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Abstract

In this work, the possibilities of modeling bus bunching using Petri nets and max-
plus algebra are investigated. The basic properties of max-plus algebra and Petri
nets are introduced, and previous work modeling transportation networks with these
tools is summarized. One previous model that incorporates a non-analytic feature
is simplified to remove this feature while retaining the model’s function, and it is
proved that passenger interaction with the bus network cannot be modeled with
autonomous timed event graphs with stop subnets.
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1 Introduction

Analytical studies of the bunching problem are few
because the problem is difficult.

Carlos F. Daganzo, ”A headway-based approach to
eliminate bus bunching: systematic analysis and

comparison”

I’m getting nowhere with my prototype. This has not in
the least hindered the outpouring of my imagination. I
regret only that my faith in the developmental power of
misery has been cast so decisively in doubt.

Paul Scheerbart, The Perpetual Motion Machine

Bus bunching is a phenomenon that should be familiar to anyone who has ever
spent time on public transportation. As one bus fills up with passengers, it has to
stop more often, allowing the bus behind it, because this bus has fewer passengers
on board and fewer to pick up at each stop, to catch up. The result is a cascade
of delay up and down the route. In the real world, there are many causes of bus
bunching—traffic, breakdowns, all kinds of force majeure—but this paper focuses
on delay created by passengers: the bunching caused by something internal and
inherent in the running of the bus line.

The goal of this work is to investigate some possibilities of modeling passenger-
caused delay in buses using the tools of timed Petri nets and max-plus algebra.
Timed Petri nets are a modeling framework, particularly useful in situations where
the order and timing of events is important. Max-plus algebra is a structure formed
by taking the real numbers with the operations max (that is, the maximum function)
and addition, and is useful for analyzing a certain kind of timed Petri net.

An example

Suppose we have a simple bus line with two stops, S1 and S2, as in Figure 1.1. It
takes 6 minutes for a bus to drive from S1 to S2, and 4 minutes to drive from S2
to S1. At S1, a bus will dwell for 1 minute, and for 0.5 minutes at S2 to wait for
people to arrive or disembark. But, while a bus isn’t at a stop, passengers accrue
there, and it takes them δ1 minutes at stop 1 and δ2 minutes at stop 2 to board the
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S1 S2

6

4

1 or δ1 .5 or δ2

Figure 1.1

bus. If there are enough passengers at a stop, it will take longer for them to board
than the scheduled dwell time, and the bus will be forced to wait at a stop for δ1 or
δ2 minutes.

Let x1 and x2 indicate the time of departures from S1 and S2 respectively, where
x1(k) is the kth departure of a bus from S1, and x2(k) the kth from S2. We can
combine these into a vector, x(k),

x(k) =

(
x1(k)
x2(k)

)
After a bus leaves S2, it travels for 4 minutes to S1, and then waits there either

1 minute or δ1 minutes, whichever is greater, before it can depart S1. At minimum,
then, it takes 4 + max{1, δ1} minutes after x2(k) for a bus to leave S1. That is,

x1(k + 1) ≥ x2(k) + 4 + max{1, δ1}.

So the timing of buses leaving S1 depends on the timing of buses leaving S2 before-
hand. For our purposes, we can assume the buses are running as quickly as possible,
which turns the above inequality into an equation:

x1(k + 1) = x2(k) + 4 + max{1, δ1}.

Similarly, for buses departing from S2, we have

x2(k + 1) = x1(k) + 6 + max{0.5, δ2}.

We can express these equations together in vector form:

x(k + 1) =

(
x1(k + 1)
x2(k + 1)

)
=

(
x2(k) + 4 + max{1, δ1}
x1(k) + 6 + max{0.5, δ2}

)
.

So, using only addition and the maximum function, and given an initial condition
x(0) that determines when a bus leaves each stop for the first time, we can determine

4



when a bus leaves a stop for the kth time. If there are buses leaving both stops for
the first time at t = 0 minutes as in Figure 1.1, in other words if

x(0) =

(
0
0

)
,

and if the passenger boarding time never exceeds the dwell time, then the future
firing times are (

0
0

)
,

(
5

6.5

)
,

(
11.5
11.5

)
,

(
16.5
18

)
, . . .

