

RI
X

M
U
L
V
EC

LA
D
D

|-
!A

v1
v2
.(
v1

+
v2
)∗

∗
A
=
v1

∗
∗
A
+
v2

∗
∗
A

(
v1

+
v2

)
⋅
A

=
v1

⋅
A

+
v2

⋅
A

TR
A
N
SP

M
U
L

|-
!A

B.
tr
an
sp

(A
∗
∗
B)

=
tr
an
sp

B
∗
∗
tr
an
sp

A
(
A

⋅
B)

T
=
BT

⋅
A

T

M
AT

RI
X

A
D
D

L0
|-
!A
.m

at
rix

0
+
A
=
A

0
+
A

=
A

M
AT

RI
X

A
D
D

R0
|-
!A
.A

+
m
at
rix

0
=
A

A
+
0

=
A

M
AT

RI
X

A
D
D

M
U
L
LR

|-
!A

B
k.
k
∗
∗
(A

+
B)

=
k
∗
∗
A
+
k
∗
∗
B

𝑘
(
A

+
B)

=
𝑘
A

+
𝑘
B

M
AT

RI
X

A
D
D

M
U
L
RR

|-
!A

B
k.
(A

+
B)

∗
∗
k
=
A

∗
∗
k
+
B

∗
∗
k

(
A

+
B)

𝑘
=
A
𝑘
+
B𝑘

M
AT

RI
X

A
D
D

N
EG

|-
!A
.A

+
∼
A
=
m
at
rix

0
A

+
(
−
A
)
=
0

M
AT

RI
X

EQ
|-
!A

B.
(A

=
B)

<
=>

!i
j.
i<

di
m
in
de
x
(:'
m
)∧

j<
di
m
in
de
x

(:'
n)

==
>
(A

'i
'j
=
B
'i
'j)

Th
at
tw
o
m
at
ric

es
ar
ee

qu
al
m
ea
ns

th
at
al
lc
or
re
sp
on

di
ng

el
em

en
ts
of

th
et
w
o
m
at
ric

es
ar
ee

qu
al

M
AT

RI
X

EC
|-
!k
.k

<
di
m
in
de
x
(:'
n)

==
>
(c
ol
um

n
m
at
rix

E
k
=
ve
ct
or

ba
sis

k)
G
et
th
e𝑘

th
co
lu
m
n
of

th
ei
de
nt
ity

m
at
rix

M
AT

RI
X

ER
|-
!k
.k

<
di
m
in
de
x
(:'
n)

==
>
(r
ow

m
at
rix

E
k
=
ve
ct
or

ba
sis

k)
G
et
th
e𝑘

th
ro
w
of

th
ei
de
nt
ity

m
at
rix

M
AT

RI
X

M
U
L
K

EQ
|-
!A

k.
A

∗
∗
k
=
k
∗
∗
A

A
⋅
𝑘

=
𝑘
⋅
A

M
AT

RI
X

M
U
L
LM

E
|-
!A
.m

at
rix

E
∗
∗
A
=
A

I⋅
A

=
A
(I
st
an
ds

fo
ri
de
nt
ity

m
at
rix

)
M
AT

RI
X

M
U
L
RM

E
|-
!A
.A

∗
∗
m
at
rix

E
=
A

A
⋅
I=

A
M
AT

RI
X

M
U
L
LR

A
D
D

|-
!A

k
l.
(k

+
l)

∗
∗
A
=
k
∗
∗
A
+
l∗

∗
A

(
𝑘
+

𝑙)
⋅
A

=
𝑘
⋅
A

+
𝑙
⋅
A

M
AT

RI
X

M
U
L
RR

A
D
D

|-
!A

k
l.
A

∗
∗
(k

+
l)
=
A

∗
∗
k
+
A

∗
∗
l

A
⋅
(
𝑘
+

𝑙)
=
A

⋅
𝑘
+
A

⋅
𝑙

M
AT

RI
X

N
EG

|-
!A
.∼

A
=

−
1∗

∗
A

−
A

=
(
−
1
)
⋅
A

M
AT

RI
X

N
EG

N
EG

|-
!A
.∼

∼
A
=
A

−
−
A

=
A

M
AT

RI
X

M
U
L
N
EG

|-
!A

B.
∼
A

∗
∗
B
=
A

∗
∗

∼
B

(
−
A
)
⋅
B

=
A

⋅
(
−
B)

M
AT

RI
X

N
EG

PR
O
D

|-
!A

B.
∼
A

∗
∗
B
=

∼
(A

∗
∗
B)

(
−
A
)
⋅
B

=
−
(
A

⋅
B)

M
AT

RI
X

SU
B
LZ

ER
O

|-
!A
.m

at
rix

0
−
A
=

∼
A

0
−
A

=
−
A

M
AT

RI
X

LN
EG

U
N
IQ

|-
!A

B.
(A

+
B
=
m
at
rix

0)
<
=>

(A
=

∼
B)

(
A

+
B

=
0)

<
=
>

(
A

=
−
B)

M
AT

RI
X

RN
EG

U
N
IQ

|-
!A

B.
(A

+
B
=
m
at
rix

0)
<
=>

(B
=

∼
A
)

(
A

+
B

=
0)

<
=
>

(
B

=
−
A
)

M
AT

RI
X

PR
O
D

LM
U
L
K

|-
!A

B
k.
(k

∗
∗
A
)∗

∗
B
=
k
∗
∗
A

∗
∗
B

(
𝑘
⋅
A
)
⋅
B

=
𝑘
⋅
A

⋅
B

M
AT

RI
X

PR
O
D

RM
U
L
K

|-
!A

B
k.
A

∗
∗
k
∗
∗
B
=
k
∗
∗
A

∗
∗
B

A
⋅
𝑘
⋅
B

=
𝑘
⋅
A

⋅
B

M
AT

RI
X

RM
U
L
C

A
SS
O
C

|-
!A

k
l.
k
∗
∗
l∗

∗
A
=
(k

∗
l)

∗
∗
A

𝑘
⋅
𝑙
⋅
A

=
(
𝑘
⋅
𝑙)

⋅
A

TR
A
N
SP

TR
A
N
SP

|-
!A
.t
ra
ns
p
(tr

an
sp

A
)=

A
(
A

T
)

T
=
A

M
AT

RI
X

A
D
D

IN
D
EX

|-
!A

B
ij
.i

<
di
m
in
de
x
(:'
m
)∧

j<
di
m
in
de
x
(:'
n)

==
>
((
A
+
B)

'i
'j

=
A
'i
'j
+
B
'i
'j)

(
A

+
B)
𝑖𝑗
=
A
𝑖𝑗
+
B 𝑖
𝑗

M
AT

RI
X

SU
B
IN

D
EX

|-
!A

B
ij
.i

<
di
m
in
de
x
(:'
m
)∧

j<
di
m
in
de
x
(:'
n)

==
>
((
A

−
B)

'i
'j

=
A
'i
'j

−
B
'i
'j)

(
A

−
B)
𝑖𝑗
=
A
𝑖𝑗
−
B 𝑖
𝑗

M
AT

RI
X

RO
W

A
D
D

|-
!A

B
i.
i<

di
m
in
de
x
(:'
m
)=

=>
(r
ow

(A
+
B)

i=
ve
ct
or

ad
d
(r
ow

A
i)
(r
ow

B
i))

Th
e𝑖
th

ro
w
of

A
+
B
eq
ua
ls
th
ea

dd
iti
on

of
th
e𝑖
th

ro
w
of

A
an
d
th
e𝑖
th

ro
w
of

B

M
AT

RI
X

CO
LU

M
N

A
D
D

|-
!A

B
i.
i<

di
m
in
de
x
(:'
n)

==
>
(c
ol
um

n
(A

+
B)

i=
ve
ct
or

ad
d

(c
ol
um

n
A
i)
(c
ol
um

n
B
i))

Th
e𝑖
th

co
lu
m
n
of

A
+
B
eq
ua
ls
th
ea

dd
iti
on

of
th
e𝑖
th

co
lu
m
n
of

A
an
d
th
e𝑖
th

co
lu
m
n
of

B
M
AT

RI
X

A
D
D

M
U
L
V
EC

R
|-
!A

B
v.
(A

+
B)

∗
∗
v
=
ve
ct
or

ad
d
(A

∗
∗
v)

(B
∗
∗
v)

(
A

+
B)

⋅
v
=

(
A

⋅
v)

+
(
B

⋅
v)

M
AT

RI
X

A
D
D

M
U
L
V
EC

L
|-
!A

B
v.
v
∗
∗
(A

+
B)

=
ve
ct
or

ad
d
(v

∗
∗
A
)(
v
∗
∗
B)

v
⋅
(
A

+
B)

=
(
v
⋅
A
)
+

(
v
⋅
B)

http://ade.sagepub.com/

Advances in Mechanical Engineering 5

Table 4: The lemmas for proving MATRIX MUL ASSOC.

