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1. A Brief History of Polynomial Root Finding 
The problem of solving polynomial equations is one of the oldest problems in 

mathematics. Many ancient civilizations developed systems of algebra which included methods 

for solving linear equations. Around 2000 B.C.E. the Babylonians found a method for solving 

quadratic equations which is equivalent to the modern quadratic formula. They also discovered a 

method for approximating square roots which turned out to be a special case of Newton’s 

method (which was not discovered until over 3500 years later). Several Italian Renaissance 

mathematicians found general methods for finding roots of cubic and quartic polynomials. But it 

is known that there is no general formula for finding the roots of any polynomial of degree 5 or 

higher using only arithmetic operations and root extraction. Therefore, when presented with the 

problem of solving a fifth degree or higher polynomial equation, it is necessary to resort to 

numerical approximations. In fact, even for third and fourth degree polynomials, it is usually 

much better in practice to use numerical methods because the exact formulas are extremely prone 

to round-off errors. 

One of the most well-known numerical methods for solving not only polynomial 

equations, but for finding roots of any sufficiently well-behaved function in general, is Newton’s 

method. In certain cases, however, such as in the case of repeated roots, Newton’s method, as 

well as many other iterative methods, do not work very well because the convergence is much 

slower. In addition, iterative methods exhibit sensitive dependence on initial conditions, so that it 

is essentially impossible to predict beforehand which root an iterative method will converge to 

for a given initial condition. 

Even if one had a method for finding all roots of a given polynomial with unlimited 

accuracy, there is another fundamental obstacle in the problem of finding roots of polynomials. 

The problem is that most polynomials exhibit a phenomenon known as ill-conditioning, so that a 

small perturbation to the coefficients of the polynomial can result in large changes in the roots. 

In general, when attempting to derive numerical approximations to the solution of any 

mathematical problem (not just finding polynomial roots) it is prudent to avoid ill-conditioning 

because it can increase sensitivity to round-off errors. 



2. The Problem of Ill-Conditioning 
Ill-conditioning is a phenomenon which appears in many mathematical problems and 

algorithms including polynomial root finding. Other examples of ill-conditioned problems 

include finding the inverse of a matrix with a large condition number or computing the 

eigenvalues of a large matrix. In many cases, whether or not a given problem is ill-conditioned 

depends on the algorithm used to solve the problem. For example, computing the QR 

factorization of a matrix can be ill-conditioned if one naively applies the Gram-Schmidt 

orthogonalization procedure in the most straightforward way, but using Householder reflections 

to compute a QR factorization is numerically stable and much less prone to round-off errors. 

A classic example of ill-conditioning in the context of finding polynomial roots is the so-

called Wilkinson polynomial. This polynomial is defined by 

              
    (1) 

Clearly, by definition the roots of this polynomial are the integers from 1 to 20. The expanded 

form of the product in equation (1) may be given as 

        

  

   

   

where the coefficients ci are given by 

                          

and sj denotes the j
th

 elementary symmetric polynomial (with the convention that s0 is identically 

1). It would be most convenient if a small change to any of the coefficients ci resulted in a 

similarly small change to the roots of the polynomial. Unfortunately, this is far from the case. 

Figure 1 shows the roots of 50 different polynomials which differ from the polynomial      

given by equation (2) only in that each of the coefficients ci has been perturbed by a random 

amount up to 10
-10

 of the original value (i.e. by up to one part in ten billion). We see that 

although the change in the coefficients is very small by any standard, the effect on the roots is 

quite drastic. The problem is made worse by the fact that in most, if not all, real world 

applications, where polynomials are used to model or interpolate data, there will be some 

uncertainty in the values of the coefficients, arising from uncertainties in whatever measurements 

are used to generate the data. When the polynomial is ill-conditioned, as in the preceding 

example, very small uncertainties in the coefficients can lead to large uncertainties in the roots, 

often many orders of magnitude larger. This issue cannot be resolved simply by choosing a 



different algorithm for approximating the roots; even if one were able to compute the roots of 

any polynomial with unlimited accuracy, there would still be a large degree of uncertainty in the 

computed roots of a polynomial generated from measured data, because the coefficients of the 

polynomial itself are not exact, whereas any method for computing polynomial roots must 

necessarily assume that the given coefficients are exact. Thus the only way to reduce the amount 

of uncertainty to a more reasonable level is to somehow make the problem less ill-conditioned. 

