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Nonlocal electrodynamic modeling of fluorescence characteristics
for molecules in a spherical cavity

M. H. Hider and P. T. Leung*
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The emission characteristics for molecules in a spherical metallic microcavity are computed using a nonlocal
electrodynamic model, based on a theory previously published by Fuchs and Claro@Phys. Rev. B35, 3722
~1987!# for the multipole polarizability of a sphere. Both radially and tangentially oriented molecules at
arbitrary locations inside the cavity are considered, and the results are compared with those from both the local
response theory and those for molecules outside a spherical particle. The issue of reciprocity of the solutions
for each of the sphere and cavity cases, respectively, is examined in the light of the nonlocal effects. It is
observed that for emission frequencies below the surface plasmon frequency of the cavity material, the non-
local effects in general lead to less surface-induced modifications of the molecular properties, similar to the
situation for a spherical particle. However, the reciprocity nature between the solutions for the sphere and
cavity disappears in the presence of nonlocal effects.

DOI: 10.1103/PhysRevB.66.195106 PACS number~s!: 41.20.2q, 42.50.Ct, 42.60.Da, 33.70.Jg

INTRODUCTION

The emission characteristics from molecules confined in a
microcavity have been intensively studied in the last two
decades in a variety of different contexts such as cavity
quantum electrodynamics~CQED! ~Ref. 1! and semicon-
ducting microcavities.2 Due to the modification of the pho-
tonic density of states in the cavity,3 subtle QED effects can
be manipulated and studied, and various molecular emission
properties can be controlled by adjusting the cavity param-
eters. Aside from emissions from individual molecules, co-
operative emission and energy transfer among a group of the
molecular dipoles in the cavity can also be dramatically
modified by varying these parameters.4 Potential applications
by achieving such control of molecular emission and inter-
action properties in a cavity range over a diversity of fields,
from photochemistry to optoelectronics.5

Among the different geometries, the spherical cavity is
the one which has been studied very frequently by both theo-
rists and experimenters. Because of the simple geometry, the
theoretical solution of a dipole~or a two-level system! in
such a cavity can be obtained with high accuracy and analy-
ticity, in both classical and quantum mechanical
approaches.6–12 In addition, experimental studies on such
systems can also be achieved via spectroscopic monitoring
of dissolved ions and dyes in liquid microdroplets.13–15 Be-
sides spectroscopy, the solution to this problem can also pro-
vide for a useful solvent model in physical chemistry.16

In our present study, we will establish a model which
allows us to calculate the modified emission frequency and
the decay rate for molecules in a spherical cavity using non-
local electrodynamics. Although quantum mechanical mod-
els for this problem have been considered in the literature,
the classical phenomenological~CP! model often provides
simple approach which can account for many experiments
with sufficient accuracy.3,17 In particular, detailed parameters
of the emitting molecule such as the relative location and the
transition dipole orientation in the cavity can easily be incor-

porated in the CP approach. In a previous experiment by
Barneset al.,14 the CP model was found to lead to a discrep-
ancy for droplets with dimensions much greater than the
emission wavelengths of the molecules, which are dissolved
inside the droplets. A subsequent theoretical investigation
based on quantum theory in the strong-coupling condition
between the dipole and cavity was reported to be able to
account for the discrepancy observed.9 However, as in most
CP models,6–8,10–12 nonlocal effects were ignored in the
model applied by Barneset al., and these effects can be sig-
nificant, especially for molecules near the surface of the mi-
crodroplets. These nonlocal effects refer to the wave vector
dependence of the dielectric response of the cavity or drop-
let. In our work below, we shall study these effects in the CP
model and shall limit our formulation to cavities with dimen-
sions small compared to the emission wavelengths, so that
retardation effects can be ignored. Under this limitation, the
dipole-cavity interaction can be approximated using electro-
static solutions and the nonlocal effects can be introduced in
a relatively simple way. It is of interest to note that fluores-
cence of molecules in these ‘‘nanobubbles’’ has been studied
intensively in several recent works.8,11,12 Moreover, it ap-
pears that none of these has considered nonlocal effects,
which can be of significance as demonstrated below.

