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ABSTRACT 

An abstract of the thesis of Cluistopher S. De Voir for the Master of Science in 

Electrical and Computer Engineering presented October 04, 2005. 

Title: Wavelet based feature extraction and dimension reduction for the classification 

ofhuman cardiac electrogram depolarization waveforms. 

An essential task for a pacemaker or implantable defibrillator is the accurate 

identification of rhythm categories so that the correct electrotherapy can be 

administered. Because some rhythms cause a rapid dangerous drop in cardiac output, 

it is necessary to categorize depolarization waveforms on a beat-to-beat basis to 

accomplish rhythm classification as rapidly as possible. In this thesis, a depolarization 

waveform classifier based on the Lifting Line Wavelet Transform is described. It 

overcomes problems in existing rate-based event classifiers; namely, (1) they are 

insensitive to the conduction path of the heart rhythm and (2) they are not robust to 

pseudo-events. The performance of the Lifting Line Wavelet Transform based 

classifier is illustrated with representative examples. 

Although rate based methods of event categorization have served well in 

implanted devices, these methods suffer in sensitivity and specificity when atrial, and 
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ventricular rates are similar. Human experts differentiate rhythms by morphological 

features of strip chart electrocardiograms. The wavelet transform is a simple 

approximation of this human expert analysis function because it correlates distinct 

morphological features at multiple scales. The accuracy of implanted rhythm 

determination can then be improved by using human-appreciable time domain features 

enhanced by time scale decomposition of depolarization waveforms. 

The purpose of the present work was to determine the feasibility of 

implementing such a system on a limited-resolution platform. 78 patient recordings 

were split into equal segments of reference, confirmation, and evaluation sets. Each 

recording had a sampling rate of 512Hz, and a significant change in rhythm in the 

recording. The wavelet feature generator implemented in Matlab performs anti-alias 

pre-filtering, quantization, and threshold-based event detection, to produce indications 

of events to submit to wavelet transformation. The receiver operating characteristic 

curve was used to rank the discriminating power of the feature accomplishing 

dimension reduction. Accuracy was used to confirm the feature choice. Evaluation 

accuracy was greater than or equal to 95% over the IEGM recordings. 
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CHAPTER 1 


INTRODUCTION AND THESIS ORGANIZATION 


A primary task of an implanted cardiotherapy device is the classification of 

waveforms indicating the electrical activity of the human heart. The basis of 

intra-cardiac electrogram classifiers in presently implanted devices is comparing the 

signal amplitude to a threshold and comparing the frequency of threshold crossings to 

a rate limit. This method has two main deficiencies: (1) it is insensitive to the shape 

(morphological) information indicating the conductive path of a depolarization event 

(Ellenbogen & Wood, 2005, p. 8), and (2) it is not robust to pseudo-events (Barold, 

Stroobandt, & Sinnaeve, 2004, p. 180). To overcome these limitations, event 

waveform classification based on the features generated by the Line Wavelet 

Transform is proposed. 

Question Summary 

The scope of this thesis is the development of a wavelet-based algorithm to 

demonstrate the feasibility of automatic classification of cardiac depolarization events. 

It answers the questions: (1) can a limited sample of each category of human cardiac 

depolarization events be used to successfully classify events in a limited resolution 

system? (2) is it possible to use a small subset of the total features extracted by the 

wavelet transform to achieve accurate discriminations between event categories? 

The intra-cardiac electrogram (IEGM) is the waveform indicating the heart 

electrical activity and provides the implantable therapeutic device with information 

from which to infer the occurrence of normal and abnormal cardiac events (Hurst & 
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O'Rourke, 2005, p. 144). Perhaps the reader has tied one end of a length of rope to a 

doorknob and snapped the other end so that a wave travels down the rope. When a 

depolarization event occurs, a wave of depolarization passes through the 

3-dimensional structure of the cardiac tissue similarly. The implanted device can 

retrieve only a one-dimensional view of this 3-D event as though looking at the pulse 

going by on the rope described above through a narrow slit. To extend this metaphor 

slightly, the different sensing configurations of the implanted device will be controlled 

by the aperture and polarization of this slit. 

Justification of Work 

Presently, the state of the art for timing-only based event classifications has a 

highly variable diagnostic accuracy rate of 20% to 90% depending on device brand 

and representativeness of the test cases (Malik, 2000, p. 1166). Another study states 

inappropriate therapy occurs 11% to 41% of the time in rate-based discriminators of 

supraventricular tachycardia from ventricular tachycardia (Boriani, Biffi, Frabetti, 

Lattuca, & Branzi, 2001, p. 994). In the existing IEGM event classification systems, 

definitive morphological classification is absent. Current rhythm classification is so 

sensitive to ventricular tachycardia, that unnecessary defibrillation of supraventricular 

tachycardia occurs from 72% to 89% of the time (Hintringer, Schwarzacher, Eibl, & 

Pachinger,2001). This unnecessary defibrillation is acceptable to physicians, though 

not without a small risk of triggering a genuine lethal arrhythmia. Because of memory 

limitations and processing limitations due to battery capacity of the device, signal 

recordings of true and false negatives are generally not available for off-line analysis. 
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Therefore, the true incidence of inappropriate classification treatment of timing-only­

based methods is unknown. Figure 1 illustrates the fundamental weakness of 

rate-based rhythm classifiers.In the two cases, there is one atrial event for every 

ventricular event. 

10 -- Supraventricular Tachycardia 

~ 5- ~~;:::~:;:=~::~~~~~~~~~:=~~::=1lJr''0' :a 01 
=a 
~ -5 

-10 

o O.s 	 I.S 2 
TIme(s) 

10 

~ S 
'is' 
~ 0 
Q. 

~ -s 

-10 

-­ Ventricular Tachycardia 

,
I 

o o.s 	 I.S 2 
TIme(s) 

Figure 1. 	 Two rhythms with similar (non-unique) rates cannot be distinguished when 

only rate-based information is present. 

One rhythm is tolerable (supraventricular tachycardia), while the other is 

potentially lethal (ventricular tachycardia). This can be verified by the black event 

http:classifiers.In
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markers (upward for atrial and downward for ventricular). These two rhythms are 

occurring at 1 73 beats per minute for the supraventricular tachycardia and 200 beats 

per minute for the ventricular tachycardia. However, these rates are non-unique for 

the two rhythms. Only the discemable difference between the two atrial morphologies 

can reveal the difference between the two rhythms, one of which is potentially lethal. 

These devices cannot discriminate between a tolerable or intolerable rhythm of 

the same rate originating from two different foci in the heart (Bennett, 2002, p. 82). 

Modem pacemakers (lPG) do not discriminate between normal (ante grade) and 

abnormal (retrograde) conduction if the rates are similar (Kuck, Cappato, & Siebels, 

1996, p. 31). Due to the absence of morphological discrimination, pacemakers and 

implantable cardio defibrillators (lCD) must reduce or eliminate sensing in two main 

ways. First these devices attenuate through filtering real-world electromagnetic 

interference, such as, 60Hz, 50Hz, 50 Hz power line noise ("EN 45502-2-1," 2004), or 
3 

skeletal muscle artifact. Second, implants also blank sensing during intra-cardiac 

interference, such as, artifacts ofpacing, afterpotential on the contact elements, 

far-field sensing in another chamber, or repolarization of the tissue (T-waves). 

A drawback is that signals of interest are also undersensed, causing missed 

detections and the potential for false arrhythmia classifications. Thus, the system must 

be adjusted, balancing the two main tradeoffs of detections of actual events versus 

suppression other spurious signal data. For example, the amplitude threshold must be 

set to a value that accounts for some variation in peak value. Because pacing in these 

devices produces voltages up to 1000 times the intrinsic signal, the input amplifiers 
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must be blanked in both chambers after pacing until the artifact and afterpotential 

dissipate from the contact elements. Since the electrical field from one chamber can 

be sensed remotely from the other chamber, a far-field protection time window 

discounts events seen during this time to prevent false detection of atrial 

depolarizations. After the ventricle depolarizes (R-wave), it must repolarize (T -wave) 

for the next heartbeat. This repolarization is sometimes high enough in amplitude to 

trip the comparator even after low pass filtering. U sing the domain knowledge, these 

devices also have device refractory periods that parallel the tissue refractory period. 

In this case, events occurring too soon after the last event must be false because the 

time expected for the tissue to repolarize has not elapsed. 

Because the A V node allows two-way conduction, atrial abnormal events can 

be generated from ventricular paces. If the atrial abnormal events were then tracked to 

the ventricle again, Pacemaker Mediated Tachycardia (PMT) results. A 

Post-Ventricular Atrial Refractory Period (PV ARP) prevents the pacemaker from 

tracking any events that occur during PV ARP with a following ventricular pace. 

Improper adjustment of the above parameters results in oversensing or undersensing, 

resulting in too many or too few rate-based arrhythmia classifications, respectively. 

Although present technology is a workable system, the few time critical windows 

mentioned above are among hundreds that require adjustment, workarounds for side 

effects, and are fixed in the device by the physician for six months. Morphological 

classification does not require these refractory windows and thus could reduce system 

complexity. 
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It is the purpose of this thesis to examine the feasibility of the implant 

discriminating two classes of events with 95% accuracy on an IEGM test suite. 

Morphology-based classification can accurately detect and discriminate many types of 

events. The multiresolution properties of the wavelet transform resembles the way 

perception is achieved by humans, in that the visual cortex decomposes stimuli into 

spatial frequency bands that are approximately octaves (Theodoridis and 

Koutroumbas, 2003, p. 255). 

To discern various classes of events, significant features must be extracted 

from the IEGM signal. The simplest feature set would be a complete copy of each 

type of event (number of features equals number of samples) as in Correlation 

Waveform Analysis. The discrete time linear wavelet (Jensen & La Cour-Harbo, 

2001, p. 23) will be used in this work to determine if a subset of the resulting 

coefficients of the transform can achieve successful discrimination. Although pattern 

or morphological recognition methods are not new to IEGM classification, a 

comparison with methods other than wavelet-based classification is not within the 

scope of this work. Instead, this work will discuss considerations of, modifications to, 

and demonstrate results of the wavelet transform for feature generation for IEGM 

classification not found elsewhere. 

Rate based methods are the state of the art for rhythm classification due to the 

constraint of limited processing ability in battery powered implantable devices. This 

constraint is continually relaxed so that, for example, the computational capabilities of 

implants now include 8-bit microprocessors. In addition, subthreshold IC design 



7 
allows low current operation and reduces the drain on the battery capacity of the 

implant. Improvements in battery technology provide increased energy density per 

unit volume, also extending device lifetime before replacement. This would seem to 

make an advanced feature such as morphological classification feasible in the near 

future of 3 to 5 years. 

Main Results 

This thesis explores the application of the line wavelet transform to IEGM 

classification using methods from different fields: the biosignal source from the 

medical implant industry, the wavelet transform from digital signal processing, and 

receiver operating characteristic curve from statistics. 

There are many rhythm classes, but each can be reduced to successive events 

originating from a normal or abnormal focus of cardiac tissue. In most rhythms, 

except fibrillation, the shape information identifying the focus usually changes slowly 

if at all. Therefore, when the IEGM enters a new rate category, it is sufficient to 

identify the event shape to determine its origin and therefore the rhythm class. 

Table 1 shows the important rhythms to identify and their component events 

(rate and shape). Complex timing algorithms are capable of distinguishing between 

these rhythm classes much of the time. However, when atrial and ventricular rates are 

not significantly different, the last three rhythms are poorly differentiated. Notice in 

the table that the rate categories are elevated for all three. Morphological (shape) 

analysis, on the other hand, definitively categorizes these rhythms by identifying the 

focus of component events. Presently, shape analysis is still done off-line by 
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inspection and is not real time. Presently, in the implant, rhythm classification occurs 

when some rate-based x out of y criterion is satisfied, for example, 3 fast event 

intervals out the last 8. This work demonstrates the feasibility ofproviding such an 

implanted rhythm classification system with categorizations of events based on 

morphological features indicating origin and pathway resulting in improved accuracy. 

Table 1. 	 Key rhythms to classify in an implantable pacemaker or defibrillator can be 

characterized by rate, but are more accurately discriminated by shape. 

Rhythm Class Rhythm Rate 
Categories 

Event Shape 
Categories 

Normal sinus rhythm Normal atrial 
Normal ventricular 

Normal atrial 
Normal ventricular 

Sinus tachycardia 
Elevated atrial 
Elevated ventricular 

Normal atrial 
Normal ventricular 

Supra-ventricular tachycardia 
Elevated atrial 
Elevated ventricular 

Abnormal atrial 
Normal ventricular 

Ventricular tachycardia Elevated atrial 
Elevated ventricular 

Abnormal atrial 
Abnormal ventricular 

The results of this thesis were obtained by off-line analysis of pre-recorded 

data in a computer-based model of an implantable device. The work performed 

demonstrates that a quantized version of the wavelet transform (WT) can produce 

features capable of accurately classifying salient events in the human intra-cardiac 

electrogram. A method of classifier-independent feature selection is used in this work 

to demonstrate efficacy. The work shows that the wavelet transform coefficients 
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(WTC) can be reduced in number (to a single coefficient) and still achieve high 

accuracy for organized rhythms. 

Thesis Organization 

This thesis is organized as follows. In Chapter 2, the coupling in the heart 

between the electrical excitation and the resulting mechanical event will be explained. 

A history and basic concepts of IEGMs are given. There is a concise description of 

how IEGM signals are pre-processed in IPGs and ICDs, and how the results are used 

by present technology. Various terms used in heart rhythm intervention technology 

are presented and defined. The difference between time-based and morphology based 

classification is discussed. This section explains the difference between an normal and 

abnormal event, and the possible consequences of misclassification. 

In Chapter 3, the wavelet transform is described. Orthogonality is explained. 

How the buffered time samples are processed to become WTC is explained. The 

limitations of finite resolution, sampling rate, and noise are discussed. In addition, the 

use of WTC as features for IEGM classification is introduced. This chapter proposes a 

method of feature evaluation and pruning, that is, the use of the receiver operating 

characteristic (ROC) curve to evaluate the effectiveness of WTC as features. 

In Chapter 4, the lifting version of the line wavelet transform is described. 

Event detection and time buffering are discussed as methods necessary to process the 

IEGM before wavelet feature extraction can occur. The methods to adapt the wavelet 

transform itself to decompose discrete valued IEGMs into features on the target 

application are presented. 
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In Chapter 5, the results ofusing wavelet transform coefficients for event 

discrimination are presented. Chapter 6 concludes with a discussion of the 

contributions. This chapter also proposes future development that can be done to 

extend the applicability of this work. 
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CHAPTER 2 


BACKGROUND 


To understand the role of morphological identification of the IEGM, some 

background of cardiac anatomy, electrophysiology, and pathology will be presented. 

The purpose of this chapter is to explain briefly the basic function of the heart and its 

electrical control mechanism. Variances from these descriptions occur between 

individuals or within individuals over time, due to normal development or pathologies. 

Anatomical Description of the Heart 

The heart is located in the chest cavity horizontally left between the sternum 

and the axilla, vertically behind the left pectoral, and anterior. The major axis of the 

ellipsoid-shaped organ runs from the upper right to lower left thorax. Large vessels 

connect to upper right end of the heart. Figure 2 shows a simplified cross-section of 

the heart. The Vena Cava collects de-oxygenated blood (blue) returning from the 

body. The pulmonary artery carries oxygen depleted blood to the lungs. The 

pulmonary veins collect re-oxygenated (red) blood from the lungs. The aorta supplies 

re-oxygenated blood to the body. 

Blood collection occurs in chambers of contractile tissue or myocardium 

(gray). The two major cavities are right and left. These larger cavities are further 

divided into upper (atria) and lower (ventricle) chambers separated by one-way valves. 

The valves permit flow only in the direction of the arrows. Additional valves at the 

outlet of the ventricles also permit one-way flow to the lungs and body. 
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Figure 2. Cardiac blood flows in the direction of the arrows (Shaldach, 1992, p. 2). 

The heart is a pump connected to the vascular system ensuring continuous 

supply of oxygen and nutrients and the removal of byproducts of metabolism. Oxygen 

depleted blood from the body collects in the right atrium, and passes through the 

valve. When blood fills a chamber, it pre-loads (stretches) the tissue building elastic 

energy for the contraction. Contraction raises the pressure inside the chamber, causing 

the inflow valve to close. The outflow valve opens when the pressure gradient across 

the valve is greater than zero. The chamber empties until the pressure equalizes on 
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both sides of the outflow valve, whereupon it closes. Thus, the right ventricle 

contracts and pushes the blood out through the lungs. Re-oxygenated blood is 

collected in the left atrium, and passes through the valve. As the left ventricle 

contracts, it pushes the blood out to the systemic circulation. The vascular system 

narrows to arteries, arterioles, capillaries where oxygen and nutrients are exchanged 

for carbon dioxide and metabolic by products (Thubrikar, 1990, p. 1). The vascular 

system then progressively enlarges from venules to veins returning to the vena cava. 

Electrical System of the Heart 

Under resting conditions, the entire myocardium contracts rhythmically 60-90 

beats per minute reSUlting in the pumping of blood throughout the body. The 

myocardium is composed of individual cells (myocytes) that contract when stimulated 

by an electrical signal emanating from the intrinsic pacemaker, the Sino-Atrial node. 

This signal is generated and conducted by a network of specialized myocytes that are 

capable of spontaneous contraction. In Figure 3, the Sino-Atrial node (SA node) and 

the rest of the conducting system is shown. Normally, excitation for one cardiac cycle 

begins in the SA node and is conducted by specialized cells (green) to the 

atrio-ventricular node (AV node). This electrical conduction system splits into two 

main branches, right and left. From there, the specialized cells form a fine root-like 

structure reminiscent of a horsetail (shown conceptually) called Purkinje fibers. 
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Figure 3. Natural pacemaker and conduction system (Shaldach, 1992, p. 5). 

Timing Sequence of Electrical Excitation 

All myocytes are electrically excitable; however, the cardiac conduction 

system is composed of specialized cells that excite at a higher rate than working tissue. 

The larger mass of cells in the heart will follow the fastest rate available, resulting in 

synchronized activity, and effective contractions (Chadwick & Goode, 2003, p. 11). 

Figure 4 is arranged as follows. The horizontal axis is time and the scale is a single 
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heart cycle. The top trace is the IEGM showing the depolarization event ('QRS') and 

the repolarization event ('T' for 'T -wave'). 

IQRo/\ ~ IEGM 

Transmembrane 
3 Potential (mV) 

+U-
4 

Conductance 

~ ~-+~+-.. _----	 ---------------- ..-- ..-...... ..................... ------_... 


+ICa++ ,r-

Figure 4. 	 The IEGM results from ion flow across the cell membrane and the 

resulting transmembrane potential, (Schaldach, p. 7). 

The second trace down shows the transmembrane ('action') potential and its 

phases with the vertical scale in millivolts. The bottom three traces show that cell 

membrane conductance is the passage of ions through the cell membrane as a function 
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of time during a heart cycle. Here, the vertical scales show relative net concentration 

of ion from inside the cell with respect to the outside. Prior to excitation, the inside of 

the myocyte is -90m V with respect to the outside of the cell. Potassium (K+) passively 

diffuses out of the cell (Phase 4 of Figure 4). The net charge across the cell membrane 

is reversed briefly (depolarization or Phase 0). This occurs in the working myocytes 

only when stimulated by an external stimulus, such as, a neighboring or specialized 

cell. The result is the transmembrane potential seen in the figure. The ions sodium 

(Na+) and calcium (Ca++) move into the cell maintaining a positive potential with 

respect to the outside (Phase 2), and then are pumped back outside of the cell during 

repolarization (Phase 3) restoring the resting potential. 