 
Figure 1: Ill-conditioning present in the problem of finding the roots of the so-called Wilkinson polynomial. Roots 

of 51 different degree 20 polynomials are portrayed on the complex plane. The triangles denote the roots of the 

original unperturbed polynomial, which are simply the integers from 1 to 20, while the small dots denote the roots of 

50 polynomials with coefficients differing from the original polynomial by up to one part in ten billion. Because the 

problem of finding polynomial roots is ill-conditioned, small perturbations to the coefficients lead to large changes 

in the roots. In the worst case, the imaginary parts of several of the roots change from 0 (for the unperturbed 

polynomial) to about 5. This is clearly not an acceptable margin of error by any reasonable standard. 

A well-known and often-used metric for measuring the degree of ill-conditioning of a 

given problem or algorithm for solving that problem is the condition number. The condition 

number measures how sensitive a computed answer or output given by the algorithm is to 

changes in the input values or initial conditions. When defining the condition number, it is 

important to note that there are two ways in which changes to the initial and computed values 

may be measured; one may choose to use either the absolute change or the relative change. If we 

treat an algorithm as a function which takes the initial input values            and produces 



outputs           , then the condition number of the j
th

 output yj with respect to the i
th

 input xi 

measures how large of a change in yj can result from a small perturbation of xi. If we denote a 

small perturbation of xi by    , then the absolute change in xi is simply    , whereas the relative 

change is defined by       . Thus the absolute change only measures the numerical difference 

between the perturbed and original values of a variable, whereas the relative change measures 

the perturbation as a proportion of the variable’s original value. . Usually, in numerical analysis 

the relative change is more important because the floating-point arithmetic system used by 

computers has a fixed amount of precision on a relative basis; i.e. in floating-point arithmetic an 

error margin of ±10 for a computed value of 1000 is just as precise as an error margin of ±1 for a 

computed value of 100. 

We think of an algorithm for solving a problem as a function from an arbitrary set X, the 

set of parameters or initial conditions, to a set Y, the set of solutions. In order to define the 

condition number, we require that the notion of distance between two elements exists in both the 

set of initial conditions and the set of solutions; thus we assume that X and Y are normed vector 

spaces. In the case of polynomial root-finding, X and Y are both vectors of complex numbers: X 

consists of the polynomial coefficients, and Y consists of the roots. 

Definition: given a function       where X and Y are normed vector spaces, the 

absolute condition number of f at any      is defined by 

      
   

   
     

               

   
 

and the relative condition number of f at    is defined by  

     
   

   
     

               
       

   
    

 

We wish to obtain an expression for the condition number of a root of a polynomial with 

respect to a given coefficient. Here, we are treating the roots of the polynomial as a function of 

the coefficients, and working in the vector space   . However, we are only interested in the 

sensitivity of any particular root to changes in one particular coefficient at a time. Therefore, we 

may think of the j
th

 root as being a function of the i
th

 coefficient, holding all other coefficients 

fixed. In this case we may then refer to the (relative) condition number of the j
th

 root with respect 



to the i
th

 coefficient, this being defined as the relative condition number of the function (which 

gives the j
th

 root in terms of the i
th

 coefficient) at the i
th

 coefficient. 

The following theorem provides an expression for computing the condition number of 

any root with respect to any coefficient, provided that the root has multiplicity 1. Note that the 

condition number of a multiple root is always infinite because the derivative of a polynomial at a 

multiple root is 0, so that small changes to any coefficient can lead to arbitrarily large changes in 

the roots. 

