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A note on the green dyadic calculation of the decay rates for admolecules
at multiple planar interfaces

R. L. Hartman, S. M. Cohen, and P. T. Leung
Department of Physics, Portland State University, P.O. Box 751, Portland, Oregon 97207-0751

(Received 4 September 1998; accepted 23 October)1998

The Green dyadic formulation for calculating classical decay rates of admolecules at multiple planar
interfaces first published by Chance, Prock and Silbey is reexamined. It is pointed out that, for the
case of fluorescing molecules sandwiched between a system of super- and substrate interfaces, the
original formalism requires significant modifications in order to lead to results consistent with those
obtained from the Sommerfeld radiation theory. 1®99 American Institute of Physics.
[S0021-960609)70204-1

I. INTRODUCTION It is the purpose of this paper to point out that, in the

The study of molecular fluorescence at solid interfacesOrlglnal CPS formulation for casgi) above, the choice of

has been active for the last 2 decades since the first expeHje dyadic eigenfunctions was not appropriately made and

mental works of Kuhh and Drexhag? done in the early significant modifications are necessary to obtain a consistent

1970’s. Theoretically, it has been found that one of the mos{;reen dyadic theory for this case. The correct result will be

simple and direct approaches is to follow a phenomenologipr_esemed in two different but equivalent formulations and
cal model solving the electrodynamics of an emitting mo-Will be shown to lead back to well-known results from the

lecular dipole in the vicinity of the interfaces. This model Sommerfeld theory for the simple case with the dyes sana-

can provide both frequency shifts and decay rates for thg\’_IChed between only one superstrate and one substrate me-

admoleculegnormalized to the free molecular decay jate dium.

for example, yielding results in agreement with experimental

results as v_veII as quantum mechanical ca!culations. AMONY THE CPS FORMULATION

other contributors, Chance, Prock and Silb@PS have

cleverly applied the radiation antenna theory of Sommetfeld  To be clear and self-contained, let us first recapitulate
to this problem and showed that classical electrodynamicthe main results from the CPS artiél&or harmonic currents
alone can account for most of the experimental observationgnd fields, the dyadic Green formulation of Ref. 4 has the
A momentous review articfewas compiled by CPS in the standard Green’s function solutigm SI units:

late 1970’s summarizing the complete status of the subject at

that time. Over the last 20 years, this article has often been E(R):i“"“f G(R,R")-J(R")AV(R"), )
guoted and used by people working in the field, experimen-

talists and theorists alikeApplication of this theory has also whereu is the magnetic permeability. For simplicity, we will
gone beyond fluorescence to other optical phenomena at iwonsider in this paper only the case with one superstrate and
terfaces as in Ref. 6 and 7. It is also in this review article thabne substrate confining the source in the gap as depicted in
the Sommerfeld methddvas first generalized to the case of Fig. 1. More details on the case with a large number of layers
multiple planar interfaces using the dyadic Green'’s functionand generalization to the case with gradient index media will
formulation. This generalization includes both casés be presented in a forthcoming pafer.

where the layer of fluorescent dyes is deposited on the top of Let G, denote the Green dyadic for the source field and
a stratified multilayer system artiil) where the layer is sand- G; (i=1,2,3) denote those for the scattered fields in the three
wiched between two such multilayer systems. media. Thus according to Ref. 4, one obtdins

+ o0 1

—-1.. I 2— 0, M (+h)M (—h) +Njp (+h) N (= hy) |z=2

Go(R,R))= —228(R—R’ +—J dn ) : ’ .

0( ) kl ( ) 477 0 nZo )\hl()\) J‘ZO M]n}\(_hl)MJn)\(+hl)+Njn)\(_hl)NJn)\(+hl) Z$Z
(2

1

2—6, , ,
2 Tt 2 {LeaMin(—ho)+eiMn () IMjo, (hy)