The cell is refractory (unresponsive) to stimulus during Phases 0-2, and 

becomes partially refractory by Phase 3. By Phase 4, the cell is fully excitable again. 

This assures that the mechanical event resulting from depolarization has time to 

complete before a new depolarization can occur. A band of refractory tissue in the 

wake of depolarization prevents the wavefront from looping back onto the repolarized 

( excitable) tissue that follows. In the normal heart, this maintains the overall 

coordination ofworking cells by preventing the emergence of re-entrant loops. 

Normal Conduction Sequence 

Figure 5 shows the surface electrocardiogram that results from the 

superposition of the action potentials generated at various points in the conduction 

system and working myocardium. The specialized cells capable of spontaneously 

generating a transmembrane potential are known as autorhythmic. The resting 
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potential of autorhythmic cells is not flat, but leaks sodium slowly into the cell, 

gradually causing the transmembrane potential to be less negative (small bump before 

Phase 0). 

Figure 5. Action potentials vary with tissue type (Netter & Yonkman, 1978, p. 49). 

This spontaneous depolarization is the cause of the automaticity of the SA 

node. When the threshold is reached, the full action potential occurs (sharp upstroke 

of Phase 0). The rate of this leakage current varies with different parts of the 
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conduction system, the SA node being the fastest, causing the SA node to be the 

dominant event generator in the heart. In contrast, the resting potential of working 

myocytes is steady, causing them to wait for an external stimulus. From the top of 

Figure 5 down, the signals shown represent the sequence of electrical events that result 

in a single normal contraction. The superposition of these waveforms results in the 

IEGM trace at the bottom of the figure. The SA node and working atrial muscle 

signals aggregate to produce the P-Wave. The A V node acts as a delay element to 

allow time for the resulting mechanical pumping of the atrium. The Bundles, Fibers, 

and working ventricular muscle signal add to produce the QRS. The T -wave is the 

repolarization of the ventricle (the atrial repolarization is obscured by the QRS). 

The Coupling of Electrical Excitation and Contraction 

Electrical excitation causes contraction of a myocyte through the action of 

calcium ions moving into the cell. When a supra-threshold stimulus reaches a 

working myocyte, sodium and calcium diffuses into the cell. The electrical stimulus 

continues along an outer conductive channel (sarcolemma). The interior of these 

muscle cells contains bundles of myofibrils (Figure 6). The muscle fibers are 

composed of sarcomeres, which are functional contracting units made up interdigitated 

myosin and actin molecules called myofiliments. The influx of positive ions carries 

the voltage potential into the cell wall through tubules. When the excitation reaches 

the sarcoplasmic reticuli, additional stores of Ca++ they contain are released onto the 

sarcomere. 
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Figure 6. Cardiac myocyte interior cross-section (Klabunde, 2004). 

Temporary protein attachments are generated between myosin (axial proteins) 

and actin (inserted in cell ends). This structure pulls toward the middle of the cell, 

resulting in a telescopic shortening of its length (Simmons, 1992, p. 211) and 

achieving the electro-mechanical coupling. The fibers relax when the cell repolarizes 

by pumping calcium ions back out of the cell. Under normal conditions, there is a 

corresponding mechanical event for each electrical depolarization (Cummins, Field, 

Hazinski, & Babbs, 2004, p. 104). 
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In this chapter, primarily normal cardiac physiology has been described. 

However, pacemakers and implantable defibrillators are applied to persons at risk of 

or having demonstrated insufficient cardiac output. Congenital defects, acquired heart 

disease, ionic imbalances, or pharmaceutical effects all may lead to aberrations in the 

regular pattern of electrical conduction ( arrhythmias), resulting in decreased 

performance of the heart as a pump. The heart itself, like all other body tissues, 

requires its own fresh 'coronary' blood supply. Inadequate pumping causes decreased 

flow of oxygenated blood to the heart muscle itself. Coronary artery blood flow that is 

insufficient or blocked results in the reduction of available oxygen due to its continued 

utilization and the accumulation of acidic bypro ducts ofmetabolism. These 

conditions will cause excitatory instability of the tissue, changing the electrical 

rhythm. The human body is an incredibly adaptive system, and if these degenerative 

changes occur gradually enough, the heart tissue will compensate, up to a point. 

Otherwise, abrupt onset of arrhythmias will result. Slow heart rate arrhythmias 

(bradycardias) or fast heart rate arrhythmias (tachycardias) can range from no 

symptoms, debilitation, pain, unconsciousness, or death (Beers & Fletcher, 2003, p. 

173). 

Sensing of the Excitation Signal by the Implant 

The implantable pacemaker or defibrillator senses excitation signals of the 

heart subject to the path of the signal through the tissue, the tissue-lead interface, and 

the input stage filtering of the implant. Timing windows also exclude interfering 

signals. The net potential difference between the two contact elements of the leads 
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results in a corresponding signal representation in the implant. Figure 7 shows how 

the wave of depolarization results in a potential difference across the contact elements. 

In subfigure A on the left, the transmembrane potential at electrode 1 becomes neutral 

with the influx ofNa++, but becomes negative relative to electrode 2. 

Electrode 
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Figure 7. IEGM deflection, (Ellenbogen, Kay, & Wilkoff, 2000, p. 69). 

In the implant, the function that generates the corresponding representation, 

such as an ADC, produces a ramping output. As the excitation wave passes through 
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the tissue adjacent to electrode 2 (subfigure B on the right), the potential difference 

between the leads dissipates. The ADC output correspondingly ramps toward zero. 

The action potential propagates from one myocyte to the next until it has 

spread through the entire working tissue of the heart. In the wake of this electrical 

wavefront sweeping through the heart, a mechanical contraction occurs. The electric 

wavefront is preceded by positive charges and followed by negative charges. 

Figure 8 shows the effect of the orientation of the axis through the electrodes 

on the resulting polarity and amplitude of the IEGM. The lead is connected to 

differential amplifier inputs and subsequently discretized in amplitude and time. The 

orientation of the axis through the electrical contact elements relative to the excitation 

wavefront scales the amplitude of the resulting signal in the implant. 
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Figure 8. 	 The orientation axis through the electrodes relative to the direction of the 

excitation wavefront affects the amplitude of the IEGM (Ellenbogen, Kay, 

& Wilkoff, 2000, p. 69). 

The electrodes are shown in the figure are bipolar with 'tip' and 'ring' electrodes 

determining the scope of observation (box with negative and positive charges). The 

arrow along side the box indicates the direction of propagation of the excitation 

wavefront. In sub-figure A, positive charges approach the tip electrode (connected to 

the non-inverting amplifier input) resulting in a positive upstroke in the ADC output: 

After the wavefront of net positive charge movement passes the tip and approaches the 
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ring electrode (inverting amplifier input), the ADC output ramps negative. Sub-figure 

B shows that orientation of the electrode axis perpendicular to the excitation 

wavefront yields an ADC output of zero. Charge movement at 45° will yield Jz of 

the corresponding magnitude. 

The mean vector indicates the average direction of the electrical wavefront and 

its magnitude as it travels through the myocardium (Figure 9). A vector whose length 

is a measure ofvoltage at a point in time represents the depolarization voltage. At any 

instant, a mean vector may be derived from the superposition of the instantaneous 

vectors of the action potentials ofmillions of individual cells. The resulting mean 

instantaneous vector can be decomposed into orthogonal components, where only the 

parallel component contributes to the signal seen by the implant. 
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Figure 9. Resultant vector from two components (Netter & Yonkman, 1978, p. 52). 

Most of the muscle mass is in the ventricles, and therefore the primary 

electrical activity occurs during the contraction of the ventricles, which is associated 

with the ventricular depolarization event (corresponding to the QRS in the IEGM). 

Because of this, ventricular sensing electrode is typically placed at the apex of the 

right ventricle (near the head of the mean QRS vector of Figure 10). 
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Figure 10. Frontal leads (Barold, Stroobandt, & Sinnaeve, 2004, p. 8). 

The figure shows the time-averaged vector over entire time ofventricular 

contraction, viewed from surface frontal leads at various rotations around the frontal 

plane. The black arrows represent reference lines passing the axes of electrical contact 

elements (,leads') where the positive amplifier input is the arrowhead and the negative 

amplifier input is the tail. If the axis of a lead lies on the 'lIt reference line, the 

majority of the ventricular depolarization is parallel and toward the positive lead. The 

resulting amplitude will be a primarily positive output from the quantizer. 
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Use of the Intra-Cardiac Electrogram 

This thesis addresses the signal taken from electrical contact with the inner 

surface of a chamber or vessel of the heart, and will be referred to as the intra-cardiac 

electrogram (lEGM). The electro-mechanical interdependencies and re-design costs 

of electrodes and input stages make available devices channel-limited. This work will 

use IEGM signals from present technology without requiring a new sensor. 

The IEGM is the signal as seen by an implanted pulse generator (IPG) or 

implantable cardioverter defibrillator (leD). The IEGM is the signal input of a 

contact element touching the heart versus sampled time. The frequency of 

depolarizations in IEGM yields the heart rate value, and is used by the physician to 

adjust the IPG in follow-up examinations. 

IPGs treat disturbances of the heart. The IPG or leD uses the IEGM to 

determine which rhythm disturbance is present, and delivers the corresponding 

therapy. In a sense, the physician's diagnostic and interventional abilities have been 

extended by this technology into a remote observation point 3mm in diameter inside 

the patient's heart. 

Most readers who have seen a display of human heart electrical activity on 

television or in an actual health care setting, have seen a signal derived from electrical 

contact with the surface of the skin called an electrocardiogram (EeG, or EKG in 

Europe). Figure 11 shows the intra-cardiac electrogram of an intrinsic normal rhythm. 

This particular recording was performed at a sampling rate of 512Hz with 16bits of 

amplitude quantization. This high-resolution recording serves as a starting point for 
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simulation; the resolution is further degraded by the feasible level in the 

implementation ADC, for example, 1 Obits. 
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Figure 11. Intra-cardiac electrogram of normal sinus rhythm. 

There are two principal configurations of electrical sensing through the 

positive and negative contacts of the intra-cardiac lead, 'unipolar' and 'bipolar.' In the 

unipolar method, the signal amplifier has the amplifier signal ground connected to the 

metallic casing of the implanted device, making the body mass near the case the 

'indifferent input.' The amplifier input is connected to a lead with a single electrode at 
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the distal end which is embedded in tissue on the inside surface of a heart chamber. 

The physical distance between the 'case' (indifferent electrode) and the 'tip' 

(differential electrode) is about 8" to 10" and creates an electrical axis that spans the 

breadth of the heart. This results in a signal that receives inputs from an entire heart 

chamber, with some attenuated super-position of signals from other chambers. In the 

bipolar lead, the lead has two distal electrical contact elements a 'ring' and a 'tip' that 

are typically separated by 10mm to 20mm (Figure 12). For the bipolar lead, the ring is 

the indifferent sensing electrode. Table 2 resolves the various terms used for 

connection points between the tissue and the device for the two functions of pacing 

and sensing. 

Table 2. Terms regarding lead tip polarity in pacing and sensing (Dorland, 2003). 

Function Tissue Contact Device Contact Contact Name 

Pacing Tip 
Negative Pace 
Output 

,- , 

Pacing 
Ring (bipolar) 
Case (unipolar) 

Positive Pace Output '+' 

Sensing Tip Non-inverting input 'DIFF' 

Sensing 
Ring (bipolar) 
Case (unipolar) Inverting input 'INDIFF' 

(Note: The negative lead of the pulse generator is connected to the tip for 


tissue stimulus. The non-inverting input of the sense amplifier is connected to the tip.) 
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Figure 12. Bipolar lead contact elements (Biotronik, 2001). 

In the bipolar lead, there is less visibility of the aggregate behavior of the heart, 

due to the lead contacts being so close to each other. The signal sensed by the bipolar 

lead is a volumetric derivative of the whole heart electrical activity. The voltage 

potential induced on the bipolar lead by the electric field is smaller in amplitude 

because the dipole sensitivity attenuates by 1/ r2 in the near field (where r is the 

distance between contact elements) and less of the whole heart energy is presented to 

the input amplifiers. On the other hand, the distance from the lead tip to the case 
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ground in the unipolar lead makes the resulting IEGM amplitude larger because the 

whole heart mass contributes. The event is seen by the bipolar lead briefly in time 

only when the electrical wavefront passes nearby. The event at the unipolar lead is 

longer in time due to propagation through the larger tissue mass. 

The wavelet transform can be applied to the unipolar signal, but the bipolar 

may be more suitable due to the compact support property of the wavelet (Mallat, 

1999, p. 6). Consider a recording of the same event simultaneously using bipolar and 

unipolar leads (Figure 13). Preceding the onset of the bipolar event at 0.08s, there is 

essentially a zero level on the signal satisfying the left hand boundary assumption used 

in this work: xt<o =0, that is to say, before the event begins, the signal level is 

'isoelectric.' In contrast, the start of the unipolar event is difficult to define, as nearly 

half the samples constitute a ramp. Filtering to sharpen the unipolar onset also distorts 

the features of the event. F or the right hand boundary, there is no advantage to the 

bipolar signal. In that case, the window is ended after a sufficient number of samples 

(integer) to capture the event information. In this latter case, a simplified linear 

boundary assumption was used to handle the right hand edge (§The Predict Function). 
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Figure 13. A comparison of simultaneous recordings shows the bipolar event has a 

well-defined onset, and the unipolar event does not. 

Present Pacemaker Input Stage Architecture 

Figure 14 shows a functional block diagram for present day implantable 

devices (pacemakers and defibrillators). From left to right, the IEGM is conducted 

through two electrodes to the input of a differential amplifier to provide a signal 

capable of crossing the comparator threshold and compensating for filter attenuation. 

The combined attenuation and amplification reduces the error free dynamic range of 

signal path. The signal is then band pass filtered both to prevent aliasing with discrete 
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time sampling, and to reduce interference from unwanted events. The signal is 

full-wave-rectified to allow either positive or negative slopes to trip the comparator 

threshold. The output is an indicator that a threshold was crossed, and is the only 

representation used for therapeutic decision making in the device timing circuits. The 

ADC step is not shown separately as it is usually integrated with the amplification 

and/or filtering block, for example, in a switched-capacitor filter. The output of any 

digital filtering performed after ADC should decay to zero in a finite number of 

samples when an impulse input function, such as a depolarization event, is followed 

by zero input. Thus, the digital portion of the filter should be free from overflow limit 

cycles (oscillation at the extrema of dynamic range) and is accomplished by correct 

magnitude scaling of the input. Additionally, error integration in the LP portion of the 

band pass can promote granular limit cycles (oscillations due to temporal correlation 

of quantization effects on least significant bits). 

~ Differential Bandpass 
Amplifier Filter 

Fullwave 

Rectifier 


Threshold 

Comparator 


-L 


Figure 14. The IEGM is converted to threshold crossing event by the input stage of an 

implantable device (Ellenbogen, Kay, & Wilkoff, 2000, p. 87). 

To prevent this, the band pass can be structured as a cascade of first order filter 

blocks: HP~LP~HP, where the last HP is required to cause the BP filter output to 

decay to zero (Diniz, Da Silva, & Netto, 2002, p. 334). The passive portion of the 
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band pass filtering is very simple, and attenuates out ofband interference before it 

impinges on the digital filter. Typical sampling frequency is relatively low (512Hz) 

allowing the circuits to be designed with lower bandwidths resulting in power 

consumption savings. 

Pre-processing of the IEGM 

The event, to be sensed by the device, has induced a voltage across the input 

terminals of an amplifier through the impedance of a tissue lead interface, and an 

anti-aliasing filter. At some point, the signal is converted from continuous-valued 

continuous-time to discrete valued (ADC resolution ranges from 8bits to 16bits) and 

discrete-time sampled at a rate of 512Hz. 

The purpose of fixed filtering beyond anti-aliasing of the input data is to 

remove DC and very low frequency components from motion, metabolism, autonomic 

tone, and respiration ("Heart Rate Variability:," 1996, p. 1047, table 2), so that the 

input amplifier and analog-to-digital converter (ADC) are not held in saturation at one 

of their internal nodes. Possible causes are fixed or induced polarization of the lead 

tissue interface, or induced by residual charge following a pace pulse applied on the 

same lead. Motion artifact also induces low frequency content in the signal. In 

practice, the lower stopband for the threshold-based event detector may be up to 5Hz 

to achieve sufficient attenuation in the stop band. As show in Figure 15, the primary 

energy, and therefore the morphological information, ofP-waves and R-waves 

remains inside the pass band. For threshold detection, as opposed to morphological 

discrimination, the pass band must begin above 5Hz, since the otherwise legitimate 
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events would not be detected, and the upper end attenuates at 100Hz. Although, other 

morphological feature infonnation extends up to '" 175Hz, unwanted muscle signals 

arise and attenuation in the transition band of a typically used low processing cost first 

order Butterworth anti-aliasing filter with pass band edge at 1 OOHz is only 63% at 

175Hz. 
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Figure 15. The frequency content of IEGM features for threshold based event 

detection is concentrated in specific regions of the pass band (Ellenbogen, 

Kay, & Wilkoff, 2000, p. 73). 

Additionally, if the sampling rate was reduced to 256Hz, aliasing of any 

remaining unattenuated signal content at 175Hz would produce a false image in the 
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pass band used for threshold based event detection. Therefore a sampling rate of 

512Hz is not only convenient (division by two from a 32kHz crystal), but necessary. 

Narrowband Filtering 

While the low pass component of the input filters removes high frequency 

interference, such as chest muscle activity, it also performs an integration function 

promoting limit cycles in the digital filter. As there is no basis to asswne that the 

unfiltered signal is asymptotically zero mean, the digital filter could drift to one of the 

limits and remain there making the system blind to events. In fact, these offsets arise 

naturally even in zero mean systems due to sampling of a long term process, that is, 

arbitrary samples of the population are biased. Therefore, the input filter (Figure 14) 

also attenuates signal energy at DC and up to .....,20Hz, the latter signal content being 

produced by respiration and the autonomic nervous system. The narrow band filter 

certainly encroaches on the morphological information of the P-waves and R-waves, 

where the intent is to reduce these events to comparator threshold crossings. For 

example, Figure 16 shows the 'wideband' (directly from the electrodes) and 

'narrowband' (signal fed to threshold comparator) IEGMs (left hand subplots) with 

their corresponding FFTs (right hand subplots). The example is an atrial IEGM with a 

large ventricular crosstalk signal following the atrial depolarization event called 

'far-field.' The filtering attenuates the far-field signal in an attempt to reduce the 

occurrence of false detection of this spurious event. The narrowband filter can be seen 

from the FFT to attenuate signals outside the pass band of .....,20Hz to ....., 100Hz. This 
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pass band is optimized for threshold detection, not for the preservation of 

morphological information. 
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Figure 16. The original IEGM (wideband) is filtered (narrowband) to reduce aliasing 

and false detection of events at the threshold comparator. 

Event Detection 

IPGs originally paced like metronomes, asynchronously, regardless of any 

intrinsic rhythm (Hayes, Lloyd, & Friedman, 2000, p. 8). Improvements were made to 

postpone a scheduled device stimulation (inhibition) after the heart had just 
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successfully depolarized on its own, and for a time after a stimulus (a device refractory 

period that models the tissue refractory period) to prevent stimulus during the 

vulnerable part of repolarization. This improvement had two benefits. First, when the 

heart depolarizes itself successfully in a normal pattern, this is always preferable 

physiologically. Second, during phase three of repolarization (Figure 4), the heart 

tissue is vulnerable, in that a stimulus could trigger the onset of an arrhythmia. Third, 

since the IPG is a battery-powered device, if it does not send a stimulus when it is not 

needed, its lifetime before replacement is extended. 