Theorem 1: Let         
 
      be a degree n polynomial with coefficients ci for 

     . If r is a nonzero root of p(x) with multiplicity 1, and     , then the relative 

condition number of r with respect to cj is 

  
    

    

       
 

Proof: Let     be any perturbation of the j
th

 coefficient. Define the polynomial       as 

the result of perturbing the j
th

 coefficient of      by    ,so that                
 , and 

denote the corresponding root of       by   . Since the coefficients of any polynomial can be 

given as continuously differentiable functions of the roots (using symmetric polynomials), it 

follows from the inverse function theorem that the roots are continuous functions of the 

coefficients as well. In particular, r may be given as a continuous function       of the j
th

 

coefficient   , with all other coefficients being held constant. Therefore, as      ,     , and 

we have        ,             . By the definition of condition number, we have   

   
   

   
     

                 

       

     

    

. Consider the limit    
     

                 

       

     

    

 . We have    
     

                 

       

     

    

 

   
     

      

   

     

    

    
     

 
   

   

     

    

     
     

 
   

   

          

    

  
    

    

    
     

          

    
 

 
    

    

       
  Since this limit exists, we 

must have      
   

   
     

                 

       

     

    

    
     

                 

       

     

    

 
    

    

       
 as well.  

As an example, consider the coefficient       of the Wilkinson polynomial. We see 

that for the root     , the condition number with respect to     is   
    

   
         , 



whereas for     it is   
 

   
           . Thus, the root      is sensitive to changes in 

the leading coefficient     whereas the root     is virtually unaffected by those same changes. 

3. Reducing the Degree of Ill-Conditioning Using a Change of 

Basis 
The key to eliminating any sort of undesirable behavior is to first identify the source of 

the behavior. For example, in order to debug a computer program it is first necessary to identify 

the origin of the bug, and in order to repair a mechanical failure in a piece of machinery it is first 

necessary to identify the particular component or components which have failed. In the case of 

polynomial root-finding, we must first identify the cause of ill-conditioning if we are to attempt 

to reduce it. Keeping in mind that large condition numbers correspond to ill-conditioned 

problems, and examining the expression for the condition number given by Theorem 1, we see 

that there are three factors which may lead to a large condition number κ: a small value of      , 

a large value of   , and a large value of      will all result in a large κ. It is unhelpful to focus on 

      because the value of       cannot be changed without changing the polynomial itself, and 

besides, most polynomials of even moderately high degree tend to have very large values of 

      at the roots (assuming no multiple roots), so the value of       is not the source of the 

problem anyway. This points to large values of    and      as the cause of ill-conditioning. 

Indeed, with the Wilkinson polynomial the condition number of the root      with respect to 

the coefficient               is   
             

     
         , and we see that the large 

value of κ is due to the large values of               and          . The relevant 

question, therefore, is whether there exists some method of somehow reducing the magnitude of 

   and     . 

The answer to this question is yes, and it involves a bit of clever trickery. Up until now 

we have assumed that any polynomial will be represented in the form         
 
     , but 

there is really no fundamental reason why this representation should be used. In fact, this 

representation (the so-called standard form) is in fact decidedly poor for a wide variety problems 

such as polynomial interpolation. Finding the coefficients of the interpolant polynomial for a 

given set of data is a horrendously ill-conditioned problem if the standard representation is used. 

The usual method of avoiding this problem is to use a different basis for representing the 



interpolant polynomial; common choices of basis include the Lagrange and Newton bases which 

both transform the ill-conditioned problem into a well-conditioned problem. This suggests that it 

might be possible to reduce the ill-conditioning of polynomial root-finding using a similar 

change of basis. The fundamental idea is that instead of representing a degree n polynomial as 

        
 
     , we may represent it as               

   , where              is a basis 

for the vector space    of all polynomials of degree n or less. The standard representation is then 

a special case of this with         . But perhaps a different choice of basis will help alleviate 

the problem of sensitivity to small changes in the coefficients. In order to determine exactly what 

basis will help with reducing ill-conditioning, we first require an expression for the condition 

number of a given root with respect to a given coefficient, using an arbitrary basis. The following 

theorem, which is a generalization of Theorem 1 to arbitrary bases, provides such an expression. 