This is approximately the kind of analysis of a bus system we can do with Petri
nets and max-plus algebra. The trick will be those δ’s—how can we construct a
Petri net model that generates delays in the right way while still being analytically
tractable? The ideal result would have been a Petri net model that is sophisticated
enough to capture the passenger aspect, but simple enough that we could still ana-
lyze it in max-plus, but this does not appear to be possible within the narrow limits
that were set.

In Chapter 2, the basic formalism of max-plus algebra and Petri nets are outlined,
along with the method for translating a certain kind of Petri net into the language
of max-plus. In Chapter 3, past attempts to model transportation with max-plus
algebra and Petri nets are examined, In Chapter 4, an altered version of a model
from the previous chapter is presented, and it is proved that one type of model is
not adequate.
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2 Max-Plus Algebra and Petri Nets

2.1 Max-plus basics

Max-plus algebra is a mathematical structure, the result of replacing addition and
multiplication over the real numbers with, respectively, the maximum function and
addition. More accurately, the operations are over the set Rmax := R∪ {−∞}. The
max function is symbolized ⊕ and addition is symbolized ⊗, while negative infinity
is denoted ε and 0 is denoted e. That is, for all a, b ∈ Rmax,

1. a⊕ b = max{a, b}
2. a⊗ b = a+ b
3. a⊕ ε = ε⊕ a = a
4. a⊗ e = e⊗ a = a.

This structure is a semiring, and thus has the following algebraic properties:

1. Commutativity of ⊕ and ⊗. For all a, b ∈ Rmax,

a⊕ b = b⊕ a

and
a⊗ b = b⊗ a.

2. Associativity of ⊕ and ⊗. For all a, b, c ∈ Rmax,

a⊕ (b⊕ c) = (a⊕ b)⊕ c

and
a⊗ (b⊗ c) = (a⊗ b)⊗ c.

3. Existence of zero element. For all a ∈ Rmax,

a⊕ ε = ε⊕ a = a

4. Existence of unit element. For all a ∈ Rmax,

a⊗ e = e⊗ a = a

5. Distributivity of ⊗ over ⊕. For all a, b, c ∈ Rmax,

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)

and
(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c).
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6. Zero element is absorbing. For all a ∈ Rmax,

a⊗ ε = ε⊗ a = ε

Note that the only difference between a ring and a semiring is that a semiring
does not require additive inverses. Max-plus algebra does not have them, since
equations like max{5, x} = ε have no solution for x in Rmax.

By convention, to simplify notation, ⊗ has priority over ⊕. For instance:

a⊕ b⊗ c = a⊕ (b⊗ c).

For a1, a2, . . . , an ∈ Rmax, the sum of the ai’s is denoted
⊕n

i=1 ai. That is,

n⊕
i=1

ai = max{r1, . . . rn}

= max
1≤i≤n

{ri}.

Examples The following simple examples illustrate the features of max-plus al-
gebra:

4⊕ π = max{4, π} = 4,

3⊗ 2 = 3 + 2 = 5,

3⊕ ε = max{3, ε} = 3

3⊗ ε = 3−∞ = −∞ = ε

3⊗ 4⊕ 10⊗−5 = max{3 + 4, 10− 5} = max{7, 5} = 7

2.2 Matrices over max-plus

The set of n×m matrices with entries in Rmax is denoted Rn×m
max . Given A ∈ Rn×m

max ,
the element of A in row i and column j is denoted [A]ij or aij for 1 ≤ i ≤ n, 1 ≤
j ≤ m.

The sum of matrices A,B ∈ Rn×m
max , denoted A⊕B, is defined by

[A⊕B]ij = aij ⊕ bij
= max{aij , bij}.