THEORETICAL MODEL

The nonlocal theory for the electromagnetic interaction
between a charge or dipole and a spherical particle or cavity
in the CP approach has been intensively studied in the litera-
ture. This includes, for example, the continuum solvent
model of Basilevsky and Parsons,16 the generalized suscep-
tibility ~propagator! method of Labani and co-workers,18 and
the nonlocal theory for the multipolar polarizability of
spheres introduced by Fuchs and Claro~FC!.19 Previously,
we have applied the FC model to study the emission charac-
teristics of molecules near a spherical particle.20 In the fol-
lowing, we shall extend the FC model to the case of a dipole
inside a spherical cavity~of radius a!, accounting for the
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radial and tangential orientations of the transition dipole mo-
ment of the molecule. To be specific, we shall assume the
inside of the cavity to be vacuum surrounded by a metallic
medium.

Consider a spherical boundary atr 5a. The main idea of
the FC model is to assume a fictitious continuation of the
medium ~with a nonlocal dielectric response! beyond the
geometrical boundary (r 5a). By introducing an additional
boundary condition~ABC! to require the radial components
of the displacement vectors (Dr) to be discontinuous~corre-
sponding to the presence of a fictitious external surface
charge atr 5a), the electric field can then be smoothly ex-
tended across the geometrical boundary, thus accounting for
the nonlocal dielectric response of the medium.

Without loss of generality, we consider a dipole with an
arbitrary location on thez axis. For a dipole (mW ) at ~d, 0, 0!
oriented radially~along thez axis! in a ~vacuum! spherical
cavity ~Fig. 1!, the electrostatic potentials can be obtained by
following the FC theory19 as follows:

F~d,r ,a!5(
l

S Alr
l1m l

dl 21

r l 11 D Pl~cosu!, ~1!

F~r .a!5(
l

da2Fl~r !Pl~cosu!, ~2!

FD~r .a!5(
l

da2
1

2l 11

al

r l 11 Pl~cosu!, ~3!

where

Fl~r !5
2

p E
0

` j l~ka! j l~kr !

«~k,v!
dk. ~4!

In the above equations,d is the discontinuity ofDr into the
fictitious medium,«(k,v) is the nonlocal dielectric function
of the isotropic medium,Pl is the Legendre polynomial, and
j l is the spherical Bessel function. Note that the two poten-
tials in the medium give the electric and displacement fields,
via E52“F and D52“FD , respectively. The corre-
sponding results for a tangential dipole at~d, 0, 0! oriented
along thex direction can be obtained as

F~d,r ,a!5(
l

S Blr
l2m

dl 21

r l 11 D Pl
1~cosu!cosw, ~5!

F~r .a!5(
l

da2Fl~r !Pl
1~cosu!cosw, ~6!

FD~r .a!5(
l

da2
1

2l 11

al

r l 11 Pl
1~cosu!cosw, ~7!

wherePl
1 is the associated Legendre function.

Following FC, by matching the values of bothF andDr
~with Dr52¹rFD for r .a) at the geometrical boundaryr
5a, one obtains the coefficientsAl in Eq. ~1! andBl in Eq.
~5! as follows:

Al5
mdl 21

a2l 11 lD l
NL , ~8!

Bl5
mdl 21

a2l 11 D l
NL , ~9!

where D l
NL is defined as the nonlocal reflection coefficient

and is given by

D l
NL52

~j l21!~ l 11!

j l~ l 11!1 l
, ~10!

with j l(v)5@(2l 11)aFl(a)#21 being the ‘‘effective dielec-
tric function’’ obtained through the introduction of a nonlocal
response«(k,v) in Eq. ~4! for Fl . Note that had one worked
in the local response theory, one would have obtained very
similar results as in Eqs.~1!–~9! except thatj l in Eq. ~10!
will be replaced by«(v), the local dielectric function of the
medium. To apply the above results to study the emission
characteristics of a molecular dipole in the spherical cavity,
we resort to the CP model17 which gives the reduced molecu-
lar decay rate and the frequency shifts in the form

g

g0
511

3q

2k3 Im~G!, ~11!