Events must first be detected in time before their classifications can be used to 

make electro-therapy decisions. The present technology locates the occurrence of an 

event in time, by the crossing of an absolute voltage threshold, such as, a comparator 

limit. Alternatively, once the signal has been digitized into a sign-magnitude, interval 

based systems mark the event when its magnitude component exceeds a limit. There 

is no relation of this marker to some 'fiducial point' within the event other than that the 

threshold has been crossed. Figure 17 shows this information reduction step in action. 

The narrowband IEGM from Figure 16 is passed to the threshold comparator. The 

upper trace shows the full-wave rectified waveform compared to an adaptive 

threshold. The threshold has an adaptation period and a detection hold-off period. 

The adaptation period causes the first far-field event to be ignored, but the second 

far-field is detected resulting in the appearance of a transient high rate. This high rate 

could bring the device out of standby and trigger arrhythmia therapy. The hold-off 

period prevents more than one detection before the first threshold reduction. By the 
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time the signal has been rectified, it is evident there is very little left of the original 

morphology that would allow distinguishing the two kinds of events, other than 

magnitude. 
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Figure 17. Conversion of IEGM to event markers. 

Whether the threshold is fixed or adapted from previous events, there is no 

relationship of the threshold-crossing indicator to any 'fiducial point' occurring within 

the electrophysiologic event. 
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IEGMs contain many kinds of events that do not correspond to the primary 

event of interest, that is, a true depolarization. Despite the threshold method shown in 

Figure 17, the figure shows the third detected event is spurious. 

Figure 18 is divided into three main sections demonstrating pseudo-events. 
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Figure 18. Despite adaptive thresholds and complex timing windows, pseudo-events 

are indistinguishable from real events when morphology is excluded. 

First, the top blue trace is the atrial IEGM Gust above it are letters indicating 

the true identification of the events). Second, the middle black trace indicates the 
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resulting event markers generated by threshold crossings in each chamber (up or 'a' for 

atrial, down or 'v' for ventricle). Third, the lower red trace is the ventricular IEGM 

Gust below it are letters indicating the true identification of the events). The true event 

types are identified by the letters: normal 'n,' extra-systole 'e,' evoked response 'p,' 

far-field 'f,' and T-wave 't.' In the device the threshold must be sensitive enough to 

detect a normal event 'n,' such as the one in the ventricle at 43.4s. Nevertheless, the 

device then also detects the T-waves in the ventricle channel occurring at 44.7s and 

46.4s, producing false event detections. The two ventricular paces crosstalk into the 

atrial channel resulting in false detection of far-field events as senses 'f at 44.6s and 

46.2s. 

Limitations of Present Day Event Detection Methods 

Once past the amplifier and ADC, the detection of intra-cardiac depolarizations 

in present technology is binary valued, that is, the resulting amplitude inside the 

device has crossed a comparator threshold or not. When morphology is visible to the 

physician, different electro-mechanical events have different therapeutic decision 

choices. When morphology is invisible at the comparator output, only the markers can 

be used to make therapy decisions by the device. 

Alternatively, some event detection methods use the first derivative, which is a 

shape metric. In this method, the arithmetic differences between adjacent time 

samples are used. When some number of these differences exceeds a 	dv threshold, 

dt 


an event is considered to have occurred and a marker is issued. Such a system is still 
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equivalent to comparator crossing after high pass filtering. Due to the non-stationary 

nature of the electrocardiogram, a richly varied morphology results. The consequence 

is that fixed threshold algorithms do not adapt to changes in the physiologic signal, 

and over- or under-sensing results in false positive or false negative results. 

The depolarization events ordinarily result in a corresponding mechanical 

contraction of the heart. If markers are frequent, they indicate a higher heart rate, 

more frequent mechanical events, and higher resulting cardiac output (Hayes, Lloyd, 

& Friedman, 2000, p. 54), up to a physiologic limit of diminishing returns. Although, 

with incorrect adjustment of threshold and ventricular refractory period, Figure 18 

demonstrated that this chain of reasoning does not always hold. Human experts 

characterize normal and abnormal rhythms by using both rate and characteristic 

shapes. For the implanted device, only device memory allows the storage of a limited 

resolution IEGM for off-line review by the physician in the follow-up setting. Online 

analysis methods in implanted devices today use only rate and relations between event 

markers from the atrium and ventricle, though there is intense interest in the 

possibility of using shape information (Gillberg and Koyrakh, 2002). 

Figure 19 has two main parts. The upper subplot has two traces: (1) the upper 

black trace shows event time markers ('a' for atrial), (2) the lower blue IEGM shows a 

normal In' event, an abnormal 'r' event, and another normal event. The morphology of 

the event varies because the conduction path taken through the heart tissue changes the 

direction the wavefront is traveling as it passes the lead contact elements for the 

abnormal event. The lower subplot shows the cause of this event. The upper trace 
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again shows the 'v' for ventricular event markers, indistinguishable from each other. 

The lower red trace shows the a ventricular normal event 'n,' and ventricular 

extra-systole 'e: followed by a ventricular normal event 'n.' 
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Figure 19. Depolarization of the heart through an aberrant conduction path causes the 

changed morphology of the ventricular (e), and atrial (r) events. 

In summary, a normal rhythm interrupted by a ventricular premature 

depolarization and the event occurring in the atrial chamber is conducted abnormally_ 
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The change in shape for events in both chambers is apparent in this example. The 

discrimination between these two events has value in therapeutic decision-making. 

Accurate Identification of a Fiducial Point 

High quality event detection is necessary to accomplish the objective of this 

work. In the case of morphological classification, features at certain time offsets 

within the event must be compared to like features at a similar time offset in other 

events. When time sampled and quantized into discrete amplitude values, the IEGM 

time series has features that occur with some reliability at certain time offsets within 

events of interest. Therefore, for morphological classification, it is critical to buffer 

the time samples of events offset with respect to particular feature (peak) that 

correlates well from event to event, as shown in Figure 20. Note the centralized points 

in the events (sample #15) are the P-wave peak for the atrial event, and the R-wave 

peak for the ventricular event. It is desired that, the chosen fiducial points for 

centering the event are computable and repeatable between events. The unequal size 

steps at different sample numbers in the recording (small step changes near sample #1, 

larger step changes near sample # 16) do not correspond to a non-linearity in the ADC, 

but to the actual increase in the 2nd derivative of the amplitude as the wavefront passes 

the contact elements. (Note also: The sampling rate in this recording is 512Hz, but the 

quantization level is now 14bits, since bits 15 and 16 have been reserved for 

calculation overflow in the device that made this particular recording, this to explain 

any apparent change in quantization level from earlier figures.) 
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Figure 20. Centering event time samples on the ofpeak amplitude reveals the 

morphological differences of normal and abnormal events. 

The Basis of MOrPhological Differences 

The four events, pictured in Figure 20, also show normal (antegrade 

conduction) events on the left and abnormal (retrograde) events the right. If 

waveforms differ in this way, this indicates that the wavefront originated from some 

other focus (event origination point in the tissue) or traveled through the tissue along a 

different path rather than the usual electrical conduction pathway. The shape 

differences between the usual and changed wave are known as differences in 
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morphology. The usual method for a health care professional, such as a physician, to 

make a diagnosis ofNormal Heart Rhythm is to examine the shape and frequency of 

the depolarization event on the strip chart recording. 

The input stage of existing devices will discard the shape information of both 

kinds of events (Figure 20) and leave only timing markers. It is incumbent upon the 

physician to program the device so that it bins events into the correct classes. For 

example, if the event rate (1/event interval) exceeds a physician programmed 

tachyarrhythmia rate criterion, an implantable defibrillator (lCD) will respond with 

electro-therapy. 

The task to identify whether a heartbeat has occurred is the first rudimentary 

classification in this kind of system. From this point, devices have continued to 

improve classification with algorithms that provide more detailed categorizations of 

events and rhythms. The first important categorization, for instance, is atrial 

tachycardia versus ventricular tachycardia based on heart rate. Other secondarily 

important categorizations are sudden onset, and the ratio of event counts between 

chambers. Classifying individual events leads to correctly identifying the predominant 

rhythm, and results in the application of appropriate electrical therapy. 

While the two depolarization events in the lEGM have noticeable common 

aspects of smooth linear features, there are also details that differentiate the two. The 

'smooth' and 'detail' features within an event can correspond to a series of piece-wise 

best-fit lines and their residuals, respectively. This last point gives a hint at the 

analysis method of the linear wavelet transform elucidated later. Further, the features 
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with more discriminating power may be the smaller details. This last point is in 

contrast to wavelet methods emphasizing data compression that dominate the literature 

on wavelet transform of the IEGM (Novak, 2000; Steacy, 1998; Zhou, 2004; Zhu, 

1998). The goal of compression is to find a transformation of the original signal that 

optimizes the representation accuracy versus dimension reduction tradeoff 

(Gutierrez-Osuna, 2000). In Principal Components Analysis (PCA), an example 

compression method, the covariance matrix is diagonalized and the resulting 

eigenvalues are ranked by magnitude discarding the remainder whose sum falls below 

some chosen squared error acceptance criterion. The result is that compression 

methods favor larger components over details. 

The trained human expert, on the other hand, recognizes these subtleties, and 

visually shifts among time scales to assess the most significant information. The 

human retina contains neural ganglia tuned to recognize straight lines, and the optical 

cortex scans for these features at multiple scales (Kandel, Schwartz, & Jessell, 2000, 

pp. 530-531). In anticipation of the next advancement in this field, the wavelet 

transform is used herein in a prototype of an automated method that seeks to approach 

the morphological analysis performed by the human expert. 
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CHAPTER 3 


METHODOLOGY 


In this chapter, the justifications for choosing the wavelet transform (WT) for 

extracting shape information from the IEGM are presented. The wavelet is well suited 

for the transformation of the depolarization event, because like a wavelet, such an 

event is limited in energy and duration. Depolarization events are isolated from other 

events in the IEGM data stream or spans of no information by excluding values 

outside the observation window. Wavelet decomposition begins by isolating the 

smallest regions of the event from each other. With the detail coefficients, small 

significant features can be viewed as if through a keyhole. With the smoothed values, 

the event is viewed as if from arm's length. A historical perspective on morphological 

analysis of the IEGM can be gained from the following sources: Throne, Jenkins, & 

DiCarlo, 1990; Greenhut et aI., 1992; Morris, Jenkins, & DiCarlo, 1997; Gold et aI., 

1999; Theres et aI., 2000; Gronefeld et aI., 2001; Rojo-Alvarez et aI., 2003; Saba et aI., 

2005. 

The Basis Function 

Fourier and wavelet methods both use basis functions to accomplish 

transformation (also known as 'analysis') of time data to a new domain. The basis 

function (a shape) is used in a correlation operation (Beerends, 2003, p. 66). The 

Fourier transform uses the sine wave as a basis function and creates a description of 

the time signal in terms of the weighted sum of sine waves of different frequencies and 

phases. Though only --30 wavelets appear in the literature, there is no theoretical limit 
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to the number of wavelet transfonn basis functions to analyze (decompose) the time 

signal into a weighted representation (Pachepsky, Radcliffe, & Selim, 2003, p. 166). 

Of these, the Line Wavelet Transfonn was selected for this work for reasons given in 

§Time Scale Correlation of the Wavelet Transfonn, §Properties of the Line Wavelet 

Transfonn, §Suitability of Gaussian Assumption, and §Selecting the Best Basis. 

Time Localization Property of the Wavelet Transfonn 

First, some key points of the Fourier transfonn will help to introduce the 

analysis function of the Wavelet Transfonn. The Fourier Transfonn (FT), in general, 

does not retain time-offset infonnation, because it integrates the signal with respect to 

the basis function over all time (Dybowski and Gant, 2001, p. 176). This use of 

unending sinusoids is called 'infinite support' and is appropriate for stationary signals. 

To adapt the FT to real signals, the Short Tenn Fourier Transfonn (STFT) perfonns a 

discrete FT of a limited window centered on each sample using the assumption that 

the values become zero outside the window, or that the window repeats. When 

perfonning the STFT, the smallest resolvable frequency difference Ilf is fixed by the 

number of samples L in a window of time TL as: Ilf =l/TL (Orfanidis, 1996, p. 474). 

Longer time windows have lower time resolution due to averaging. A limited time 

window causes spectral leakage from two sources: (1) analysis frequencies do not 

correspond exactly to data frequency components (zero padding can help by 

interpolating), and (2) edge effects of the finite window (reduced by a data-tapering 

function at a cost to frequency resolution). The aspect of time infonnation that the 

STFT retains is the time offset of each sequential STFT window (Northrop, 2002, p. 
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42). By changing the overlap of successive windows from 0% to 50%, the effective 

time resolution is changed from TL to TL /2. Window size and shape can be 

optimized, but once it is fixed it establishes a lower bound C on the product of 

variance of time I and frequency j which may be recognized as the uncertainty 

relation: f11· f1j ~ C. The mentioned spectral leakage also raises C. In contrast to the 

fixed time resolution f11 of the STFT, the time resolution varies (inversely) with the 

number of samples spanned in the WT. Another difference is that the STFT frequency 

resolution f1j varies (directly) with L, but is fixed by the sampling rate in the WT. 

This explains the findings of a study ofhand written character recognition (analogous 

to IEGM event recognition) which found that Fourier based features had larger 

intra-class variance f11, and weaker inter-class separation f1j than the same number 

of wavelet coefficients (Theodoridis and Koutroumbas, 2003, p. 257). 

However, the STFT assumes stationarity over at least the window length. 

Therefore, features that are distinguished from each other and occur in time shifts 

smaller than the size of the STFT window are lost. For example, if two P waves (atrial 

depolarizations) in the IEGM are differentiated by a change in signal shape at a 

sample offset shorter than the time resolution fixed by the window size, the STFT is 

not helpful. Sequencing the ISTFTI 
2 

for display will produce a three-dimensional 

surface (magnitude spectrogram) whose axes are frequency, time, and energy. Fourier 

analysis will not be considered further, because with less processing, the wavelet 

transform has both good time resolution for high frequency events, and good 

frequency resolution for low frequency events. 
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Interesting biological waveforms are non-stationary signals; in fact, the 

features of interest are often sudden changes, discontinuities, or edges. In addition, 

interesting features, some ofwhich are small, occur at specific time offsets within the 

data. Historically, the development of filter banks was an attempt to design filters that 

corresponded to the long and short time scales on which features can be seen (Mallat, 

1999, p. 8). The resolution of the filter should match the scale of the feature of 

interest. The property of a transform that is able to reveal features simultaneously at 

large and small scales is called multiresolution, and is an important property of the 

WT. 

In the case of a depolarization event, a specific time window of samples is 

taken, because that is where the interesting information is located, and the signal 

outside this time window is generally considered interference. This time limited 

window is called 'compact support.' The wavelet itself is a basis function that is 

localized in time and frequency. Because calculation of wavelet coefficients requires 

adjacent samples on either side of the time sample, the samples at the window edge 

must be dealt with by extension, such as, zero, linear, reflection, or periodic. The 

wavelet transform splits the finite sample time sequence into smooth and detail 

coefficients. Though ideal ('brick-wall') low pass (LP) and high pass (HP) filters are 

capable of generating the hierarchy of smooth and detail values from the original 

sequence (Theodoridis and Koutroumbas, 2003, p. 239), these filters are not feasible 

and the processing cost to approximate them would be inappropriate for this work. 
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The Wavelet Transform (WT) itself generates a series of time-shifted spectra, 

but when the energies are arranged on axes of time offset versus scale (number of 

samples spanned by the scaling of the wavelet); the resulting spectra can be viewed 

from above as a surface. Like the STFT, the WT of a finite sample one-dimensional 

signal also results in a three-dimensional surface (scalogram) whose axes are 

correspondingly scale, time offset, and average energy (van den Berg, 2004, p. 83). 

Figure 21 shows this. The figure is organized as follows. In the upper subplots the 

two windows of data are atrial normal event (left) and atrial abnormal event (right). 

The horizontal axes are time offset from the beginning of the event. The vertical axes 

are the amplitude. The lower subplots are the corresponding scalograms for each 

event where the vertical axis is scale, and the energy surface is normalized to an 8bit 

grayscale (black =-128, and white =+ 127). Notice that the scalogram from top to 

bottom is organized into horizontal 'sub-bands.' All the values within a sub-band are 

at the same scaling of the wavelet at different time offsets. The scalogram appears 

coarse because unlike a continuous wavelet transform, the discrete wavelet transform 

is limited to the time resolution (Iv =512Hz) of the input signal. All rectangles in the 

scalogram have equal area, where the time resolution is proportional to rectangle 

height and frequency resolution is proportional to its width. The first sub-band at 

Scale =2 spans the frequencies from 128Hz to 256Hz. Scale =4 spans the 

frequencies from 64Hz to 128Hz, and continues down to the penultimate coefficient 

spanning 16Hz to 8Hz, and the last coefficient that spans 8Hz to OHz. The WT 

scalogram differs from the STFT in two ways: (l) this scalogram is not a sequence of 
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windows but a single data window, and (2) the resolution of this scalogram is not 

limited to the window width but down to the time difference between each sample. If 

a time windowed signal has a feature of interest, such as, a slope or a peak, it is 

reflected by a concentration of the energy in the coefficients corresponding to that 

time offset in the waveform. The example atrial depolarization events in the figure 

shows the scalogram tracking the salient features of the time domain signal by the 

greatest contrast in gray. This figure introduces the energy surface produced by the 

wavelet transform algorithm. A cursory examination shows the two scalograms are 

indeed different. 

The WT is dependent on the sampling rate f~, in that the upper frequency 

limit of the most detailed WTC is the Nyquist rate (1)2 = 256Hz). 99.99% of the 

spectral content of the IEGM is fc ~ 175Hz (Schreier, Kastner, Hutten, 1999, p. 400). 

Previously (in §Pre-processing of the IEGM), a sampling rate of f~ = 512Hz was 

justified by clock jitter and the transition band of a realizable filter. One may ask, 

'Why not increase 1: and get more time resolution?' First, because the higher Nyquist 

limit would then produce a detailed sub-band [;:14 ... f.. 12] of pseudo-content ~175Hz 

requiring unnecessary processing to reject it at the feature selection stage and possible 

degradation of classifier accuracy. 

The WT provides compact support, therefore, a litnited time window TL is 

selected, such that, TL = LIf~ . Here, L is an integer power of two chosen just large 

enough to assure that expected IEGM event durations Td ~ TL • Therefore, the second 
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reason not to increase Is is that the number of samples to process will increase 

• 
proportionally without benefit. 
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Figure 21. The wavelet scalogram shows two examples of the hierarchal generation of 

the wavelet coefficients from a single data window. 

Processing the first sub-band is now wasted (because fc ~ 175Hz), but must be 

performed anyway to generate discriminating features in later sub-bands. Neither can 

the WT, unlike the STFT, improve its time resolution 111 by increasing Lalone 
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without also increasing Is. Thus, a sampling rate of Is =512Hz with correct 

estimate of TL is appropriate for this work. 

Time Scale Correlation of the Wavelet Transform 

The fundamental operation that produces a smooth wavelet value is correlation 

with the wavelet filter function. The detail coefficient is the residual from this 

correlation. The wavelet transform is completed by repeating the correlation only on 

the remaining smooth coefficients. To preserve the convolutional wavelet transform 

property of orthogonality between even shifts, the pyramidal version of the transform 

applies decomposition recursively only to values with even parity (Rioul & Vetterli, 

1991, p. 29). There is a wide variety of wavelets, but beyond the Barr, Line, and 

Daubechies 4, the rest have poorer time localization because of longer filter length. 