Theorem 2: Let              be a basis for   , and let         
 
         be a 

degree n polynomial. If r is a nonzero root of p(x) with multiplicity 1 and      for some 

     , then the relative condition number of r with respect to    is 

  
         

        
  

Proof: Let     be an arbitrary perturbation of the coefficient   , and define       to be 

the result of perturbing the j
th

 coefficient of      by    . Then                    . Define 

   to be the corresponding root of the perturbed polynomial (in the same manner as for Theorem 

1). By the same argument as for Theorem 1, as      ,      also. By the definition of 

condition number, we have      
    

   
     

      

   

     

    

. Consider the limit    
     

      

   

     

    

 . We have 

   
     

      

   

     

    

    
     

 
       

         

    

     
     

 
       

  
          

    
 
  

         

     
     

          

    
 

 
         

        
  Since the limit 

exists, it follows that      
    

   
     

      

   

     

    

    
     

      

   

     

    

 
         

        
.   

As a result of Theorem 2, we see that now large values of    result from large values of 

the coefficients    and large values of      . Since we cannot directly control the values of the 

coefficients (as they will depend on the chosen basis), it makes sense to focus on minimizing 



     ; that is, the basis polynomials should have small values near the roots of the original 

polynomial. Unfortunately, we do not know the roots because they are precisely what we are 

trying to find! Therefore, a possible strategy for attacking the problem might be as follows: 

suppose that we have managed to obtain an estimate of the interval in which the roots are 

contained; denote this interval by      . Then we might choose basis polynomials    such that 

      is small over the entire interval        . Assuming that our estimate is sufficiently 

accurate, and in particular that all the roots lie inside the interval      , the values of the basis 

polynomials    at the roots of the original polynomial will necessarily be small as well. 

It turns out that there exists a particular set of polynomials which work extremely well for 

implementing this strategy. These polynomials are the Chebyshev polynomials      , and the 

special property they have that makes them so useful is that for all n,           for         . 

In addition, the Chebyshev polynomials form an orthogonal set, which makes them relatively 

easy to use as a basis for   . However, since we must have          in order for           

to be satisfied, we must make a change of variables to map the original interval       onto 

      . If we let   
      

   
  , then as x ranges over      , t ranges over       . We may then 

express the polynomial as a linear combination of Chebyshev polynomials, find its roots, and 

then reverse the change of variables to obtain the roots of the original polynomial. Our procedure 

for root-finding is then the following: 

1. Start with a set of n+1 data points         for      , and suppose that the 

roots of the polynomial      (which interpolates these data points) all lie in the 

interval      . 

2. Make the change of variables   
      

   
   in order to obtain the data points 

        for      , with          . There exists a unique degree n 

polynomial       such that           for      . 

3. Express the interpolating polynomial       as a linear combination of Chebyshev 

polynomials. 

4. Find the roots                 of      . 

5. Make the change of variables    
   

 
          to find the roots of the 

original polynomial     . 



Steps (3) and (4) warrant additional discussion. Several possible procedures can 

potentially be used to express a polynomial as a linear combination of Chebyshev polynomials. 

One method operates by finding a least-squares approximation to the polynomial      , except 

that in this case the approximation is exact (at least in theory). Therefore, to find the coefficient 

of the i
th

 Chebyshev polynomial we simply multiply the data points by the Chebyshev 

polynomial, divide by      , and then integrate over the interval       . Unfortunately, since 

we only have a set of points on the graph of       (enough to uniquely determine it) but do not 

have an analytic formula for      , a quadrature rule such as the Gauss-Chebyshev quadrature 

must be used to evaluate the integral. The disadvantage is that using such a quadrature rule 

requires that the data be sampled at certain, specific, pre-determined points, which in many real-

world applications may not always be possible or practical. 

