
Portland State University
PDXScholar

University Honors Theses University Honors College

2015

Polyethylene Glycol and Silica Coatings of Bismuth Nanoparticles:
Synthesis, Characterization and Whole Serum Compatibilities
Victor Emilio Benavides-Montes
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: http://pdxscholar.library.pdx.edu/honorstheses

This Thesis is brought to you for free and open access. It has been accepted for inclusion in University Honors Theses by an authorized administrator of
PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Recommended Citation
Benavides-Montes, Victor Emilio, "Polyethylene Glycol and Silica Coatings of Bismuth Nanoparticles: Synthesis, Characterization and
Whole Serum Compatibilities" (2015). University Honors Theses. Paper 185.

10.15760/honors.162

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PDXScholar

https://core.ac.uk/display/37773688?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fhonorstheses%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/honorstheses?utm_source=pdxscholar.library.pdx.edu%2Fhonorstheses%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/honors?utm_source=pdxscholar.library.pdx.edu%2Fhonorstheses%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
http://pdxscholar.library.pdx.edu/honorstheses?utm_source=pdxscholar.library.pdx.edu%2Fhonorstheses%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/honorstheses/185?utm_source=pdxscholar.library.pdx.edu%2Fhonorstheses%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.15760/honors.162
mailto:pdxscholar@pdx.edu


1 
 

 

 

 

Polyethylene Glycol and Silica Coatings of Bismuth Nanoparticles:  

Synthesis, Characterization and Whole Serum Compatibilities. 

 

 

 

 

 

by 

 

Victor Benavides-Montes 

 

 

 

An undergraduate honors thesis submitted in partial fulfillment of the 

 

requirements for the degree of 

 

Bachelor of Science 

 

in 

 

University Honors 

 

and 

 

Chemistry  

 

 

 

Thesis Adviser 

 

Dr. Andrea Mitchell Goforth 

 

 

 

 

 

 

 

Portland State University 

2015 



2 
 

ABSTRACT: 

Cancer is responsible for about one fourth of mortalities in the United States daily, 

however, early diagnosis and treatment raised the five year survival rate since the 1970’s.  The 

usage of X-ray contrast agents (XCAs) has been instrumental in the diagnosis of tumors, but the 

field still calls for an improved modality in XCAs, such as safe, affordable, lower dosage and 

targeted XCAs.  Useful XCAs must be capable of avoiding the reticuloendothelial system (RES) 

through an increased circulation half-life time (t1/2), therefore, “evasive” nanoparticle shells have 

been previously constructed and studied.  Researchers have demonstrated an increased t1/2 with the 

use of molecules such as polyethylene glycol (PEG) and silica. Evasion of RES and an increased 

t1/2 is primarily attributed to the decreased surface charge and robustness of said shells.  

Additionally, these properties prevent aggregation and foster further chemical modification for a 

targeting modality of XCAs.  The following work aims to demonstrate a comprehensive synthesis 

and characterization of bismuth nanoparticles (BiNPs) enveloped by either silica or PEG.  A 

qualitative approach using 1H-NMR and FT-IR strongly suggests said coatings on BiNPs.  TEM 

images suggest a PEG coating was formed while TEM and EDS confirms silica coatings of BiNPs. 

Preliminary trials of these materials in whole mouse serum advocate silica coated BiNPs are 

capable of sustaining their integrity in whole serum for at least 3 hours whereas PEG coated BiNPs 

degrade before 12 hrs. Through an optimized synthesis of either material, conjugation of proteins 

on surfaces should introduce the targeting component of BiNPs.  
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1. INTRODUCTION: 

a. Cancer and Current Contrast Agents  

In 2015, cancer is expected to claim approximately 590,000 lives, making it the second 

leading cause of death in the United States yet, since the 1970’s,  the five year survival rate of 

cancer’s at all sites of the body has increased to 68 percent. 1  This increase in life expectancy can 

be attributed to both earlier diagnosis and treatment; therefore, pursuing new methods of early 

diagnosis will greatly reduce the risk of death by cancer.  Cancer’s that are dependent on the 

vasculature system can be diagnosed and treated earlier if a targeted vascular contrast agent can 

be composed. Currently, clinically approved iodine based agents such as iopamidol, iohexol and 

iodixanol (Figure 1) are capable of visualizing the vascular and urinary tract, yet, their small 

molecular identity calls for a high dosage.  Furthermore, while most iodine based XCAs are safe, 

this class of XCAs have demonstrated complications such as renal failure, nephropathy, 

anaphylaxis or allergic reactions, which constitute a death rate of 1.1-1.2 deaths per million 

contrast media packages distributed between 1999 and 2001. 2 

 

