
Portland State University
PDXScholar

Dissertations and Theses Dissertations and Theses

1-1-2011

Conceptual Modeling of Data with Provenance
David William Archer
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: http://pdxscholar.library.pdx.edu/open_access_etds

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized
administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Recommended Citation
Archer, David William, "Conceptual Modeling of Data with Provenance" (2011). Dissertations and Theses. Paper 133.

10.15760/etd.133

http://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
http://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/open_access_etds/133?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.15760/etd.133
mailto:pdxscholar@pdx.edu

Conceptual Modeling of Data with Provenance

by

David William Archer

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in

Computer Science

Dissertation Committee:
Lois M. L. Delcambre, Chair

David Maier
Leonard Shapiro

Mark Jones
Charles Weber

Portland State University
c©2011

i

ABSTRACT

Traditional database systems manage data, but often do not address its prove-

nance. In the past, users were often implicitly familiar with data they used, how it

was created (and hence how it might be appropriately used), and from which sources

it came. Today, users may be physically and organizationally remote from the data

they use, so this information may not be easily accessible to them. In recent years,

several models have been proposed for recording provenance of data. Our work is

motivated by opportunities to make provenance easy to manage and query. For exam-

ple, current approaches model provenance as expressions that may be easily stored

alongside data, but are difficult to parse and reconstruct for querying, and are diffi-

cult to query with available languages. We contribute a conceptual model for data

and provenance, and evaluate how well it addresses these opportunities. We compare

the expressive power of our model’s language to that of other models. We also define

a benchmark suite with which to study performance of our model, and use this suite

to study key model aspects implemented on existing software platforms. We dis-

cover some salient performance bottlenecks in these implementations, and suggest

future work to explore improvements. Finally, we show that our implementations

can comprise a logical model that faithfully supports our conceptual model.

ii

DEDICATION

To Cynthia

iii

Acknowledgements

This research was a team effort, and was successful because of the contributions of

everyone involved. First and foremost among contributors was my advisor, Professor

Lois M. L. Delcambre, who consistently pushed me to think about the big picture, al-

ways brought to the table new ideas for us to consider, and was a patient and thorough

reviewer of this work. The members of my thesis committee also contributed new

perspectives, ideas that I had missed, and excellent constructive critique. For these

I thank Professor David Maier, Professor Leonard Shapiro, Professor Mark Jones,

and Professor Charles Weber. I also appreciate the ideas, critiques, and inputs of

other faculty and students in the PSU DataLab research group: Kristin Tufte, Rafael

J. Fernandez-Moctezuma, Jeremy Steinhauer, Nick Rayner, Scott Brittell, and James

Terwilliger.

This work was supported in part by the National Science Foundation, grant IIS-

0534762, and by DARPA. Support for this work came from a number of others,

including the PSU Computer Science Department staff: Beth Holmes, Kathi Lee,

and Rene Remillard.

I recognize and deeply appreciate the contributions, patience, and encouragement

of my wife, Cynthia L. Archer, PhD. Without her, this achievement would have been

impossible.

iv

Contents

Abstract i

Dedication ii

Acknowledgements iii

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Example Settings for Provenance 3

1.1.1 Development of Targeted Cancer Therapies 3

1.1.2 Corporate Budget Planning 5

1.1.3 Battlefield Information Management 7

1.1.4 Opportunities to Enhance Provenance Models 8

1.2 Where Current Provenance Models Fall Short for Our Settings . . . 11

1.3 Research Goals . 15

2 Conceptual Model Overview 18

2.1 Model Fundamentals . 21

2.2 Structure of a Relational MMP Data Face 25

2.2.1 External Sources of Data 25

v

2.3 Structure of an Example MMP Provenance Model 26

2.3.1 Continuity of Existing Data 30

2.3.2 Granularity and Inheritance of Provenance 31

2.4 Interacting with and Visualizing MMP 33

2.4.1 The MMP Language . 33

2.4.2 Data Semantics of the MMP Language 35

2.4.2.1 Data Definition, Manipulation, and Confidence

Operations . 35

2.4.2.2 Query Operations 40

2.4.3 Confidence Language . 40

2.4.4 Predicate Language for Selection and Projection Operators . 41

2.5 Provenance Creation Semantics of the MMP Language 45

2.6 Provenance Graphs as Visualization Tools 46

2.7 Chapter Summary . 49

3 Formalizing the Conceptual Model 50

3.1 Modeling Evolving Data: Faces . 51

3.2 Modeling The Outside World: External Source Referents 52

3.3 Modeling Data Derivation: Provenance Links 52

3.3.1 Operation-induced Provenance Links 53

3.3.2 Continuity Provenance Links 55

3.4 Modeling Operations Applied to Data: Revisions 56

3.5 Modeling Creation of External Source Referents 58

3.6 Single-revision and Source-Creation Impact on Data and Provenance 59

3.6.1 DDL Revisions and Source Creations 60

3.6.1.1 Create Relation 60

3.6.1.2 Create Source 61

3.6.1.3 Create Attribute 61

vi

3.6.1.4 Drop Relation 61

3.6.1.5 Drop Attribute 62

3.6.2 DML and DCL Revisions 62

3.6.2.1 Insert Value . 63

3.6.2.2 Drop Value . 63

3.6.2.3 Insert Tuple . 64

3.6.2.4 Drop Tuple . 64

3.6.2.5 Paste Value . 65

3.6.2.6 Paste Tuple . 66

3.6.2.7 Paste Relation 66

3.6.2.8 Confirm Value and Doubt Value 67

3.6.3 Query Revisions . 68

3.6.3.1 Selection Operator Provenance 69

3.6.3.2 Projection Operator Provenance 70

3.6.3.3 Cartesian Product Operator Provenance 72

3.6.3.4 Union Operator Provenance 72

3.6.4 Provenance for Results of General MMP Queries 73

3.7 Accessing Provenance Information 75

3.7.1 Provenance Graphs . 77

3.7.1.1 Preliminaries: Tracing Continuity and Inheritance 78

3.7.1.2 Defining Provenance Graphs 81

3.7.2 Querying Provenance . 83

3.7.2.1 Example of Provenance Predicate Evaluation . . . 89

3.7.3 Provenance Polynomials 90

3.7.3.1 Representing Operations in Provenance Polynomials 96

3.7.3.2 Evaluating Plurality of Support with Provenance

Polynomials . 97

vii

3.7.4 Chapter Summary . 98

4 Conceptual Model Evaluation 100

4.1 Evaluating MMP Against Gaps in the Literature 101

4.2 Evaluating MMP Against Needs in Target Settings 105

4.3 Relative Expressiveness of Algebraic Provenance Representations . 109

4.4 Relative Expressiveness of Provenance-related Queries 111

4.4.1 Provenance Selection Queries 112

4.4.2 Query set for Expressiveness Comparison 112

4.4.3 Comparison of Expressiveness 114

4.4.3.1 Buneman’s Why-provenance model 114

4.4.3.2 Trio . 116

4.4.3.3 Green’s model 116

4.4.3.4 Example query 1 116

4.4.3.5 Example query 2 116

4.4.3.6 Example query 3 117

4.4.3.7 Example query 4 117

4.4.3.8 Example query 5 118

4.4.3.9 Example query 6 118

4.4.3.10 Example query 7 119

4.4.3.11 Example query 8 119

4.4.3.12 Example query 9 120

4.4.3.13 Conclusions About Expressiveness of Provenance

Selection Queries 120

4.5 Other Advantages of MMP Relative to Other Models 121

4.5.1 Accessing Ancestors and Operational History of Data 121

4.5.2 Computing Forward-Looking Provenance 122

4.6 Relative Complexity of Provenance-related Queries 124

viii

4.7 Chapter Summary . 128

5 Characterizing Performance of Implementation Choices for MMP 129

5.1 Benchmarks and Metrics . 129

5.1.1 Data query benchmark . 131

5.1.1.1 Data structure for relational database testing . . . 132

5.1.1.2 Data structure for graph database testing 132

5.1.1.3 Data query workload 133

5.1.2 Provenance query benchmark 135

5.1.2.1 Provenance structure for relational database testing 136

5.1.2.2 Provenance structure for graph database testing . . 137

5.1.2.3 Provenance query workload 137

5.1.3 Performance Comparison Metrics 139

5.2 Experimental Setup . 141

5.3 Experiments and Results . 141

5.3.1 Relational Data Query Tests 142

5.3.1.1 Test for Data Query 1 143

5.3.1.2 Test for Data Query 2 145

5.3.1.3 Test for Data Query 3 147

5.3.1.4 Test for Data Query 4 148

5.3.1.5 Test Results Using Warm-Start Caches 148

5.3.1.6 Conclusions on Data Tests 149

5.3.2 Provenance Predicate Tests 149

5.3.2.1 Conclusions for Provenance Tests 152

5.3.3 Implications for MMP Implementations 153

5.4 Other Ideas for Accelerating MMP Implementations 153

5.5 Chapter Summary . 155

ix

6 A Logical Model to Support MMP Implementation 157

6.1 Transforming Conceptual Models into Logical Models 159

6.1.1 Equivalence Classes of Language Operators 161

6.1.1.1 Class 1: Drop Attribute 162

6.1.1.2 Class 2: Insert Tuple 163

6.1.1.3 Class 3: Paste Tuple 163

6.1.1.4 Class 4: Queries 164

6.2 Faithful Support of MMP by MMPL 165

6.2.1 Basis Case for Induction 171

6.2.2 Inductive Case . 172

6.2.2.1 Data Portion of Inductive Case 172

6.2.2.2 Provenance Portion of Inductive Case 175

6.3 Efficiency of the Logical Model 182

6.4 Chapter Summary . 185

7 Related Work 186

7.1 The Open Provenance Model . 188

7.2 Provenance Models in the Literature 190

7.2.1 Lineage Tracing for General Data Warehouse Transformations 191

7.2.2 Annotation Management Systems 192

7.2.3 CPDB . 193

7.2.4 Trio . 194

7.2.5 Panda . 195

7.2.6 Orchestra . 195

7.3 Comparing Expressiveness of Popular Provenance Models 196

7.4 Performance of Provenance Models 197

7.5 Chapter Summary . 197

x

8 Conclusion 199

8.1 Discussion . 201

8.2 Future Work . 203

References 205

xi

List of Tables

2.1 Goals for the MMP Conceptual Model 22

2.2 MMP Operators . 36

2.3 Syntax of MMP Provenance Predicate Language 44

3.1 Syntax of MMP Provenance Predicate Language (Repeated from Table

2.3) . 87

4.1 Result Relation Rout from Figure 4.1 with Orchestra Provenance Anno-

tations . 102

4.2 Result Relation T with Orchestra Provenance Annotations 103

4.3 Enumeration of Subcategories of Provenance Selection Queries 113

4.4 Expressive Power of Comparable Provenance Models 120

5.1 Results for 3-attribute Relations Using Value-as-Node Structure 142

xii

List of Figures

1.1 Examples of Provenance Representations in Current Models 14

1.2 Evaluating Current Provenance Models. Blanks indicate that a model

does not address an identified issue. 15

2.1 Faces and Provenance Links in an MMP instance 24

2.2 Relational Data Face in MMP . 26

2.3 Example of Multiple Relational Faces in an MMP instance 27

2.4 MMP Instance showing provenance links between components 28

2.5 Example model instance showing provenance links 31

2.6 Granularity Hierarchy in Relational Data 32

2.7 Examples of Inherited Provenance . 33

2.8 Example Provenance Graph. Inherited provenance links are shown using

dotted lines . 48

3.1 Example Face in an MMP Instance . 52

3.2 Faces and Provenance Links in an MMP instance 53

3.3 Single-Revision Provenance Resulting from Select (a), Project (b),

Cartesian product (c), and Union (d) Operations. 71

3.4 Example Single-Revision Provenance Resulting from a Query 76

3.5 Graphical Representation of Single-Revision Provenance 77

3.6 Examples of Inherited Provenance . 81

3.7 Example Provenance Graph . 84

xiii

3.8 MMP Instance showing provenance links between components 85

3.9 Provenance Graphs for Attribute Values of Relation C at time t+6 in Fig-

ure 3.8 . 91

3.10 Examples of Provenance Expressions from Current Models 92

3.11 Example Provenance Graph. Repeated from Figure 3.7, with vertex de-

scriptions replaced by representative names. 95

4.1 Example Data and Provenance In Current Provenance Models 102

4.2 Evaluating MMP and Current Provenance Models. Blank cells indicate

that a model does not support a need. 108

4.3 Cancer Therapy Prioritization Workflow 125

4.4 Query Complexity Comparison . 127

5.1 Benchmarks and Implementations Tested 131

5.2 Data structures for Graph Database Testing 133

5.3 Examples of Linear and Bushy Provenance Structures 136

5.4 Schema Diagrams for Linear and Bushy Provenance 137

5.5 Enumerating Provenance Paths . 138

5.6 Recursive SQL Query for Computing Provenance Paths on 32,000 start-

ing tuples . 140

5.7 Test 1 Results. Size of equivalent relation is calibrated in number of

attributes per tuple times number of tuples. 143

5.8 Test 2 Results . 145

5.9 Test 3 Results . 147

5.10 Test 4 Results . 148

5.11 Linear Provenance Test Results . 149

5.12 Bushy Provenance Test Results . 151

6.1 Commutative Diagram for MMP . 166

xiv

6.2 Faithful Support Example - Part 1 . 166

6.3 Faithful Support Example - Part 2 . 167

6.4 Faithful Support Example - Part 3 . 169

6.5 Faithful Support Example - Mapping M to ML After Time 9 170

6.6 Comparing Λ(M) to ML . 171

6.7 Derivation of Λ(<operation(M)) (Data portion) 176

6.8 Derivation of <L
operation(Λ(M)) (Data portion) 177

6.9 Derivation of Λ(<operation(M)) (Provenance portion) 178

6.10 Derivation of <L
operation(Λ(M)) (Provenance portion) 179

7.1 MMP Provenance Links Represented in OPM Syntax 190

1

Chapter 1

Introduction

Traditional database management systems focus on providing users with efficient

ways to insert, update, delete, and query data. However, the provenance of data is

not addressed by these systems. The term provenance derives from the Latin roots

pro-, meaning “before” or “in front of”, and veni, meaning “to come”, and appears

for example in the French provenant, meaning “to come forth from”. With regard

to fine art, provenance is the record of who owned a work of art during what time

period, from its creation to the present. An authentic provenance record is considered

prima facie evidence that a work is genuine. In livestock or pet breeding, provenance

is typically called pedigree, and is widely used as evidence of quality of a particular

specimen. With regard to data, provenance is the record of which pre-existing data

gave rise to the data, by what operations, under what conditions, when, and under the

control of what agent1.

Many application domains can benefit from data models that include provenance.

For example, in accounting, there may be legal obligations to identify the provenance

of ledger entries. In eScience, protein databases like Swiss-Prot [2] are populated by

a diverse group of researchers using results of numerous experiments, and then con-
1This is the definition of provenance used in this work. Other database researchers use somewhat

narrower definitions of provenance that may include only what pre-existing data gave rise to the data,
or may include information about pre-existing data as well as some information about how that data
was manipulated.

2

tinuously revised and improved as new data becomes available. In order to know

whether selected data can be used in the context of a specific study or experiment, it

may be necessary to know where the data came from, and how it was manipulated.

Below, we describe three settings in the domains of medical research data manage-

ment, corporate budget forecasting, and battlefield information management. In each

of these, users benefit from provenance, yet current practice and current literature fall

short of making provenance easy to record, query, and manage.

Current tools do not make it easy to interrogate provenance in order to inform de-

cisions about data. In the literature, several logical models for data and provenance

have been defined and demonstrated [1, 4, 5, 8, 12, 21, 24]. These models typi-

cally focus on ways to represent provenance, mechanisms for computing and storing

provenance, and approaches to constructing provenance-related queries using exist-

ing database languages. In this work we contribute and evaluate a conceptual model

for data and its provenance. We focus on making provenance-related queries easy

for users to write, making it easy for users to describe the provenance characteristics

of data they wish to select, bringing the semantics of provenance into full view of

users, and managing provenance as relationships among data instead of as attributes

of data. We also contribute a logical model that faithfully supports our conceptual

model, and a provenance benchmark that allows for studying performance trade-offs

for implementations of our logical model.

This chapter introduces several settings that motivate our work, identifies oppor-

tunities for contributions in our conceptual model, and defines our research objec-

tives. In Section 1.1 we introduce settings for provenance and data. In Section 1.2

we briefly introduce each provenance model from the literature and discuss where

these models fall short against the opportunities identified in Section 1.1. In Section

1.3 we define the research objectives for this work.

3

1.1 Example Settings for Provenance

The settings described below highlight five significant opportunities for contributions

in provenance modeling, and enumerate other features useful in a conceptual model

for provenance and data.

1.1.1 Development of Targeted Cancer Therapies

Prioritizing individualized therapies for cancer patients is an iterative process where

data is subject to a mix of manipulations and queries2. The process begins with in-

sertion of patient background, family history, and tumor or lesion evidence into a

relational database from external data source such as patient medical records. Patient

samples are obtained and analyzed, and the resulting gene sequence data are also

inserted into the database. Next, queries match this patient sample data against ref-

erence databases of cancer-causing gene sequences. This analysis results in a ranked

distribution of likely causative gene mutations, which is also recorded in the database.

This materialized ranking information is in some cases subject to data manipulation

(DML) operations by clinicians, as they may rule out or re-prioritize causes based

on their expert knowledge. Next, additional queries match the list of likely causative

genes with data obtained from medical literature on known inhibitor drug – gene

expression interactions. The result is a ranking of likely effective drugs, which is

also stored in the database. After review of medical case history literature (to find

outcome data for trials of candidate drugs on other patients with similar histories and

phenotypes to those of the patient), a therapy is selected. The selected therapy is

recorded in the database, and therapy begins. Patient response is documented in the

database. Depending on the patient’s trajectory in therapy, the therapy prioritization
2Our description of the setting described here is the result of informal collaboration during De-

cember, January, and February 2011 with faculty at the Knight Cancer Center at the Oregon Health
and Sciences University. Work by Druker and others [13, 14] documents how this approach to cancer
treatment results in positive outcomes for chonic myeloid leukemia.

4

cycle may begin again.

Provenance can be useful in several ways in this setting. For example, clinicians

often consult with each other on therapy selections. During such consultations, clin-

icians typically review data and resulting decisions at each step in the process. If the

therapy process for a patient has run through multiple iterations, data and its manipu-

lation history from all iterations may be examined. Thus the full history of a therapy

selection (which database data or external data sources it derived from, what manip-

ulations it was subject to, and what queries it resulted from) must be easily available.

We note that in this setting, users freely mix definition, manipulation and queries as

part of typical work. We also note that users in this setting are not data management

experts. When these users query provenance, they need to be able to do so without

significant query-writing expertise or time investment.

As another example of provenance in this setting, input data to the therapy deci-

sion process such as the reference databases described above are subject to frequent

updates. Changes to these data may in turn affect “downstream” data such as therapy

choices. Provenance provides the means for detecting when downstream data is no

longer valid. A typical mechanism for performing this detection is for the software

system or a user to write a query that asks, “What data in the database was derived

from the source that was updated?” This is one example of queries in this setting that

identify data by describing some of its provenance characteristics without knowing

its full history.

In this setting, provenance of the therapy selection process is part of the medical

record. This record is expected by users to be immutable. We also note that users

prefer to keep provenance “out of sight” during normal data manipulation and query,

only exposing it when needed for provenance-related queries.

5

1.1.2 Corporate Budget Planning

Corporate budget forecasting is an iterative process in which a manager inserts bud-

get requests from subordinate managers or employees into a spreadsheet or other

tabular data management tool; manipulates request data to reflect personal judge-

ment; generates reports based on the data in formats that financial analysts and senior

managers request; and iterates during several rounds of budget negotiations3. This

process may take weeks or months to complete. Initial collection of budget requests

is typically done in a spreadsheet application, using insert, update, and delete op-

erations. Each request is typically recorded and annotated with information about

where the request came from and which project it pertains to. The next step typically

involves decreasing, increasing, or deleting certain requests in order to meet a budget

target and a set of deliverables for the budget period. During this step, a manager may

make several rounds of adjustments, resulting in a history that may later need to be

reviewed. In the next step, the manager may combine data from several spreadsheets,

each of which represents the budget proposal for an individual project or department

for which the manager is responsible (this aggregation corresponds to query opera-

tions with materialized results). The result of this aggregation is one or more budget

summary tables. In a relational database, this step would correspond to one or more

query operations. Next, the manager may again manipulate data in order to balance

the budget across all these projects or departments. This corresponds to further data

manipulation of the summary tables. Several “give-and-take” iterations may follow,

as managers negotiate with senior managers and each other. This process is typically

repeated at several levels within an organization.

Corporate managers often comment that they need a “paper trail” in order to

remember the many changes they typically make during a budgeting process. While
3The budget forecast setting is representative of my personal experience and that of others over a

period of 12 years of direct participation as a manager responsible for forecasting budgets for medium
to large engineering organizations.

6

some managers keep detailed records, these records are typically not stored with

budget data and require considerable extra effort to maintain. Because the amount of

data and number of iterations encountered in the budget process is typically beyond

a user’s ability to visualize or recall, users in this setting would benefit from tools

to automatically record and to query the provenance of budget data. Provenance

is beneficial in this setting, because managers may need to review where a request

came from, when it was added, or who submitted it, in order to ensure that entries

in the forecast table are complete; review justification of budget requests, or judge

the impact of not including items in the budget; and use information on how requests

were arrived at in order to justify proposed expenses to upper management.

There are several similarities between the therapy prioritization setting discussed

above and the corporate budgeting setting. As noted above, the budget forecast set-

ting freely mixes definition, manipulation and queries over data as part of typical

work. Users in the budget forecast setting need to query provenance using available

tools, without having significant query-writing expertise. Because budget forecast

data undergoes typically many manipulations and queries in each iteration of the

budgeting cycle, and because there may be many such cycles during a single bud-

get process, users query multiple generations of provenance in order to understand

how data came to be. Typical provenance-related queries must identify data by de-

scribing partial characteristics of data provenance, for example the external sources

where data came from, or specific dates at which data was modified, without know-

ing data’s complete history. Another similarity of these settings is that users in both

expect provenance to be protected from change.

One difference between the budget forecasting process and the therapy prioriti-

zation process is that in the budget process, users may delete data (for example, if

a decision is made not to fund a budget request) and then encounter the same data

again (for example, if the same request is made redundantly). When this happens,

7

the user wants to know that the newly encountered data has been seen (and deleted)

before. This suggests that provenance tools should retain deleted data and its prove-

nance so that users can distinguish re-discovery of already-deleted items from new

discovery of hitherto unseen data.

1.1.3 Battlefield Information Management

The task of gathering information, assessing its accuracy, and using it to produce

reports is commonplace in theaters of military operations. A battlefield information

officer routinely gathers and organizes information into a database from a variety

of external data sources to help her commanders make decisions. A typical task

might be to assemble a table of casualty information due to explosive device incidents

during the prior week in a given patrol area 4. Data sources for assembling this

report may include military incident databases or reports from friendly forces in the

area, e-mail ex-changes with local police, patrol logs for the week, and medical-team

records. Personal knowledge of the operations area, recent events, and reliability of

sources also play a role in assembling such reports. A task of this type might begin

by writing a query against an existing database, to select known incidents during

the time period of interest. Next, the information officer might select data from

external sources and insert it into rows and columns in the evolving data table, adding

columns to represent new data as needed. The officer may merge rows from the table

that represent the same incident, and combine information from multiple columns

that are found to be redundant, by writing queries. Thus the task of assembling a

table of information is iterative, involving data definition, manipulation, and query

operations.

Provenance could be useful in this setting. For example, a commanding officer

reviewing the summary report might ask, “Where did we get the date for incident
4The battlefield information setting described here was the topic of an extended discussion with

DARPA representatives at a workshop in March, 2008.

8

105?” – a question that requires knowledge of the provenance of the item labeled

105 to answer. As another example, the reliability of information sources in a theater

of operations is subject to change. Each time this happens, the reliability of “down-

stream” data (data derived from the source, and possibly manipulated and queried in

the interim) may be affected. As in the medical therapy selection setting, provenance

provides the means for detecting when downstream data may no longer be viable.

We note that the battlefield information setting has similar characteristics to the

two settings described above. Sequences of mixed data definition, manipulation,

and query are common; users need to query provenance easily, without significant

data management expertise; provenance queries typically involve examining several

generations of operations; users may need to identify data by describing part of its

provenance, without knowing its full history; and users expect provenance to be pro-

tected against unexpected change.

1.1.4 Opportunities to Enhance Provenance Models

The settings described above suggests several capabilities related to provenance that

do not typically exist in current provenance models:

A provenance model should allow for intermixing manipulation and query op-

erations. Each setting described above typically involves multiple iterations of ma-

nipulating data, querying it to produce new data, and then further manipulating the

new data. One shortcoming of current provenance models is that they do not typ-

ically represent provenance due to such sequences of queries and manipulations.

Some current models address provenance due to only manipulation operations. In

these models, there is no provision for introducing new relations, e.g., as the result

of queries. Other current models address provenance only for results of individual

queries (single-generation provenance), without addressing materialization and sub-

sequent manipulation of query results for input to later manipulations.

9

Provenance representations should be parse-able using available languages.

Users in these settings need to express queries that select data by provenance charac-

teristics, for example to distinguish data by its source or by when and how it was ma-

nipulated. Provenance relationships among data are naturally represented in graphs,

where nodes represent data items and edges represent parent-child relationships be-

tween data items. To fit provenance into the schema of relational data, current models

express provenance using symbolic expressions that fit available data types. Use of

algebraic expressions stored as character strings is a common approach. When a user

issues a query that selects data by its provenance characteristics, each provenance

expression (representing a parent-child relationship) must first be parsed and inter-

preted so that it can be compared to the desired provenance pattern described by the

user. Because current query languages do not provide operators for this parsing and

interpretation, queries that select data based on immediate parent-child provenance

cannot easily be constructed. As a result, provenance interpretation in current models

is typically done manually.

Multi-generation provenance should be easy to access. Data manipulation and

query in the settings we describe are iterative processes. In each case, data typically

are subject to, and result from, multiple generations of manipulations and queries. In

order to understand how data came to be, users may need to understand more than one

generation of these operations. However, current provenance models store with each

data item only the single provenance expression that ties that item to its immediate

parents. Thus the whole history of a data item, which may consist of many such

parent-child generations, is distributed across the database. Unfortunately, current

provenance models provide no language to easily re-assemble these generations so

that the entire history of a data item may be queried. As a result, the burden is

on users to reconstruct multi-generation provenance before querying it. Typically

reconstruction is done, if at all, by writing recursive queries or programs that traverse

10

all relevant parent-child (single-generation) relationships.

A query language should be available to make expressing queries over prove-

nance easy. Users in our settings may be familiar with using relational databases,

but are not typically experts in writing complex queries. Current provenance models

support provenance queries using languages designed for querying data: Datalog,

for some models, and SQL or SQL-like languages for others. Queries that retrieve

provenance of data for manual inspection by the user, for example, “What are the an-

cestors of this data?”, are relatively simple to write in these languages, and have been

addressed in previous work. However, users in our settings use provenance charac-

teristics as a means to select data for further processing. In order to express such

queries, a user must describe characteristics of provenance that describe the data of

interest.

Describing characteristics of provenance is typically difficult in query languages

used in relational databases. Unlike traditional atomic data types used in relational

databases, provenance is a chain of relationships. The length of the relationship chain

(that is, the number of ancestors and derivation actions) is a function of the derivation

process that gave rise to the data. Thus interrogation of provenance data may require

examination of multiple ancestors, the number of which may not be known by the

user at the time a query is written. In addition, the provenance of each ancestor

element may include multiple properties, such as the relation in which the element

resides, its value, and so on. However, query languages such as SQL are designed

to interrogate a fixed set of elements, where attribute values defined by a relation

schema and the number of tables involved in the query must be known in advance.

Thus writing queries that select data by describing patterns present in its provenance

is typically difficult in these traditional query languages.

Provenance should be treated differently from data with regard to protection and

management. Users in our settings typically expect that although data may change,

11

the history of data is immutable once created. However, current provenance models

use manipulation and query operators that do not distinguish schema attributes. Thus

any query or manipulation may affect any data (including provenance information)

present in the database. This behavior is incompatible with a “write-once” approach

to recording provenance.

The five opportunities described above motivate our conceptual model. In the

next section, we examine how well current provenance models in the literature ad-

dress these opportunities.

1.2 Where Current Provenance Models Fall Short for Our Settings

Cui and Widom’s Lineage model [12] annotates each relational tuple from a query

result with an expression representing the set of tuples from input relations that cause

the result tuple to appear. These expressions are computed lazily, after query execu-

tion, if a user demands provenance information for selected data. The lack of inser-

tion operators (Lineage only addresses provenance induced by queries, not DML op-

erations) precludes representation of external sources, data manipulations, and mul-

tiple insertions of data. Though Lineage identifies ancestor tuples in its provenance

expressions, it does not provide information about derivation actions or agents. Lin-

eage does nothing to prevent direct user manipulation of provenance information. In

fact, it requires user-initiated actions to create provenance information. Lineage in-

cludes no language for querying multi-generation provenance, and does not retain or

track provenance of deleted data.

In Buneman’s Copy-Paste Database (CPDB) [5], provenance is recorded in an

auxiliary relation. In contrast to Lineage, CPDB addresses data manipulation op-

erations, but does not support queries (relational algebra operators). Even though

insertion operators are supported, CPDB does not address multiple insertions of

identical data (nor tracking of multiple histories, because these do not occur in the

12

CPDB model). Like Lineage, CPDB does nothing to prevent direct user manipu-

lation of provenance information. CPDB also includes no language for querying

multi-generation provenance, nor does it retain or track provenance of deleted data.

In work subsequent to CPDB [7], Buneman developed a framework for recording

provenance due to queries as well as data manipulations in a single model. This

model retained the other characteristics and shortcomings of CPDB that we discuss

in this comparison.

Trio, developed at Stanford University, supports both data uncertainty and prove-

nance [1]. We restrict our consideration to data operations without uncertainty. Like

Lineage and CPDB, Trio supports relational data, and stores provenance in the form

of annotations to tuples. Like Lineage, this provenance includes where data came

from, but not which manipulations were done, nor who performed them. Trio’s

language supports queries as well as data manipulation, but Trio cannot represent

provenance due to a mix of these operations. Trio is the only current model that re-

tains deleted data. Trio is the only current model that provides a provenance-specific

built-in function, Lineage(), to help users in writing provenance-related queries. We

examine the utility of this function in Chapter 4 when we address syntactic complex-

ity of provenance queries.

Orchestra [21] is a collaborative data-sharing system, motivated by the need to

share scientific databases between research groups. The goal of Orchestra is to pro-

vide update-exchange of data, where sites publish updates to their data at intervals of

their choosing, and adopt published updates from others at intervals of their choos-

ing. Rules (views) established at each site integrate incoming updates to produce

potential revisions to a local database. Other rules enforce trust policies that allow

local administrators to select which revisions are integrated. To enable trust policies,

update tuples are annotated with their provenance in a way similar to that used in

Trio and Lineage.

13

Orchestra’s provenance representation differs from these other models in its abil-

ity to express more fully how data was derived from ancestor data. Figure 1.1 shows

an example of a simple query and how the provenance of its result tuples is repre-

sented in each of these models. The query self-joins relation R on attribute A, and

unions this result with the result of a self-join of R on attribute C, and then retains

only A and C in the result relation. The first tuple in the query result exists because

input tuple a combined with itself twice in the execution of the query, giving rise to

the first result tuple each time. The first tuple in the result also exists because tuples

a and c in the input relation combined to give rise to it. The Orchestra provenance

model shows this provenance as a polynomial. In it, the multiplication operator in-

dicates that the combined presence of input tuples gives rise to an output, and the

addition operator indicates that each of its input tuples gives rise independently to

a result. In contrast, the Trio representation makes it impossible to distinguish how

many instances of an input were present to give rise to an output. The CPDB model

makes it impossible to distinguish how many independent, identical terms give rise to

a result. The Lineage model is the least expressive, indicating only which inputs had

some bearing on a result. Green [20] has formally shown that the Orchestra model is

the most expressive of these provenance models.

Like Trio and Lineage, Orchestra does not record the users or derivation pro-

cesses involved. Though more expressive about how ancestors combine to yield

resulting data than Lineage or Trio, this expressiveness is limited to logical expres-

sions using “and” and “or”, rather than details of which operations were performed.

In Orchestra, there is no concept of derivations that include multiple operations ap-

plied over time. Thus multiple insertions of identical data are not part of the Orches-

tra model, and there is no notion of multi-generation provenance in Orchestra. In

addition, Orchestra represents only provenance due to queries, not manipulation op-

erations. Because Orchestra is the most expressive of the models discussed here, we

14

Figure 1.1: Examples of Provenance Representations in Current Models

use its representation as the standard for comparing the expressiveness of provenance

representations we develop in this work.

Figure 1.2 summarizes how current provenance models in the literature address

the opportunities identified in our settings. Note that all models we consider pro-

vide automatic provenance collection. However, only CPDB and Trio can repre-

sent external sources as part of provenance and track operations done and users that

perform them. Only CPDB addresses intermixing of queries and manipulations in

multi-generation provenance. No models in the literature address the other four op-

portunities we describe.

We decided to make this set of opportunities the focus for our conceptual model.

We also chose to address the other needs identified in the figure. All but one of these

opportunities and needs are fundamental to the notion of provenance. The remaining

characteristic, allowing for multiple insertion (or copy-and-paste) of identical data,

is included because it offers an important opportunity. In current provenance models,

15

Figure 1.2: Evaluating Current Provenance Models. Blanks indicate that a model does not
address an identified issue.

provenance of data introduced by definition language operations or data manipulation

language operations is limited to a single origin. For example, a tuple inserted into

a database in a single operation comes from just one place, and cannot be later in-

troduced from a different place. However, provenance of data introduced by queries

may consist of several distinct origins. For example, a tuple in the result relation of

a union operation may have two distinct origins. By including multiple insertion of

data in our model, we allow for all operations to specify multiple origins for result

data provenance.

1.3 Research Goals

In this work we:

• Define a set of capabilities desirable in a provenance model, based on oppor-

tunities to contribute to the provenance literature and needs identified in our

16

settings.

• Define a conceptual model for data and provenance, along with a language for

manipulating and querying data represented in the model

• Formalize our conceptual model in order to define it clearly and prove propo-

sitions about its properties.

• Evaluate our conceptual model in terms of how well it addresses the opportu-

nities we defined, how expressive its provenance query language is, and how

the complexity of queries in our language compares to those of others in the

literature.

• Define a performance benchmark suite that includes data and provenance, and

define a workload to measure performance of important classes of operations

from these settings.

• Study the performance of our model when implemented on existing software

platforms, using our benchmark suite.

• Define a logical model that faithfully supports our conceptual model.

We set the scope for our work as follows. We focus on relational data in order to

make our contributions comparable to existing literature and because many users are

used to dealing with data in tabular form. (Using our provenance model with other

kinds of data is also possible. We suggest this area for future work.) We address

typical operations found in relational database languages, as well as selected oper-

ations found in the settings we defined above. These setting are examples of data

curation settings. Data curation settings are characterized by continuous integration,

maintenance, and update of datasets by domain experts over relatively long periods

of time. Data curation settings represent a popular emerging discipline in data man-

agement. We choose to address selected operations characteristic of data curation

17

settings because of this growing popularity, because inclusion of them in our model

does not unduly complicate our model structure or query language, and because these

selected operations are representative of the broader set of operations in data cura-

tion settings. In this work, we distinguish individual derivation steps comprised of

single operations (which we call the single-generation provenance of the result data)

from the composition of these steps (which we call the multi-generation provenance

of the end result). We note that, while single-generation provenance is informative,

it is analogous to looking at the parents of a person in a family tree document, but

ignoring their grandparents and more distant ancestors. Often, users may need to

see the entire family tree in order to decide trustworthiness of data or understand its

applicability. We note that features of our proposed model that are defined in or-

der to support specific use models may be omitted without compromising the core

contributions of our work.

