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An approximate variational method for improved thermodynamics 
of molecular fluids 

M. S. Shaw, J. D. Johnson, and J. D. Ramshaw 
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 

(Received 1 October 1985; accepted 11 December 1985) 

For a certain class of thermodynamic perturbation theories, a generalization of the Gibbs­
Bogoliubov inequality holds through second order of perturbation theory and for a subset of 
terms the inequality is true to infinite order. Using this approximate variational principle, a 
perturbation theory is chosen for which the Helmholtz free energy of the reference system is 
minimized under the constraint that the first order term is identically zero. We apply these ideas 
to the determination of effective spherical potentials that accurately reproduce the 
thermodynamics ofnonspherical molecular potentials. For a diatomic-Lennard-Jones (DU) 
potential with I I u = 0. 793, the resulting spherical reference potential is identical to the median 
average over angles for the repulsive part of the potential, but differs in the attractive well. The 
variational effective spherical potential leads to more accurate thermodynamics than the median, 
however, particularly in the triple point region. 

I. INTRODUCTION 

The Gibbs-Bogoliubov inequality1
-

10 gives a rigorous 
upper bound to the Helmholtz free energy of one system in 
terms of the properties of a reference system. It has been used 
in practice by finding the lowest upper bound from a class of 
reference systems that are well described by available meth­
ods, e.g., the hard sphere system11

•
12 and the soft sphere sys­

tem. 13·14 Recent work by Goldman and Kumar15 has been 
directed toward using the rigorous Gibbs-Bogoliubov ine­
quality in an approximate manner to choose a thermody­
namic perturbation theory. We have taken a different ap­
proach whereby an approximate inequality is derived and 
implemented as though it were rigorous. The effective 
spherical potential thereby obtained is surprisingly accurate 
in reproducing the thermodynamics of the diatomic-Len­
nard-Jones (DU) potential with /* = l /u = 0.793, where 
I* is the reduced bond length between the two U centers on 

each molecule. 

II. VARIATIONAL METHOD 

Thermodynamic perturbation theories arise from 
choosing a parametric path in a single variable from a refer­
ence potential t/J0 to the potential of interest t/J, and expanding 
the Helmholtz free energy as a Taylor series in that param­
eter. Because of numerical complications and limited knowl­
edge of the reference system, the Taylor series is usually 
truncated after first or second order. Therefore, the choice of 
t/Jo and the path of t/J strongly influence the accuracy of the 
truncated Taylor series. 

In previous work1
6-

19 we have used a formulation of 
general perturbation theories based on Smith et a!. 20 and 
have restricted the class of perturbation theories considered. 
One can characterize this class of perturbation theories by a 
function R which determines the path by 

R(t/Jr- t/Jo) = yR(t/J- t/Jo) . (1) 

Here R is any odd invertible function, r is the path param­
eter, and t/Jr is the potential along the path from t/J0 to t/J at the 
parameter value of y. Note that at r = 0, t/Jr = t/J0 , and at 

r = 1,t/Jr = t/J. The choiceR (x) = x gives the familiar A. ex­
pansion. 21 One can easily determine t/Jr and its derivatives as 

t/Jr=t/Jo+R- 1 [yR(t/J-t/J0 )] (2) 

and 

d"t/Jr) =d"R-
1(x)) [R{t/J-t/Jo)]". (3) 

dyn y=O dX" x=O 
Since R is odd, all even derivatives of t/Jr are zero at r = 0. 
Then we can write 

t/Jr -t/Jo=rt/J0' +~<3l+~<sl+ ... , (4) 

where t/J(nl denotes d "t/Jr!dyn)r= 0 • For a two-body poten­
tial, the total energy of a configuration of particles is 
U = ! ~i;~oj t/Jij, and consequently 

Ur- U0 =yUUl+ ;u<3l+ ... , (5) 

where U ("'=! ~1,.1 t/Jij"'. 
One can easily show (see, e.g., Mansoori and Can­

field 12
) that the ratio of partition functions for the two sys­

tems may be written as 

Qr!Qo= (exp[ -P<Ur- U0 )J) 0 , (6) 

where ( }0 represents the expectation value over the prob­
ability distribution function in the reference system. If 
Qr!Qo> l, then the corresponding Helmholtz free energies, 
A= - kTln Q, have the property thatAr<:A0 • By writing 
the exponential as a Taylor series and inserting Eq. (5), we 
have 

Qr = (1 -P<rum + y3 u<3l + ···) 
Qo 3! 

