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Shell correction for the stopping power of K electrons
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(Received 25 February 1985; revised manuscript received 12 August 1985)

In view of the inapplicability of the asymptotic expressions for the stopping number available in

the literature at high energies, an alternative approach is taken to compute the shell correction to the

stopping number of E electrons. Anholt's formula for the E-shell ionization has been used to calcu-
late the excitation function for longitudinal interaction and numerical integration over energy has

been carried out to evaluate the shell correction. Comparison with other theoretical calculations is

made. It is proposed that, with the inclusion of relativistic effects, an asymptotic expansion of the

stopping number with a leading-term logarithmic in the energy of the incident particle would be
more meaningful and might enable one to extract the relativistic contribution to the shell correction
from it.

INTRODUCTION

The evaluation of the shell corrections to the Bethe for-
mula for the stopping power of matter has remained an
active area of research ever since the pioneering work of
Bethe and collaborators in the early 1950's. ' By consid-
ering the optical oscillator strength and the mean excita-
tion energy of the target atom, they were able to obtain
some asymptotic formulas for the shellwise stopping
number (8;) for various target elements using screened
hydrogenic orbitals. The shell correction (C;) could then
be extracted from a comparison made between the exact
8; obtained from numerical integration and the asymptot-
ic 8; so obtained. The results of this approach have been
reviewed in the literature by Uehling and Fano. '"
Developments along this line have been carried on by
Khandelwal to cover the entire Periodic Table for the K
and I. shells which have the most important contributions
to shell corrections and, quite recently, improved asymp-
totic formulas have been obtained using Hartree-Slater os-
cillator strengths by Khandelwal. 9 Aside from this line of
development, recently there have been different ap-
proaches attempted by others such as the extraction of Cx.
and CL from explicit Born-approximation calculations on
subshell stopping powers by McGuire' and the kinetic
theoretical description by Sabin and Oddershede" based
on Sigmund's formalism. ' In spite of all these, Walske's
results ' have many times been regarded as references for
comparison between "hydrogenic calculations" with ex-
perimental or other theoretical results. ' ' It is the pur-
pose of this paper to point out that due to the nonrela-
tivistic nature, the asymptotic formulas given in the litera-
ture are not apphcable for high-incident energies and
hence the calculation of the shell correction by exploiting
these formulas may not have general validity. Further-
more, it will be desirable to include the relativistic nature
of the K electrons for heavy elements. %e have therefore
in this work followed an alternative approach to integrate

the shell correction numerically and the results are com-
pared with those from other theoretical investigations.
%e shall limit ourselves only to the E shell contribution
(Cx) in this paper and always take proton as the incident
particle.

THE STOPPING NUMBERS

The asymptotic formulas of Walske and Khandelwal '

can be summarized as follows. The stopping number 8x
is expanded in inverse power of the incident particle's
velocity as follows

8K(~K 9ir ) SK(~K )ln9K+ TK(~K ) CK(~K gx )

CK(~K~ 7K) UK('gir)tlirt + ~K(le)'tlK + ' (2)

In (1) and (2), (9» is the screening parameter which in-
creases with the atomic number of the target atom and
six=u /Ztt with u being the incident particle's velocity
and Zx —Z —0.3 the effective charge of the target atom.
The coefficients SK, Tx, Utt, and Vtt are listed in Refs. 8
and 9 and we have used everything in atomic units in this
paper. Because of the nonrelativistic nature of both the
incident particle and the E electrons assumed in deriving
these formulas, the results are not applicable in the limit
of very large pe's corresponding to high incident energies
or in the case with heavy target elements. For high-
energy incident protons, it is more suitable to express g~
in the form

137
'

ZK

0.938

Ep

as explained later on with Ep being the energy of the pro-
ton in GeV.
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While Bx can be described by the asymptotic form us-

ing Eq. (1), it can also be obtained by exact integration.
In the first Born approximation and by considering only
the direct Coulomb interaction (i.e., only the longitudinal
photon effect), Bx can be written as

Bx(8x re)= Jii, dW Jg dQ P—g(Q),

with

8 iFp(Q) j

Nw(Q) = (4)

where Fii (Q) is the inelastic Coulomb form factor for the
excitations and ionization of the target atom. W and Q
are the energy and momentum transfers in atomic units.
From kinematics and conservation of energy and momen-
tum, one can set W;„=Ox and Q;„=8' /4gx. ' For
hydrogenlike wave functions, E~(Q)

~

has the follow-
ing form according to Anholt

exp ——tan '[2k/(Q+1 —k )]
k

= 2'd'
~
~w(Q)

~

'= (3Q+ ~)Q
3 [1—exp( —2n. /k)][(Q —k +1) +4k ]' (5)

where

d= 1+
ZgQ

2

'2 —1

1+(W —1)
2

'2 —1

(6)

heavy target elements. Furthermore, it is also worthwhile
to point out that the expansion formulas for Bx given in
the literature lose their asymptotic nature completely once
the relativistic nature of the K ele:trons is taken into tak-
en into account (the 1 factor) as shown in Fig. 2. In the
following, therefore, we attempt to recompute Cx includ-
ing the d term by following an alternative method origi-
nally suggested in Walske's paper.