Additionally, processing increases by the power of the filter order, therefore these 

other wavelets are not suitable for the intended purpose of this work (Goswami & 

Chan, 1999,p. 118). 

'Analysis' is the forward transform decomposition of time samples into 

coefficients. Synthesis is the reverse transform, that is, it restores the original time 

domain samples without loss. In that case, the synthesis filters are the time reverse of 

the analysis filter. Wavelets transforms with this perfect reconstruction property are 

also orthogonal (Theodoridis and Koutroumbas, 2003, p. 244). This thesis limits the 

discussion of synthesis to explaining certain properties of the line wavelet transform. 



56 
Generating Wavelet Transform Coefficients 

The generation ofwavelet transform coefficients in this work is non-adaptive, 

since (1) the same pair of operations are repeated to decompose each pair of smooth 

and detail values, and (2) the transform does not vary the pyramidal tree structure or 

the basis (other than by scaling) to achieve decomposition (as is done in 'wavelet 

packets,' a compression oriented scheme). A group of wavelet coefficients produced 

by one scaling of the wavelet filter is called a 'sub-band.' The initially computed 

sub-bands locate details in time with finer resolution. The later computed sub-bands 

provide scaled replicas of the smooth features with less absolute error. 

When the WT is performed on the time samples from an event, the smooth and 

detail features are separated for each scaling of the wavelet kernel. The transform is 

repeated only on the smooth features in the sub-band producing the values to be 

operated on in the next sub-band. Eventually, there is a single smooth coefficient and 

the recursion stops. This smoothest value approaches the arithmetic mean of the 

event. The last smooth value should be rejected as a feature, because OHz ... 8Hz 

includes a value representing the mean value of the event (refer to Figure 15 and 

§Time Localization Property of the Wavelet Transform). The wavelet transform 

produces N coefficients from N original time samples. 

Dimension Reduction Property 

The purpose of this section is to describe the dimension reducing property of 

the wavelet transform using linear estimation as an example. Non-adaptive methods 

can represent a signal as a linear combination of basis functions (Cherkassky, 1998, p. 
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235). An example of this is the standard regression model whose formula is: 

y = X . fl + 8. The n x 1 response vector y has limited energy, and n is the number 

of observations. The n x p design matrix X has columns x k (k 1, 2, ... , p) of 

explanatory Ifactors,' 'variables,' 'covariates,' or 'regressors'. Elements of the p x 1 

parameter vector fl, are regression coefficients (slopes) weighting the model vector to 

producing a fixed effect. The n x 1 error vector 8 , are the residuals, assumed to be 

independent of X and y, and normally distributed or 8 "" .N(0,0'2). Thus, 

Yi = Xi,l' flI + ... +xi,p· flp +8p for i 1,2, ... , n. The deterministic variance of the 

model is controlled by X· fl , and 8 is the stochastic variance in the model. The 

coefficients fl can be uniquely estimated by a minimization method, such as, linear 

least squares giving /J = (XT . X [1 .X T . y, where T is the transpose operator. The 

response can now be estitnated y = X . /J ,and the residuals are 8 = Y - Y . 

Because the standard solution to the linear model does not decrease the number 

ofpredictors /J, an overjitted model often results (Militky, Karel Kupta, & Meloun, 

1998, p. 882). Consider simplifying the previous standard regression model example 

by disregarding the error, and the linear system becomes: y =X· fl. To solve for fl, 

one can solve for X-I, or perform Gaussian elimination. A solution for this is the 

Hotelling (Karhunen-Loeve) transform, which can also solve for fl.L' by projecting fl 

the most important directions (eigenvectors) in decreasing order. Smaller vector 
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elements of fJ.L can be discarded leading to a parsimonious model that minimizes 

generalization error on a validation data set. 

However, not an Eigen decomposition, the wavelet transform also projects the 

linear system so that it is oriented in the most important direction with respect to the 

wavelet basis. The design matrix X must be square, and full rank. The matrix form 

of the one dimensional wavelet transform W is unitary (W- I = WT ) and orthogonal 

because all its elements are real. X can be transformed to a similar matrix X by 

applying the wavelet transform: X W T • X .W. The trace (diagonal) of X contains 

linearly independent elements approximating eigenvalues. Proceeding, y is also 

transformed similarly: y = WT .y. jj can be defined by y X.jj. Small matrix 

elements of X are now set to zero, and may reduce the size of X and y both 

allowing easier solution of jj (Bultheel, 1995, p. 35). The original parameter vector 

can be recovered as: fJ =W.jj . 

Having shown the dimension reduction properties of the wavelet transform in 

the simple case, the error is restored to the standard regression model example for the 

following reason: Noise in biological signals often has a 1/f power spectrum that is 

temporally autocorrelated, therefore exhibiting some memory or self-similarity. 

Hence, the error vector is actually G ",.N (O,L) , here the covariance matrix 

L = a(XTX [I is symmetric, now with non-zero off diagonals that confound the 

estimation of linear regression model parameters and their standard errors. By wavelet 

transforming the linear model: y w= Xw . fJ + Gw ' the error vector is whitened. Here w 
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indicates the application of the wavelet transform W , in the case ofX transforming 

column-wise. With the new error vector, the parameters are now estimated by: 

"( " \-1" "P= X~ .L~1 .X w) . X~ . L~l . y, where L~1 is the inverse of the diagonalized 

covariance matrix, and J indicates the sub-band of the wavelet transform (Fadili & 

Bullmore, 2002, p. 222). The off-diagonal matrix elements of L are set to zero 

simplifying its inversion. In the online case, L does not have to be solved and 

inverted, rather :t~1 can be solved in place sequentially (Kay, 1993, pp. 242-250). 

Thus, like principal components analysis, the wavelet transform also the ability to 

represent the signal in a non-redundant subspace and whiten the noise, but at a much 

lower cost (see §Feature Selection for the Purpose of Classification). 

Properties of the Line Wavelet Transform 

The Daubechies wavelets, for example Daubechies 1 (Haar) and Daubechies 4, 

are orthogonal, produce non-redundant data, and have compact support (Cherkassky, 

1998, p. 248). Although the line wavelet transform is not an orthogonal transform 

(scaling function is orthogonal to any even valued shifts of itself), it is a biorthogonal 

transform (nearly orthogonal) because it splits the scaling function into smooth and 

detail filters that are orthogonal with each other. Additionally, the biorthogonal 

wavelet is symmetric (unlike orthogonal transforms), non-redundant (like orthogonal 

transforms), still allows perfect reconstruction, and has compact support (Hubbard, 

1998, pp. 242-243). Unlike orthogonal wavelets (except the Haar), the biorthogonal 

transforms can be implemented as symmetric FIR filters. The line wavelet is a 
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wavelet whose basis function is a straight line, and satisfies the following 

requirements of a proper wavelet: (1) it is bounded in frequency response, that is, it is 

a band pass filter (Cherkassky, 1998, p. 247), and (2) it has zero mean (Valens, 2004). 

Each transform step is an interpolation between two adjacent points, and the basis 

effectively translates so that one of the basis points is the origin. The difference value 

tracks the offset between the predicted point and the actual value. If the original time 

samples are of finite energy, that is, they have a finite L-2 or Euclidean norm, then so 

will the resulting WT coefficients. Lastly, the line wavelet functions as a band pass by 

performing low pass filtering repeatedly on smoothed data points, and as an effective 

high pass filtering function due to the differences separated out into coefficients (HP). 

Reducing Processing in the Wavelet Transform 

The implementation of the WT has evolved as mathematical insights rendered 

more efficient methods, as occurred also in the history of the FFT. Originally, WT 

were implemented as matrices, then as FIR filters. For example, when the coefficients 

of a low pass filter h. are known for the WT, its corresponding coefficients for the 

high pass filter ho can be directly calculated by: ho (n)=_In .h. (- n+ 2 . L -1), where L 

is length of filter (Theodoridis and Koutroumbas, 2003, p. 244). For the input samples 

at any step of the transform, the 'dyadic' result is a pair of smooth-detail coefficients. 

When the WT is implemented as a convolution, it yields a count of detail plus smooth 

coefficients equal to twice the number of values found in the original sample. 

Downsampling by two for each sub-band controls the scale relationship between the 

data and the wavelet with the additional benefit of conserving the number of samples. 
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The downsampling operation can be placed prior to a linear operation by means of a 

cascade equivalency (Mix and Olejniczak, 2003, p. 111). In Figure 22, x[n], v[n], 

and y[n] are the discrete time input, intermediary signal, and output, respectively. 

The upper portion of the figure shows the method of , Downs amp ling' after filtering 

used by the filter bank implementation of the wavelet transform. The lower portion of 

the figure shows the method of downsampling before filtering, which leaves fewer 

samples to be processed by the filter, but has an identical transfer function. 

x[n] vt[n] y1[n] 

Downsampling 
--t.......~ 
.1 ~M I • 

x[n] v2[n] Y2[n] 

Splitting 
----I.......M .1 H(z) I • 


Figure 22. Processing efficiency can be improved through a cascade equivalency. 

J27dm M jmLet W:; =e- / and z =e given that the Discrete Fourier Transform 

1 M-J 

(DFT) of the factor M downsampler is: H{z} = -L:G(Zl/MW;), for input g[n] and 
M k=O 

output h[n]. The DFT for the first intermediary signal is: V. (z)= H{ZM). X{z), and 

1 M-I 1 M-] 

the first output is: Yt{z}= -L:H{zW;t )x(ZI/MW~)= -L:H{Z}X{Z1/MW~). The 
M k=O M k=O 
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1 M-l 1 M-l 

second intermediary is: V2(z) = - L X (Zl/M W; ); and Y2 (z) = - L H{z )X(Zl/MW; ).
M k=O M k=O 

So l';(z) = Y2(Z) (Mitra, 2001, pp. 667-671). (Note: There is also a cascade 

equivalency for upsampling that applies only to wavelet synthesis, where the aliasing 

caused by downsampling is cancelled.) 

Relocating the downsample operation is one improvement of the lifting version 

of the wavelet transform over the convolution version called 'splitting' which makes 

each step more efficient as it is done on half the samples. Overall, the Lifting 

Transform (LT) has O(n) complexity (Daubechies & Sweldens, 1998, p. 264). 

Though convolution method wavelet transforms using iterated FIR filters have 

computational complexity O(n2
), a lifting equivalent is possible for all of them 

(Rockmore and Healy, 2004, p. 194). Additional explanation of the implementation of 

the lifting line wavelet transform, not found elsewhere, is given in the APPENDIX. 

Alternate Methods Considered 

The scalogram (Figure 21) is not limited to the WT. Radial Basis Functions 

(RBF from neural networks) have center and width parameters that are reminiscent of 

the time and scale parameters of the Gabor WT (Cherkassky, 1998, p. 236). A 

variation on this theme uses an RBF wavelet transform kernel for classifying IEGMs 

(Strauss & Steidl, 2002, p. 12). However, neural network methods pose an 

unacceptable risk in an implanted device, because there is no guarantee that any 

particular learning instance will not lead to a dangerously inadequate outcome 

(Lendaris, 1991, p. 2). Neural networks yet remain an effective tool for proof of 
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concept. Although neural network methods are analogous to statistical methods and 

pursue the same objectives, statistical methods guarantee more reliable outcomes 

(Sarle 1994). 

Suitability of Gaussian Assumption 

The purpose of this section is to consider the appropriateness of the assumption of 

Gaussianity on wavelet-generated features. Wavelet coefficients are compactly 

supported; that is, the basis function, and therefore the resulting coefficients, are zero 

outside the analysis window. Additionally, the line wavelet transform preserves only 

the first (mean) and second moment (variance), therefore in keeping with the Gaussian 

model all cumulants of order three and higher vanish (Weisstein, 2004). As discussed 

in §Dimension Reduction Property, the wavelet transform renders the signal into a 

sparse representation of a majority of small valued coefficients, and a few large valued 

coefficients. This occurs because coefficients become smaller farther away from 

edges, and larger near them. Though the wavelet transform may have a whitening 

effect on other variables (§Dhnension Reduction Property), the wavelet transform 

coefficients themselves are found to be poorly Gaussian on natural signals. That is to 

say, they have kurtotic distributions with statistical inter-dependence between values 

and their variances (Wainwright & Simoncelli, 2000, p. 855). However, the ROC 

meets the need for a distribution-free method of assessing the discrimination power of 

the WTC. 
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Selecting the Best Basis 

From a library of wavelet bases, a particular basis can be selected for each 

sub-band or separate decompositions within a band (van den Berg, 2004, p. 17). The 

purpose of decomposition by a customized set of wavelet bases, 'wavelet packets,' is to 

optimize some objective, such as, interference reduction, compression, or both. The 

discussion in the literature about a custom wavelet basis for the classification criterion 

appears to equate optimization for compression with optimization for classification. A 

little consideration can dispel the correctness of this assumption. Compression and 

feature reduction for classification are both lossy, but compression may retain features 

that cross-correlate between event classes and discard the very features that allow 

discrimination between them. A set of wavelet packets for classification of IEGMs 

will not be addressed in this paper, particularly because of the computational 

infeasibility of implementing a library of transforms in a processing limited device. 

Table 3 shows that the three simplest wavelet transforms (Haar, Line, and 

Daubechies 4) have rapidly progressing complexity. A pair of analysis filters is 

shown for each transform: (l) the detail (wavelet) filter produces the coefficients en , 

and (2) the smoothing (scaling) filter produces averages an. There are several reasons 

to choose the line wavelet transform over the others. The Haar wavelet transform can 

miss a feature occurring on the boundary between an odd and the following even data 

value. All other wavelets after D4 are more complex to implement in length, and have 

irrational coefficients. The factor of three in the smooth Line wavelet filter disappears 

in the Lifting form of the transform. An additional insight was that the energy 
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conserving scaling factor 1/ J2 could also be dropped from the implementation since 

the feature distributions between categories are unchanged with or without it. 

Table 3. 	 Complexities of the three most basic wavelets make clear the rapidly 

increasing computational complexity. 

Type Filter 

" 

. Opel;'8tioo 
,'c <'" ... ,"" 

Haar Detail cn =~ [- s2n +S2n+l] 

Haar Smooth 
1 

an = J2 [S2n + S2n+l] 

Line Detail cn =~[-S~n +S2t _ S2;+2 ] 

Line Smooth an =E[-S24-2 +S2;_1 +3in +S2;+1 - S24+2 ] 

D4 Detail c 
n 
=~[-[1-v'Jk2n-2 +[3 -v'Jk2n ~ - [3+v'Jk2n +[1 +v'Jk2n+1 ] 

D4 Smooth an =*[~ +v'Jk2n +P+v'Jk2n+1 +]3 -v'Jk2n+2 +[1-v'J}2n+3] 

The Goal of Feature Reduction 

Applying the wavelet transform (WT) to a window of N IEGM signal 

samples results in N WT coefficients (WTC). Due to finite battery capacity, it is 
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desirable to process the least number of WTC sufficient to perform event 

discrimination correctly with 95% accuracy. In the statistical learning model, relative 

weighting (Cherkassky, 1998, p. 128) should penalize poorly performing features 

(WTC with lower discrimination). After ranking, a method of relative weighting by, 

for instance, the signum function would penalize poorly performing features and 

provide a smooth transition from used to unused WTC. However, a definite cutoff 

that leaves a small number of WTC is preferred, to reduce the processing load that 

scales with the feature count. 

The bi-orthogonality of the line wavelet transform provides orthogonality 

between sub-bands, but not between WTC within a sub-band. Thus, any WTC 

retained after ranking and pruning that are also members of the same sub-band, are 

redundant to the extent that they co-vary. 

Next, the widely used ranking of WTC based on a coefficient magnitude 

method will be described. Then the alternate method used in this study, ranking by 

discrimination, will be presented. 

Coarse Scale Selection of Coefficients 

It is desirable to employ a method that compactly, yet accurately, represents 

some arbitrary finite energy differentiable function. The wavelet transform 

accomplishes this goal and allows a tradeoff of accuracy versus compactness of 

representation. To accomplish dimension reduction, some wavelet coefficients must 

be de-emphasized or discarded. In the existing literature, the typical approach is to set 

any wavelet coefficients below a fixed threshold to zero (Cherkassky, 1998, p. 249), 
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removing them from future calculations and classification decisions. An additional 

step is to rank the coefficients by magnitude from greatest to least and only the first m 

number of coefficients is used to define the classifier (Cherkassky, 1998, p. 250). This 

ascendancy of coarser features over finer features is the method of 'greedy learning' in 

pattern recognition systems (Cherkassky, 1998, p. 251). When the goal is merely 

compression of the wavefonn, this method is a simple, effective solution. The 

problem with this approach is that wavelet coefficients are discarded with respect to 

amplitude, and not by ability to classify the event. An improvement over 

magnitude-based feature selection is ranking according to reduction of classification 

error (Cherkas sky, 1998, p. 250). The Receiver Operating Characteristic curve is a 

means to evaluate features against this latter criterion. 

The Receiver Operating Characteristic Curve 

Refer to Table 4 for the definition ofparameters used in generating the 

Receiver Operating Characteristic (ROC) Curve, where T = true, F false, 

P = positive, and N = negative. The following axioms also apply, where the a priori 

probability ActualC'ass2 is the annotation in the IEGM test file: 

TP = P(TestC/as.~2 IActuaIClass2) ' 

1= TP + FN , and 1 = TN + FP 



68 

Table 4. Definition ofparameters used in the generation of the ROC curve. 

True Positive TPHI *Ho,orRate Recall Rate I-P TP+FN(sensitivity) 


True Negative TN

HJ =Ho,orRate Rejection Rate TN+FPI-a

(specificity) 


False Positive FP

Type I Error, or 

Rate False Alarm Rate Significance (a) TN+FP(1- specificity) 


False Negative FN

Type II Error, or 

Rate Miss Rate Power «(3) TP+FN(1- sensitivity) 

The ROC curve is a plot (right hand column of Figure 23) of recall versus false 

alarm rate characterizing the discrimination of a single feature. Each point on the plot 

is determined by the resulting sensitivity versus (1- specificity) as the threshold that 

separates two categories is varied. ROC space lies within the bounds x =[0 ...1] and 

y = [0 ...1]. Increasing values of the threshold in the left hand subplots corresponds to 

tracing the ROC curve in the right hand subplots from the point (1, 1) through the 

curve to the point (0, 0). The ROC curve is concave (decreasing slope as false alarm 

rate increases). If the curve goes below the no-discrimination line y x , it means the 

two category labels are on the wrong side of the threshold. A curve approximating the 

line y = x indicates that, regardless of the threshold value, the categories are 

inseparable with this feature; that is, one can do no better than flipping a coin. 
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Figure 23. The separability of two conceptual distributions corresponds to the Roe 

Ave, whose most discriminating threshold corresponds to the Roe vertex. 