+ P.:...<ru<1) + y3 u<3) + ... >2 
2! 3! 

- p3 <ruu) + y3 u<3) + ... )3 
3! 3! 

+ ... t. (7) 
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One can collect the terms involving only (yU 0 ))n and 
sum them to get exp ( - /3r U (!)), and the first terms that are 
ignored are third order in the perturbation theory. So we 
have 

(8) 

Ifthe terms ( 0( r)) 0 are small and we use a special case of 
the Jensen inequality22 (~) ;;;.e<x>, then for r = 1 we get 

A SA0 + (U0 )) 0 • (9) 
For R(x) = x, the terms O(r) are identically zero and we 
recover the Gibbs-Bogoliubov inequaltiy. In fact, one can 
prove the Gibbs-Bogoliubov inequality by applying the Jen­
sen inequality directly to Eq. ( 6). For this more general class 
of perturbation theories, the inequality is approximate with 
some third and higher order contributions neglected. The 
extra freedom from the choice of R allows us to find upper 
bounds that are lower than with the Gibbs-Bogoliubov ine­
quality provided the neglect of the terms 0( r) is a good 
approximation. 

As an aside, it may be helpful at this point to compare 
the terms in Eq. (7) with the more standard perturbation 
expansion of excess Helmholtz free energy A ex. We will show 
that the terms (O(r) ) 0 which we dropped to get Eq. (9) are 
also of third and higher order in the general Smith et a/. 20 

formulation for A ex. From the definition 

A ~x = - (ll/3)ln Q~x, 

Eq. ( 7), and the fact that the ideal contribution to Q is inde­
pendent of r. we have 

aA ~x) = - __!_ _1_ aQr) = ( U(l))o. ( 10) 
ay r=O {3 Qo ay r=O 

That is, the first order term in A ex comes from the first order 
term in Q I Q0 • By the nth order term in A ex, we mean the 
term 

1 anA ~x) 

nf ayn r=O 
in the Taylor expansion of A ~X, 

aA ex) 1 a 2A ex) 
A ~x= I =A ~x + __ r_ + ---- + ... 

ay r=O 2! ayZ r=O 
(11) 

and similarly for Q IQ0 • This is in accordance with the usual 
terminology for the order of a term in a perturbation expan­
sion of the excess Helmholtz free energy. The second order 
term is given by 

1 a 
2 
A ~x) 1 [ 1 a 

2
Qr ( 1 aQr )

2
] 

2 ayZ r=O = - 2/3 Q:" ayZ - Q:" ar r=O 

= ~ {3 [ - ( ( U(1))2)o + ( ( u<O)o)2] . (12) 

The second order term inA ex has contributions from the first 
and second order terms in Q IQ0• In general, the nth order 
term in A ex will be a function of the first through nth order 
terms in Q I Q0 • 

We now return to the main development. We will re­
strict our study to those cases where U0 and R are related in 
such a way that (U<0 ) 0 = 0, and therefore A SA0 • We 
further specialize to the case of effective spherical potentials 
for molecular systems. The choice ( u<0)0 = 0 is numerical-

ly convenient in that a spherical t/J0 may be chosen from the 
condition17 

J R [t/J(r,O) - r/J0 (r) ]dO= 0. (13) 

Then ( u<0)0 becomes zero andA0 is evaluated for a spheri­
cal potential, for which many accurate methods are avail­
able. Also, by choosing the first order term to be zero, one 
hopes that the higher order terms would be small, which is 
essential for Eq. (9) to be useful. 

Ill. GENERALIZATION TOr DEPENDENT 
PERTURBATION THEORIES 

One usually considers perturbation theories in which R 
is a simple function of one variable. However, there is no 
necessity for such a restriction on R. All that is required is 
that a parametric path from r/J0 to r/J be specified. We will 
consider here a choice of R that also depends on the center of 
mass separation r of a nonspherical potential r/J ( r,O). That 
is, for each r, rPr is chosen from 

R [rPr(r,O) -r/J0 (r);r] =rR [r/J(r,O) -r/J0 (r);r]. (14) 

Note that we still have a well-defined path from t/J0 (r) to 
r/J(r,O) as a function ofy. 