(7)

arises from the normalization constants since we have
used semirelativistic Darwin wave functions to describe
the atomic K electron. Similar but somewhat different
expressions have also been obtained by Davidovic et al. '

but since Anholt's results agree better with experiment, we
have here adopted his formalism. Previous formulations
using Schrodinger wave functions would be equivalent to
the above results by setting d =1.' a in Eq. (7) stands
for the fine-structure constant. Numerical integration for
Eq. (3) has been carried out for various elements using a
256&&256 points Gaussian quadrature for all energies. At
low energies, our results reproduce the previous results if
we set d =1. At higher energies, where the asymptotic
formulas of Walske and Khandelwal are not valid, our ex-
actly integrated results for Bx with and without the effect
of d are shown in Fig. l. It is clear from this figure that
the use of the Darwin wave function gives very different
results from those using the Schrodinger wave function
for target elements with a large Z, since the K electrons
of the heavy atoms are quite relativistic in nature. In fact,
Anholt had pointed out earlier' that the tables published
previously ' have to be modified due to the inclusion of
the factor d, although for light elements such as carbon
there is essentially no difference with or without the d
term. However, for light elements, i)x becomes very large
at large incident energies and hence Eqs. (1) and (2) can-
not be applied. Taking into consideration this fact and
the effect of the d term, we conclude that the previous
Cx's calculated from Eqs. (1) and (2) are of questionable
accuracy for high-incident energies for both light and
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FIG. 1. Stopping number 8~ and the effect of d on it. The
solid line represents the exact results of this work and the dash-
dotted line represents the integrated result without the factor d .
The curve labeled a is for C (8J(.——0.64) with the range of q~ be-

ing 60~ gz ~600; the integrated results with or without d al-
most overlap with each other. The curve b is for Ni (8~ ——0.8)
with the range of q~ being 5 ~ gJ(- ~ 25 and the curve c is for Pm
(8~ ——0.9) with the range of q~ being 1 ~ q~ & S.5.
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CALCULATION OF Cg

Bethe, Brown, and Walske have considered the following function:

W2/4

X(e~,q~)= f dW f, dg —Pw(g) —f dW f, dQ P—w(0)

W QI W

g 0 0
—lim f dW f dg —P (0)—»m f dW J dg —Pw(Q)i /4g» Q g 0 0 Qi Q

and have shown that X A-In' +8 for all rls and fixed ez. Hence by comparing (1) and (8), one can find C» as

—Cg ——Bg —X .

(8)

In what follows, we shall first rederive Eq. (8) of Ref. 4 in a bit simpler way than the original one and then apply numer-

ical integration techniques to compute Cz from Eq. (9).
The first integral of Eq. (8) can be rewritten as

J dW f dQ —Pw(g)= fw dW fi~4 dQ Nw(g)

W 0 W 4g~

+f dW f, dg —P (Q)+f dW f dQ P—(Q). (10)

Substitute (10) into (8), recombine terms and we can write

W2/4

X(e„p,)= f" dW J„,
'

dg —Pw(g) —f dW f, dg —Pw(0)+ f dW J„, dQ —[Pw(g) —P (0)]

—f dw f„dg—Pw(g) .

Substituting (3) and (11) into (9), we get

W~/4

—Cz= f dW f, dQ Pw(g) —f dW f, dQ Pw(g)+ f dW f, „dQ Pw(0)
~K

W W ], /4g~
+ J, dW f,„dQ Pw(g)+—J, dW f, dQ —[(tw(Q) —Pw(0)l (12)

Let us denote the last integral by C' and rewrite it as follows:

00 ]/4"& 1 00 1/4q~C'= f dW f dQ [4'w(g) —Pw(0)l —f dw f, dg —[O (Q) —0 (0)] . (13)

Interchanging the order of integration in the first term in (13) and applying the Bethe suin rule' in the form

w =, d8' wo (14)

W2/4

dg —Pw(g) —f dW f, dg —Pw(g)+ f dW f, dW—Pw(0)—C = f" dWJ",
~K

00 1/4g~—fw dW f dQ —[kw(g) —0'w(0)1.

we get only the second term left for C. Substituting back in (12) and neglecting the fourth term in (12) because it be-

comes less than 10 for g& & 0.5, one obtains

If we rewrite the last term in (15) as

W~/4—fw "W f, dQ —[Aw(g) —Nw(0)1 —fw dW f,„dQ—4'w(g)+ fw dW J,„dQ—Nw(0»
JS iK W IEC