The product of matrices A ∈ Rn×l
max and B ∈ Rl×m

max , denoted A⊗B, is defined by

[A⊗B]ij =

l⊕
j=1

aij ⊗ bjk

= max
1≤j≤l

{aij + bjk},
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The n×m matrix with all entries equal to ε is denoted E(n,m), or simply E , when
its size is implicit. The matrix denoted E(n,m) is defined by

[E(n,m)]ij =

{
e if i = j,

ε otherwise.

As with E , E(n,m) may be written E when its dimensions are clear from the context.
For a matrix A ∈ Rn×n

max and k ∈ Z+, the kth power of A, denoted A⊗k, is defined
by

A⊗k = A⊗A⊗ · · · ⊗A︸ ︷︷ ︸
k times

.

The matrix A⊗0 is defined to be E(n, n).

Examples The following are examples of matrix operations in Rmax:(
6 2
e ε

)
⊕
(

5 3
4 e

)
=

(
6⊕ 5 2⊕ 3
e⊕ 4 ε⊕ e

)
=

(
6 3
4 e

)
and (

6 2
e ε

)
⊗
(

5 3
4 e

)
=

(
6⊗ 5⊕ 2⊗ 4 6⊗ 3⊕ 2⊗ e
e⊗ 5⊕ ε⊗ 4 3⊗ 3⊕ ε⊗ e

)
=

(
11⊕ 6 9⊕ 2
5⊕ ε 6⊕ ε

)
=

(
11 9
5 6

)

2.3 Petri nets

Petri nets are a common tool for modeling systems where events can only occur
when certain conditions are met, and a certain class of Petri nets, called timed event
graphs, have a particularly useful analytical interpretation in max-plus algebra.

Formally, a Petri net is a bipartite digraph; that is, a directed graph whose finite
set of nodes can be partitioned into two disjoint subsets, P and Q. Elements of P,
denoted pi, i = 1, 2, . . . , |P|, are called places, and elements of Q, denoted qi, i =
1, 2, . . . , |Q|, are called transitions. The set of arcs, D, is a subset of (P×Q)∪(Q×P).
That is, arcs can go from places to transitions and from transitions to places, but
not from places to places or transitions to transitions. Given an arc (pi, qj) ∈ D,
we say that pi is an upstream place for qj , and qj is a downstream transition for pi.
Analogous terminology applies for (qi, pj) ∈ D.

Typically, when Petri nets are used to model a system, places represent condi-
tions and transitions represent events (although this will not always be adhered to,
even within this thesis). To represent the fulfillment of conditions, any number of
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(a) (b) (c) (d)

(e) (f) (g)

Figure 2.1: Various Petri nets. Figures (c), (d) and (e) are autonomous timed event graphs.
Figure (f) is a nonautonomous timed event graph.

tokens may be allocated to each place in a Petri net. When every place upstream
from a transition has a token in it, the transition is said to be enabled, and the tran-
sition can fire—when all the conditions for an event are met, the event takes place.
When a transition fires, one token is removed from each place upstream of the tran-
sition, and one token is added to each place downstream of it. The distribution of
tokens through the Petri net is called a marking. The initial marking of a Petri net,
how tokens are assigned initially, is specified by a functionM0 : P → {0, 1, 2, 3 . . .},
where M0(pi) is the initial number of tokens at place pi.

In diagrams of Petri nets, places are indicated by circles, transitions by straight
line segments, arcs by arrowed lines, and tokens by dots within place circles. See
Figure 2.1 for examples of Petri net diagrams.

To each place pi in a Petri net we may also assign a holding time, ti, which forces
a token to stay at that place for a certain amount of time, preventing a downstream
transition from firing until all the holding times of its upstream places have passed,
even if the transition is enabled. This is why “enabled” is distinct from “firing”.
Note that firing is instantaneous. Also, each token in a place has its own timer.
That is, if there are two tokens in a place, and one of them arrived in the place
before the other, it will be able to fire a transition before the other. The holding
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times associated with each place are indicated by a vector T , where

T =

 t1
...
t|P|

 .