Another possible method for expressing the polynomial       as a linear combination of 

Chebyshev polynomials is by solving the following system of equations: if we have n+1 data 

points, so that       is degree n, then          
 
       for      , where bj is the coefficient 

of the j
th

 Chebyshev polynomial Tj. In other words, we have      where         is an 

(n+1)-by- (n+1) matrix given by           ,    
  

 
  

  is the vector of coefficients, and 

   

  

 
  

  is the vector of measured y-values from the given data. Solving this system then gives 

the coefficients bi. However, this approach also has its own issues. If xi and xj are too close 

together for some    , then the i
th

 and j
th

 rows of the matrix   will be almost identical, and the 

linear system will be ill-conditioned. The result is that there must be a restriction placed on the 

minimum distance between x values at which measurements are made. Nevertheless, this 

restriction is much looser than the restriction that measurements must be made at certain specific 

points (which comes with using Gauss-Chebyshev quadrature to calculate the coefficients). 

Therefore, this method is more flexible and would likely be preferred for most real-world 

applications. Accordingly, we have decided to use this method in order to obtain experimental 

results. 

The other noteworthy point is the method for finding the roots of the polynomial      . 

When finding the roots of a polynomial which is expressed in terms of Chebyshev polynomials, 



most advanced methods (such as those based on creating a matrix for which the polynomial is 

the characteristic polynomial) are unusable because we are not using the standard form. 

Therefore, we can only resort to more elementary methods such as Newton’s method. The 

primary issue with Newton’s method is that it can be unpredictable which particular root will be 

found, unless the procedure is started sufficiently close to a root. This is problematic if we need 

to find one particular root of the polynomial. However, we can still hope that by trying enough 

initial conditions, all roots will eventually be found. This issue is beyond the scope of this 

research and thus we do not attempt to address it. For the experimental results presented below, 

we have taken advantage of the fact that the exact roots are known in order to select a set of 

initial conditions which will converge to all the roots of      , but it must be kept in mind that 

selecting good initial conditions for Newton’s method remains a problem in real-world situations 

where at best only a rough estimate of the roots is available. 

4. Experimental Results 
The procedure described in the previous section was used for generating all the results 

presented here. In order to obtain a set of data points        , the Wilkinson polynomial was 

evaluated at 21 equally spaced points in the interval  
 

 
 
  

 
  (and thus the spacing between 

successive x values was 1). We used        for the interval       in which the roots are assumed 

to lie. 

For the first experiment, after applying the change of variables and expressing the 

interpolant polynomial       as a linear combination         
 
    of Chebyshev polynomials, 50 

perturbed polynomials were generated by perturbing the coefficients    by a random amount up 

to 10
-10

 of the original value (i.e. up to one part in ten billion). This is the same amount which 

was previously used to demonstrate the ill-conditioning of the Wilkinson polynomial when 

expressed in standard form.  The roots of the 50 perturbed polynomials were then found using 

Newton’s method. Using Newton’s method for any function requires a means of evaluating the 

function and its derivative at any point. This is where another useful property of Chebyshev 

polynomials comes into play: they can all be quickly and accurately evaluated at any point using 

the formula  

                    (2) 

Differentiating both sides gives 



   
     

            

     
 (3) 

which holds for     , with   
        

   

            

     
   and   

       . 

Together, equations (2) and (3) provide a means of efficiently evaluating both       and 

its derivative at any point, which allows Newton’s method to be used. The results are illustrated 

in Figure 2, which plots the roots of the 50 perturbed polynomials along with the original roots 

           on the complex plane. 