Dv

g0
52

3q

4k3 Re~G!, ~12!

whereq is the intrinsic quantum yield of the molecule,k the
emission wave vector, and the quantities are normalized with
respect to the free decay rate of the molecule. The functionG
in Eqs. ~11! and ~12! is defined as the field from the cavity
acted on the molecule per unit dipole moment and can be
calculated from Eqs.~1! and ~5! with the results in Eqs.
~8!–~10!. The detailed results forG for the two orthogonal
dipole orientations are summarized in Table I. For the special
case of a ‘‘centered dipole,’’ only thel 51 term survives in
both Eqs.~1! and ~5! in the limit d→0 and they yield iden-
tical results when applied to Eqs.~11! and~12!. For compari-
son and for a complete reference, we have also given the
results for the case of a dipole outside a spherical particle
and the corresponding results in the local response theory in
the same table.

FIG. 1. Geometry of the dipole-cavity problem.
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It is clear from Table I that in this approach, all the results
for the nonlocal response theory can be obtained from the
corresponding results in the local theory by replacing the
dielectric function by the ‘‘effective dielectric function’’j l in
the FC theory.19 We have to remark that the results obtained
in our present approach are very similar to those obtained
previously by the ‘‘propagator method,’’18 except that these
latter results were expressed in terms of discrete sums over
the wave numberk, which required more involved numerical
evaluation. In addition, the previous application of the results
obtained in Ref. 18 was limited to the calculation of the
dipole-cavity interaction energy and has not been applied to
the study of molecular fluorescence, which requires the cal-
culation of also the field strength acting on the dipole.21 In-
cidentally, we note that the method of ‘‘reciprocity’’22 which
enables one to transform easily between the sphere and cav-
ity results stops working in the nonlocal case, due to thel
dependence of the functionj l . This point can be illustrated
more explicitly by using a specific model for the nonlocal
dielectric function«(k,v) such as the hydrodynamic model,
as shown in the following section.

NUMERICAL RESULTS

For illustrative purposes, we have computed Eqs.~11! and
~12! according to the hydrodynamic model for the nonlocal
dielectric response:

«~k,v!512
vp

2

v~v1 iG!2b2k2 , ~13!

where vp is the bulk plasmon frequency,G the damping
constant, andb25 3

5 vF
2, vF being the Fermi velocity of the

metallic medium.19,20 The local result~Drude model! corre-
sponds to settingb50 in Eq.~13!. Using Eq.~13!, the func-
tions Fl and hencej l andD l can be evaluated in analytical
form in terms of the modified Bessel functionsI l andKl .19

Since upon the transformationl→2( l 11) the functionsI l
andKl do not remain invariant, we see that this reciprocity
transformation between the sphere and cavity results for the
local case, as obvious from the results in Table I, breaks
down in the presence of nonlocal effects.

In our numerical illustrations, we have assumed a vacuum
cavity in silver. The numerical constants needed in Eq.~13!
for silver are given as follows:20 vp51.3631016 s21, G
52.5631013 s21, and vF51.403108 cm s21. Figure 2
shows the computed normalized decay rates~in logarithmic
values! as a function of the molecule position at a distance
measured from the center of the cavity for a fixed emission
frequency atv50.7vsp . The diameter of the cavity is fixed
at 10 nm. It is seen that while the nonlocal effects in general
lead to smaller surface-induced effects, they are particularly
significant for molecules close to the cavity wall (d
55 nm). In addition, while the tangential dipoles experience

TABLE I. Summary of results

Dipole
orientation

Geometry~of
environment! Local response theory Nonlocal response theorya

Radial Sphere
G'52(

l
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rd
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l
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2~ l 12! D l

NL-spha2l 11
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sph52

l ~«21!

l ~«11!11
D l

NL-sph52
l ~j l21!

l ~j l11!11
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G'52(
l
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2~ l 21!