A Petri net with a holding time associated with each place is called a timed Petri
net. For convenience, places in Petri net diagrams may be labeled with each place’s
holding time instead of their pi identification.

A Petri net is called an event graph if every transition has exactly one upstream
and one downstream place. An event graph with holding times is called a timed
event graph. Timed event graphs have a nice characterization in max-plus algebra,
which will be the topic of the next section. In fact, timed event graphs are the only
kind of Petri net that play nice with max-plus.

It is possible for a transition in a Petri net to have no upstream or no downstream
places. In the former case, the transition may fire at times given by a function u(k).
A Petri net with no such transitions, that is a Petri net where every transition has
at least one upstream and at least one downstream place, is called autonomous. A
Petri net that is not autonomous is said to be nonautonomous.

Timed event graphs are often given as a 5-tuple, (P,Q,D,M0, T ), which spec-
ifies the structure of the Petri net, but is not enough to determine the behavior of
the system—the future firing times of its transitions—entirely. For that one needs
an initial state vector. For a Petri net, the kth state vector

x(k) =

 x1(k)
...

x|Q|(k)


specifies the time of the kth firing of each transition. That is, transition qi fires for
the kth time at xi(k). Thus, the initial state vector x(0) gives the time that each
transition fires for the first time. Together, (P,Q,D,M0, T ) and x(0) determine
entirely the behavior of a timed event graph for t ≥ 0.

An example

Figure 2.2 shows a timed Petri net with the following specifications:
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p1 3

q1

p2 2

p3

p4 2

q2

p5 1

p6 2.5

p7 7

q3

q4

1.5

Figure 2.2

1. P = {p1, p2, p3, p4, p5, p6, p7}
2. Q = {q1, q2, q3, q4}
3. D = {(p1, q1), (p2, q3), (p3, q2), (p4, q3), (p5, q1), (p6, q4), (p7, q4), (q1, p2),

(q1, p3), (q2, p4), (q2, p5), (q3, p6), (q4, p1), (q4, p7)}

4. M0 =

{
1 for p1, p4, p5, p7

0 for p2, p3, p6

5. T = (3, 2, 1.5, 2, 1, 2.5, 7)>

If we also specify the following initial state vector,

6. x(0) = (ε, ε, ε, 0)>

where the transtion q4 fires at t = 0,1 the timed event graph in Figure 2.2 will
behave in the following way.

• At t = 3, transition q1 will fire, removing tokens from p1 and p5 and adding
tokens to p2 and p3. This will enable q2.

• At t = 4.5, transition q2 will be able to fire, and tokens will be removed from
p3 and added to p4 and p5. Transition q3 will then be enabled.

1The ε’s in the initial state vector mean that transitions q1, q2, and q3 have never fired.
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• After p4’s holding time passes, q3 will fire at t = 6.5.

• At t = 9, q4 will fire, returning a token to p1. The token at p7 will be
instantaneously removed and replaced.

2.4 Autonomous timed event graphs and max-plus

As mentioned above, timed event graphs can be analyzed with max-plus algebra
such that the firing times of transitions can be generated by a recurrence equation.
The details of the derivation of these equations are provided in [1].

Given a timed event graph, (P,Q,D,M0, T ), with maximum initial marking
with respect to all places M , matrices A0, A1, ... AM of size |Q|×|Q| are constructed
as follows. For transitions qj and qi, [Am]ij is taken to be the maximum of the holding
times for places between qj and qi with m tokens initially. That is, if there are n
places, p1, . . . , pn, each with m tokens initially, and holding times t1, . . . , tn between
qj and qi, then

[Am]ij =

{
max{t1, . . . , tn} if M0(pqjqi) = m

ε otherwise

Next we generate a matrix

A∗0 =

|Q|−1⊕
i=0

Ai
0

a new state vector,

x̃(k) =


x>(k)

x>(k − 1)
...

x>(k −M + 1)


>

and the (|Q|×M)× (|Q|×M) matrix

Ã =


A∗0 ⊗A1 A∗0 ⊗A2 · · · A∗0 ⊗AM−1 A∗0 ⊗AM

E E · · · E E
E E · · · E E
...