Lemmas Formalization in HOL4
Lemma 4: column FCP |- k < dimindex (:'n) ==> (column (FCP i j. f i j) k = FCP i. f i k)
Lemma 5: row FCP |- k < dimindex (:'m) ==> (row (FCP i j. f i j) k = FCP j. f k j)
Lemma 6: SUM SUM |- sum (m,n) (\i. sum (k,l) (\j. f i j)) = sum (k,l) (\j. sum (m,n) (\i. f i j))
Lemma 7: SUM MULT L |- sum (m,n) (\i. f i) ∗ c = sum (m,n) (\i. f i ∗ c)
Lemma 8: SUM MULT R |- c ∗ sum (m,n) (\i. f i) = sum (m,n) (\i. c ∗ f i)

- g‘!(v: 'n vector) k:num. k<dimindex(:'n) ==>
(v ∗∗ ((vector basis k): 'n vector) = v ' k)’; (∗ The goal to prove ∗)
> val it =

Proof manager status: 1 proof.
1. Incomplete goalstack:

Initial goal:
!v k. k < dimindex (:'n) ==> (v ∗∗ vector basis k = v ' k)

: proofs
- e(REWRITE TAC [vector dot def]); (∗ Execute rewrite tactic with vector dot def ∗)
OK..
1 subgoal: (∗ Produce a subgoal ∗)
> val it = (∗ Echo the subgoal ∗)

!v k.
k < dimindex (:'n) ==>
(sum (0,dimindex (:'n)) (\i. v ' i ∗ vector basis k ' i) = v ' k)
: proof

- e(MP TAC vmb lemma3); (∗ Execute Modus Ponens with vmb lemma3∗)
OK..
1 subgoal: (∗ Produce a further subgoal ∗)
> val it = (∗ Echo the subgoal ∗)

(!v k. (∗ The subgoal looks like A=A ∗)
k < dimindex (:'n) ==>
(sum (0,dimindex (:'n)) (\i. v ' i ∗ vector basis k ' i) = v ' k)) ==>

!v k.
k < dimindex (:'n) ==>
(sum (0,dimindex (:'n)) (\i. v ' i ∗ vector basis k ' i) = v ' k)
: proof

- e(SRW TAC [fcpLib.FCP ss][]);
OK..
<<HOL message: Initialising SRW simpset . . . done>>

Goal proved. (∗ Goal is proved ∗)
|- (!v k. (∗ Echo the proved subgoal in goal stack ∗)

k < dimindex (:'n) ==>
(sum (0,dimindex (:'n)) (\i. v ' i ∗ vector basis k ' i) =v ' k))

==>
!v k.

k < dimindex (:'n) ==>
(sum (0,dimindex (:'n)) (\i. v ' i ∗ vector basis k ' i) = v ' k)

Goal proved.
|- !v k. (∗ Echo the proved subgoal in goal stack ∗)

k < dimindex (:'n) ==>
(sum (0,dimindex (:'n)) (\i. v ' i ∗ vector basis k ' i) = v ' k)

> val it =
Initial goal proved. (∗ Echo the proved initial goal in goal stack ∗)
|- !v k. k < dimindex (:'n) ==> (v ∗∗ vector basis k = v ' k): proof

Algorithm 1: The interactive proof of the property VECTOR MUL BASIS.

http://ade.sagepub.com/

6 Advances in Mechanical Engineering

- g‘!(v:'n vector) k:num. k<dimindex(:'n) ==>
(v ∗∗ ((vector basis k):'n vector) = v %% k)’;

> val it =
Proof manager status: 1 proof.
1. Incomplete goalstack:

Initial goal:
!v k. k < dimindex (:'n) ==> (v ∗∗ vector basis k = v ' k)

: proofs
- e(REWRITE TAC [vector dot def] THEN (∗ Batch of tactics ∗)

MP TAC vmb lemma3 THEN
SRW TAC [fcpLib.FCP ss][]);

OK..
<<HOL message: Initialising SRW simpset . . . done>>

> val it =
Initial goal proved.

|- !v k. k < dimindex (:'n) ==> (v ∗∗ vector basis k = v ' k): proof

Algorithm 2: The batch-command proof of the property VECTOR MUL BASIS.

val VECTOR ARITH TAC =
REPEAT GEN TAC THEN
REWRITE TAC[dot def, GSYM SUM ADD COUNT, GSYM SUM SUB COUNT,

GSYM SUM LMUL, GSYM SUM RMUL, GSYM SUM NEG] THEN
(MATCH MP TAC SUM EQ COUNT ORELSE MATCH MP TAC SUM EQ 0 COUNT ORELSE
GEN REWRITE TAC ONCE DEPTH CONV empty rewrites [CART EQ]) THEN

SIMP TAC bool ss[GSYM FORALL AND THM] THEN TRY EQ TAC THEN
TRY(HO MATCH MP TACMONO ALL) THEN TRY(GEN TAC) THEN
REWRITE TAC[TAUT ‘(a ==> b) ∧ (a ==> c) <=> a ==> b ∧ c’,

TAUT ‘(a ==> b) ∨ (a ==> c) <=> a ==> b ∨ c’] THEN
TRY(MATCH MP TAC(TAUT ‘(a ==> b ==> c) ==> (a ==> b) ==> (a ==> c)’)) THEN
SRW TAC [FCP ss] [vec add def, vec sub def, vec neg def, vec mul def, VECTOR 0,

vec map def, vec map2 def] THEN POP ASSUMMP TAC THEN
REAL ARITH TAC;

Algorithm 3: The decision procedure for vector arithmetic.

using the indexing operator “'” (or, alternatively, %%) in the
fcpTheory. For example, the ith element of a vector, which is
written as 𝑥

𝑖
in mathematics, is denoted by “x ' i” (or x %% i).

According to the fcpTheory, two vectors are equal if and only
if their corresponding elements are equal.

2.2. Formalizing the Operations of Vectors. This subsection
gives the formalization of the operations of 𝑁-dimensional
vectors. The arithmetic operations of vectors are pointwise
on elements of the vectors. In order to conveniently deal
with the issue of dimensionality and eliminate the problem
of interaction with the FCP binder, two mapping functions
are given to simplify the operating of all of the elements of
vectors and matrices:

Definition 1 (vec map def). Consider the following:

|- !f v. vector map f v = FCP i. f (v ' i).

Definition 2 (vec map2 def). Consider the following:

|- !f v1 v2. vector map2 f v1 v2 = FCP i. f (v1 ' i) (v2 ' i)

where the symbol “|-” is the preceding turnstile for definitions
and theorems and “FCP i”means for all 0<= i< size of vectors.
Obviously, here “FCP i” has better readability and more
expressive power than the lambda calculus “\i,” which does
not bound “i” implicitly. The above two definitions are for
one and two vectors, respectively.The definitions of addition,
subtraction, and negative operators on vectors are given
based on the two mapping functions. For readability, “+”
and “−” are overloaded to denote addition and subtraction;
“∼” denotes negative; and the dollar symbol in front of an
operator indicates that the operator has a special syntactic
status.