The reason for choosing this form is to permit the deter­
mination of the lowest allowed r/J0 (r) at each value of r. If we 
choose two potentials r/J A ( r) and r/J B ( r) such that 
r/J A ( r) >r/J B ( r) for all r, then for an arbitrary configuration of 
particles 

1 1 
UA =- LrPA(rii)>UB =- LrPB(rii) · 

2 i#j 2 i#j 

From the definition of the partition function, we then have 
that QA <.QB and consequently AA >AB. Therefore, the low­
est choice of r/Jo ( r) allowed by Eq. ( 13) gives for this class of 
perturbation theories the best choice of A0 , provided the er­
ror in Eq. (9) is small. 

The general procedure may therefore be summarized as 
follows. We require that r/Jo and R are related by Eq. ( 13), so 
that (U< 0 ) 0 = 0 and Eq. (9) reduces to A SA0 • We then 
minimizeA0 with respect to the remaining freedom in r/J0 and 
R, which is equivalent to minimizing r/J0 (r) itself at each 
point r subject to the constraint ofEq. ( 13 ). This minimiza­
tion simultaneously determines r/J0 and R, but only the for­
mer is of interest so the latter is not explicitly determined. 

The development by which we have arrived at this pro­
cedure is totally dependent on the neglect of terms which 
cannot be readily calculated. For sufficiently small anisotro­
py, these terms will also be small. Lacking a criterion for 
what is "sufficiently small," there is no a priori basis for 
expecting it to work as well as it does. The real justification 
for the procedure lies in the accuracy ofthe results to which 
it leads; see Sec. V. 

IV. DETERMINATION OF THE BEST cfJ0 (r) 

Now that we have a general procedure, it is necessary to 
find an efficient numerical method for the determination of 
the lowest allowed r/J0 (r). We wantto minimize r/Jo ( r) at each 
r subject to the constraint of Eq. ( 13) with R in the class of 
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perturbation theories giving Eq. ( 9), i.e., R an odd invertible 
function or the limit of such. We can rewrite Eq. {13) in 
terms of the probability density 

p(E) = f ~[~(r,!l) - E ]d!l/ f d!l 

of an orientation having potential energy E at a given value 
ofr: 

J: co p(E)R(E- E0 )dE = 0, (15) 

where E0 is just ~0(r) for the given value of intermolecular 
separation r. We then look for the function R that leads to 
the lowest value of E0• Conversely, we may determine the 
lowest value of E0 for which a nontrivial function R satisfy­
ing Eq. (15) exists, and this is how we actually proceed in 
practice. Integrating by parts, we obtain 

s(E)R (E- E0 ) I~ co - J: co s(E)R 
1 
(E- E0 )dE = 0 , 

{16) 

where 

s(E) = J~ co p(x)dx. {17) 

From the definition of p(E), s(E) is the cumulative distri­
bution function; i.e., the fraction of orientations n with 
~(r,!l)<.E for a given r. Clearly, s(x) = 0 for x<.a and 
s(x) = 1 forx>b, whereaisthelowestvalueof~(r,!l) andb 
is the highest value of ~(r,!l) at the given value of r. Equa­
tion ( 16) can be rewritten as 

ico R 1
( y){1- [s(E0 + y) + s(E0 - y) ]}dy = 0, {18) 

since R ( 0) = 0 from our restriction to odd functions. We 
note that R 1 

( y) >0 for ally because R is odd and invertible. 
Now define the function 

f(y,E0 ) = 1- [s(E0 +y) +s(E0 -y)], (19) 

