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Dynamical theory for modeling dipole-dipole interactions in a microcavity:
The Green dyadic approach

R. L. Hartman and P. T. Leung
Department of Physics, Portland State University, P.O. Box 751, Portland, Oregon 97207-0751
(Received 29 May 2001; published 19 October 2001

A dynamical theory for modeling the dipole-dipole interaction in a microcavity is formulated using the
Green dyadic approach. To our knowledge, this theory is one of the most general in many aspects of modeling
the phenomenon. It accommodates an arbitrary number of layers adjacent to the cavity, constant but arbitrary
dielectric properties within each layer, inclusion of retardation effects, arbitrary dipole orientations, and an
unlimited number of interacting dipoles. Numerical results for the emission properties of interacting molecular
dipoles in a microcavity are presented to illustrate the capability of the method.

DOI: 10.1103/PhysRevB.64.193308 PACS nunifer41.20—q, 42.50.Fx

[. INTRODUCTION It is the purpose of this work to present a relatively pow-
erful method for the modeling of the interaction among the
It has been well known that molecular emission propertiesnolecular dipoles confined in a planar microcavity or photo-
can be significantly modified in the vicinity of a surface or nic band-gap material structure. This method will allow the
inside a microcavity. For example, recent studies have modeling in principle to incorporate any number of interact-
shown that significant control of spontaneous emissam  ing dipoles in arbitrary orientations, any number of “adja-
Raman-scattering enhancentecain be achieved from emit- cent layers” of realistic dielectric properties on each side of
ting dipoles confined in planar metallic and semiconductingthe microcavity, and the full incorporation of retardation ef-
as well as dielectric microcavities. Theoretical studies of thisects. We will present the method and demonstrate its appli-
phenomenon have been extensive, including both classicahbility via numerical computations with respect to the ge-
and quantum mechanical modeling, for both well-definedometry used in the experiment in Ref. 10. Though our
(planar, spherical, efc. and arbitrary geometrical following theory is based on a classical phenomenological
boundarie$® Moreover, these modeling studies have con-approach, yet it is well known that this approach is as accu-
sidered most of the time a singlmoleculaj dipole interact- rate as a quantum-mechanical approach as long as one is
ing with the multistack “environment.” interested only in emission properties normalized to the free
Besides modified dipolar emission characteristics, recentecay rates of the moleculés.
experimental studies have also shown significant surface or
cavity-induced effects on the dipole-dipole interaction be-
tween the molecules or particles confined to such a proxim- Il. THEORY
ity. These studies include the observation of the surface- ) -
mode-modified dipole-dipole interaction among adsorbed L€t us refer to the geometry of Ref. 10 as depicted in Fig.
silver nanoparticled,that of the enhanced energy-transfer 1 Where a number of molecular dipoles are embedded in a
process between donors and acceptbemd that of the un- microcavity which is formed by a multistack reflector at the.
ambiguous confirmation of enhanced nonradiative Forstep©tiom and a metallic superstrate at the top. Our approach is
transfer between molecules confined in  planarf© Use the Gregn dyadic for solvmg Maxwell’s equat|on§ for
microcavities! As Barnes and Andrew explained in their Such a multilayer system which has been derived
commentary? such control of energy transfer is of high sig- Previously:®> The calculation of the Green dyadic for a
nificance and may lead to many and varied applications ifnultilayer system is a problem of high significance and has
areas as diversified as photochemistry and optoelectronicsbeen investigated extensively in the literattft@he work we
There has also been a large number of theoretical workBase on has reformulated this problem in a slightly simpler
on the modeling of dipole-dipole interaction for moleculesfashion, leading to more efficient numerical implementation.
confined in the vicinity of planar surface or microcavities. Briefly, the dyadic for a multilayer system can be expressed
However, due to the complexity of the dynamics and geo-as follows®
metrical boundaries, most of these previous works were lim-
ited in some aspects. These limitations include, for example,
(i) the assumption of perfect conductifigr realistic (but G(R,R")=4(j,5)Gso(R,R") +Gj(R,R"), (1)
symmetrical boundarie¥* for the microcavity,(ii) the limi-
tation to a single mediurfof infinite extenj on each side of
the microcavity*>'*and(iii ) the modeling of a single pair of whereR is contained in sla}j, the current source &’ is
interacting dipole$®*#In addition, as pointed out in Ref. 10, contained in slats, and (j,s) is the Kronecker delta. The
the total dynamicalretarded dipole-dipole interaction has source ternGgy(R,R’) for a source in slals takes the well-
not been fully accounted for in these previous works. known form'’
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where the prime indicateR’ dependence, the absence of a prime indicRtelependence, andindicates matrix transpose.
The functionsh; = k’—\?, and thatV andN are defined as befofe’ wherek;= w/uje; denotes the wave number. In the
previous approach to calculate the scattering pafs @i Eq. (1), we have carried out the expansion by reassociating it with
the source current as follows:

+ o

G;(R R')J(R')-i—fwde 20005 (+h) Miaa(=h) Npaa(+h) Npoo(=h; >]{C' ”“} 3
J ’ _477. r=o  Eo )\hs()\) “h I,n,\ I,n,\ I,n,\ I,n,\ Fln)\j’
|
where ditions for the transverse fields, i.e., the continuity of
X E(R) andzX VXE(R) at each interface, the coefficients
Cloni= CI/”’)"J} [C' n*J] can be obtained through some recursion relations.
Mg Clnnj
Note that the arbitrary current sourdes also contained in
T [Cl' A J] so thatG; can be extracted from E@3).
;LA
Fiani= [fl . J, To apply the above result for the dyadic to our modeling

o _ of the dipole-dipole interaction in the geometry of Fig. 1, let
and the radiation boundary condition requires that, at theis focus on one of the emitting molecular dipo{diole X)

slabsj=0 andj=N, in the cavity. According to the classical phenomenological
approacH, the frequency shift and decay rate of this dipole,
Ci,nn 0= Claan= Fina o= flaan=0- (4 normalized to the free decay value, can be obtained in terms

of the real and imaginary parts of the tot@xcluding its
Note that square-brackets will be used to exhibit matrices ”bwn) field E actlr:g a?lthe)(lﬁgole site a@n Sl(u)r(nt; ng !

terms of their entries and that E() contains products of

3X4 and 4<1 matrices. Also note that the vectdvsandN Aw 3meoqn?
in Eq. (3) are functions ofR, whereasC, ,, j and F, , , ; —= 3 qE), (5)
depend on bothiR andR’. By matching the boundary con- Yo Poks
400 . . . Y mepqn s
_ i | o =1+ —rp i3 Im(E), (6)
T 200 1 whereq is the intrinsic quantum yield ankk=ng.w/c, with
o ng the real refractive index of the medium containing the
,,f e PC o T dipole. Note thap, andw are the dipole moment and emis-
g sion frequency of the molecule, and the only quantity needed
g o to be calculated in this model is the field actingXnwhich
§ Ta0 2 can be obtained from the Green dyadic equatidns(3) of

the problem as follows:

2200 Sio 4
TaO
sio =
Ta0 E(RX)=iw,uf G(R,,R")JI(R")AV(R"), (7)
-400 SIO B
:l‘(‘)’ whereu is the magnetic permeability for the vacuum, where
we have restricted ourselves to nonmagnetic media. To
eoor ] model our problem as described in Fig. 1, we write the cur-
L Vacuum i rent density in Eq(7) in the form
x-axis —= J=—2 iwp;8(R'—R), (8)
I

FIG. 1. Geometry of the multistack planar microcavity accord- . _
ing to Ref. 10. The cavity dimensidnand the designated dipole ~ wherep; is the molecular dipole moment located/t Note
are as labeled. that a time dependence of the fore1'“'e” "2 has been
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FIG. 2. Results for two parallel dipoles located at,2) L/(Wavelength in Cavity)
=[0,(L+d)/2] and [O,(L—d)/2], respectively, where d ] )
= (emission wavelength in the PC mediumy/2 The one at[0,(L FIG. 3. Results for two perpendicular dipoles located ait (2),
+d)/2] is our designated dipolX. and d,L/2), respectively, withX located at ¢,L/2).