The remainder of this dissertation is organized as follows. In Chapter 2, we

informally define our conceptual model for data and provenance, and discuss the

motivation for each aspect of the model. In Chapter 3, we formally define our model.

In Chapter 4, we evaluate our model. Chapter 5 summarizes the benchmarks we

defined, the implementations we studied, and the results of our performance studies.

In Chapter 6, we show how implementations we studied can comprise a logical model

that supports our conceptual model. In Chapter 7, we survey related work reported

in the literature. In Chapter 8, we offer conclusions and suggest future extensions to

this work.

18

Chapter 2

Conceptual Model Overview

In this chapter, we introduce a conceptual model for data and provenance. We call

our model the Multi-granularity, Multi-provenance (MMP) model. We first outline

goals for MMP, based on opportunities identified in Chapter 1. We then informally

define MMP.

The fundamental structure of MMP is motivated by the differences between

provenance and data. First, provenance and data differ in that provenance is created

as a side effect of operations applied to data, while data is directly manipulatable by

those operations. Second, once created, provenance is invariant, while data is not.

Third, provenance is a temporal relationship between entities, while data in many

common data models exists only “now”. The first two of these differences echo Gap

5 outlined in Chapter 1, and suggest that, in MMP, 1) data and its provenance should

be represented using distinct models, and 2) access to data and provenance should be

controlled independently. The third of these differences suggests that 3) provenance

should be modeled as a network interconnecting data from various instants in time,

while 4) data and its relationships should be modeled at single instants. A naive

approach might suggest that data and provenance could be modeled completely in-

dependently. However, users need to query data and its provenance in combination,

using the same language, and users apply operations to data that affect provenance as

well. This need suggests that in MMP, 5) although data and provenance are largely

19

independent, a model supporting both must allow them to be queried simultaneously,

and 6) the language for MMP must define both how operations define, manipulate,

and query data, and how they induce provenance.

Other goals for MMP are motivated by gaps in the literature that make current

provenance models difficult to use, as discussed in Chapter 1. Gap 2 suggests that

in MMP 7) users should not need to interpret and parse provenance representations

in order to reconstruct provenance relationships. Gap 3 suggests that 8) users should

not need to write queries to reconstruct, nor otherwise manually reconstruct, multi-

generational provenance from single-generation provenance relationships. Gap 4

suggests that 9) users should be able to phrase queries that select data by its prove-

nance (where it came from, how and when it was manipulated or queried, and who

performed the manipulations) using a simple query language, something not possi-

ble in current models. In Figure 1.2, the user need “Records operations and users”

suggests the part of this goal regarding what selection criteria should be available.

Although the fundamental structure of MMP that we describe in the next sec-

tion is data model agnostic, the remainder of our work focuses on the use of MMP

with the relational model for data because relational data management tools are in

common use. This specialization suggests that MMP for the relational model should

10) support multiple relations simultaneously. Gap 1 from Chapter 1 suggests that,

along with multiple relations in a database, MMP should 11) support a query, data

management (DML), and data definition language (DDL) with features common to

relational databases. The inclusion of data definition operators, which can affect en-

tire relations or schema attributes, along with the presence of data management oper-

ators, which can affect tuples or individual attribute values, implies another goal: 12)

MMP needs to address provenance of all granularities of relational data, including

relation schema.

In current literature, Buneman defines the only other provenance model we know

20

of that supports more than one data granularity [8]. Buneman’s model, CPDB (which

stands for Copy-Paste Database), models data as tree-structured rather than rela-

tional, and makes the assumption that all data affected by an operation has the same

provenance. For example, if a sub-tree of data is inserted into a CPDB instance,

all data elements in that subtree gain a provenance record indicating they were in-

serted from the same source. This assumption is valid for data manipulation opera-

tors supported in CPDB (insert, copy-paste, update, and delete). However, our model

supports query operators, which do not induce the same provenance for data at all

affected granularities. For example, a tuple resulting from a Cartesian product opera-

tion has a parent tuple in each input relation to the product, yet each attribute value in

such a tuple has provenance of only one input attribute value from one of the tuples.

Thus 13) MMP must allow for distinct provenance of data at different granularities

of a query result, as well as distinct provenance for different query result data at the

same level of granularity.

Evaluation of conceptual models is typically difficult because there is no straight-

forward way to measure correctness or completeness. One way we choose to evaluate

MMP is by determining whether the opportunities and user needs identified in Chap-

ter 1 are met by MMP. We define the following additional goals to support specific

use models. 14) MMP should be able to represent as part of data provenance that data

may be inserted into an MMP instance from specified external sources as well as be

manipulated within the model instance. This requirement follows from the “Rep-

resents external sources” need shown in Figure 1.2. 15) MMP should enable users

to insert the same data values multiple times, for example because the data may be

encountered from multiple external sources, or from the same external source more

than once. This requirement follows from the “Multiple insertion of same data” need

shown in Figure 1.2. If data has been deleted, curators may wish to know that the

data was once present. This need is identified in Figure 1.2 as “Retaining deleted

21

data and its provenance”. For example, if a tuple was inserted, then deleted because

it was thought erroneous, a curator finding the same source of data at a later time

may find it useful to know that the data was previously encountered and then deleted.

Because of this use model, 16) MMP should retain deleted data without changing the

semantics of the relational languages it supports.

Finally, recall that in Chapter 1, we identified one other need, which we repeat

here as a goal: 17) In addition to the ability to query provenance, MMP should

provide the capability to visualize the multi-generation provenance of selected data

as a means of browsing the history of data.

The goals for defined above for MMP, and two others defined in the next section,

are listed in Table 2.1.

2.1 Model Fundamentals

The fundamental notion of MMP is that its data and provenance models are orthog-

onal. Data (entities and relationships) are modeled at instants in time, while the

provenance relationships between data at all modeled granularities interconnect these

instants. Because part of data’s provenance is the prior data that gave rise to it, all

such instants are retained1: whenever an operation is applied to data, a new database

is created, instead of the existing database being modified. We call each snapshot a

data face. Each face in an MMP instance instantiates the same data model, because

the set of faces represent the same database recorded at different instants in time. The

data model may be any appropriate for the application at hand: a relational database,

an entity-relationship model, a graph database, or an RDF representation, for exam-

ple (though in this work we constrain MMP to the relational model for data). Note

that the schema may change from one face to the next, for example if a new attribute
1In an implemented system, for practical reasons, a system administrator or user would likely be

able to delete instants that were deemed no longer useful. We do not consider such a capability in our
definition of MMP here.

22

Table 2.1: Goals for the MMP Conceptual Model

1. Data and its provenance should be represented using distinct models
2. Access to data and provenance should be controlled independently
3. Provenance should be modeled as a network interconnecting data

from various instants in time
4. Data and its relationships should be modeled at single instants
5. MMP must allow data and its provenance to be queried simultaneously
6. The language of MMP must define both how operations define, manipulate,

and query data, and how they induce provenance
7. Users should not need to interpret or parse provenance representations in

order to reconstruct and query provenance relationships
8. Users should not need to reconstruct multi-generation provenance in order

to query it
9. Users should be able to phrase queries that select data by its provenance

using a simple query language
10. MMP should support multiple relations simultaneously
11. MMP should support query, DML, and DDL languages with typical DBMS

features
12. MMP should support provenance for all granularities of relational data
13. MMP must allow for distinct provenance of data at different granularities

of a query result, as well as distinct provenance for different
query result data at the same level of granularity

14. MMP should be able to represent as part of data provenance that data
may be inserted into an MMP instance from specified external
sources as well as be manipulated within the model instance

15. MMP should enable users to insert the same data multiple times
16. MMP should retain deleted data without changing the semantics

of the relational languages it supports
17. MMP should provide visualization capability for

multi-generation provenance
18. MMP should avoid representing provenance redundantly
19. MMP should rely on implicit, rather than explicit, representation of

provenance where possible

23

is added to a relation. Each face is labeled with the time of its creation, the operation

that induced it, and the agent that applied the operation, in order to distinguish the

event that induced it.

Faces in an MMP instance form a set totally ordered by creation time. Because

the semantics of data models we consider define results of operations to be derived

from the current state of the database when the operation is applied, or from specific

sources of data external to the database, data in one face is derived only from data in

the immediately preceding face or from these external sources, using the operation

labeling that face. Provenance of each data element in a face is modeled as directed

edges that originate at the element and terminate at all elements in the immediately

preceding face, or at referents to external sources, that gave rise to it. These edges

are induced by the operation that created the new face. Once created, these edges

are retained and are not manipulatable, because they represent the effects of actions

that are part of data history. We call these edges provenance links. Figure 2.1 shows

an example of data faces and provenance links for an MMP instance. Provenance

links are shown as directed edges from data elements resulting from operations to

the input data that gave rise to those elements. Data elements are shown as circles

on rectangular data faces. Note that data appears on all successive faces once it has

been created (even if it has been deleted), while new data is added when created by

applied operations. In MMP, there are implicit provenance links from a data element

in one face to the same data element in the immediately preceding face. Figure 1

does not show the implicit links. Provenance links encode the complete provenance

of data elements. Because data is represented in faces at all modeled granularities,

provenance links can originate and terminate at data elements of any granularity.

The pattern of provenance links is determined by a provenance model that is in turn

defined by the language used to manipulate and query data.

Provenance links may be inspected (either visually, or using a query language)

24

Figure 2.1: Faces and Provenance Links in an MMP instance

in order to understand the provenance of a data element. Some applications using

MMP may inspect only single-generation provenance, (i.e., connections between

one face and its immediate predecessor). Other applications may inspect the graph of

provenance links stretching back to distant faces, (i.e., multi-generation provenance).

Multi-granularity, multi-generation provenance in MMP can result in a large and

rapidly growing population of provenance links that may confuse users and cause

inefficient implementations. This issue motivates two additional goals for MMP:

18) MMP should avoid representing provenance redundantly, and 19) should rely

on implicit representation of provenance where possible. We expect that the explicit

representation of all faces in an MMP instance is also unrealistic for any implementa-

tion. However, we believe that the use of complete faces at each step in MMP makes

25

the model easy to understand and visualize. Chapter 5 is devoted to the investigation

of ways to implement MMP at the logical level, including removing the requirement

to store complete faces at each step.

This basic structure of MMP is motivated by Goal 1 (distinct models for data

and provenance, suited to the application). Goal 2 motivates the use of distinct,

independent models for data and provenance. This distinction facilitates separate

control of data and provenance content. Goal 3 motivates MMP provenance links

and their use in interconnecting components on different faces. Goal 4 motivates the

face structure of MMP.

2.2 Structure of a Relational MMP Data Face

For the rest of the work in this dissertation, we specialize MMP to use the relational

data model, a decision motivated by Goal 10 described in Section 2.1. For each

face, we refer to the relations, their attributes, tuples, and attribute values as the

components of the face. Figure 2.2 shows an example of an MMP relational face.

The two relations, four attributes, three tuples, and six attribute values in the figure

are the components of the face shown. Figure 2.3 shows a set of faces, each labeled

by the operation that induced it.

In support of Goal 16, MMP provides a function that, when applied to a data

element, indicates whether that element is still active, or has been deleted. Goal 16

also motivates the decision that deleted data in MMP is not manipulatable, nor does

it take part in queries.

2.2.1 External Sources of Data

Data that is directly inserted into an MMP instance from outside the database has

provenance in the form of the name of the external information source from which the

data came. In MMP we model these external sources with elements called external

26

Figure 2.2: Relational Data Face in MMP

source referents. These elements exist separately from data faces. External source

referents must be explicitly created in an MMP instance before use as a source of

data. Upon creation, each external source referent consists of the identifier of the

external source that it represents. Once created, external source referents may not be

deleted. The inclusion in MMP of external source referents is motivated by Goal 14.

2.3 Structure of an Example MMP Provenance Model

As defined in Section 2.2, provenance links show the derivation relationships be-

tween data in one face and its immediate ancestors. When data in a face, or external

source referents, are used as inputs to an operation, we refer to them as parents. We

refer to the result data of the operation as children. Provenance links originate at a

child component and terminate at its parents. Figure 2.4 extends Figure 2.3 by adding

a set of external source referents and the provenance links induced by the operations

that label each face in the figure.

Provenance recording is automatic in MMP. Users do not record provenance as

each operation is performed, nor can they manipulate provenance. Provenance cap-

tured in MMP is determined by the semantics of operators that manipulate data on

27

Figure 2.3: Example of Multiple Relational Faces in an MMP instance

28

Figure 2.4: MMP Instance showing provenance links between components

29

the front (i.e., most recently created) face in the MMP language. The effect of oper-

ator input data on result data is operator-specific, so the provenance links induced by

each operator are also operator-specific. In MMP, a result component may originate

zero or more provenance links. Provenance links are hyper-edges that always have

a single originating component, but may have more than one terminal component.

Constants introduced by queries originate zero provenance links because there are

no parents from which they derive in the preceding face. An external source refer-

ent originates no links, because operations do not affect external sources referents.

An external source referent may terminate any number of links, because it may be

a parent in any number of operations. A component may also terminate multiple

provenance links, because (in query operations in the relational model) a given par-

ent component may contribute to multiple child components. For example, a tuple

from one input relation to a Join operation may combine with several distinct tu-

ples in another input relation, giving rise to multiple result tuples. Each terminal

of a provenance link is either of the same component type (relation, tuple, attribute,

or attribute value) as its origin, or is an external source referent. Provenance links

may represent the provenance of components at all granularities (relations, tuples,

attributes, and attribute values), in support of Goal 12, depending on the operation.

Because some queries may produce the same child component in multiple inde-

pendent ways, more than one provenance link may originate from a child component.

Figure 2.5 shows an example of three input relations, (A, B, and C) at an initial point

in time n. At time n+ 1, a query R = (πalpha(A ./beta B) ∪ C) is applied, resulting

in the addition of relationR to the database in face n+1. Provenance links due to the

query are shown at all granularities: provenance of result relation R is shown with

solid lines; provenance of result attribute alpha is shown dashed, in red; provenance

of result tuples are shown in yellow; and provenance of result attribute values are

shown in green. This example query joins relations A and B using beta as the sole

30

join attribute, and forms the union of the join result and relation C. We read the

provenance of each result component as follows:

• relation R exists because both input relations A and B exist, and exists inde-

pendently because input relation C exists

• attribute alpha in result relation R exists because attribute alpha in input rela-

tionA exists, and exists independently because attribute alpha in input relation

C exists

• tuple 〈a〉 in the result relation R exists for three independent reasons: because

tuple 〈a, b〉 in relation A exists and tuple 〈b, c〉 in relation B exists; because

tuple 〈a, s〉 in relationA exists and tuple 〈s, u〉 in relationB exists; and because

tuple 〈a〉 in relation C exists

• tuple 〈o〉 in R exists because tuple 〈o〉 in relation C exists

• attribute value a in column alpha of tuple 〈a〉 in R exists independently for

three reasons: because the attribute value a in column alpha of tuple 〈a, b〉 in

relation A exists; because the attribute value a in column alpha of tuple 〈a, s〉

in relation A exists; and because the attribute value a in column alpha of tuple

〈a〉 in relation C exists

• attribute value o in column alpha of tuple 〈o〉 in R exists because the attribute

value o in column alpha of tuple 〈o〉 in relation C exists.

2.3.1 Continuity of Existing Data

All data in a face except new data introduced by queries, newly inserted from external

sources, or copied and pasted from elsewhere, is present because it existed in the

previous face. In MMP, there is an implicit provenance relationship between such

31

Figure 2.5: Example model instance showing provenance links

data in one face and the same data in the prior face. Because these relationships

are easily discoverable by observation, Goal 19 motivates us not to include explicit

provenance links for them. For example, in Figure 2.4, note that there are no explicit

provenance links from face n + 5 to face n + 4, even though every data item in face

n+ 5 clearly exists because its predecessor exists in n+ 4.

2.3.2 Granularity and Inheritance of Provenance

As shown in Figure 2.5, MMP operations may induce provenance at different com-

ponent granularities. This functionality is motivated by Goal 13 from Section 2.1.

32

Figure 2.6: Granularity Hierarchy in Relational Data

However, explicit inclusion of provenance links at all granularities would be redun-

dant because, for certain operations, some or all of the provenance links for lower-

level components are derivable from those recorded for higher-level components.

For example in Figure 2.5, MMP records only the provenance links shown as solid

lines. When provenance at other granularities is needed for querying or browsing, it

is reconstructed using the recorded provenance and a set of inheritance rules that we

define in Chapter 3. We say that operations where inclusion of provenance links at

lower levels is not explicit because they would be redundant to those at upper levels

have inherited provenance. Motivated by Goal 19, we record only the provenance

link at the highest possible level of granularity, using the hierarchy shown in Fig-

ure 2.6. We believe this approach will be easy for end users to understand, with

provenance links explicit only where necessary.

To further clarify the mechanisms for inherited provenance, Figure 2.7 shows

two independent examples of operations with inherited provenance. On the left, a

tuple in relation A was inserted at time n + 1 from external source X via an Insert

Tuple operation. The provenance link from the result tuple to the external source

is explicitly recorded in the model. The provenance links for the attribute values in

the tuple, shown in dotted lines, are not recorded. Instead, they are inherited from

33

Figure 2.7: Examples of Inherited Provenance

the tuple provenance link. On the right in the figure, relation A is pasted into the

database at time n + 1 as a copy of relation B. The provenance link (shown solid)

from the relationA to relationB is explicitly recorded. The provenance links (shown

dotted) for attributes, tuples, and attribute values, are not recorded but are inherited

in MMP.

2.4 Interacting with and Visualizing MMP

MMP provides two ways to interact with data and provenance. The MMP language

provides operations to define and manipulate data, and to query provenance and data.

MMP also defines graphical visualizations of provenance relationships between data

that we call provenance graphs.

2.4.1 The MMP Language

Goals 6 and 11 motivate us to provide a language for interaction with the most recent

face in an MMP instance that includes a data definition language (DDL), a data

manipulation language (DML), and a query language. These languages include

the usual DDL, DML, and query operations offered in a typical relational DBMS.

34

DDL operations create relational structure; DML operations insert and delete data2.

Queries materialize new relations as query results from existing data. We omit some

language features of relational query languages, for example aggregate functions, to

limit the scope of this work. We also add new operations, such as copy-and-paste3,

when the need for them arises frequently in our motivating scenarios.

MMP also provides additional functionality for some DML operations. For ex-

ample, MMP allows multiple insertion of data. That is, if some component already

exists in the database and a duplicate component is inserted or pasted, the operation

succeeds, whereas in a traditional database instance it would not. This feature is

motivated by Goal 15 in Section 2.1, and enables documenting plurality of support

for data: a measure of how many independent sources give rise to a data element.

Another extension MMP offers beyond a traditional relational database is a broader

variety of granularities for DML operations: insertion and paste of whole relations

in addition to individual attribute values and tuples.

Queries in MMP may be composed as unions of Select-Project-Join terms.

Unions of conjunctive queries, or SPJU queries, are definable by existential positive

first-order formulae. They correspond to unions of select-from-where queries in SQL

such that the where clause is composed only of conjunctions of atomic value com-

parisons. SPJU queries are widely considered to be the most frequently expressed

queries in relational databases. MMP extends the usual predicates available in the

SELECT and PROJECT operators of relational algebra with predicates that select

data based on its provenance.

MMP also provides operators that allow users to express confidence or doubt in

data without changing the data. These operators create a new face, but do not change

any data brought forward from the previous face, and do not introduce any new data.
2We model modifications to data as deletions of existing data followed by insertions of updated

data.
3Copy-and paste operations are used for copying data from one place and pasting it into another

within a database.

35

These operators only create provenance artifacts, which may be queried or browsed

when users inspect data provenance.

Table 1.1 shows the MMP language. In our syntax, a value v in the column for an

attribute a of a tuple t in a relation r is addressed by a 4-tuple (r,t,a,v); an attribute

a in relation r is addressed by a 2-tuple (r,a); a tuple t in r is addressed by a 2-tuple

(r,t); and the relation r is addressed (r). In this notation, r is the name of a relation,

t is a referenced tuple, a is the name of an attribute, and v is an attribute value. A

parameter s denotes an external source referent. In insert operations, source referents

indicate the external source from which data is inserted. In drop, confirm, and doubt

operations, source referents indicate the external source that justifies the operation.

Square brackets indicate optional parameters. For paste operations, xt indicates that

component x is a paste target, or destination, while xs indicates that it is a paste

source. Note that this notation is intended for use in this definition only; it may not

be the syntax that the user would use.

2.4.2 Data Semantics of the MMP Language

This section describes how MMP operations affect data in a face. Many of these

operations have analogs in traditional database operations (although of course these

analogs do not have the side effects seen in our model, for example creation of new

database faces and provenance links). We discuss how MMP operations affect prove-

nance links in Section 2.5.

2.4.2.1 Data Definition, Manipulation, and Confidence Operations

Create Relation(r) is the analog of the SQL operation CREATE TABLE tableName.

Create Relation succeeds if there is no undeleted relation with the specified name r

already in the most recent database face. If successful, it induces a new face consist-

ing of a copy of the most recent face, along with a new, empty relation in the new

36

Table 2.2: MMP Operators

Data Definition Language Operators
Create Relation(r)
Create Source(name)
Create Attribute(r,a)
Drop Relation(r)
Drop Attribute(r,a)
Data Manipulation Language Operators
Insert Value(r,t,a,v,s)
Drop Value(r,t,a,s)
Insert Tuple(r,(a,v[,a,v. . .],s))
Drop Tuple(r,t,s)
Paste Value(rt,tt,at,rs,ts,as)
Paste Tuple(rt,rs,ts))
Paste Relation(rt,rs)
Confidence Expression Operators
Confirm Value(r,t,a,v,s)
Doubt Value(r,t,a,v,s)
Query operators
Unions of Project-Select-Join subqueries

face, with the specified name. The new relation has no attributes.

Create Source(name) succeeds if there is no external source referent with the

specified name already in the model instance. If successful, it creates a new external

source referent with the specified name. No analog of this operator appears in SQL.

Create Attribute(r,a) is the analog of the SQL operation ALTER TABLE table-

Name ADD columnName dataType. Create Attribute succeeds if an undeleted rela-

tion with the specified name r exists in the most recent face, and if no attribute with

the specified name a already exists in the schema of that relation. If successful, it

induces a new face consisting of a copy of the most recent face, with the addition of

a new attribute with the specified name a in the schema of the specified relation r.

Upon creation, the attribute values in the new column for each existing tuple in r is

set to NULL.

37

Drop Relation(r) is the analog of the SQL operation DROP TABLE tableName.

Drop Relation succeeds if an undeleted relation with the specified name r exists in

the most recent face. If successful, it induces a new face that consists of a copy

of the most recent face, with relation r and all the components it contains marked

as deleted. Note that, unlike most current relational databases, our model retains

deleted data. However, deleted data does not take part in successive operations, and

is normally not visible to users.

Drop Attribute(r,a) is the analog of the SQL operation ALTER TABLE table-

Name DROP COLUMN columnName. Drop Attribute succeeds if an undeleted re-

lation with the specified name r exists in the most recent face, and if the relation

schema contains an undeleted attribute with the specified name a. If successful, it

induces a new face that consists of a copy of the most recent face, with the specified

attribute and all attribute values in its column marked as deleted.

Insert Value(r,t,a,v,s) is the analog of the SQL operation INSERT INTO table-

Name (columnName) VALUES (value) WHERE (〈match condition〉). The SQL

statement is more general than the MMP Insert Value statement in that the MMP

version must specify the identity of the particular tuple into which the value is to be

inserted, using the ordinal position of the tuple in a display of the relation (though

specification could instead be done using values of a candidate key for the relation).

Insert Value succeeds if an undeleted relation with the specified name r exists in the

most recent face and contains the specified, undeleted attribute a and tuple t, if the

current value of the specified attribute value is NULL or identical to the one being

inserted, and if the specified external source referent s exists in the model instance. If

successful, it induces a new face that consists of a copy of the most recent face, with

the addition of the specified attribute value in the specified attribute of the specified

tuple in the specified relation. If that value already exists, the new face’s relational

contents are identical to the previous face.

38

Drop Value(r,t,a,s) succeeds if the specified attribute value (r,t,a) exists un-

deleted in the most recent face, and if the specified external source referent s exists

in the model instance. If successful, it induces a new face that consists of a copy of

the most recent face, with the specified attribute value marked as deleted. Referent

s is the external source referent that the user cites as responsible for her initiating

the Drop Value action. There is no SQL analog for this granularity of data, however

SQL does provide a DELETE operation for entire tuples.

Insert Tuple(r,(a,v[,a,v. . .],s)) is the analog for the SQL operation INSERT

INTO tableName VALUES (value, value, . . .). The SQL statement allows multi-

ple tuples to be inserted at one time. We restrict MMP to inserting just one tuple at a

time with this operation. Insert Tuple succeeds if an undeleted relation with the spec-

ified name r exists in the most recent face, if the specified external source referent

s exists in the model instance, and if all schema attribute specifiers named already

exist in the specified relation. If successful, it induces a new face that consists of a

copy of the most recent face, with the addition of a new tuple in the specified relation.

The new tuple contains the specified value for each specified attribute listed in the

operation. If a value is omitted for any attribute in the target relation’s schema, then

that value is set to NULL in the inserted tuple.

Drop Tuple(r,t,s) is the analog of the SQL operation DELETE FROM tableName

WHERE (〈matching condition〉), though we limit this operation to specification of

a single tuple for convenience in defining this operator. Drop Tuple succeeds if an

undeleted relation with the specified name r exists in the most recent face, and if an

undeleted tuple matching the tuple described in the operation exists in the relation,

and if the specified external source referent s exists in the model instance. If suc-

cessful, it induces a new database face that consists of a copy of the most recent face,

with the specified tuple and all attribute values it contains marked as deleted. The s

parameter specifies the external source referent that the user cites as responsible for

39

justifying the Drop Tuple action.

Paste Value(rt,tt,at,rs,ts,as) is the analog of the SQL operation INSERT INTO

tableName WHERE Paste Value succeeds if the target relation rt and the source

relation rs both exist undeleted in the most recent face, if they contain undeleted

target tuple tt and source tuple ts, respectively, and if their schemas contain undeleted

target attribute at and source attribute as, respectively. If successful, it induces a new

database face that consists of a copy of the most recent face, with the addition of

a copy of the specified source attribute value (from the source relation, tuple, and

attribute) in the specified target column (attribute) of the specified target tuple in the

target relation. If the pasted value already exists, the data contents of the new face

are identical to those of the previous face. As with Insert Value, this operation fails

if a conflicting attribute value exists in the specified attribute and tuple.

Paste Tuple(rt,rs,ts) succeeds if the target relation rt and the source relation rs

both exist undeleted in the most recent face, if the source relation contains undeleted

source tuple ts, if there is no tuple in rt identical to ts, and if the target relation

has a union-compatible schema of undeleted attributes to the schema of undeleted

attributes in the source relation. If successful, it induces a new database face that

consists of a copy of the most recent face, with the addition of a copy of the specified

source tuple in the specified target relation. There is no SQL analog of this operation.

Paste Relation(rt,rs) succeeds if the undeleted source relation rs exists in the

most recent face, and if there is no undeleted relation with the same name as the target

relation in the most recent face. If successful, it induces a new face that consists of a

copy of the most recent face, with the addition of a new relation, named rt, copied in

its entirety from rs. There is no SQL analog of this operation.

Confirm Value(r,t,a,s) succeeds if the specified value (r,t,a) exists undeleted in

the most recent face, and if the specified external source referent exists in the model

instance. Confirm Value induces a new face that is a copy of the most recent face. It

40

records as part of the attribute value’s provenance an indication of user belief about

the value. It induces new content in the provenance model, discussed below. There

is no SQL analog of this operation.

Doubt Value(r,t,a,s) succeeds if the specified value (r,t,a) exists undeleted in the

most recent face, and if the specified external source referent exists in the model

instance. Doubt Value induces a new face that is a copy of the most recent face.

There is no SQL analog of this operation.

2.4.2.2 Query Operations

Well-formed queries succeed if the usual success conditions for relational queries are

true in the most recent face. That is, all named input relations must exist undeleted,

where necessary the schemas of the input relations must be union-compatible, and the

named output relation must not already exist. A successful query induces a new face

that consists of a copy of the most recent face, with the addition of a new relation

containing the query result. Standard relational, set-oriented semantics are used.

Note that unlike typical relational databases, every query result relation is named

and materialized permanently in our model. We materialize these results because

these relations may serve as inputs to future operations, and thus become part of the

provenance of other data in the future. Details of the query language are presented in

Chapter 3.

2.4.3 Confidence Language

The Confidence Language in MMP is, to our knowledge, unique among provenance

models in the literature. Confirm Value and Doubt Value record an expression of

confidence in an existing single attribute value in the model instance. Although these

expressions do not affect the data values directly, they are recorded as part of the

value’s provenance, so each introduces a new face that is a copy of the prior face. A

41

user might use a confidence operator to express confidence or doubt in a data value

at any point in its evolution. The confidence language is motivated by a previously

unstated goal: they provide a means for users to weigh in on the trustworthiness of

data without manipulating it. Another reason we include confidence operations is that

they provide examples of operators that affect the contents of the provenance model

without affecting the contents of the data model. Although we define confidence

operators only at the attribute-value granularity, they could also be defined at other

granularities.

2.4.4 Predicate Language for Selection and Projection Operators

As discussed in Chapter 1, many questions asked by domain experts involve se-

lecting data by characteristics of its multi-generation provenance rather than by its

single-generation provenance. That is, users want to select data by characteristics

of ancestor components (as well as actions deriving them, or combinations of the

two) anywhere in the graph recursively formed by edges originating at a component

of interest and the components they connect to. In the discussion that follows, we

call these structures provenance graphs. Moreover, we found that a significant por-

tion of these provenance queries is describable in terms of characteristics of one or

more provenance paths in a provenance graph, rather than characteristics of the entire

graph. A provenance path is a non-branching path of finite length in a provenance

graph. Our language for selecting data based on its provenance allows users to de-

scribe the provenance characteristics of a component of interest in terms of a pattern,

or motif, that can be used to match these paths. Inherent in path motifs is the notion

that the complete structure of a path of interest may not be known, and need not be

specified. Instead, a user may specify the presence in a path of certain components

(vertices) or actions4 (links) with particular properties. For example, a user might
4In MMP, the operation, the identity of the user that applied it, and the time at which it was applied

appear as labels on the face induced by the operation. When we construct a provenance graph for a

42

be interested in data from a particular source, without knowing the full intervening

history of its derivation.

We define a predicate language for use in the projection and selection opera-

tors of relational algebra used in MMP. These predicates describe characteristics of

provenance paths. Components in the current face that have paths that match these

predicates are projected or selected, respectively. Table 2.3 shows the grammar for

the predicate language in BNF form. Our grammar is intentionally verbose in order

to make predicate semantics clear. A projectionPredicate is a predicate for use in

the projection operator, while a selectionPredicate is for use in the selection opera-

tor. The selectionPredicate structure offers three options. A user may select tuples

by their tuple provenance, or by the provenance of any attribute value belonging to

the tuple. The projectionPredicate offers similar options: a user may select attributes

by their provenance, or by the provenance of any attribute value belonging to the

attribute.

The following examples show typical provenance questions phrased in natu-

ral language and in our selection predicate language. For selection predicates, the

resulting query is of the form DO = σpredicate(DI), with input relation DI and

output relation DO. For projection predicates, the resulting query is of the form

DO = πpredicate(DI).

• The question, “Which tuples were derived from source X?” can be expressed

with the selectionPredicate “tuple has a path with (a source with name = X)”

• The question, “Which tuples have at least one data value derived from relation

A or relation B?” can be expressed with the selectionPredicate “some data

value in tuple has a path with (a value in relation = A) or a path with (a value

in relation = B)”

component in an MMP instance, these labels are copied onto provenance links that originate from the
induced face.

43

• The question, “Which tuples contain data derived from data in relation A that

later appeared in relation C?” can be expressed with the selectionPredicate

“some data value in tuple has a path with (a value in relation = A before a

value in relation = C)”

• The question, “Which tuples are derived from tuples that were inserted at least

once between dates D1 and D2?” can be expressed with the selectionPredicate

“tuple has a path with (an operation with action = INSERT and where time

>= D1 and where time < D2)”

• The question, “Which tuples had values derived from data inserted between

dates D1 and D2 by user Y, and later deleted?”, can be expressed with predicate

“some data value in tuple has a path with (an operation with (action = INSERT

and where time > D1 and where time < D2 and by user = Y) before a value

that is expired)”

Provenance predicates may be combined with the usual predicate language avail-

able for the selection and projection operators, using the logical constructors AND,

OR, and NOT. For example, assume that relation DI has an attribute named shoe-

size. Then we could ask the question, “Which tuples in DI where shoe-size equals 9

contain data derived from data in relation A that later appeared in relation C?” The

corresponding query can be expressed using the selection operator with the predicate

“shoe-size = 9 and some data value in tuple has a path with (a value in relation = A

before a value in relation = C)”. Note that none of the query examples above require

the user to interact directly with representations of provenance, either for parsing or

multi-generation traversals. This approach was motivated by Goals 7 and 8 from

Section 2.1.

44

Table 2.3: Syntax of MMP Provenance Predicate Language

selectionPredicate ::= componentSpecifier predicateQualifier
componentSpecifier ::= TUPLE HAS
| SOME DATA VALUE IN TUPLE HAS

projectionPredicate ::= prComponentSpecifier predicateQualifier
prComponentSpecifier ::= ATTRIBUTE HAS
| SOME DATA VALUE IN ATTRIBUTE HAS

predicateQualifier ::= A PATH WITH (〈pathQualifier〉)
| A PATH WITH (〈pathQualifier〉) [AND|OR] 〈predicateQualifier〉

pathQualifier ::=
A 〈component〉 (〈cQualSet〉)
|AN OPERATION (〈aQualSet〉)
|A SOURCE (〈sQualSet〉)
| 〈pathQualifier〉 [BEFORE|AND] 〈pathQualifier〉

aQualSet ::= 〈aQual〉 | 〈aQual〉 [AND|OR] 〈aQualSet〉

cQualSet ::= 〈cQual〉 | 〈cQual〉 [AND|OR] 〈cQualSet〉

sQualSet ::= 〈sQual〉

aQual ::= WITH ACTION = 〈constant〉
|WITH ACTION = ANY QUERY
| BY USER = 〈username〉
|WHERE TIME 〈cCmp〉 〈timestamp〉

cQual ::= IN RELATION 〈relname〉
|WITH A VALUE 〈cCmp〉 〈compval〉
|WHERE EXPIRED = 〈TRUE|FALSE〉

sQual ::= WITH NAME = 〈constant〉

component ::= tuple | attribute | value

cCmp ::= = | > | < | ≥ | ≤ | 6=

45

2.5 Provenance Creation Semantics of the MMP Language

Here we briefly describe provenance links induced by MMP language operators. In

our model, operators that target attribute values (Insert Value, Drop Value, Paste

Value, Confirm Value, and Doubt Value) do not have inherited provenance. All other

operators have inherited provenance.

Insert Value induces a single provenance link originating at the newly inserted

attribute value in the result face and terminating at the external source referent from

which the data was obtained. Similarly, Confirm Value, Doubt Value, and Drop Value

each induce a single provenance link from the existing, affected attribute value and

terminating at the external source referent cited in the operation.

Insert Tuple and Drop Tuple induce a single provenance link originating at the

newly inserted or deleted tuple in the result face and terminating at the external source

referent cited in the operation.