 
Figure 2: Reducing the degree of ill-conditioning of the Wilkinson polynomial by using a basis consisting of 

Chebyshev polynomials. The triangles show the roots of the original polynomial, which are simply the integers from 

1 through 20, while the dots show the roots of 50 polynomials with coefficients in the Chebyshev basis perturbed by 

a random amount up to one part in ten billion, which is the same amount used with the standard basis to produce 

Figure 1. At this scale, the roots of the perturbed polynomials are indistinguishable from each other and from the 

original roots. 

We see that the roots of the perturbed polynomials are essentially indistinguishable from 

the original roots. This is clearly a drastic improvement over the situation depicted in Figure 1. 

Since no effect is discernible here, we may also consider what happens with larger perturbations 

to the coefficients. Figure 3 shows the result when the maximum size of the perturbations is 

increased to 10
-7

 of the original value (one part in ten million). 



 
Figure 3: Effects of larger perturbations to the coefficients of up to one part in ten million. This figure was generated 

using the exact same procedure as Figure 2, with the only difference being the size of the perturbations. We see that 

the roots towards the middle of the interval are beginning to spread out, but still remain close to the original roots. 

The roots at the ends of the interval are still essentially indistinguishable from the original roots at this scale. 

When the size of the perturbations is increased, we see that some of the roots in the 

middle of the interval are beginning to diverge from the original roots. But they still remain 

reasonably close, and the results are indisputably an immense improvement over the results 

obtained with the standard basis as shown in Figure 1, especially considering that the 

perturbations are now a thousand times larger. Therefore, we may conclude that using 

Chebyshev polynomials as a basis results in much better conditioning for finding polynomial 

roots. 

5. Possible Directions for Future Research 
In this research project, we demonstrated that using Chebyshev polynomials as a basis for 

  , the space of all polynomials of degree n or less, drastically improves the conditioning of 

polynomial root-finding as compared to using the standard basis. Nevertheless, there remain 

many questions which can be further explored. These include: 

1. The significance of ill-conditioning in polynomial root-finding arises from the fact 

that in real-world applications, where polynomials are used to model data, the data 



itself will not be exact and so neither will the coefficients. The experimental results 

presented here were all obtained by perturbing the coefficients by random amounts 

(up to a certain maximum). What would happen if the data itself was perturbed 

instead? Note that in real-world situations, the data         will have uncertainties in 

both the x- and y-values. 

2. We used Chebyshev polynomials as an alternative basis because they possessed 

certain properties which were likely to reduce the condition number (and thus 

improve the conditioning of the problem). However, there is no reason why a 

different basis might not work just as well or even better in some situations. It might 

even be possible to create up with an adaptive scheme for root-finding where the data 

is first analyzed for certain patterns or trends, and then using those patterns a basis is 

selected to minimize the ill-conditioning for that particular set of data. This needs to 

be further investigated. 

3. Using Newton’s method requires that both the function and its derivative can be 

accurately evaluated at any point. In this case, the special properties of Chebyshev 

polynomials allowed us to do this, but it might not always be possible to find a simple 

expression for evaluating other basis polynomials and their derivatives at arbitrary 

points. Can the existing linear-algebra based methods for root-finding be generalized 

to work for polynomials expressed in terms of an arbitrary basis? 

4. In terms of real-world applications, polynomials are often used for more than just 

interpolating data. For instance, they can also be used for least-squares 

approximations, which in many situations models general trends in the data much 

better than a straight interpolation (where the interpolant polynomial passes through 

all the data points exactly) does. In these cases, how sensitive are the roots of the 

polynomial to changes in the data? 

We conclude that while we have demonstrated a method for improving the conditioning 

of root-finding in one particular scenario, there are still many questions which need to be 

answered in order to use this method for real-world applications. The four points listed above 

represent some, but certainly not all, of the directions in which further investigation might be 

taken. In general, many of the problems associated with using mathematical theories to model 

real-world situations remain wide open. 
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