Definition 3 (vector add def). Consider the following:

|- $+ = vector map2 $+.

Definition 4 (vector sub def). Consider the following:

|- $− = vector map2 $−.

http://ade.sagepub.com/

Advances in Mechanical Engineering 7

g‘!(A:('m,'n) matrix) (B:('n,'p) matrix) (C:('p,'q) matrix).
(A ∗∗ B) ∗∗ C = A ∗∗ (B ∗∗ C)’;

> val it =
Proof manager status: 1 proof.
1. Incomplete goalstack:

Initial goal:
!A B C. (A ∗∗ B) ∗∗ C = A ∗∗ B ∗∗ C

: proofs
-e(SRW TAC[fcpLib.FCP ss][matrix prod def,row FCP,column FCP,

VECTO R DOT FCP]THEN
SRW TAC [][vector dot def, SUM MULT L, SUM MULT R] THEN
SRW TAC [][SUM SUM] THEN
MATCH MP TAC SUM EQ THEN
SRW TAC [][] THEN
MATCH MP TAC SUM EQ THEN
SRW TAC [][] THEN
SRW TAC [fcpLib.FCP ss][row def, column def] THEN
REAL ARITH TAC);

OK..
<<HOL message: Initialising SRW simpset... done>>

> val it =
Initial goal proved.
|- !A B C. (A ∗∗ B) ∗∗ C = A ∗∗ B ∗∗ C: proof

Algorithm 4: The compact process of proving the property MATRIX MUL ASSOC.

|- val DET ROW SPAN = prove

(‘!A: ('n,'n) matrix i x.
i < dimindex(:'n) ∧
x IN span {ROW j A |j < dimindex(:'n) ∧ ∼(j = i)}
==> (DET(FCP k. if k = i then ROW i A + x else ROW k A) = DET A)’, (∗ The goal ∗)

GEN TAC THEN GEN TAC THEN

SIMP TAC bool ss[GSYM AND IMP INTRO, RIGHT FORALL IMP THM] THEN
DISCH TAC THEN

HO MATCH MP TAC SPAN INDUCT ALT THEN CONJ TAC THENL

[AP TERM TAC THEN SRW TAC [FCP ss][VECTOR ADD RID] THEN
COND CASES TAC THEN SRW TAC [FCP ss][ROW DEF],
ALL TAC] THEN

REPEAT GEN TAC THEN CONV TAC (DEPTH CONV SET SPEC CONV) THEN
DISCH THEN(CONJUNCTS THEN2 (X CHOOSE TAC ‘j:num’) (SUBST ALL TAC o SYM)) THEN
REWRITE TAC[VECTOR ADD ASSOC] THEN
ONCE REWRITE TACVECTOR ARITH

“a + c ∗ x + y:real['n] = (a + y) + c ∗ x”] THEN
ABBREV TAC ‘z = ROW i (A:real['n]['n]) + y’ THEN
ASM SIMP TAC bool ss[DET ROW MUL, DET ROW ADD] THEN (∗ Using Theorems 3 and 4 ∗)
MATCH MP TAC(prove(‘(d = &0) ==> (a + c ∗ d = a)’,

STRIP TAC THEN ASM REWRITE TAC[]THEN REAL ARITH TAC)) THEN
MATCH MP TAC DET IDENTICAL ROWS THEN (∗ Using Theorem 5 ∗)
MAP EVERY EXISTS TAC [‘i:num’, ‘j:num’] THEN
SRW TAC[FCP ss][ROW DEF]).

Algorithm 5: The proof of Theorem DET ROW SPAN.

Definition 5 (vector neg def). Consider the following:

|- $∼ = vector map numeric negate.

Two kinds of products of vectors are implemented. One
is the inner product of vectors:

𝑥 × 𝑦 =

𝑛

∑

𝑖=1

𝑥
𝑖
𝑦
𝑖
. (3)

http://ade.sagepub.com/

8 Advances in Mechanical Engineering

val TWO PORT CASCADE=store thm(“TWO PORT CASCADE”, (∗ The theorem name ∗)
“!v1:2 vector v1':2 vector v1'':2 vector (∗ Begin of the theorem ∗)

v2:2 vector v2':2 vector v2'':2 vector
T:(2,2) matrix T':(2,2) matrix T'':(2,2) matrix.

(!i. i<dimindex(:2) ==> (v1 %% i = v1' %% i)) ∧
(!i. i<dimindex(:2) ==> (v2' %% i = v1'' %% i)) ∧
(!i. i<dimindex(:2) ==> (v2'' %% i = v2 %% i))∧
(v1' = T' ∗∗ v2') ∧ (v1'' = T'' ∗∗ v2'') ∧ (v1 = T ∗∗ v2) ==>
(T' ∗∗ T'' ∗∗ v2 = T ∗∗ v2)”, (∗ End of the theorem ∗)
REPEAT GEN TAC THEN (∗ Begin of the proof ∗)
REWRITE TAC [GSYM VECTOR EQ2] THEN
PROVE TAC []); (∗ End of the proof ∗)

Algorithm 6: The proved HOL4 theorem of the property of a cascade connection of two ports.

Val TWO PARALLEL PORT = store thm(“TWO PARALLEL PORT”,
“!X:2 vector X':2 vector X'':2 vector (∗ Begin of the theorem ∗)

U:2 vector U':2 vector U'':2 vector
Y:(2,2) matrix Y':(2,2) matrix Y'':(2,2) matrix.

(!i. i<dimindex(:2) ==> ((U' %% i) = (U %% i))) ∧
(!i. i<dimindex(:2) ==> ((U'' %% i) = (U %% i))) ∧
(!i. i<dimindex(:2) ==> ((X %% i) = (X' %% i) + (X'' %% i))) ∧
(X' = Y' ∗∗ U') ∧
(X'' = Y'' ∗∗ U'') ∧
(X = Y ∗∗ U)==>
(Y ∗∗ U = (Y' + Y'') ∗∗ U)”, (∗ End of the theorem ∗)

REPEAT GEN TAC THEN
REWRITE TAC [GSYM VECTOR EQ2] THEN
SUBGOAL THEN (∗ Begin of SUBGOAL ∗)

(- -‘(!i. i<dimindex(:2) ==>
(((X:2 vector) %% i) = (X' %% i) + (X'' %% i))) = (X = X' + X'')’- -)

(fn th => ONCE REWRITE TAC[th]) THENL
[‘(!i. i<dimindex(:2) ==>

(((X:2 vector) %% i) = (X' %% i) + (X'' %% i))) =
(!i. i<dimindex(:2) ==>((X %% i) = (X' + X'') %% i))’
by SRW TAC [] [VECTOR ADD INDEX] THEN
‘(!i. i<dimindex(:2) ==>

(((X:2 vector) %% i) = (X' + X'') %% i)) = (X = X' + X'')’
by SRW TAC [] [VECTOR EQ2] THEN
PROVE TAC [],ALL TAC] THEN (∗ End of SUBGOAL ∗)

REWRITE TAC [MATRIX ADD MUL VEC] THEN
PROVE TAC []);

Algorithm 7: The proved HOL4 theorem of the property of a parallel-parallel configuration of two ports.

The symbol “∑” can be presented by the following function
in realTheory:

|- !f n m. (sum (n, 0) f = 0) ∧ (sum (n, SUCm) f = sum
(n, m) f + f (n + m)).

We overload “∗∗” for the multiplication of vectors. The
inner product (dot product) of two vectors is defined as
follows.