Paste Value induces a single provenance link originating at the newly created

attribute value in the result face, and terminating at the cited attribute value in the

predecessor face. Similarly, Paste Tuple and Paste Relation induce single provenance

links from newly created destination structures to their cited source structures. The

operators Create Relation, Create Source, and Create Attribute induce no provenance

links. It would be possible to define these operators to induce a single provenance

link originating at the relation, source, or attribute they create, and terminating at an

external source referent. However, it seems to us that the semantics of these operators

is that the user is creating a structure for data, instead of data itself, so they induce

no data provenance to be recorded. For similar reasons, Drop Relation and Drop

Attribute induce no provenance links. SPJU queries induce provenance links for the

result relation and tuples of the query.

Informally, the rules for deriving inherited provenance links from the explicit

provenance links described above are as follows:

46

1. If a tuple has a containing relation with an explicit provenance link to another

relation then that tuple inherits a link

2. If a tuple has a containing relation with an explicit provenance link to an ex-

ternal source referent then that tuple inherits a link

3. If an attribute has a containing relation with an explicit provenance link to

another relation then that attribute inherits that link

4. If an attribute has a containing relation with an explicit provenance link to an

external source referent then that attribute inherits a link

5. If an attribute value has a containing tuple that has no explicit provenance, but

has a containing relation with a provenance link to another relation, then that

attribute value inherits that link

6. If an attribute value has a containing tuple that has no explicit provenance, but

has a containing relation with a provenance link to an external source referent

then that attribute value inherits that link

7. If an attribute value has a containing tuple that has an explicit provenance link

to another tuples then that attribute value inherits that link

8. If an attribute value has a containing tuple that has an explicit provenance link

to an external source referent then that attribute value inherits that link

These rules are defined formally in Section 3.7.1.1.

2.6 Provenance Graphs as Visualization Tools

Data faces and provenance links may be non-trivial for users to understand. In addi-

tion, the appearance of provenance links at multiple granularities may be confusing.

The view of provenance displayed to users is typically a provenance graph derived

47

from these model structures. A provenance graph displays multi-generation prove-

nance (showing inherited links as well as instantiated links) of a selected component

in terms of other components at the same level of hierarchy, plus external source

referents. A provenance graph may display all generations of provenance, or may

display provenance only tracing back to a set of ancestor components specified by

the user.

Figure 2.8 shows the provenance graph for attribute value 6 from attribute ID

in tuple 1 in relation C at time n + 6 from the example in Figure 2.4. The dot

notation used for vertex labels in the graph indicates relation first, then tuple number,

then attribute, then attribute value. The timestamps associated with links are shown

on the right of the figure. Edges in the graph labeled “continuity” indicate that the

origin of the link is a component that exists at the specified timestamp because the

component at the terminal of the link existed at the previous timestamp. At time

n + 6, we see that the existing value C.1.ID.6 was the object of a Confirm Value

operation that references external source W . At time n + 5, we see that the existing

value C.1.ID.6 is re-inserted by a paste operation from D.1.ID.6. At time n + 4,

the initial creation of C.1.ID.6 results from the query SELECT Name, ID FROM A

WHERE Name = “John” UNION SELECT Name, ID FROM B WHERE Name =

“John”. In particular, we see that C.1.ID.6 has parents A.2.ID.6 and B.2.ID.6. We

can also trace A.2.ID.6 to its original creation as part of an Insert Tuple operation

that inserted tuple 〈John, 6〉 into relation A from external source X . Similarly, we

can trace B.2.ID.6 to its original creation as part of an Insert Tuple operation from

external source W . Inherited provenance links, generated by MMP inheritance rules,

are shown in the figure with dashed lines.

48

Figure 2.8: Example Provenance Graph. Inherited provenance links are shown using dotted
lines

49

2.7 Chapter Summary

In this chapter, we defined goals for our conceptual model for data and its prove-

nance; defined the MMP model to meet those goals; and introduced two user views

of MMP: a relational view of data, and a graph view of data provenance. The re-

lational view, or face, can be manipulated with a language familiar to relational

database users, yet incorporating new features that address needs of data curators.

The provenance graph view allows visual inspection of the provenance of selected

data, and can easily be extended to enable graph algorithms to further query data

provenance.

50

Chapter 3

Formalizing the Conceptual Model

In this chapter, we formally define MMP in order to be precise about its structure

and operations, and in order to better characterize it in terms of expressive power

and semantics. As part of this definition, we specify a semantics for provenance in

SPJU queries at all granularities of relational data, something we have not seen else-

where in the literature. We also define two mechanisms (in addition to the predicate

language we defined in Chapter 2) to access provenance information in our model: a

graphical representation of provenance intended to allow users to browse provenance

of a selected data item; and an algebraic representation of provenance that extends

representations in the current literature by representing multi-generation provenance

and by including the history of operations applied to data and the identity of the

agents that applied them.

We begin by defining the data portion of MMP and the way in which external data

sources outside MMP are represented. Next, we define the provenance portion of our

model. We follow this with definition of operations over model data and informa-

tion sources. With these basic mechanisms defined, we then define how operations,

data, and provenance interact. Finally, we define mechanisms to access provenance

information in our model.

51

3.1 Modeling Evolving Data: Faces

An MMP instanceM includes a finite ordered tuple of databasesD = (d1, d2, . . . , dn),

where n is the current number of faces. This formalizes the idea that a model has a

succession of faces, ordered by time as discussed in Chapter 2. An MMP instance

also includes a set of labels lD = TS × OpD × U , where each ts ∈ TS is a times-

tamp, each op ∈ OpD describes an operation from the MMP language, and each

u ∈ U identifies a user of M . An MMP instance also includes a labeling function

λD : D → lD, which labels a face d ∈ D with its time of creation, the operation

that induced it from its immediate predecessor face, and the identity of the user who

applied that operation. D is ordered by increasing timestamps of the label associated

with each d ∈ D. These labels provide the “when”, “who”, and “how” portions of

provenance for all provenance links that originate at the new face and terminate at

the preceding face or the appropriate external source referents.

Because we support relational data, each face d ∈ D is a relational database.

Consistent with the definition of a relational database, each di ∈ D consists of a finite

set of relations Ri; and each rj ∈ Ri consists of a finite set of tuples Ti,j sharing a

common schema consisting of a finite set of attributes Ai,j . In the discussion below,

we refer to individual attributes as ai,j,l, 1 ≤ l ≤ |Ai,j|. Each tuple ti,j,k ∈ Ti,j

includes a set Vi,j,k of attribute values where each vi,j,k,l ∈ Vi,j,k is taken from the

domain of ai,j,l. We refer to Ci = Ri∪Ti,j∪Ai,j∪Vi,j,k, 1 ≤ j ≤ |Ri|, 1 ≤ k ≤ |Ti,j|

as the components in di. We refer to
⋃

iCi, 1 ≤ i ≤ n as the components inD. Figure

3.1 shows an example face di ∈ D from an MMP instance. The figure shows two

relations A and B comprising Ri. A has attributes Name and ID comprising Ai,A.

B also has attributes Name and ID comprising Ai,B. A has two tuples, 〈Bob,8〉 and

〈John,6〉 comprising Ti,A. Attribute values Bob and 8 thus comprise Vi,A,〈Bob,8〉.

52

Figure 3.1: Example Face in an MMP Instance

3.2 Modeling The Outside World: External Source Referents

In addition to faces, an MMP instance M includes a finite set S of external source

referents that represent sources from which data may be inserted into database faces.

S is initially empty and acquires a new element when a Create Source command

is processed. When data is excerpted from or inspired by an external source and in-

serted into some di ∈ D, the induced provenance link terminates at the corresponding

s ∈ S.

3.3 Modeling Data Derivation: Provenance Links

The provenance of each component in an MMP face is modeled as a set of relation-

ships between that component and its ancestor components. Because each operator

(or composition of query operators forming a single query) in the MMP language

takes the current database face dn as input and produces a new database face dn+1,

a provenance relationship links a component in one face to those in the immediately

preceding face, or to external source referents. An MMP instanceM includes a finite

set of provenance links L, where each lp ∈ L is a relationship (a hyper-edge) from a

component cn+1 ∈ dn+1 to one or more components cn ∈ dn or to an external source

referent s ∈ S. Figure 3.2 shows provenance links connecting components on one

53

Figure 3.2: Faces and Provenance Links in an MMP instance

face to parents in the preceding face. Each edge shown in the figure is a link lp ∈ L.

Each origin of an edge is a component c ∈ Ci, where Ci is the set of components in

face di.

MMP models two forms of provenance relationships. Operation-induced prove-

nance links, which we refer to as provenance links, model derivation of components

from other components by operations applied to the database. Continuity prove-

nance links, which we refer to as continuity links, represent the continuing presence

of components in a face due to the presence of identical predecessors in the prior

face. Continuity links arise by default for all components in a new face that are not

newly created by the operation that induces the face.

3.3.1 Operation-induced Provenance Links

A component created by or affected by a DDL or DML operation that induces face

dn+1 originates a single provenance link that terminates at an external source ref-

erent (for insertions or deletions) or a component in face dn (for copy-and-paste).

Similarly, a component affected by a data confidence language (DCL) operation that

54

induces face dn+1 originates a single provenance link that terminates at an external

source referent. A component created in face dn+1 as part of a query result may

originate multiple provenance links, each of which might have multiple terminals at

components in face dn. Let Cn be the set of all components in dn from which a par-

ticular cp in dn+1 is derived. Let Bn be a subset of Cn. Then we define a provenance

link lp(cp, Bn) to be a 1-to-many pairing

cp : Bn

indicating that the components in Bn give rise to cp as a result of the operation that

induced dn+1. We define a provenance link lp(cp, s) to be a binary pair

cp : s ∈ S

indicating that external source s gave rise to cp as a result of an operation that in-

duced dn+1. In each case, cp is called the origin of lp, and each b ∈ Bn or s is called

a terminal of lp. A link lp(cp, Bn) or lp(cp, s) indicates that cp was affected (created,

deleted, or annotated with an expression of confidence or doubt) by the operation

that induced dn+1 by acting on Bn or s. In Chapter 2, we explained that provenance

links always terminate at the same component type from which they originate (or at

external source referents). For example, result attribute values always have other at-

tribute values, or external source referents, as immediate ancestors. Similarly, result

tuples always have other tuples, or external source referents, as ancestors. Thus each

b ∈ Bn in a provenance link is of the same component type as cp.

A component cp may originate zero or more provenance links. Attribute values

arising from query constants (for example, π1,Name(A) introduces a constant 1 in

each output tuple) originate no provenance links, because they do not arise from

data in dn. An external source referent si ∈ S also originates no provenance links, as

explained in Chapter 2. A component in a face dn may terminate any number of links

originating at components in face dn+1, because it may be an input that affects many

55

result components in the operation that induced dn+1. An external source referent

may terminate any number of links, because it may be the source used in multiple

distinct operations.

Operations that induce provenance define the provenance of a single compo-

nent of the type named in the operation (which we call the target component), and

may also define the provenance of components that are contained in that component.

(Note that a query implicitly defines the provenance of its result relation.) For exam-

ple, the Insert Tuple operation defined in Chapter 2 affects the provenance of a single

tuple in the result face, but also affects the provenance of attribute values contained

in that tuple. As another example, a Paste Relation operation affects the provenance

of a single relation, but also affects the provenance of the tuples, attributes, and at-

tribute values contained in that relation. For all operations in the MMP language,

MMP explicitly records the provenance induced on the target component of the op-

eration. Components contained in the target component have provenance explicitly

recorded if the applied operation does not have inherited provenance semantics. Oth-

erwise, contained components do not have explicit provenance recorded due to the

operation. Their provenance due to an operation is inherited from the provenance of

the containing operation target component.

3.3.2 Continuity Provenance Links

In MMP, we say that data has continuity: each component in one face that is not

newly created by the operation that induced the face has a corresponding component

in the preceding face. That is, when a component cp ∈ dn+1 is not newly created

by the operation that induces dn+1, then cp has an identical predecessor cp ∈ dn of

the same component type1. For example, suppose a relation A exists in face dn+1,

and that dn+1 was induced by an operation that inserted a new tuple in some other
1We expect a modification of a current component to be a deletion followed by an insertion for

all appropriate components

56

relation B. Then a prior version of A existed in dn. We define that prior version to

be the predecessor of A.

We define continuity links for connecting components with their predecessors.

Components newly created by the operation that induced dn+1 originate no conti-

nuity links, because they have no predecessors in dn. (Recall that they originate

provenance links to appropriate ancestors, as explained above.) In a verbose vari-

ation of MMP, each component in dn+1 other not newly created by the operation

that induced dn+1 originates a single continuity link to its predecessor. However, in

the more concise version we describe here, continuity links need not be explicitly

recorded in an MMP instance because they can easily be inferred by inspection of

two consecutive database faces. We specify continuity link inference rules when we

discuss provenance graphs later in this chapter.

3.4 Modeling Operations Applied to Data: Revisions

We now introduce operations that are applied to data, and define how data and prove-

nance are affected or created by these operations. We define operations on external

source referents in the next section.

Recall that an MMP instance M defines an ordered tuple of facesD, a set of labels

for those faces lD, a function λD that maps faces to their labels, a set of external

source referents S, and a set of provenance links L. Upon creation of M , D =

∅, S = ∅, and L = ∅, because an empty database has no data. Since no operations

have yet been applied to it, no faces exist, no external sources have been defined,

and there can be no provenance relationships. OpD is the set of operations in the

MMP language; U is initialized to the set of users who will issue operations against

data in M , and TS is a totally ordered set of timestamps at which users may apply

operations. Subsequent revisions populate D and L. A revision < is a mapping

< : (D × S × L×OpD × U × TS)→ (D′ × L′)

57

Informally, we say that < applies operator op ∈ OpD by user uop ∈ U at time

top ∈ TS to the most recent database face dn ∈ D in order to add a new database

face dn+1 to D and a new set of provenance links to L. That is, each revision induces

an entirely new database, and adds the appropriate provenance links to the MMP

instance to represent derivation of the new database from the prior database and

external source referents.

Face dn+1 is labeled with 〈top, op, uop〉 using λD′ . The timestamp of each succes-

sor face is relative rather than absolute, and strictly greater than the timestamp of its

predecessor face. We refer to database faces di by their subscript i. Labeling the new

database with the operation, user, and timestamp in the definition allows the user to

see this information when provenance is examined.

Operations never delete data from an MMP instance because users may later

wish to inspect deleted data as part of provenance relationships. Although MMP

retains deleted data for inspection, deleted data does not participate in operations in

OpD. If a component is deleted and an identical component later re-introduced, these

components are considered distinct in MMP. In order to distinguish deleted data in

our model, we define a set of functions, one for each component type, that return

TRUE if a component has been deleted, and FALSE otherwise. These functions are

Expiredr() over the domain of all relations in an MMP instance M , Expireda()

over attributes in M , Expiredt() over tuples in M , and Expiredv() over attribute

values in M .

Expiredr(i, j) = True, if the jth relation in face i has been deleted

False, otherwise

Expireda(i, j, l) = True, if the lth attribute in relation j in face i has been deleted

False, otherwise

58

Expiredt(i, j, k) = True, if the kth tuple in relation j in face i has been deleted

False, otherwise

Expiredv(i, j, k, l) =
True, if the value of the lth attribute in ti,j,k

has been deleted

False, otherwise

Upon creation, each component c has Expired(c) set to False. Upon deletion of

a component c, Expired(c) is set to True. Once a component c is deleted, Expired(c)

cannot be changed to False thereafter. Components c with Expired(c) = True are not

available for use by operators, but such components may appear in the provenance

of other components.

3.5 Modeling Creation of External Source Referents

Revisions formally define the impact of operations on data and provenance. We

also define the impact of operations on external source referents. The Create Source

operator creates external source referents swhich are added to S to represent a source

from which data may be inserted into database faces by subsequent revisions. A

source creation SC is a mapping

SC : S × Create Source× U × TS → S ′

Informally, we say that SC applies the Create Source operator by user uop ∈ U at

time top ∈ TS to introduce a new external source referent s ∈ S. Note that source

creations do not affect faces or their contents, nor do they induce provenance links.

Upon creation, each s ∈ S has the name of the external source it represents. Note

that sources are never dropped or deleted.

59

3.6 Single-revision and Source-Creation Impact on Data and Prove-

nance

Each revision applied to an MMP instance induces provenance links from compo-

nents in the resulting new face to their immediate ancestors, which may be either

parent components in the preceding face, or an external source referent. The induced

links describe the provenance of components in the new face due to this revision. We

use the term single-revision provenance of <, ProvS(<), to denote the links added to

L by a single application of <.

In Chapter 2, we informally defined the operators in the MMP language, along

with the effects they have on data when applied to an MMP instance. Also in Chapter

2, we gave an overview of how those operators induce provenance links. In this

section, we formally define revisions implementing these operations, and their effects

on data and provenance in MMP.

For each revision we define below, let the initial state of an MMP instance M ,

subject to the revision, be as follows. D is the set of faces in M . The current (most

recent) face in D is di. di is a relational database with relation set Ri. Each relation

rj ∈ Ri has attribute set Ai,j = {ai,j,l}, 1 ≤ l ≤ m, where m is the number of

attributes in rj . Each rj ∈ Ri also has a set of tuples Ti,j = {ti,j,n}, 1 ≤ n ≤ k,

where k is the number of attributes in rj . Each tuple in rj has a set of attribute

values Vi,j,k = {vi,j,l,n}. L is the set of provenance links in M . S is the set of

external source referents in M . Also, let u ∈ U describe a user of M , and t ∈ TS

be the time at which u applies an operation to M , resulting in revision <. We use

similar notation for the relations, attributes, tuples, and values for the other faces in

D, dx, 1 ≤ x ≤ i− 1.

In the definitions below, we frequently state that a new face, di+1, is a copy of a

prior face, di, by saying di+1 = di. By this, we mean that all of the relations in Ri

also exist in Ri+1, with the same names; that each relation ri+1,j has an attribute set

60

Ai+1,j identical to the attribute setAi,j of its corresponding ri,j; and that each relation

ri+1,j has the same instance Ti+1,j as the instance Ti,j of the corresponding ri,j .

3.6.1 DDL Revisions and Source Creations

Revisions implementing DDL operations and source creation are defined in this sec-

tion. As described in Chapter 2, these operations do not induce provenance links,

though two of these operations, Drop Attribute and Drop Relation create continuity

links.

3.6.1.1 Create Relation

<(D,S, L,Create Relation(rj), u, time) =

if rj /∈ Ri then

D′ = D ∪ di+1, where di+1 = di, Ri+1 = Ri+1 ∪ rj.

Ai+1,j = ∅,

Ti+1,j = ∅,

L′ = L.

S ′ = S.

λD(di+1) = 〈time, “Create Relation”, u〉.

Expiredr(i+ 1, j) = False.

else Create Relation fails.

Note that the timestamp time is a natural number, and is guaranteed to be mono-

tonically increasing.

61

3.6.1.2 Create Source

SC(S,Create Source(snew)) =

if snew /∈ S then S ′ = S ∪ snew. The remainder of M is unchanged.

else Create Source fails.

3.6.1.3 Create Attribute

<(D,S, L,Create Attribute(rj, al), u, time) =

if rj ∈ Ri ∧ Expiredr(i, j) = False ∧ al /∈ Ai,j , then

D′ = D ∪ di+1, where di+1 = di.

Ai+1,j = Ai+1,j ∪ al.

∀ti+1,j,k in Ti+1,j, 1 ≤ k ≤ |Ti+1,j|, vi+1,j,k,l = NULL.

L′ = L.

S ′ = S.

λD(di+1) = 〈time, “Create Attribute”, u〉.

Expireda(i+ 1, j, l) = False.

else Create Attribute fails.

3.6.1.4 Drop Relation

<(D,S, L,Drop Relation(rj), u, time) =

if rj ∈ Ri ∧ Expiredr(i, j) = False then

D′ = D ∪ di+1, where di+1 = di.

Expiredr(i+ 1, j) = True.

∀l such that ai+1,j,l ∈ Ai+1,j, Expireda(i+ 1, j, l) = True,

62

∀k such that ti+1,j,k ∈ Ti+1,j, Expiredt(i+ 1, j, k) = True,

∀k such that ti+1,j,k ∈ Ti+1,j,∀l such that vi+1,j,k,l ∈ Vi+1,j,k,

L′ = L.

S ′ = S.

λD(di+1) = 〈time, “Drop Relation”, u〉.

Expiredv(i+ 1, j, k, l) = True.

else Drop Relation fails.

3.6.1.5 Drop Attribute

<(D,S, L,Drop Attribute(rj, al), u, time) =

if rj ∈ Ri∧Expiredr(i, j) = False ∧ai,j,l ∈ Ai,j ∧Expireda(ai,j,l) = False , then

D′ = D ∪ di+1, where di+1 = di.

Expireda(i+ 1, j, l) = True.

∀k such that ti+1,j,k ∈ Ti+1,j, Expiredv(i+ 1, j, k, l) = True.

L′ = L.

λD(di+1) = 〈time, “Drop Attribute”, u〉.

else Drop Attribute fails.

3.6.2 DML and DCL Revisions

This section defines revisions that implement data manipulation and confidence op-

erations. In addition to affecting MMP faces, each of these operations creates new

provenance links.

63

3.6.2.1 Insert Value

Let t = 〈{vh}〉, 1 ≤ h ≤ |Ai,j|, such that vh is the attribute value in t

corresponding to ai,j,h ∈ Ai,j .

<(D,S, L, Insert Value(rj, t, al, vnew, s), u, time) =

if rj ∈ Ri∧Expiredr(i, j) = False∧al ∈ Ai,j∧Expireda(i, j, l) = False ∧∃ti,j,k ∈

Ti,j such that t = ti,j,k ∧ Expiredt(i, j, k) = False ∧ (vi,j,k,l = NULL ∨ vi,j,k,l =

vnew) ∧ s ∈ S, then

D′ = D ∪ di+1, where di+1 = di.

vi+1,j,k,l = vnew.

L′ = L ∪ lp(vi+1,j,k,l, s).

λD(di+1) = 〈time, “Insert Value”, u〉.

Expiredv(i+ 1, j, k, l) = False.

else Insert Value fails.

3.6.2.2 Drop Value

Let t = 〈{vh}〉, 1 ≤ h ≤ |Ai,j|, such that vh is the attribute value in t

corresponding to ai,j,h ∈ Ai,j .

<(D,S, L,Drop Value(rj, t, al, s), u, time) =

if rj ∈ Ri ∧ Expiredr(i, j) = False ∧ al ∈ Ai,j ∧ Expireda(i, j, l) = False ∧

∃ti,j,k ∈ Ti,j such that t = ti,j,k ∧ Expiredt(i, j, k) = False ∧ vi,j,k,l ∈ Vi,j ∧

Expiredv(i, j, k, l) = False ∧ s ∈ S, then

D′ = D ∪ di+1, where di+1 = di.

L′ = L ∪ lp(vi+1,j,k,l, s).

λD(di+1) = 〈time, “Drop Value”, u〉.

64

Expiredv(i+ 1, j, k, l) = True.

else Drop Value fails.

3.6.2.3 Insert Tuple

Let t = 〈{vh}〉, 1 ≤ h ≤ |Ai,j|, such that vh is the attribute value in t

corresponding to undeleted ai,j,h ∈ Ai,j .

<(D,S, L, Insert Tuple(rj, t, s), u, time) =

if rj ∈ Ri ∧ Expiredr(i, j) = False ∧ s ∈ S, then

D′ = D ∪ di+1, where di+1 = di,

Ti+1,j = Ti,j ∪ t,

L′ = L ∪ lp(t, s).

λD(di+1) = 〈time, “Insert Tuple”, u〉.

Expiredt(t) = False.

∀v ∈ t, Expiredv(v) = False.

else Insert Tuple fails.

3.6.2.4 Drop Tuple

Let t = 〈{vh}〉, 1 ≤ h ≤ |Ai,j|, such that vh is the attribute value in t

corresponding to ai,j,h ∈ Ai,j .

<(D,S, L,Drop Tuple(rj, t, s), u, time) =

if rj ∈ Ri ∧ Expiredr(i, j) = False ∧ ∃ti,j,k ∈ Ti,j such that t is identical to ti,j,k ∧

Expiredt(i, j, k) = False ∧ s ∈ S, then

D′ = D ∪ di+1, where di+1 = di.

65

L′ = L ∪ lp(ti+1,j,k, s).

λD(di+1) = 〈time, “Drop Tuple”, u〉.

Expiredt(i+ 1, j, k) = True.

∀vi+1,j,k,l ∈ V (i+ 1, j, k), Expiredv(i+ 1, j, k, l) = True.

else Drop Tuple fails. Here and in later uses, by t is identical to ti,j,k, we mean that

each undeleted attribute value in t has a corresponding undeleted attribute value in

ti,j,k, and all such (undeleted) corresponding pairs of attribute values are equal.

3.6.2.5 Paste Value

Let t = 〈{vh}〉, 1 ≤ h ≤ |Ai,j|, such that vh is the attribute value in t

corresponding to ai,j,h ∈ Ai,j .

Let ts = 〈{vf}〉, 1 ≤ f ≤ |Ai,js|, such that vf is the attribute value in ts

corresponding to ai,js,f ∈ Ai,js.

<(D,S, L, Paste Value(rj, t, al, rjs, ts, als), u, time) =

If rj ∈ Ri ∧ Expiredr(i, j) = False ∧ al ∈ Ai,j ∧ Expireda(i, j, l) = False ∧

∃ti,j,k ∈ Ti,j such that t is identical to ti,j,k ∧ Expiredt(i, j, k) = False ∧ rjs ∈

Ri ∧ Expiredr(i, js) = False ∧ als ∈ Ai,js ∧ Expireda(i, j, ls) = False ∧ ∃tq ∈

Ti,js such that tq is identical to ts ∧Expiredt(i, js, q) = False∧ (vi,j,k,l = NULL∨

vi,j,k,l = vnew), then

D′ = D ∪ di+1, where di+1 = di.

vi+1,j,k,l = vi,js,q,ls.

L′ = L ∪ lp(vi+1,j,k,l, vi,js,q,ls).

λD(di+1) = 〈time, “Paste Value”, u〉.

Expiredv(i+ 1, j, k, l) = False.

else Paste Value fails.

66

3.6.2.6 Paste Tuple

Let ts = 〈{vf}〉, 1 ≤ f ≤ |Ai,j|, such that vf is the attribute value in ts

corresponding to ai,j,f ∈ Ai,j .

<(D,S, L, Paste Tuple(rj, rjs, ts), u, time) =

If rj ∈ Ri ∧ Expiredr(i, j) = False ∧ rjs ∈ Ri ∧ Expiredr(i, js) = False ∧

the undeleted members of Ai,j = the undeleted members of Ai,js ∧ ∃ti,js,ks ∈ Ti,js

such that ti,js,ks is identical to ts ∧ Expiredt(i, js, ks) = False , then

D′ = D ∪ di+1, where di+1 = di.

Ti+1,j = Ti+1,j ∪ ti,js,ks and we refer to the new tuple as ti+1,j,new.

L′ = L ∪ lp(ti+1,j,new, ti,js,ks).

λD(di+1) = 〈time, “Paste Tuple”, u〉.

Expiredt(i+ 1, j, new) = False.

∀vi+1,j,new,l ∈ V (i+1, j, new), 1 ≤ l ≤ |Ai+1,j|, Expiredv(i+1, j, new, l) = False.

else Paste Tuple fails.

3.6.2.7 Paste Relation

<(D,S, L, Paste Relation(rt, rs)), u, time) =

If rs ∈ Ri ∧ Expiredr(i, s) = False ∧ rt /∈ Ri, then

D′ = D ∪ di+1, where di+1 = di.

Ri+1 = Ri ∪ rt.

Ti+1,t = Ti,s.

Ai+1,t = Ai,s.

67

∀k such that ti,s,k ∈ Ti,s, Vi+1,t,k = Vi,s,k.

L′ = L ∪ lp(ri+1,t, ri,s).

λD(di+1) = 〈time, “Paste Relation”, u〉.

Expiredr(i+ 1, t) = False.

∀ai+1,t,l ∈ Ai+1,t, Expireda(i+ 1, t, l) = False.

∀ti+1,t,k ∈ Ti+1,t, Expiredt(i+ 1, t, k) = False.

∀vi+1,t,k,l ∈ Vi+1,t,k, Expiredv(i+ 1, t, k, l) = False.

else Paste Relation fails.

3.6.2.8 Confirm Value and Doubt Value

Semantics for these two operations are identical except for the operation that appears

in the label for the result face, so only one definition is provided here.

Let t = 〈{vh}〉, 1 ≤ h ≤ |Ai,j|, such that vh is the attribute value in t

corresponding to ai,j,h ∈ Ai,j .

<(D,S, L,Confirm Value(rj, t, al, s), u, time) =

if rj ∈ Ri ∧ Expiredr(i, j) = False ∧ al ∈ Ai,j ∧ Expireda(i, j, l) = False ∧

∃ti,j,k ∈ Ti,j such that ti,j,k is identical to t ∧ Expiredt(i, j, k) = False ∧ vi,j,k,l ∈

Vi,j,k ∧ Expiredv(i, j, k, l) = False ∧ s ∈ S, then

D′ = D ∪ di+1, where di+1 = di.

L′ = L ∪ lp(vi+1,j,k,l, s).

λD(di+1) = 〈time, “Confirm Value”, u〉.

else Confirm Value fails.

68

3.6.3 Query Revisions

In this section, we describe the effects on provenance due to revisions that imple-

ment query operations. Because the semantics of queries in the SPJU fragment of

relational algebra are well understood with regard to data, we do not repeat these

here. However, we note that as a consequence of our goal of supporting standard re-

lational algebra semantics, we define that queries in MMP ignore components c with

Expired(c) = True. That is, if there are input relations r with Expiredr(r) = True,

queries are considered not well formed and are ignored. Attributes a in input relations

with Expireda(a) = True are ignored. Tuples t in input relations with Expiredt(t)

= True are ignored. Attribute values v of non-deleted attributes in non-deleted tuples

in input relations, with Expiredv(v) = True, are considered to be NULL.

We introduce query-induced provenance by first defining the provenance induced

by the individual relational algebra operations supported by MMP. We then define

provenance induced by general SPJU queries.

Recall that an SPJU query can be equivalently expressed as a union of SPJ query

terms. We re-write joins to be the composition of a selection operator and a Carte-

sian product operator. Using the commutativity property of selection and Cartesian

product operators, we then commute all selection operators to the left of all Cartesian

products in query terms. As a result, we obtain for each SPJ term an equivalent SPX

term: a projection composed with a selection composed with zero or more Cartesian

product operators. We also re-write query terms by renaming attributes in the result

of each term so that all terms in a query have consistent names for corresponding

attributes.

We considered a range of possibilities regarding inheritance of provenance in

query results. At one extreme, provenance for queries might be flat, in that compo-

nents of all types have explicit provenance links induced by the query that created

them. This has the disadvantage that a substantial number of provenance links might

69

be induced for a query. Contrast this with the other extreme where no provenance

links need be recorded at all. With this approach, construction of provenance links

may be done on demand, after the query is run, by inspection of the text of the query

and the input data. However, Cong, Fan, and Geerts have shown [11] that inferring

provenance after the fact for tuples subjected to projection operations in a query re-

quires that we retain in the query result at least one candidate key for each query

input relation. This has the disadvantage of limiting the expressive power of the

query language that MMP supports. A middle ground induces explicit provenance

links for relations and tuples, allowing inheritance rules to generate provenance links

on demand for attributes and attribute values. This approach has the advantages that

the number of explicit provenance links is reduced from the flat approach, while the

expressive power of the query language is not limited by the need to retain candidate

keys. We choose this middle ground in MMP. This represents a balance between

goals 19 and goal 11 from Chapter 2.

3.6.3.1 Selection Operator Provenance

<(D,S, L, (rout = σcondition(rin), u, time)) =

if condition is well-formed ∧ rout /∈ Ri ∧ rin ∈ Ri, then

D′ = D ∪ di+1, where di+1 = di.

rout is the query result as defined by the semantics of relation queries.

Let rout be called ri+1,j and rin be called ri,n. Add ri+1,jtoRi+1.

L′ = L ∪ lp(ri+1,j, ri,n).

∀ti+1,j,k ∈ Ti+1,j, 1 ≤ k ≤ |Ti+1,j|

and the single ti,n,u ∈ Ti,n where ti+1,j,k is identical to ti,n,u

L′ = L′ ∪ lp(ti+1,j,k, ti,n,u).

70

λD(di+1) = 〈time, “Select operation (condition)”,u〉.

else the query fails and no provenance links are created.

Figure 3.3(a) shows the provenance link induced for the result relation of a selec-

tion as a solid blue line, the provenance link induced for each tuple as a solid yellow

line, and the links inherited by attributes and attribute values as red and green dotted

lines, respectively. The rules for inheritance are define in the section on provenance

graphs, below.

3.6.3.2 Projection Operator Provenance

<(D,S, L, rout = πcolumnList(rin), u, time) =

if columnList is well-formed ∧ rout /∈ Ri ∧ rin ∈ Ri, then

D′ = D ∪ di+1, where di+1 = di.

rout is the query result as defined by the semantics of relation queries.

Let rout be called ri+1,j and rin be called ri,n. Add ri+1,jtoRi+1.

L′ = L ∪ lp(ri+1,j, ri,n).

∀ti+1,j,k ∈ Ti+1,j, 1 ≤ k ≤ |Ti+1,j|,

L′ = L′ ∪
U⋃

X=1

lp(ti+1,j,k, ti,n,X)

such that each ti,n,X ∈ Ti,n is one of the U tuples from which

ti+1,j,k was derived by the projection.

λD(di+1) = 〈time, “Projection operation (column-list)”, u〉.

else the query fails and no provenance links are created.

Figure 3.3(b) shows the provenance links induced for the result relation and tuples

of a projection along with the provenance links inherited by attributes and attribute

values, using the same color and line scheme as Figure 3.3(a).

71

Figure 3.3: Single-Revision Provenance Resulting from Select (a), Project (b), Cartesian
product (c), and Union (d) Operations.

72

3.6.3.3 Cartesian Product Operator Provenance

We define provenance for the polyadic Cartesian product.

<(D,S, L, (rout = rin1 × . . .× rinM), u, time) =

if rout /∈ Ri ∧ rin1, . . . rinM ∈ Ri, then

D′ = D ∪ di+1, where di+1 = di.

rout is the query result as defined by the semantics of relation queries.

Let rout be called ri+1,j and each rinX be called ri,X , 1 ≤ X ≤M . Add ri+1,jtoRi+1.

L′ = L ∪ lp(ri+1,j,
M⋃

X=1

ri,X).

∀ti+1,j,k ∈ Ti+1,j, 1 ≤ k ≤ |Ti+1,j|,

L′ = L′ ∪ lp(ti+1,j,k,
M⋃

X=1

ti,X,m(X)

where m(X) identifies the tuple in ri,X from which ti+1,j,k was derived.

λD(di+1) = 〈time, “Cartesian product”, u〉.

else the query fails and no provenance links are created.

Figure 3.3(c) shows the provenance link induced for the result relation and tuples

of a Cartesian product.

3.6.3.4 Union Operator Provenance

We define provenance for the polyadic union operator.

<(rout = (rin1

⋃
. . . rinM), u, time) =

if the union is well-formed and rout /∈ Ri ∧ rin1, . . . rinM ∈ Ri, then

D′ = D ∪ di+1, where di+1 = di.

73

rout is the query result as defined by the semantics of relation queries.

Let rout be called ri+1,j and rinM be called ri,M . Add ri+1,jtoRi+1.

L′ = L ∪
M⋃

X=1

lp(ri+1,j, ri,X).