...
. . .

...
...

E E · · · E E

 .

Now we can predict the behavior of the timed event graph with this, the standard
autonomous equation:

x̃(k) = Ã⊗ x̃(k − 1).

Since Figure 2.2 is an autonomous timed event graph, we can use it as an ex-
ample. This maximum number of initial tokens for all places is one, so we have
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matrices A0 and A1:

A0 =


ε ε ε ε

1.5 ε ε ε
2 2 ε ε
ε ε 2.5 ε

 ,

A1 =


ε 1 ε 3
ε ε ε ε
ε ε ε ε
ε ε ε 7

 ,

and

A∗0 =


e ε ε ε

1.5 e ε ε
3.5 2 e ε
6 4.5 2.5 e

 .

Since M = 1, |Q|×M = |Q|, so Ã is simply

Ã =


ε 1 ε 3
ε 2.5 ε 4.5
ε 4.5 ε 6.5
ε 6.5 ε 9

 .

Further, k −M + 1 = k, which means

x̃(k) = (x>(k))> = x(k).

We can now use the standard autonomous equation to determine all future firing
times for transitions in Figure 2.2. For instance,

x(1) = Ã⊗ x(0) =


ε 1 ε 3
ε 2.5 ε 4.5
ε 4.5 ε 6.5
ε 6.5 ε 9




ε
ε
ε
0



=


3

4.5
6.5
9


Note that this agrees with the firing times described in the walkthrough in Section
2.3.
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3 Max-Plus and Transportation

3.1 Previous max-plus/Petri net models

The exemplar of modeling transportation systems with Petri nets and max-plus
algebra is trains. One well-worked-out example can be found in [1], where such a
model is applied to the Dutch railway system. In this model, transitions represent
stations, a transition firing represents a train leaving from a stations, a token in a
place represents a train traveling or dwelling at a station, and the corresponding
holding time for that place is sum of the travel time and dwell time. Figure 3.2b
shows a sample with three connecting train lines.

The focus in this model is on modeling the timing of trains departing from stops
and the synchronization of connections between train lines. There is no considera-
tion of passengers, and no need: trains serving connecting stations are synchronized,
whereas buses that serve connecting stops are not. Also, the dwell time for passen-
gers to catch connecting trains is incorporated into the scheduling, so there is little
opportunity for passengers to cause delay. Buses typically do not have this dwell
time at a given stop. Though this train model is not totally appropriate for modeling
bus lines, it usually forms a basis for them.

For instance, [2] models a single bus line using a simple Petri net circuit similar
to the one in Figure 3.1b. This model is a timed event graph, and is therefore subject
to the algebraic analytical tools of max-plus; this approach is useful for evaluating
the feasibility of timetables and scheduling for a given network, but ignores totally
the passenger element and assumes the system runs smoothly at all times.

(a)
(b)

Figure 3.1: A basic line (a) and its Petri net interpretation (b). Tokens represent buses
or trains traveling counterclockwise around the line, and transitions represent stops, firing
when a bus or train departs or arrives. Most attempts to model bus networks with Petri nets
and max-plus algebra build off this simple model, either by linking together multiple lines or
by expanding stop transitions into subnets.
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Line 1

Line 3

Line 2

(a) (b)

(c)

Figure 3.2: A generalized diagram of a multiline transportation network, (a), where vehicles
travel clockwise around each line, and two different Petri net interpretations.

Another model, one that nods at the presence of passengers, can be found in
[3]. This article studies n bus lines with connecting stops between adjacent lines
where passengers can transfer from one line to the next. Figure 3.2c shows a three
line version. The lines are not synchronized, so buses can move freely around them
independent of bus movements in other lines. Note that the Petri net is not a
timed event graph. Some of the places in the net have more than one downstream
transition. This creates structural conflicts that the authors solve by incorporating
a routing policy that determines which transition fires at what times when both
transitions are enabled. The authors do use max-plus algebra to analyze this system,
but the techniques of section 2.4 are not available.