Figure 23 shows two examples of pairs of feature distributions for two 

categories in the left hand column. The separation between category means is seen to 

increase as the plots go from top to bottom. The corresponding increase in area under 

the Roe curve (AVe) can be seen in the plot to the right. The feature distributions 

shown in this example have the same variance. Increasing the variance of the feature 

around a category mean would correspondingly reduce the Ave. 
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As the separability of the features improves, the vertex of the curve approaches 

(FP = x = 0, TP = Y = 1). The line y = -x + 1, which is 1- to the no-discrimination 

line y = x, will intersect the ROC curve at the vertex 0 for a normally distributed 

feature with equal class variances, and is the most discriminating threshold achievable 

in this case. The closer the vertex is to the point (0, 1), the better performance of the 

selected threshold. In practice, the ROC curve will not reach this perfect condition 

(FP x = 0, TP =y =1 ), because the feature distributions of interesting problems 

have a non-zero overlap. There are two main non-parametric measures that 

summarize the ROC curve in a scalar value: (1) the area under the ROC curve (AUC) 

or 'discrimination' within ROC space, and (2) the Euclidean distance dv between the 

point (0, 1) and the vertex of the curve (0 in Figure 23). A number of asymmetries 

between the classes may shift this vertex off the line y =-x + 1, such as, unequal 

variance, unequal sample size, or unequal costs. Note: In the case ofunequal costs, 

the best threshold corresponds to the point on the ROC curve where the slope is: 

dROC/ dFP = - CTN)jPp .(CFN - CTP ), P is the a priori probability of anPN.(CFP 

event class and C is a relative cost (van Schalkwyk, 2003). Because these parameters 

are unquantified in the literature, equal prior probabilities and costs will be assumed 

for this work. Although unequal prior probabilities of arrhythmias, unequal costs of 

. mortality and discomfort are apparent, there is a preference for treatment built in to 

medical decision making and devices (refer to §Justification of Work). 

This thesis proposes ranking coefficients by two criteria. First, coefficients 

will be ranked by, AUC and those below certain discrimination ability are discarded. 
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Second, the best threshold achievable to separate to categories will be indicated by the 

vertex of the ROC curve where dv is minimum. The ROC analysis is a classifier-free 

method to test the separability of the features without instantiating a classifier, such as, 

a kernel discriminant. It is not within the scope of this work to develop an implantable 

version of the ROC ranking method and measure its device processing cost. 

Demonstration of this method on a workstation is sufficient. ROC analysis can be 

performed on the external programmer (computer) at no processing cost to the implant 

other than transmitting raw data and receiving the pruned WTC. 

Combining Features 

The nominal ROC AVC method analyzes features one at a time, where a single 

threshold separates a feature into regions corresponding to two event classes. This 

method can be extended to include combinations of the available features, where the 

number of AVCs to be determined for one subset is: ITIt,.!;,... ,/,. ,where f is the 

number of threshold steps to be evaluated for AVC for one feature and r is the 

number of features in the subset. The number of combinations generated for 

comparison is: L
n 

(n. 
, 

).' where m and n are the least and greatest number of 
r=m r! n r. 

features in a subset respectively. Subsets containing more than one feature mayor 

may not have a higher joint likelihood of more discrimination. If categories overlap 

less in the joint feature space, then features ranked highly as individuals would have 

greater discrimination in a subset than alone. In general, the best thresholds for a 

feature evaluated singly and in a subset will not be equal unless all cases not wholly 
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above or below the joint thresholds are placed in a rejection class. Highly performing 

features must degrade when they are in a subset with a poor performer. A smaller 

subset or single feature would be preferred as it would be easier to evaluate and the 

risk of overfitting is lower. If upper and lower limits around a class mean of a feature 

are to be explored as an alternative to a single discriminating threshold, each 

independent limit value must be treated as a separate fr. Combining features is not 

within the scope of this thesis, it will be sufficient to show that the AUC ranking 

method can find at least one WTC in a sub-band capable of sufficient discrimination. 
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CHAPTER 4 


DESIGN 


Problem Statement 


Wavelet based feature selection addresses the problem of extracting features 

from a time domain signal (IEGM depolarization events) and retaining the most 

salient of these features. The line wavelet transform (L WT), which is free of 

multiplications involving float and integer values other than 2 and 4, was selected to 

minimize processing in the implant. The choice of the L WT provides the simplest 

wavelet capable of resolving all time domain features regardless of sample parity. The 

ROC will serve as a proxy for a 2-category (normal versus abnormal events) classifier, 

where events belonging to rhythm classes are categorized, not the rhythms themselves. 

The l-out-of-C classifier, where the number of categories C > 2, can be implemented 

by the repeated application of a 2-category classifier, though this is outside the scope 

of this work. This chapter will explain the lifting version of the LWT. Additional 

original work of this thesis, such as methods necessary to process the IEGM and 

wavelet feature extraction, will also be introduced. 

Alignment of Event on the Peak 

This thesis pr(j)poses a method to gather several events and align them in time 

on a fiducial point; that is, samples are aligned so that the peak magnitude for all 

events of a class has sample index N/2, where N is an integer power of two. 
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The bipolar lead is a point of observation in the heart analogous to the 

volumetric derivative. Therefore, it has less sensitivity to the wavefront when it is 

distant ('far field') from the lead, and more sensitivity as it passes through the local 

observation area ('near field'). The signal to noise ratio then is the highest when the 

peak is being generated. An IEGM peak is an effect created when the electrical 

wavefront causes a net charge difference on one of the contact elements with respect 

to the other (refer to Figure 8). There are usually at least two major peaks of opposite 

polarity, each one for the voltage differential created by the wave passing past each 

electrode. The wavefront is halfway between the two electrodes when the IEGM 

passes through zero in between the two peaks. The electrical field leaves the contact 

elements temporarily slightly polarized, which places the actual zero crossing location 

in doubt. Therefore, the first and second peaks are notifications of the beginning and 

ending edges of the passing wavefront. 

Peaks are easily identifiable features in the IEGM, generating the apparent 

non-linear change in amplitude and a sharp discontinuity when reversing the second 

derivative of the amplitude (often within the time of a single sample (see Figure 24). 

As described in §Time Localization Property of the Wavelet Transform, features that 

change quickly (peaks) have higher time resolution than those that change slowly. To 

summarize, the near-field SNR and time resolution of the peak make it a preferred 

feature on which to synchronize events. The peak alignment method is shown in 

Table 5. 
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Table 5. The peak magnitude is aligned in the buffer. 

1. Discrete time IEGM samples continually enter a length N FIFO buffer. 

2. If the blanking period is over and an amplitude threshold crossing is detected: 

a. Start a blanking period. 

b. The peak alignment counter is set to N/2 counter. 

c. The absolute value of the present sample is stored as maxValue. 

3. Whi1e 0 < N /2 for each new sample: 

a. If the absolute value of any subsequent sample exceeds maxValue, 

i. The absolute value ofthe present sample is stored as maxValue. 

ii. The N/2 counter is reset (slip). 

b. Else, decrement the N/2 counter. 

l. maxValued sample moves toward the center of the buffer. 

4. If the N /2 counter reaches 0: 

a. Store the present length N FIFO buffer into a memory location. 

b. Event will be aligned on electrical field maximum. 

After these steps, it is still reasonable to ask if the true peak is now accurately 

centered in the memory location. If the actual peak amplitude value comes after a 

previous max Val and does not differ by more than the ADC resolution, the true peak 

will not be centered. The sampling times of the ADC are not synchronized with the 

IEGM; therefore, the value latched may be only near a peak. Noise increases the 

uncertainty because of summation with the peak and other nearby samples. Lastly, the 
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group delay of the signal path disperses the true energy peak seen at the 

evaluation point inside the implant. 

Collection of samples for the event classes is performed during the definition 

phase. During the reference phase, peak centered events ofeach category are 

collected and wavelet transformed. Data collection requires storage of 2 x m x n 

values, for two classes, ofwindow size m, for n reference events. Transformation 

generates the same number of WTC values as data values. During the evaluation 

phase, yet unseen events are also peak centered and wavelet transformed. In this latter 

phase, new WTC are evaluated by thresholds found earlier by ROC analysis to best 

separate the reference WTC based features. 

The definition phase is based on the assumption that within a stable rhythm, 

such as Normal Sinus Rhythm, reference events will be consistent. For the noise 

process contaminating amplitude values in these events, there is no self-correcting 

process implicit in collecting additional events for averaging (Tversky & Kahneman, 

1971, p. 106). As the number of samples taken for averaging increases, initial 

variances are diluted by subsequent measurements and initial mean values regress 

toward the distribution means (Amott, 1998, p. 17). To be sure, there are other noise 

sources outside the body that are periodic, but these are attenuated by the near-field 

view of the bipolar lead, and by encapsulation of the entire sensing system in the 

electromagnetic shroud of the human body. Additionally, the input stages ofmodem 

IPG and ICD sensing systems have EMI protection and decoupling capacitors to 

minimize DC offset effects. 
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Figure 24. Peak alignment ofevents from two different categories. 

Figure 24 shows that the normal and abnormal events referred to earlier peak 

aligned in the 32-sample buffer (62.5ms at 512Hz). Both events are aligned by 

centering the peak magnitude sample on the 16th sample of the sampling window. 

Errors in Event Detection and Peak Alignment 

For the event detector, the input signal is sampled at uniform time interval. 

The sampled data are quantized with a uniform step size (§Pre-processing of the 

IEGM). Signal data spanning the event of interest is buffered prior to L WT 
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decomposition. Errors associated with L WT decomposition include all the errors of 

the sampling and quantization system, and the synchronization of the event with its 

marker. The Wavelet Transform operates on the post-ADC representation of the 

signal data and therefore inherits those limitations of quantization, finite precision, 

round-off, overflow, and scaling. Additionally, the Wavelet Transform is not shift 

invariant so it is important to align depolarization events accurately on the peak 

fiducial point. The 'slip' method (§Alignment of Event on the Peak) disambiguates the 

situation of more than one peak by selecting the one with maximum amplitude. If 

multiple peaks are exactly equal, the first peak will be selected (preferred because 

slew rate is highest). 

The traditional threshold crossing to provide for the relative timing of events 

has built-in inaccuracies. Even after DC removal, there remains a variance in the 

point on the slope of the initial upstroke of depolarization where it crosses the 

comparator trip point (variance is also proportional to slope). For the purpose of this 

work, the event detection marker generated by the threshold crossing indicates only 

that the event retrieval system should start collecting samples of interest for the L WT. 

The 'slip' method (Table 5, step 3.a.ii) causes all events of a given class to be peak 

aligned on the same central sample number in the buffer. 

The error in event alignment can be reduced but not eliminated. For example, 

the depolarization peak is independent of the sample time of the quantizer. Therefore, 

the resulting variance in time from baseline to peak in the post-quantizer-sampled 

waveform may vary from beat to beat more than in the actual waveform. This can be 
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reduced by increasing the sampling rate, with tradeoffs (§Pre-processing of the 

IEGM). Two mitigations, not investigated here, would be the signal averaging of 

several exemplars from the same class, or making multiple time offset definitions for 

an event of the same class (Schomburg 2002). 

Compression-Oriented Best Basis Approach 

One may ask, 'Why not design a wavelet customized for the depolarization 

event?' The 'best basis' method has a custom filter for each sub-band, with the 

following tradeoffs: (l) each basis in the library must have a uniquely designed filter 

pair (there is no general method to design a wavelet filter), (2) each filter will take up 

its own space (code or hardware), (3) the application of the various bases therefore 

cannot be rolled up into a compact recursive routine, and (4) all other wavelet 

transforms than the three introduced earlier are higher in filter order, increasing 

processing while reducing time resolution in proportion to their increased length. Best 

basis is a compression-oriented approach, and its goal is to optimize the choice of 

wavelet filters so that the signal energy is concentrated in the smallest number of last 

computed WTC. Recall that the value of a coefficient is the residual from correlation 

with the wavelet basis. A measure of 'accuracy,' in this sense, is inversely related to 

the amount of energy is in the earliest computed sub-bands. However, because of the 

earlier points in this section, best basis is not suitable for this work. In contrast, the 

line wavelet transform (L WT) uses the same operation throughout the recursive 

process of the WT, down to the last computed smoothed WTC, simplifying the 

implementation. In addition, with a 'less accurate' transform, more energy associated 
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with discriminating features is concentrated in earlier computed WTC. The 'decreased 

accuracy' of the L WT, thus may be exploited by stopping the wavelet transform 

operation after only those WTC necessary for classification have been generated. 

The wavelet transform chosen for this work (the lifting version of the LWT) 

involves only the use of multiplier values of two and four (besides the Haar wavelet 

transform, all other wavelet transforms include mUltiplication by floating point 

values). The advantage of such an integer-based transform is that the input, 

intermediate, and WTC all are integer valued. Integer operations are faster and less 

costly to process than float values. For LWT integer calculations involving multiplies 

by two and four that do not cause overflow, there is no round off or truncation. To 

eliminate all float calculations in this work, the integer version of transform is not 

normalized, that is each sub-band is not scaled by 1/ fi. The purpose of the 

normalization constant is to conserve energy so that the squared energy of the original 

time domain data and the WTC are equaled (good for comparing scalograms but not 

useful for the implementation). A side effect of omitting the normalization is that the 

last computed coefficient is a scaled version, not the actual mean. Reconstructability 

is still preserved in the case of the inverse transform by omitting the fi multiplier 

factor. The scale of the mean or any other WTC itself is not important, only their 

ability to discriminate between categories of events. There do exist methods for 

preserving the correct scale in the integer version of the transform (Calderbank, 

Daubechies, Sweldens, & Yeo, 1998, p. 25), but they are not necessary because the 
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same transform scales WTC for all event categories by the same amount preserving 

their distributions and relative separability. 

Advantages of the Integer-Based Lifting Line Wavelet 

Implementing a wavelet transform in a processing-limited device, and 

maintaining time resolution for the analysis of IEGMs, are important design 

objectives. The L WT implemented in this work accepts discrete-time integer-valued 

data and generates integer-valued WTC. The property ofperfect reconstruction still 

holds for the integer version of the L WT, thus the transform is lossless up to the point 

of ranking and pruning the WTC for reference definition. Reconstruction is not within 

the scope of this work and will not be discussed further. Due to properties given at 

§Properties of the Line Wavelet Transform, the comparison of the three discrete 

wavelet transforms (Haar, Line, and Daubechies 4) analytically in §Selecting the Best 

Basis, and the discussion in §Errors in Event Detection and Peak Alignment, the L WT 

was selected as the preferred basis for this work. 

Prior literature on wavelet decomposition of the IEGM refers only to the 

Daubechies orthogonal transforms, and usually only the Haar transform (Murray, 

1993; Batista, 1995; Zaffram, 1996; Anant, 1997; McClure, 1997; Azzam, 1998). 

Neither does there appear in this literature discussions about the advantages of the line 

wavelet over other wavelet bases, the advantages of biorthogonal transforms in a 

processing limited device, discarding the sub-band normalization factor, using integer 

values in transform, nor implementing the lifting version of the transform. 
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The predominant choice of wavelet basis in prior works, the Haar wavelet, has 

several nice properties. It is easy to understand and compact to implement. It is the 

prototypical wavelet providing the major features of all other WT from the simplest 

possible basis. However, the Haar transform has several shortcomings. Recall that, in 

the Haar transform, each odd value in the data is predicted by the even value 

immediately preceding it. Therefore, if a step change occurs in the IEGM between an 

odd sample and the even sample immediately following it, the time domain feature 

does not appear in the WTC until the next sub-band, at which point the time resolution 

has expanded by two. In other words, the Haar transform poorly resolves details 

depending on the parity of the sample. This presents an unacceptable deficiency since 

the upstroke ofa depolarization event has a 50% chance ofbeing located in the WTC 

of one sub-band or the WTC of another with twice the uncertainty in time. (Note: All 

other wavelet bases predict the odd sample with at least one sample preceding and 

following it, and do not have this parity drawback.) Additionally, the nominal Haar 

transform normalizes each computed coefficient by 1/.fi ,which requires floating 

point or at least fixed-point computation. When normalization is applied, values in 

successive sub-bands are cumulatively re-scaled by factors of 1/.fi , 1/2, 1/(2.fi),... , 

causing a corresponding shrinking of feature class differences in those sub-bands to 

below the computational resolution limit. This could cause the false rejection of 

discriminating features in lower sub-bands. For reasons given in this section and not 

noted by others, the normalization constant is omitted from the L WT in this work. 
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Finally, all finite sample transfonns must have a window boundary method and 

a prediction or assumption about what the signal behavior just beyond the window. 

Nominally, the Haar wavelet uses flat extension of the edge sample, which generates 

boundary discontinuities. The IEGM analysis-oriented works cited address none of 

these shortcomings of the Haar. This thesis proposes solutions to those deficiencies. 

When sources so far cited have not employed the Haar, those solutions used 

other Daubechies wavelets, always fourth or higher order. These bases require 

floating point computations for each filter coefficient above the requirement of the 

nonnalization constant. The higher order wavelets also have poorer time resolution 

proportional to their increased filter length. The longer filter length of these higher 

order wavelet bases were in fact developed for image processing where the data is 

sectioned into blocks the same size as the filter to achieve a processing time reduction. 

These methods are essentially smoothing or compression tools for quantities of data 

several orders of magnitude greater than the size of the data window used in this work. 

However, none of these drawbacks and benefits is addressed in sources whose topic is 

the analysis of IEGMs. 

In addition to these differences between wavelet families, there are three main 

processing methods for decomposition. These are convolution, pyramidal, and lifting, 

which are O(n2), O(nlog2 n), and O(n) in computational complexity, respectively. 

Figure 25 shows the three processing methods and the corresponding expansion of 

filtering steps as wavelet order increases. The values are a minimal number of steps to 
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perform the particular transform, as determined by the number of filter coefficients 

defined for that wavelet order. 

-+- Convolution Orthogonal 
-B- Pyramidal Orthogonal 
-e- Lifting Biorthogonal 
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Figure 25. For three different methods to compute the wavelet transform of one IEGM 

event, the number of multiply-add operations varies by wavelet filter order. 

However, the WT in this work is only over a short segment (32 samples), even 

at order = 2, the figure shows an order of magnitude difference between the pyramidal 

orthogonal method (24 filter steps) and the LWT (biorthogonal method 8 filter steps). 

The Haar WT is order = 1, and the Daubechies 4 WT is a fourth order transform. The 
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relative perfonnance of the L WT is indicated in the figure. Not included in the values 

is the additional overhead that would be required for floating point computation (in the 

orthogonal cases, and most biorthogonal cases) over integer only computations 

(biorthogonal order = 1, or 2 only with omission of the nonnalization constant). 

Implementing the wavelet transfonn using a non-lifting method or a higher order 

transfonn would present an unacceptable service life cost. 

Even with the benefits of the LWT discussed so far, Table 6 shows that the 

estimated cost ofoperating the L WT in an implanted device for every IEGM 

depolarization event for the lifetime of the device. 

Table 6. LWT Processing cost is estimated on a microprocessor and a DSP. 

Platform Code Cost Current Cost Reduction 
Factor 

Service Life 
Reduction 

Microprocessor 
(custom) 

2222 instructions 
4 cycleslopcode 
475kHz J.lP clock 

18.7ms/LWT 
1.87% duty 
100% duty Is 

1.67 months 
%duty 

3.14 months 
per channel 

DSP 
(custom) 

741 lines LWT 
I cycle I line 
475kHz DSP clock 

39.9J.lA I s 
1.56ms I LWT 
62.2nA I LWT 

3.8 months 
pA 

0.24 months 
per channel 
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The actual count of operations (move, increment, compare, add/subtract, shift) 

to execute the L WT on a 32 sample time window over all sub-bands is 2,222 

instructions. On the implanted device using a custom microprocessor operating at 475 

kHz, would reduce device lifetime by 3.l4 months. The DSP, on the other hand, 

shows an order of magnitude improvement in battery depletion for the L WT because 

the x 12 code efficiency and better power-off capability. 

The Boundary Handling Method 

In addition, a novel method of boundary handling is implemented that 

mitigates the introduction of artifacts into the coefficients, using problem domain 

knowledge of the IEGM. The L WT uses flat ('Haar') extension and linear 

interpolation on the left and right boundaries (APPENDIX). This work has addressed 

the drawbacks of other methods discussed here, and proposes a novel solution for 

these design objectives in the form of the integer valued lifting version of the line 

wavelet transform. 
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The Customized Classifier 

Historical recordings of IEGMs are disjoint from those seen in actual 

implanted devices, because they do not limit the variation in future morphologies. 