∀ti+1,j,k ∈ Ti+1,j, 1 ≤ k ≤ |Ti+1,j|,

L′ = L′ ∪
M⋃

X=1

{lp(ti+1,j,k, ti,X,m)}|ti+1,j,k is identical to ti,X,m.

λD(di+1) = 〈time, “Union”, u〉.

else the query fails and no provenance links are created.

Figure 3.3(d) shows the provenance links induced for the result relation and tuples

of a Union.

3.6.4 Provenance for Results of General MMP Queries

<(rout = (πσ(rin
1,1 × . . . rin

1,n1) ∪ . . . ∪ πσ(rin
M,1 × . . .× rin

M,nM)), u, time) =

if the query is well-formed and rout /∈ Ri ∧ ∀rin
X,Y , 1 ≤ X ≤ M, 1 ≤ Y ≤

nM, rin
X,Y ∈ Ri,

then

D′ = D ∪ di+1, where di+1 = di.

rout is the query result as defined by the semantics of relation queries.

Let rout be called ri+1,j . Add ri+1,jtoRi+1.

L′ = L ∪
M⋃

X=1

lp(ri+1,j, {
nM⋃
Y =1

rin
X,Y }).

∀ti+1,j,k ∈ Ti+1,j, 1 ≤ k ≤ |Ti+1,j|,

L′ = L′ ∪
M⋃

X=1

lp(ti+1,j,k, {
nM⋃
Y =1

ti,jY,m(Y)})

74

where Ti,jY are the tuples of rin
X,Y and

ti+1,j,k was derived by the query from
nM⋃
Y =1

ti,jY,m(Y).

λD(di+1) = 〈time, “query statement”,u〉

where query statement is the text of the query, else the query fails and no provenance

links are created.

Figure 3.4 shows an example of provenance due to a query. The input relations,

A, B, and C, are shown at the top, followed by the query. At the bottom of the figure

the query result relation is shown along with the explicit provenance of the result

relation and the inherited provenance of all its components. Figure 3.5 shows the

graphical representation of the provenance links shown textually in Figure 3.4. The

explicit provenance of the result relation is shown in solid lines, while the inherited

provenance of tuples, attributes, and attribute values are shown in dashed lines. We

read the provenance of the result components of Q as follows:

• the result relation, R, exists because both input relations A and B exist, and

exists independently because input relation C exists

• the inheritance rules (defined in Section 3.7, below) define that attribute alpha

in result relation R exists because attribute alpha in input relation A exists,

and exists independently because attribute alpha in input relation C exists

• tuple 〈a〉 in the result relation R exists for three independent reasons: because

tuple 〈a, b〉 in relation A exists and tuple 〈b, c〉 in relation B exists; because

tuple 〈a, s〉 in relationA exists and tuple 〈s, u〉 in relationB exists; and because

tuple 〈a〉 in relation C exists

• tuple 〈o〉 in R exists because tuple 〈o〉 in relation C exists

75

• the inheritance rules define that attribute value a in column alpha of tuple 〈a〉

in R exists independently for three reasons: because the attribute value a in

column alpha of tuple 〈a, b〉 in relation A exists; because the attribute value a

in column alpha of tuple 〈a, s〉 in relation A exists; and because the attribute

value a in column alpha of tuple 〈a〉 in relation C exists

• the inheritance rules define that attribute value o in column alpha of tuple 〈o〉

inR exists because the attribute value o in column alpha of tuple 〈o〉 in relation

C exists.

3.7 Accessing Provenance Information

If the user wishes to see complete provenance for a component, then in addition to

provenance links originating at the component of interest, inherited links must be vi-

sualized, as must implicit continuity links. Since provenance links for all component

types are included in the MMP instance, it may be difficult for users to distinguish

provenance connectivity at different levels of granularity. In addition, an MMP in-

stance is 3-dimensional: faces define two dimensions, and the succession of faces

(and the provenance links that connect them) defines the third. In order to make

provenance more accessible to users, we provide three mechanisms to present or in-

terrogate provenance: provenance graphs, which provide a 2-dimensional graph rep-

resentation of provenance for a selected component; the provenance query predicates

in the MMP language, which allow users to select data by specifying provenance

characteristics; and an algebraic representation of component provenance compara-

ble to provenance representations in current literature.

76

Figure 3.4: Example Single-Revision Provenance Resulting from a Query

77

Figure 3.5: Graphical Representation of Single-Revision Provenance

3.7.1 Provenance Graphs

A provenance graph is a directed graph that represents the provenance of an individ-

ual component (a relation, a tuple, an attribute, or an attribute value). A provenance

graph vertex represents a component or an external source referent. A provenance

graph edge represents an explicit or inherited provenance link or an implicit conti-

nuity link. Each provenance graph edge is labeled with the name, user, and time of

the operation that induced the corresponding provenance link, or is labeled continu-

ity if it corresponds to an implicit continuity link. For brevity, we sometimes show

examples with provenance graphs where continuity links and predecessor nodes are

omitted if they are not pertinent to the example. Construction of a provenance graph

Gp(c0) for a component c0 in an MMP instance M requires that we find all com-

ponents and external source referents in M that are ancestors (based on provenance

links) or predecessors of c0 (based on continuity links) and their ancestors and pre-

decessors. We must also find all provenance links that record the actions used in

78

deriving these components. We find these by beginning at c0 in the MMP instance

and tracing backwards through all explicit provenance links, all inferred continuity

links, and all inherited provenance links connected to c0.

3.7.1.1 Preliminaries: Tracing Continuity and Inheritance

The rules for inferring continuity links from a component in one face to its predeces-

sor component in the immediately preceding face in an MMP instance are as follows.

Note that continuity links may only be inferred for components not newly induced

by the revision that created a database face.

• The predecessor of a relation in database face dn+1 is the relation with the same

name in face dn

• The predecessor of an attribute in database face dn+1 is the attribute with the

same name in the prior version of its relation

• The predecessor of a tuple in database face dn+1 is the unique tuple in the prior

version of its relation with identical values for all corresponding attributes

• The predecessor of an attribute value in database face dn+1 is the attribute value

in the prior version of its tuple for the same attribute

We now define the rules for determining the provenance links inherited by a com-

ponent from its containing components. As explained in Section 3.7.1.2, the rules are

applied to a component c when c originates no provenance links, and the face d con-

taining c is labeled with an operation that has inherited provenance semantics2, and a
2The label on d indicates the applied operation and thus tells us whether the operation has inher-

ited provenance semantics.

79

component that contains c in d originates provenance links3. At most one rule from

the list below applies to a component c

Recall that we assume that the attributes of each SPX term result in our queries

are renamed to a common set of names prior to applying the union operation. Let the

set of inherited provenance links for component c in face dn be called Linherited(c).

1. If a tuple has a containing relation with an explicit provenance link to another

relation, then that tuple inherits a link:

If c = tn,p,k ∈ Tn,p ∧ ∃lp(rn,p, rn−1,q) then

Linherited(c) = lp(tn,p,k, tn−1,q,m) where tn,p,k is identical to tn−1,q,m.

2. If a tuple has a containing relation with an explicit provenance link to an ex-

ternal source referent, then that tuple inherits a link:

If c = tn,p,k ∈ Tn,p ∧ ∃lp(rn,p, s) then

Linherited(c) = {lp(tn,p,k, s)}

3. If an attribute has a containing relation with an explicit provenance link to

another relation, then that attribute inherits one or more links. That is, each

attribute exists independently because of its parent attribute in each ancestor

relation:

4. If c = an,p,l ∈ An,p ∧ ∃lp(rn,p, rn−1,q) then

Linherited(c) = ∅.

∀lp(rn,p, {rn−1,q}), Linherited(c) = Linherited(c)∪

{lp(an,p,l, an−1,q,r)|∃r where an,p,l and an−1,q,r have the same name }
3Components in d that originate provenance links are those directly affected by the operation that

created d. These can be efficiently identified by examining the text of the operation in the face label:
the operation name indicates its target component type; the text of the operation argument list iden-
tifies the target component; the semantics of the operation indicates which components contained by
the target component, if any, have explicit provenance links induced by the operation. We sometimes
omit the operation argument list in our diagrams.

80

5. If an attribute has a containing relation with an explicit provenance link to an

external source referent, then that attribute inherits a link:

If c = an,p,l ∈ An,p ∧ ∃lp(rn,p, s) then

Linherited(c) = lp(an,p,l, s)

6. If an attribute value has a containing tuple that has no explicit provenance, but

has a containing relation with provenance links to other relations, then that

attribute value inherits one or more links:

If c = vn,p,k,l ∈ Vn,p,k ∧ ¬∃lp originating at tn,p,k ∧ ∃lp(rn,p, rn−1,q) then

Linherited(c) = ∅.

∀lp(rn,p, rn−1,q),

Linherited(c) = Linherited(c) ∪ {lp(vn,p,k,l, vn−1,q,m,r)|∃r

where an,p,l and an−1,q,r have the same name }

∧tn,p,k is identical to tn−1,q

7. If an attribute value has a containing tuple that has no explicit provenance, but

has a containing relation with a provenance link to an external source referent,

then that attribute value inherits a link:

If c = vn,p,k,l ∈ Vn,p,k ∧ ∃lp(rn,p, s) ∧ ¬∃lp originating at tn,p,k then

Linherited(c) = lp(vn,p,k,l, s)

8. If an attribute value has a containing tuple that has explicit provenance links to

other tuples, then that attribute value inherits one or more links:

If c = vn,p,k,l ∈ Vn,p,k ∧ ∃lp(tn,p,k, {tn−1,q,m, where 1 ≤ m ≤ |Tn+1,q|}) then

Linherited(c) = {lp(vn,p,k,l, vn−1,q,m,r)|

∃r such that an,p,l and an−1,q,r have the same name }

9. If an attribute value has a containing tuple that has an explicit provenance link

to an external source referent, then that attribute value inherits a link:

If c = vn,p,k,l ∈ Vn,p,k ∧ ∃lp(tn,p,k, s) then Linherited(c) = lp(vn,p,k,l, s)

81

Figure 3.6: Examples of Inherited Provenance

Figure 3.6 shows, using dotted lines, examples of inherited provenance. On the left,

a tuple in relation A was inserted at time n + 1 from external source X via an Insert

Tuple operation. The provenance link from the result tuple to the external source

is explicitly recorded in the model. The provenance links inherited by the attribute

values in the tuple are shown in dotted lines. On the right in the figure, relation A is

pasted into the database at time n + 1 as a copy of relation B. The provenance link

(shown solid) from the relationA to relationB is explicitly recorded. The provenance

links inherited by attributes, tuples, and attribute values, are shown dotted.

3.7.1.2 Defining Provenance Graphs

With these rules for inference and inheritance defined, we now formally define prove-

nance graphs. Let an MMP instanceM have componentsC, external source referents

S, and provenance links L. Let c0 ∈ C be the component (in the most recent face)

for which we wish to construct a provenance graph Gp(c0) with vertices V and edges

E. We define m, an injective mapping m : V → C ∪ S and we define V and E for

Gp(c0) as follows:

1. V = ∅, E = ∅.

82

2. distinguished component: vinitial is created and added to V , and we set

m(vinitial) = c0.

3. explicit provenance links and connected components: ∀v ∈ V, ∀lp(m(v), B) ∈

L ⇒ ∀b ∈ B, we add a new vertex v′ to V , and we set m(v′) =

b, and we add to E an edge

e(v,
⋃|B|

X=1m(vX)).

4. continuity links and connected components: ∀v ∈ V, ∃ predecessor c′ for

m(v), then add to V a vertex v′ and set m(v′) = c′, and add to E an edge

e(v, v′).

5. inherited provenance links and connected components: for all v in V , if m(v)

originates no provenance links, and λD(di) where di contains m(v) indicates

an operation with inherited provenance semantics4, and a component that con-

tainsm(v) in di originates provenance links, then use the inheritance rules from

Section 3.7.1.1 to find the set of provenance links inherited by m(v), which we

call Linherited(m(v)). For each l ∈ Linherited(m(v)): add to V a set of vertices

V ′ consisting of one vertex v′ for each terminal component c′ of l; for each v′,

set m(v′) = c′; and add to E a hyper-edge e(v, V ′).

6. nothing else is in V or E

When each v is placed in V , it is labeled with the type of component of m(v) (re-

lation, attribute, tuple, attribute value, or source), a name for m(v) that indicates its

relation, attribute, tuple, and value, as appropriate, the relation to which m(v) be-

longs, if appropriate, the value of Expired(m(v)), the timestamp portion of λD(d),

where d containst m(v), and a value. If the type of m(v) is relation, attribute, source,
4Insert Tuple, Drop Tuple, Paste Tuple, Paste Relation, and queries have inherited provenance

semantics. Create Relation, Create Source, Create Attribute, Drop Relation, Drop Attribute, Insert
Value, Drop Value, Paste Value, Confirm Value, and Doubt Value do not have inherited provenance
semantics.

83

or tuple, the value is NULL. If m(v) is an attribute value, the value is the value of

m(v). If the type of m(v) is source, the relation label is NULL. We refer to these

labels as type, name, relation, expired, time, and value, respectively. In addition,

when each e is placed in E, it is labeled with λD(d), where d contains m(v), where

v is the originating vertex of e, or is labeled continuity, if e represents a continuity

link. If e is labeled with λD(d), we refer to the portions labels as op, user, and time,

respectively.

Figure 3.7 shows the provenance graph for the attribute value from attribute ID

in tuple 1 in relation C at time n + 6 from the example in Figure 3.8. The boxes

shown delineate the operations performed on the ancestors of the component, and

are labeled on the right with associated timestamps. The value of user is omitted

on all edges in the figure for brevity. As before, the dot notation used for vertex

name properties in the graph indicates relation first, then a shorthand identifier for

the tuple, then attribute, then attribute value. The timesteps associated with links

are shown on the right of the figure. We abbreviate the description of operations

attached to each graph edge. Note the use of inherited links. For example, the top

link on the left of the graph represents the insertion of the parent relation A. This

link is inherited from the attribute value’s parent relation. We envision provenance

graphs as a visualization presented to a user for the purpose of browsing provenance

of a user-selected component.

3.7.2 Querying Provenance

In Chapter 2, we defined the grammar of predicates for selecting rows and columns

of data in relations by characteristics of their provenance, or characteristics of the

provenance of attribute values they contain. In this section, we define when a pred-

icate qualifies a table row or column for output, and how predicate terms are eval-

uated. Refer to Table 3.1, reproduced here from Chapter 2, for the syntax of our

84

Figure 3.7: Example Provenance Graph

85

Figure 3.8: MMP Instance showing provenance links between components

86

predicate language. We define here the semantics of selectionPredicates. Projec-

tionPredicates have similar semantics, the difference being that they apply to the

relational projection operator in MMP, and they qualify columns for output instead

of tuples.

LetM , an MMP instance with current face di, have relation ri,j ∈ Ri, the relation

set of di. Let {ti,j,k}, 1 ≤ k ≤ |Ti,j| be the tuples in ri,j . Let <(D,S, L, rout =

σP (ri,j), u, t) be a revision applied to M , where P is a selectionPredicate in the

MMP language5. P consists of component specifier CS, along with one or more

predicateQualifiers Q connected by logical operators AND and OR. This expression

of predicateQualifiers Q and their connecting logical operators we call the Qgroup

of P .

As shown in Table 3.1, each predicateQualifier Q in a Qgroup consists of one

or more pathQualifiers pQ
n connected by logical operators AND and BEFORE. Each

pathQualifier pQ
n describes the characteristics of a provenance path6. In order to

describe a path, pQ
n contains vertex descriptors V Q

n and edge descriptors EQ
n that de-

scribe characteristics of vertices and edges in the path, andOQ
n , a poset that describes

orderings (by time value) of these vertices and edges as specified by “BEFORE”

clauses in pQ
n . Each cQualset in pQ

n describes a vertex in the path, so each cQualset

defines a vertex descriptor vQ
n ∈ V Q

n . Similarly, each sQualset in pQ
n describes a ver-

tex in the path, and hence also defines a vertex descriptor vQ
n ∈ V Q

n . Each aQualSet

in pQ
n describes an edge in the path, so each aQualset defines an edge descriptor

eQ
n ∈ EQ

n . Each vertex descriptor and edge descriptor specifies one or more con-

ditions under which it matches a vertex or edge, respectively, in a provenance path.

These conditions are called constraints, and are defined as follows:
5If a predicate of σ includes a combination of MMP provenance selection predicates and the usual

relational selection predicates, each selectionPredicate is evaluated for each tuple, and the resulting
boolean valuation is combined in the usual way with the other predicates.

6A provenance path is a path in the provenance graph of a component.

87

selectionPredicate ::= componentSpecifier predicateQualifier
componentSpecifier ::= TUPLE HAS 〈predicateQualifier〉
|SOME DATA VALUE IN TUPLE HAS 〈predicateQualifier〉

projectionPredicate ::=
ATTRIBUTE HAS 〈predicateQualifier〉
|SOME DATA VALUE IN ATTRIBUTE HAS 〈predicateQualifier〉

predicateQualifier ::=
A PATH WITH (〈pathQualifier〉)
|A PATH WITH (〈pathQualifier〉) [AND|OR] 〈predicateQualifier〉

pathQualifier ::=
A 〈component〉 (〈cQualSet〉)
|AN OPERATION (〈aQualSet〉)
|A SOURCE (〈sQualSet〉)
| 〈pathQualifier〉 [BEFORE|AND] 〈pathQualifier〉

aQualSet ::= 〈aQual〉 | 〈aQual〉 [AND|OR] 〈aQualSet〉

cQualSet ::= 〈cQual〉 | 〈cQual〉 [AND|OR] 〈cQualSet〉

sQualSet ::= 〈sQual〉

aQual ::= WITH ACTION = 〈constant〉
|WITH ACTION = ANY QUERY
| BY USER = 〈username〉
|
WHERE TIME 〈cCmp〉 〈timestamp〉

cQual ::= IN RELATION 〈relname〉
|WITH A VALUE 〈cCmp〉 〈compval〉
|WHERE EXPIRED = 〈TRUE|FALSE〉

sQual ::= WITH NAME = 〈constant〉

component ::= tuple | attribute | value

cCmp ::= = | > | < | ≥ | ≤ | 6=

Table 3.1: Syntax of MMP Provenance Predicate Language (Repeated from Table 2.3)

88

1. For each “IN RELATION 〈relationName〉” qualifier in a cQualset cQQ
n in

pQ
n , the corresponding vQ

n has constraint relation = 〈relationName〉.

2. For each “WITH A VALUE 〈cCmp〉 〈comparisonV alue〉” qualifier in a

cQualset cQQ
n in pQ

n , the corresponding vQ
n has constraint

value 〈cCmp〉〈comparisonV alue〉.

3. For each “WHERE EXPIRED = 〈booleanV alue〉” qualifier in a cQualset cQQ,

the corresponding vQ
n has constraint expired = 〈booleanV alue〉.

4. For each “WITH NAME = 〈sourceName〉” qualifier in an sQualset sQQ
n , the

corresponding vQ
n has constraint name = 〈sourceName〉

5. For each “WITH ACTION = 〈actionName〉” qualifier in an aQualset aQQ
n ,

the corresponding eQ
n has constraint op = 〈actionName〉

6. For each “BY USER = 〈userName〉” qualifier in an aQualset aQQ
n , the corre-

sponding eQ
n has constraint user = 〈userName〉.

7. For each “WHERE TIME 〈cCmp〉〈timestamp〉” qualifier in an aQualset

aQQ
n , the corresponding eQ

n has constraint time〈cCmp〉〈timestamp〉

If a Qualset QQ
n1 is followed in pQ

n by “BEFORE”7 and then a Qualset QQ
n2, then OQ

n

contains the vQ
n1 (eQ

n1, ifQQ
n1 is an aQualset) corresponding toQQ

n1 and the vQ
n2 (or eQ

n2,

if QQ
n2 is an aQualset) corresponding to QQ

n2, which represents that vQ
n1(or eQ

n2) ≺

vQ
n2(or eQ

n2).

Each tuple ti,j,k evaluated by σP (ri,j) is selected for output if the expression

Qgroup from P evaluates to TRUE for ti,j,k. Qgroup is TRUE for ti,j,k if the expres-

sion formed by its predicateQualifers Q and connecting logical operators evaluates

to TRUE for ti,j,k, and is FALSE otherwise. Each predicateQualifier Q ∈ Qgroup is
7The BEFORE binary relationship indicates ordering in time of two Qualsets. In particular, it

indicates that the first Qualset in the relationship must occur earlier in the timeline than the second.

89

evaluated over a set of components Ct
i,j,k defined for ti,j,k as follows: If CS uses the

language “TUPLE HAS”, then Ct
i,j,k = ti,j,k; otherwise Ct

i,j,k = Vi,j,k. Q evaluates

to TRUE if any path in the provenance graph Gp(c) of any component c ∈ Ct
i,j,k

satisfies the logical expression formed by its pathQualifiers pQ
n and their connecting

logical operations. pQ
n is TRUE for path p if each vertex descriptor vQ

n ∈ V Q
n matches

a vertex vp ∈ Vp and each edge descriptor eQ
n ∈ EQ

n matches an edge ep ∈ Ep and if

the relative ordering of any pair of matching vertices or edges in p satisfies the order

of their corresponding vertex and edge descriptors in OQ
n , else pQ

n is FALSE for p.

Vertex descriptor vQ
n matches vertex vp if all constraints in vQ

n are met by vp. A

constraint of a vertex descriptor vQ
n is met by vertex vp if and only if the property

named in the constraint exists for vp and its value satisfies the constraint. Edge de-

scriptor eQ
n matches edge ep if all constraints in eQ

n are met by ep. A constraint of an

edge descriptor eQ
n is met by edge ep if and only if the property name in the constraint

exists for ep and its value satisfies the constraint.

3.7.2.1 Example of Provenance Predicate Evaluation

As an example of evaluating a selectionPredicate, consider the example relation and

its associated history shown in Figure 3.8. The provenance graphs for the attribute

values of the only tuple in relation C in the figure at time n+6 are shown in Figure

3.7 and Figure 3.9. We omit the user property from edges in the figure. We indicate

vertices with type source with circles. Consider the query σP (C), where P is the se-

lectionPredicate “SOME DATA VALUE IN TUPLE HAS A PATH WITH A VALUE

IN RELATION D BEFORE AN OPERATION WITH ACTION = ’Paste Value’ ”.

We evaluate P for each tuple in C; in this case, only one tuple t, 〈“John”,”6”〉 exists

to be evaluated for selection.

First, form the set of paths to be considered for t. The component specifier CS in

P is“SOME DATA VALUE IN TUPLE HAS “, so the set of paths includes all paths

90

from the provenance graphs of all attribute values v in t. In this example, there are

two such attribute values, “John” and “6”, so the set of paths to evaluate includes all

paths from the two provenance graphs shown in Figure 3.7 and Figure 3.9. Call these

gJohn and g6.

The Qgroup of P consists of a single predicateQualifier Q that has a single

pathQualifier pQ,

“A PATH WITH A VALUE IN RELATION D BEFORE AN OPERATION WITH

ACTION = ’Paste Value’ ”

Thus pQ consists of the cQualset, “A VALUE IN RELATION D”, the ordering term

BEFORE, and the aQualset, “AN OPERATION WITH ACTION = Paste Value”.

Then pQ has one vertex descriptor v, {relation = D} and one edge descriptor e,

{op = PasteV alue}. Because BEFORE connects the corresponding Qualset pair,

O = {v, e}, which means that v ≺ e.

Consider Figure 3.9. No vertex in gJohn matches the vertex descriptor {relation =

D}, so gJohn does not qualify tuple 1 from relation C for output. Now consider Fig-

ure 3.7. In g6, all vertices named D.1.”ID”.”6” satisfy v. In the same path as all

of these (the rightmost path in the figure), the edge with timestamp n + 5 satisfies

e. Thus both descriptors are satisfied by this path. In addition, the edge matching

e has associated timestamp n+5, and at least one vertex matching v has timestamp

less than n+5 (for example, the terminal vertex of the edge matching e matches d and

has timestamp n+4). Thus the ordering constraint is also satisfied by this path. As a

result, P is satisfied by tuple 1 from relation C, and so tuple 1 is selected for output.

3.7.3 Provenance Polynomials

While MMP represents provenance using provenance links between components,

other provenance models in the literature [3], [4], [6], [12], [19] represent provenance

by annotating relational tuples with semi-ring expressions representing their single-

91

Figure 3.9: Provenance Graphs for Attribute Values of Relation C at time t+6 in Figure 3.8

.

92

Figure 3.10: Examples of Provenance Expressions from Current Models

.

generation provenance [20]. These semi-ring expressions are either set-theoretic (ex-

pressed as sets of tuple identifiers, or sets of sets of tuple identifiers) or algebraic

(expressed as polynomials where the variables are tuple identifiers). Examples are

shown in Figure 3.10. In current models, these expressions are stored as text strings.

Although one goal of MMP is to avoid the need for users to parse such representa-

tions in order to query provenance, we provide here a similar representation as a part

of MMP in order to make our provenance system comparable to others in the liter-

ature. In this section, we define our algebraic representation for provenance, which

extends those from the literature in these ways:

• We define algebraic representations of provenance at all granularities (rela-

tions, attributes, tuples, and attribute values), instead of only at the tuple level.

• Our algebraic expressions represent multi-generation provenance instead of

single-generation provenance.

93

• We include operations performed, identity of users performing them, and time

at which they were performed.

• Our expressions represent provenance due to DDL, DML, and query opera-

tions.

First, we define algebraic expressions without representing operations, users, and

timestamps, and then we explain our first two extensions.

Let C be the set of all components in an MMP instance M . Let S be the set

of all external source referents in M . Let V = C ∪ S. Define a set of variables

I and a bijection componentToV ar : V → I . We define ProvSN to be a semi-

ring (I,+, •, 0, 1), where + is algebraic addition and • is algebraic multiplication.

Provenance of c ∈ C is represented by a polynomial expression in ProvSN where +

represents that any of its arguments alone gives rise to c, and • represents that all of

its arguments together give rise to c. For example, if we represent the provenance of

c as x1 • x2 + x3, for c ∈ C and x1, x2, and x3 ∈ I , then c is present in I because

both x1 and x2 were present as inputs to an operation that had c as output, and is

independently present because x3 was present as an input to a (possibly distinct)

operation that gave rise to c.

Let K be the set of constants, if any, introduced by queries that have previously

run on M . Let Cstop be a set of components of the same type as c in M , speci-

fied by the user as beyond which no provenance should be represented. Let c′ be

the predecessor, if one exists, of component c. Let c originate N provenance links,

{lp1(c, B1), . . . lpN(c, BN)}, where link lpX, 1 ≤ X ≤ N has a terminal at each

bX,Y ∈ BX , 1 ≤ Y ≤ |BX |. Then for a distinguished component c in face dn of M ,

ProvSN(c) =

94

componentToV ar(c), if c ∈ S ∪K ∪ Cstop(∑N
X=1(

∏|BX |
Y =1 Prov

SN(bX,Y))
)

+ (ProvSN(c′)), if c /∈ S ∪K ∪ Cstop

and c′exists(∑N
X=1(

∏|BX |
Y =1 Prov

SN(bX,Y))
)
, otherwise

Here, summation indicates the + operation in ProvSN , and multiplication in-

dicates the × operation in ProvSN . This definition recursively traces the single-

generation provenance of c, then traces the provenance of those ancestors, and so

on. Recursion stops when original sources, or constants induced by queries, or stop-

ping points specified by the user are encountered. By including the option for user-

specified stopping points, we can represent as many generations of a component’s

provenance as the user wishes to see. If Cstop includes all components in the face

preceding the one where c first appears, then ProvSN(c) is the single-generation

provenance of c, and so is comparable to most provenance representations from the

literature. IfCstop = ∅, then ProvSN(c) is the complete multi-generation provenance

of c, which traces back every provenance path to a query constant or an external

source.

As an example, let x be the referent for external source X , z be the referent for

external source Z, w be the referent for external source W , and d be an alias for the

attribute value (D, 1, ID) which we assume for this example to be a constant induced

by a previous query. Let S = {x, y, w} and K = {d}. Then for the attribute value

(C, 1, ID,′′ 6′′) at time = n+ 6 (with provenance graph shown in Figure 3.11),

ProvSN((C, 1, ID)) = n1 + w

= (n2 + n3) + w

= (n4 + n5) + n6 + w

= n7 + z + n8 + w

= n9 + z + n10 + w

95

Figure 3.11: Example Provenance Graph. Repeated from Figure 3.7, with vertex descriptions
replaced by representative names.

96

= x+ z + d+ w

Although the definition of ProvSN(c) is recursive, the recursive expansion of

ProvSN expressions always terminates in polynomial time, because:

• causality ensures that all provenance graphs are acyclic, that is, no component

can be derived from itself, so no component can have provenance that includes

itself;

• traversal always follows the indicated direction of the directed edges in our

graphs, (i.e., from dn+1 to dn); and

• no provenance links originate from external source or query constant vertices.

Note that our definition of ProvSN applies to all component types in instances of the

MMP model. Thus we can express as many generations of provenance as desired for

a selected relation, attribute, tuple, or attribute value.

3.7.3.1 Representing Operations in Provenance Polynomials

In addition to representing ancestor components in provenance expressions, it is also

useful to represent information about the operations used to derive the data, the users

applying the operations, and the times when they were applied. We extend ProvSN

to include this additional information.

First, we augment the set of identifiers in our semi-ring by including variables

that range over the set of operations, users, and timestamps. Recall that L = OpD×

U × TS, and that L is finite. We define a set of coefficients in ProvSN , τil, such that

there is a bijection labelToV ar : L↔ τil:

ProvSN(c) =

97

componentToV ar(c), if c ∈ S ∪K ∪ Cstop(∑M
X=1

(∏|BX |
Y =1 Prov

SN(bX,Y)
)
labelToV ar(λD(dn)))

)
+(ProvSN(c′)), if c /∈ S ∪K ∪ Cstop

and c′ exists∑M
X=1

(∏|BX |
Y =1 Prov

SN(bX,Y)
)
labelToV ar(λD(dn)), otherwise

dn in the above expressions is the face in D that contains the component bX,Y .

Simply stated, each step through an ancestor bX,Y of c induces a coefficient

labelToV ar(λD(dn)) that represents the operation applied at that step.

As an example, let Joe be the user that applied all the operations in Figure 2. Let

• τ1 be the value from τil that represents

((Insert Tuple(A, 〈Name = John, ID = 6〉, X), Joe, n+1)

• τ2 represent (Insert Tuple(B, 〈Name = John, ID = 6〉,Z), Joe, n+3)

• τ3 represent ((C = SELECT Name, ID. . .), Joe, n+4)

• τ4 represent (Paste Value(D,1,ID,C,1,ID), Joe, n+5)

• τ5 represent (Confirm Value(C,1,ID,W), Joe, n+6)

The example provenance expression shown above now becomes

ProvSN((C, 1, ID)) = (((xτ1)(zτ2)τ3) + dτ4) + wτ5)

where juxtaposition represents the • operator.

3.7.3.2 Evaluating Plurality of Support with Provenance Polynomials

The recursive substitution of component identifiers with their provenance results

in polynomials that include variables that represent only external sources, query-

generated constants, user-identified stopping points, and the operations performed in

deriving data from these sources. By providing valuations of zero or one for each

98

such variable in an expression, a user obtains an integral value representing the plu-

rality of support for the component at the root of the provenance graph. This idea

was originally proposed by Green [21]. We extend it to allow valuations on the τ

coefficients introduced above. Consider the example shown above. Suppose ini-

tially that we trust all operations, as well as all external sources used. This situation

corresponds to a valuation of all terminal components and τ variables as one. The

resulting value of the ProvSN expression is then three. This valuation tells us that

there are three independent, trusted derivations that give rise to (C, 1, ID). Now

suppose we learn that external source W is not trustworthy, the attribute value at

(D, 1, ID) is incorrect, and Joe’s work at time tn+1 was unreliable. Valuing w, d,

and τ1 as zero yields a ProvSN value of zero. This valuation tells us that given these

new developments, data (C, 1, ID) has no support.

3.7.4 Chapter Summary

The conceptual model defined here models both data and its provenance. Data is

represented in the familiar relational structure, and provenance relationships are in-

dicated by directed hyper-edges connecting components. Each operation on data

creates a new database so that users can see the evolution of database contents over

time. Each component in each new database has either continuity to its predecessor

component, or provenance tracing back to ancestor components as a result of the

applied operation, or both (e.g., when a tuple is re-inserted), or neither (e.g., when

a new relation is created). Access to data is provided by a language analagous to

both SQL and relational algebra. Additions to traditional predicates for selecting

data in relational algebra provide a means to use provenance as a selection criteria.

A graphical view of data and its provenance is provided in order to facilitate user

browsing or provenance. An algebraic representation of provenance is provided to

enable comparison of a subset of our model against other provenance models in the

99

literature.

100

Chapter 4

Conceptual Model Evaluation

In this chapter, we evaluate MMP, our conceptual model for data and provenance.

We begin by evaluating MMP with two subjective comparisons. In Section 4.1, we

compare the capabilities of MMP to the gaps in current literature outlined in Chapter

1, to see what, if anything, MMP contributes that helps to fill those gaps. In Section

4.2, we compare the capabilities of MMP to the needs discussed in the settings from

Chapter 1, to see how useful MMP may be in practice.

Next, we provide an objective comparison of MMP against other models for data

and provenance in the literature. In Section 4.3, we compare the expressive power

of the algebraic provenance representation from the MMP model to that of other

models, following an approach developed by Green [20] to compare his provenance

polynomials to other models in the literature. In Section 4.4, we contribute a tax-

onomy for subclasses of an important class of provenance queries identified by He

and Singh [23]. We then compare the subclasses of queries expressible in the lan-

guage of MMP to the subclasses expressible in the languages of other models in

the literature. For one sub-class of provenance queries expressible by MMP as well

as other models in the literature, we contribute a benchmark of provenance-related

queries. In Section 4.5, we compare MMP to other models with regard to expres-

siveness of provenance graphs. We also compare MMP to other models with regard

to the complexity of exploiting provenance to detect where data is used as input to

101

later derivations. In Section 4.6, we use the benchmark from Section 4.4 to compare

the relative complexity of queries expressed in the languages of these models. We do

this using a software engineering metric to measure complexity of the semantically

same queries expressed in the languages of the models we compare. We assume that

a lower measure of query complexity for a semantically identical query is preferable

for users.

4.1 Evaluating MMP Against Gaps in the Literature

In Chapter 1, we identified five significant gaps left unaddressed by current models

for provenance and relational data in the literature: 1) current models do not model

provenance resulting from a mix of DDL, DML, and query operations; 2) in current

models, users must parse and interpret each provenance representation manually; 3)

in current models, users must assemble multi-generation provenance manually before

querying or browsing it; 4) query languages used in current models are designed for

relational data, and so are not well-suited to phrase queries over provenance; and 5)

current models do not distinguish provenance from data in order to provide suitable

management for provenance.

With regard to Gap 1, MMP models provenance for all operations except those

DDL operations, for example Create Relation, that do not have meaningful prove-

nance semantics.

MMP provides several mechanisms to address Gaps 2, 3, and 4. Provenance

graphs show an intuitive representation that requires no user parsing or reconstruc-

tion. For provenance queries, the MMP predicate language allows users to describe

the characteristics of provenance that are required for their query. We then use this

description to compare against provenance information stored in MMP. In neither

case do users need to interpret or parse symbolic representations of provenance when

using MMP. In addition, users do not need to re-assemble successive generations of

102

Figure 4.1: Example Data and Provenance In Current Provenance Models

provenance to obtain the entire provenance information for components of interest

when using MMP.