. + oo

i [t
GyRR)=7— | d

+[faNjax(=hg) +F1Nja (hy) INjo (ho) ©)
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, — e —e 0 = , (8
X 2 [eMjnn(ho) My, (hy) e ’ C —e
=0 h C3 —hie
) ~ 1 he;, —he, 0
+f2Njnn(h2)Njn\ (hy) 1, 4 e, < * 2=2
) o or in matrix formAc=r., and
i
G3(R.R ):477 d 2, s Ahl()\) —hy/ky;  hylky 0 ha/Ks
kl kl O _k3 fl
(= ! -h f3
X]_ZO [C3Mjn)\( hS)M]m\(hl) % el hie /k;  —hoe,/ksy 0 f;
1%1
+f3Nin(—hy)N/, (h)], (5) k fa
31Njn\ 370N na\tiL ] e_]_ klel —k282 0
1
whereM andN are given in cylindrical coordinates by: i he 1K i
177”1
-k
= InJp(Ar EANGN: 1
Mo, (h)=¢'? NIn(AT) )S|n(J—7T—n<p) (A1) —e.hy/kq | ©)
r 2 ar
—ekg
Xcos( J;_mp) 4, (6)  orBf=r;. Solving Egs.(8) and(9) yields the following:
1+ Ry,
! . eiRIy— T o
N e .hﬁJn(Ar) jm . th()\r) 1-efRR1;
Njna(h)= =~ |ih——co§ 5 r+in c, | 1+efRy
’ 13 2pl
. . C 1—eiRR3
jm L jm . L = L : (10
X sin 7—n<p ¢+A“J,(\r)co 7—n<p z|, fq ” el(l R3)
@ f1 21— e?RIRI,
o - elez)
with J,, the Bessel function of the first kind anil(\) 1 - elR1R1;
= \/kzi —\?, where the square root is taken to have positiveyhere
real part.
According to Ref. 4, requirement of continuity of trans- I €h;—¢€h;
verse field components at interfaces 0 andz=z, leads to T €h;+ €
the following systems wherejse'hiZO:
and
L hi—h;
Region 2 ohit+hy

= Y4
G=G, N Note that sign errors in Eq3.34) of Ref. 4 are corrected in

=L Eq. (10).
We have confirmed that the above results are in error by
performing a humerical calculation of special cases. For ex-
ample, the scattered electric field was calculated at the site of
J a vertical dipole located at the center of region 1, with values

for the dielectric constantg,, €,, and e; set arbitrarily.

Region 1 Next the values of, and e; were interchanged. Results in
G=Gy+G, g the two cases differed, indicating that the analytical results in
Eqg. (10) are in error.
=0

Region 3 & lll. THE CORRECT SOLUTION
G=G .

: We shall present here two different approaches to the

FIG. 1. Geometry of the problem. correct Green dyadic solution to the above problem.
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A. Solution by expanding the solution space ary conditions can be satisfied. For instance, the expression

o for G, contains dyadic productd ;,,(— hl)MJnx(Jrh ) and
In reviewing the problem, we found that Eq8) and(9) m(Jrhl)|v|m(+hl) but NOtM j (— hl)M,m( h,) and

do not satisfy the boundary conditions at the interfaces anm] A(+h1)M,, (—hy) which are equally valid. It turns out
that no solution could be found once the constraints of formshat the correct solution from this approach has already been
(3) (4), and (5) were imposed. A necessary remedy is en-worked out in the electrical engineering literatd?&.he gen-
largement of the solution space to the point where the bounceral solutions for the scattering fields are given by

i
GiRR)=o- [ > Ahlmi{[clM,m( 12)+ C4M o (1) M ()

+[aiMjny(=h) +aiMjny (hg) IM{p, (= hp) +[F1Njay (=) + F1Nj (h) INjp, (hy)

+[b1ij\(_h1)+b/Njn)\(hl)]Nj,n}\(_h )} (11
i
Gz(R.R’)EE 2 AhlmE [€2M o (h2)M oy () + F2Njny (h2)Njny () +@5M o (h2) Moy (— )
+b2Njn)\(h2)Nj,n)\(_h )], (12
i
Gs(R.R")= 7~ E xhlm E [€5Mjnr(=Ng)M o, (1) + F3Njn (= h3)Njn, (ha)
+a3Mjn)\(_hB)Mj,n)\(_h1)+b3Njn)\(_h3)Nj,n)\(_hl)]- 13
|
By imposing the appropriate boundary conditions, the expan- cy a, i
sion coefficients can finally be obtained'%s c; a, f!
= L = 1 f = 1
[ eIR;,RI; STl | & a1,
. Ris s % fs
=~ _|e
& 1-eiRpRy; e_l(l"‘sz)Rfs ,
and
(1+ Ry
[ zeinz b
1 eTRLR1; b}
as: 2pL RJ_ el .l ] bS: 1
1-€e2R}, —(1+R ) b,
elRi2(1+R A) by
r e?RLR] 7 a4
1_ leu ' Using the above solution, we can write out the Green’s func-
13 tions as
P 9% RLR,
S 1-efRRs| koo s
1Ry 5 i
L ks i Gi(R.R’ )__f )\hl()\) < | 1- elR RE
- 25| -
—efR 2 _ _
ezRul Rluz X [e7R1,M (RisMJr*'M )+RM T (M*
17212'M3
1 kieq
= 1-R! +e2RIM ™ )]"'_h
bs 1-e?RLR] kzez( | 12 *RILRI,
-k _ _
k—gleiRQZ(l—Rga) X[e2RLN™(RLN®—N")
where +RINT(e2R,N"—N™)] |, (15)
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+ oo