With a library of recordings, a classification system could be developed that would 

perform with high accuracy on the library. However, that particular classification 

system would be accurate on unseen true physiologic input only to the extent that the 

library contained data representative of all IEGM waveforms the implant might ever 

see. Implantation into a patient produces new data because of: (1) the individual 

patient anatomy and condition, (2) the precision of lead placement on the inside 

surface of the heart, and (3) the time varying properties of the lead-to-living-tissue 

interface. Generally, such a library is recorded using a consistent input filter function. 

Such a 'universal' classifier trained on this signal library would still be limited to 

implementations that matched the input stage filtering of the library. 

A classifier that is defined online, however, need only generate reference 

definitions based on the IEGM unique to a particular patient, filtered through a device 

input stage, which is unique due to component design tolerances. Therefore, the 

in-situ customizable classifier can be expected to generalize better than one designed 

for a library. Even the online method carries a caveat, that is, a very good feature 

generator would create independent features. When independence of features is 

difficult to determine (let alone achieve), orthogonal features will have to suffice. For 

the purpose of this thesis, these features will be biorthogonal (orthogonal between 

sub-bands) and non-redundant. Ultimately, the question is: 'Can the wavelet transform 
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generate features that are separable, that is, that generate a discriminating function that 

divides two classes (normal and abnormal) ofIEGM events. Chapter 5 will answer 

this efficacy question by presenting the results ofdecomposing IEGMs with the LWT 

and evaluating the features with the ROC. 

Instantiating the Classifier 

This section presents the synthesis of the definition phase. Nearby reference 

events from beat to beat should be consistent (low intra-class variance). The 

measurable outcome criterion that will demonstrate successful discrimination of 

classes is ~95% accuracy with 95% confidence. Traditional hypothesis testing can 

reject correct models simply because the power of the test is low due to small sample 

size (Jensen 2002). Classifiers based on only a few reference events have been 

demonstrated, achieving ~95% accuracy for classifying IEGMs, for as little as lOs 

(Strauss, Jung, & Rieder, 2000, p. 545) or just 10 events (De Voir, Schomburg, 

Ramachandran, & Lessard, 2002, pp. 176-177). Consider the likelihood that the next 

depolarization event will be just like the previous one. This is true in most rhythms 

and arrhythmias of interest. In the arrhythmia types where this does not hold, the rate 

is so high that effective contractions are not occurring even if there was a mechanical 

event for each depolarization event. At such high rates, the physician prefers that 

defibrillation therapy be provided regardless of the morphology of the event. Still 

higher rate periodic waveforms obscure the ability of the device to distinguish 

depolarizations from electromagnetic interference, and the safe mode involves pacing 

until the 'noise' subsides. Therefore, the implementation will follow the simple rule of 
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definition during sustained periods of normal heart rate variance, with the expectation 

they will consistent. F or sustained periods of elevated heart rate with low variance in 

interbeat tilnes, another training period should be initiated for a reference definition of 

a new class. The implanted device can also be purposely configured to induce a 

benign rhythm of abnormally conducted events, during which yet another reference 

definition should be generated. 

Feature Selection for the Purpose of Classification 

Information loss occurs through sensors because they are communication 

channels of limited capacity. Any additional intentional loss should be chosen for 

some benefit. The real depolarization event is four-dimensional and cannot be 

observed in the entirety. The IEGM available for evaluation by a human or machine 

intelligence has limited spatial and time resolution. It is critical that the evaluated 

signal contains features that allow differentiation of pathways through the tissue to 

separate events into categories. Humans do well at classifying IEGMs with visual 

inspection, while the device has the possibility of classification using features that 

humans cannot perceive. Though classification performed by these two systems can 

be compared, it is performed on different representations that should correspond to the 

same original event. Thus, the human expert and wavelet-based methods of 

classification can only serve as abstractions for each other. Quantifying the accuracy 

of human expert IEGM classification is not within the scope of this work, though 

human expertise will establish the benchmark for evaluating the performance of a WT 

based classifier. 
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For minimizing processing in the implant, the best transform would be the one 

that provides the benefit ofconcentrating the time samples of the depolarization event 

into the least number of values. Further loss of information results from compression 

methods, such as best basis or PCA. For example, PCA(§The Basis of Morphological 

Differences), is an O(n 3 ) transform of the data that maximizes the variance, extracting 

pre-ranked features without regard to class membership (Fradkin & Madigan, 2003, p. 

518). Nevertheless, if the resulting low magnitude features are discarded, there is no 

guarantee that remaining ones are any more capable of differentiating event types. 

Compression methods are also optimized for signal content that is stationary. Because 

it is non-stationary content that discriminates between events, at best there can only be 

a tradeoff between reducing processing load and maintaining classifier accuracy. 

Although compression oriented methods were applied to IEGM analysis in other 

works (previously cited), the drawbacks of those methods (highlighted in this section) 

were not presented in those sources. While this represents a general problem in the 

use of WTC for classifying other signals, the scope here will be limited to the IEGM 

and the novel contributions of this work. 

On the other hand, the general goal of classifier oriented feature generation is 

to find a transformation of the original signal that achieves the best possible class 

separation. Since, PCA only de-correlates data when it is non-Gaussian, an orthogonal 

WT can do no worse. In fact, the L WT is an O(n) biorthogonal transform that 

approximates the PCA (§Dimension Reduction Property). Regardless, it is a 
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requirement of this work to demonstrate the feasibility of the WT as a generator of 

features capable of class separation of IEGM events. 

The Wavelet Transform Dimension Reduction Method 

Having opted not to use a compression method, the dimension reduction task is 

now de-coupled from the transform. Therefore, the ROC is chosen to reduce the 

feature set because it is a distribution-free dichotomizer, and feature selection can now 

be directly coupled to class separability. Each point on the ROC curve corresponds to 

a confusion matrix (a contingency table for classifier accuracy) that results from 

varying a class threshold across the data values of a single feature. The goal function 

of the ROC is to reveal the best threshold for discrimination as indicated by the 

contingency matrix with the least off-diagonal sum ( error), corresponding to minimum 

dv for that curve. 

Features will be ranked relative to each other according to their discrimination, 

that is, the area between the ROC curve and x =[0 .. .1], or AVC. Features that have 

high intra-class variance, and low between-class separation, will have lower AVCs. 

Below some acceptance criterion, features yielding small AVCs will be discarded. 

The benefit for information loss here is: (1) features are selected that discriminate 

better instead of features that are merely larger in magnitude, and (2) the processing 

load on the device is still reduced, because the number of WTC has been reduced. 



92 
Benefits of an Implantable Wavelet-based Classifier 

When a morphology-based classifier can be implemented in an implanted 

device, the expertise of the physician is extended there also. Fewer false alarms for 

pseudo-arrhythmias result in reduced battery depletion and extend the lifetime of the 

device. Correct identification of normal versus abnormal events, also categorizes 

effectively versus ineffectively perfusing heartbeats (Fogoros, 1999, p. 244). 

Therefore, correct identification also reduces pacemaker syndrome by reducing the 

side effect of unnecessary pacing (Hayes, Lloyd, & Friedman, 2000, p. 56). Presently 

such a solution does not exist (Stroobandt, 2002, p. 443). The only implantable 

'morphological' classifier commercially available is still timing-based (QRS width 

metric) with an accuracy of 67% (Duru, Schonbeck, LUscher, & Candinas, 1999, p. 

1046; Gillberg and Koyrakh, 2002). Though discrimination as a basis for 

wavelet-based feature generation and selection for the classification of IEGM events 

in an implantable device is presented in this work, it does not appear in the cited 

sources. 

Additional benefits are available because of the reduced WTC feature set. 

WTC selected by classifier performance can be stored for later retrieval, and still 

provide a compression benefit. The implanted device has limited memory to store 

IEGMs for follow-up retrieval and off-line analysis, therefore, IEGMs are often 

compressed to such a degree that reconstruction yields only iconic waveforms. 

Physicians have already accepted this abstracted waveform introduced into the display 

at the correct time of the event. WTC features selected based on classification can be 
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used to reconstruct waveforms enhanced with details specific to that event 

class. Thus, the event presented to the human expert still may be iconic, but contains 

class discriminating information at a small cost in storage and communication time. 

Because only selected WTC are being stored and transmitted, communications 

time is reduced for off-loading stored IEGM data in home or clinical monitoring 

application. This benefit can be taken as: (1) a reduced energy usage from the battery, 

or (2) reduced transmit time, allowing the communication of more data from other 

services in the implant. Demonstrating the benefits of enhanced off-line 

reconstruction and reduced communications time are outside the scope of this work. 

Comparing Wavelet Transform Coefficients 

Figure 26 shows the previous two IEGM events from Figure 21 in the upper 

subplots, and a side-by-side comparison of WTC energy values resulting from their 

decomposition, where normal is ., and abnormal is 0 (lower subplot). The wavelet 

scalogram surface from Figure 21 is now displayed edge-on, so the values can be seen 

as bars extending up and down from zero. The sub-bands are rearranged side by side 

in a vector with each scale separated by:. Time resolution improves to the right along 

the x-axis (as explained in §Time Localization Property of the Wavelet Transform). 

The decomposition generates detail WTC first on the right (Scale = 2) and smooth 

WTC last on the left (Scale = 32). The WTC that are discriminating features are those 

whose values diverge for normal (.) and abnormal (D) event classes. 
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Figure 26. Wavelet transforms coefficients of two IEGM events. 

Temporal correlation causes smaller differences between adjacent time 

samples to generate, in general, smaller initial WTC values in the first sub-band (Scale 

2). At Scale = 4, the wavelet spans a larger non-correlating regions of the event, 

resulting in increased WTC values. The pair of values (_ and 0) to the left of: at 

Scale = 32 correspond to the means of the IEGM events in the upper subplots. 

In works cited, the method of reducing computational load is to abort WTC 

generation beyond a sub-band when further WT will produce no additional 

coefficients above some magnitude threshold. For example, execution of the WT 
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could be stopped before calculating all coefficients to the left of Scale = 16. Again, 

this is a compression-oriented method. 

Here, it is proposed that all WTC initially be computed for reference definition 

and stored at a cost of one full WT. After ROC analysis, a sub-band computation limit 

indicating further WT will produce no additional coefficients having discrimination 

(AVC) above an acceptance criterion is stored. In classification phase, the WT is 

truncated beyond the sub-band limit, saving processing. This method of conditional 

processing of WT sub-bands based on feature discrimination of IEGM event classes is 

unique, and was not discussed in works found. 
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CHAPTERS 


ASSESSMENT 


This chapter is organized as follows. First, some background concepts related 

to the assessment are explained. Second, the basis of the assessment design is 

described. Lastly, the assessment results are presented. 

Definition of Discriminator 

It is required in this work that IEGM events be correctly discriminated between 

categories with 95% accuracy. The discriminator is an input-output module that 

accepts a limited number of definitions (exemplars) corresponding to output categories 

during a definition phase, giving it the capability to dichotomize future un-seen data. 

Its discriminatory power are diminished by feature distribution overlap, which is 

inversely related to the separation of the class means and directly related to their 

variances. The discriminator ambiguity between class distributions is maximal where 

the probabilistic value of two classes is equal. 

The wavelet based feature extractor described by this thesis accepts time 

domain inputs limited in duration and amplitUde and provides input variables for an 

IEGM event discriminator system (De Voir and Schomburg, 2004), though it is not 

within the scope of this work to describe that system. Instead, wavelet transform 

coefficients (WTC) selected by a classifier-free method, the ROC AVC, will be 

evaluated for their discrimination. 
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Feature Reduction 

It is a requirement of this thesis that features be reduced in number prior to 

presentation to the discriminator. Feature reduction (through selection) ofmany WTC 

to one or a few is necessary for several reasons. (1) The processing load to the 

implanted device must be limited (§Advantages of the Integer-Based Lifting Line 

Wavelet). (2) The number of feature subsets is a combinatorial function of the feature 

count (§The Receiver Operating Characteristic Curve). (3) The number of 

observations must exceed the number of free parameters, where a rule of thumb from 

the general linear model (§Dimension Reduction Property) is 10 observations for 

every one parameter (Costello & Osborne, 2005, p. 7). (Note: This 10: 1 ratio can be 

accomplished through either increased observations, or the reduction of features.) (4) 

Outside of this work, exceeding a structurally dependent limit on feature count makes 

statistical classifier design less tractable, incorporates more noise, and overfits the 

model to the reference data (Schurmann, 1996, p. 255). 

Single Feature Evaluation 

To meet the requirement of feature reduction one may ask, 'Why not try the 

minimum feature count?' Therefore, the single best WTC will be selected and its 

performance as measured by accuracy of discrimination will then be assessed. When 

the L WT is performed, all resulting WTC are considered candidates for 

discrimination. For any given WTC, the ROC curve is a characterization of a simple 

threshold based one-dimensional classifier. Rightly or wrongly, feature data at or 

below the threshold will be categorized as 'negative,' or a normal event. Likewise, 
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feature data above the threshold will be categorized as 'positive,' or one of the 

counter-events, for example, T -wave or abnormal depolarization. The area under the 

ROC curve AUC is generated as described in §The Receiver Operating Characteristic 

Curve. If AUC < 0.5, it means that the normal event corresponds to feature values 

above the threshold, and vice versa for the counter-event. In this case, the classes are 

exchanged on either side of the threshold, and the AUC is re-evaluated. The WTC 

are rank ordered according to decreasing AUC. The single feature discriminator 

serves as a performance benchmark for later work that would seek increased 

robustness at a potential cost of increased processing. 

Assessment Design 

The assessment design has the following overall structure, which can be 

followed in Figure 27. From left to right in the figure, a single IEGM recording is 

divided into three non-overlapping time spans of equal length. The events found in 

each dataset are transformed by the L WT yielding some number of WTC. Inside the 

dashed box, the events will be bootstrapped (resampled with replacement), and the 

true class labels will be used to generate AUCs, thresholds, and accuracies. From top 

to bottom in the box, results generation for each of the three phases will be the 

following. In the reference phase (top), AUCs and thresholds will be bootstrapped for 

each of the 32 WTC. In the confirmation phase (middle), accuracies will be 

bootstrapped for each of the 32 WTC using thresholds found in the reference phase. 

At this point a decision rule selects the WTC with either the maximum reference AUC 

or the maximum confirmation accuracy. If there are two WTC with the same 
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maximum, the earliest computed WTC is selected. In the evaluation phase (lower), 

the final accuracies will be bootstrapped for the single WTC selected by the rule. 

Figure 27. IEGM observations are transformed into wavelet coefficients and reduced 

to a single discriminating WTC using true class data. 

Bias Correction and Confidence Interval Estimation 

Bootstrap resampling uses a limited number of observations to make estimates 

of population parameters (§Assessment Design) and thus may miss the true value of a 

parameter by some offset error (bias). Because the true parameter is unknown, 

estimates are accompanied by an expression of the limited certainty that the true value 



100 
lies within some range (confidence interval). The bias of an estimator is defined as: 

b = 0 
0 

- (J , where 0
0 

is an estimator, for example, a sample mean, and (J is the 

parameter, such as, the population mean. Because (J is not available, in bootstrap 

statistics 0
0 

is used as its surrogate. The estimator of the bias in the surrogate 00 is 

defined similarly as: b= OB - (Jo' where OB mean(Oi)' and 0; is the set of i iterates 

of the bootstrap estimate (Efron & Tibshirani, 1994, pp. 124-126). The biased 

corrected bootstrap estimator becomes: 0
0 

- b=2.0
0 

- 0B' The acceptance criterion 

in this work is 0.95 5; accuracy 5; 1.00. Therefore, only a one-sided lower confidence 

limit (LCL) is required for performance evaluation. The LCL exact solution PL can 

Nd-1(N}
be obtained by solving L 1(1 P L )N-k =1- a ,for PL ("Confidence Intervals," 

k=O K 

2005). Because N» 30, the LCL is computed as: (0 b)- Za • std(Oi)' where Za is0 

the critical value chosen for some a, such as a = 0.05. This later calculation ofLCL 

assumes that the mean of the estimator has a normal distribution. 

Statistical Evaluation of the Discriminator 

The ranking of areas under the receiver operating characteristic curves can 

only rank the relative statistical powers (P) of the features, it cannot quantify them 

(Elkan 2003). Therefore, the accuracy (tp + tn)/(!n + tp + tn + fP) of the best threshold 

(as defined in §The Receiver Operating Characteristic Curve) will be evaluated'on 

unseen data by bootstrap to generate a quantifiable outcome. In contrast to the stated 

95% acceptance criterion, state of the art devices discriminate supraventricular 
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tachycardia from ventricular tachycardia with ",50% accuracy according to a recent 

study of rate-based methods for single-chamber devices (Boriani et aI., 2003, p. 469). 

A sufficient number of records to evaluate the method of this thesis against the stated 

acceptance criterion with a margin of error of E = 0.05 for repeatability are ~ 73 

(Elkan, 2001, p. 429). The number of IEGM records in this work is 78. 

Effective Independence of Data Splits 

This section discusses the effective temporal independence of event 

classifications of intra-patient depolarization events across data splits (§Assessment 

Design) from two points of view. One may ask, 'How much time must elapse so that 

discriminator accuracy is not affected by temporal correlation?' The first way to 

answer this is to consider that the prediction of onset or continuation of any instance of 

a particular rhythm has not been demonstrated in the literature. Rather, the 

communication between working myocardial cells is a stochastic electrochemical 

process (Spach & Heidlage, 1995) through a microscopically inhomogeneous medium. 

The rapid dissemination of the stimulus via the conduction system and coupling 

provides the appearance of a macroscopically homogeneous wavefront and stability in 

the normal rhythm (Bieberle, Hensel, & Schaldach, 2001). In general, the physical 

structure (substrate) and the position of arrhythmia generators are slowly changing 

over months or years, and can be considered spatially fixed. However, beat-to-beat 

variation in the action potential is a genuine random process yielding a net 

unpredictability of any particular arrhythmia trigger (Zaniboni, Pollard, Yang, & 

Spitzer, 2000). Such a trigger event occurring spontaneously at just the right time for 
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the existing physical relationship to vulnerable tissue triggers an arrhythmia 

(Kraetschmer, 2002, pp. 22-25). Thus, to paraphrase Heisenberg, normal 

depolarization events have a "tendency to occur," while ectopic depolarization events 

have a "probability of occurring" (Heisenberg, 1958, p. 70). This underlying 

stochastic variation between IEGM events is no less for events that occur back to 

back, than those that occur one month apart (Stafford et aI., 1997, p. 412). 

Although correlation is not causation, a second way to establish temporal 

independence is establish an time span by which the IEGM data, and therefore the 

processes from which features are generated, can be considered temporally 

uncorrelated (refer to § 
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The Customized Classifier). The autocovariance ofwhite noise is the variance of the 

process at lag =0, and zero everywhere else (Hayes, 1996, p. 93). The limited 

sample white noise autocovariance has asymptote -ljN ±2/IN with 95% 

confidence (Ifeachor & Jervis, 2002, p. 255). Therefore, the time offset producing 

effective temporal independence for the IEGM will be defined as the lag producing 

>18 out of 20 autocovariance values within that confidence interval. The maximum 

time required for the autocovariance to diminish to the white noise level for any 

patient recording in this study was 31s. All data splits are an order ofmagnitude 

longer than this maximum time. Therefore, the assessment design in this work 

provides an adequate separation between reference, confirmation, and evaluation 

datasets in either case. The autocovariance provides a quantifiable duration of the 

possible corruption of the accuracy by temporal correlation. 

