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The Shear-force/Ultrasonic Near-field Microscope:  
A Nanometrology Tool for Surface Science and Technology 

 A. La Rosa, N. Li, and K. Asante 
Physics Department, Portland State University, Portland, OR 97207, USA.  

 

ABSTRACT 
This paper describes recent results obtained with the Ultrasonic/Shear-Force Microscope (SUNM), an 

analytical tool suitable for investigating the quite different dynamic displayed by fluid-like films when subjected to 
mesoscopic confinement and while in intimate contact with two sliding solid boundaries. The SUNM uses two 
sensory modules to concurrently but independently monitor the effects that fluid-mediated interactions exert on two 
sliding bodies: the microscope’s sharp probe (attached to a piezoelectric sensor) and the analyzed sample (attached 
to an ultrasonic transducer). This dual capability allows correlating the fluid-like film’s viscoelastic properties with 
changes in the probe’s resonance frequency and the generation of sound. A detailed monitoring of sliding friction 
by ultrasonic means and with nanometer resolution is unprecedented, which opens potential uses of the versatile 
microscope as a surface and subsurface material characterization tool.  As a surface metrology tool, the SUNM 
presents a potential impact in diverse areas ranging from fundamental studies of nanotribology, confinement-driven 
solid to liquid phase transformation of polymer films, characterization of industrial lubricants, and the study of 
elastic properties of bio-membranes. As a sub-surface metrology tool, the SUNM can be used in the investigation of 
the elastic properties of low- and high-k dielectric materials, piezoelectric and ferroelectric films, as well as quality 
control in the construction of micro- and nano-fluidics devices. 

Keywords: Ultrasonic, shear-force, nanometrology, near-field, confined fluids, acoustic, sub-surface 
characterization, nanochannels.  

   

1.  INTRODUCTION 
Surface phenomena involving mesoscopic fluid-like films constrained between solid surface boundaries present 

an exquisite source of experimental measurement challenges and constitute at the same time one of the problems in 
condensed matter not yet well understood at the fundamental level. The experimental difficulty resides in that (i) the 
films are buried between two sliding bulk phases, and (ii) there is relatively little material available for analysis. 
Such confinement occurs because the profile of a common solid surface is very irregular at mesoscopic scales, thus 
resembling one composed of many asperities of different sizes (see schematic in Fig. 1a). Since the physical 
properties of confined fluids differ greatly from their bulk ones,1,2 it is believed that they can play an important role 

in sliding friction.3,4 The many intervening 
interactions in such solid-liquid-solid systems (van 
der Waals, capillary, electrical, and viscous forces, 
to name just a few) make their study challenging.   

To simplify the problem, one approach opts for 
reducing the area of one of the surfaces in contact, 
thus resembling the interaction of one surface with 
another that has just one or a few asperities, as 
schematically shown in Fig. 1b. (Other significant 
approaches are: the surface-probe apparatus5,6 that 
measures both static7 and dynamic1,8 forces between 
atomically flat surfaces; the quartz microbalance 
technique;9 and computer simulations.10) The 
importance of investigating single asperity contacts 
in studies of the fundamental micromechanical and 

                                                                                                                                                   

a)                                      b) 

~10 nm

 
Fig.1 a) Two surfaces in contact leave fluid-like films 
confined to mesoscopic regions, whose enhanced 
rheological properties are expected to play a major role 
in friction phenomena. b) A sharp probe, acting as a 
nanometer-sized asperity, allows the study of fundamental 
micromechanical and tribological properties of surfaces 
and interfaces with nanometer lateral resolution.   



tribological properties of surface and interfaces has long been recognized.2,11,12 The resulting scenario in this 
approach resembles very much the experimental arrangement encountered in scanning probe microscopes as seen, 
for example, in atomic force microscopy (AFM)13,14 and near-field scanning optical microscopy (NSOM).15,16 As a 
matter of fact, AFM was the first technique to be used to study friction at the nanometer scale. In this technique, a 
sharp stylus is laterally dragged along the surface while monitoring its lateral bending caused by the frictional force 
acting between the sharp probe and the specimen. The smaller the bending experienced by the probe, the lower the 
frictional force.17,18 

A limitation of the AFM technique is that it senses the effects that frictional forces cause only on the AFM 
probe, but information provided by effects on the sample is lost. How is the energy transferred to the sample before 
being converted to heat? Is such transfer caused by electrical interactions or by phonons? What is the role of (as 
well as the effects on) the adsorbed fluid-layer? Such issues are generally difficult to address experimentally, not 
only because of the delicate nature of the phenomena, but also because it is difficult to implement experiments that 
admit unambiguous interpretation. Capturing simultaneously as much information resulting from the interaction 
region as possible would be optimal. 