D l
cav
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l
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D l
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a2l 11
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~ l 11!~«21!
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l ~j l11!1j l

Tangential Sphere
Gi52(

l
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l
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Gi52(
l
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2
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a2l 11 D l
cav Gi52(

l
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2
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cav52
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aThe ‘‘effective dielectric function’’ in the nonlocal response theory is defined according to the FC theory
~Ref. 19! as

j l5
1

(2l 1 l )aFl
5

1

(2/p)(2l 11)a*0
`@ j l

2(ka)/«(k,v)#dk
.

Note thatr d is the distance measured from the center of the sphere or cavity to the position of the dipole.
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a relatively smaller decay value due to the opposite orienta-
tion of the image dipoles,7 the results for both orientations
merge at the center of the cavity (d50) as expected. Figure
3 shows the corresponding behavior of the cavity-induced
frequency shift~in logarithmic values! in which redshifts are
obtained for an emission frequency below the surface plas-
mon frequency. It is of interest to note that nonlocal effects
can lead to a suppression of the surface-induced shifts by an
order of magnitude for molecules close to the cavity wall.
Next, in Figs. 4 and 5, we show the spectral plot of the decay
rates~in logarithmic values! and frequency shifts versus the
emission frequency of the molecule. It is noted that while the
multipole resonance structures are more pronounced in the
nonlocal theory as was observed before in the case of a

spherical particle,20 all the resonance frequencies are blue-
shifted in the case of a cavity. This can be understood simply
by comparing the dipolar surface plasmon resonance of a
spherical particle with that of a spherical cavity. While the
resonance condition for the sphere in the local theory is
«(v)1250, that for the cavity can be obtained via a ‘‘reci-
procity transformation’’«→1/« ~Ref. 23! as 112«(v)50.
Thus, using the ideal undamped Drude model, the former
predicts a resonance frequency ofvsp5vp /), while the

latter predicts a frequency ofvsp8 5A2
3 vp5&vsp

'1.4vsp . In comparison, the resonance according to the lo-
cal theory is shifted to about 1.2vsp for the cavity case as
shown in Figs. 4 and 5. The small discrepancy arises since
damping is included in the dielectric function we used. Fi-
nally, shown in Figs. 6 and 7 are the emission properties
~with the normalized decay rate in logarithmic values! as a
function of the cavity size for diameters up to 10 nm. Note

FIG. 2. Normalized decay rate as a function of the position of
the molecule at emission frequency~normalized to the surface plas-
mon frequency! fixed at 0.7. Distance is measured from the center
of the Ag cavity with diameterD510 nm. Note that logarithmic
values are used for they axis.

FIG. 3. Frequency shift~normalized to the free decay rate! as a
function of distance. The details are the same as those in Fig. 2.

FIG. 4. Normalized decay rate as a function
of normalized emission frequency for a fixed lo-
cation of the molecule atd54.6 nm from the
center of the Ag cavity of diameter equal to 10
nm for ~a! a radial dipole and~b! a tangential
dipole. Note that logarithmic values are used for
the y axis.
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FIG. 5. Normalized frequency shift as a func-
tion of normalized emission frequency atd
54.6 nm from the center of a Ag cavity of
diameter510 nm with results for~a! a radial di-
pole,~b! a tangential dipole, and~c! a comparison
between the radial and tangential cases in the
nonlocal theory.