Data Description 

A proprietary collection of pre-annotated IEGMs is the standard to which the 

classification accuracy is being compared. The event annotations accompanying these 

recordings are defined as 'true' or 'actual' for the scope of this work. With respect to 

the receiver operating characteristic curve, such a classifier would have 100% true 

positives and no false positives. In the latter case, it is apparent that the rate-based 

classifier has no discriminatory ability for atrial rates equal to ventricular rates (1: 1 

A V conduction SVT cannot be distinguished from 1: 1 V A conduction VT). Therefore 

the rate based classifier is as least as poor as flipping a fair coin when morphology 

would be required to correctly discriminate rhythms. Arguably its accuracy might be 
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as low as zero in the case ofa poorly adjusted IPG that detected far-field or T-wave as 

events and classified the presence of an arrhythmia on the basis of rate alone. 

Proprietary IEGMs from 78 anonymized patient recordings were made during 

IPG implantation in Alessandria, Italy in 2004. These recordings are the most 

challenging kind because the leads are not mechanically stable, subject to motion 

artifact, accidental disconnection, electro-magnetic interference, and numerous device 

adjustments over span of the recording. Permanently implanted leads would provide a 

much more 'clean' signal morphology. Although the recordings average twice as long, 

the record lengths are truncated at 39 minutes due to a Matlab memory limitation. 

Sampling frequency was 512Hz, and all data was band pass filtered between 2Hz and 

189Hz (according to §Pre-processing of the IEGM). Amplitude resolution was 1 Obits 

within a full range of ±32mV. Originally recorded amplitudes are used without 

normalization to the full ADC range. The IEGM signal is windowed 32 samples long 

(62.5ms at 512Hz) centered on the peak of the event as shown in the upper subplots of 

Figure 26. 

Table 7 gives an overview of the IEGM recordings. The first column shows 

which event pairs are being discriminated for the data in that row, for example, the 

second row of data applies to the recordings for spontaneous atrial events versus paced 

evoked response events. The second column shows the total duration of recording 

time and number of patients. In the example, 40782s of recordings are spread over 19 

patient recordings. The third column contains the total numbers of events for each 

class. The ratio between classes in general does not approach 1: 1 because of natural 
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processes, device settings, and the non-ideal conditions just mentioned. Continuing 

the example, there were 16784 spontaneous atrial events to 6231 paced evoked 

response events. In the last column, the maximum autocovariance for any recording in 

that class is listed. Although this value is measured for all recordings, only the 

maximum time is reported here as a worst case for the required time separation 

between data splits. Finishing the example row of data, the worst-case time until the 

auto covariance diminishes to the noise level is 31 s. As noted in §Effective 

Independence of Data Splits, this is the worst case for the entire cohort. 
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Table 7. Patient data summary by event discrimination task. 

~II:,·; 
, ,-' / 

,Recording Number,.,f MajijIl.... 
. tiJtl~ .aolteount ' Ev ..ts 

.' .,A~'~y~,· 
Atrial 

Normal 
versus far-field 

31875s 28753 normal lIs 
24 records 17908 far-field 

Spontaneous 
versus pace 

40782s 16784 spontaneous 31s 
19 records 6231 paced 

Normal 
versus abnormal 

6350s 531 normal 4s 
2 records 936 abnormal 

Ventricular 

Normal 
versus far-field 

8825s 5019 normal Is 
4 records 1494 far-field 

Normal 
versus T -wave 

15607s 33661 normal 3s 
18 records 26734 T-wave 

Spontaneous 
versus pace 

18203s 11055 spontaneous lIs 
9 records 2664 paced 

Normal 
versus abnormal 

4679s 3264 normal 2s 
2 records 3309 abnormal 

Totals 

Record Length Record Count Event Count Autcovariance Max 

126321s 78 158343 31s 

Assessment Methodology 

Table 8 provides additional details of the assessment methodology process and 

flow of information through and between phases of the assessment design presented in 

Figure 27. The Matlab prototype models part of a larger system that pre-processes the 

IEGM to make a buffer of samples available to the L WT and the discriminator. In 

essence, the signal is prepared for extraction of the windowed depolarization events 

(steps 1 through 5) by band pass (includes anti-aliasing) filtering and quantization. 
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(Note: Here, the band pass is for morphological discrimination as opposed to event 

detection in §Pre-processing of the IEGM). The events are then transformed by the 

L WT and split for the three phases of assessment (step 6). Mean and 95% lower 

confidence limits are calculated for all parameters (steps 7 and 8). The WTC is 

chosen (step 9). Evaluation accuracy is calculated (step 10). Lastly, a calculation is 

performed on the energy saved by halting the transform in the evaluation phase after 

the chosen WTC has been generated (step 11). 

Table 8. The assessment methodology. 

1. Band pass filter IEGM 2Hz to 189Hz. 

2. Quantize amplitude data to 1 Obits. 

3. Calculate time to autocovariance diminished to noise level. 

4. Identify event time stamps. 

5. Identify event peak time stamps. 

6. L WT 32 samples centered on peak time stamps. 

7. Calculate reference ROC AVC and thresholds for 32 WTC on first 1/3 IEGM data. 

a. Bootstrap resample 1000 times each parameter mean and 950/0 lower confidence level. 

8. Calculate confirmation Accuracies for 32 WTC on second 1/3 IEGM data. 

a. Bootstrap resample 1000 times each parameter mean and 95% lower confidence level. 

9. Select the highest numbered WTC equal to max(confirmation accuracy). 

10. Calculate evaluation accuracies for best singl(f WTC on last 1/3 IEGM data. 

a. Bootstrap res ample 1000 times each parameter mean and 95% lower confidence level. 

11. Analyze energy savings from reSUlting sub-band distribution of evaluation accuracies. 
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WT Energy Consumption by Sub-band 

Step 11 in Table 8 uses the values at plateaus of the energy accumulated by 

sub-bands shown in Figure 28. 
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Figure 28. L WT energy costs can be reduced by not processing all the sub-bands. 

As the L WT progresses through the sub-bands, the proportion of energy used 

by the LWT accumulates toward unity. The distribution WTC in the sub-bands for 

evaluation accuracy reveals the energy savings possible for the discriminator. This 

energy cost plot can also predict the relative service life reduction for performing the 



109 
LWT within an implanted device on data sampled at 512Hz, 256Hz, and 128Hz. 

These sampling rates correspond to starting the LWT on the sub-bands 17 .. .32, 9 ... 16 

and 5 ... 8, respectively. Though, as will be seen, there is morphological information up 

to 175Hz, there is also successfully discriminating information at lower frequencies. 

Such a sampling rate reduction would allow additional service life savings, because 

proportionally 1/2 fewer samples require processing for each halving of the sampling 

rate. The upper attenuation comer of the pass band of Step 1 in Table 8 would be 

reduced proportionally to prevent aliasing. 

Assessment Results 

The next three figures and the table shows the results of selecting the best 

WTC for event discrimination of evaluation data from one of two alternatives 

(§Assessment Design). The first figure shows the distribution of accuracy on 

evaluation data divided into WTC and pooling all recordings without regard to the 

selection rule. The second figure shows the accuracy distribution on evaluation data 

comparing the two decision rules pooling all recordings and all selected WTC. The 

third figure shows the distribution WTC selected by both decision rules divided into 

sub-bands in order of calcuation. The table following summarizes mean accuracies 

found on the evaluation data sorted by event discrimination task (category pair). 

Figure 29 is organized as follows. The pseudocolor plot in the figure is 

arranged left to right by WTC (grouped by sub-band) in order of their calculation. 

White lines indicate divisions of the sub-bands corresponding to the cumulative 

energy function shown in Figure 28. From top to bottom are decreasing 950/0 lower 
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confidence limits of accuracy means in divisions of 0.05. The color in the plot 

provides an axis rising out of the page indicating the normalized bin count. In other 

words, a single column in the plot is an accuracy histogram for one WTC viewed from 

above. The colorbar on the right gives the scale of the normalized bin count. 
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Figure 29. Normalized evaluation accuracy means (95% LCL) organized by sub-band 

shows concentration of accuracy within the acceptance criterion. 

To reveal the most contrast, the color in the plot was scaled between zero and 

the maximum bin value (WTC #11, 0.95 ~ accuracy ~ 1.00). All recordings were 
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pooled for this figure, therefore for any particular column, the sum of all bin counts 

before normalization was 78. The top row of data (0.95 s accuracy s 1.00) shows the 

accuracy more diffuse in earlier than in later calculated sub-bands. Within sub-bands 

WTC corresponding to peaks or leading edges of events have higher accuracies. 

When the last computed sub-band is evaluated (WTC #1 and #2), event discrimination 

is comparing differences between mean energies of the events, not morphology. 

Figure 30 displays the evaluation accuracy for a WTC selected by either the 

reference AVC maximum (upper subplot) or the confirmation accuracy maximum 

(lower subplot). The figure is the marginal distribution of Figure 29 over all WTC 

filtered by the decision rule. The figure is organized as follows. The x-axis for both 

subplots is the 95% LCL of mean evaluation accuracies for WTC selected by the rule. 

There are no accuracies generated by the rule <0.80 so the x-axis ends there to show 

detail. The y-axes are normalized histogram bins of accuracies. All 78 recordings are 

represented in both the upper and lower subplots. The 95% LCL of the mean of each 

accuracy distribution is indicated by the vertical bar: in the subplots. It can be seen 

that WTC selected by the AVC maximum will result in evaluation accuracies that 

meet the acceptance criterion at least 97% of the time with a 5% error on repeatability. 

With the AVC max rule, there is some skew in the distribution toward 0.80. .In 

contrast, WTC selected by the confirmation accuracy maximum will result in 

evaluation accuracies that meet the acceptance criterion at least 98% of the time, 

where the tail of the distribution ends at 0.90. The threshold to discriminate events in 

either case is determined in the reference phase. 
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_ WTC Selection 
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Figure 30. Selecting LWT coefficients by either AUC maximum or confirmation 

accuracy maximum resulted in mean evaluation accuracies ~95%. 

Figure 31 displays the distribution of WTC selected by either the reference 

AUC maximum (upper subplot) or the confirmation accuracy maximum (lower 

subplot). The figure is the marginal distribution of Figure 29 over all accuracies 

filtered by the decision rule. The figure is organized as follows. The x-axis for both 

subplots is the WTC selected by the rule separated into sub-bands by the vertical bar:. 

The y-axes are normalized histogram bin counts of the time a particular WTC was 

selected by the rule. All 78 recordings are represented in both the upper and lower 
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subplots. The distributions the Aue max and confinnation accuracy max WTe 

selections show that the Aue max rule favors earlier computed WTe. This is 

confinned by summing the scalar product of the energy consumption curve (Figure 

28) and the nonnalized bin count of each distribution. 
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Figure 31. Distribution of selected L WT coefficients by Aue and confinnation 

accuracy maximums resulted in energy savings of 270/0 and 210/0. 

The energy savings by stopping the L WT after the Aue max selected WTe 

has been generated is 27%. For the tighter accuracy distribution in the lower subplot 
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ofFigure 30, the confirmation accuracy max rule shifts the selection WTC to those in 

later computed sub-bands. In the latter case, the energy savings is of early exit of the 

LWT is only 21%. 

Lastly, Table 9 summarizes the evaluation accuracies for each event 

discrimination task pair resulting either from the AUC max or confirmation accuracy 

max selection WTC. The table is organized as follows. The first column shows which 

event types are being discriminated for the evaluation data in that row, for example, 

the last row of data applies to the recordings for ventricular 'normal' (antegrade) events 

versus ventricular 'abnormal' (retrograde) events. All other columns give the 95% 

LCL of the mean evaluation accuracy for a WTC in that sub-band chosen by the rule. 

In each cell, the upper value is the AUC max result, and the lower value is the 

confirmation accuracy max result. An entry of Not Used' designates that no WTC was 

chosen by the rule in that sub-band for that discrimination task. Some values are 1.00 

due to rounding. Overall, the 95% LCL of the mean evaluation accuracy was ~0.95. 
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Table 9. Mean evaluation accuracies for the event categories by WTC sub-bands. 

':"/'.. i', .'::;,~,~:;::",';<J:/YA,! .. ,... "c,.',... . .', ' .. '" ,', . • " ," , ' ,'" " 

Qlstrl.t••$).l,: ,':':'.·i,~S!J~tJori ,'l\f~d Eval..ation Aeturaty oftheSelteled WTCbySu~.,nd 
1;' ak,": : ':":<:f:~"od" ", '," ,,',' , ' 
; ,~, ~,,:. r;"";',~i:,;Y;:i;jt', ,C:,: ,', ",', ,J~~~3~ 9~.16 s... $••4 ' 1...2 , " 

Atrial 

Atrial normal Aue 0.98 Unselected 0.96 Unselected Unselected 
versus far-field Accuracy 0.99 0.98 Unselected 1.00 1.00 

Atrial normal AUe 0.98 1.00 Unselected 1.00 Unselected 
versus pace Accuracy 1.00 1.00 1.00 1.00 Unselected 

Atrial normal AUe 0.96 Unselected Unselected Unselected Unselected 
versus abnormal Accuracy 0.96 Unselected 1.00 Unselected Unselected 

Ventricular 

Ventricular normal AUe 0.99 Unselected Unselected Unselected Unselected 
versus far-field Accuracy 0.99 0.96 Unselected Unselected 0.99 

Ventricular normal AUe 0.97 UnseJected 0.99 Unselected 0.98 
versus T -wave Accuracy 0.98 UnseJected 1.00 Unselected 0.98 

Ventricular normal Aue 0.93 0.97 Unselected Unselected 0.99 
versus pace Accuracy 0.97 0.98 Unselected 0.99 0.99 

Ventricular normal AUe Unselected 0.96 Unselected 0.89 Unselected 
versus abnormal Accuracy Unselected 0.91 0.97 Unselected Unselected 
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CHAPTER 6 


CONCLUSION 


Thesis Recap 


In Chapter 2, the IEGM was introduced as a signal source for generating 

features to classify cardiac events. In Chapter 3, the principles of acquiring that signal 

and the benefit of applying the wavelet transform, such as time/scale localization, to 

that signal was discussed. In Chapter 4, the aspects of a working system for wavelet 

transform for feature generation were introduced. In Chapter 5, the accuracy results of 

using wavelet transform coefficients as features in the separation of IEGM event 

classes was reported and analyzed. 

Discussion 

The objective of the work presented in this thesis was to evaluate the feasibility 

of categorizing IEGM events using wavelet-generated features. Using human IEGM, 

windowed and aligned time domain data was decomposed by an integer-only 

adaptation of the lifting line wavelet transform. These adaptations specifically address 

issues of limited computation within an implant, sampling rate, ADC resolution, and 

properties of the transform itself that affected feature generation. Further, a systematic 

method was developed to extract a subset of all features to reduce processing load 

while maintaining discrimination of event types. 
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Summary of Contributions 

1. 	 Feasibility was demonstrated in a computer simulation prototype of 

discriminator that has both high sensitivity and specificity for 

morphological information in the bipolar IEGM sampled at 512Hz and 

1Obits of amplitude resolution. The method was not blind to, but rather 

correctly discriminated normal from abnormal (retrograde), and 

pseudo-events (T-waves and far-field). This demonstrates the possibility 

of highly accurate online event classification, and therefore classification 

of the important rhythms (Table 1), in an implanted device. This was 

accomplished without a redesign of existing technology, such as, the 

requirement of a new sensor (§Use of the Intra-Cardiac Electrogram). 

2. 	 The method in this work used temporally independent datasets to choose 

features in the definition phases (reference and confirmation) to 

discriminate events in the evaluation phase with 2:95% accuracy over 78 

recordings with repeatability error of 5%, greatly exceeding the sensitivity 

and specificity of present devices (§J ustification of Work, § Benefits of an 

Implantable Wavelet-based Classifier, §Statistical Evaluation of the 

Discriminator). 

a. 	 A method was proposed and applied to assure the adequate size of 

the data splits (§Effective Independence of Data Splits) where the 

maximum time of possible correlation affected accuracy was 31 s. 
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b. 	 There were 78 recordings with a cumulative length of 126, 321s 

and 158, 343 events classified. 

3. 	 Features used for discrimination were generated by an adaptation of the 

line wavelet transform developed for this work: 

a. 	 Windowed time samples of IEGM depolarization events were peak 

aligned by a method developed for this work (Table 5). 

b. 	 Employing numerous problem domain insights, an adapted version 

of the discrete time lifting line wavelet transform (L WT) was 

developed for this work, accompanied by an extensive analysis for 

the choice of this transform over others not found elsewhere (§Time 

Scale Correlation of the Wavelet Transform, §Selecting the Best 

Basis, §Errors in Event Detection and Peak Alignment, 

§Advantages of the Integer-Based Lifting Line Wavelet). 

Improvements to the nominal L WT included omission of the 

float-valued-scaling factor, integer operations only, a custom 

boundary handling method, partial execution of the transform, and 

processing improvement in the Splitting function. The adaptations 

did not significantly reduce the accuracy, and improved the service 

life reduction costs (Figure 25 and Table 6). 

c. 	 The postulate that detail coefficients are as important as smooth 

coefficients in correct discrimination is borne out by the results 

(Figure 31) contrary to the compression-oriented literature 
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(§Limit tions of Present Da Event Detection Methods, §Coarse 

Scale S lection of Coefficients). 

4. 	 A systematic classifier independent method of feature ranking and 

reduction was applied; that is, an application of the receiver operating 

characteristic curve area to rank wavelet transform coefficients for their 

IEGM discrimination power (in contrast to the prior literature §The Basis 

of Motphological Differences). The method reduced the feature count to 

one while still achieving 2:95% accuracy over the 78 IEGM recordings. 

a. 	 The alternate methods AUC or confirmation accuracy methods of 

choosing a WTC were analyzed for trade-offs of energy savings 

and evaluation accuracy. Energy savings was 27% and 21%, 

respectively, for the AUC and confirmation accuracy method, 

respectively. The 2:95% accuracy acceptance criterion was met for 

97% and 98% ofpatient records, for the AUC and confirmation 

accuracy method, respectively 

5. 	 Bootstrap (resampling 1000 times with replacement) was performed to give 

bias corrected statistics with confidence intervals for all parameters. 

Limitations 

The constraints on this work specifically required inferring an event category 

from frames of limited pre-annotated IEGM event observations. After the definition 

phase, further samples from the IEGM were not allowed to contribute to the reference 

definition, but were subject to evaluation. Thus, there is a risk of a Type I error 
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because the alternate hypothesis (IEGM events can be discriminated by WTC) is 

suggested by the data, the non-favorable data having been discarded by ROC analysis. 

In the case of discriminating between categories, the method is exposed to many 

samples of normal and fewer examples of abnormal events. This disparity in relative 

occurrence promotes Type II errors by missing detection of the class 2 event whose a 

priori probability is small. 

Disorganized rhythms require a different method that was not explored here. 

Atrial fibrillation, for example, produces so many different morphologies for the same 

class of arrhythmia that the exemplar method is likely untenable. 

The IEGM is non-stationary, and cardiac tissue changes will cause a slow 

evolution of the exemplar to a new form (Swerdlow et aI., 2002, p. 438). The trigger 

for relearning the best feature was not examined here, but it is considered that too 

many events falling into a rejection region between classes should trigger re-training 

of the classifier. However, updated reference definitions can also be made available to 

the algorithm during implantation testing of the device, using rate-based rules, during 

the clinical follow-up, and within other offline scenarios using stored IEGMs from the 

patient. Recordings were a maximum of 40minutes long, and thus do not demonstrate 

efficacy of the method on circadian or longer-term morphological changes. 