The recently introduced Shear-force/Ultrasonic Near-field Microscope (SUNM)19 addresses properly these 
demands. It uses a piezoelectric tuning fork sensor (attached to a sharp stylus) and an ultrasonic transducer (attached 
to the sample under analysis), which allows a direct, simultaneous, and concurrent monitoring of the effect of the 
fluid-mediated surface interactions on the probe, the fluid itself, and on the sample. In addition to its surface 
metrology capabilities, the SUNM also has potentials as a sub-surface material characterization tool. Indeed, since 
the ultrasonic wave (generated locally just above the surface by the microscope’s sharp tip) travels through the 
analyzed sample (towards the acoustic transducer placed underneath), materials with different physical properties 
(for having subsurface defects, for example) will present dissimilar acoustic coupling efficiencies.  

Current efforts in our laboratory point towards obtaining a full understanding of how sound propagates within 
the SUNM experimental setup (is it ballistic, or,  do stationary standing waves establish inside the sample?), 
exploiting its capability for distinguishing viscous from conservative interactions, and exploring its ability for 
nanometer lateral resolution imaging of sub-surface elastic properties.  

2.  THE SHEAR-FORCE/ULTRASONIC NEAR-FIELD MICROSCOPE 
A detailed description of the SUNM has been reported elsewhere.19 Very succinctly, Fig.2 displays three 

distinct sections of the experimental 
arrangement: the probe and the specimen (at 
the center), the tuning fork-based detection 
for monitoring the probe’s mechanical 
response (displayed in the upper side), and 
an ultrasonic transducer, in intimate contact 
with the sample, to detect the waves 
engendered by the laterally oscillating probe 
(displayed in the lower side). In the 
experiments reported here the probe is an 
uncoated, chemically etched, tapered optical 
fiber, held attached to one of the tines of a 
commercially available quartz tuning fork 
(TF). Alternatively, functionalized probes 
(chemically coated probes, or near-field 
optical microscope probes, for example) 
could be used instead to gain further 
characterization capabilities. 

A signal generator drives the TF with 
an ac voltage of amplitude Vd, (typically set 
to 10 mVrms), which causes the tines and the 
probe to oscillate laterally. The 
corresponding generated current I (this is 
due to the piezoelectric properties of the TF) 
is synchronously detected with a lock-in 
amplifier whose output will be referred to 
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Fig. 2 The Ultrasonic/Shear-force Near-field Microscope 
(SUNM). The tip of a sharp probe laterally oscillates while 
interacting with a (polymer or water) layer adsorbed to the 
sample’s surface. On stimulation, the viscoelastic properties of the 
layer engender ultrasonic waves, which are detected with an 
ultrasonic transducer located underneath the sample. The ability to 
correlate the effects that frictional forces exert on the probe and on 
the adsorbed layer (both measured independently) constitutes one 
of the attractive features of the SUNM.  



here as the “TF signal;” this signal gives an indication of the probe’s mechanical oscillation amplitude. A frequency 
sweep helps determine the resonance frequency of the combined TF/probe system, which is used during the probe’s 
approaching and retraction from the sample’s surface.  A Vz voltage applied to a piezo tube, to which the TF is 
attached, controls the vertical position of the probe with sub-nanometer resolution.  

While driving the TF at its resonance frequency, the probe is brought gradually closer to the sample’s surface. 
No major variation in the TF signal is observed until the tip encounters the boundary of the layer typically found 
adsorbed to the sample’s surface at ambient conditions, which causes the TF signal to suddenly decrease; 
simultaneously, the oscillatory motion of the now immersed probe engenders acoustic waves that subsequently 
propagate downwards through the sample and towards the ultrasonic transducer. The ultrasonic transducers signal is 
amplified and synchronously detected with an independent lock-in amplifier referenced to the TF’s driving 
frequency; the output of this lock-in is referred to here as the “ultrasonic-signal”. Even though this experiment was 
initially conceived to detect the sound produced by the intermittent solid-solid contact between the probe and the 
sample’s surface (which is expected to happen after bringing the tip close enough to the sample’s surface) the 
ultrasonic sensor demonstrated sufficient sensitivity to detect sound waves even when the tip was being retracted 
from the surface. It is also worthwhile to highlight that this detection was possible without using exceedingly high 
oscillation amplitudes; for example a signal to noise ratio of 10 is obtained with 5 nm amplitude of oscillation at the 
time when the probe gets immersed into the adsorbed layer, and (depending on the surface conditions) increases 
greatly as the tip approaches the sample. 