Definition 6 (vector dot def). Consider the following:

|- !x y. x ∗∗ y = sum (0, dimindex (:'n)) (\i. x ' i ∗ y ' i).

Note that n is a type variable; thus, dimindex is used to
obtain the cardinality of the type. Another is a scalar product
operation, which multiplies a vector by a scalar.This includes
two cases: the scalar may be at the right or left side.

Definition 7 (vector rmul def). Consider the following:
|- !k v. k ∗∗ v = FCP i. k ∗ v ' i.

Definition 8 (vector lmul def). Consider the following:
|- !v k. v ∗∗ k = FCP i. v ' i ∗ k.

We present two special vectors: the zero vector and the
base vectors.

http://ade.sagepub.com/

Advances in Mechanical Engineering 9

// Induction of the solution by power of matrix for state transfer equation

val POW M INDUCT = prove

(‘!(f:num->real['n]) (A:real['n]['n]) n. (!k:num. 1 <= k∧ (f(k) = A ∗∗ f(k − 1))) ==> (f(n) = (A pow matrix n) ∗∗

f(0))’,
REPEAT STRIP TAC THEN Induct on ‘n’ THENL [METIS TAC[pow matrix,MATRIX VECTOR MUL LID],

MATCH MP TAC EQ TRANS THEN EXISTS TAC ‘(A pow matrix 1) ∗∗ ((A pow matrix n) ∗∗ f 0)’ THEN CONJ TAC

THENL [METIS TAC [MATRIX VECTOR MUL ASSOC, POW M 1, SUC SUB1],METIS TAC[ADD1, POW M ADD,
ADD SYM,MATRIX VECTOR MUL ASSOC]]]

);

// Definition of power of matrix

val pow matrix = Define

‘($pow matrix (x:real['n]['n]) 0 = (MAT 1:real['n]['n])) ∧ ($pow matrix x (SUC n) = ($pow matrix x n) ∗∗ x)’;

// Property: a matrix to power of 1 is identical.
val POW M 1 = prove

(‘!x. x pow matrix 1 = x’,
GEN TAC THEN REWRITE TAC[num CONV “1:num”] THEN
REWRITE TAC[pow matrix,MATRIX MUL LID]);

// Property: power of addition.
val POW M ADD = prove

(‘!x m n. x pow matrix (m + n) = (x pow matrix m) ∗∗ (x pow matrix n)’,
GEN TAC THEN GEN TAC THEN INDUCT TAC THEN

ASM REWRITE TAC[pow matrix, ADD CLAUSES,MATRIX MUL RID] THEN
METIS TAC[MATRIX MUL ASSOC]);

//Note: “MAT 1: real['n]['n]” stands for the n-by-n identity matrix.

Algorithm 8: Induction proof of the solution by power of matrix for state transfer equation.

// Prove that the solution can be computed by high-speed power of matrix

val POW M FAST INDUCT = prove

(‘!(f:num->real['n]) (A:real['n]['n]) n. (!k:num. 1 <= k∧ (f(k) = A ∗∗ f(k−1))) ==> (if EVEN n then (?m. f(n) = ((A
pow matrix m) ∗∗ (A pow matrix m) ∗∗ f(0))) else (?m. f(n) = (((A pow matrix m) ∗∗ (A pow matrix m) ∗∗ A) ∗∗

f(0))))’,
REPEAT STRIP TAC THEN COND CASES TAC THENL[

REWRITE TAC[MATRIX VECTOR MUL ASSOC, GSYM POW M ADD, GSYM TIMES2] THEN FIRST X ASSUM

MP TAC THEN METIS TAC[EVEN EXISTS, TIMES2, POW M INDUCT, POW M ODD EVEN, POW M EVEN],
SUBGOAL THEN ‘!m. ((A pow matrix m) ∗∗ (A pow matrix m) ∗∗ A) = A pow matrix SUC(2∗m)’ ASSUME TAC

THENL [REWRITE TAC[MATRIX MUL ASSOC, ADD1, ADD ASSOC, POW M ADD, TIMES2, POW M 1], ALL TAC]

THEN UNDISCH TAC ‘∼EVEN n’ THEN REWRITE TAC[EVEN ODD, ODD EXISTS] THEN METIS TAC[TIMES2,
POW M INDUCT, POW M ODD EVEN, POW M ODD]]

);

// To prove above theorem the following properties are presented.
// Proof of highspeed power of matrix.
val POW M ODD EVEN = prove

(‘!x n. if EVEN n then (?m. x pow matrix n = (x pow matrix m) ∗∗ (x pow matrix m)) else (?m. x pow matrix n =
(x pow matrix m) ∗∗ (x pow matrix m) ∗∗ x)’,

SRW TAC[][] THEN POP ASSUM MP TAC THENL [SRW TAC[][EVEN EXISTS], SRW TAC[][EVEN ODD,
ODD EXISTS]] THEN EXISTS TAC ‘m’ THENL [METIS TAC[TIMES2, POW M ADD], SRW TAC[][TIMES2,
POW M ADD, POW M 1,MATRIX MUL ASSOC, ADD SUC, pow matrix]]);

// High-speed power of matrix for odd and even respectively.
val POW M ODD = prove

(‘!x n. ODD n ==> (?m. x pow matrix n = (x pow matrix m) ∗∗ (x pow matrix m) ∗∗ x)’,
METIS TAC[POW M ODD EVEN, ODD EVEN]);

val POW M EVEN = prove

(‘!x n. EVEN n ==> (?m. x pow matrix n = (x pow matrix m) ∗∗ (x pow matrix m))’,
METIS TAC[POW M ODD EVEN, ODD EVEN]);

Algorithm 9: Proof of the solution by high-speed power of matrix for state transfer equation.

http://ade.sagepub.com/

10 Advances in Mechanical Engineering

// Example of frog jumping: state function and state transfer matrix

// State function for frog jumping

val FROG STATE DEF = Define’
FROG STATE f g = (\k. (vector dim2 (f k) (g k)))’;

// State transfer matrix for frog jumping

val FROG TRANS DEF = Define’
FROG TRANS p = (matrix dim22 0 1 (p − 1) (p − 2))’;

// Prove high-speed power of matrix solution by POW M FAST INDUCT

val POW M FAST INDUCT EXAMPLE = prove

(‘!n p f g. (!k:num. 1 <= k∧ ((FROG STATE f g) k = FROG TRANS p ∗∗ (FROG STATE f g)(k − 1))) ==>
(if EVEN n

then (?m. (FROG STATE f g) n = ((FROG TRANS p pow matrix m) ∗∗ (FROG TRANS p pow matrix m)
∗∗ (FROG STATE f g) 0))

else (?m. (FROG STATE f g) n = (((FROG TRANS p pow matrix m) ∗∗ (FROG TRANS p pow matrix m)
∗∗ FROG TRANS p) ∗∗ (FROG STATE f g) 0)))’,

REPEAT GEN TAC THEN MATCH ACCEPT TAC POW M FAST INDUCT

);
// Function used above: directly assign a 2-element vector with 2 real numbers

val vector dim2 def = Define’
vector dim2 v1 v2 = (FCP j. if j = 0then v1 else v2):real[2]’;

// Function used above: directly assign a 2-by-2 matrix with 4 real numbers

val matrix dim22 def = Define’
matrix dim22 m1 m2 m3 m4 =
(FCP j k. if (j = 0) ∧ (k = 0) then m1 else (if (j = 0) ∧(k = 1) then m2 else (if (j = 1) ∧ (k = 0) then m3 else

m4))):real[2][2]’;

Algorithm 10: Instantiating proof of the solution for the frog jumping problem.

Definition 9 (vector 0 def). Consider the following:

|- vector 0 = FCP i. 0.

Definition 10 (vector basis def). Consider the following:

|- !k. vector basis k = FCP i. if i = k then 1 else 0.