. 1
|
G2(R.R )Eﬂfo dx Z xhl(x)z

= elR Rl ( (1+R)M(h2) (M~ +R; M *)

1
T ICORR (k2e2<1 Ry >N<h2><N—R“13N*)) : (16
i +o 1
G3(R,R’)EEL dr 2, khl(x)z = elR RL [(1+RIM(—hg)(M* +eRp,M )]
P (ﬁ(l—R”g)N(—h )(N* —efR} N‘)) 17
1—e§RQ2R!3 k3 ! ’ e ’

where M==M’'(=h;) and N“=N’(=h,). We have checked that the solution given by E4®)—(17) does satisfy the
numerical test described above.

B. Solution by reassociation

An alternative approach, which might be called “reassociation”, is to introduce explicitly the sdurte the dyadic
expansion. We replaced typical products sucliM! ')J with the equivalent produd¥l(M’-J) reducing the product on the
right to a complex scalar. An additional small step then leads to the realizatioo(ti&t ')J can be replaced bgyM, where
M'.J scalar has been absorbed into theNe will see at the end thal can be factored from both sides of the resulting
equations leading to expressions @rindependent of the source, as they must be. Following the logic given above, we have:
1

i 2—
Gl(RvR,)"]E4I_7TJ'O d)\z )\hl()\) 2 [ClMJn)\( hl)+cl ]n}\( l)+f N]n)\( h )+f:,LNJn)\(hl)]! (18)
Gy(R.R')-J= f dAE xhlm E [e2Mina(h2) + f2Njna(h2)], (19
eyRR)I= - [ a3, TS S LM+ TN~ 20)

where thec andf coefficients are functions of current densitas well as position, n and\. This approach allows us to work
directly with electric and magnetic field values in applying the boundary conditions at the interfaces. The resulting eight
equations decouple into two matrix systems:

Ac={[-M'(h)) hM’(hy) —eM'(=h)) —h;eM'(=hy)]-J}, (21)

hy hie; ‘
Bf= (k—lN’(hl) —k;iN’(hy) _k_lN/(_hl) _klelN/(_hl))"]* (22

whereA andB are the same matrices defined above in EqsWe can now insert Eq€23) and (24) into Egs. (18)—(20).
(8) and(9). The matrix solution of Eq921) and(22) leads  Since an arbitrary] then appears on both sides of the result,

to: we can factor outl, yielding results in complete agreement
_ ) with Egs. (15-(17). More details on this approach and the
efRRMT+M ™) : i ; ;
¢, 1L 12113 i equivalence between the two methods will be provided in a
o 1 Ris(M* +efRp,M ™) forthcoming pape¥.
e~ |e .J
¢, | 1-elRLRL —1(1+ RL)(M™+RLM*) [
Cs

(1+R D(MT+eiRL,M ")
(23)  |v. CALCULATION OF DECAY RATES

[ eRRINT=NT) ] A . , ,

| 2Rl N — N ccording to the classical phenomenological approach
fy Ris(e1R N —N™) of CPS, the normalized decay rate of the admolecule can be
fi] 1 ki€ _ obtained in terms of the imaginary pdft) of the reflected
fo|  1-efRLR], kzez( Ri(N"=ReN") | -3, field at the dipole site as:

~ b 6meqqn’
|osb—=1+—3l (Eo), (25)
Pok1

ky .
_k—3<1—R”13><N*—e%R!2N )|

(24
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whereq is the intrinsic quantum yield anki, =n;w/c, with

Hartman, Cohen, and Leung 2193

dipole with momentp,ze~'“! at the source positiodz be-

n; the real refractive index of the medium containing thetween two interfaces at=0 andz=s+d=z,. The current

dipole. We show below that the dyadics given in Ed$)-
(17) can indeed lead back to the correct resultsiddior a
molecule confined as in the geometry of Fig. 1.

will be given by

J=—iwpyze "“'S(R’' —d2). (26)

We first consider the problem of a vertically oriented Inserting thisJ into Egs.(1) and using Eq(15) yields

E; (d2)={w?uounipoe''}12-G1(dz,d2)z
+ oo

~(oPpomapoe 5= [ 3 S
! 41 Jy=oi=o Nhy(N\)

X 2% [ —
2, (1—e%R”12

2 —iwt i A 1 1
={w mom1poe i

r—ohh;(\) | 1-e?RLR]
eg\? A2 egh?
+ [ 2l _

= [e2RIN(RINT—N7)+ RN (eR|,N"— N*)])%dx
13

2

25l A I ed)‘z \?
e’R R —
%4k |12 Ky €qKq

) e 25l ol 25 2
:WZMoMlpoe ' tf*“ A% (2e1Ry R~ Ry, ejRiy)