which is determined solely by the probability density p(E). 
Note that/( y,E0 ) = Ofory>max(b- E0,E0 - a). Now if 
E 0 is too small, then /( y,E0 ) is strictly positive for 
O<:,y <max ( b - E0 ,E0 - a), and it is then impossible to sa­
tisfy Eq. ( 18) with a nontrivial R ( y). For example, let 
E0 =a and b =/=a. Then s(E0 - y) = 0 for all y>O. For the 
interval O<:,y<b- a, s(E0 + y) < 1 and therefore 
f( y,E0 ) > 0 for the same interval. Also, note that/( y,E0 ) is 
monotonically decreasing with E0 for fixed y, because s (x) is 
monotonically increasing. In order for Eq. ( 18) to be satis­
fied,/( y,E0 ) must clearly be zero somewhere in the interval 
O<:,y <max ( b - E0 ,E0 - a). There will be some critical val­
ue of E0 , such that/( y,E0 ) is zero at one or more values of y 
and positive elsewhere in this interval. This value of E0 de­
pends only on the functions( y) which in tum depends on r. 
It is the smallest E0 for which Eq. ( 18) can be satisfied, and 
thus just what we wish to determine. For values of E 0 slightly 
larger than this critical value, the required R 1 will be sharply 
peaked in the vicinity of a small region of slightly negative f. 
In the limit as E0 approaches its minimum value from above, 
R 1 

( y) approaches a delta function andR ( y) becomes a step 
function, with the step occurring at the point in the interval 

O<:,y <max ( b - E 0,E0 - a) where /( y,E0 ) just touches 
zero. 

Thus, the minimum E0 for which Eq. ( 18) can be satis­
fied is simply the smallest value of E0 for which/( y,E0 ) goes 
to zero at some point in the range O<:,y < max(b 
- E0 , E0 - a). To find this E0 we first invert the function 

s( y) to obtain y(s), the value of the potential such that a 
fractions of the orientations are lower in energy. That is, 

J fJ [y(s)- ~(r,!l) ]dn/J d!l = s, 

where fJ(x) = 1 for x>O and fJ(x) = 0 otherwise. Clearly 
then,y(O) = aJI( 1) = b, andy( 1/2) is the median. In terms 
of y(s), the condition /( y,E0 ) = 0 becomes 
E0 = H y(s) + y(l - s)]. We then simply vary s from 0 to 
1/2; the smallest value oq[ y(s) + y(l- s)] encountered 
in doing so is the desired minimal E0 , which is in tum the 
optimal choice for ~0 (r) at that value ofr. If the minimalE0 

occurs at s = 1/2, then ~0(r) is the median average over 
angles. If the minimal E0 occurs at s = 0, then ~0(r) is the 
midpoint between a and b. For the DU potential studied in 
the next section, we will see that for almost all values of r one 
of these two values is the minimum. 

In order to evaluate the required quantities numerically, 
we have constructed an approximate probability density at 
fixed r from the weights w; and values E; used in a Gauss­

. Legendre quadrature in the angular coordinates. The set of 
(w;,E;) was reordered in ascending order of E;'s. The prob­
ability density was taken to be piecewise constant with the 
value 

1 (w; + W;_t) 

2 E; -E;-t 
for E;_ 1 <E<E;. 

This leads to an s( y) such that 
1 i-1 

s(E;) =-w; + L w1 , 
2 j= I 

with s( y) for intermediate y obtained by linear interpola­
tion. A table ofy(s) was then constructed for regular incre­
ments ins from 0 to 1. For this study as was taken to be 0.01. 
Finally, ~0 (r) at rwas determined by the minimum value of 
![y(s) + y(l- s)] in the table. The order of quadrature 
used was systematically increased until the fluctuations in E0 

were significantly less than 1%. 
Thermodynamic quantities for ~0 (r) were calculated 

using the perturbation theory developed by Ross 13 based on 
earlier work by Rasaiah and Stellu and Mansoori and Can­
field.12 

V.RESULTS 
For comparison with a simulation of anisotropic poten­

tials we have chosen a DU potential with I /u = 0.793. This 
corresponds roughly to C02 and is the same potential used in 
previous analytical work by MacGowan et a/.23·24 and in 
MD simulations by Singer et a/. 25 For significantly smaller 
values of I /u, the median16·26 gives good thermodynamics23 

and will be nearly identical to our variational ~0 ( r). Figure 1 
shows a plot of H y(s) + y(l- s)] as a function of s for 
values ofrwheres = 1/2 (the median) was minimal, where 