(16)
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FIG. 3. Comparison between this work and that of %alske
{Ref. 4) for Ck. The solid line represents the results of the
present work and the dashed line represents %'alske's results.
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substitute (16) back in (15), simplify and regroup terms,
we arrive finally at Eq. (8) of Ref. (4),

(17)

FIG. 2, Comparison of the integrated results for 8~ with the
asymptotic formulas given in Ref. 8. The solid line represents
the exact result with the factor d . The dash-dotted line
represents the integrated result without the factor d and the
dotted line represents the results of the asymptotic formulas.

cerned. In fact, it will be very interesting if one can argue
physically what the trend of the C» should be with
respect to the variation of atomic number of the target
element. It should also be remarked that the curves in
Fig. 3 are trustworthy only for not too high values of i)»
since the expansion of C» in O(l/i)») will never vanish
since i)» approaches a maximum value as the velocity of
the incident particle approaches that of light, whereas we
expect that no shell correction is necessary for incident
particles with infinitely high energies. We suggest the
lower limit 0.2&1/i)» for the C» curves to be trust-
worthy. Furthermore, since the Bethe sum rule [Eq. (14)]
holds exactly only for nonrelativistic atomic wave func-
tions while we have been using Darwin wave functions in
our formalism, the results for heavy target element (e.g.,
for 8» ——0.9) will not be very accurate. However, since
the term d does not play an important role for light
atoms (see Fig. 1), we expect that our results for Ni
(8» ——0.g) and Al (8» ——0.7) would still be quite accurate

The comparison of C» for Al from different calcula-
tions is shown in Fig. 4. It is interesting to note that

Note that we have only applied the sum rule once in our
derivation. With the Pii(Q) being given above [Eqs.
(4)—(7)], we have computed C» via numerical integration
for various elements. Incidentally, we found that it is
more convenient to manipulate with the four integrals in
Eq. (15) than the two in Eq. (17) because of faster conver-
gence and above all, the first term in Eq. (15) is just the
8» which we have computed before and the third term is
independent of i)». In Fig. 3 we show a comparison of
the results obtained in this work and %alske s original re-
sults for two elements: Ni (8» ——0.8) and Pm (8» ——0.9).
Figure 4 shows a comparison between the ~present result
with the results from other calculations. ' '

).6-

l.5-

(4-

i.0-

0.9-

0.7-

DISCUSSION AND CONCLUSION
04

0 0.5 l. 5 2.0

It is seen in Fig. 3 that the results obtained in this work
are in general smaller than those of Walske's original cal-
culations. Furthermore, the results here seem to show a
reverse trend as far as the screening parameter (8») is con-

FIG. 4. Comparison of Cz for Al from different theoretical
calculations. a is the result of this work, b is %'alske's results
(Ref. 4), c is the result of McGuire (Ref. 10), and d is the result
of Sabin and Oddershede (Ref. 11).
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FIG. 5. Stopping number for Ni. a includes only longitudi-
nal effect and b includes the sum of longitudinal, transverse,
and spin-flip effect.

FIG. 6. Stopping number for U. a includes only longitudinal
effect, b includes the sum of longitudinal and transverse effects,
and c includes the sum of longitudinal, transverse, and spin-flip
effects.

while the present result is quite close to %alske's original
result, both results are consistently smaller than the result
of McGuire. '0 It may be more interesting to note that the
result of Sabin and Oddershede" lies just between the two
results mentioned above, being very close to the "hydro-
genic results" for high-incident energies and very close to
McGuire's result for low-incident energies. It would be of
great interest if we can understand more physically the
behaviors of these various results. Finally, it might also
be of interest if one can flnd new asymptotic formulas for
B» which better flt the exact integrated results in Fig. 1

and reproduce the C» curves in Fig. 4 at the same time.
However, from previous investigations ' the "saturation

characteristics" of the B»'s will disappear if we also in-
clude the relativistic effects, namely, the transverse and
spin-flip effects. ' ' Figures 5 and 6 show the results for
Ni and U from which we can see the importance of the
spin-flip effect for heavy elements. Furthermore, it is
found that with the inclusion of relativistic effects, B» be-
comes almost linear in ln(E&) and hence we propose that
it might be more meaningful to seek asymptotic expansion

of B» with a leading logarithmic term in energy (rather
than in velocity) of the incident particle. In other words,

should be defined to be proportional to energy only if
all these other relativistic effects are included. In that
case, we might be able to extract the shell correction accu-
rately for all energies with the relativistic effects (mainly
the spin-flip effect for heavy target atoms) on C» being
included. Of course, one is always left with the possibility
that other processes (e.g., pair creation in the atomic field
of the target) may come in which suppress the B» curve
again towards saturation at high-incident energies so that
an expansion in velocity (-rl») with modified coefficients
may still be possible. All these will be left as a future
study in the relativistic effects on the shell corrections of
Bethe's theory of stopping power of matter.
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