We contrast our approach with that used in current models using the example

in Figure 4.1. Consider the Orchestra [21] provenance representation, which Green

has shown to be the most informative of the models shown in the figure. The result

relation from the figure, with Orchestra provenance, which we call Rout, is repeated

in Table 4.1.

TupleID A C Orchestra Provenance
d 1 8 2a2 + ac
e 1 9 2c2 + ac+ bc
f 3 9 2b2 + bc

Table 4.1: Result Relation Rout from Figure 4.1 with Orchestra Provenance Annotations

We add another derivation step to our example by creating relation T from Rout

with the query T = σC=9(Rout). Relation T is shown in Table 4.2.

103

TupleID A C Orchestra Provenance
g 1 9 e
h 3 9 f

Table 4.2: Result Relation T with Orchestra Provenance Annotations

Suppose we wish to answer the question, “Which tuples in relation T have an

ancestor in relation R?” The intuitive and correct answer is both tuples g and h.

Tuple g in relation T has tuple e in relation S as an ancestor, which in turn has as

ancestor tuples a, b, and c from relation R. Tuple h in relation T has tuple f in S as

an ancestor, and f in turn has b and c as ancestors.

In order to answer this question using Orchestra’s provenance representation, the

user must first retrieve the provenance representation for each tuple in T . Next, the

user must parse the provenance representations to extract the identities of tuples that

are named as ancestors in the representations. In our example, tuple g has e as its

immediate ancestor, and tuple h has tuple f as its immediate ancestor. Next, the

user must retrieve the provenance of e and the provenance of f , and parse these

provenance representations to determine the next generation of ancestor tuples to ex-

amine. For candidate result tuple g, tracing through e, the next generation includes

a, b, and c. For candidate result tuple h, the next generation includes b and c. Be-

cause ancestors of both tuples g and h are found in R, both g and h are selected

for output. This example demonstrates that obtaining this answer requires the user

to parse provenance representations, and to re-construct and trace multi-generation

provenance that is distributed across the database.

In contrast, consider the MMP query U = σP (T), where the selectionPredicate P

= “TUPLE HAS A PATH WITH A TUPLE IN RELATION R”. This query directly

returns a relation containing tuples g and h. As an alternative, the user might browse

relation T and call up the provenance graph for each tuple in T , which would intu-

104

itively show their derivation from tuples in R. The provenance graph (for browsing)

and predicate language (for querying) in MMP allow users to interact with prove-

nance without the need to know anything about how provenance is modeled behind

the scenes. We believe this feature contributes significantly to filling Gaps 2 and 3

described above. We note that browsing a large provenance graph would require a

user interface to assist the user with visualization.

As shown in the example above, MMP provides a selection predicate language

that allows users to select data by describing characteristics of paths in its prove-

nance. For certain classes of queries, this language alleviates the need for users to

manually review provenance returned from a query in order to select data of interest.

This feature contributes to filling Gap 4 described above. Although the provenance

predicate language of MMP is not comprehensive, MMP provides query language

functionality for answering some questions difficult to answer using languages of

other models in the literature.

The specification of MMP requires that provenance be introduced only as a side-

effect of user-applied operations in the MMP language. Any implementation of

MMP must follow the formal specification and create provenance in this way. In

addition, no user operation manipulates or deletes provenance directly. These con-

straints on the accessibility of provenance by language operations contribute to filling

Gap 5 mentioned above.

One additional contribution of MMP addresses an implicit gap in the literature:

current provenance models are limited to a single data model (which is in all but

one case, the relational data model). In this work, we define MMP for the relational

model. However, data and provenance are treated separately by operators in the

MMP language, and provenance and data are represented in distinct structures. We

call this property orthogonality of provenance and data. Because of orthogonality,

MMP offers the possibility that the provenance model in MMP may be preserved

105

if the data model implemented in MMP faces is changed. We conjecture that many

data models can be defined in terms of components, just as we do with the relational

model. To the extent that provenance for a data model is definable in terms of com-

ponents having other components as ancestors, and to the extent that the progression

of database state may be modeled as a succession of snapshots induced by operations

on data, we believe that MMP can be adapted to support such data models.

4.2 Evaluating MMP Against Needs in Target Settings

Here we briefly assess how well our model meets the needs of users discussed in

Chapter 1. We briefly recapitulate these needs as follows:

1. Models for data and provenance should represent external sources from which

data was excerpted.

2. The history of operations performed on data should be recorded automatically

and unobtrusively.

3. Because data may be encountered more than once, tools should allow for and

remember multiple insertion of the same data.

4. Provenance should record what operations were performed on data, and who

performed them.

5. Users should be able to visualize data and its provenance, as well as select data

based on its provenance.

6. Provenance should be recorded at all manipulation granularities

7. Provenance should record all creation, manipulation, and query operations on

data.

106

8. Models should retain deleted data and its provenance, and do so in a way that

makes it available for provenance queries, yet prevents it from taking part in

operations on data.

To address (1) above, MMP models external sources using external source ref-

erents. MMP’s external source referents enable the model to trace data back to the

external sources from which it was excerpted, allowing provenance queries to ask

about specific external sources.

As defined in Chapter 3, provenanced MMP operations automatically induce

provenance links as result faces are created. This automatic process does not affect

the user’s work model, addressing (2) above.

Data may be initially created in an MMP instance by DML or query operations.

After creation, the MMP language allows data to be redundantly inserted using DML

operators. Each DML operation induces provenance links, so an MMP instance ad-

dresses item (3) above by recording each operation applied to data, including those

that redundantly insert or paste data.

Item (4) above is addressed because each face of MMP is annotated with the

operation and user that induced it, as well as a timestamp of its creation. When

provenance graphs are produced from an MMP instance, these annotations are used

to label graph edges, so that users can clearly see each operation affecting the data

represented by graph vertices. In addition, the predicate language of MMP allows

queries to inspect these face annotations in order to perform data selection and pro-

jection.

MMP provides three mechanisms for users to interact with the provenance por-

tion of an MMP instance, in support of item (5) above. First, the provenance graph

mechanism defines a graphical view of data (as vertices) and revisions (as edges), so

that users may visually browse data provenance. Second, the provenance predicate

language in MMP allows users declaratively to define provenance characteristics of

107

interest when phrasing a query. The predicate language is supported for both the

selection and projection operators of our extended relational algebra, providing the

ability to select rows or columns based on their provenance or those of the attribute

values they contain.

Relational DDL and DML operators address components at multiple granulari-

ties. However, traditional provenance models ignore DDL operations and support

only tuple-granularity DML operations (with one notable exception, Buneman’s

CPDB [6]). In addition, traditional provenance models support queries, but only

maintain provenance of result tuples, ignoring query-induced provenance for at-

tribute values, schema attributes, and relations.1 MMP defines provenance at all

granularities (relation, tuple, attribute, and attribute value) for DDL, DML, and query

operators that induce provenance. In addition, MMP introduces new operators that

affect components at multiple granularities. Paste Value, Paste Tuple, and Paste

Relation affect provenance for attribute values, tuples and attribute values, and all

four granularities, respectively. Confirm Value, Doubt Value, and Drop Value affect

provenance at attribute-value granularity. Drop Tuple affects provenance at tuple

granularity as well as attribute value granularity. Because provenance is defined for

all granularities affected by each operator in the MMP language, we can build a

provenance graph for a relation, an attribute, a tuple, or an attribute value that shows

its complete derivation history. This feature helps MMP to address item (6) above.

Each operator in the MMP language, except those that by our definition induce

no provenance (for example, Create Relation), records provenance information for

data affected by the operation. This feature addresses item (7) above.

MMP retains all data once it is inserted, including data later deleted by applied

operations. By marking a data component as deleted, yet retaining it and all prove-
1Note that provenance for attribute values in query results coud be derived in these models from

provenance for tuples, so long as attribute names for parent and child relations match. Provenance
for relations may be also be derived, by inspection of queries, if a history of queries is retained.
Provenance of attributes may also be derived from provenance of relations.

108

Figure 4.2: Evaluating MMP and Current Provenance Models. Blank cells indicate that a
model does not support a need.

nance links originating or terminating at it, MMP enables later provenance queries

that specify deleted ancestor data as a characteristic of data satisfying a query. In

addition, the predicate language can specify the data’s deletion status as part of se-

lection criteria. Operators in the MMP language are defined to ignore input data that

has been deleted, so that query results and DML operations are consistent with the

relational model. This feature addresses item (8) above.

Figure 4.2 summarizes the evaluation above, and presents a similar assessment

of other models in the literature. The five gaps in the literature addressed by MMP

are also shown. Empty cells in the table indicate that a model does not address a gap

or requirement.

109

4.3 Relative Expressiveness of Algebraic Provenance Representa-

tions

Green [18] defined a lattice of expressiveness for provenance models from the liter-

ature for relational data at tuple granularity. This lattice includes Cui and Widom’s

Lineage model [12], which annotates tuples with the set of identifiers for tuples that

contribute to their presence; Buneman’s Why-provenance [8], in which these anno-

tations are further refined into sets of input tuples that contribute independently to

result tuple presence; Green’s own provenance polynomials [21], which use natural

number coefficients and exponents over contributing tuple IDs to express the car-

dinality and plurality with which input tuples combine to give rise to result tuples;

and the provenance model from Trio [3], which is similar in many ways to Green’s

polynomial model. Examples of comparable representations for these models were

shown in Figure 4.1.

Each of these models has provenance expressions representable as elements of a

semi-ring. Green establishes a lattice comparing the expressiveness of these models

by relating the various semirings by surjective semiring homomorphisms. One prin-

cipal result of Green’s work is that the most expressive model in this lattice is his

own polynomial semiring, N[X]. In order to compare expressiveness of the MMP

provenance semi-ring ProvSN to the models considered by Green, we adopt his def-

inition that, for naturally ordered semirings K1 and K2, if there exists a surjective

homomorphism m : K1 → K2, then K1 is at least as expressive as K2. By “at least

as expressive”, Green means that K1 carries at least as much information about the

provenance of data as K2.

We first define a mapping from ProvSN to N[X], the most expressive in Green’s

lattice. This mapping, m : ProvSN → N[X] maps

1. the τ coefficients in ProvSN to unity in N[X]

110

2. all other variables in ProvSN to identical variables in N[X]

3. all integer coefficients in ProvSN to identical coefficients in N[X]

4. 0 in ProvSN to 0 in N[X]

5. 1 in ProvSN to 1 in N[X]

6. the + and • operators in ProvSN to identical operators in N[X]

Next, we prove that m is surjective and a homomorphism. To show that it is a

homomorphism, we must prove that 1) m(0) = 0 and m(1) = 1, that is, that the

additive and multiplicative identities remain after m is applied; 2) and for all distinct

a and b in ProvSN , m(a+ b) = m(a) +m(b) and m(a • b) = m(a) •m(b).

The two equalities of condition (1) are satisfied by definition. In both ProvSN

and N[X], 0 is the additive identity and 1 is the multiplicative identity. We now ad-

dress condition (2). As defined in Section 3.7.3.1, τ factors appear as coefficients of

monomials of one or more variables, or as coefficients of polynomial sums of such

monomials. We restrict ourselves to proving condition (2) for expressions in these

forms. For a monomial of a single variable with a τ coefficient, τ • a1, m(τ • a1) =

1 • a1 = a1. Here we use juxtaposition of variables and coefficients to represent

the • operation. We argue by induction over the number of variables a1, a2, . . . in

a monomial A that m(τΠN
n=1an) = 1ΠM

n=1an = ΠM
n=1an. Next, for any polynomial

composed of terms A1, A2, . . . that are such monomials, we argue by induction over

the number of terms in the polynomial that m(τΣK
k=1Ak) = 1ΣK

k=1Ak = ΣK
k=1Ak.

Then for any two such polynomials, A and B, with coefficients τA and τB, respec-

tively, we have bothm(τAA+τBB) = 1A+1B = A+B, andm(τAA)+m(τBB) =

1A + 1B = A + B. As a result, we have m(A + B) = m(A) + m(B). Because

we have that m(τAA) = 1A = A and m(τBB) = 1B = B, we also have that

m(τAA)m(τBB) = AB. In addition, we have that m(τAAτBB) = 1A1B = AB.

111

As a result, we have m(AB) = m(A)m(B). Thus m is a homomorphism from

ProvSN to N[X].

Finally, we must show that m is surjective. That is, we must show that all ele-

ments in the semi-ring N[X] are also represented by at least one element in ProvSN .

The set of elements in N[X] is the set of identifiers for tuples in the database. The set

of elements in ProvSN , when applied to the same database, is the same set of tuple

identifiers, plus the set of τ coefficients. Furthermore, using the proposed homomor-

phism, when an expression in N[X] contains a tuple identifier, then the equivalent

ProvSN expression contains the same tuple identifier. Thus we construct a ProvSN

expression equivalent to a given N[X] expression by using the same identifiers for

each mentioned tuple in the N[X] expression, and including the appropriate τ coef-

ficients. Thus the proposed homomorphism is surjective.

The existence of this surjective homomorphism shows that ProvSN is at least as

expressive as N[X]. However, the converse is not true. There can be no surjective

mapping from N[X] to ProvSN : all elements in N[X] identify tuples, so there are

none that represent members of {τil} in ProvSN . Informally, we say that ProvSN

is more expressive than N[X] because ProvSN represents the operations applied to

data, but N[X] does not. Because Green has shown that N[X] is the most expressive

of the provenance models included in his analysis, we can conclude that ProvSN is

more expressive than the models compared by Green.

4.4 Relative Expressiveness of Provenance-related Queries

In this section, we compare the expressive power of the MMP query language to

that of other provenance query languages in the literature. To do so, we first define

a taxonomy of subclasses for an important class of provenance-related queries over

relational data. Within each identified subclass, we develop sample queries. We

then state each query in the language of MMP, and in the language of one or more

112

other provenance models from the literature, when possible. The number of queries

phraseable in each language provides an indication of the expressive power of the

language within the context of the defined class of queries.

4.4.1 Provenance Selection Queries

Current provenance models record provenance as additional attributes in the same

schema as the (relational) data. Most then use relational operators to access both

provenance and data. Typical queries posed in these systems aim to extract prove-

nance based on characteristics of data. For example, such a query might be phrased

in natural language as, “Where did tuples in this relation that contain data about ’Joe’

come from?” In contrast, in informal discussions with domain experts we find that

they often want just the opposite: they want to extract data based on characteris-

tics of its provenance. Sahoo et al. [30] call queries like this provenance selection

queries. We refine this taxonomy along three axes: whether a query aims to select

tuples (rows) or attributes (columns) of data; whether the selection criteria mentions

the location of ancestor data or historical derivation actions, or both; and whether

the selection is based on a single such criterion, multiple criteria without relative

timestamp-based ordering constraints, or multiple criteria with ordering constraints.

Table 4.3 illustrates this taxonomy, numbering each subclass in it for convenience

in our discussion. The two subclasses labeled “N/A” are not realizable. In each

case, the provenance criteria (Both) conflicts with the criteria (Single): when there

is but a single criteria to express in a query, it can be one of “Ancestor Location” or

“Derivation”, but not both.

4.4.2 Query set for Expressiveness Comparison

For each subclass shown in the table, we pose a sample query in natural language.

We restrict these examples to tuple granularity, in order to fairly compare MMP (in

113

Provenance Criteria
Component Ancestor Location Derivation Both Criteria

Tuples 1 4 N/A Single
2 5 7 Unordered
3 6 8 Ordered

Attributes 9 12 N/A Single
10 13 15 Unordered
11 14 16 Ordered

Table 4.3: Enumeration of Subcategories of Provenance Selection Queries

which we can query about the provenance of relations, tuples, attributes, and the

provenance of individual data values they contain) to models from the literature that

track provenance only at tuple granularity.

The sample queries corresponding to the subclasses shown in Table 4.3 that we

use in evaluating expressiveness are as follows:

1. Which tuples in relation R were derived from source X?

2. Which tuples in relation R were derived from source X and source Y ?

3. Which tuples in relation R were derived from tuples in source X via tuples in

relation R2?

4. Which tuples in relation R are derived from tuples that were inserted at least

once between 04/15/09 and 04/15/10?

5. Which tuples in relation R were pasted from elsewhere and were also inserted

directly?

6. Which tuples in relationRwere derived from tuples inserted between 04/15/09

and 04/15/10, and later deleted?

7. Which tuples in relation R were derived from tuples in relation R1 that were

inserted at least once?

114

8. Which tuples in relation R were derived from source X that were inserted at

least once since they appeared there?

9. Which attributes in relation R were derived from source X?

The remaining subdivisions, 9-16, express queries for attributes (columns), and are

identical in syntax to subdivisions 1 to 8, after substituting “attribute” for “tuple”.

4.4.3 Comparison of Expressiveness

We compare MMP against three representative models and their attendant query lan-

guages from the literature:

• Buneman’s Why-provenance model [5], with recursive Datalog

• The Trio model [3], with the TriQL query language

• Green’s provenance polynomial model [20], also with TriQL

4.4.3.1 Buneman’s Why-provenance model

Buneman’s model relies on an extra relation, Prov, to store provenance information.

The schema of Prov includes a transaction ID for transactions that affect data, an

operation attribute that indicates the operation applied in the transaction (i.e., C for

copy-and-paste, I for insert, D for delete), a source attribute that identifies the root

of a source subtree or external source of data for the transaction, and a destination

attribute that identifies the root of a target subtree for the transaction. Buneman’s

model addresses only insertion, copy-and-paste, and deletion of data; no query op-

erators are supported. Unlike other models in the literature that support only tuple

granularity provenance, Buneman’s model supports provenance for arbitrary subtrees

in tree-structured data.

115

We express queries in Buneman’s model in recursive Datalog, following Bune-

man’s own work. In these queries, we make use of several pre-defined views de-

scribed in Buneman’s article: Unch(t, p) intuitively means that subtree p was un-

changed by transaction t; Copy(t, p, q) intuitively means that subtree p was copied

from subtree q by transaction t; and From(t, p, q) intuitively means that the prove-

nance of p due to transaction t is q. In Buneman’s model, Prov(t, C, p, q) is a fact

from the Prov relation, described above. Buneman defines Unch, Copy, and From

as follows:

Unch(t, p)← ¬(∃x, q.Prov(t, x, p, q)).

Copy(t, p, q)← Prov(t, C, p, q).

F rom(t, p, q)← Copy(t, p, q).

F rom(t, p, p)← Unch(t, p).

Buneman also defines a transitive version of From called Trace, which says that

data at p at the end of a transaction t derives from data at q at the end of a transaction

u:

Trace(p, t, p, t).

T race(p, t, q, u)← Trace(p, t, r, s), T race(r, s, q, u).

T race(p, t, q, t− 1)← From(t, p, q).

For purposes of comparison with Trio and Green’s model, we limit Buneman’s model

to tuple-level provenance, though it is capable of representing tree-structured data (a

generalization of relational data). We also assume the existence of an additional

pre-defined view, Member(R, p), which indicates whether tuple p is a member of

relation R.

116

4.4.3.2 Trio

Trio has a built-in function in the TriQL query language to filter data based on prove-

nance: Lineage(R1,R2) takes relations R1 and R2 as input, and outputs a relation

consisting of tuples in R1 that have lineage traceable to R2. Trio is different from

Buneman’s model in that it tracks provenance only at the tuple level, and uses an

SQL-like language for manipulations and queries. In addition, Trio retains deleted

data, while Buneman’s model does not.

4.4.3.3 Green’s model

Green’s model annotates provenance directly with a polynomial expression as de-

scribed above as an additional attribute for each tuple, and uses query languages

without purpose-built provenance functions. Because Green’s model lacks an opera-

tor similar to Trio’s Lineage(), we add to Green’s model a similar operator to assist

in phrasing queries. Such an operator is easy generated by a recursive query over

provenance annotations.

4.4.3.4 Example query 1

Natural language: Which tuples in relation R were derived from source X?

MMP: σtuple has a path with (a source with name = X)(R)

Buneman: Result(p)←Member(R, p), T race(p, tnow, q,),Member(X, q).

Trio, Green: Select * from R Where Lineage(R,X)

4.4.3.5 Example query 2

Natural language: Which tuples in relation R are derived from both source X and

source Y ?

MMP: σpredicate(R)

117

where predicate = “tuple has a path with (a source with name = X) and a path with

(a source with name = Y)”

Buneman: Result(p)←Member(R, p), T race(p, tnow, q1,),Member(X, q1),

T race(p, tnow, q2,),Member(Y, q2).

Trio, Green: SELECT * FROM R WHERE Lineage(R,X) AND Lineage(R,Y)

4.4.3.6 Example query 3

Natural language: Which tuples in relation R are derived from source X via tuples

in relation R2?

MMP: σpredicate(R)

where predicate = “tuple has a path with (a source with name = X before a tuple in

relation = R2)”

Buneman: Result(p)←Member(R, p), T race(p, tnow, q2, t2),Member(R2, q2),

T race(q2, t2, q1,),Member(X, q1), t2 < tnow.

Trio, Green: SELECT * FROM R WHERE EXISTS ((SELECT * FROM R2

WHERE Lineage(R,R2) INTERSECTION SELECT * FROM R2 WHERE Lin-

eage(R2,X))

4.4.3.7 Example query 4

Natural language: Which tuples in relation R are derived from tuples that were in-

serted at least once between timestamps 04/15/09 and 04/15/10?

MMP: σpredicate(R)

where predicate = “tuple has a path with (an operation with action = INSERT and

where time ≥ 4/15/09 and where time ≤ 4/15/10)”

Buneman: Result(p)←Member(R, p), Ins(t, q), t ≥ 04/15/09,

118

t ≤ 04/15/10, T race(p, tnow, q,).

Trio, Green: not expressible in closed form.2

4.4.3.8 Example query 5

Natural language: Which tuples in relation R were pasted from elsewhere and were

also inserted directly?

MMP: σpredicate(R)

where predicate = “tuple has a path with (an operation with action = INSERT and not

an operation with action = Paste) and a path with (an operation with action = Paste)”

Buneman: inexpressible, because no such history is representable in the underlying

data model)

Trio, Green: not expressible in closed form, as described in query 4

4.4.3.9 Example query 6

Natural language: Which tuples in relation R were derived from tuples inserted be-

tween 04/15/09 and 04/15/10, and later deleted?

MMP: σpredicate(R)

where predicate = “tuple has a path with (an operation with (action = INSERT and

where time ≥ 4/15/09 and where time ≤ 4/15/10) before a value that is expired)”

Buneman: Result(p)←Member(R, p), Ins(t, q), t ≥ 04/15/09,

t ≤ 04/15/10, Del(t2, r), T race(p, tnow, r, tany), tany ≥ t2,

T race(q, tany, q, tany2), tany2 ≥ t

2Trio provides a function, Lineage(r1, r2), that selects data in relation r1 with ancestors in r2.
However, Lineage takes specific relations as arguments. Query 4 explicitly mentions the descendant
relation, R, for use as argument r1 to Lineage(), but does not specify the relation for argument r2. As
a result, the user must trace ancestry “step-by-step”, which requires multiple queries, each of which
can only be written after its predecessor has returned results.

119

Trio, Green: not expressible in closed form, as described in query 4

4.4.3.10 Example query 7

Natural language: Which tuples in relation R were derived from tuples in relation

R1 that were inserted at least once?

MMP: σpredicate(R)

where predicate = “tuple has a path with (a tuple in relation = R1) and (an operation

with (action = INSERT))”

Buneman: Result(p)←Member(R, p),

T race(p, tnow, q,),Member(R1, q), Ins(, q)

Trio, Green: not expressible in closed form, as described in query 4

4.4.3.11 Example query 8

Natural language: Which tuples in relationR were derived from tuples in relationR1

and were also inserted at least once since they appeared there?

MMP: σpredicate(R)

where predicate = “tuple has a path with (a tuple in relation = R1) before (an opera-

tion with (action = INSERT))”

Buneman: Result(p)←Member(R, p), T race(p, tnow, q, t),

Member(R1, q), Ins(t2, q), t < t2

Trio, Green: inexpressible, as described in query 4

120

4.4.3.12 Example query 9

Natural language: Which attributes in relation R were derived from source X?

MMP: πattribute has a path with (a source with name = X)(R)

Buneman, Trio, Green: inexpressible: schema is not addressed by these models

All remaining provenance selection subdivisions address projecting attributes

that meet certain provenance criteria. MMP is capable of expressing queries in all of

these, while comparable models cannot express such queries.

4.4.3.13 Conclusions About Expressiveness of Provenance Selection

Queries

We summarize the expressiveness of provenance selection queries from models com-

pared here in Table 4.4. In the table, models capable of expressing the example

queries in a subdivision are noted by an identifying letter: M for MMP, B for Bune-

man’s model, T for Trio, G for Green’s polynomials.

We conclude from the results of this comparison that MMP can express at least

some queries in subclasses where other models cannot, and that no subclasses of the

class of provenance selection queries are unaddressable by MMP.

Provenance Criteria
Component Ancestor Location Derivation Both Structure

Tuples MBTG MB N/A Single
MBTG MB MB Unordered
MBTG MB MB Ordered

Attributes M M N/A Single
M M M Unordered
M M M Ordered

Table 4.4: Expressive Power of Comparable Provenance Models

121

4.5 Other Advantages of MMP Relative to Other Models

In Sections 4.3 , we showed that MMP has more expressive provenance polynomials

than other models in the literature. In Section 4.4, we showed that the query language

of MMP can express queries that other models cannot. In addition, MMP has other

advantages not yet discussed. We discuss two of these here.

4.5.1 Accessing Ancestors and Operational History of Data

Recall that MMP retains all ancestral databases, and links components in those

databases together based on their provenance relationships. As a result, MMP al-

lows for browsing and querying of multi-generation provenance. In MMP, users can

access the identity and values of data used to derive other data, the operations used

to derive data, and the timeline corresponding to the derivation. We contrast this

capability with the Orchestra model [21], shown by Green to have the most expres-

sive provenance representation of relevant models in the literature [18]. Orchestra

(and other comparable models that rely on semi-ring provenance representations) can

easily be extended to construct representations of multi-generation provenance. Re-

cursively substituting variables in Orchestra provenance polynomials with the poly-

nomials representing their provenance results in polynomials that represent original

sources of data, and how data were combined disjunctively and conjunctively to ar-

rive at a result. This same recursive approach can also be used to generate a prove-

nance graph. At each recursive step, a graph node can be generated to represent

each component visited, and the provenance relationships implied by the provenance

polynomial operators can be used to generate edges between nodes. However, the

provenance graphs generated from and Orchestra database are not as descriptive as

those derived from an MMP instance.

First, Orchestra does not retain information about the derivation operations used,

when they occurred, or who applied them. Instead, Orchestra retains (and can thus

122

include in a provenance graph) only how data combined conjunctively or disjunc-

tively to give rise to a result. In contrast, MMP includes all operations, the users who

applied them, and timestamps in provenance graphs.

Second, Orchestra models only queries, not DML or confidence operations.

Query result data that are further manipulated by DML operations, or that accrete

confidence operations, cannot be represented in Orchestra’s provenance model. In

contrast, MMP allows for provenance of data subject to manipulation (and applica-

tion of confidence expression operations) after a query, and also allows for prove-

nance of data subject only to manipulation (without queries).

Third, Orchestra retains only a single database, rather than all ancestral data.

Modifications made to ancestor data after its use in deriving descendant data cannot

be distinguished from modifications made to ancestor data prior to its use in deriving

descendant data. When constructing a provenance graph, for example, the data values

found as ancestors thus may or may not be accurate. In fact, if ancestor data was

subsequently deleted after its use in deriving descendant data, ancestral data values

may not be found at all. Because of this limitation, Orchestra cannot reliably present

ancestor data values as part of data provenance. In contrast, MMP retains all ancestral

data, including deleted data, and uses these ancestral databases to determine data

values used to derive descendant data.

4.5.2 Computing Forward-Looking Provenance

Because MMP retains all generations of data and provenance for all data, users (and

programs) are able to trace provenance of data backward to ancestors (as done in

building provenance graphs), as well as forward from ancestors to descendants (by

traversing provenance links from their terminals to their origin). We call the latter

tracing the progenance of data. Progenance is useful in detecting when descendant

data is made obsolete by changes in ancestor data. For example, in a cancer therapy

123

prioritization workflow, as shown in Figure 4.3, data inputs to each step in the work-

flow are subject to frequent revision as scientific knowledge improves. In the figure,

the overall workflow is composed of smaller sub-workflows that feed results into

successive sub-workflows. Each sub-workflow may also have input data not derived

from its preceding sub-workflow. For example, Treatment Selection depends on the

results of the Therapy Prioritization sub-workflow, relying on treatment rankings and

confidence measures. Treatment Selection also uses inputs from literature mining to

find effectiveness studies, new information about confounding conditions in the pa-

tient, and so on. If information input to an earlier sub-workflow changes, it may

invalidate information in use later in the workflow. For instance, the content of a ge-

netic reference library used as input to the Molecular Characterization sub-workflow

might change as more gene mutations are identified. If this information was used

to derive gene expression signatures used as input to the Therapy Prioritization sub-

workflow, and that in turn affected candidate treatment rankings, then decisions made

in Treatment Selection might be affected. Progenance analysis provides a means to

identify whether derived data may be affected by a change in ancestor data, alerting

users to the need to redo some analysis steps.

Other models in the literature are also capable of tracing progenance. To trace

progenance for one generation of descendants of a selected component in a database,

the entire database must be inspected to find components with provenance represen-

tations that reference the selected component. To trace the next generation forward,

each component found to be a descendant in the first step must be the subject of a

similar search. Each successive generation in this recursive trace requires a search of

the entire database to find the next generation of descendants. This process is func-

tional, but is computationally expensive. If a database consists of n components, and

we wish to trace the descendants of each, n2 components must be inspected. If each

of these components is found to have on average m descendants in the first gener-

124

ation, then tracing the second generation of progenance requires an additional mn

inspections for each of the n, for a two-generation total of n2 + mn2. In general, if

we assign each inspection of a component a fixed cost of 1, then the complexity of

tracing k generations of descendants is

k∑
x=1

mk−1n2.

In contrast, tracing progenance of a selected component in an MMP instance requires

only that each provenance link terminating at the selected component be traversed

to its origin, and that each link terminating at each of those origins be traversed,

until all data components connected to the selected component are identified. This

traversal never requires a complete search of the database: only descendants are

visited. The resulting complexity of tracing k generations of descendants for each of

n components is
k∑

x=1

mkn.

This saving in computational complexity is possible in MMP because MMP retains

all historical data.

4.6 Relative Complexity of Provenance-related Queries

We do not intend to make or formally prove broad claims about the relative com-

plexity of queries expressible in the models compared here. Instead, we seek to give

a rough indication of relative complexity for a set of examples that represent some

query subclasses described above. For subclasses 1-8 in our taxonomy, as shown

in Table 4.4, a variety of the languages we consider can express the representative

queries we propose. We use these queries, and three other similarly representative

queries from each of the eight subclasses to compare the complexity from the user

point of view of writing queries in these languages.

125

Figure 4.3: Cancer Therapy Prioritization Workflow

126

Because query expressions are closely related to statements in a programming

language, we adopt a complexity metric typically used in programming environ-

ments. Perhaps the simplest metric would be the number of lines of (non-comment)

code. However, for comparing expressions of very few lines, a simple line count is

not very informative. McCabe [27] suggests a metric, now commonly used in soft-

ware engineering projects, that measures code complexity as 1 + the number of IF,

AND, and OR tokens in code. More recently, this metric has been termed cyclomatic

complexity. Unfortunately, McCabe’s scheme does not account for the complexity of

logic in conditional statements, just the number of these tokens. In addition, in some

of the languages we compare, for example Datalog, AND and OR conditions are im-

plicit, so McCabe’s metric might miss significant complexity. Halstead [22] proposes

a complexity measure, Size, that counts the number of distinct operands and opera-

tors in code. Despite some controversies [9], Halstead’s metrics have been shown to

correlate well to intuitive measures of code complexity reported by users. However,

Halstead’s metric does not account for non-operator tokens, for example parenthe-

ses, which in query languages may account for a significant differences in expression

semantics (for example, order of evaluation of operators). A similar metric, Levitin’s

token count [26], takes these tokens into account. Levitin’s metric counts individ-

ual tokens in an expression, though it counts matched parentheses as a single token.

As an example of Levitin’s accounting, consider the Datalog expression for example

query 1 above: Result(p) ← Member(R, p), T race(p, tnow, q,),Member(X, q).

Levitin’s metric for this expression is 25. In this work, we use Levitin’s token count

as a comparison metric for query complexity.

We summarize the results of complexity comparisons in Figure 4.4. It is not

surprising that as criteria structure increases in complexity, query complexity also

rises for all models. It is also not surprising that queries describing derivation actions

are typically more complex than those that simply name ancestors. Comparing the

127

Figure 4.4: Query Complexity Comparison

models, we see that the Datalog queries for Buneman’s model are uniformly more

complex than the relational algebra queries for MMP. We also see that the queries for

Trio’s model and Green’s model are comparable in complexity to the MMP queries,

though applicable in fewer query subclasses. Note that the complexity of MMP is

worse than Trio and Green’s model for subclasses 1 and 2. In both cases, the built-in

function Lineage() in the TriQL language is sufficient to trace the necessary prove-

nance, making the query syntax quite compact. For queries where Lineage() is not

sufficient, as in subclass 3 where ordering is important, MMP is more compact even

though its syntax is specifically designed to be intuitive for users. We conclude that

the MMP predicate language has roughly comparable or better conciseness than other

provenance models in the literature, for similar subclasses of provenance selection

queries.

128

4.7 Chapter Summary

With regard to subjective evaluation of MMP against gaps in the literature, we have

shown that five explicit gaps, and an additional implicit gap, are addressed by MMP.

Evaluating MMP against the needs of users in example settings, we have shown that

MMP addresses a variety of user needs beyond what other models in the literature

address. Although these evaluations are not easily quantifiable, we believe that MMP

contributes new capabilities not found elsewhere.

With regard to objective evaluation of expressiveness, we have shown that the al-

gebraic notation defined in MMP is more expressive than that of other models in the

literature: MMP is as expressive as the most expressive model (as shown by Green)

if representation of applied operations is not considered; if applied operations are

considered in the comparison, MMP is more expressive than all other models ad-

dressed. With regard to the ability of MMP to answer provenance selection queries,

we have shown some evidence, though not conclusive proof, that MMP addresses

more subclasses of this query class than other comparable models, and does not fail

to cover any subclasses addressed by other models. With regard to relative complex-

ity of comparable queries in other models, we have shown that MMP has roughly

comparable or lower complexity to other models.

However, we recognize that a direct implementation of MMP may have less prac-

tical usability than other provenance models in the literature. For example, MMP has

significant redundancy in data, because each face is a copy of the entire database.

We address this problem in Chapter 6 by proposing a logical model that faithfully

supports MMP while removing redundant data.

129

Chapter 5

Characterizing Performance of Implementation Choices for MMP

MMP includes aspects of both relational and graph data models. Achieving a correct

and performant implementation of MMP should be possible if the abstractions in it

can be mapped onto a software infrastructure that is fast and scalable and can repre-

sent both of these data models. However, we know of no single software platform

that supports both data models. To provide some high-level guidance concerning

possible MMP implementations, in this chapter we study the performance of MMP

implemented on two candidate platforms: a relational DBMS and a graph DBMS.

We contribute definition of a performance benchmark that models data and prove-

nance queries from data curation settings, as well as the results of our performance-

comparison studies.

5.1 Benchmarks and Metrics

As defined in Chapter 2, MMP provenance predicates select data by its provenance.

An implementation of MMP would evaluate a provenance predicate by comparing

the properties of potentially all generations of data ancestors and derivation actions

to characteristics specified in the predicate. Current literature does not offer bench-

marks for multi-generation provenance queries such as this, where it may be neces-

sary to trace provenance of data through multiple generations of materialized results.