FIG. 6. Normalized decay rate as a function
of the diameter~D! of the cavity with fixed emis-
sion frequency atÃ50.7 and fixed distance 0.4
nm from the cavity wall. Note that logarithmic
values are used for they axis.
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that here the molecule is fixed at a distance (D/22d
50.4 nm) from the cavity wall. While it is seen that the
surface-induced effects decrease with the increase in cavity
size, in agreement with previous results established in the
literature,14 one sees that the nonlocal effects once again lead
to an overall decrease in such effects. Though this is in a
direction leading to an account of the discrepancy observed
between theory and experiment in the work of Barnset al.,14

our current theory is not applicable to cavities with sizes
much greater than the emission wavelengths as is the case in
the work of Barnset al.14 Thus it would be of interest to
extend the present nonlocal model to go beyond the long-
wavelength limit to account for all electrodynamic effects in
the phenomena. Although retardation effects in the context of
nonlocal electrodynamics have been studied before,24,25most
of these previous works are limited to either plane-wave in-
cidence and/or plane-boundary geometry. To our knowledge,
the same kind of effects for dipolar emissions in the vicinity
of a spherical boundary have not yet been studied previously
in the literature.26

DISCUSSION AND CONCLUSION

Within a simple model based on the theory of Fuchs and
Claro for the multipolar polarizability of a sphere19 and the
hydrodynamic model~HDM! for free electrons, we have il-
lustrated the nonlocal effects on the interaction between a
molecular dipole and a spherical cavity. It is now appropriate
to give an assessment of the accuracy and the limitation of
the results obtained from this simple model. First of all, the
Fuchs-Claro theory is an application of the semiclassical in-
finite barrier~SCIB! model, which is known to be imperfect
in several aspects, such as in the abrupt drop of the electronic
density across the geometrical boundary.27 Recent work on
the modification of the SCIB model to accommodate a
smooth variation of this density across the surface28 can
therefore provide one way of improving the accuracy of our
present results. In addition, there also exist in the literature
many different approaches going beyond the SCIB model
which treat the surface nonlocal effects more accurately.27,29

Even within the SCIB model, one could have used more

accurate nonlocal dielectric functions other than the HDM. It
is well known that the HDM is accurate only for free-
electron metals like aluminum and will be limited for noble
metals such as silver where the interband transitions froms
andd electrons~and their mutual interaction! are important.
In fact, there exist many models~e.g., the Lindhard-Mermin
model! in which both plasmon and exciton can be accounted
for and with respect to which the HDM is only the lowest-
order approximation in the wave vector.30 In addition, Lieb-
sch has established an approach based on the density-
functional theory which can treat thes-d electronic
interaction and lead to a more accurate description of the
surface plasmon excitation for silver.31

Hence we see that there is plenty of room for one to
improve on our present SCIB-HDM model which will lead
to more accurate modeling results for the nonlocal effects.
However, our intention here is to limit to a qualitative illus-
tration of these effects using the simplest possible approach.
In spite of this, we believe that our model should have some
limited validity, even for noble metals, since it has been es-
tablished experimentally that the free-electron model can ac-
count for the optical conductivity of these metals in the in-
frared and visible regions.32 In addition, there has been
speculation that the errors due to application of the SCIB
model may in some case cancel, fortuitously, with those from
the use of the HDM when applied to silver, leading to a
reasonable prediction of the dipolar surface plasmon shifts
for silver particles as the particle radius decreases.27

Thus, in summary, the present results should have rel-
evance to the fluorescence from molecules embedded in
nanocavities.8,11,12 We also remark that our results can be
easily extended to the case with ‘‘nanodroplets’’ by simply
replacingj l by j l

21 in the expression forD l
cav ~with similar

changes for the local results!. For those experiments using
liquid droplets of sizes in microns or tens of microns, our
present model must be generalized to take into account elec-
trodynamic retardation effects before they can be applied to
such microcavities. However, the two general features we
have observed with nonlocal effects—that is,~i! their signifi-
cance for molecules near the cavity wall and~ii ! the decrease
in surface-induced effects—should have some general valid-
ity. In addition, we have observed that in the presence of
nonlocal effects, the simple ‘‘reciprocity relation’’ between
the results for the case of a sphere and those for a cavity no
longer exists, and one must solve the two boundary value
problems independently to obtain solutions for each of the
two cases.
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