Figure 1. Iodine based agents are dependent on X-ray opaque molecular iodine (about three X-ray opaque atoms per 

molecule), these individual molecular structures are dwarfed in size by the proposed Bi/shell nanoparticle.  A ~76nm core 

contains ~6 million Bi atoms (all ideally X-ray opaque) per nanoparticle (image not to scale). 3   
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The introduction of new contrasting agents based off dense X-ray attenuating cores and higher 

atomic numbered (Z) elements such as Aurovist (gold nanoparticles) demonstrate both the 

improvement in contrast and lower dosage required through a dense X-ray opaque inorganic core, 

an attractive quality in site directed X-ray imaging. 4 However, the high cost of gold can present a 

practical challenge, discouraging the use of highly valued inorganic metal based XCAs.  Thus, the 

need for an affordable, safe, and lower dosage contrast agent motivates the steps taken in this work.  

 

b. The Reticuloendothelial System and Nanoparticle Core/Shell Structures  

 Most foreign entities that are introduced into the body are readily taken up by the 

reticuloendothelial system (RES) also known as the mononuclear phagocyte system (MPS). 

Without an appropriate way of “cloaking” these foreign entities, sequestration by RES (Figure 2A) 

is inevitable. RES functions by primarily coating said foreign entity with opsonin proteins, a 

molecule that triggers an immune response, facilitating sequestration of the foreign entity to the 

liver.  This event is unfavorable if the foreign entity’s (e.g. XCA) function requires a long or 

specific period of circulation time in the body, thus, “cloaking” molecules of foreign entities will 

prevent immediate RES sequestration (Figure 2B).   Nanoparticles are attractive for specific bio-

applications 5 due to their ability to avoid kidney filtration 6 and ability to avoid RES through 

appropriate “cloaking” chemicals.  It is worth noting that it is assumed that nanoparticles with a 

diameter greater than 10 nm will be ideal candidates for evading sequestration by the kidneys, 

while nanoparticles that remain larger than 100 nm can readily be absorbed by the liver or      

spleen. 7, 8   Consequently, nanoparticles lend themselves for an increase in circulation half-life 

time (t1/2) based on factors such as, composition of the core and coatings, surface charge, size and 

targeting ligand functionalization. 7, 8 Through a sufficiently large t1/2, nanoparticles have 
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demonstrated the ability to target receptors of cancer growth, 9, 10 tumor growth, 11 bone tissue 

damage 12 and diseased spleen. 13   

 Thus, it becomes evident that in order to avoid the loss of the inorganic XCA core, it must 

not venture alone into a physiological environment without appropriately gearing it with the 

capability of either 

avoiding RES or giving it 

the ability of increasing 

its t1/2, which in turn, will 

facilitate the visualization 

of soft tissue. 

Previous work has 

demonstrated an overall increase in t1/2 by covalently linking  polyethylene glycol onto the surface 

of a contrast platform (PEGylation).  PEGylation of InAs(ZnS) quantum dots, 6 gold        

nanocrystals, 14 and various other platforms 7 have increased t1/2  due to PEG’s ability to neutralize 

the overall charge of the particle with a sufficiently dense coating, increased water solubility 

through the ethylene glycol repeats, and its ability to suppress particle aggregation and adsorption 

of opsonin proteins (Figure 2B).7,8, 15 For these reasons, it would be advantageous to PEGylate 

(covalently link) or PEG coat (a non-covalent linkage) BiNPs in efforts to conceal the central core 

from the body’s RES.  Additionally, polyethylene glycol’s terminal hydroxyl moieties lends itself 

for even further chemical modification, this ideally can enable the construction of the wanted 

targeted XCA.  It should be noted that a PEG coating rather than a PEGylation will not foster the 

ideal targeting XCA and may not even sustain small changes in solvent environments.  Therefore, 

a way to create a PEGylated BiNP should be the synthetic goal.  