The only work we know of that addresses benchmarks for provenance is by Kar-

130

vounarakis, Ives, and Tannen [25]. They describe a micro-benchmark set for prove-

nance in a data-exchange setting. In that setting, provenance represents only a single

derivation step, and so involves only a single generation of ancestor data. Multiple-

generation provenance queries differ substantially from single-generation queries.

Because all provenance models in the literature store provenance of only one gen-

eration at a time, extraction of multiple generations of provenance information re-

quires an iterative (recursive) approach of visiting successive ancestors. Recursive

queries are typically more complex and require substantially more computation and

I/O resources than single-generation queries. They may also be more difficult for the

average user to write.

MMP provides a language that supports interrogation of multi-generation prove-

nance and relational data, either separately or together. To compare performance of

MMP implementations, our benchmark suite includes separate benchmarks for re-

lational data queries and multi-generation provenance queries so that performance

on each can be characterized independently. Our benchmark does not include DML

operations, because we expect that insertion, copy-and-paste, and deletion of indi-

vidual data values or individual tuples will have acceptable response time for users.

We leave benchmarks that address insertion of large granularity data, for example

entire relations, for future study.

The portion of our benchmark that addresses performance on relational data

queries includes only single-operator SELECT and PROJECT queries. One reason

for this is that we first want to understand relative performance of implementations

under simple workloads before progressing to more complex queries. A second rea-

son is that comparison and analysis of multi-operator query performance falls, in

large part, into the domain of query optimization, which is outside the scope of this

work.

In the remainder of this section, we define our benchmarks for queries over re-

131

Figure 5.1: Benchmarks and Implementations Tested

lational data and provenance. For each, we define the structure of the data used in

each implementation we tested for MMP; the workload for measurement; and the

metrics used for measurement and comparison. As shown in Figure 5.1, we run the

relational data benchmark and the provenance benchmark over two different MMP

implementations: one built on a relational database infrastructure; and one built on a

graph-database infrastructure.

5.1.1 Data query benchmark

The data set for our data benchmarks is a set of tables of varying size, composed from

a single original table with 29 attributes. The data is excerpted from a database of

US government grants from fiscal year 2009, and consists of roughly 257,000 tuples.

Of the 29 attribute domains, 16 are strings, 10 are integers, one is a floating-point

number, and the remainder are dates. The string domains vary from six characters up

to 160 characters. Average tuple length is 340 bytes.

Using this initial table as a source, we produce tables of 512, 1024, 2048, 4096,

16384, 65535, and 1M (220) rows. Each table smaller than the original begins with

the first tuple in the original table and is truncated at the desired cardinality. The

largest table (1M tuples) is formed by concatenation of copies of the initial table. In

132

each table, an additional attribute, with domain of integer, is added to the schema,

and filled with a unique integer for each tuple. This attribute is called tupleKey in the

remainder of this discussion. We use this attribute to ensure that duplicate tuples do

not appear in our test relations.

5.1.1.1 Data structure for relational database testing

To test relational implementations, the tables described above are created as relations

in a relational database. The unique integer in each table is declared as the primary

key for the corresponding relation, and the relation is sorted on that key. This allows

benchmarks to test operations that may take advantage of sorted files. In order to test

operations that take advantage of index structures in relational databases, a selected

string attribute (the same string attribute in each relation) is used to construct an

unclustered B+ tree index in the database.

5.1.1.2 Data structure for graph database testing

To test graph implementations, the tables described above are created as graph struc-

tures in a graph database that are analogous to relations. We implement two different

representations. In the first, which we call value-as-node, a single graph node repre-

sents the relation. Additional nodes represent: each attribute in the relation’s schema;

each tuple in the relation; and each attribute value. Edges connect the relation node to

each member tuple node. Additional edges connect the relation node to each mem-

ber attribute node. Each attribute value node is connected by a single edge to the

tuple node to which it belongs, and by a single edge to the attribute node to which

it belongs. The value-as-node representation was chosen because it provides a direct

representation of MMP components, and thus may permit an effective exploitation

of the graph query language provided by the graph DBMS. In order to test operations

that take advantage of index structures in graph databases, the same string attribute in

133

Figure 5.2: Data structures for Graph Database Testing

each graph database is used to construct an index. We test two graph DBMSs: Neo4j

(neo4j.org) and HypergraphDB (code.google.com/p/hypergraphdb/). Hypergraphdb

uses a proprietary index structure, and Neo4j uses the Lucene [28] indexing engine.

In the second data representation, which we call value-as-property, we retain the

relation node and tuple nodes. Attribute names and attribute values of tuples are

modeled as named properties of tuple nodes rather than as separate nodes. Figure 5.2

shows the structure of these two data representations for a relation with a single tuple

with two atomic attributes (shown as simply “attribute” in the figure with “value” as

the attribute value).

Other data representations analogous to relational structure are possible in graph

databases. We chose this second representation because it is economical in terms of

space and, likely, the number of disk I/Os needed.

5.1.1.3 Data query workload

The data query workload consists of the following queries:

• A query that selects all attributes from the table row identified by a specific

primary-key value

134

• A query that selects all attributes from each table row where the indexed string

attribute is equal to some specific value

• A query that selects all attributes from each table row where a selected non-

indexed attribute is equal to some specific value

• A query that selects one string attribute from all table tuples

For relational DBMS testing, the tests above map to SQL queries as follows:

• SELECT * FROM relationName WHERE tupleKey = constant;

• SELECT * FROM relationName WHERE indexedAttribute = constant;

• SELECT * FROM relationName WHERE non-indexedAttribute = constant;

• SELECT attribute FROM relationName;

No graph databases we know of support a relational query language. Instead,

access to data is achieved through the use of an API that provides simple graph

traversal and information-retrieval functions. The tests above map to graph database

API operations for the value-as-node structure as follows:

• Traverse the graph and retrieve all nodes that represent tuples. As each is

retrieved, retrieve and interrogate the node representing its tupleKey attribute.

If this attribute value matches the specified constant, retrieve all nodes that

represent the tuple’s attribute values. This approach simulates scanning the

(unsorted) data to find the tuple of interest

• Use the index created during database creation to retrieve the identifiers of

nodes that are indexed using the attribute value of interest, and then use those

identifiers to retrieve all related attribute value nodes

135

• As in the first item above, traverse the graph and retrieve all nodes that repre-

sent tuples. As each is retrieved, retrieve and interrogate the node representing

its tupleKey attribute. If this attribute value matches the specified constant,

retrieve all nodes that represent the tuple’s attribute values. This approach sim-

ulates scanning the (unsorted) data to find the tuple of interest

• Traverse the graph and retrieve all nodes that represent tuples, then retrieve the

attribute value for the attribute of interest for each

Note that these queries are different for the value-as-property representations. In

this case, there are no attribute value nodes to retrieve. Instead, we retrieve tuple

nodes and then retrieve their property values.

5.1.2 Provenance query benchmark

Our data set for provenance benchmarks augments the data from our data benchmark

with provenance information. Each data table has some number of starting tuples

where tracing of provenance begins. Each remaining tuple in the dataset is part of

the provenance of one of the starting tuples. We use tables with 512, 2048, 8192,

and 32768 starting tuples. We study performance of queries over provenance at the

granularity of tuples. The performance of MMP implementations on provenance

queries at the attribute value level is left for future work.

Each data set has two variants. One has linear provenance. The other has bushy

provenance. In linear provenance, a starting tuple has a provenance link to one an-

cestor tuple, which is in turn linked to one its ancestor tuple, and so on, for a total

of 31 tuples in each provenance chain. In bushy provenance, a starting tuple has

provenance links to two ancestor tuples, each of which is in turn linked to its two

ancestor tuples, and so on, so that a total of 31 tuples appear in each provenance

bush. Provenances of starting tuples do not intersect. That is, no tuple appears in

136

Figure 5.3: Examples of Linear and Bushy Provenance Structures

the provenance of multiple starting tuples, nor are starting tuples in the provenance

of any other tuples. Certain secondary tuples, called terminal tuples, have no further

provenance. These tuples represent original sources from which all other tuples are

ultimately derived. Figure 5.3 shows examples of linear and bushy provenance for a

single starting tuple.

5.1.2.1 Provenance structure for relational database testing

For linear provenance data sets, each relation has an additional attribute that is a for-

eign key to the primary key (tupleKey) of the relation. This foreign key is used to

record the immediate ancestor of a tuple. For bushy provenance data sets, each re-

lation has an adjunct provenance relation with a schema that includes two attributes,

child and parent. Child is a foreign key referencing the primary key of the data re-

lation, and identifying a descendant tuple. Parent is a foreign key referencing the

primary key of the data relation, identifying a tuple that is part of the provenance

of child. The two attributes form the primary key of the provenance relation. Note

that starting tuples appear only in the child column of provenance, and terminal tu-

137

Figure 5.4: Schema Diagrams for Linear and Bushy Provenance

ples appear only in the parent column. Two indexes are created on the provenance

relation: a clustered index on child, and an unclustered index on parent. Figure 5.4

shows schema diagrams for our linear and bushy provenance test structures, with

data attributes omitted. Foreign key relationships are denoted by arrows.

5.1.2.2 Provenance structure for graph database testing

For both linear and bushy provenance, we represent provenance links as directed

edges in a graph database. Each edge originates at a node representing a result tuple

of an operation, and terminates at a node representing an input tuple to the same

operation. Figure 5.3 illustrates the structure we use for modeling provenance in

graph databases, where each tuple is represented by a node in the graph.

5.1.2.3 Provenance query workload

The MMP query language provides predicates for selecting data based on properties

of individual paths in the data’s provenance. Figure 5.5 shows the bushy provenance

from Figure 5.3, along with the individual paths that must be computed prior to

predicate evaluation. Each path is indicated in the figure as a dark solid line.

Our provenance query workload consists of a single query that computes all

138

Figure 5.5: Enumerating Provenance Paths

provenance paths for each starting tuple in a relation, and then simulates comparing

the original source tuple of each path to a constant. In the graph database, prove-

nance paths are materialized by the database API as instances of a Java iterator class

containing node identifiers of path members. In the relational database, provenance

paths are materialized as tuples that have a common path identifier, comprised of

two extra attributes: the identity of the starting tuple of the path, and the identity

of the original data source tuple in the path. Note that this mechanism for naming

provenance paths assumes that provenance is tree-structured, rather than having a

more general, directed acyclic graph structure. This simplification does not affect

performance results. An example of the query used in relational database testing is

shown in Figure 5.6. Because single-generation provenance is recorded for each tu-

ple, and because these must be combined into provenance path descriptions in order

to compare paths against the path-based predicates defined in MMP, we use a recur-

sive query. We begin with a data relation, called d30x1m in the query shown. This

relation holds all data tuples, and is so named because there are 30 attributes in the

relation schema and 1M tuples in the relation instance. We also use a relation that

lists all one-generation predecessors of all tuples in d30x1m, called d30x1mpreds in

the query shown; and we use a relation that holds a list of all tuples that represent

139

original sources (that is, those that have no further provenance), called pathendpoints

to be used in the query shown.

In Part 1 of the query, we use recursion to populate a temporary relation, ances-

tors, with all 2-tuples such that the second element is the identity of a starting tuple in

d30x1m, and the first element is the identity of one of its ancestors in d30x1m. Part

2 materializes ancestors as a temporary table once the recursion in Part 1 reaches a

fixed point. In Part 3 of the query, we use recursion to populate another temporary

relation, descendants, with all 2-tuples such that the second element is the identity

of an original source in d30x1m, and the first element is the identity of one of its

descendants in d30x1m. In Part 4, we join ancestors and descendants with the data

relation, d30x1m, to form a new relation where each tuple contains a copy of some

tuple from d30x1m, along with the identity of the starting tuple and original source

tuple that identify the provenance path to which the copy belongs.

5.1.3 Performance Comparison Metrics

We measure two aspects of query performance: elapsed time, and number of page

I/Os. Elapsed time directly measures one of the primary concerns of users, but is dif-

ficult to measure accurately when intervals are short. In addition, elapsed-time mea-

surements are subject to distortion by other system activity. In experiments where

elapsed time is very short, and in experiments where the ratio of elapsed times be-

tween models is very large, we omit reporting of elapsed time measurements. Disk

activity may be of less concern to users. However, these measurements are much less

likely to be distorted by system activity. In addition, disk activity is commonly used

in database systems as a way of estimating and comparing query cost, and as a tool

for estimating how query costs may scale to larger data set sizes.

140

-- Part 1: recursive subquery to find tuples
-- connected to each starting tuple
WITH RECURSIVE ancestors(thisTuple, startTuple) AS
-- result schema is (node, associated starting node)
((-- base case: add all start tuples to result

SELECT tupleKey, tupleKey
FROM d30x1m
where tupleKey < 32000) UNION ALL (
-- recursive case: add parents of all in result
-- until a fixed point is reached
SELECT p.parent, a.startTuple
FROM ancestors a, d30x1mpreds p
where a.thisTuple = p.child))

-- Part 2: materialize temporary table for later use
select * into temp_ancestors from ancestors;
-- Part 3: recursively find tuples connected to each source
WITH RECURSIVE descendants(thisTuple, rootTuple) AS
-- result schema is (tuple, associated source)
((-- start by adding all sources

SELECT tupleKey, tupleKey
FROM pathendpoints) UNION ALL (
-- now add descendants of those in temp table
-- until we reach a fixed point
SELECT p.child, d.rootTuple
FROM descendants d, d30x1mpreds p
where d.thisTuple = p.parent
and p.parent != p.child))

-- Part 4: JOIN tables of ancestors and descendants
-- to give a complete pathname (start, end) to each tuple
select d30x1m.tupleKey as pathname_1,

pathendpoints.tupleKey as pathname_2,
temp_ancestors.thisTuple,
d30x1m.* into finaldata

from d30x1m, pathendpoints, temp_ancestors, descendants
where d30x1m.tupleKey < 32000
and temp_ancestors.thisTuple = descendants.thisTuple
and temp_ancestors.startTuple = d30x1m.tupleKey
and descendants.rootTuple = pathendpoints.tupleKey;

Figure 5.6: Recursive SQL Query for Computing Provenance Paths on 32,000 starting tuples

141

5.2 Experimental Setup

All tests were run on an HP xw6200 workstation, with a single Xeon processor op-

erating at 3.4GHz, with hyper-threading disabled. The system includes 2GB of main

memory. Databases are stored on a RAID mirrored array of two 500GB Western

Digital Caviar WD740GD-50FLCO disks, supported by a Silmage RAID controller,

and connected to the system board by an SATA-300 link.

Data query workloads for relational database testing were run on MySQL server

5.1, version 14.14, distribution 51.48. Data query workloads for graph database

testing were run on two graph databases: HypergraphDB version 1.0; and neo4j

version 1.1.

Provenance query workloads for relational database testing were run on Postgres

Plus Standard Server 8.4. We moved to the Postgres server from the MySQL server

because at this time, MySQL does not support recursive SQL syntax needed to tra-

verse tuple provenance. Provenance query workloads for graph databases were run

on the neo4j database described above. We chose not to run provenance tests on Hy-

pergraphDB because its performance on the relational data tests was comparable to

or worse than neo4j.

5.3 Experiments and Results

As an initial experiment to calibrate a reasonable scale for our experiments, we

ran data query 1 over tables with sizes 512, 1024, 2048, and 4096 rows, using

the value-as-node data structure on HypergraphDB. MySQL was used as the rela-

tional database for comparison. While each test was completed in under 1 second in

MySQL, HypergraphDB required tens of minutes for the smallest test, and did not

complete the next larger test within 2 hours. We then reduced the data tables to only

3 attributes and tested again. This time, response times were substantially faster for

142

Tuples in Relation MySQL I/Os Mean HGDB I/Os
512 1 13976

1024 1 34174
2048 1 211443
4096 1 830000

Table 5.1: Results for 3-attribute Relations Using Value-as-Node Structure

HypergraphDB, though still very long compared to MySQL. We then measured page

I/Os for both MySQL and HypgergraphDB at 512, 1024, 2048, and 4096 tuples with

three attributes. Results are shown in Table 5.1. Note the exponential growth of I/O

cost for the graph database compared to the constant cost for the relational database.

A subsequent experiment showed that Neo4 performance was comparable to that

of HypergraphDB with the value-as-node structure. As a result, we adopted the

value-as-property structure for all subsequent experiments, and modified the test

queries accordingly. The poor performance of the value-as-node structure appears

to be caused by long retrieval times for individual graph nodes that model attribute

values. Experiments show that there is apparently only a linear search method, akin

to a file scan, to retrieve nodes in HypergraphDB. Nodes are not sorted on disk by

their ID property, so no accelerated retrieval such as binary search is available.

5.3.1 Relational Data Query Tests

Next, we ran all four data queries over relations using the full 30-attribute schema,

with relation cardinalities of 512, 1024, 2048, 4096, 16384, 65536, and 220 tuples.

Results of each are described below. Before each test run, the database server was

stopped and restarted, to ensure that no query could take advantage of “warm-start”

conditions.

143

Figure 5.7: Test 1 Results. Size of equivalent relation is calibrated in number of attributes
per tuple times number of tuples.

5.3.1.1 Test for Data Query 1

Test results for data query 1 are shown in Figure 5.7. Page I/Os are reported here

as the metric. As expected, the relational database cost is small and grows slowly,

consistent with a binary search over a relation sorted on its primary key. However,

the graph databases have no facility to sort nodes. For these, a full scan of the graph

is required. Graph database performance is similar for the two databases tested, up

to the test case with 65536 tuples. Beyond this point, HypergraphDB performance

lags significantly: run-time for Test 1 on HGDB for a relation with 220 tuples exceeds

sixteen hours. Neo4 completes the largest test case in roughly two hours.

As shown in Figure 5.7, the relational database outperformed the graph databases

by about 3 orders of magnitude for small data sets, and relative performance contin-

ued to be a linear function of data set size out to the largest test data set, where the

relational engine outperformed the graph engine by 6 orders of magnitude.

As shown in the figure, the graph databases incurred a significant cost even for

the smallest relation size. After that, their performance scaled linearly with the size

144

of the relation tested1. Throughout the range from 512 up to at least 16,384 tuples,

page cost per attribute value retrieved was consistently in the range of 0.8, while

above that range, cost dropped to about half that number.

The observed cost per attribute value retrieved is consistent with our understand-

ing of Neo4 architecture and the JVM it runs on. In Neo4, an in-memory table is

used to relate the identity of a graph node to the on-disk address where the corre-

sponding node object is stored. Node properties’ names and values are accessed by

table lookup as well. Thus a single dereference of a node identity to retrieve a node

object, followed by de-referencing one pointer in the node object to retrieve a node

property, should require at most 2 I/Os per attribute value retrieved.

We also know that attributes of nodes are stored in list form on disk, and that

Neo4 makes extensive use of in-memory caching. Even though none of the retrieved

values is subject to prior reference (that is, there is no temporal locality to exploit), we

expect that spatial locality should enable the Neo4 in-memory cache to successfully

serve some references to properties. We know that the average length of a tuple is

340 bytes. Assuming a typical list construct where each list entry consists of one

attribute value and a 32-bit pointer to the next list item, all attributes of a tuple could

fit into a single 4096-byte virtual page as used by Windows XP. Thus the minimum

I/O cost to access a tuple would include one operation to fetch the tuple object, and

one to fetch attribute values (assuming perfect spatial locality of the attribute value

list), for a cost of two I/Os per tuple, or 0.067 I/Os per attribute value.

This analysis shows that the expected range of between 0.067 I/Os and 2.0 I/Os

per attribute value bounds the observed range of 0.4 to 0.8. Unfortunately, in Java it is

not possible to measure the degree to which objects are allocated contiguously. Java

handles are dereferenced in the JVM object table to obtain the virtual address of the
1Our graph uses a log10 scale on the y axis, and a log2 scale on the x axis. As shown in the figure,

log10Y ÷ log2X = k, a constant. Recall that by the base conversion rule of logarithms, log10Y =
log2Y ÷ log210, and log210 is also a constant. Then log10Y ÷ log2X = log2Y ÷ log2X = k× log210
and so performance scales linearly

145

Figure 5.8: Test 2 Results

object, because objects may be moved in the Java heap as the garbage collector runs

in the background. This level of indirection prevents us from establishing a more

practical lower bound on cost, which would likely be higher than the 0.067 value

described above due to non-contiguous allocation of property storage in the heap.

5.3.1.2 Test for Data Query 2

In response to the relatively poor performance of the graph databases in Test 1, we

modified the original plan of Test 2 to retrieve only a single attribute for each tuple

in the graph database. This change simulates a predicate test against only a single

attribute. It should also provide nearly best-case relative performance in favor of the

graph database. Test 2 results are shown in Figure 5.8. Recall that in this test, we use

an index in both relational and graph databases to accelerate retrieval of tuples.

Relational database performance in this test is similar to that seen in Test 1: the

cost of the binary search is not very different from the cost of descending the B+

index search structure. For HypergraphDB, the cost is fairly linear across relation

size. For Neo4, cost is very nearly constant up to 65536 tuples per relation, and then

jumps substantially for the largest relation size. As expected, the relational database

outperforms both graph databases by roughly 2 orders of magnitude at minimum,

146

and by as much as 3 orders of magnitude.

Relational database performance on Test 2 is not surprising. We expect a small

I/O cost that scales as log2 of dataset size for traversing the index, plus a small cost

for retrieving matching tuples.

In Neo4, instead of scanning all tuples, the required tuples can be found using the

Lucene index maintained over the data. The resulting I/O cost is fairly flat, growing

at about the same rate as the cost for the relational database for most of the tests. In

this regime, we see per-attribute costs start at about 6 pages and decrease slightly with

increasing dataset size. Since cost should reflect retrieving matching tuple identities

from the index, searching through the attribute names to find the one that matches

the query, and then retrieving the single matching attribute for each matching tuple,

this measurement seems reasonable. Recall that the cost of looking up each tuple is

amortized over only a single attribute lookup in this test, rather than over all 29, as

seen in Test 1. As a result, per-attribute costs are higher, though overall cost of the

test is substantially lower.

At the largest dataset size we see substantially more I/O cost for Neo4 on Test

2: about sixteen I/Os per attribute retrieved. This cost appears to be due to Neo4’s

memory cache spilling, perhaps due to the large size of the index.

In HypergraphDB, we see improvement relative to the relational database from

Test 1 by an order of magnitude or more, yet performance is still linear to dataset

size. Given the use of HGDB’s built-in index service, this result was unexpected. We

expected that the use of the HGDB index structure would impose a logarithmically

increasing cost, and that subsequent retrieval of nodes after index lookup would take

constant time, resulting in a nearly constant access cost across dataset size. The

conclusion we draw is that the cost of accessing the HGDB index service is linear in

the number of entries in the index, rather than logarithmic as we expected. That is,

the HGDB index service appears to be list-structured rather than tree-structured.

147

Figure 5.9: Test 3 Results

5.3.1.3 Test for Data Query 3

Results of Test 3 are shown in Figure 5.9 Test 3 is similar to Test 1, except that the

data is neither indexed nor sorted on the attribute of interest. As expected, perfor-

mance of the graph databases is identical to that in Test 1 because both require a

full scan of all tuples and their attributes. Relational database performance on Test

3 differs as expected from Test 1, because the full input relation must be scanned.

As a result, relational performance is linear to dataset size in Test 3. Query costs of

the graph databases in Test 3 are roughly 2 orders of magnitude higher at all relation

sizes than costs for the relational database.

Performance of the graph databases in Test 3 can be explained in the same way as

for Test 1. Performance of the relational database for Test 3 is not surprising: because

a full scan of the relation is required, performance should scale linearly with the size

of the relation. With a total tuple size averaging 340 bytes, roughly 12 tuples fit on

each page. Thus a full scan of the relation should require a page I/O cost roughly

equivalent to the number of tuples in the relation divided by 12, which is consistent

with test results.

148

Figure 5.10: Test 4 Results

5.3.1.4 Test for Data Query 4

Results of Test 4 are shown in Figure 5.10. Test 4 and test 3 have similar data access

patterns: both require a full scan of the input relation. Results of the two tests are

similar, as expected, with the relational database outperforming the graph databases

by roughly two orders of magnitude.

5.3.1.5 Test Results Using Warm-Start Caches

In order to observe the effect of data re-use on successive queries in the graph

databases, we performed another test where we ran Data Tests 1, 2, and 3 repeat-

edly without re-starting the database server for Neo4. In each case, the repeated

runs on relation sizes of 512, 1024, and 16384 tuples showed less than one percent

additional page I/Os, indicating that Neo4’s in-memory LRU cache performed well.

For relations of size 220 tuples, however, the indexed query performed well, but the

two tests using scans of the entire input relation showed costs comparable to the

non-cached tests, indicating that Neo4’s cache was not large enough to hold more

than a modest-sized relation. This result suggests that for larger data sets, the graph

databases we tested will take only minimal advantage from in-memory caching.

149

Figure 5.11: Linear Provenance Test Results

5.3.1.6 Conclusions on Data Tests

We have taken into account the benefits of in-memory caching by graph databases;

chosen a data structure for the graph databases that heavily favors performance over

use of a natural graph structure; and removed some of the advantage of query opti-

mizers in relational databases by limiting tests to single operators. Still, test results

lead us to expect that for a range of data set sizes, relational databases outperform

graph databases by two to six orders of magnitude on single-operator selection and

projection queries.

5.3.2 Provenance Predicate Tests

We initially ran our linear provenance benchmark on relations with cardinality 31m

tuples, for m = 1024, 2048, 4096, 8192, and 32768 starting tuples. These tests were

run on a Postgres relational database and a Neo4 graph database. Tests were run

under both cold-start and warm-start conditions, with average results from ten trials

of each shown in Figure 5.11.

For Neo4, uncached cost is very consistently near 2.5 page I/Os per tuple visited.

This result compares unfavorably to the Postgres uncached cost of 0.075 page I/Os

per tuple: Neo4 I/O costs are a factor of 33 worse than Postgres. On cached tests up

150

to 8192 starting tuples, Neo4 and Postgres perform similarly, showing very little I/O.

However, when the number of starting tuples rises to 16384 or more, the Neo4 cache

spills, and performance of Neo4 drops to near uncached levels.

Performance of Postgres on this test can be explained by noting that on average,

about thirteen tuples fit on each memory page. Each tuple is retrieved once in order

to trace a provenance path. One page I/O per thirteen tuples corresponds closely to

the measured 0.075 page I/Os per tuple.

Performance of Neo4 on this test can be explained by noting that each access

to a tuple node requires one page I/O in the uncached case. Retrieval of the single

relationship edge connecting to the next node in a provenance path also requires one

page I/O. This total accounts for 2 of the 2.5 page I/Os seen on average during the

test.

The performance advantage of the relational database should be an upper bound,

because the linear provenance test unfairly favors the provenance representation used

in the relational database. Because each tuple has only one ancestor in the linear case,

each tuple need be accessed only once, and no auxiliary relations are needed to store

provenance. In realistic provenance, each tuple may have an arbitrary number of

immediate ancestors, a situation more fairly represented by the bushy provenance

benchmark.

To establish a more realistic performance comparison, we ran the bushy prove-

nance benchmark over relations with m = 512, 2048, 8192, and 32768 starting tuples,

measuring both page I/O operations and elapsed time. Results for the tests are shown

in Figure 5.12. Only uncached trials were measured. The figure shows that both

in terms of I/O cost and elapsed time, the graph database starts off at a disadvan-

tage. However, the relational query to compute provenance paths involves multiple

recursive sub-queries and creation of multiple temporary tables. As the size of input

relations increases, the cost of the relational query scales up rapidly. For relations

151

Figure 5.12: Bushy Provenance Test Results

with 32768 starting tuples, both I/O cost and elapsed time are comparable for the

graph database and relational database solutions.

Performance of Neo4 on this test is comparable to performance on the linear

provenance test, with I/Os per tuple within a factor of two for all comparable data

set sizes. Postgres performance on this test is not directly comparable to Postgres

performance on the linear provenance test: the bushy provenance test uses multiple

recursive sub-queries, and both creates and re-uses several temporary relations that

are materialized on disk. We verify Postgres performance on this test in two ways:

first, we examined contents of each intermediate relation created by the query to

ensure that provenance paths are constructed correctly. Second, we determined the

upper bound on computational complexity for the query used in the test. The query

is shown in Figure 5.6.

The recursive subquery of Part 1 traverses n binary trees, where n is the number

of starting tuples. For each visited node in a tree, it scans the input relation to find the

152

node’s parents. The initial (non-recursive) portion of Part 1 populates a result relation

with all starting tuples. The cost of this portion is linear in n. Because the input file

is sorted on the search key and selection begins at the start of the relation, only the

portion corresponding to the n starting tuples is scanned. The recursive portion of

Part 1 traverses n binary trees of ancestors, giving this part the recurrence relation

T (m) = 2T
(

m
2

)
+ O(1), where m is the size of the tree. This part is thus linear in

the number of nodes in the tree m, and also scales with n, so is O(nm). However,

m is a constant in this test, so the recursive part is O(n). Part 2, which writes a

temporary relation to disk, is linear in the size of the number of starting tuples as

well, or O(n). Part 3 traverses paths from source to starting tuple, so it has recurrence

relation T (l) = T (l− 1) +O(1) where l is the length of the path. This relation result

gives O(l) cost, but l is a constant in this test. Part 3 also scales by the number of

paths per starting tuple, which is also a constant, and by the number starting tuples.

Thus Part 3 is O(n). Part 4 is done as a sequence of hash joins, so is O(r), where r

is the size of the data relation. However, r is a constant multiple of the number of

starting tuples, so Part 4 is also O(n). The overall I/O complexity of the query is the

maximum of the complexities of the individual parts of the query, and so is O(n),

which is consistent with observed linear scaling behavior.

5.3.2.1 Conclusions for Provenance Tests

The linear provenance portion of our benchmark heavily favors the relational imple-

mentation we tested. Using a bushy provenance model, it appears that, as we scale to

larger data quantities, performance of the graph database we tested meets, but does

not exceed, that of the relational database tested. Both show performance that scales

linearly with number of starting tuples. If we assume that the rate of performance

change stays roughly constant as dataset sizes increase further, graph database per-

formance also appears to scale more favorably than that of the relational database.

153

5.3.3 Implications for MMP Implementations

Relational data query performance heavily favors the relational databases at the sizes

we tested. This relative performance advantage seems unlikely to change substan-

tially as data sizes increase. However, provenance query performance seems to favor

a relational platform at relatively small data sizes, but favors a graph database plat-

form as data sizes increase. Thus for small to moderate database sizes, a solely rela-

tional implementation seems reasonable, but our results point to no single, existing

implementation platform as being an obvious choice for MMP with large datasets.

5.4 Other Ideas for Accelerating MMP Implementations

A natural choice for implementing MMP when larger datasets are expected might be

a hybrid solution that combines the graph and relational platforms, using each where

it offers the greatest performance advantage. There are several possibilities for struc-

turing a hybrid implementation. In a naive approach, a relational database might

store data and perform data operations, while a graph database might store prove-

nance relationships and facilitate evaluation of provenance predicates in queries. A

coordination layer of software would be needed to re-write queries in order to execute

appropriate portions on the two underlying databases. More sophisticated hybrids are

possible as well. Because our work focuses on development of our conceptual model,

MMP, and showing that logical models that support MMP are feasible, exploring the

space of hybrid solutions, and characterizing their performance, is beyond the scope

of this work.

As already discussed, the MMP implementations we tested store provenance in-

formation one generation at a time (either as edges in a graph database or as tuples

in a provenance relation). In order to process provenance queries, these individ-

ual provenance relationships must be traversed to form the provenance paths that

154

provenance predicates evaluate. Currently, this traversal is done on demand when a

provenance-related query is run. This lazy materialization of paths is arguably effi-

cient from a storage point of view because paths are only computed when needed.

However, lazy materialization is also the major contributor to the cost of answering

provenance queries. Lazy materialization of paths is also analogous to lazy mate-

rialization of single-generation provenance proposed by Widom [12], but later su-

perceded by provenance models that eagerly compute single-generation provenance.

It makes sense to consider eager materialization of provenance paths as a per-

formance enhancement for multi-generation provenance. Note that if a new tuple

is materialized in the result of a query, its provenance paths are inherited from its

immediate ancestor tuples, and extended by the single provenance link representing

the query. If a new tuple is inserted or pasted, it inherits its provenance in a similar

way. If an existing tuple is inserted again, it gains one new provenance path. Each of

these computations is far cheaper than the on-demand computation of all provenance

paths starting from single-generation provenance information.

One possible implementation is to eagerly compute provenance paths as entries

in a path index. Path indexes, especially for XML data, have seen significant interest

in the literature over the last 10 years [17, 10]. A path index stores path descriptions

as index keys, along with a pointer to the node that the path is incident to. Path de-

scriptions consist of the ordered names or properties of path edges, and may include

the properties of intervening nodes. We extend the path index notion by letting the

index key be a combination of a provenance path description and the identity of the

relation to which the incident (starting) tuple belongs. Then evaluation of a prove-

nance predicate would consist of translating the predicate into a pattern that can be

looked up using the index, and combining that pattern with the identity of the target

relation of the selection operator, and then looking up the resulting key in the index.

Materialization of query result tuples is then a matter of retrieving tuples using the

155

index value.

One problem with this approach is that provenance predicates specify only the

interesting characteristics of matching paths, rather than entire paths, while path in-

dex entries describe paths in detail. However, He and Singh [23] have addressed the

problem of matching incomplete graph “patterns” to complete graphs. This work

may be applicable to the problem of looking up path patterns in an index of full

path descriptions. Another problem with this approach is that the size of the path

index grows very quickly. For example, each query result tuple has provenance paths

nearly identical to all its immediate ancestor tuples. We leave research into making

effective provenance path indexes as future work.

Other solutions beyond those we tested may hold promise. For example, we con-

sidered modeling provenance relationships with RDF triples. However, it has been

shown by Erling [15] and is generally accepted in the community that queries over

RDF data using SPARQL or other RDF query languages are outperformed by storing

triples in a relational database, writing queries over them in SQL, and translating the

result into RDF. This result suggests that our approach of storing provenance directly

in a relational database should be faster than an architecture using an RDF store for

provenance. In addition, the main language for querying RDF, SPARQL, does not

support path variables, or the ability to specify paths of arbitrary length. As a result,

we chose not to evaluate storing provenance or data in languages such as RDF and

XML.

5.5 Chapter Summary

In this chapter, we defined a benchmark suite for comparing MMP implementations

with regard to their performance on relational data queries and provenance predi-

cates. Our data benchmarks represent common, real-world data queries that perform

simple data selection and projection. Our provenance benchmarks represent common

156

operations used in real-world provenance queries that trace ancestry of database com-

ponents. We documented our experiments running the benchmarks on both relational

database and graph database implementations, using production-quality databases as

platforms.

As part of this work, we learned that while graph databases provide a workable

platform for an MMP implementation, only part of the capabilities of graph databases

are needed for MMP. While graph databases support arbitrary graph or hypergraph

structures, the MMP model needs only linear path structures for evaluation of prove-

nance predicates and synthesis of provenance graphs for user visualization. This

simplification suggests, for example, that if a hybrid platform were used for MMP

implementation, only part of graph database functionality might need to be supported

in the hybrid.

Results of our studies showed that the relational databases we tested outperform

the graph databases by 2 to 6 orders of magnitude on the data portion of our bench-

mark. We learned that for all but very small dataset sizes, the relational and graph

database tested perform similarly on the provenance portion of our benchmark, with

the graph database scaling better with increasing data set size. In sum, the results of

our performance studies show that none of the implementation alternatives we tested

satisfy the goal of a performant implementation for both relational data and prove-

nance queries. We have suggested a number of approaches to improve performance

of relational or graph database implementations of MMP, as well as some ideas on

structuring a hybrid implementation that might take advantage of the strengths of

both of these. These ideas we leave for future work.