None of the models heretofore mentioned allow for the possibility of passenger
activity causing delay in the bus route.

15



3.2 Modeling passenger interaction

Examining the literature on modeling passenger interaction with bus routes, [4]
concludes:

Generally the existing models look something like this: the departure
time of a bus from a stop is given by

(departure time from previous stop) + (travel time to stop)
+ (time spent waiting at stop)

It is the (time waiting at stop) term that depends heavily on passenger
activity.

Concordantly, the authors develop a Petri net model where each stop in a bus
line is expanded into a Petri subnet designed to capture the following behaviors:

1. After a bus leaves a stop, passengers begin accumulating at a stop.

2. When a bus arrives, passengers stop accumulating and begin boarding, which
takes more or less time depending on how many passengers are there.

Figure 3.3 shows a diagram of their model with two stops. The net breaks down
as follows.

• Transitions a1 and a2 are called arrival transitions, and represent a bus arriving
at a respective stop.

• Transitions d1 and d2 are departure transitions, and represent a bus departing
from a stop.

• The arcs going from p1 and p2 with circles at the end instead of arrows are
called inhibitor arcs. Instead of allowing a transition to fire when a token is
in place, they prevent it from firing.

• The places marked ti,j , where i is the stop and j identifies the place, along
with the transitions between the ti,j places, make up the passenger arrival net.
As the Petri net runs, the token at t1,1 in Figure will move rightward, which
represents the arrival of passengers at the stop. The holding times of these
places correspond to the rate at which passengers arrive.

• The places marked bi,j , with the transitions between them, make up the pas-
senger boarding net. After a bus arrives, the token from the passenger arrival
net will move downward to the boarding net, where its leftward progress rep-
resents passengers boarding the bus. As above, the holding times reflect how
quickly passengers board the bus.
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a1

d1

a2

d2

T2 T1

t1

t2

p1 0

t1,1 t1,2 t1,3 t1,4

b1,1 b1,2 b1,3 b1,4

p2 0

t2,1 t2,2 t2,3 t2,4

b2,1 b2,2 b2,3 b2,4

Figure 3.3: A Petri net model that incorporates passenger-caused delay. For the sake of
clarity, some places have been relabeled from the original diagram in [4].
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• The places t1 and t2 are buffer places, which serve to ensure that buses are
not allowed to leave the stop early.

(a) (b)

(c) (d)

Figure 3.4: The evolution of the stop subnet in Figure 3.3 over time.

• The places marked T1 and T2, when occupied by tokens, represent respectively
a bus traveling from stop one to stop two with travel time T1, and a bus
traveling from stop two to stop one, with travel time T2.

This model runs as follows.

1. After d1 fires and a bus leaves a stop, the stop subnet will be as it is in
Figure 3.3.

2. As time passes and no bus arrives at a1, the token which began at t1,1 will
begin to move rightward, Figure 3.4a.

3. When a bus arrives, a token placed in p1 prevents the token representing
passengers arriving from continuing to the right, Figure 3.4b.

4. Wherever the passenger token is, it will be sent down to the boarding subnet,
and the token at p1 will be removed, Figure 3.4c.

5. The passenger token will move leftward, until it arrives at b1,1, Figure 3.4d.
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6. When this happens, d1 will be able to fire, removing the token from b1,1
and adding a token to t1,1, thus restoring the stop net to its configuration in
Figure 3.3. A token is also added to T1, as the bus it represents begins to
travel to the next stop.

Note that the token at ti,1 does not represent a passenger. Rather, its position
in the subnet indicates how many passengers are currently at the stop. The further
to the right it moves, the more passengers there are. This needn’t be interpreted in
a limited way. I.e., when a transition fires and the token moves right, this doesn’t
necessarily equate to the arrival of a single passenger. It could be a fraction of
a passenger, or multiple passengers, depending on the specifics of the stop that is
being modeled.