A7ks r=oh1(\)

(1-eiR1Ryy)

_poe‘“’tfﬂc \° ((1—R'13e§)<1—R'12e§)

" 4mege; Jh—o[ —ihi(\)] (1-efR,R] )

whereeg=¢€'9"™ ande,=e'Sm™ with s+ d=2z,. We have
also employed the identity:

2xy—x—y (1-x)(1-y)
1-xy  1-xy

-1

Inserting Eq.(27) into Eqg. (25), we obtain

. 6meoqn? +o A8
b, =1+ °q31 Po f :
Pok? 4meger Ja=ol —ihy(N)]
o[(RiEDA-RiLD) )
(1-efRR1y
3q
_1_q+2_ki

X7

(= A% [(1-Ri€H)(1-Ri£2)
Ifx=0h1()\) (1—efR1,R}) a

(29

where we have used

fk A dh _2k3
3

r=0kZ—\2

The result in Eq(28) is equivalent to Eq(2.47) of Ref. 4

using the transformatioru=\/k;. In the case of a trivial
interface between regions 1 and 2, thatdss= e, implying

R},=0, from Eq.(28) we have

1>d>\, (27)

b =1—3—qj iFwR" e
- 2k; =0 = dhy(\) )’

which is identical to Eq(2.17) of Ref. 4.

We next consider the problem of a horizontally oriented
dipole with momentpyxe~'“! at the source positiodz be-
tween the same interfaces. The current density is then

J=—iwpoxe “'8(R'—d2). (29
Again, insertingJ into Eq. (1) and integrating yields
EN(d2) ={w?uomipoe '“X- G1(dZ,d2)X. (30)

To proceed further, we note that

N oL . .
N n —e*Md jf n=1 andj=1
x-M*(dz)=1 2 .
0 otherwise
and
*iAh .
. Le*ind jf n=1 andj=0
X-N*(dz)={ 2k; ,

0 otherwise

Insertion of the above dot products into Ed5) yields
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~ o 5 A I +w
X-Gy(dz,d2)-X=o— A_O(TRER@
K(1—-efRIRL

1

| +oe
B 87Tk1 J’)\ZO

where we have again used the identity:

750 oL
1-eRRy;

2xy+x+y (x+1)(y+1)
1-xy  1-xy

Using k2= w?egeuomy, we finally have

)= pOie_ithm o (€2R1,+ 1)(e3R1;+ 1)
x 8mege; Jr=0 1—e§Ri2Rf3

Inserting Eq.(32) into Eg. (25), we obtain

Rt i eiR |

2( (e3Rp+ 1)(efRp+1)

1]+

Hartman, Cohen, and Leung
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(267RR15+ ecRy,+ €5R1s)

1

. 6me,qn? +oo eZRE+1)(e2Ri,+1)
b—1+ od 1~[ Po J {kz(( SRt 1)(egR; B

3 ’?pl pl
poki 8meger =0 1-eiRRy3

2
1

J+w [ (e2Riy*+ 1)(efRz+ 1)
! 1—e§R{2Rf3

1 +3q~
=1- J
Tad”| iz

where we have used

fk (2K2=N?)NdN 4

W 3

The result in Eq(33) is equivalent to Eq(2.48 of Ref. 4

using the transformatioma=\/k;. In the case of a trivial
interface between regions 1 and 2, thatjs= e,, implying

that R},= R},=0, we have from Eq(33)

A=0

o NdN
i KRz hE (MR —~ |,
Ifx—oed[ 1R1zTh1(M)Ry3] hy(0)

~ 3q N
b||:1+ 4_k§J

which is identical to Eq(2.29 of Ref. 4. Thus our Green

A dn
hi(N)
(efR,+1)(efRiz+1) X d\
2 —_— [
1 Jenion[ ST ) VR
, ((egR'12+1)(eﬁR13+1) N dA
M) 1-eiRRi; ) Jhan) (32
(2R}, +1)(e5R}5+1) N d\
2 —
1)”‘1(”( 1-eRLRL Y =i

((eﬁR'12+1><e§R'13+1> .

1- eiRl‘lzRgs

} A d)
[—iha(M)])°

verify decay rates calculated in Ref. 4 from the Sommerfeld
theory for the case of an oscillating dipole positioned be-
tween interfaces. With either of the two approaches, gener-
alization is straightforward to the case with an arbitrary num-
ber of multiple interfaces for both the substrate and
superstrat&° In addition, the green dydadic formalism will
also allow one to calculate an arbitrary source within the gap
beyond that of an electric point dipole. The present formula-
tion should be useful in these aspects.
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