Figure 2. (A) If no "cloaking" mechanism is in place, opsonin adsorption onto the NP 

will greatly decrease the t1/2 (B) unless a type of shell envelopes said NP, assisting evasion 

of liver sequestration (primarily through a neutral surface charge). 7 
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It is also recognized that other compounds such as silica (SiO2) constitute favorable 

chemical conditions for nanoparticles in physiological environments. Silica’s non-cytotoxic and 

robust 16 nature will prevent damage to cells and “leakage” of metallic ions into solution.  Silica 

also imparts colloidal stability in aqueous environments via a negatively charged surface, which 

also prevents any silica-coated particles from coming into close contact due to electrostatic 

repulsions. This silica surface will also accept further chemical modifications, such as amines or 

thiols covalently linked to a targeting moiety or biomolecule, allowing another path towards the 

ultimate goal of obtaining a targeted XCA.  Achieving greater biocompatibility for metallic 

nanoparticles, namely bismuth, through the inert silica shell, 17, 18 would present a more affordable 

synthetic protocol of an alternative class of XCAs composed of silica coated BiNPs. 

 

c. X-rays and Bismuth 

The use of XCAs such as barium sulfate and molecular iodinated species have existed for well 

over half a century.  By using higher atomic numbered (Z > 18) elements as XCAs, the 

visualization of soft tissue and other organelles composed of smaller atomic numbered elements 

(e.g. carbon, nitrogen, oxygen, hydrogen) can be improved, as demonstrated by current X-ray 

radiographs (Figure 3).  Therefore, by exploiting this inherent property of higher Z elements, a 

safer, more affordable and higher X-ray attenuating XCA can be created.   

 Heavy metal bismuth (Z=83), a component of the active ingredient in gastrointestinal pain 

relief medication (the most common being Pepto-Bismol), possesses many advantageous qualities 

making it an attractive candidate as an XCA.  Inherent in bismuth is its minimal                 

cytotoxicity, 3, 19, 20 making it a surprisingly safe heavy metal given both its position and the 

radioactive elements that surround it on the periodic table.  Bismuth itself is radioactive; however 
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its only stable isotope, 209 Bi, has a 

half-life about  1.9 x 1019 years, 21 a 

period longer than the current 

estimated age of the universe (1.4 x 

109 years). 

   Due to the higher X-ray 

attenuation by higher Z elements, 

similar X-ray attenuation of iodine is 

observed at lower concentrations of 

bismuth 3, 22 which can substantially 

lower the dosage of contrast media if 

an XCA were composed of bismuth.  

It is also important to note the 

relatively low starting cost of 

elemental bismuth, about $8.00 per 

pound, 23 compared to elemental gold, costing over $17,350 per pound 24 which similar 

commercially available XCAs to those proposed (e.g.Aurovist) are composed of, potentially 

alleviating a practical issue for researching and producing metal-based XCAs.   

Previous bismuth nanoparticles have demonstrated the ability to target (organs and disease) 

and/or have high X-ray attenuation/opacity. 9 , 22, 25  Thus we venture to demonstrate a simple 

bench-top synthetic protocol (with two potential coatings) and suitable characterization methods.  

For preliminary results of whether these nanoparticle core/shell structures will be able to sustain a 

physiologically similar environments, whole serum trials will be performed.  It is postulated that 

Figure 3. Material composed of higher Z elements will demonstrate 

greater contrast in X-ray imaging, such as the PSU logo bismuth 

composite. 25 
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if a PEGylated nanoparticle is constructed, the material will sustain the whole serum trial, while 

silica coated material should also present little issue.  

 

2. EXPERIMENTAL SECTION: 

a. Materials 

A PEG coated BiNP synthesis required an initial bismuth source of bismuth (III) nitrate 

pentahydrate (Acros Organics, 98%), a reducing source of borane morpholine complex (Alfa 

Aesar, 97%), polyethylene glycol-200 solvent (Alfa Aesar) and α-D-Glucose (Acros Organics) 

used as the particle stabilizer.  Electrophoretically pure water (nH2O) dispensed from a Millipore 

Milli-Q plus unit was used.  NMR solvents of either D2O (Cambridge Isotope Laboratories, 99.9%) 

or DMSO (Sigma-Aldrich, 99%) were used for NMR analysis to confirm the synthesis of the PEG-

BiNPs. 