  
3.  CHARACTERIZATION OF MESOSCOPIC FLUID-LIKE FILMS 

3.1 Correlation between the viscoelastic properties of mesoscopic films and phonon generation 
Figure 3 displays a time evolution of the TF and ultrasonic signals as the probe makes excursions in and out 

from the sample’s adsorbed layer while oscillating at its resonance frequency and with amplitude of ~ 5 nm. The 
high correlation between these two signals is evident throughout the four intervals shown in this graph. During the 
interval marked with the numeral 1, while the probe advances toward the surface (the Vz voltage driving the 
approach is not shown) the maximum TF and minimum ultrasonic signal levels remain unchanged. When the probe 
encounters the layer boundary, as evidenced by the sudden decrease in the TF signal, the ultrasonic signal 

accordingly increases. During interval #2, the 
tip remains immersed in the layer but forced to 
make short vertical excursions, in and out, 
around a position z2 near the surface; changes in 
the TF signal are accompanied by quite clear 
variations of the ultrasonic signal. Notice, the 
closer the tip is to the surface, the smaller the TF 
signal, and the greater the intensity of the sound.   

The observed increasing intensity of sound 
at closer distances from the surface can be 
ascribed to a distance dependence of the layer’s 
viscoelastic properties. Such an interpretation, 
however, requires a viscoelastic coefficient for a 
water film much grater than the bulk values,19 
which is conceivable to happen in confined 
mesoscopic fluids.1,2 This may be the reason 
why the SUNM surpassed its initial expectations 
for detecting the sound  produced by 
intermittent hard contact between the solid tip 
and the solid sample; it turns out that sound is 
detected even when such solid-solid contact 
does not take place. The very high 

viscoelasticity of the layer acts, then, as an amplifier of the waves generated by the laterally oscillating probe 
immersed in the fluid layer, thus allowing them to be detected as well.  This is confirmed during interval #3 where, 
even when the tip is being retrieved from the surface (so no hard contact between the probe and the sample exists), 
still a clear ultrasonic signal is detected. (The deformable meniscus formed around the probe can also have a 
significant influence on the probe’s lateral motion; to diminish this effect, our group is currently performing 
experiments with the tip immersed in liquids)  Finally, during interval #4 the tip makes incursions similar to those 
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Fig. 3 Time evolution of the TF and ultrasonic signals as the tip is 
forced to make vertical excursion inside the sample’s adsorbed layer. 
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performed during interval #2, but this time at a distance z4 further away from the surface. For similar amplitude 
changes in the TF signal, the variations in the ultrasound signal are much lower. 

We have found that, as far as the probe is not too 
close to the sample, the “negative” correlation 
between the TF and ultrasonic signals (that is, one 
decreasing while the other increasing, and vice versa), 
is a common behavior observed when analyzing 
different types of samples: glass, atomically flat mica, 
silicon wafers and stainless steel, with thickness 
values ranging from less than a millimeter up to 5 
millimeter.  However, depending on the local 
properties of the sample (we do not yet know the 
exact reason), the correlation switches signs. This can 
be seen in Fig. 4, which corresponds to a 5 
millimeter-thick stainless steel sample.  

  The graph displays the time evolution of the TF 
and ultrasonic signal while the tip is immersed in the 
adsorbed layer and force to make vertical excursion 
(similar to what was described for Fig.3). In interval 
from t=150 s to t=255 s, the “negative” correlation 
between the signals is observed. But, between t=255 s 
and t=265 s, as the tip is brought closer to the surface 
the TF signal decreases, but the ultrasonic signal first 
remains constant and then tends to decrease. But, 
between t=255 s and t=265 s, as the tip is brought 

closer to the surface the TF signal decreases, but the ultrasonic signal first remains constant and then decreases. At 
this stage (t=265) the TF signal has reached its minimum value, apparently because the tip is touching the surface. 
The probe may still have some lateral motion, since an ultrasonic signal above the ground level is still detected. 
Subsequently, from t=265 to 285, (the time interval marked by the arrows), an attempt was made to vertically 
advance the tip an extra 10 nanometer (as a consequence the tip exerted a pressure on the surface) with the result of 
an unchanged TF signal and (if not constant) a slight decrease in the ultrasonic signal.  That is to say, a solid-solid 
contact between the probe and the surface did not produce an increase in sound intensity; on the contrary, the 
ultrasound signal slightly decreases. This latter aspect is the source of current tribology studies in our laboratory.  
Aiming to verify whether this result is a consequence of the sample’s roughness, tests using atomically flat samples 
produce similar affects. This latter aspect is the source of current tribology studies in our laboratory It appears, then, 
that the increasing or decreasing of the ultrasonic signal as the probe makes contact with the surface is a 
characteristic associated with the particular state of the local sample’s properties. 