Closing 

A modified wavelet based feature extraction and new application of dimension 

reduction for the classification of human cardiac electrogram depolarization 

waveforms has been demonstrated by this work. The algorithm discriminates cardiac 
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event types accurately within a model of a processing limited device, such as, an 

implantable pacemaker or cardiodefibrillator. Thus, this thesis shows the possibility 

of implementing this feature for cardiac rhythm therapy devices. 
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APPENDIX 

This appendix presents an intuitive derivation and elucidations of the algorithm 

to perform the line wavelet transform (L WT). This solution is designed to exist within 

an implantable pacemaker or defibrillator, and within this environment, there is a 

pre-existing sense detection system that detects intracardiac signals including 

depolarization events. The depolarization event can be time windowed to separate it 

from the whole signal. By operating the L WT on the depolarization event, the time 

duration, and therefore battery drain, is further minimized. An introduction to the 

L WT will be provided through explanation, derivation, and demonstration. 

The Line Basis Function 

Before the derivation is presented, it is helpful to understand that by translation 

and scaling any smooth function can be decomposed by a line basis function. It is 

assumed that when an IEGM is sampled adequately, that its points approximate a 

smooth function f. Allow this function to be scaled for mapping to the unit straight 

line along y = x, that is, the segment from the point (0,0) to the point (1,1). Figure A 

shows three progressively magnified views (top to bottom, right to left) of some 

arbitrary function. The purpose of the figure is to show that by increasing resolution; 

eventually a unit diagonal line segment can be scaled and shifted to approximate any 

finite differentiable function. 
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Figure A. Sliding and scaling allows resolution of all points of f. 

The unit line can be composed of arbitrarily smaller sized sub-intervals 

(limited by the resolution and sampling rate of the ADC), then there will be a 

sub-interval of y = x that brackets (from above and below along the diagonal) the 

fixed point on f that intersects y =x (Casti, 1996, pp. 73-74). Still further, by 

scaling and sliding, it is possible to arrange this for all the resolvable points of f. At 

small scales, the geometry of f will be locally consistent (Casti, 1996, p. 93), 

therefore, two cases will occur in the analysis process of the wavelet transform. First, 
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when a line is a good approximation for the three adjacent points (the two bracketing 

and the fixed point of f , the local information content of the signal will be subsumed 

in the basis function (a line). Second, for a discontinuity, the information content 

yields a non-zero residual (detail coefficient) from the linear prediction. 

Subsequently, for the next pass at the next larger scale, only the resulting smooth 

linear values are operated on in the next stage of the wavelet transform so that the 

function appears piece-wise linear punctuated by discontinuities. Residuals to the line 

fit are increasingly winnowed at each step of the transform. 

The method for approximating with line segments and removing residuals with 

the L WT is described in the following sections. Though the discontinuities that persist 

to the later passes of the transform give the overall shape of the event, the earlier 

calculated small-scale details may yet be significant in terms of a dichotomizing 

classifier. 

Transfer Function of the Line Wavelet 

The Line Wavelet decomposition of a signal is accomplished through two 

filters (Cohen, Daubechies, & Feauveau, 1992, p. 542). The lifting line wavelet 

transform is not causal (Table 3), therefore, there is a delay of samples. The impulse 

response of the filter is shown in Figure B. 
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Figure B. Impulse response of discrete time lifting line wavelet transform filters. 

The magnitude and phase of the transfer functions of these two blocks are 

shown in Figure C: 
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Figure C. Magnitude and phase response of low and high pass WT blocks. 

By splitting the output recursively using these two building blocks, and 

applying subsequent decomposition to the resulting low pass output stream only, 

multiresolution analysis can be performed O{n) with the applicable delays or storage 

to synchronize the outputs of the analysis levels. 

In Figure D, the left most block is the discrete signal. Once a sample passes 

through the wavelet function HI (z) it becomes a detail dJ-level and is not processed 

further. The samples passing through the scaling function Ho{z) become smoothed 
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values (Sj-Ievel) which are treated like the original signal. Note that each filter step is a 

different band pass with its own cutoff frequency. Therefore, each filter is followed 

by a downsampling by 2 to undo the duplication of samples that results from the same 

sample passing through both the high and low pass data paths (Daubechies, 1996, p. 

512). Additionally, with each level, the filter must be expanded to span double the 

time scale of the previous level by being applied only to the output of the 

downsampler, hence, the time scaled versions H~ (z) and H~(z). 

';., "IH1(Z)! .. I ~~ 

L8-, I .. I.;.,!h 

Figure D. Dataflow diagram of analysis levels. 

The method described so far is of complexity O(n 2 
). Fortunately, all finite 

impulse response wavelet transforms, (for example, §Transfer Function of the Line 

Wavelet) have a Lifting equivalent method, which is presented next. 
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The Indexing Method Controlling Scaling 

As described in §Time Scale Correlation of the Wavelet Transform, the line 

basis function is re-scaled recursively to cover the large and small features of the time 

domain data. The small example in Figure E demonstrates this relationship. The 

scaling of the Line Wavelet Transform (L WT) is defined as follows: The discrete time 

IEGM signal is windowed so that it is a limited sequence of length N equal to an 

integer power of two. Let j = log 2 N where j is the number of sub-bands resulting 

from the transform ranging from log2 (N) to zero in steps of -1 . 

n = O•.2i-O - 1 = 0 .. 7 

i 5j•o[111 I5J.o[21 I I5j.o[31 I I5j.o[41 I 15j.o[SI 15j.. [61 15j.o[71 

n = 0 .. 2j -1 - 1 = 0 .. 3 

I5j., [II I5j., [21 1 I5j., [31 Idj., [II I I,,·,[31 1 I"., [51 I"., [7] 

l =0..1 

I5j.,[111 1".,[111 1".,[31 1 1".,[111 I,,·,[31 1 1".,[51 1 I,,·, [7] I 

gsj-3[O] 1".,[11 Idj.,[lll I".,[~ 1".,[11 1".,[31 1 I"., [S] I,,·, [7] I 

Figure E. Scaling spans the signal values. 

When j = 0, the last detail value (d ) and most smoothed value (s ) is 

calculated, all other values have been reduced to detail coefficients, and the transform 
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has ended. The range of the index ( n ) indicates the scope of the values on which to 

perform the transform and is controlled by n =O..2i 1 for each sub-band. As the 

range of values shrinks by half, the scale of the wavelet function is expanding by two. 

The transform starts (top row of Figure E) with N =8 arbitrary signal values, white 

boxes, (no WTC, gray boxes, have been calculated yet and j - 0 =3). Iteration of the 

transform proceeds from the top row of the figure to the bottom. The number of 

sub-bands or transform levels to complete is j = log2(N) = 3. For the first pass of the 

transform, the scope of values is all eight values indexed n =0..7. Note that as the 

scope of n appears to be shrinking on values, the representation of the wavelet basis is 

expanding by two with each pass until it spans the entire length of the original signal 

(Refer again to Figure 21). This converse effect of expanding the scope of the 

representation as the number ofvalues is shrinking occurs because the present 

smoothed values, labeled by n, are combined to generate half as many smoothed 

samples for the next pass. In other words, the piece-wise linear representation of the 

signal is reconstructed for the next step with half the pieces from the previous step. 

Therefore, the remaining smooth values now represent longer time spans within each 

band. When only one smooth value is left, it represents the mean of the entire time 

span of the original data. 

Linear Prediction 

Now the constraint has been implied that the transform preserves the mean in 

the smoothed values. This would be necessary since the only way to convey that 
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mean to the final single smooth value is through the smoothed values of the 

predecessor steps. For a sequence of length 2) , the mean of the sequence (s ) is: 

21_1 

S = 2-) . LSJn] 
n=O 

(This is the familiar arithmetic mean). Let the predictor of any particular value in the 

sequence be a line segment between the two adjacent even indexed samples on either 

side of it, that is, 

Sj_l [n]= ~(Sj [2. n]+ sJ2. n+ 2D, where sj-l[n] is an estimator sA2. n+ 1]. 

Note the subscripts j show that the right hand side values generate the left 

hand side j -1, that is, the resulting smooth value for the next pass of the transform. 

In addition, using this notation, the predecessor odd entries are indexed as: 

sJ2· n +1]. 

The Detail Value 

Figure F illustrates this. The blue 0 line is the arbitrary signal. For every odd 

sample (blue squares at 1, 3, 5 ... ), a prediction (red 0) is made based on the two 

adjacent even samples ((0, 2), (2,4), (4, 6) ... ). It is the difference between this 

predicted value and the actual signal value that is stored as a detail or wavelet 

coefficient. This difference is: 

dj _1[n] = sJ2. n+1]-~(sA2'n]+sJ2. n+ 2]). 
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The right hand side reads: the odd sample minus the arithmetic mean of the 

two adjacent even samples. Note that for sample number 7 in the next figure, it has no 

even value that comes after it (the sample window is finite and support is compact). 

80 

[] Arbitrary Signal 

o Linear Prediction 

60 
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-800 2 3 4 5 6 
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Figure F. Even samples predicting odd samples. 

The boundary handling method shown in Figure F is the nominal linear 

interpolation method using the mean of the two prior even samples to predict the last 

odd sample. In the figure, the boundary value (blue 0 at x = 7 ) is predicted by linear 

interpolation of the prior two even values (blue 0 at x = 4 and x =6 ) resulting in the 
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prediction value (red 0 at x = 7). In the following §The Predict Function, several 

alternative boundary handling methods, including the method proposed by this work, 

will be presented. 

The Smoothed Value 

It is required that the mean be preserved over the smoothed values between 

bands, that is, 

2j
-

l -l 1 2J-l 

LSj-l[n] -. LsJk] 
n=O 2 k=O 

(Jensen & la Cour-Harbo, 2001). The right hand side (predecessor band) has twice as 

many smoothed samples as the left hand side (successor band). As the detail d j _ [n]1 

was generated by the odd sample and the two adjacent even samples, the smoothed 

value for the next sub-band Sj_l[n] is updated by the even sample and the two new 

detail values on either side of it. The relationship for this is expressed by: 

Sj_l[n] =sj[2. n]+ A· (di-1[n -1]+ dj_1[n]). 

This reads: the smoothed value for the next sub-band is generated by the even 

value on the predecessor level plus a scaled sum of the detail coefficients. The scale 

factor A is derived as follows: 

Distributing A: 

Sj_l [n] =sJ2. n]+ A· (di-Jn -1])+ A· (dj_1[n]) 

Recall that the detail just generated is: 
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dj_[n] =sJ2 on+ 1]-~(SJ2on]+sJ2 n+ 2])01

If n =1 , for instance, then 2· n =2 and the two samples being predicted are I 

and 3, therefore, the earlier detail generated from sample 1 is: 

dj_[n-l] sJ2 on-l]- ~ (sJ2 on-2]+sJ2 on])1 

Replacing the detail terms with their even value equivalents: 

Sj_l[n] = sJ2 n]+ A-(SJ2o n-ll-~k[2 n- 2]+ sJ2 n») +0 0 0 

A-(sJ2 n+ 1]-i(SJ2 n]+ sj[2 0 n+2»)0 0 

Distributing: 

Sj_Jn]=sJ2 on]+AosA2 on-l]- ~ osA2 on-2]- ~ osJ2 on]+ 

Aos[2.n+l]- A.s.[2.n]- AoS [2.n+2]
.I 2.1 2.1 

The constraint to be satisfied can be expanded into even and odd terms: 

LSj-Jn]= 1 . Ls.Jn] = 1 Ls.J2on]+ 1 . LSj[2 on+1]0 

n 2 n 2 n 2 n 

Gathering the even and odd terms: 

A A A A)"'s'_1[n]= 1- ------ ''''s.[2.n]+{A+A)''''s.[2.n+1]~.1 ( 222 2 ~.I ~.1 
n n n 

This gives simultaneous equations for A and the solution: 
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1 1 1

1 2·A =- 2·A= A=­
2 2 4 

The generation of the smoothed successor value is: 

Sj_Jn] =sJ2. n]+ ! . (dj_,[n-I]+ dJ_,[nD. 

The Splitting Function 

In the Lifting wavelet transfonn, downsampling by two is accomplished by 

separating even and odd samples before filtering. Figure G is the flow diagram. Note 

that, although the pseudocode diagram involves a 'copy', the in-place transfonn can be 

accomplished entirely with pointers without moving any values. 

An example on a small sample of arbitrary integer values should demonstrate 

how the splitting function works. The values are chosen purposely as a numerical 

sequence to show that they have been redistributed into even values in the first half 

and odd values in the last half. 
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split 

ptr to left most even value 
ptr to right most odd value 

while left and right do not cross 

for odd-even pairs 
from left to right 

copy even value 
move odd to even position 
write even to odd position not 

for 

not 
while

move left ptr to right 
move right ptr to left 

I split done 

Figure G. Flow diagram of the splitting function. 

'Left' and 'Right' from Figure G are pointed to the first 'even' and last 'odd' 

values to process in Figure H. Note that in the final pass of Split, right and left have 

crossed causing the function to exit. Not seen elsewhere in the literature, it can be 

seen that element '0' and element '7' are already in the correct position for 'even' and 
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'odd,' respectively. Therefore, by judicious initial placement of the pointers 'Left' and 

'Right' at the start of each sub-band calculation, a small but cumulative reduction in 

processing is achieved. Iteration of the transform proceeds from the top row of the 

figure to the bottom. 

~8 

D 
~ 

Figure H. 	 Splitting redistributes even and odd values, for operations on 'smooth' 

(white box) and 'detail' (gray box) values, respectively. 

Signal elements are redistributed, evens (white boxes) to first half, odds (gray 

boxes) to the second half of the N element region. Note that first even element index 0 

and last odd element N-1 are already in the correct position, and so never move. Since 

evens and odds have lost their original parity, they are now the new 'smooth' and 

'detail' values, respectively. With each pass of the transform, even and odd values are 
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split producing the new smooth and detail values for the next application of the predict 

and update iterations of the transform. Note that, only the new smooth values are 

operated on by each successive pass of the transform. The result is an integer power 

of two scaling of the original wavelet basis function (the line). The result scaling is 

that the ratio of the scaled filter bandwidth to the center frequency is constant through 

the sub-bands and the Qof these filters is constant (Theodoridis and Koutroumbas, 

2003, p. 247). 

The Predict Function 

The flow chart in Figure I delineates the flow of the operation that follows 

splitting of the signal data in the forward wavelet transform, that is, the predict 

function. 

The purpose of Predict is to generate the new detail value, which is the residual 

from the prediction. Predict proceeds from left to right taking pairs of new smooth 

values (generated the split operation) and computing arithmetic mean as a prediction. 

The predicted value is subtracted from target detail value leaving a signed difference. 

This remainder stored in place of the old detail value. 
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while smooth values left to right 

smooth value has mate to right two samples remain 
no 

not 
while 

Figure 1. The predict function. 

The following example in Figure J demonstrates the flow diagram for predict 

function. Iteration of the transform proceeds from the top row of the figure to the 

bottom. In the example, integer values are used and rounding is by truncation. 
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detail 

B~ G 
mean------------------~ 

~ ~i I:l 
I smooth ,rr ~ ~ mean--=--.J 

detail 

B~I [f m~------, o 
smoo-th~ 
~ GBE 

Figure J. Predict leaves the residual in place of the detail. 

For non-boundary values, the Line wavelet predict function linearly 

interpolates the expected value of the detail element d; [n] formerly between two 

adjacent smooth elements sj[2. n]and sj[2. n + 2] giving the detail value estimator: 

sA2. n+ 1] = sJ2. n]+ sJ2. n+ 2] 

2 


This is the point slope formula for a line and simplifies because s./ [2. n] is 

translated back to the origin and the sampling interval is fixed so Ax can be 

normalized to one. Division by two can be accomplished by right shifting 

(truncation), and the prediction value Sj [2. n + 1] is subsequently subtracted from the 
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detail value. The difference is the wavelet coefficient (WTC) and can be thought of as 

a residual or prediction error. The new detail value is stored in the location of the old 

one. 

Exception cases exist for the time sample and iteration limits of the transform. 

The first exception case occurs when the right edge detail value is predicted; the right 

most two smooth values are used. F or the detail value at the right hand edge of the 

data, there is no corresponding value sj [2. n + 2]. There are two common alternatives 

to the nominal right edge boundary handling method (§The Detail Value and Figure F) 

and a third new method proposed by this thesis. The first and most simple method is 

called the 'Haar approximation', which assumes that values past the window boundary 

become zero: 

s'[2.n+l}= s'[2.n}+O _ [2.n} 
2 - 2 

Another method uses the point slope formula for a line but double weights the 

right most of the two even values: 

2.s[2.n+2]-s.[2.n]
S,. [2 . n + 3] =.1 .I (Kaplan, 2003). 
. 2 

The two previous methods are linear interpolation and generate edge effects. 

The edge effects can be minimized by using the problem domain knowledge that the 

tail end of the depolarization waveform is often a decaying ramp. Barring the 

processing cost of the exponential function, a line approximates such a ramp at 

minimal cost. Again, the point slope formula for a line simplifies because Sj [2. n] is 
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translated back to the origin and the sampling interval is fixed so ax can be 

normalized to one. Therefore, this thesis proposes the linear extrapolation: 

sA2.n+3]= 3· [2·n+2]- [2.n] 

2 


The second exception case occurs when the recursion of the transform leaves 

two values (a single smooth and a single detail). In this second case, the single 

smooth value is the predictor. This single smooth value has accumulated the average 

of all other smooth values through the transform levels. The prediction value in this 

case is sj[2. n+ 1] =8.1[2. n]. 

The Update Function 

The purpose of the Update function is to generate a new smoothed value that 

preserves some moment of the original data through the sub-bands. A requirement on 

the update function (§The Smoothed Value) for the L WT is to preserve the mean. 

This mean is accumulated through the scales. The detail information is incorporated 

into the smoothed value in the update operation. The flow chart (Figure K) shows the 

operations performed. 
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offset to detail partition 
set smooth ptr to left edge 

while smooth values left to right 

set ptr detail value 

detail value has mate to left 

yes 

half mean detail pair updates smooth 

left edge 

half single detail pair updates smooth 

not 
while 

store smooth update sum 

set ptr to next smooth 

Figure K. The update function. 

The worked example in Figure L shows the left edge handling for the case of a 

single detail value to update a smoothed value. Iteration of the transform proceeds 

from the top row of the figure to the bottom. The next two steps show the nominal 

case of the two corresponding detail values updating the smooth value. Only a few 

steps are shown for brevity. 



Figure L. Update preserves the mean by adjusting smooth values. 

The Forward Line Wavelet Transform 

The L WT produces WTC by recursively scaling the span of operations Split, 

Predict, and Update data values until a single smooth value remains. Figure M shows 

the flow diagram of the forward transform. Here 'forward' mean analysis or 

decomposition as opposed to synthesis or reconstruction. The recursive signal 

separation of the L WT then orthogonalizes not only the information content of the 

signal but also noise components (§Dimension Reduction Property). An integer only 

version of the L WT is preferred for several reasons. First, floating-point values are 

not uniformly spaced in a finite resolution system and can create a false distribution 

outline for the feature. Second, although the implant can use fixed-point it is much 
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more complex to implement than integer representation. Third, integer valued wavelet 

coefficients are lossless and retain full reconstructability of the original signal (even 

truncation effects are reversible by the synthesis version of the transform if system 

requirements in §Present Pacemaker Input Stage Architecture are met). 
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fonvardTrans 

set scope to length of signal 

while scope at least two values 

split: partition evens and odds 

predict: odds with evens, save details 

update: evens with details, save smooth 
not 

while 

halve scope to smooth values only 

fonvardTrans done 

Figure M. Forward transform (split, predict, update, rescale). 
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