 In composing silica coated BiNPs, a bismuth precursor of synthesized BiNP concentrate 

from the Brown et al synthesis 3 was used.  Said BiNPs were vigorously mixed with a solution of 

nH2O, isopropanol, ammonium hydroxide (Stock, ~30%), and tetraethyl orthosilicate (Sigma-

Aldrich).   

Preliminary studies for serum compatibilities were conducted with whole serum (MP 

Biomedicals, Mouse, Purified). 

 

b. Methods 

A modification to the synthetic protocol established by Brown and co-workers 3 was used 

to construct PEG coated BiNPs: by changing the solvent to polyethylene glycol and quartering 

mass and volumes of reagents, PEG coated BiNPs were synthesized and purified for 
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characterization and further biological assays. The construction and purification of silica coated 

BiNPs followed much of the procedure established by Kladir et al. 26 with primary variations in 

quantities of volumes of the starting reagents  

PEG-BiNPs were ultimately purified through centrifugation and a subsequent dialysis 

using dialysis tubing (SnakeSkin regenerated cellulose dialysis tubing, 10k MWCO).  Every step 

of the purification process (centrifugation and dialysis), in both solid and aqueous liquid solutions 

of BiNPs, were analyzed to discern whether components of the purification were necessary.  To 

obtain a solid, aqueous particle solutions were suspended in a volume fraction of ethanol, followed 

by oven drying at 150°C for at least two hours creating a solid paste-like black material (white 

material for silica coated BiNPs).  The black material produced was then characterized via FT-IR 

or immediately diluted with NMR solvents for NMR analysis.   However, given the reliability of 

eliminating water using this preparation method, the use of water suppression techniques with FT-

IR (a simple subtracting of a FT-IR water scan) and NMR (an algorithm programmed into the 

instrument to subtract water signals) were used.  Silica coated BiNPs (for both aqueous and solid 

material) were prepared in a similar fashion with only purification by centrifugation in a 1:1 

ethanol:nH2O solvent wash.  No NMR was performed on silica coated BiNPs. 

For TEM analysis, particles were directly extracted from the synthetic batch container or 

from dialysis tubing (aqueous solutions) and decanted straight onto a TEM copper grid (Ted Pella) 

and subsequently allowed to dry in the 150°C oven for at least half an hour.  
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c. Instrumentation 

Instrumentation used to characterize the final product included a Fourier Transform-

Infrared Spectrometer (FT-IR), a Thermo Scientific Nicolet iS10 spectrophotometer was used for 

a collection of signature bond stretching and a qualitative comparison of similar peaks between 

reagents and products.  Proton Nuclear Magnetic Resonance Spectrometry (1H-NMR), a Bruker 

600 MHz AVANCE-III Nuclear Magnetic Resonance (NMR) spectrometer was used to isolate 

characteristic peak intensities of PEG’s ethylene glycol hydrogen’s at 3.6 parts per million. 7 , 27 A 

Transmission Electron Microscope (TEM) FEI Tecnai F-20 TEM operating at 200kV was used to 

visualize a final core/shell structure. Using a TEM feature, Energy Dispersive X-ray Spectroscopy 

(EDS) was performed, data collected provided an elemental analysis of the core/shell structure via 

the Oxford Instruments AZtecEnergy program. Dynamic Light Scattering (DLS), a Horiba LB-550 

dynamic light scattering instrument and an instrumental algorithm was used to obtain a preliminary 

hydrodynamic radius. 

 

3. RESULTS AND DISCUSSION: 

a. PEG coated BiNPs 

 Material in the Bi/PEG (core/shell) configuration was characterized with various 

instrumentation and at different stages of the purification protocol.  Control (no purification) 

particles in the aqueous liquid phase analyzed by FT-IR demonstrated (Figure 4) very prominent 

O-H stretches and H-O-H bending 28 suggesting the primary component of the sample was water.  