In short, the SUNM identifies in the probe-sample interactions (mediated by the mesoscopic adsorbed layer) 
two distinct regions. In the region far from the surface (but while the tip remains immersed in the adsorbed layer), a 
“negative” correlation between the TF and the ultrasonic signal does exist, regardless of the type of sample 
analyzed. A decrease in the TF signal (i.e. a decrease in the probe’s amplitude of vibration) is accompanied by an 
increase in the intensity of the ultrasound. The loss of mechanical energy by the probe appears as an elastic 
vibration (sound) at the fluid layer and propagates, through the sample, towards the ultrasonic transducer. Precise 
monitoring of this interaction should provide the basis for an accurate modeling of the viscoelastic properties of the 
mesoscopic adsorbed layer. On the other hand, in the near-region (the last 10 nanometer), the experiments reveal 
that the (positive or negative) correlation between the TF signal and the ultrasonic signal depends on the local 
properties of the material. Occasionally, the hard contact between the probe and the sample produces higher 
intensities of sound (as well as a higher TF signal, as will be seen in the results of  Fig. 5 below), which suggests 
that, in such a case, an intermittent contact (producing non-linear effects in the probe’s oscillations) is the probable 
cause of these effects. On other occasions, the close proximity between the probe and the sample rather causes the 
probe to come to rest (or to a minimum level of oscillation), causing the ultrasonic signal to decrease as the probe 
approaches the sample. It is revealing to verify that a further push of the probe into the sample did not cause a more 
intense ultrasonic signal, rather a slight decreasing (the less lateral motion, the lower ultrasonic signal). In this 
regard, the SUNM offers a great opportunity to investigate the role of phonons as a dissipation channel in friction 
phenomena at the nanometer level.   
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3.2 Spectral characterization of probe-fluid layer interactions 
Another compelling result revealed by the SUNM is the correlation between the increase in the ultrasonic 

signal and the shift in the resonance frequency experienced by the probe. This result is summarized in figures 5 and 
6. 

Figure 5 shows spectra taken at different probe-sample distances, starting with the tip positioned far away from 
the sample (curve F with open squares), then while approaching the sample (curve G with open circles, and H with 
open triangles), and finally during a more gradual retraction (curves m to v, in alphabetic order). In these results, the 
TF signal is the magnitude of the rms value of the ac current supplied by the TF, while  the ultrasonic signal is the 
output of the ultrasonic transducer fed to a one-phase lock-in amplifier; this explain the disagreement in the peak 
position between the corresponding TF and ultrasonic spectra. During the approaching process it is difficult to 
acquire stable spectra just after the probe encounters the adsorbed layer (the acquisition time for each spectrum was 
50 seconds). Here, spectrum G corresponds to a tip already well immersed into the contamination layer, and 
probably already in contact with the solid sample’s surface. In effect, an attempt for making a deeper incursion of 
the probe into the sample (curve H, open triangles) causes a further increase of the TF signal rather than a decrease 
(as it would have happened if the tip were immersed only in the contamination layer). We expect, therefore, that the 
probe is in solid-solid contact with the surface. A peculiar behavior occurs at this stage (after acquiring curve H). 
When the probe is pushed further into the sample, the peak amplitude of the TF signal does not change any more; 
rather a series of frequency response curves (corresponding to slightly different Vz voltage, and indicated with 

dashed lines in the figure) gather around spectrum H; these spectra do not display appreciable resonance frequency 
shift either. It appears, then, that the tip clamped into the sample and the resonance frequency is not anymore 
affected appreciably by the extra tension force at the tip. The latter however significantly affects the intensity of the 
ultrasonic signal, as can be noticed in the figure that some spectra get out of the measurement scale.  

When the probe is retracted from the surface, the spectra at different probe-sample distance are very stable. For 
example, spectrum m reproduces very well the spectrum G (the one taken during the approach) in both instances, in 
the registered TF signal and in the ultrasonic counterpart. This illustrates the existent close correlation between the 
two independently acquired signals and their reproducibility; at a given probe-sample distance they provide the 
same signal levels.  As the probe further retracts (curves “m” to “v”) a monotonic decrease in the probe’s resonance 
frequency is accompanied by a monotonic decrease in the sound peak intensity which continues until the probe is 
completely out of the adsorbed layer (curves F). 