157

Chapter 6

A Logical Model to Support MMP Implementation

Inherent in MMP is substantial redundancy: data is replicated at every timestep (i.e.,

on every face) in MMP at which it exists. Thus this chapter introduces MMPL,

a logical model that faithfully supports MMP while eliminating data redundancy.

MMPL is based on a temporal database, where data is defined to be visible during

a finite time period (for example by use of start-time and stop-time attribute values

for each data component), yet still remains in the database once that time period

has concluded. This model of data is consistent with the need in MMP to represent

that data has a creation time and (possibly) a deletion time, yet data remains after

deletion, even though it does not participate in further operations.

MMP defines provenance links that connect relations, attributes, tuples, and at-

tribute values in one face directly to the appropriate relations, attributes, tuples, and

attribute values, respectively, in the prior face. Thus, MMP treats each component in

each face as if it were addressable as an independent object. We note that in modern

relational databases, many components already are addressable with “behind-the-

scenes” identifiers. For example, tuples are typically addressable by their contents.

Similarly, attributes are addressable by their names, which are unique across the

database if we make the universal relation assumption. Relations can also be thought

of as having a distinct address, because their names are required to be unique. Fi-

nally, it requires only a simple extension to imagine that a distinct address for an

158

attribute value can be formed as the concatenation of the ID of the tuple to which it

belongs and the attribute in whose column it exists.

An MMPL instance includes a temporal database dL with the following exten-

sions. Each component c (relation, attribute, and attribute value, in addition to tuple)

in an MMPL instance has a start time c.Ts (which indicates the time at which it was

created) and a stop time c.Te (which indicates the time at which it was deleted, and

∞ otherwise). Each component also has a distinct identifier, or ID, that uniquely

identifies it. Taken together, we call the set of all these identifiers ALL-IDs. We de-

fine a function myID : CL → ALL-IDs, where CL is the set of all components in

dL, that, given a component in an MMPL instance, returns the unique ID of that com-

ponent. When a component is selected either by a user browsing the database with a

graphical user interface, for example, myID can be invoked to uniquely identify the

selected component.

The following constructs added to MMPL are not typically found in any temporal

database. An MMPL instance also includes a set SL of tokens representing external

source referents. Each token is labeled with the name of the external source it rep-

resents. Like components, each token is assumed to have a unique identifier that

can be obtained by applying myID to the source’s description as used in an applied

operation.

An MMPL instance also includes a set of edges EL, each edge of which corre-

sponds to a provenance link in the corresponding MMP instance. Each edge e ∈ EL

is labeled with the operation that induced it, the user that applied the operation, and

the timestamp at which the operation was applied. We define this label as λE(e).

The timestamp portion of the label uniquely identifies the face in the corresponding

MMP instance from which the edge it is attached to originates.

MMPL implements the MMP language. In MMPL, each revision takes as input

the database dL, and current edge set EL, and produces the new dL and EL.

159

6.1 Transforming Conceptual Models into Logical Models

An MMPL instance ML can be defined that corresponds to an MMP instance M as

follows. Recall that M has face set D, where each dn ∈ D is a relational database;

Rn is the set of relations in dn; for each rj ∈ Rn, Tn,j are the tuples in rj and An,j

are the attributes of rj; and for each tuple tn,j,k ∈ Tn,j , Vn,j,k are its attribute values

such that each vn,j,k,l ∈ Vn,j,k corresponds to one attribute an,j,l ∈ An,j . Also recall

that for each dn, the set of components of dn is Cn = Rn ∪ Tn,j ∪ An,j ∪ Vj,k,l, 1 ≤

j ≤ |Rn|, 1 ≤ k ≤ |Tn,j|, and C =
⋃n

m=1Cm. Note that any component in di, i ≤ n

appears in dn, though possibly marked as Expired. Thus copying all components

in dn gets all the components in all faces of M . Further recall that S is the set of

external source referents in M . Let ML be an MMPL instance with database dL,

edge set EL, and external source referent set SL. We assume that M has had n

revisions applied prior to creating ML. That is, the current (most recent) face of D is

dn. We define time(dn) to be the timestamp portion of λD(dn). Similarly, we define

op(dn) to be the operation identifier portion of λD(dn), and user(dn) to be the user

portion of λD(dn). We define a mapping Λ : MMP → MMPL that takes as input

an MMP instance M and produces an MMPL instance ML. Comments in definitions

are delimited using “/* */”.

Λ(M), applied to M at time n =

/* Step 1a: create the data representing the faces in M */

∀rj ∈ Rn, 1 ≤ j ≤ |Rn|, create a relation rL
j ∈ RL with the same name.

Set sameComponentAs(rL
j) = rj .

∀al ∈ An,j, 1 ≤ l ≤ |An,j|, create an attribute aL
l ∈ AL

j with the same name.

Set sameComponentAs(aL
l) = al.

∀tk ∈ Tn,j, 1 ≤ k ≤ |Tn,j|, create a tuple tLk ∈ TL
j .

Set sameComponentAs(tLk) = tk.

160

∀vn,j,k,l ∈ Vn,j,k, where j,k, and l range as shown in the above statements, create an

attribute value with identical value vn,j,k ∈ V L
j,k.

Set sameComponentAs(vj,k,l) = vn,j,k,l.

/* Step 1b: set the creation time for each component in the database */

∀c ∈ dL, c.T s = time(dx) where dx is the earliest face in M in which

sameComponentAs(c) appears.

/* set the deletion time for each component, if it has been deleted */

∀c ∈ dL, c.T e = time(dy)

where dy is the earliest face prior to n, if one exists, in which

Expired(sameComponentsAs(c)) = True, or c.Te =∞ otherwise.

/* Step 2: for each external source referent in S, create a matching token in SL */

∀s ∈ S, add to SL a token sL labeled with the external source identifier, and where

sL = sameSourceAs(s).

/* Step 3: for each provenance link in L that originates from a component c in dx and

terminates at a set of components B in dx−1, create a matching edge in EL */

∀lp(c, B) ∈ L, where B∩S = ∅, c ∈ Cx, and B ⊆ Cx−1, E
L contains a hyper-edge

e(o, T) such that o = myID(sameComponentAs(c)),

and T = {myID(sameComponentAs(b))|b ∈ B}.

e.op = op(dx),

e.user = user(dx), and

e.time = time(dx).

/* Step 4: for each provenance link in L that originates from a component c in dx and

terminates at an external source referent, create a matching edge in EL */

∀lp(c, s) ∈ L, where s ∈ S, c ∈ Cx, E
L contains an edge e(o, t) such that

o = myID(sameComponentAs(c)),

161

and

t = myID(sameSourceAs(s)).

e.op = op(dx),

e.user = user(dx), and

e.time = time(dx).

Note that in our definition there is a bijection sameComponentAs : CL ↔

C that relates any component in dL to its corresponding component of the same

type in M , and a bijection sameSourceAs : SL ↔ S that relates external source

components with identical labels.

6.1.1 Equivalence Classes of Language Operators

We do not define the effect of all MMP operations on MMPL here. Instead, we define

the following classes of operators from the language with the same characteristics,

and define the effect of one sample operator (italicized) from each class on MMPL

in detail.

1. Drop Attribute, Create Source, Create Attribute, Create Relation, Drop Rela-

tion

2. Insert Tuple, Insert Value, Drop Value, Drop Tuple, Confirm Value, Doubt

Value

3. Paste Tuple, Paste Value, Paste Relation

4. Queries

Class 1 consists of operations that affect individual components, and induce no

provenance. The example operator for Class 1 also demonstrates the effect of dele-

tion on model components. Class 2 consists of operations that affect one or more

162

components, and induce provenance consisting of a single provenance link termi-

nating at an external source referent. Class 3 consists of operations that affect one

or more components, and induce provenance consisting of a single provenance link

terminating at another component (not an external source referent). Class 4 con-

sists of queries. Although queries create one or more components and the induced

provenance links terminate at other components, queries may induce more than one

provenance link, so we address queries separately.

For each operator described, let u ∈ U describe a user of ML, and t ∈ TS be

the time at which u applies the stated operation to ML, resulting in revision <L. We

assume for simplicity that each t ∈ TS is integral, and that an operation applied at

time t has a successor applied at t + 1, and so on. In the following definitions, we

omit specification of the tests for success prior to executing each operation. These

are the same criteria for success that we defined for corresponding MMP operators.

We assume that changes to components in dL occur immediately before the actions

specified in the definitions below. Where appropriate, we include effects on Ts and

Te of components in dL.

6.1.1.1 Class 1: Drop Attribute

<L(dL, EL,Drop Attribute(rj, al), u, top) = dL

with the following changes:

aj,l.T e = top.

∀vj,k,l ∈ V L
j,k, 1 ≤ k ≤ |TL

j,k|, vj,k,l.T e = top.

163

6.1.1.2 Class 2: Insert Tuple

<L(dL, EL, Insert Tuple(rj, (a1, v1, . . . , am, vm), s), u, top) = dL

with the following changes:

Create a temporary relation rtemp with the same schema as rj .

Create in rtemp a tuple t.

∀an specified in <L, create an attribute value in t, attribute an with value vn.

For all other attributes in the schema of rtemp, set the corresponding attribute value

in t to NULL.

t.T s = top, and t.T e =∞.

∀vn ∈ t, v.Ts = top, v.T e =∞.

rj = rj ∪ rtemp.

/* add a provenance link from the target tuple to the external source */

EL = EL ∪ e(myID(t),myID(s)).

e.op = “Insert Tuple”, e.user = u, e.time = top.

Delete rtemp.

6.1.1.3 Class 3: Paste Tuple

We assume that an attribute value argument is supplied for each attribute in the target

relation schema. For any attribute values v with v.Te 6= ∞, use the value NULL

instead of v.

<L(dL, EL,Paste Tuple(rj, rjs, tjs,ks), s), u, top) = dL

with the following changes:

Create a temporary relation rtemp with the same schema as rj .

164

Create in rtemp a tuple t, which is a copy of tjs,ks.

t.T s = top, and t.T e =∞.

∀vn ∈ t, v.Ts = top, v.T e =∞.

rj = rj ∪ rtemp.

/* add a provenance link from the target tuple to the external source */

EL = EL ∪ e(myID(t),myID(tjs,ks)).

e.op = “Paste Tuple”, e.user = u, e.time = top.

Delete rtemp.

6.1.1.4 Class 4: Queries

<L(rout = (πσ(rin
1,1 × . . . rin

1,n1
) ∪ . . . ∪ πσ(rin

M,1 × . . .× rin
M,nM

)), u, top) =

if the query is well-formed and rout /∈ RL ∧ ∀rin
X,Y , 1 ≤ X ≤ M, 1 ≤ Y ≤

nM, rin
X,Y ∈ RL,

then

/* remove all portions of the input relations that have been deleted */

for each relation r mentioned in the query, substitute in the query a relation r′ formed

as follows:

r′ = πX(σTe6=∞(r)), where X is the set of attributes for which Te 6=∞

for all remaining attribute values v in r′, if v.Te 6=∞, v = NULL

/* execute the resulting query */

Create rout in DL as the query result as defined by the semantics of relational algebra

queries.

rout.T s = top and rout.T e =∞.

For each attribute a in rout, a.Ts = top and a.Te =∞.

For each tuple t in rout, t.T s = top and t.T e =∞.

For each attribute value v in rout, v.Ts = top and v.Te =∞.

165

/* add a provenance link from the new relation to all input relations */

EL = EL ∪
M⋃

X=1

e(myID(rout),
nX⋃
Y =1

myID(rin
X,Y)).

e.op = “〈querytext〉′′, e.user = u, e.time = top.

/* add a provenance link from each new tuple to its parent tuples */

∀tj,k ∈ TL
j , E

L = EL ∪
M⋃

X=1

e(myID(tj,k),
nX⋃
Y =1

myID(t(X,Y),u))

such that t(X,Y),u was the tuple from rin
X,Y that contributed to forming tj,k.

e.op = “〈query text〉′′, e.user = u, e.time = top.

6.2 Faithful Support of MMP by MMPL

MMPL faithfully supports MMP if, beginning with an instance M of MMP, and a

corresponding instance ML of MMPL, where Λ(M) = ML, then after application

of an arbitrary composition of revisions <1,<2, . . .<n to M , yielding M ′, and appli-

cation of a corresponding composition of revisions <L
1 ,<L

2 , . . .<L
n to ML, yielding

M ′L, we have M ′ and M ′L such that Λ(M ′) = M ′L. The commutative diagram

corresponding to this definition is shown in Figure 6.1.

Figures 6.2 through 6.6 show an example of faithful support of an MMP instance

by an MMPL instance. In Figure 6.2, we show the creation of two external source

referents and a single relation in an MMP instance M . At the bottom of the figure,

we show a mapping to an initial MMPL instance ML. Note that Ts of the relation

in ML is set by Λ to the timestamp on the face (time 3) at which the relation first

appears in M , and Te of the relation is set to ∞, representing that it has not been

deleted. These two model instances on the left and right side of 6.2 correspond to

the upper and lower left instances shown in Figure 6.1, and the Λ mapping between

them corresponds to the downward arrow on the left of Figure 6.1.

166

Figure 6.1: Commutative Diagram for MMP

Figure 6.2: Faithful Support Example - Part 1

167

Figure 6.3: Faithful Support Example - Part 2

168

Figure 6.3 shows three subsequent time steps in the parallel evolution of M and

ML. At each time step, the same operation is applied to each. At time 4, attribute

A1 is added to the corresponding relations via a Create Attribute operation. In M ,

the face induced by this operation is labeled with the timestamp 4. In ML, the start

time of the new attribute is set to timestamp 4, and its end time is set to∞, indicating

that it has not been deleted. Note that in the images of ML, we show only the most

recently changed Ts and Te values for clarity. We omit the user specifier from labels.

At time 5, a second attribute is added. At time 6, a tuple is inserted. InM , the new

face induced by the operation is labeled with timestamp 6. In ML, the Ts properties

for the new tuple and its attribute values are set to 6, and Te for each is set to∞. In

M , the induced provenance link from the new tuple to its source is added. In ML,

the corresponding provenance edge is introduced and labeled with the operation and

timestamp.

Figure 6.4 shows three additional time steps for the corresponding model in-

stances. At time 7, another tuple is inserted. In this example, one of the new attribute

values is NULL. Note that in this case, the new tuple and the non-NULL attribute

value in ML both receive Ts and Te values as before. At time 8, value a1 from

the first tuple in each relation is pasted into the NULL value in the second tuple. In

M , this induces a provenance link from the new value to its source in the prior face.

In ML, the corresponding provenance edge originates at the new attribute value and

terminates at the corresponding source attribute value. The new provenance edge in

ML is labeled with the same operation and timestamp as the new face in M . At time

9, the first tuple in each relation is deleted. In M , this causes the deleted tuple t to

have its value of Expiredt(t) set to True, and the attribute values v1 and v2 in t to

have their Expiredv(v1) and Expiredv(v2) values set to True (denoted by “x” at the

top right of each in the figure). In ML, deletion causes Te for the deleted tuple and

its attribute values to be set to the time at which the operation was applied (time 9).

169

Figure 6.4: Faithful Support Example - Part 3

170

Figure 6.5: Faithful Support Example - Mapping M to ML After Time 9

171

Figure 6.6: Comparing Λ(M) to ML

Figure 6.5 shows mapping M to an ML instance using Λ after the application of

the operation at time 9. This mapping corresponds to the rightmost downward arrow

in Figure 6.1. Using the steps in our definition of the Λ mapping, Step 1a produces

the relation R1 and its contents (shown at the top of the figure). Step 1b defines

the Ts and Te values for each component created in Step 1a. Step 2 introduces the

external source referents defined in M . Finally, Step 3 introduces the provenance

links and their labels resulting from the applied operations.

Figure 6.6 shows at left the result of the mapping applied in Figure 6.5, and shows

at right the ML instance from the bottom of Figure 6.4. Inspection shows that the

two are identical. Thus in this example, the commutativity diagram of Figure 6.1

holds.

We now prove faithful support of MMP by MMPL by induction on the number

of revisions applied to the MMP instance.

6.2.1 Basis Case for Induction

Consider Figure 6.1. If zero revisions are applied to M , then M ′ = M . Similarly, if

zero revisions are applied to ML, then M ′L = ML. So given that Λ(M) = ML, it

172

must be that Λ(M ′) = M ′L.

6.2.2 Inductive Case

For the inductive case, we assume a composition of n corresponding revisions

<1,<2, . . . ,<n, and <L
1 ,<L

2 , . . . ,<L
n have been applied to an instance of MMP and

corresponding instance of MMPL to arrive at M and ML, respectively, such that

when applied at time n, Λ(M) = ML. Our proof shows that if we extend the applied

sequence by one additional revision, <n+1 and its corresponding revision <L
n+1, re-

spectively yielding M ′ and M ′L, that Λ(M ′) = M ′L. We consider the data and

provenance portions of M and ML separately.

6.2.2.1 Data Portion of Inductive Case

For the data portion, the induction hypothesis states that

• the current face of M , dn, has a corresponding set of relations to those in dL,

and each of those relations has the same attributes

• each corresponding relation mentioned above has corresponding sets of tuples,

such that each corresponding relation has the same number of tuples, and that

corresponding pairs of tuples have the same attribute values in the same at-

tributes

• each component c in dL has c.Ts = time(dx), where x is the first face in M in

which c appeared

• each component c in dL has c.Te = time(dy), where y is the time at which c

was deleted, or c.Te = ∞ otherwise (recall that all expired components from

M appear in dL)

173

Now suppose that we apply an operation to M , yielding M ′ with current face

dn+1, and we apply the same operation to ML, yielding M ′L with database d′L. We

consider four operations, one from each class of operations defined above.

Insert Tuple. Consider the case where the operation applied in the inductive step

is an Insert Tuple operation. The uppermost box in Figure 6.7 shows the derivation

of Λ(<InsertTuple(M)) and the resulting new tuple tn+1,j,k in the target relation rj

of dn+1. Applying Λ to the revised M creates M ′L, which contains a new tuple,

tL = sameComponentAs(tn+1,j,k), with identical attribute values to tn+1,j,k for all

attributes.

The uppermost box in Figure 6.8 shows the derivation of <L
InsertTuple(Λ(M)),

which unions into rL
j a tuple tL with identical attribute values to the tn+1,j,k described

above. Note that tL mentioned in Figure 6.8 corresponds to tn+1,j,k mentioned in Fig-

ure 6.7, and their correspondence is defined by tL = sameComponenAs(tn+1,j,k).

The two tuples and their attribute values correspond and are thus identical, and are

members of corresponding relations. As shown in the figure, the start and end times

of the two prospective tuples tL are also identical. Thus the commutativity diagram

holds for the Insert Tuple operation. We claim without proof that the commutativity

diagram also holds for all other operations in the same operation class.

Drop Attribute. Consider the case where the operation applied in the inductive

step is a Drop Attribute operation. The second box in Figure 6.7 shows the deriva-

tion of Λ(<DropAttribute(M)). The resulting M ′ differs from M only in the value of

Expireda(al) and the value of Expiredv(v)∀v in that attribute. The application of

Λ sets Te = top for the corresponding attribute of the operation in M ′L, and for all

attribute values in that attribute.

The second box in Figure 6.8 shows the derivation of <L
DropAttribute(Λ(M)),

which sets Te = top for the target attribute of the operation, and for all attribute

values in that attribute. The two attributes are thus identical, as are their attribute val-

174

ues. Thus commutativity holds for the Drop Attribute operation. We claim without

proof that the diagram also holds for all other operations in the same operation class.

Paste Tuple. Consider the case where the operation applied in the inductive

step is a Paste Tuple operation. The third box in Figure 6.7 shows the derivation

of Λ(<PasteTuple(M)) and the resulting new tuple tn+1,j,k in the target relation rj

of dn+1. Applying Λ to the revised M creates M ′L, which contains a new tuple,

tL = sameComponentAs(tn+1,j,k), with identical attribute values to tn+1,j,k for all

attributes.

The third box in Figure 6.8 shows the derivation of <L
PasteTuple(Λ(M)), which

unions into rL
j a tuple tL with identical attribute values to the tn+1,j,k described above.

Note that tL mentioned in Figure 6.8 corresponds to tn+1,j,k mentioned in Figure 6.7,

and their correspondence is defined by tL = sameComponentAs(tn+1,j,k). The two

tuples and their respective attribute values correspond and are thus identical, and are

members of corresponding relations. As shown in the figures, the start and end times

of the two prospective tuples tL are also identical. Thus the commutativity diagram

holds for the Paste Tuple operation. We claim without proof that the commutativity

diagram also holds for all other operations in the same operation class.

Queries. Finally, consider the case where the operation applied in the inductive

step is a relational algebra query. The fourth box in Figure 6.7 shows the derivation

of M ′L due to the query revision. The query results in creation of the new relation

rout in M ′. For the result relation rout and all its components, the appropriate expired

function is set to False. The resulting model face is given a label that includes the

time at which the revision was applied, top. Applying Λ to M ′ results in M ′L, which

differs from ML only by the addition of the new relation rL
out. This new relation

and all its components have Ts set to top and Te set to ∞. The new relation and

all its components correspond to those in M ′ that induced them in M ′L, and their

correspondence is defined by the sameComponentAs function in each case.

175

The fourth box in Figure 6.8 shows the derivation of M ′L by application of the

same query applied in Figure 6.7. Note that rL
out and all its components have the same

names and values as rout and its components in M ′, because the queries applied in

each case have the same semantics. Note also that Ts and Te are set to the same

values by <L as those set by Λ applied to M ′. Thus all components resulting from

the queries are identical and have the same Ts and Te values. The commutativity

diagram thus holds for query operations.

6.2.2.2 Provenance Portion of Inductive Case

For the provenance portion of our commutativity diagram, we argue the induction

case on an operation-by-operation basis.

Insert Tuple. Consider the case where the operation applied in the inductive step

is an Insert Tuple operation. The uppermost box in Figure 6.9 shows the new edge in

E ′L resulting from Λ(<InsertTuple(M)). < performed on M creates a new face dn+1

initially identical to dn, then adds to the appropriate relation in dn+1 the new tuple

tn+1,j,k, its attribute values Vn+1,j,k, and adds a single provenance link lp(tn+1,j,k, s).

Applying Λ to the revisedM createsML at timestep n+1, denotedM ′L in the figure.

E ′L includes a single new edge. The uppermost box in Figure 6.10 shows the new

edge in EL
n+1 resulting from <L

InsertTuple(Λ(M)). We now compare the new edge

shown in Figure 6.9 to the new edge resulting from<L
InsertTuple(Λ(M)) in 6.10. Note

that tL mentioned in Figure 6.10 corresponds to tn+1,j,k mentioned in Figure 6.9, and

their correspondence is defined by tL = sameComponenAs(tn+1,j,k). Substituting,

we find that the new edges are identical, so the commutativity diagram holds for the

Insert Tuple operation. We claim without proof that the commutativity diagram also

holds for all other operations in the same operation class

Drop Attribute. Consider the case where the operation applied in the inductive

step is a Drop Attribute operation. As shown in the second box in Figure 6.9 and

176

Figure 6.7: Derivation of Λ(<operation(M)) (Data portion)

177

Figure 6.8: Derivation of <L
operation(Λ(M)) (Data portion)

178

Figure 6.9: Derivation of Λ(<operation(M)) (Provenance portion)

179

Figure 6.10: Derivation of <L
operation(Λ(M)) (Provenance portion)

180

the second box in Figure 6.10, no edges are added. The only change, made in both

versions of dL, is that Te for the dropped attribute is set to the timestamp of the

operation. Thus our commutativity diagram holds for Drop Attribute, and we claim

for all other operations in its class.

Paste Tuple. Consider the case where the operation applied in the induc-

tive step is a Paste Tuple operation. The induced edges to be compared are

shown in the third boxes in Figure 6.9 and Figure 6.10. The comparison here

is identical to that in the Insert Tuple case, except for the terminal of the new

provenance links. In Figure 6.10, this terminal is myID(tLjs,ks). In Figure

6.9, the terminal is myID(sameComponentAs(tn,js,ks)). Note that tLjs,ks =

sameComponentAs(tn,js,ks), by our definition of corresponding components. Sub-

stituting, we find that these terminals are identical. As a result, our commutativity

diagram holds for Paste Tuple and, we claim, for all operations in its class.

Queries. Consider the case where the operation applied in the inductive step is

a query. As with the preceding cases, we construct Λ(<Query(M)), and construct

<L
Query(Λ(M)). The fourth box in Figure 6.9 shows the application of a query and

the derivation of Λ(<Query(M)) and the resulting new edges in E ′L. < performed

on M creates a new face dn + 1 identical to dn, then adds to it the result relation

of the query rn+1,j , the tuples in the new relation tn+1,j,k ∈ Tn+1,j , the attributes

in the new relation an+1,j,l ∈ An+1,j , and the attribute values in each new tuple

Vn+1,j,k, 1 ≤ k ≤ |Tn+1,j|. < also adds provenance links for the new relation and

its tuples, as defined in Section 3.6.4. Applying Λ to M ′ creates M ′L at timestep

n + 1. The fourth box in Figure 6.10 shows the derivation of <L
Query(Λ(M)) and

the constituents of the resulting E ′L. Λ(M) creates ML. <L applied to ML induces

M ′L. We now compare the new edges resulting from Λ(<query(M)) in 6.9 to the new

edges resulting from <L
query(Λ(M)) in 6.10.

Note that rL
out mentioned in Figure 6.10 corresponds to rn+1,j mentioned in Figure

181

6.9, and their correspondence is defined by

rL
out = sameComponentAs(rn+1,j).

Thus myID(rL
out) is the same vertex in M ′L as

myV ertex(sameComponentAs(rn+1,j, n+ 1))

in each edge induced in both figures. Also, note that rinL
X,Y mentioned in 6.10 corre-

sponds to rin
X,Y in Figure 6.9, and their correspondence is defined by

rinL
X,Y = sameComponentAs(rin

X,Y).

Thus myID(rinL
X,Y) is the same vertex in M ′L as

myV ertex(sameComponentAs(rin
X,Y))

in each edge induced in both figures. Note also that tLj,k mentioned in Figure 6.10

corresponds to tn+1,j,k mentioned in Figure 6.9, and their correspondence is defined

by

tLj,k = sameComponentAs(tn+1,j,k).

Thus myID(tLj,k) is the same vertex in M ′L as

myV ertex(sameComponentAs(tn+1,j,k))

in each edge in the figures. Finally, tL(X,Y)k mentioned in 6.10 corresponds to

tn,jy,m(Y) mentioned in Figure 6.9, and their correspondence is defined by

tL(X,Y)k = sameComponentAs(tn,jy,m(Y)).

Thus myID(tL(X,Y)k) is the same vertex as

myV ertex(sameComponentAs(tn,jy,m(Y)))

182

in each induced edge. Substituting these correspondences, we find that the new edges

induced in Figure 6.10 are identical to those induced in Figure 6.9, so our commuta-

tivity diagram holds for query operations.

In Section 6.2.1, we proved the basis case for induction by showing that for zero

revisions, our commutativity diagram shown in Figure 6.1 holds. In Section 6.2.2.1,

we proved the inductive case for the data portion of our model. In Section 6.2.2.2,

we proved the inductive case for the provenance portion of our model. From these

proofs, we conclude that for any composition of any number of revisions, the com-

mutativity diagram in Figure 6.1 holds. As a result, we claim that an MMPL instance

faithfully supports a corresponding MMP instance.

6.3 Efficiency of the Logical Model

The MMPL model allows for less redundancy in data storage than MMP because data

is stored only once, rather than duplicated on each model face. However, this savings

comes at a cost. In MMPL, we must provide start and end time metadata for each

database component, while in MMP we need to provide only the means to define

Expired() for each component. Also in MMPL we must provide time, operation,

and user labels for each provenance edge, while in MMP this information is only

provided once for each model face.

Assume an MMP instance M and a corresponding MMPL instance ML. Assume

that the cost of storing a data component cL in ML and the cost of storing the cor-

responding component c = sameComponentAs(cL) in M are the same. We define

that cost to be kdata. Assume that the cost of storing the definition of Expired(c) is

a constant, kexpired, and that the total cost of storing cL.T s and cL.T e is a constant

2× kexpired.

Note that each provenance link in M has a corresponding provenance edge in

ML, and that each corresponding pair of links has the same number of origins and

183

terminals. Assume that the cost of storing link lL in ML and its corresponding link l

in M differ only in a constant cost, klabel, which is the cost of the label attached to lL

that does not appear on l. Assume that the cost of the label attached to each face in

M is also klabel, because both types of labels carry the same information.

Suppose n operations have been applied to M and ML. Suppose that for each

such operation, knew components are added to the database. Recall that each DDL,

DML, and DCL operation induces only a single provenance link with a single origin

and terminal in M and only a similar single provenance edge in ML. Recall that

each query induces one or more provenance links (edges) for the result relation and

one or more provenance links (edges) for each tuple in that relation. Suppose that the

amount of storage for a link, on average, is klink. Suppose that the ratio of queries to

total operations is ro. Suppose that the average number of tuples defined in a query

result is t.

We characterize the amount of data storage Sdata, label storage Slabel, and link

storage Slink for M as follows:

/* each data face has knew components more than the prior face */

/* and each component takes kdata + kexpired storage space */

Sdata = (kdata + kexpired)(
n∑

x=1

n× knew) = n(n+ 1)(knew)(kdata + kexpired)/2.

/* one label is attached to each face */

Slabel = n(klabel).

/* 1 link for each non-query, plus 1 + t links for each query */

Slink = n(1− ro)klink + n(ro)klink(1 + t) = n(klink)(2− ro + t).

We characterize the amount of data storage SL
data, label storage SL

label, and link

storage SL
link for ML as follows:

184

/* each operation induces knew components */

/* and each component takes kdata + 2kexpired storage space */

SL
data = n(knew)(kdata + 2kexpired).

/* one label attached to each provenance edge */

SL
label = n(1− ro)klabel + n(ro)klabel(1 + t).

/* same storage for links as in M */

SL
link = n(1− ro)klink + n(ro)klink(1 + t) = n(klink)(2− ro + t).

Subtracting, we characterize the additional cost of M over ML due to the three

storage contributions:

/* extra cost in M of data and timestamps */

∆Sdata = n(n+ 1)(knew)(kdata + kexpired)/2− n(knew)(kdata + 2kexpired)

/* extra cost in M of labels */

∆Slabel = n(klabel)− (n(1− ro)klabel + n(ro)klabel(1 + t)).

/* extra cost in M of links */

∆Slink = 0.

Consider ∆Sdata. For small values of n (very few applied operations), if the num-

ber of components introduced by each operation is large,ML may have larger storage

cost than M because of the extra timestamp value Ts. For example, suppose n = 1

and knew is large. Then we see that ∆Sdata is negative, dominated by knew×2kexpired.

This would means that M has better data efficiency than ML. However, given that

each operation introduces a new face in M , n will tend to be much larger than one,

so ∆Sdata will typically be dominated by the n(n+1)(knew)(kdata +kexpired)/2 term.

This means that ML will typically be O(n2) more storage-efficient than M .

185

Now consider ∆Slabel. If almost all operations are DDL, DML, or DCL opera-

tions, then ro is near zero, so ∆Slabel is nearly zero. As a result, M and ML would

have similar costs for label storage. However, suppose all operations are queries, so

that ro is one. Then ∆Slabel is dominated by the average number of tuples in result

relations. If t, the average tuples per relation, is large, this tends to make ∆Slabel a

large negative value, so that ML would be less storage efficient than M with regard

to labels.

We note that other logical models are possible that may address this issue of label

overhead in a query-dominated workload. For example, a model where operation

labels are stored only once, instead of once per provenance link, would eliminate the

concern over ∆Slabel.

6.4 Chapter Summary

In this chapter, we proposed a logical model for data and provenance. We defined

the structure and language of this model, and defined a transformation to create an

instance of this logical model from an instance of MMP. We defined classes of oper-

ations in the language of MMP such that all members of a class have similar effects

on the model instance. Using sample operations from each class of language opera-

tions, and using this transformation, we showed that an instance of the logical model

faithfully supports a corresponding MMP instance. Because the logical model does

not have the high degree of redundant data found in MMP, the logical model may be

an appropriate implementation model for MMP.

186

Chapter 7

Related Work

In the past decade, significant contributions have been made to the literature on

provenance models. Three major areas of provenance work are evident: provenance

models for coarse-grained data (typically whole datasets) in scientific workflows;

provenance models for fine-grained data (typically tuples) in databases; and prove-

nance models for entire files in filesystems. MMP addresses only the second of these.

We focus on provenance for fine-grained data, and we specialize MMP to relational

data for this work. While many models in the literature address only provenance of

tuples in the relational setting, we address provenance at all granularities: relations,

attributes, tuples, and attribute values. Because of this focus, we discuss related work

in the literature only for fine-grained data provenance in database settings.

As an aid in contrasting the provenance models discussed in this chapter, we de-

fine the following distinguishing attributes, or dimensions, for provenance models.

History is the first of these. We describe provenance models as having ancestry-

only history if it only documents the data items contributing to a derived item. This

description encompasses both the Why-provenance and Where-provenance defined

by Buneman [8], also called the original source and positive contributing source by

Glavic and Dittrich [16]. Because the difference between Why-provenance (origi-

nal source provenance) and Where-provenance (positive contributing source prove-

nance) are not intuitive, we offer the following example to distinguish them. Given

187

two relations r1 with attributes a and b and r2 with attributes b and c, and a relational

algebra query

πa(r1 ./r1.b=r2.b r2),

suppose that the query produces a result tuple tr. The Where-provenance of tr

consists of all tuples t1 from r1 and t2 from r2 such that both (tr.a = t1.a) and

(t1.b = t2.b). The Why-provenance of tr consists of all tuples t1 from r1 where

tr.a = t1.a. We describe such models as documenting ancestry-only history be-

cause both Why-provenance and Where-provenance document only the sources from

which data was derived, and are silent about how data was derived, who derived it, or

when it was derived. In addition to ancestry-only, we define two other classifications

of the history dimension. We say that a provenance model documents abstact history

if it includes ancestry-only history as well as a representation of how the ancestors

combined to form the derived item, but that representation is not sufficient to fully

reproduce the result given the inputs. For example, in the query above, suppose that

tr resulted from tuple t1x joining with tuple t2y, as well as from tuple t1w joining with

tuple t2z. An abstract history provenance model might describe this provenance as

(t1x • t2y) + (t1w • t2z).

In contrast, we say a provenance model documents full history if it provides enough

information to fully reproduce tr given r1 and r2. For example, such a model might

document the entire query text, and perhaps the time at which the query was issued,

and the user who issued it.

Another dimension by which we characterize provenance models is whether they

compute and record provenance at the time an operation derives a result, or whether

provenance is derived later, when a user wishes to inspect it. We call the former

eager provenance and the latter lazy provenance.

We also classify provenance models by whether provenance is recorded as an an-

notation to data, or whether provenance has an independent existence in the model.

188

We call the former provenance-as-attribute and the latter provenance-as-entity, in-

spired by entity-relationship (ER) model. This distinction may lead to substantial

differences in model functionality. For example, a provenance-as-attribute model

may allow explicit manipulation of provenance information by the DML or query

language just as other attributes of data may be manipulated, whereas a provenance-

as-entity model may define behaviors specific to provenance, and may possibly pre-

vent direct alteration of recorded provenance.

Finally, we classify provenance models by whether they record provenance

for only some of the granularities of data supported by the accompanying data

model (some-granularity) or for all granularities supported by the data model (all-

granularity).

In Section 7.1, we consider the only prevalent conceptual model of provenance

in the literature. In Section 7.2, we consider logical models for data and provenance

that have been implemented, at least at the level of a functional prototype. In Section

7.3, we examine work by Todd Green that addresses the relative expressive power

of these logical provenance models, a result we presented and used in Chapter 4.