In efforts to increase the signal to noise ratio, increased scanning trials were performed, which 

resulted in a subtle but enhanced signal (Figure 4: trial 1).  This suggests stretches associated with 
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a different chemical species, calling for a further degree of analysis since this data is insufficient 

to recommend that controls primarily hold BiNP/PEG. Oven dried particles became very difficult 

to work with, this was due to the high viscosity of the substance formed, a consequence of 

impurities that remained in solution, thus further complicating the analysis method and preventing 

a collection of a solid black material to analyze through FT-IR and 1H-NMR. Thus, TEM and its 

features proved to be the best tools of analysis for these control BiNPs.  

 

 

Figure 4. Control BiNPs demonstrated more peaks with an increase in scans (trial 1>trial 3>trial 2) but was still insufficient 

to corroborate a coating of PEG. 

TEM images of control BiNP/PEG demonstrate what seems to be bismuth nanoparticles amongst 

synthetic debris (possibly solvent, reducing agent, or stabilizer) with a thinning layer of bismuth 

towards the ends of the particle (Figures 7A & 7B), this may suggest organic interactions on the 

surfaces of these nanoparticles, yet,  this is not sufficient evidence of PEGylation or PEG coating.  

Nevertheless, EDS analysis demonstrates what seems to be an organic layer (PEG).  Through an 
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EDS elemental analysis (Figure 7E), signals of both carbon and oxygen are present, alluding to 

the sought out PEGylated BiNP structure.  It is worthy to note, through the EDS, low X-ray counts 

of carbon and oxygen are observed when compared to bismuth.  Furthermore, the noise observed 

in EDS carbon and oxygen counts call for a better characterization of the material, thus a further 

purification (centrifugation) of the PEG-BiNPs. 

Centrifuged Bi/PEG nanoparticles suspended well in ethanol for the purpose of attempting 

to remove as much debris as possible.  These particles were oven dried very quickly (~1 minute); 

the remaining solid black material was subsequently analyzed via FT-IR and 1H-NMR. Through 

FT-IR (Figure 5), a qualitative assay of prominent reagents in the reaction were compared to the 

final product (Figure 5: Red Trace).   

 

 

Figure 5. PEG coated BiNPs demonstrate the greatest correlation with PEG-200 through FT-IR data.  All other reagents 

highly suggest to have little contribution to the composition of the final product. 
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A broad peak that extended from 3000-3600 cm-1 due to an alcohol (O-H) bond stretch is 

likely due to a trace amount of water. Peaks observed below 1500 cm-1 when directly traced to 

peaks of PEG-200 (Figure 5: Green Trace) highly suggest the primary surface of these BiNPs are 

coated with PEG-200.  Most stretches of α-D-glucose (Figure 5: Yellow Trace) fall within the 

same range of PEG-200 (below 1500 cm-1 ) or water (~1650 cm-1), thus, FT-IR data is not 

compelling enough to suggest the centrifuged BiNPs are (Figure 5: Green Trace)  do not contain 

glucose.   Therefore, a qualitative 1H-NMR assay of the reagents PEG-200 and α-D-glucose were 

compared to the centrifuged Bi/PEG nanoparticles. 

 

 

Figure 6. Coated BiNPs demonstrate a greater intensity of PEG-200-like signals, suggesting either a PEGylation or aPEG 

coating to the bismuth core. 
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The collected solid demonstrated ethylene glycol’s protons at approximately 3.6 ppm 

(Figure 6: Green Trace), data which is in agreement with the literature 7, 27  A qualitative 

comparison between the final coated BiNPs (Figure 6: Blue Trace) and reagents of interest 

(potential coatings) demonstrate no significant quantities of α-D-glucose present on the final BiNP 

product.  Most remarkable in these results are the peak resemblances of PEG (Figure 6: Green 

Trace) in the final “coated BiNPs” data.  The FT-IR data in combination with the 1H-NMR results 

strongly suggest a Bi/PEG species has been created through this synthetic protocol.  However, 

whether a PEGylation or PEG coating has been 

formed to the BiNPs is still unclear.  Yet, 

purified particles have provided good insight 

into the potential coordination of PEG on these 

BiNPs. 