The different behavior of the TF signal before and after the spectrum “q” (filled squares curve) suggests 
defining this stage as the z=0 reference; the point where the tip stops making solid-solid contact with the surface 
during the retraction. After making this assumption, it was instructive to verify whether the tip-adsorbed layer 
interaction keeps causing a shift on the probe’s resonance frequency. That this is indeed the case is shown in Fig. 6 
(the data is the same displayed in Fig. 5), where a frequency shift of 15 Hz is observed between spectra q and 
spectra v (after retracting the probe by 80 nm). Notice also that the intensity of the ultrasonic signal varies 
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accordingly with the frequency shift; the greater the resonance frequency shift, the greater the intensity of the sound. 
This observation is very compelling since gives clues on the constitutive nature of the adsorbed film. It not only 

produces a damping force, it is also the source of an elastic restoring force. 
4.  OTHER POTENTIAL APPLICATIONS OF THE SUNM 

Many interesting applications can be envisioned exploiting the scanning imaging capabilities of the SUNM, 
The semiconductor industry, for example, is heavily investing in the search for new materials that can keep pace 
with the continuous trend of electronic device miniaturization. Low-k dielectrics (to reduce the interconnection RC 
delay) as well as high-k dielectrics (relevant to the next generation of high-k CMOS gates) are materials under 
intense investigation and their elastic and electrical properties will need to be characterized at high lateral resolution. 
This is precisely the terrain of the versatile SUNM. Indeed, a sharp metallic probe in the SUNM can serve as an 
electrical electrode which can fulfill the requirements for both elastic and electrical characterization simultaneously. 

In addition, the more gentle characterization involved in the 
SUNM (it does not require indentation of the sample, as 
necessary in other ultrasonic techniques) can make the new 
technique SUNM much more attractive.  

Ferroelectrics are attractive materials used in combination 
with integrated circuit technology. New devices such as 
memory elements, microantennae, or phase shifters for 
telecommunication and microwave technology, as well as 
MEMS, use ferroelectric materials in thin film, thick film, or 
bulk forms respectively. But there still much to do to 
understand the formation of the devices’ ferroelectric domains 
at the submicron and nanometer scales.20 Ultrasound 
techniques, in general, offer an additional sample 
characterization parameter (identification of ferroelectric 
domains in this case) impossible to obtain with other scanning 
probe techniques. 

 Biomembranes have specific and well-regulated 
mechanical properties, which are not yet well understood 
(mainly due to the high complexity of living systems). Their 
structure and mechanical properties can be studied by 
fluorescence microscopy21 and AFM (Fig. 7)22 methods. 
Theoretical models link the elasticity of domains to the shape adopted 
by membranes and the formation of particular domain patterns.23 The 
former has lateral resolution limitations imposed by diffraction 
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Fig. 6 Correlation between resonance frequency shifts and increases in the sound intensity. These two graphs are a 
zoom-in of the graph displayed in Fig.5 (labels keep the same meaning), emphasizing the resonance frequency shift of 
the probe caused by its interaction with the sample’s adsorbed layer (left), which correlates with the increase in the 
ultrasonic signal (right). The arrows indicate the frequencies at which the spectra “F” (not shown) and “q” have their 
peak values. A frequency shift of ~15 Hz (spectra q and v) is obtained when the tip retracted 80 nm. 
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effects, while for the latter, although it offers greater lateral resolution, image interpretation and associated 
theoretical models are still in their infancy: the information obtained 
from only the sharp probe may not be sufficient to characterize the 
properties of membranes fully. The SUNM, however, has an 
additional ultrasonic detection capability to directly monitor the 
probe-membrane interaction effects on the membrane itself, which 
can provide useful complementary information in the studies of the 
membrane’s mechanical properties. In addition, when a near-field 
optical probe is used in the SUNM setup, an additional optical 
characterization with optical sub-wavelength lateral resolution will 
be possible. 

Micro- and nano-fluidic devices are well suited for a host of 
applications in biotechnology and biomedicine because of the 
simultaneous multiple bio-tests possible with little amounts of 
reactants. Nano-channels24 in particular, can have potential 

applications in fields that require controlling the flow of small volumes of fluid, including (electrophoresis) DNA 
separation. The embedded nature of nanochannels makes difficult to evaluate their quality and reproducibility. A 
straightforward arrangement using the SUNM would allow monitoring the quality of nanofluidic devices, based on 
the contrast in the detected ultrasound signal caused by the hollow structure; a truly subsurface characterization 
application (Fig. 8).  
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