J. Chern. Phys., Vol. 84, No. 6, 15 March 1986 
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0 

-0.2 

----
-0.4 

(i; 
I ...-

>. -0.6 

+ 
~ -0.8 > 
i:O 
0 -1 

-1.2 

-1.4 
0.0 0.1 0.2 0.3 0.4 0.5 

s 
FIG. 1. The function ![y(s) + y(l- s)] is plotted vss. The minimum val­
ue of the function is the variational choice for the potential.- is for r* = 1.3 
and the median (s = 0.5) is minimum.--- is for r* = 1.7, and neither the 
median nor the midpoint is minimum. - - - - is for r* = 2.0 and the mid­
point (s = 0.0) is minimum. 

some intermediates was minimal, and wheres = 0 (the mid­
point) was minimal. 

Figure 2 shows the variational minimum potential ¢0 ( r) 
as well as the median, the midpoint, the unweighted average, 
and two extreme orientations in the attractive well. In the 
repulsive region, t/J0 (r) is always the median for this poten­
tial and is therefore not shown. All quantities are shown in 
reduced units; r* =rio- and tfJ*(r*) = tfJ(rlo-)IE. 

Figure 3 compares the reduced pressure P * = Pif 1 E vs 
reduced density p* = pif for t/J0 (r), the median, and fits to 

0 

-0.25 

-0.50 

-0.75 

• -1 s.. 

-1.25 

-1.50 

-1.75 

-2 
1 1.2 1.4 1.6 1.8 2 

r* 
2.2 2.4 2.6 

FIG. 2. Various potentials, ;•, are plotted vs the radius, r*.- is the vari­
ational potential. - -is the potential median. - - -is the unweighted angular 
average. - - - is the midpoint. - - - is for two extreme orientations of the 
anisotropic potential. For r* :S 1.6 the variational potential and the poten­
tial median are identical. For r* ~ 1.8 the variational potential and the mid­
point are identical. 

* Q.. 

0.4 0.6 
p* 

FIG. 3. Reduced pressure, P *, vs reduced density, p*. -is calculated from 
the variational potential. - - -is from the potential median. + are from MD 
simulations as noted in the text. T* = 1.9 for the upper grouping and 
T* = 1.3 for the lower grouping. 

the MD simulations of Singer et a/.25 The reduced tempera­
ture T * = TIE is 1.9 for the upper grouping of calculations 
and 1.3 for the lower grouping. In Fig. 4 the reduced internal 
energy E * = E INE = U* + ~T* (where U* is the reduced 
configurational energy) is plotted vs p* for the same values 
ofT*. Forp* = 0.5 and T* = 1.9, the accuracy of the fit to 
MD was questionable because this point was apparently out­
side the range of the data used for the fit. We have therefore 
recalculated it using MD as described in Johnson et a/., 17 

with the results P * = 6.94 and E * - 6.47. The results for 
t/J0 (r) agree with the DU simulations to about the accuracy 
of the Ross procedure itself. Some ad hoc modifications of 
the median by MacGowan24 lead to results forE* roughly 31 
4 of the way from that of the median to that of tfJ0 (r). Calcu­
lations with a radial median18 lead to similar improvement 
over the median, but less accurate than that obtained by 
using t/J0 (r). 

-1 

-2 

-3 

-4 

-6 ' ' 

* w 
-6 

-7 

-8 

-9 

-10 
0.4 0.6 

p* 

FIG. 4. Reduced energy, E * vs reduced density,p*. Symbols are the same as 
in Fig. 3. · 

J. Chern. Phys., Vol. 84, No. 6, 15 March 1986 



Downloaded 04 Jun 2012 to 131.252.4.4. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

Shaw, Johnson, and Ramshaw: Thermodynamics of molecular fluids 3483 

VI. CONCLUSION 

We have found an approximate variational method that 
leads to a significant improvement in accuracy over the me­
dian potential in the triple point region for a diatomic-Len­
nard-Jones potential with anisotropy comparable to C02• 

The resulting effective spherical potential is identical to the 
median for the repulsive part of the potential, which domi­
nates in high-density, high-temperature regions where the 
median itself is very accurate, 16-

18 but differs in the attrac­
tive well. It will be interesting to see whether this procedure 
continues to be accurate for different types of anisotropic 
potentials where the median does not give good results. 
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