Purified particles (centrifuged and 

subsequently dialyzed), ideally were free of 

any debris and thus solutions of aqueous 

BiNPs were directly analyzed like before, 

using 1H-NMR and FT-IR instruments.  When 

measured through FT-IR and 1H-NMR, water 

was still present at very high concentrations, 

even after using the appropriate water 

suppressing techniques.  The use of the oven 

drying preparation procedure resulted in what 

appeared to be absolutely no material, the glass 

Figure 7. (A) TEM images demonstrate how controls end up 

with a core/shell structure with impurities, (B) a close-up of 

control BiNPs shows what might appear to be a core/shell 

structure. (E) Analysis of this sample’s core/shell type 

structure with EDS strongly suggests the either a PEGylation 

or coordination to the BiNP core.  (D) Particles that have 

been completely purified demonstrate aggregation of NPs 

(C) with apparently thinning shells. 
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vial only contained trivial unappreciable quantities of black material from large volumes of BiNP 

aqueous solution.   Therefore, the best form of analysis was again TEM. TEM images demonstrated 

that completely purified BiNPs contained less impurities and debris, but a greater degree of 

aggregation (Figure D).  Additionally, a change in the surface of these nanoparticles arose.   This 

very thin shell is different from what was observed with control BiNPs shells (Figures 7B & 7D).    

Previously, a dense core with a large thinning shell length (~10 nm) could be observed, after a full 

purification, particles appear to have smaller thinning shell length (~3 nm).  This effect was 

observed in particles dialyzed at greater periods of time (> 3 hours) which additionally 

demonstrated precipitation in the vessel and through TEM, confirmed that there was indeed an 

aggregation of particles. This aggregation of BiNPs appears to initially occur after about two hours 

of dialysis (Figure 7D) strongly suggesting an issue with the final dialysis purification process.  

Thus, BiNPs were then dialyzed for less than two hours in order to improve the aggregation issue, 

which slightly helped in resolving the problem. Therefore, shorter periods of dialysis were 

maintained in order to keep colloidal stability in an aqueous suspension of BiNPs.  The fact that 

the dialysis process caused precipitation/aggregation after a short period of time may indicate the 

actual interacting nature of the polyethylene glycol with the BiNP core was actually more 

coordinating (PEG coating) rather than bonding (PEGylation).  This weak interaction may give 

rise to complications in vivo and in vitro when the particle must sustain its integrity at different pH 

levels, NP concentrations and ionic strength solutions.   This result advocates for an alternative 

route to be pursued in the preparation of PEGylated BiNPs, such as the previously demonstrated 

sulfur bonded gold NPs synthesis. 14 
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b.  Silica coated BiNPs 

Material in the Bi/SiO2 configuration followed the literature established Ag/SiO2 NPs 

synthetic protocol 26 yielding a white aqueous solution.  This material was suspended in ethanol 

after centrifugation and was allowed to air dry for approximately 5-10 minutes, resulting in a white 

paste-like material that was characterized via FT-IR and TEM.   

 

Figure 8. Characteristic peaks of dry BiNPs suggest that a shell of silica may have encapsulated BiNPs. 

 

FT-IR data of silica coated BiNPs (Figure 8: Aqua Trace) demonstrates a prominent Si-O-Si 

stretch right above 1000 cm-1, a small Si-O bend right above 800 cm-1 and a small Si-OH stretch 

in the vicinity of 930 cm-1.  Again, through a qualitative assay of reagents of interest compared to 

the final product, it is observed that the final products (Figure 8: Aqua Trace) stretches overlap 

best with silica stretches (Figure 8: Red Trace). FT-IR stretches coincide with Shokri et al’s 

findings, 29 strongly suggesting a SiO2 species in the final synthesized material.  Through the usage 
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of TEM, images reveal and confirm a core/shell structure was in fact synthesized (Figure 9A).   

While FT-IR has alluded to the shell composition, EDS further validated the claim of a silicon-

oxygen species comprising the shell of the final core/shell structure (Figure 9C).   

  However, it was noted that not all material 

was coated by the SiO2 shell, which suggests a 

change and controlled concentrations of the 

current synthetic protocol must be made, 

specifically the BiNPs source. The apparent 

agglomerations of uncoated BiNPs might 

indicate the silica source to be a limiting reagent 

via the current synthetic protocol.  Ultimately, 

an ideal synthesis should be modified to 

produce monodisperesed silica coated BiNPs 

with a high payload (a high core:shell volume 

ratio).  It should be noted that after additional 

runs of the purification protocol, TEM analysis 

resulted in a very “clean” grid, or a greater 

difficulty in finding particles throughout the grid.   