Also, though Figure 3.3 only goes up to ti,4 and bi,4, the arrival and board-
ing subnets can be extended arbitrarily to allow for more passengers, or to more
finely track arrivals. Holding times can also be adjusted individually to account, for
instance, for changes in the arrival rate of passengers.

Interestingly, reducing the number of arrival and boarding places in each stop
to 1, as in Figure 3.5, eliminates the inhibitor arcs and creates a timed event graph;
but it also eliminates the delay created by passengers. As we’ll see in section 4.2,
this is no coincidence.

Figure 3.5
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4 Attempts to model bus bunching in max-

plus

4.1 A model without inhibitor arcs

There is a constant tension between creating a model that more precisely replicates
a phenomenon, and one that is subject to easy analysis. The model from [4] takes us
two steps from the simplicity of timed event graphs—the first in using inhibitor arcs
and the second in incorporating places with more than one upstream or downstream
transition—and therefore from the tools of max-plus algebra. Though a later result
will show it is not possible to model passenger delay within a stop when limited to
autonomous timed event graphs, it is possible to restructure the model used in [4]
so that it does not include inhibitor arcs, with only a minimal change in function.
A diagram of this new model with two stops is shown in Figure 4.1.

The model is mostly the same as in Figure 3.3, and the same labeling is used;
however, a new place has been added to each stop.

• The places r1 and r2 with holding times of 0 replace the inhibitor arcs in
Figure 3.3. The procedure for reconstructing stops without inhibitor arcs is
as follows. Add a place ri, and an arc from ri to ai. Replace each inhibitor
arc from pi to a transition with both an arc from the transition to ri and an
arc from ri to the transition. In Figure 4.1, these arcs are represented with
double arrows. Also, for every arc from pi to a transition, add an arc from
that transition to ri.

This altered model runs as follows:

1. After d1 fires, that is after a bus leaves stop 1, there are tokens at t1,1 and at
r1.

2. After t1,1 units of time pass, the token there moves right. The token at r1
disappears and is immediately replaced when this happens, allowing the pas-
senger token to continue moving right.

3. When a1 fires, the token is removed from r1 and one is placed in p1.
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p1 0

0

a1

t1

d1

T1T2

r1

p2 0

t2

d2

0r2

t1,1 t1,2 t1,3 t1,4

b1,1 b1,2 b1,3 b1,4

t2,1 t2,2 t2,3 t2,4

b2,1 b2,2 b2,3 b2,4

Figure 4.1: A version of the model in Figure 3.3 that has been altered to eliminate inhibitor
arcs.
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4. With r1 empty, the token in the passenger arrival subnet can no longer move
rightward, but can move down to the passenger loading subnet. When this
happens the token at p1 is removed and a token is added to r1. The passenger
loading subnet runs precisely as in the model with inhibitor arcs.

5. After the passenger token reaches b1,1, the transition d1 is allowed to fire, which
removes the tokens at t1 and b1,1, and replaces the token at t1,1, resetting the
stop so that passengers can begin accumulating and the next bus can arrive.

A notable difference in the performance of this model is that a bus token cannot
enter the subnet until the token at r1 is replaced, since its absence prevents a1 from
firing.

4.2 Stop subnets in autonomous timed event graphs

Though it would be desirable to model passenger delay in an autonomous timed
event graph (so that the tools of max-plus are available) and though it makes sense
that this behavior should be modeled by creating stop subnets that generate delay
based on when tokens representing buses pass through them (since this kind of
passenger interaction takes place at stops)—in other words, it would be desirable to
model bunching by stringing together stops of the kind generalized in Figure 4.2—
the demonstration below will show that this is not possible. The above strictures
are too limiting.

Stop
Subnet

Arrival Transition

Departure Transition

Figure 4.2

It will be useful here to have some notion of a path through a Petri net. A
path, intuitively, is a sequence of places, transitions, and arcs through a Petri net,
beginning and ending at a place or transition. For instance, the sequence

q1 → p3 → q2 → p5 → q1 → p2 → q3

is a path through the Petri net in Figure 2.2. Note that this path loops back around
and goes through q1 twice.