Because we studied performance trade-offs in Chapter 5, in Section 7.4 we examine

literature on performance of provenance models.

7.1 The Open Provenance Model

The Open Provenance Model [29] defines a conceptual model for provenance that

applies both to coarse-grained data (e.g., datasets in scientific workflows) and fine-

grained data. Though OPM defines provenance semantics, it is not intended to be

instantiated directly. Instead, it serves as a technology-agnostic standard for design-

ing provenance models for entities, whether digital or not, so that their provenance

can be exchanged between systems that share OPM as a standard. OPM does not de-

fine provenance representations or syntax. Also, OPM does not define a language for

189

manipulating or interrogating provenance. Instead, OPM focuses on defining how

provenance relationships are described.

OPM defines three kinds of entities: artifacts, processes which are performed

on or caused by artifacts, and agents, which perform these processes. Provenance

in OPM is represented as a directed, acyclic graph of dependencies between these

three artifact types. Provenance graphs in OPM may include compositions of more

than one such dependency. This feature allows OPM to represent multi-generation

provenance and other complex dependency chains between entity types.

OPM allows for full-history as well as abstract-history and ancestry-only im-

plementations. OPM is not specified as eager or lazy, and allows for both some-

granularity and all-granularity implementations. The specification of OPM is agnos-

tic about whether OPM is a provenance-as-attribute or a provenance-as-entity model.

Like OPM, MMP is a conceptual model of provenance, and is technology-agnostic

and representation-agnostic. However, MMP does provide a specific polynomial rep-

resentation in order to be comparable to other systems with specific representations.

MMP adopts the OPM notion of three kinds of entities. Components in MMP are ar-

tifacts; operations in the MMP language are processes; and users of MMP instances

are agents. Provenance in MMP is modeled as a graph, as in OPM, but the MMP

graph model is a subset of the OPM model. Each edge in an OPM provenance graph

represents one of five types of causal relationships: a process used an artifact; an arti-

fact was generated by a process; a process was triggered by a process; an artifact was

derived from an artifact; or a process was controlled by an agent. Each provenance

link in an MMP instance has the structure in OPM syntax shown in Figure 7.1. In

the figure, the “used” artifact is the input component to the operation corresponding

to the “process” and represented by a provenance link. The “was-generated-by” ar-

tifact is the result component of the operation. The identity of the process and agent

are captured in MMP in the label of the face to which the result component belongs.

190

Figure 7.1: MMP Provenance Links Represented in OPM Syntax

MMP does not employ other OPM edge types or other configurations of OPM edges.

For example, MMP does not record relationships of processes triggering other pro-

cesses, because operators are modeled as being directly applied by users or other

agents, rather than by hierarchies of processes.

MMP differs from OPM in that it models both data and its provenance, rather than

only provenance. In addition, MMP differs from OPM in that it defines a language

for manipulating and querying data that induces provenance for resulting data. In

addition, MMP defines a language for interrogating provenance.

7.2 Provenance Models in the Literature

Current literature includes several provenance models that define specific represen-

tations of provenance and specific methods of storing provenance. We call these

logical provenance models, and compare them to MMPL defined in Chapter 6. Here

we briefly describe and classify each relevant logical provenance model from the

literature.

191

7.2.1 Lineage Tracing for General Data Warehouse Transformations

In one of the earliest articles on provenance of relational data, Cui and Widom [12]

address the problem of tracing data items in a data warehouse back to the source

items from which they were derived. Using a set of data manipulations typically

seen in a data warehousing environment, they formally define the lineage discovery

problem and present algorithms for tracing lineage in such environments. The re-

sulting provenance model, called the Lineage model, is lazy, computing provenance

by use of inverse queries run when users wish to trace provenance. This approach

differs from most relational data provenance models in the literature, which are eager

models. The model is an ancestry-only model, recording only the set of tuples that

cause a result tuple to appear. Like many other models in the literature, the Lineage

model is a provenance-as-attribute model, recording provenance as an extra attribute

for each tuple. The Lineage model does nothing to prevent direct manipulation of

these annotations. However, this model escapes concerns of direct manipulation be-

cause the annotations are derived on demand. Because only provenance of tuples is

recorded, we classify this model as a some-granularity model.

The Lineage model differs from MMP in that it records only tuple-level prove-

nance, while MMP is an all-granularity model. The Lineage model’s provenance-as-

attribute approach also differs from MMP’s provenance-as-entity approach. Lineage

also differs from MMP in that it computes provenance only for relational algebra op-

erators (i.e., queries), while MMP additionally addresses DML and DDL operators.

Recall that in Chapter 4 we contrasted MMP and the Lineage model with regard to

how well they fill gaps in the provenance literature and meet the requirements of our

motivating use cases.

192

7.2.2 Annotation Management Systems

Bhagwat et al. [4] present a general-purpose annotation-management system for

relational databases. The system they describe acts as a provenance model when

annotations consist of the identities of ancestor data. Unlike provenance annota-

tions in the Lineage model and others we describe here, Bhagwat et al. describe

annotations attached to each attribute value, rather than entire tuples. Their model

is thus a some-granularity model and a provenance-as-attribute model. Because the

system is intended for general annotations, it is not specific to ancestry-only versus

abstract- or full- history: an implementation of the model they define could use any

of these approaches. Because the described model propagates annotations as queries

are computed, we classify this model as an eager model. Because Bhagwat’s system

is limited to propagating annotations through queries, it addresses only provenance

due to query operations.

In their system, the authors define three distinct annotation propagation schemes,

useful for different purposes. The default scheme propagates annotations accord-

ing to where result data is copied from in query input data. Another scheme, called

default-all, propagates annotations in a way consistent with all equivalent queries of

the stated query. The third choice is a propagation scheme that allows user defini-

tion of how annotations propagate. The choice of propagation scheme to be used is

phrased in a variant of SQL. The authors show how queries in this SQL variant are

re-written into one or more SQL queries that correctly propagate annotation attribute

values.

Unlike Bhagwat’s system when used as a provenance model, MMP is a provenance-

as-entity model. That is, MMP provenance is recorded and maintained in a separate

model orthogonal to data. Because Bhagwat’s model is not specific to provenance

the two are not comparable with respect to the type of history they record. How-

ever, the two are comparable in that both are eager models, and in that MMP is an

193

all-granularity model while Bhagwat’s model is a some-granularity model.

7.2.3 CPDB

Buneman’s paper on the Copy-Paste Database (CPDB) [5] defined the data cura-

tion setting. Curated databases in disciplines such as bioinformatics are typically

maintained by significant manual correction, integration, and manipulation. Bune-

man noted that as a result, provenance information for such data is a key factor in

assessing data quality. The CPDB provenance model was motivated by the prove-

nance needs of users operating in such settings. Unlike other models in the litera-

ture, CPDB is a full-history model, although it only addresses DML operations, not

queries or DDL operations. Like most other models considered here, CPDB is an

eager model and a provenance-as-attribute model. Even though provenance is stored

in an auxiliary relation, it is subject to treatment as a data attribute. CPDB is unique

among the models we consider in that, such as MMP, it is an all-granularity model.

As noted in Chapter 1, even though DML operators such as insertion are supported,

CPDB does not address multiple insertion of identical data (nor tracking of multiple

histories) as MMP does.

In work subsequent to CPDB, Buneman et al. developed a framework based on

CPDB for managing provenance due to queries as well as data manipulations in a

single model [7]. They use this extended model to compare two ways in which input

data items are rearranged to create output data items: implicit provenance, where a

query or update only specifies the output and provenance is provided implicitly by

a default semantics, as done in Trio [1], which we discuss in the next section; and

explicit provenance, where an operation defines both output data and the description

of the provenance of each output item. The latter approach is similar to the user-

defined provenance approach defined by Bhagwat [4].

194

7.2.4 Trio

Trio, developed at Stanford University, supports both data uncertainty and prove-

nance [1]. The key insight in Trio is that many application areas require both notions

of uncertainty in data and lineage of data, yet previous literature considered only one

or the other. For example, lineage enables correlating uncertainty in query results

with uncertainty in query input data. The goals of the Trio project are to combine

these two notions into a simple and usable data model, provide a query language that

extends SQL in order to interrogate data, its uncertainty, and its lineage together, and

provide a working system to demonstrate these ideas.

We restrict our consideration of Trio to data operations without uncertainty. Like

Lineage and CPDB, Trio supports relational data, and records provenance in the

form of annotations to tuples at the time queries are executed. We thus classify the

Trio provenance model as an eager, some-granularity, provenance-as-attribute model.

Like Lineage, this provenance includes where data came from, but not what manip-

ulations were done, nor who performed them. We thus classify the Trio provenance

model as an ancestry-only model. Trio’s language supports queries as well as data

manipulation, but does not support multiple insertions as MMP does. This limitation

prevents Trio from meeting some needs of our motivating use cases as described in

Chapter 1. Trio is the only current model besides MMP that retains deleted data. It

is also the only current model that provides a provenance-specific built-in function,

Lineage(), to help users in writing provenance-related queries. Recall that in Chap-

ter 2, we compare Trio and MMP with respect to gaps in the literature identified in

Chapter 1. Also recall that, in Chapter 4, we compared Trio and MMP with respect

to their expressive power with regard to provenance queries.

195

7.2.5 Panda

The Panda (Provenance ANd DAta) project at Stanford was first reported in the litera-

ture in 2010. The goal of Panda is to address some of the same limitations in existing

provenance models addressed by MMP. At present, the only information available

on Panda is a short paper [24] that describes project plans. This paper reports that

Panda will include a model that fully integrates data-based and process-based prove-

nance, making it a full-history model. Panda is also set to include built-in operators

for exploiting provenance after it has been captured as part of an ad-hoc query lan-

guage over provenance together with data, perhaps similar to the MMP provenance

predicate language. Like MMP, Panda intends to support provenance for a full range

of data granularities, making it an all-granularity model. Panda also promises explo-

ration of lazy vs. eager approaches. At this time, it is unclear whether Panda will be a

provenance-as-attribute model (such as its predecessor, Trio) or provenance-as-entity

model (such as MMP).

7.2.6 Orchestra

Orchestra [21, 19] is a system designed to allow sharing of data among peer

databases. Each Orchestra peer is assumed to have a locally controlled and edited

database instance. Orchestra also assumes that peer databases are related by schema

mappings that allow one peer to map desired data from another peer into its own

schema. Orchestra uses a publish-subscribe model whereby each peer publishes up-

dates to its data at will, and each peer receives those updates at will, using the schema

mappings to re-map the received data into a locally usable schema. This mapping in-

cludes the application of trust filters that express which received data the receiving

peer judges trustworthy. Orchestra bases this trust assessment on provenance in-

formation, so that local users can decide which data to trust and which not to trust

based on the origins of data. The Orchestra system uses an eager provenance model

196

to record provenance. This provenance is recorded alongside data, and treated as a

property of individual tuples, making Orchestra a provenance-as-attribute model that

uses a some-granularity approach.

The provenance representation used in Orchestra expresses both ancestor data

and a loose (algebraic) description of how data was derived, so we classify it as an

abstract-history model. This representation uses semirings of polynomials [20], sim-

ilar to MMP provenance polynomials. Recall that Figure 1.1 shows an example of

a simple query and how the provenance of its result tuples is represented in sev-

eral provenance models, including the Orchestra model. In an Orchestra provenance

polynomial, the multiplication operator indicates that the combined presense of in-

put tuples give rise to an output, and the addition operator indicates that each of its

input tuples gives rise independently to a result. In Orchestra, these polynomials are

restricted so that there is no concept of derivations that include multiple operations

applied over time. Because of this restriction, multiple insertions are not part of the

Orchestra model, and there is no notion of multi-generation provenance in Orchestra.

7.3 Comparing Expressiveness of Popular Provenance Models

Green studied containment and equivalence of (unions of) conjunctive queries on

relations annotated with elements of commutative semirings, such as the Orchestra

provenance model, the Lineage model, the Why-provenance model, and the Trio

model [18]. Green shows that containment of conjunctive queries and unions of con-

junctive queries is decidable for these models. He also characterizes the complexity

of proving containment in each case. In particular, Green showed that these models

are related by surjective semiring homomorphisms. He uses these relationships to

characterize their relative expressive power. Recall that we used this result in Chap-

ter 4 in order to show the relative expressive power of the provenance polynomial

representations included in the MMP model.

197

7.4 Performance of Provenance Models

Little has been published concerning performance of provenance-related queries.

The only significant work in the area is that of Karvounarakis et al. [25]. In this

recent work, the authors design a query language for use in a collaborative data shar-

ing system (i.e., Orchestra), propose a set of test queries that represent expected use

cases, and examine query performance. They show results for how query perfor-

mance varies with the number of peer databases that provide input data, the number

of rules in the schema mappings, and the number of tuples in the local database de-

rived by the mappings. Our work in Chapter 5 is similar to this work in that we study

query performance for a representative set of provenance queries. However, our fo-

cus is the study of performance as a function of the number of generations in data’s

provenance, instead of the number of rules in mappings and number of tuples in the

database.

7.5 Chapter Summary

Most provenance models in the literature specify how provenance is stored and how

it is internally represented. OPM and MMP are exceptions, specifying only what

information is recorded and what its semantics are. MMP also specifies limits on

how provenance may be manipulated. These differences lead us to categorize OPM

and MMP as conceptual provenance models, and the others as logical provenance

models.

Because OPM is a very abstract model, characterizing it by the four descriptors

we define in this chapter offers limited information. However, the other models

(Lineage, Bhagwat’s model, Why-provenance, Orchestra, Trio, and our own MMP)

can be characterized as follows:

• MMP and Why-provenance are full-history models, Orchestra and Trio are

198

abstract-history models, and Lineage is an ancestry-only model. Bhagwat’s

annotation system does not discuss provenance directly, so it could implement

any of these.

• Lineage is a lazy model, while the others discussed here are eager.

• MMP is a provenance-as-entity model; Orchestra, Trio, Lineage, and Bhag-

wat’s model are provenance-as-attribute models.

• MMP and Why-provenance are all-granularity models, while the others are

some-granularity models.

199

Chapter 8

Conclusion

We motivated this dissertation by noting the importance of provenance in assess-

ing the origins and quality of data used in a variety of domains, including budget

forecasting, project management, scientific workflows, battlefield information inte-

gration, intelligence operations, and others. We focused our research by identifying

five opportunities to make provenance easy to use in domains such as these: 1) cur-

rent models do not model provenance resulting from a mix of DDL, DML, and query

operations; 2) in current models, users must parse and interpret each provenance rep-

resentation manually; 3) in current models, users must assemble multi-generation

provenance manually before querying or browsing it; 4) query languages used in

current models are designed for relational data, and so are not well-suited to phrase

queries over provenance; and 5) current models do not distinguish provenance from

data in order to provide suitable management for provenance. We also included a

goal of allowing for multiple insertion of identical data.

These opportunities motivated definition of and research on a conceptual model

of provenance and data. Because we wanted to be able to compare and contrast

our model against others in the literature for purposes of evaluation, we chose to

specialize the data portion of our model to relational data, while taking the goal of

making the provenance portion of the model distinct so that it could be retargeted to

other data models in the future.

200

We thus defined a conceptual model for data and provenance where provenance

is orthogonal to data: both provenance and data have first-class status, where in most

other models in the literature provenance is treated as an attribute of data; the prove-

nance model is not defined exclusively to apply to relational data, but can instead

apply to (we conjecture) many data models; data and provenance can be maintained

separately, and be manipulated in distinct ways by operators defined on the model;

and data is seen to exist at instants in time while provenance interconnects those in-

stants. In order to make it easy for users to interrogate the provenance portion of

our model together with the data portion, we defined a language for manipulating

and querying data based on both data and provenance represented in the model. This

language allows us to phrase an interesting class of queries typically unaddressed by

other models in the literature: the class of provenance selection queries, which select

data based on characteristics of its multi-generation provenance (“Show me data in

this table that resulted from a manipulation performed last Tuesday”). Languages

used in other models are often limited to answering queries about provenance, given

data of interest (“Show me where this tuple came from”), and are often limited to

answering queries about only immediate (single generation) provenance.

We formally defined MMP in this work. We evaluated MMP in terms of how well

it addresses the opportunities in the literature mentioned above, how informative the

provenance part of MMP is relative to other models, how expressive our provenance

query language is with respect to a variety of provenance query classes, and how the

syntactic complexity of queries in our language compares to those of others in the

literature.

To evaluate the expressiveness of our language and evaluate the syntactic com-

plexity of writing queries in it, we defined a performance benchmark suite that in-

cludes data, provenance, and queries representative of real-world use models. During

our evaluations we found that the MMP provenance model is more informative than

201

others in the literature, notably the provenance polynomials model of Green [21]

that has already been shown to be the most informative of prominent models in the

literature. We also found that the MMP language can express a wider variety of

provenance selection queries than other models, and has equal or better syntactic

query complexity on average than these other models.

To evaluate query performance trade-offs for possible MMP implementations, we

applied selected queries from our benchmark suite to several implementation proto-

types built on different technologies. We found that provenance queries performed

comparably when provenance information was stored in a graph database and in a re-

lational database, as data scales to realistic volumes. However, we found that the data

portion of queries we tested performed much better (by 2 to 6 orders of magnitude)

when data was stored in a relational database than in a graph database. The perfor-

mance studies also showed promising results for scalability in provenance queries.

Performance of provenance queries scaled linearly with size of data over the entire

range we tested.

Our conceptual model is relatively inefficient in terms of the amount of redun-

dancy of information recorded. Data in MMP is replicated to model its existence

at each point in time when the database is manipulated. To ensure that a practical

implementation of MMP is possible, we showed that a logical model with minimal

redundancy could be defined to faithfully support our conceptual model. Such a

logical model can serve as the basis for implementation of MMP.

8.1 Discussion

Our work achieved several positive outcomes, discussed above. In addition, we were

able to retain the relational data model without change, making MMP intuitive for

users familiar with relational databases. Our formal definition of MMP added func-

tionality to relational algebra, DML, and DDL operators for managing provenance.

202

However, our definition did not change the effect of these operations on data. The

sole exception is that we modified deleted data to be retained, but not participate in

future operations, so that provenance based on deleted data could be represented.

We were also able to achieve our goal of keeping data and provenance distinct, yet

queryable together in MMP. Orthogonality was surprisingly useful in allowing the

definition of a clean and simple query language. That is, keeping data and prove-

nance separate allowed us to inspect provenance using a set of selection and pro-

jection predicates while not needing to address provenance elsewhere in the MMP

language. Our performance studies also revealed interesting results about orthogo-

nality in MMP. The distinct, orthogonal portions of our model (data and provenance)

performed differently on the relational and graph database technologies we tested,

supporting the idea that they should be implemented in independent (orthogonal)

ways.

The results of our performance studies showed that neither a purely relational ap-

proach nor a purely graph approach to MMP implementation would yield adequate

performance. It seems unlikely that a technology other than a relational database will

perform better for relational data queries. It also seems unlikely that a technology

other than a graph substrate will perform better for queries that traverse provenance

graphs. Taken together, these ideas suggest that the next step in exploring implemen-

tation options for MMP should be to consider a hybrid approach such as the one used

as a logical model in Chapter 6. Such an approach might adapt an existing temporal-

relational database to add provenance link structures between components. To speed

up path matching for provenance queries in such an implementation, the database

would also need to be equipped with some kind of path-indexing capabilities. We

believe that construction of such a platform would be a good area for future work.

203

8.2 Future Work

In the course of this work, we have encountered several avenues for further inves-

tigation. Extending MMP to other data models would be a good first step toward

determining whether our general provenance model can be re-used. Another area of

exploration is to determine how to connect distinct MMP instances so that prove-

nance information may be extended across instance boundaries. Combining results

from these two areas of research may tell us to what extent we can extend prove-

nance across instances that support distinct data models. One specific area of study

would be to examine the problem of assessing data quality in workflows for develop-

ment of targeted therapies for cancer. Such workflows are representative of many use

cases in the medical domain. These workflows use heterogeneous data from a vari-

ety of sources. Relational databases are used for storing reference information about

gene expression. Text-mined data from electronic health records are analyzed for

indications of gene expressions that may cause cancers. DNA sequencing and gene

profiling datasets are input to workflows that use these other forms of data to yield

prioritizations of likely genetic causative factors. The workflows used are composed

of processing modules that evolve over time. All of these data (and processing) use

distinct data models, yet have provenance that must interoperate in order to assess

quality of workflow results.

Usability of models such as MMP remains an open area of investigation. We con-

jecture in this work that users may want to browse provenance graphs for selected

data. We also conjecture that users are willing to learn additional query language

syntax in order to express provenance-related queries. However, we have only anec-

dotal evidence to support these conjectures, and very little has been published in the

literature about the usability of provenance models.

As we conclude above, the next step in implementation choices for MMP should

be research into a hybrid platform, based on a temporal-relational database, with

204

provenance links as an added form of relationships between components. It is

clear from our results in Chapter 5 that acceleration of finding provenance paths

that match our provenance predicates will be key to achieving practical provenance-

related query execution time. We believe that path indexes should be explored in

such a platform.

Overall, this work contributes a conceptual model for data and provenance. This

model addresses several opportunities in the literature of provenance models and

meets some of the needs of users in a variety of use models. More importantly, this

work contributes not only MMP, but also methods for evaluating models such as

MMP, and a variety of ideas for further exploration.

205

References

[1] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth, Shubha

Nabar, Tomoe Sugihara, and Jennifer Widom. Trio: a system for data, un-

certainty, and lineage. In Proceedings of the 32nd international conference on

Very large data bases, VLDB ’06, pages 1151–1154. VLDB Endowment, 2006.

[cited at p. 2, 12, 193, 194]

[2] A. Bairoch, B. Boeckmann, S. Ferro, and E. Gasteiger. Swiss-prot: juggling

between evolution and stability. Briefings in Bioinformatics, (1):28–39, March

2004. [cited at p. 1]

[3] Omar Benjelloun, Anish Das Sarma, Alon Halevy, Martin Theobald, and Jen-

nifer Widom. Uldbs: Databases with uncertainty and lineage. The VLDB Jour-

nal, 17(2):243–264, 2008. [cited at p. 90, 109, 114]

[4] Deepavali Bhagwat, Laura Chiticariu, Wang-Chiew Tan, and Gaurav Vijay-

vargiya. An annotation management system for relational databases. In VLDB

’04: Proceedings of the Thirtieth international conference on Very large data

bases, pages 900–911. VLDB Endowment, 2004. [cited at p. 2, 90, 192, 193]

[5] Peter Buneman, Adriane Chapman, and James Cheney. Provenance manage-

ment in curated databases. In SIGMOD ’06: Proceedings of the 2006 ACM

SIGMOD international conference on Management of data, pages 539–550,

New York, NY, USA, 2006. ACM. [cited at p. 2, 11, 114, 193]

206

[6] Peter Buneman, Adriane Chapman, James Cheney, and Stijn Vansummeren. A

provenance model for manually curated data. In IPAW, pages 162–170, 2006.

[cited at p. 90, 107]

[7] Peter Buneman, James Cheney, and Stijn Vansummeren. On the expressiveness

of implicit provenance in query and update languages. ACM Trans. Database

Syst., 33(4):1–47, 2008. [cited at p. 12, 193]

[8] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Why and where: A

characterization of data provenance. In ICDT ’01: Proceedings of the 8th Inter-

national Conference on Database Theory, pages 316–330, London, UK, 2001.

Springer-Verlag. [cited at p. 2, 20, 109, 186]

[9] David N. Card and Robert L. Glass. Measuring software design quality.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1990. [cited at p. 126]

[10] Chin-Wan Chung, Jun-Ki Min, and Kyuseok Shim. Apex: an adaptive path

index for xml data. In Proceedings of the 2002 ACM SIGMOD international

conference on Management of data, SIGMOD ’02, pages 121–132, New York,

NY, USA, 2002. ACM. [cited at p. 154]

[11] Gao Cong, Wenfei Fan, and Floris Geerts. Annotation propagation revisited for

key preserving views. In Proceedings of the 15th ACM international conference

on Information and knowledge management, CIKM ’06, pages 632–641, New

York, NY, USA, 2006. ACM. [cited at p. 69]

[12] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. Tracing the lineage of view

data in a warehousing environment. ACM Trans. Database Syst., 25(2):179–

227, 2000. [cited at p. 2, 11, 90, 109, 154, 191]

207

[13] Michael Deininger, Elisabeth Buchdunger, and Brian J. Druker. The develop-

ment of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood,

105(7):2640–2653, 2005. [cited at p. 3]

[14] Brian J. Druker, Moshe Talpaz, Debra J. Resta, Bin Peng, Elisabeth Buch-

dunger, John M. Ford, Nicholas B. Lydon, Hagop Kantarjian, Renaud Capdev-

ille, Sayuri Ohno-Jones, and Charles L. Sawyers. Efficacy and safety of a spe-

cific inhibitor of the bcr-abl tyrosine kinase in chronic myeloid leukemia. New

England Journal of Medicine, (14):1031–1037, 2001. [cited at p. 3]

[15] Orri Erling and Ivan Mikhailov. Integrating open sources and relational data

with sparql. In Proceedings of the 5th European semantic web conference

on The semantic web: research and applications, ESWC’08, pages 838–842,

Berlin, Heidelberg, 2008. Springer-Verlag. [cited at p. 155]

[16] B. Glavic and K. Dittrich. Data provenance: A categorization of existing ap-

proaches. In Proceedings of Die 12. BTW-Tagung der Gesellschaft fr Infor-

matik, BTW’07, pages 227–241, 2007. [cited at p. 186]

[17] Roy Goldman and Jennifer Widom. Dataguides: Enabling query formulation

and optimization in semistructured databases. In Proceedings of the 23rd In-

ternational Conference on Very Large Data Bases, VLDB ’97, pages 436–445,

San Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc. [cited at p. 154]

[18] Todd J. Green. Containment of conjunctive queries on annotated relations. In

ICDT ’09: Proceedings of the 12th International Conference on Database The-

ory, pages 296–309, New York, NY, USA, 2009. ACM. [cited at p. 109, 121, 196]

[19] Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. Up-

date exchange with mappings and provenance. In VLDB ’07: Proceedings of

208

the 33rd international conference on Very large data bases, pages 675–686.

VLDB Endowment, 2007. [cited at p. 90, 195]

[20] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. Provenance semir-

ings. In PODS ’07: Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems, pages 31–40, New

York, NY, USA, 2007. ACM. [cited at p. 13, 92, 100, 114, 196]

[21] Todd J. Green, Grigoris Karvounarakis, Nicholas E. Taylor, Olivier Biton,

Zachary G. Ives, and Val Tannen. Orchestra: facilitating collaborative data

sharing. In SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD interna-

tional conference on Management of data, pages 1131–1133, New York, NY,

USA, 2007. ACM. [cited at p. 2, 12, 98, 102, 109, 121, 195, 201]

[22] Maurice H. Halstead. Elements of Software Science (Operating and program-

ming systems series). Elsevier Science Inc., New York, NY, USA, 1977.

[cited at p. 126]

[23] Huahai He and Ambuj K. Singh. Graphs-at-a-time: query language and access

methods for graph databases. In Proceedings of the 2008 ACM SIGMOD in-

ternational conference on Management of data, SIGMOD ’08, pages 405–418,

New York, NY, USA, 2008. ACM. [cited at p. 100, 155]

[24] Robert Ikeda and Jennifer Widom. Panda: a system for provenance and

data. In Proceedings of the 2nd conference on Theory and practice of prove-

nance, TAPP’10, pages 5–5, Berkeley, CA, USA, 2010. USENIX Association.

[cited at p. 2, 195]

[25] Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. Querying data

provenance. In Proceedings of the 2010 international conference on Manage-

209

ment of data, SIGMOD ’10, pages 951–962, New York, NY, USA, 2010. ACM.

[cited at p. 130, 197]

[26] A.V. Levitin. How to measure size, and how not to. In Proceedings of the Tenth

COMPSAC Conference, Washington DC, USA, 1986. IEEE Computer Society

Press. [cited at p. 126]

[27] Thomas J. McCabe. A complexity measure. In Proceedings of the 2nd in-

ternational conference on Software engineering, ICSE ’76, pages 407–, Los

Alamitos, CA, USA, 1976. IEEE Computer Society Press. [cited at p. 126]

[28] M. McCandless, E. Hatcher, and O. Gospodnetic. Lucene in Action. Manning

Publications, 2010. [cited at p. 133]

[29] Luc Moreau, Juliana Freire, Joe Futrelle, Robert McGrath, Jim Myers, and

Patrick Paulson. The open provenance model: An overview. In Juliana Freire,

David Koop, and Luc Moreau, editors, Provenance and Annotation of Data and

Processes, volume 5272 of Lecture Notes in Computer Science, pages 323–326.

Springer Berlin / Heidelberg, 2008. [cited at p. 188]

[30] S. S. Sahoo, R. S. Barga, J. Goldstein, and A. Sheth. Provenance algebra and

materialized view-based provenance management. Microsoft Research Techni-

cal Report (MSR-TR-2008-170), 2008. [cited at p. 112]

	Portland State University
	PDXScholar
	1-1-2011

	Conceptual Modeling of Data with Provenance
	David William Archer
	Let us know how access to this document benefits you.
	Recommended Citation

	Abstract
	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	1 Introduction
	1.1 Example Settings for Provenance
	1.1.1 Development of Targeted Cancer Therapies
	1.1.2 Corporate Budget Planning
	1.1.3 Battlefield Information Management
	1.1.4 Opportunities to Enhance Provenance Models

	1.2 Where Current Provenance Models Fall Short for Our Settings
	1.3 Research Goals

	2 Conceptual Model Overview
	2.1 Model Fundamentals
	2.2 Structure of a Relational MMP Data Face
	2.2.1 External Sources of Data

	2.3 Structure of an Example MMP Provenance Model
	2.3.1 Continuity of Existing Data
	2.3.2 Granularity and Inheritance of Provenance

	2.4 Interacting with and Visualizing MMP
	2.4.1 The MMP Language
	2.4.2 Data Semantics of the MMP Language
	2.4.2.1 Data Definition, Manipulation, and Confidence Operations
	2.4.2.2 Query Operations

	2.4.3 Confidence Language
	2.4.4 Predicate Language for Selection and Projection Operators

	2.5 Provenance Creation Semantics of the MMP Language
	2.6 Provenance Graphs as Visualization Tools
	2.7 Chapter Summary

	3 Formalizing the Conceptual Model
	3.1 Modeling Evolving Data: Faces
	3.2 Modeling The Outside World: External Source Referents
	3.3 Modeling Data Derivation: Provenance Links
	3.3.1 Operation-induced Provenance Links
	3.3.2 Continuity Provenance Links

	3.4 Modeling Operations Applied to Data: Revisions
	3.5 Modeling Creation of External Source Referents
	3.6 Single-revision and Source-Creation Impact on Data and Provenance
	3.6.1 DDL Revisions and Source Creations
	3.6.1.1 Create Relation
	3.6.1.2 Create Source
	3.6.1.3 Create Attribute
	3.6.1.4 Drop Relation
	3.6.1.5 Drop Attribute

	3.6.2 DML and DCL Revisions
	3.6.2.1 Insert Value
	3.6.2.2 Drop Value
	3.6.2.3 Insert Tuple
	3.6.2.4 Drop Tuple
	3.6.2.5 Paste Value
	3.6.2.6 Paste Tuple
	3.6.2.7 Paste Relation
	3.6.2.8 Confirm Value and Doubt Value

	3.6.3 Query Revisions
	3.6.3.1 Selection Operator Provenance
	3.6.3.2 Projection Operator Provenance
	3.6.3.3 Cartesian Product Operator Provenance
	3.6.3.4 Union Operator Provenance

	3.6.4 Provenance for Results of General MMP Queries

	3.7 Accessing Provenance Information
	3.7.1 Provenance Graphs
	3.7.1.1 Preliminaries: Tracing Continuity and Inheritance
	3.7.1.2 Defining Provenance Graphs

	3.7.2 Querying Provenance
	3.7.2.1 Example of Provenance Predicate Evaluation

	3.7.3 Provenance Polynomials
	3.7.3.1 Representing Operations in Provenance Polynomials
	3.7.3.2 Evaluating Plurality of Support with Provenance Polynomials

	3.7.4 Chapter Summary

	4 Conceptual Model Evaluation
	4.1 Evaluating MMP Against Gaps in the Literature
	4.2 Evaluating MMP Against Needs in Target Settings
	4.3 Relative Expressiveness of Algebraic Provenance Representations
	4.4 Relative Expressiveness of Provenance-related Queries
	4.4.1 Provenance Selection Queries
	4.4.2 Query set for Expressiveness Comparison
	4.4.3 Comparison of Expressiveness
	4.4.3.1 Buneman's Why-provenance model
	4.4.3.2 Trio
	4.4.3.3 Green's model
	4.4.3.4 Example query 1
	4.4.3.5 Example query 2
	4.4.3.6 Example query 3
	4.4.3.7 Example query 4
	4.4.3.8 Example query 5
	4.4.3.9 Example query 6
	4.4.3.10 Example query 7
	4.4.3.11 Example query 8
	4.4.3.12 Example query 9
	4.4.3.13 Conclusions About Expressiveness of Provenance Selection Queries

	4.5 Other Advantages of MMP Relative to Other Models
	4.5.1 Accessing Ancestors and Operational History of Data
	4.5.2 Computing Forward-Looking Provenance

	4.6 Relative Complexity of Provenance-related Queries
	4.7 Chapter Summary

	5 Characterizing Performance of Implementation Choices for MMP
	5.1 Benchmarks and Metrics
	5.1.1 Data query benchmark
	5.1.1.1 Data structure for relational database testing
	5.1.1.2 Data structure for graph database testing
	5.1.1.3 Data query workload

	5.1.2 Provenance query benchmark
	5.1.2.1 Provenance structure for relational database testing
	5.1.2.2 Provenance structure for graph database testing
	5.1.2.3 Provenance query workload

	5.1.3 Performance Comparison Metrics

	5.2 Experimental Setup
	5.3 Experiments and Results
	5.3.1 Relational Data Query Tests
	5.3.1.1 Test for Data Query 1
	5.3.1.2 Test for Data Query 2
	5.3.1.3 Test for Data Query 3
	5.3.1.4 Test for Data Query 4
	5.3.1.5 Test Results Using Warm-Start Caches
	5.3.1.6 Conclusions on Data Tests

	5.3.2 Provenance Predicate Tests
	5.3.2.1 Conclusions for Provenance Tests

	5.3.3 Implications for MMP Implementations

	5.4 Other Ideas for Accelerating MMP Implementations
	5.5 Chapter Summary

	6 A Logical Model to Support MMP Implementation
	6.1 Transforming Conceptual Models into Logical Models
	6.1.1 Equivalence Classes of Language Operators
	6.1.1.1 Class 1: Drop Attribute
	6.1.1.2 Class 2: Insert Tuple
	6.1.1.3 Class 3: Paste Tuple
	6.1.1.4 Class 4: Queries

	6.2 Faithful Support of MMP by MMPL
	6.2.1 Basis Case for Induction
	6.2.2 Inductive Case
	6.2.2.1 Data Portion of Inductive Case
	6.2.2.2 Provenance Portion of Inductive Case

	6.3 Efficiency of the Logical Model
	6.4 Chapter Summary

	7 Related Work
	7.1 The Open Provenance Model
	7.2 Provenance Models in the Literature
	7.2.1 Lineage Tracing for General Data Warehouse Transformations
	7.2.2 Annotation Management Systems
	7.2.3 CPDB
	7.2.4 Trio
	7.2.5 Panda
	7.2.6 Orchestra

	7.3 Comparing Expressiveness of Popular Provenance Models
	7.4 Performance of Provenance Models
	7.5 Chapter Summary

	8 Conclusion
	8.1 Discussion
	8.2 Future Work

	References