This further endorses the need to optimize the synthesis for the future collection of more silica 

coated BiNPs. 

 

 

 

 

Figure 9. (A) TEM images elucidate the core/shell structure 

of silica coated BiNPs.  However, it is apparent that while 

some particles are coated with some coating, not all BiNPs 

have been coated (B & C).  (C)  EDS spectra demonstrates 

a shell structure primarily constructed of silicon and oxygen 

with a core of bismuth. 
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c. Whole serum preliminary results 

Initial trials of PEG coated BiNPs have demonstrated, through TEM images, a 

deconstruction of the material (Figure 10A) after twelve hours of setting the material in whole 

serum solution.  This result demonstrated that a more dense coating or a covalently bonded form 

of PEG may be necessary in order to give the particle increased time of integrity in whole mouse 

serum.  This result also suggests a weak bonding nature (likely more of a coordination) of PEG 

onto the surfaces of BiNP cores and may allude to a t1/2 less than 12 hours.  

Through the alternative BiNP coating, silica coated BiNPs demonstrate a good stability 

and the integrity of the silica spheres after three hours was maintained.    This shows that Bi/SiO2 

structures can endure a whole mouse serum environment and may allude to a t1/2 greater than 3 

hours. Further whole serum assaying of both types of particles should be performed, including 

collecting TEM images of both particles post whole serum exposure at approximate equivalent 

times.  

 

 

 

Figure 10. (A) Preliminary whole serum trials suggest a poor PEG coating of BiNPs due to their decomposition 

in whole mouse serum (B) Meanwhile, silica coated BiNPs appear to endure the trial. 
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Summary and Conclusions: 

 Efforts to create a better XCA have led to the synthesis of two different kinds of 

BiNPs with potential increased t1/2 via molecular shells that “cloak” or are robust/inert enough to 

avoid RES.   Control PEG coated BiNPs allude to, through TEM and EDS analysis, an organic 

shell composed of carbon and oxygen, strongly suggesting some type of PEG interaction with 

BiNPs.  Upon further purification through centrifugation, a qualitative FT-IR and 1H-NMR 

analysis makes the conclusion of a synthesized Bi/PEG more apparent via the varied synthetic 

protocol. Finally, PEG coated BiNPs post centrifugation and dialysis demonstrate particle 

aggregation (observed through TEM images) and precipitated material after performing extensive 

periods (> 3hrs) of dialysis.  These types of BiNPs also revealed what appeared to be a thinning 

shell (~3 nm) where control particles demonstrated this shell to be greater (~10 nm).  Whether 

these lengths are edges of elemental bismuth or shells of PEG is still inconclusive.  It is also 

important to note that certain stages of the purification protocol were limiting to certain forms of 

analysis owed to issues with the collection of substantial amounts of material or material 

containing too much water.  Preliminary whole serum trials suggest that the coating of PEG was 

insufficient to sustain its integrity after twelve hours of exposure to whole mouse serum, 

suggesting a potential t1/2 less than 12 hours for PEG coated BiNPs. 

 Silica coated BiNPs were also successfully synthesized through a variation of a previously 

established method for creating silica coated silver nanoparticles.  An EDS analysis reveals a 

coating of a Si-O species, strongly suggesting the silica species is present. TEM images distinctly 

demonstrate the composition of a core/shell structure. Studies using whole serum exposure 

demonstrate by TEM imaging that no decomposition of Bi/SiO2 nanoparticles occured.  This result 

is potentially indicative of a t1/2 greater than 3 hours.  Future work will continue to produce similar 
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particles with modifications in both syntheses to create more monodispersed BiNPs with their 

respective coatings, less debris formation, a higher payload and eventually an optimized synthesis.  

Whole serum results will be used as screenings for different coatings of BiNPs.   To decrease 

agglomeration of particles, different steps in the purification will be used in post dialysis PEG 

coated BiNPs, such as decreasing the time of dialysis.  A different synthesis must be created to 

construct a PEGylated bismuth nanoparticle.  Ultimately, targeting peptides of angiogenesis 

receptors highly expressed in tumor vasculature of lung cancer can be conjugated onto both 

Bi/PEG or Bi//SiO2 to target and isolate lung cancer at early stages. 
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