Let’s consider what must be true of the inside of a subnet. Since tokens outside
the stop subnet represent buses, they must be able to ”pass through” the stop
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(a) (b) (c)

Figure 4.3

subnet. In the actual functioning of the subnet, the bus token may be split up
repeatedly, but only one token can come in and only one can come out. Thus, there
must be at least one path from the arrival transition to the departure transition.
Further, the bus token must be allowed through. That is, the internals of the stop
subnet must preclude situations where buses can never leave.

Within a stop subnet, there can be four kinds of paths:

1. Paths that begin in a circuit in the subnet and end at the departure transition,
Figure 4.3a.

2. Paths that begin at the arrival transition and end with a circuit, Figure 4.3b.
3. Paths that begin at the arrival transition and end at the departure transition

with no repeating places or transitions, like every path featured in Figure 4.3c.
4. Paths that begin at the arrival transition and end at the departure transition,

with repeating places and transitions, Figure 4.4.

We can ignore types 1 and 2. Type 1 requires tokens to allow the stop to work, and
since the initial marking can only be finite, the stop must eventually stop allowing
buses to pass through it. Type 2 we can ignore because it does not affect the timing
bus tokens passing through the stop subnet whatsoever.

This leaves types 3 and 4. If a stop subnet contains only paths of type 3, then the
amount of time it takes for a bus token to pass from arrival to departure transitions
is constant, being simply the maximum of the sum of the holding times for all the
paths. The time it takes does not change depending on when a bus last passed
through the stop, so no delay is possible.

If, however, a stop contains type 4 paths, then the timing does change, but in the
wrong way. Rather than more time between buses leading to more time spent at the
stop, more time means less time spent at the stop. Consider Figure 4.4. Figure 4.4a
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Arrival
Transition

Departure
Transition

q1

(a) (b) (c) (d) (e)

Figure 4.4

shows such a stop just after a bus has departed. Note both that there is a type 3
path going straight from the arrival transition to the departure transition, and that
a path from downstream to upstream on it creates the type 4 path. Note also that
there is a token in the subnet. This is required; if it were absent, the subnet would
not work, as buses would not be able to pass through. If enough time passes, when
another bus comes, this upstream path will have “reset”, as in Figure 4.4b and the
new bus token will be able to pass through transition q1 with no delay, leading to
Figure 4.4c. But then, if another bus arrives at the stop soon after, the new bus will
be held up at q1, forced to wait for the upstream path to “reset”, as in Figures 4.4d
and 4.4e. That is, passing through the stop will take more time for a bus that
arrives sooner after another bus. This is exactly the opposite of what we want!

Obviously the Petri net in Figure 4.4 is very simple, but the same result occurs
with more complex stop subnets containing type 4 paths. The path that goes back
upstream holds up bus tokens that arrive before the upstream path resets. Rather
than more time between bus tokens arriving meaning more delay at a stop, it means
less. There is no way to construct a stop subnet that is an autonomous timed event
graph where more time between bus tokens means more time spent at the stop.
Thus when trying to model passenger effects with Petri nets, we can decisively rule
out such models. However, we cannot rule out models that are nonautonomous,
models where stops are not isolated, or models that do not feature stop subnets at
all.
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5 Conclusion

In this thesis, Petri nets and max-plus algebra were presented as a way of trying
to model the phenomenon of bus bunching. One kind of model was ruled out,
but there remains the possibility of modeling bunching with Petri nets that are
nonautonomous or are not timed event graphs, even if they would be less useful.
Another model was simplified to remove untractable elements, in the hope that it
may be more easily analyzed, though no analysis was performed on it in this paper.

Envoi

“On 12 July of the year 1910 after introducing a new factor, I succeeded in flaw-
lessly solving the problem. Alas, I can say nothing about it without invalidating
its registration at the patent offices of various governments. But I did arrive at a
satisfying conclusion.”
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