2.3. Proofs of the Algebraic Properties of Vectors. In this sub-
section, the algebraic properties of vectors are formalized and
verified. Most of the properties are linear properties, because
vector space is linear space. Table 2 shows the formalization
of these properties.

In Table 2, v, v1, v2, and v3 represent vectors and 𝑘,
𝑙 represent scalar constants. These properties have been
proven based on the definitions in Section 2.2, and the proofs
are pointwise on elements of the vectors. To illustrate the
process of proving the properties, we present the proof
of the property VECTOR MUL BASIS in Algorithm 1. The
proving is a cumbersome process. This property says that the
inner product of one vector and a base vector produces the
corresponding elements of the vector.We prove three lemmas
as follows to support the proof of VECTOR MUL BASIS.

Lemma 1 (vmb lemma1). Consider the following:

|- !v k. k < dimindex (:'n) ==>

(sum (0, dimindex (:'n)) (\i. v ' i ∗ vector basis
k ' i) =

sum (0, dimindex (:'n)) (\i. if i = k then v '
k else 0)).

Lemma 2 (vmb lemma2). Consider the following:

|- !v k. k < dimindex (:'n) ==>

(sum (0, dimindex (:'n)) (\i. if i = k then v ' k else
0) = v ' k).

Based on Lemmas 1 and 2, it is easy to prove Lemma 3.

Lemma 3 (vmb lemma3). Consider the following:

|- !v k.

k < dimindex (:'n) ==>
(sum (0, dimindex (:'n)) (\i. v ' i ∗ vec-
tor basis k ' i) = v ' k).

Algorithm 1 shows the detailed interaction of proving the
property VECTOR MUL BASIS, where “-” is the command
prompt in HOL4; “g” guides the proving goal; “e” guides the
tactics of proving; “>” is the echo prompt; and “|-” guides the
goal or subgoal that is proved. If all of the tactics involved in
the proof are known, they can be sequenced together with
“THEN” to construct a batch-command style process. The
batch-command style proving process takes just one step, as
shown in Algorithm 2.

Choosing strategies and theorems for each step of proofs
is tedious work. Fortunately, to some extent decision proce-
dures can help to automatically produce a proof. In practice,
a simple decision procedure named VECTOR ARITH TAC
is developed by putting together many potentially useful

http://ade.sagepub.com/

Advances in Mechanical Engineering 11

theorems, definitions, and strategies. The decision procedure
is shown in Algorithm 3. This procedure can automatically
prove most of the arithmetic properties of vectors.

3. Formalization of Fundamental Matrix
Theory

3.1. Defining the Data Type of Matrices. A matrix is a two-
dimensional array of numbers with many rows and columns.
A matrix type is defined in the same way as a vector type.
A row or a column of a matrix is a vector; thus, we use a
Cartesian product twice to present the 𝑀 × 𝑁 matrix type:

𝐴 󳨀→ 𝑁 󳨀→ 𝑀 󳨀→ (𝐴
𝑁
)

𝑀

. (4)

The HOL4 type is written as follows:

Hol
−
type : real ['n] ['m] −−> ('m, 'n) matrix. (5)

As with vectors, one can generally use “x ' i ' j” where
informally one would write 𝑥

𝑖𝑗
for indexing. The fcpTheory

can ensure that two matrices are equal if and only if their
corresponding elements are equal.

3.2. Formalizing the Operations of Matrices. This subsection
presents the formalization of the arithmetic operations of
matrix theory. The arithmetic operations of matrices are
pointwise on elements of matrices. The mapping function
for vectors can be easily generalized to matrix type, given as
follows.

Definition 11 (matrix map def). Consider the following:

|- !f m. matrix map f m = FCP i j. f (m ' i ' j).

Definition 12 (matrix map2 def). Consider the following:

|- !f m1 m2. matrix map2 f m1 m2 = FCP i j. f (m1 ' i '
j) (m2 ' i ' j).

The usual operations of addition, subtraction, and nega-
tion of matrices are defined as follows.

Definition 13 (matrix add def). Consider the following:

|- matrix add = matrix map2 $+.

Definition 14 (matrix sub def). Consider the following:

|- matrix sub = matrix map2 $−.

Definition 15 (matrix neg def). Consider the following:

|- matrix neg = matrix map numeric negate.

These operations are defined based on the mapping
functions. Obviously, the matrices involved in addition and
subtractionmust have the samenumber of rows and columns,
and the elements of both matrices are dealt with in the same
order.

The multiplication of matrices is based on the inner
products of vectors. Therefore, this operation is defined

after the definitions of the row extracting and the column
extracting operations. Letting A, B be matrices of R, the
definitions are as follows.

Definition 16 (row def). Consider the following:

|- !A k. row A k = FCP j. A ' k ' j.

Definition 17 (column def). Consider the following:

|- !A k. column A k = FCP i. A ' i ' k.

Definition 18 (matrix prod def). Consider the following:

!A B. A ∗∗ B = FCP i j. row A i ∗∗ column B j.

Note that the dimension of the rows of matrix A must be
equal to the number of columns ofmatrix B.This requirement
must be satisfied to obtain the inner product of vectors.

In addition, other operations are defined, such as trans-
position, multiplication with a vector or a real number, and
exponentiation.

Definition 19 (matrix transp def). Consider the following:

|- !A. transp A = FCP i j. A ' j ' i.

Definition 20 (matrix lmul vector def). Consider the follow-
ing:

|- !v A. v ∗∗ A = FCP i. v ∗∗ column A i.

Definition 21 (matrix rmul vector def). Consider the follow-
ing:

|- !A v. A ∗∗ v = FCP i. row A i ∗∗ v.

Definition 22 (matrix lmul scalar def). Consider the follow-
ing:

|- !k A. k ∗∗ A = FCP i j. k ∗ A ' i ' j.

Definition 23 (matrix rmul scalar def). Consider the follow-
ing:

|- !A k. A ∗∗ k = FCP i j. A ' i ' j ∗ k.

Definition 24 (matrix pow def). Consider the following:

|- (!A. matrix pow A 0 = matrix E) ∧ !A k.
matrix pow A (SUC k) = A ∗∗ matrix pow A k.

Inverse matrices are useful for many applications, such
as analyzing groups of linear equations. We present the
definition, which says that a square matrix may have an
inverse matrix, after the definition of the identity matrix.

http://ade.sagepub.com/

12 Advances in Mechanical Engineering

Definition 25 (matrix E def). Consider the following:

|- matrix E = FCP i j. if i = j then 1 else 0.

Definition 26 (matrix inv def). Consider the following:

|- !A. matrix inv A <=> ?A'. (A ∗∗ A' = matrix E) ∧

(A' ∗∗ A = matrix E).

The definition of the zero matrix, whose elements are all
0, is given as follow.

Definition 27 (matrix 0 def). Consider the following:

|- matrix 0 = FCP i j. 0.

3.3. Verification of the Algebraic Properties of Matrices. The
fundamental algebraic properties of matrices are formalized
and verified in this subsection. The properties are formally
modeled in terms of the above definitions and shown in
Table 3.

The properties are proven in a pointwise way based
on the definitions of the matrix operations and the vector
properties. As an example, we present proofs of a frequently
used property named MATRIX MUL ASSOC. To reduce
proofs of the properties, the lemmas in Table 4 are proved in
advance.

Algorithm 4 shows the proof of MATRIX MUL ASSOC.
First, the definitions of matrix prod def, row FCP, and col-
umn FCP are used to expand matrix products into vector
products, and then the definition of vector dot def is used to
expand the vector products into summations of real products.
Finally, the conclusion that the corresponding elements of
both sides are equal is drawn. Only the batch-command style
proving process is shown in Algorithm 4.

The formalization of these theorems forms a base of
reasoning for the transformation of the linear system.

