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Recoil Distributions in Particle Transfer
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Classical Thomas peaks in various fast second-order particle transfer processes are quantum mechani-
cally broadened by energy nonconservation in the intermediate states of collision. This quantum
broadening is considered in observable velocity distributions of recoil particles.

PACS numbers: 34.70.+e, 03.65.Nk, 82.30.Fi

Energy nonconservation in the intermediate states of a
system of colliding particles may be large if the collision
time is small. Thus energy-nonconserving eA'ects could
be significant for reactions in which intermediate states
play an important role at high velocities. Fast particle
transfer is such a reaction. In fast particle transfer reac-
tions it is now well known' that second Born terms,
which include a sum over the intermediate states of the
system, dominate over other Born terms including the
first Born term, which excludes contributions from inter-
mediate states. The theoretical prediction that second
Born terms can dominate even at moderately high veloci-
ties in a certain range of projectile scattering angles was
confirmed by the observation of the Thomas peak in
cross sections, diff'erential in the scattering angle of the
projectile, for particle capture. ' In this paper we de-
tail the quantum broadening of classical Thomas peaks
in various second-order transfer processes and give a
physical interpretation. For three-body transfer, the
broadening of the Thomas peak occurs along a locus
determined by overall energy and momentum conserva-
tion. If a fourth particle is present this locus broadens
into a ridge, and, in addition, there arises a secondary
ridge whose crest corresponds to energy conservation in
intermediate states of the collision. The classical Tho-
mas peak is obtained by enforcing both overall energy
and momentum conservation and conservation of energy
of the intermediate states. We concentrate on velocity
distributions of the recoil particle since in atomic col-
lisions the quantum broadening for the recoil particle
tends to be easier to observe than corresponding
broadening for the projectile.

Particle transfer in a one-step process is classically for-
bidden by conservation of energy and momentum at high
collision velocities. Consequently, the simplest classical
mechanism for particle transfer is the two-step process
proposed' by Thomas in 1927. The kinematic diagram
corresponding both to the classical model of Thomas and
to second Born terms is shown in Fig. 1, where particle 1,

Mlv] 2 (Mf+Mf)vf + 2 M3v3 (2)

Ml V
(Mi+M~) v,

M

zVz

FIG. 1. Particle transfer diagram. The intermediate mass
M' may equal Ml, M2, or M3. The mass of the upper (lower)
particle on the diagram is taken as Mf (Mf) in text and Mf
(Mf ) may equal either M 1 (M2) or M2 (M l ).

2, or 3 scatters twice. Here, since particles 1 and 2 go
off together with the same velocity, the entire collision is
coplanar. If all the masses and the incident velocity v
are known, then there are six unknowns, v', vf, and v3 as
defined by Fig. 1. Conservation of momentum gives two
equations of constraint for each collision. Conservation
of overall energy gives a fifth constraint. And conserva-
tion of energy in the intermediate state gives a sixth con-
straint. With six equations of constraint, all six un-
knowns may be completely determined. For example,
for p

+ + H ~ H+ p
+ it is easily verified that a = (m, /

M~)sin(60'), p=60', and @=120', where M'=Mf
=M2 =m„an electron mass, and M~ =M3 Mp a pro-
ton mass. The standard Thomas peak at a =0.027' has
been observed. '

In general, conservation of overall momentum and en-
ergy gives three equations of constraint in the four un-
knowns vf and v3, namely,

M]v (Mf +Mf )Vf +M3V3 (1)
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M I+M2+M3 v3
2v3 v=2cosX=

v

M2 v

M3 v3

M I+M2+M3 M' M2

(3)
M M K

where r =(MI+M2+M3)M2/MIM3. Here K is a di-
14 bmensionless ratio of momenta defined' y

M3v3K=

rail3i s ecifies the values of v3 allowed by overa
energy an md momentum conservation in epen e
intermediate states of the system.

In the simplest two-step processe,
'

ses illustrated in ig.
r in the intermediatewe impose conservation of energy

'

states, ' namely,

(4)

2

After some algebra, we obtain fo
the genera con

' '
h 1 ondition for intermediate energy conserva-

tion, namely,

K=1. (6)

er lower) particlewhere f fM (M ) is the mass of the upper
wn in Fi . l, in whichin the final bound-state system shown in ig.

M' is the mass o e inf th 'ntermediate particle (MI, M2, or
s. I) and (2) it is easily shown that the
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FIG. 2. Overall energy- and momentum-
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i.e. M'=M2. These loci are in-ticle is the captured particle, i.e.,
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0

(
O23 yet been observed experimentally, double-diA'erential

measurements for 1-MeV protons on helium are con-
sidered to be technically feasible. As observation of
the classical Thomas peak advanced our understanding
of second-order eA'ects in particle transfer processes, ob-
servation of the eff'ects discussed in this paper could serve
to probe energy-nonconserving aspects of the inter-
mediate states through which a system passes during a
collision.

We gratefully acknowledge discussions with M Lieber,
R. Schuch, and J. Giese. This work was supported by
the Division of Chemical Sciences, Ofhce of Energy
Research, U.S. Department of Energy.
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FIG. 3. Differential cross section do/dvz in the velocity of
the recoil electron for p

+ + He H + He++ +e for 200-
MeV p+. Here t. o is the Bohr velocity. The sharp ridge, which
permits energy nonconservation in intermediate states, inter-
sects the broad energy-conserving ridge at v3 =v and @=90 .
At lower projectile energies both ridges are broader and weak-
er: The broad peak is indistinct at energies near or below a few
MeV where experiments are feasible.

&& 11't/a o, corresponding to the above discussion with
v = v = v 3. The sharp ridge has a width given by the
momentum distribution of the target electron which is

proportional to ZT. This width goes to zero' as ZT 0.
There is also broadening about the Thomas peak in a,

easily found by repeating the development above. How-
ever, for common atomic processes the fractional energy
width about the Thomas peak at K =1 in a, i.e.,

AE/Ef = [Av'h/ —,
' m'v aoj [m'M3/(M ~M3 —m ' ))

is usually small, while the fractional energy width in y,

/JE/E3= [Av'1'/2 mfv aol(M3/m'),

is usually large. Thus, a ridge in a is usually less prom-
inent than a ridge in y.

Energy-nonconserving second Born amplitudes have
been previously examined in the case of the Thomas
peak for electron capture from atoms by protons. ' lt
was shown ' that the energy-nonconserving and energy-
conserving amplitudes obey a dispersion relation charac-
teristic of resonant processes. ' It was also found that
at very large U, half of the total cross section for particle
transfer is due to energy-nonconserving terms. This im-

plies that half of the total cross section associated with
recoil distribution also comes from intermediate energy
nonconservation.
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