assumed in Eg97) and (8). Thus, using Eqgs(1)—(8) and image fields from this boundaiyecall that a parallel dipole
excluding the “self-field"[i.e. contr’ibution fromGo(R, ,R,) has its image opposite while a perpendicular dipole has its

in Eq. (2)], we can simulate the emission properties of theimage along its own orientatiof). The result, however, is

specific dipoleX in the microcavity. Note that this coopera- Eensgve to the I(l)lcanon OLth'S ?poéé_relatw_e tohthe ca_wtyF
tive decay rate in Eq(6) is directly linked to the energy- oundary as well as to the other dipoles in the cavity. For

transfer rate ofX to the other molecules as well as to the €X@MPle, Fig. 4 shows the results for three parallel dipoles
cavity environment, and the frequency-shift in H&) re- with the X dipole located at the middle of the cavity and off

veals the interaction energy betweXnand the other mol- the axis joining the other two dipoles. In this case, we see
ecules as well as the environment, when they are all confineliidt €ven for dipoles oriented parallel to the cavity bound-
by the microcavity geometr$f Furthermore, Eq(8) implies aries, redshifts in their emission frequencies can result upon

that this approach is very general and can include in prinlMtéraction W'tl? Lhe other glpoles in the sarfne Icawty We
ciple an arbitrary number of interacting dipoles randomlyWant to remark that while the incorporation of a large num-
oriented inside the microcavity. ber of dipoles is rather straightforwatthough computation-

time consumingin our present formalism, it is not clear if

Ill. NUMERICAL RESULTS 3 Parallel Dipoles

To demonstrate the capability of the above method, we 35 T ' ' ‘ ' '
have computed Eqg5) and (6) for the cases of two and Co Normalized Decay Rate
three dipoles interacting in the microcavitlyig. 1), respec- . T
tively. For each case, the emission properties of the desig- 3 s|. 4
nated dipoleX are calculated as a function of cavity dimen- L
sion (L) with all other parameters fixed. The emission 2
wavelength(612 nm and the values for the dielectric con-
stants for various materials of the cavity are used in accord [ 7
with Ref. 10. Figures 2 and 3 show the results for the cases Normalized Frequency Shift
when the two dipoles are parallel and perpendicular to the®
cavity boundaries, respectively. From the results, the
“cavity-resonance effect” can be clearly seen, and it is most

obvious in the parallel dipole cad®.In addition, the fre- s . . . 1 | . .
quency shifts of the designated dipofe which reveals the 0 1 2 3 4
dipole-dipole interaction within the cavity, are seen to de- L/(Wavelength in Cavity)

pend drastically on the dipole orientations. In this case we

obtain mostly blueshifts for parallel dipoles and redshifts for ~ FIG. 4. Results for three parallel dipoles located [&t(L
perpendicular dipoles. This happens siXceemains close to  +d)/2], [0,(L—d)/2], and @,L/2), respectively, withX located at
one of the boundaries and the result is dominated by its owfd,L/2).
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the same is true in the previous approaches appeared in theultilayer of planar geometry and a collection of arbitrary

literature. dipoles, but it has yet to be carried out. At the completion of

our work, it came to our attention that in a very recent

IV. CONCLUDING REMARKS paper*,Lg Bennettet al. have also applied the Green dyadic

. approach to simulate interacting dipoleg to two dipoley

We have thus in the above demonstrated how the Greegp, 3 planar microcavity. However, their superlattice geometry

dyadic solution for a multilayer system can be applied tojs restricted to a periodical system of infinitely many layers,
model the interaction of a system of dipoles confined in ayhereas our present formulation can accommodate a finite

planar microcavity. In particular, we have illustrated how anymper of stratified layers of irregular thickness. Hence we
complicated multistack structure and collection of dipolespglieve our present approach has some usefulness in the

can be systematically simulated in this approach. As is cleafodeling of actual experimental situations such as those in
from the above, the results for the cooperative decay anghe experiment of Hopmeieat al X

frequency shift are very sensitive to the presence of the cav-

ity and the other dipoles, consistent with the observations ACKNOWLEDGMENT
reported previously in the literatut®-4 Apparently, the re-
sponse function approach of Agarwal and Gibtan also Partial support of this work has been provided by the

be generalized to such an extent for simulating an arbitrarfFaculty Development Funding of Portland State University.
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