Some special matrices play important parts in appli-
cations. For example, the square matrix applies on the
determinant. In the next subsection, we will present the
formalization of determinant.

3.4. Formalization of the Determinant. In the matrix theory,
the determinant is a value defined only for square matrices
and indicates discriminative information. When the matrix
is that of the coefficients of a group of linear equations,
that the determinant is nonzero or zero determines that the
system has a unique solution exactly or there are either no
solutions or many solutions, respectively. When the matrix
corresponds to a linear transformation of a vector space,
the nonzero determinant means that the transformation has
an inverse operation. In this subsection, we present the
formalization of the determinant.

The determinant of a square matrix A is evaluated by the
entries of A.The determinant of a matrix of arbitrary size can
be defined by the Leibniz formula:

DET (A : 𝑅
𝑛×𝑛

) = ∑

𝑝∈𝑆
𝑛

SIGN (𝑝)

𝑛−1

∏

𝑖=0

𝑎
𝑖𝑝(𝑖)

, (6)

where 𝑎
𝑖𝑝(𝑖)

is the entry of 𝑖th row and 𝑝(𝑖) column of A;
𝑝(𝑖) is the 𝑖th element of a permutation p of the subscript set
{0, 1, 2, . . . , 𝑛 − 1}; and SIGN() is the signature function of
permutations. A permutation is a function that reorders the
set of natural numbers. The value in the 𝑖th position after the
reordering 𝑝 is denoted by 𝑝(𝑖). The sum, denoted by 𝑆

𝑛
, is

computed over all permutations, denoted 𝑆
𝑛
, of the subscript

set {0, 1, 2, . . . , 𝑛−1}. So, the determinant of an 𝑛-by-𝑛matrix
A is defined as follows.

Definition 28 (determinant). Consider the following:

|- DET(A:('n, 'n) matrix) =

SUM {p | p PERMUTES count(dimindex (:

'n))}

(\p. SIGN(p) ∗ (PRODUCT
(count(dimindex (:'n))) (\i. A ' i ' (p
i)))),

where permutation is defined by

|- p PERMUTES s = (!x. x NOT IN s ==> p x = x) ∧

(!y. ?!x. p x = y).

The definition claims that p is a permutation of a set
of natural numbers s. Informally, a permutation of a set of
natural numbers is an arrangement of those natural numbers
into a particular order. In the above formal definition, for any
natural number y, theremust exist a position x of permutation
p where y dwells. It is a sophisticated definition rather than a
trivial translation.

The signature of a permutation p is denoted by SIGNp
and defined as +1 if p is even and −1 if p is odd.

Consider the following:

|-(SIGN p):real = if EVENPERM p then &1 else − &1.

The function EVENPERM estimates the parity of a
permutation. The parity of a permutation p can be estimated
by the parity of the times of swap operating for transforming
the identity permutation, denoted by I, into p. EVENPERM
is defined as follows:

|- EVENPERM p = EVEN(@n. SWAPSEQ n p),

where “SWAPSEQn p”means that p could be converted from
the identify permutation I via performing the swap operator
n times. SWAPSEQ is defined with mathematical induction
as follows:

|- val (SWAPSEQ RULES, SWAPSEQ INDUCT,
SWAPSEQ CASES) =

Hol reln

‘(SWAPSEQ 0 I) ∧ (∗Basis∗)
(!a b p n. SWAPSEQ n p ∧ ∼(a = b) ==>
SWAPSEQ (SUC n) (SWAP(a,b) o p))’;
(∗Induction step∗).

http://ade.sagepub.com/

Advances in Mechanical Engineering 13

The induction basis states that I could become I with 0
times swap; and the induction step argues that if p could
become I with n times swap, then the permutation which is
converted by swapping a and b elements of p could become
I with n+1 (SUC n) times swap. “SWAP(a,b) o p” produces
a new permutation by swapping ath and bth elements of p,
where “o” is a combining operator.

The determinant has many interesting properties. Some
basic properties of the determinants are presented as follows.

Theorem 1 (DET TRANSPOSE). The determinant of trans-
pose matrix 𝐴

𝑇 equals that of A. Consider the following:

|- !A:('n, 'n) matrix. DET (TRANSP A) = DET A.

Theorem 2 (DET ROW ZERO). If all elements of an arbitrary
column of matrix A are 0, then its determinant is 0. Consider
the following:

|- !A: ('n, 'n) matrix i. i < dimindex(:'n) ∧ (ROW i A =
VECTOR 0) ==> (DET A = &0).

Theorem 3 (DET ROW ADD). If one column (row) of a
matrix A is written as a sum of two column (row) vectors, a
and b, and all other columns (rows) are left unchanged, then the
determinant of A is the sum of the determinants of thematrices
obtained fromA by replacing the column (row), respectively, by
a and b. Consider the following:

|-!a b c k. k < dimindex(:'n)

==> (DET ((FCP i. if i = k then a + b else c i):
('n, 'n) matrix) =

DET ((FCP i. if i = k then a else c i): ('n, 'n)
matrix) +
DET ((FCP i. if i = k then b else c i): ('n, 'n)
matrix).

The proofs of the above theorems are intuitive according
to the definitions.

Theorem 4 (DET ROW MUL).When multiplying a scalar to
a column (row) of thematrix, its determinant will bemultiplied
by the same scalar. Consider the following:

|-!a b c k. k < dimindex(:'n)

==> (DET((FCP i. if i = k then c ∗ a else b i): ('n,
'n) matrix) =

c ∗ DET((FCP i. if i = k then a else b i): ('n,
'n) matrix)).

Theorem 4 could be proven byTheorem 3 intuitively.

Theoremx 5 (DET IDENTICAL ROWS). If two columns
(rows) of a matrix are identical, then its determinant is 0.
Consider the following:

|-!A: ('n, 'n) matrix i j.

i < dimindex(:'n) ∧ j < dimindex(:'n) ∧ ∼(i = j)
∧ (ROW i A = ROW j A)

==> (DET A = &0).

In the determinant of A, for any permutation p ij
{. . . , i, . . . , j, . . .}, there must exist p ji = SWAP (i,j) o p ij,
which holds SIGN p ij = ∼ SIGN p ji, and (PRODUCT
(count(dimindex (:'n))) (\i. A ' i ' (p ij i))) = (PRODUCT
(count(dimindex (:'n))) (\i. A ' i ' (p ji i))). So, the theorem
could be proven.

Theorem 6 (DET DEPENDENT ROWS). If the columns
(rows) of the a matrix form a linearly dependent set, then the
determinant of the matrix is 0. Consider the following:

|- ‘!A: ('n, 'n) matrix. dependent(ROWSA) ==> (DET
A = &0).

Because the rows of A are linearly dependent, one row
could be rewritten as a linear combination of other rows.
Then the determinant of A is rewritten as the sum of
several separated determinants by Theorem 3. The matrices
corresponding to the separated determinants have duplicated
rows, so the separated determinants are all equal to 0
according toTheorem 5.

Theorem 7 (DET ROW SPAN). Adding a linear combination
of the other columns (rows) to one row leaves the determinant
unchanged. The formalization and proof are show in Algo-
rithm 5.

To prove Theorem 7, the determinant of the new matrix,
which is formed by adding linear combinations of rows
of A into any one of the rows, is rewritten as a sum of
the subdeterminants in accordance with Theorems 3 and 4.
One of the matrices corresponding to the subdeterminants
is matrix A, and the rest of corresponding matrices have
duplicated rows. Then, Theorem 4 is employed to finish the
proof.

4. Applications

In this section, two formalmodeling and proving applications
are presented, parameterized two-port networks and state
transfer equations.

4.1. Parameterized Two-Port Networks. Thebehavior ofmany
electronic components can be described by their characteris-
tic matrices. Many complex passive and linear circuits can be
modeled using a two-port network model [14], which is used
tomodel an isolate portion of a larger circuit inmathematical
circuit analysis techniques. Two-port networks can describe
any linear circuit with four terminals provided that it does
not contain an independent source and satisfies the port
conditions. The examples include filters, matching networks,
transmission lines, transformers, and small-signal models for
transistors. It is meaningful to formally model a two-port

http://ade.sagepub.com/

14 Advances in Mechanical Engineering

network for formally modeling and verifying complex linear
circuits. Here, we present the formal models of two-port
networks. A two-port network is abstracted as a black box
with four terminals: voltage𝑈

1
and current 𝐼

1
at the input port

and voltage 𝑈
2
and current 𝐼

2
at the output port. When any

two of the four variables are given, the other two can always
be derived by a certain 2 × 2 parameter matrix. Furthermore,
when two or more two-port networks are connected, the
parameters of the combined network can be calculated by
performing matrix algebra on the parameter matrices of the
component two ports.

Two-port networks can be connected in different ways.
We verify two connecting styles: the cascade configuration as
shown in Figure 1 and the parallel-parallel configuration as
shown in Figure 2.

When the two-port P1 and the two-port P2 are connected
in a cascade configuration, they form a composite two-port
network, as shown in Figure 1with symbol definitions. Let the
transmission parameters of P1 and P2 be matrices 𝑇󸀠 and 𝑇

󸀠󸀠.
The individual two-port networks are described as follows:

[
𝑈̇
󸀠

1

̇𝐼
󸀠

1

] = 𝑇
󸀠
[
𝑈̇
󸀠

2

− ̇𝐼
󸀠

2

] , [
𝑈̇
󸀠󸀠

1

̇𝐼
󸀠󸀠

1

] = 𝑇
󸀠󸀠
[
𝑈̇
󸀠󸀠

2

− ̇𝐼
󸀠󸀠

2

] . (7)

Let

V
1
= [

𝑈̇
1

̇𝐼
1

] , V󸀠
1
= [

𝑈̇
󸀠

1

̇𝐼
󸀠

1

] , V󸀠󸀠
1

= [
𝑈̇
󸀠󸀠

1

̇𝐼
󸀠󸀠

1

] ,

V
2
= [

𝑈̇
2

− ̇𝐼
2

] , V󸀠
2
= [

𝑈̇
󸀠

2

− ̇𝐼
󸀠

2

] , V󸀠
2
= [

𝑈̇
󸀠󸀠

2

− ̇𝐼
󸀠󸀠

2

] .

(8)

For a cascade configuration,

𝑈̇
1
= 𝑈̇
󸀠

1
, 𝑈̇

󸀠

2
= 𝑈̇
󸀠󸀠

1
, 𝑈̇

󸀠󸀠

2
= 𝑈̇
2
,

̇𝐼
1
= ̇𝐼
󸀠

1
, ̇𝐼

󸀠

2
= − ̇𝐼
󸀠󸀠

1
, ̇𝐼

󸀠󸀠

2
= ̇𝐼
2
.

(9)

We have

V
1
= V󸀠
1
, V󸀠

2
= V󸀠󸀠
1
, V󸀠󸀠

2
= V
2
. (10)

Let 𝑇 be the parameter matrix of the composite two-port
network; we can then make the following deduction:

V
1
= V󸀠
1
= 𝑇
󸀠V󸀠
2
= 𝑇
󸀠V󸀠󸀠
1

= 𝑇
󸀠
𝑇
󸀠󸀠V󸀠󸀠
2

= 𝑇
󸀠
𝑇
󸀠󸀠V
2
= 𝑇V
2
. (11)

Therefore, we have the relationship of the composite two-
port parameter and the parameters of individual two ports
connected in a cascade connection:

𝑇
󸀠
𝑇
󸀠󸀠

= 𝑇. (12)

The mathematical process is formally verified in HOL4, as
shown in Algorithm 6. The property is proved based on the
definition of the multiplication of matrices and the theorem
of the equality of vectors. Note that the “2” in the “2 vector”
is a type, whose cardinality is 2.

Note that “v %% i” is used to replace “v ' i” simply to avoid
confusion with superscripts “󸀠” and “󸀠󸀠.” It can be seen from
Algorithm 6 that the formalized vector andmatrix are used to

model the two-port network and its property, and the proof
is very brief thanks to the formalized theory.

When two-port P1 and two-port P2 are connected in a
parallel-parallel configuration, they form a composite two-
port network, as shown in Figure 2 with symbol definitions.
The input voltage and output voltage of the composite
two-port networks equal that of the individual two ports,
respectively; that is,

𝑈̇
1
= 𝑈̇
󸀠

1
= 𝑈̇
󸀠󸀠

1
, 𝑈̇

2
= 𝑈̇
󸀠

2
= 𝑈̇
󸀠󸀠

2
. (13)

If each of the port conditions is not changed by the parallel
connection, the current of the composite two-port networks
is equal to the sum of the current of the component two ports:

̇𝐼
1
= ̇𝐼
󸀠

1
+ ̇𝐼
󸀠󸀠

1
, ̇𝐼

2
= ̇𝐼
󸀠

2
+ ̇𝐼
󸀠󸀠

2
. (14)

Let

𝑋 = [

̇𝐼
1

̇𝐼
2

] , 𝑋
󸀠
= [

̇𝐼
󸀠

1

̇𝐼
󸀠

2

] , 𝑋
󸀠󸀠

= [

̇𝐼
󸀠󸀠

1

̇𝐼
󸀠󸀠

2

] ,

𝑈 = [
𝑈̇
1

𝑈̇
2

] , 𝑈
󸀠
= [

𝑈̇
󸀠

1

𝑈̇
󸀠

2

] , 𝑈
󸀠󸀠

= [
𝑈̇
󸀠󸀠

1

𝑈̇
󸀠󸀠

2

] .

(15)

That is to say,

𝑋 = 𝑋
󸀠
+ 𝑋
󸀠󸀠
, 𝑈 = 𝑈

󸀠
= 𝑈
󸀠󸀠
. (16)

Let 𝑌
󸀠 and 𝑌

󸀠󸀠 be the 𝑦-parameter matrices of P1 and P2,
respectively; then,

𝑋
󸀠
= 𝑌
󸀠
𝑈
󸀠
, 𝑋

󸀠󸀠
= 𝑌
󸀠󸀠
𝑈
󸀠󸀠
. (17)

Let 𝑌 be the 𝑦-parameter matrix of the composite two-port
network. We have

𝑋 = 𝑋
󸀠
+ 𝑋
󸀠󸀠

= 𝑌
󸀠
𝑈
󸀠
+ 𝑌
󸀠󸀠
𝑈
󸀠󸀠

= (𝑌
󸀠
+ 𝑌
󸀠󸀠
)𝑈 = 𝑌𝑈. (18)

The equation shows that the 𝑦-parameters of the composite
network are found by the matrix addition of the two individ-
ual𝑦-parametermatrices of twoports connected in a parallel-
parallel configuration; that is,

𝑌 = 𝑌
󸀠
+ 𝑌
󸀠󸀠
. (19)

The above mathematic process is verified formally in HOL4,
as shown in Algorithm 7.

In the proof, a lemma “(!i. i<dimindex(:2) ==> ((X %% i)
= (X󸀠 %% i) + (X󸀠󸀠 %% i))) = (X = X󸀠 + X󸀠󸀠),” which has not
previously been proven, is needed; it is introduced as a sub-
goal. In addition, the theorem MATRIX ADD MUL VEC is
used to prove the goal.

4.2. State Transfer Equations. In this subsection, we present
an example that the high-speed power of matrix is employed
to solve state transfer equation problems, and the formaliza-
tion and verification are illustrated.The problem is described
as follows. There are 𝑝 (2 ≤ 𝑝 ≤ 1000000) lotus flowers in
a lake and on one of the flowers there is a frog. The frog is
capable of jumping from any flower to any other one.The frog

http://ade.sagepub.com/

Advances in Mechanical Engineering 15

can andmustmove from a flower it stays on to another flower
by a jumping. If the frog starts to jump from a flower and
comes back the same flower by 𝑛 (2 ≤ 𝑛 ≤ 2

31
− 1) jumping,

howmany jumping paths are there in all?The solution can be
derived by iteration. Let 𝑓[𝑛] denote the number of jumping
paths by 𝑛 jumping, and 𝑔[𝑛] denotes the number of jumping
paths from one flower to another. So, the iterations can be
written as

𝑓 [𝑛] = (𝑝 − 1) × 𝑔 [𝑛 − 1] ,

𝑔 [𝑛] = 𝑓 [𝑛 − 1] + (𝑝 − 2) × 𝑔 [𝑛 − 1] .

(20)

Consider (𝑓[𝑛] 𝑔[𝑛]) as state vector on time 𝑛; then (𝑓[𝑛 −

1] 𝑔[𝑛 − 1]) is state vector on time 𝑛 − 1; the state transfer
equation is

(𝑓 [𝑛] 𝑔 [𝑛]) = (𝑓 [𝑛 − 1] 𝑔 [𝑛 − 1]) (
0 1

𝑝 − 1 𝑝 − 2
) . (21)

The solution is easy to be deduced iteratively as

(𝑓 [𝑛] 𝑔 [𝑛]) = (𝑓 [0] 𝑔 [0]) (
0 1

𝑝 − 1 𝑝 − 2
)

𝑛

. (22)

When 𝑛 could be very large, the high-speed power of matrix
is indispensable to compute the solution.

In general, many state transfer problems could be mod-
eled by state transfer equations and the high-speed power
of matrix can speed up computing the results. In the rest of
the section, we formally prove that the state transfer equation
could be solved by power of matrix and further prove that
there is high-speed power of matrix speeding up computing
the solution.

First, prove that if “f(𝑘) = A ⋅ f(𝑘−1)” holds, then “f(𝑛) =

(A𝑛) ⋅ f(0)” holds. The proof is conducted by mathematical
induction on 𝑛 and shown in Algorithm 8. The first step is to
prove “f(1) = A1 ⋅ f(0)”; and the second step is to prove that
if “f(𝑛) = A𝑛 ⋅ f(0)” holds, then “f(𝑛 + 1) = A𝑛+1 ⋅ f(0)” holds.

Second, prove that the solution can be computed by high-
speed power ofmatrix.The solution by power ofmatrix could
be derived by POW M INDUCT, and then the solution by
high-speed power of matrix is verified. To prove this, the
high-speed power of matrix is proved in advance. The proof
is shown in Algorithm 9.

Third, the problem of the frog jumping could be formal-
ized and verified by instantiating the above proof according
to (22). The proof is shown in Algorithm 10.

5. Conclusions

Vectors and matrices are extensively used to model lin-
ear transformation of engineer and scientific problems. In
this paper, the vector and matrix algebra, which are the
fundamentals of linear system models, were formalized in
the HOL4 theorem prover. Vectors and matrices were con-
structed based on the FCP library; then the properties of
the operations of vectors andmatrices were formally verified.
The formalized vector and matrix theories help to extend the
applications of HOL4. In order to illustrate the usefulness

of the formalized matrix theory, we formally analyzed the
behaviors of two kinds of composite two-port networks
and high-speed power of matrix solution for state transfer
equations.The proposed approach is able to offer exact results
and is not subject to slip up. Our future work will focus on the
formalization of properties of linear transformation and the
functionmatrix in HOL4, and the formalized matrix analysis
theories will be employed to model and verify linear systems
in engineering and scientific domains.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by the International Cooperation
Program on Science and Technology (2010DFB10930 and
2011DFG13000), the National Natural Science Foundation of
China (60873006, 61070049, 61170304, 61104035, 61373034,
and 61303014), the Natural Science Foundation of the City
of Beijing (4122017), the S&R Key Program of the Beijing
Municipal Education Commission (KZ201210028036), and
the Open Project Program of State Key Laboratory of Com-
puter Architecture and theOpen Project Program ofGuangxi
Key Laboratory Trusted Software.

References

[1] C.Kern andM.R.Greenstreet, “Formal verification in hardware
design: a survey,” ACM Transactions on Design Automation of
Electronic Systems, vol. 4, no. 2, pp. 123–193, 1999.

[2] W. Wu and X. Gao, “Mathematics mechanization and applica-
tions after thirty years,” Frontiers of Computer Science in China,
vol. 1, no. 1, pp. 1–8, 2007.

[3] J. Liu and H. Lin, “Proof system for applied Pi calculus,”
in Theoretical Computer Science, vol. 323 of IFIP Advances
in Information and Communication Technology, pp. 229–243,
Springer, Berlin, Germany, 2010.

[4] Y. Li, W. N. N. Hung, and X. Song, “A novel formalization
of symbolic trajectory evaluation semantics in Isabelle/HOL,”
Theoretical Computer Science, vol. 412, no. 25, pp. 2746–2765,
2011.

[5] L. Chang, Z. Shi, T. Gu, and L. Zhao, “A family of dynamic
description logics for representing and reasoning about
actions,” Journal of Automated Reasoning, vol. 49, no. 1, pp.
1–52, 2012.

[6] Y. Nakamura, N. Tamura, and W. Chang, “A theory of matrices
of real elements,” Formalized Mathematics, vol. 14, no. 1, pp. 21–
28, 2006.

[7] I. Pasca, “Formally verified conditions for regularity of interval
matrices,” in Intelligent Computer Mathematics, vol. 6167 of
LectureNotes in Computer Science, pp. 219–233, Springer, Berlin,
Germany, 2010.

[8] J. Harrison, “A HOL theory of Euclidean space,” in Theorem
Proving in Higher Order Logics, vol. 3603 of Lecture Notes in
Computer Science, pp. 114–129, Springer, Berlin, Germany, 2005.

http://ade.sagepub.com/

16 Advances in Mechanical Engineering

[9] T. Nipkow, L. C. Paulson, and M.Wenzel, Isabelle/HOL: a Proof
Assistant for Higher-Order Logic, vol. 2283 of Lecture Notes in
Computer Science, Springer, Berlin, Germany, 2002.

[10] S. Obua, Flyspeck II: the basic linear programs [Ph.D. thesis],
Technische Universitat Munchen, Munich, Germany, 2008.

[11] S. Obua, “Proving bounds for real linear programs in
Isabelle/HOL,” in Theorem Proving in Higher Order Logics,
vol. 3603 of Lecture Notes in Computer Science, pp. 227–244,
Springer, Berlin, Germany, 2005.

[12] K. Slind and M. Norrish, “A brief overview of HOL4,” in Theo-
rem Proving in Higher Order Logics, vol. 5170 of Lecture Notes in
Computer Science, pp. 28–32, Springer, Berlin, Germany, 2008.

[13] L. Liu, O. Hasan, and S. Tahar, “Formal reasoning about finite-
state discrete-timeMarkov chains inHOL,” Journal of Computer
Science and Technology, vol. 28, no. 2, pp. 217–231, 2013.

[14] R. C. Jaeger and T. N. Blalock, Microelectronic Circuit Design,
McGraw-Hill, Boston, Mass, USA, 3rd edition, 2006.

http://ade.sagepub.com/

	Portland State University
	PDXScholar
	8-28-2014

	Formalization of Matrix Theory in HOL4
	Zhiping Shi
	Yan Zhang
	Zhenke Liu
	Xinan Kang
	Yong Guan
	See next page for additional authors

	Let us know how access to this document benefits you.
	Citation Details
	Authors

	tmp.1437414591.pdf.w8HCL

