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ABSTRACT 

 

Diisocyanates are very reactive low molecular weight chemicals that are widely used 

in the manufacture of polyurethane products. Diisocyanate exposure is one of the most 

commonly reported causes of occupational asthma. Although diisocyanates have been 

identified as causative agents of respiratory diseases, the specific mechanisms by 

which these diseases occur remain largely unknown.  

 

Tandem mass spectrometry was used to unambiguously identify the binding site of 

isocyanates within four model peptides (Leu-enkephalin (Leu-enk, YGGFL), 

Angiotensin I (DRVYIHPFHL), Substance P-amide (RPKPQQFFGLM-NH2), and 

Fibronectin-adhesion promoting peptide (FAPP, WQPPRARI)).  In each case, 

isocyanates were observed to react to the N-terminus of the peptide.  No evidence of 

side chain/isocyanate adduct formation exclusive of the N-terminus was observed.  

However, significant intra-molecular diisocyanate crosslinking between the N-

terminal amine and a side chain amine group was observed for arginine, when located 

within two residues of the N-terminus. Addition of multiple isocyanates to the peptide 

occurs via polymerization at the N-terminus, rather than addition of multiple 

isocyanate molecules to varied residues within the peptide. 
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Toluene diisocyanate (TDI)-specific monoclonal antibodies (mAbs) with potential use 

in immunoassays for exposure and biomarker assessments were produced. A total of 

59 unique mAbs were produced (29 IgG1, 14 IgG2a, 4 IgG2b, 2 IgG3 and 10 IgM) 

against 2,4 and 2,6 TDI bound protein. The reactivities of these mAbs were 

characterized by a solid phase indirect enzyme-linked immunosorbent assay (ELISA), 

Dot ELISA and Western immunoblot against various monoisocyanate, diisocyanate 

and dithioisocyanate protein conjugates.  A subset of the mAbs were specific for 2,4 

or 2,6 TDI-conjugated proteins only while others reacted to multiple dNCO conjugates  

including methylene diphenyl diisocyanate- and hexamethelene diisocyanate– human 

serum albumin . Western blot analyses demonstrated that some TDI conjugates form 

inter- and intra-molecular links resulting in multimers and a change in the 

electrophoretic mobility of the conjugate.   

 

In general, 2,4/2,6 TDI reactive mAbs displayed (1) stronger recognition of 

monoisocyanate haptenated proteins when the isocyanate was in the ortho position 

relative to the tolyl group, and were able to discriminate between (2) isocyanate and 

isothiocyanate conjugates (i.e. between the urea and thiourea linkage); and (3) 

between aromatic and aliphatic diisocyanates.   The mAbs produced were not carrier 

protein specific with estimated affinity constants toward toluene diisocyanate 

conjugated human serum albumin ranging from 2.21 x 107 to 1.07 x 1010 M-1 for IgG 

mAbs. Studies using TDI vapor exposed lung and epithelial cell lines suggest potential 

utility of these mAbs for both research and biomonitoring of isocyanate exposure. 
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RATIONALE 
 

Diisocyanates (dNCOs) are used in the production of polyurethanes. The most common 

monomeric dNCOs are toluene diisocyanate (TDI), methylene diphenyldiisocyanate 

(MDI) and hexamethylene diisocyanate (HDI)1,2. People exposed to isocyanates can 

develop a range of short-term health problems such as headaches, sore eyes, sore throat, 

difficulty in breathing and skin irritation. Isocyanate exposure can also lead to long-

term asthma and dermatitis if a person becomes sensitized. The most commonly 

reported cause of occupational asthma (OA) is from exposure to dNCOs3, with a  

prevalence of diisocyanate asthma estimated at 5-15% of exposed workers2 in the 

United States of America (USA). Leigh et al4estimated that the medical cost of OA in 

the USA  for 1999 at $1.48 billion. This direct medical cost does not include the 

tremendous socio-economic indirect cost with lost productivity and family burden. 

 

Over 200,000 workers are directly employed in the production and use of isocyanates, 

worldwide 5. The applications of isocyanates encompass virtually all aspects of our 

lives from agriculture to transport and leisure. They are commonly used in paints, 

glues/binders and foams. Due to their widespread use in the general population from 

products commercially available at hardware stores like Gorilla Glue (The Gorilla 

Glue Company, Cincinnati, OH) and Great Stuff Form (The Dow Chemical Company, 

Midland, MI), actual rates of dNCO induced diseases and exposure may be under-

reported5. Concern has also been expressed for potential dNCO exposure to the 
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general public through end product breakdown or leaching6.  

Health effects of dNCO exposure have been a subject of extensive research in terms of 

both human and animal toxicological studies. Dose-dependent responses to higher 

levels of dNCO’s include respiratory7, dermal and mucous membrane irritation8. 

Hypersensitivity reactions to dNCO’s include allergic rhinitis9, asthma7, 

hypersensitivity pneumonitis 10,11 and allergic contact dermatitis12.  

 

Covalent conjugation (haptenation) of diisocyanate to human proteins after exposure 

is commonly accepted as an important primary event in the development of 

diisocyanate-induced allergic sensitization and asthma13. The major dNCO adducts 

found in the blood are to hemoglobin and albumin13-16. TDI-conjugated lung proteins 

in a murine study were co-localized by immunochemical staining with tubulin, and 

actin, which suggest that these proteins may also be conjugated17. Other skin and lung 

proteins and peptides like keratin, glutathione and actin have been reported as HDI 

binding targets 15,18.The immunogenic protein form(s), that lead to sensitization and 

asthma in the occupational environment however, cannot be inferred from these 

studies. It can be concluded from these reports, that TDI binding, in vivo, does 

demonstrate selectivity with respect to target proteins, however, the ultimate antigenic 

protein(s), or all forms of chemical linkage(s) are not yet known 19.  
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The aims of this thesis were to 1) use spectroscopic and bionalytical methods such as 

mass spectroscopy to elucidate isocyanate-protein chemical interaction; and 2) 

produce monoclonal antibodies (mAbs) that recognize TDI-bound proteins. These 

monoclonal antibodies can be used for immunohistochemistry and for biomarker 

immunoassays of dNCO exposure. In addition, they should make useful research tools 

in identifying specific dNCO-bound proteins following both dermal and inhalation 

exposures. We hypothesize that the antigenic specificity of the mAbs produced will 

provide insight into in vivo immunopathogenicity, however, this is beyond the scope 

of the present study. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Industrial and Commercial Uses of Isocyanates 

The predominant use of diisocyanates is in the manufacture of polyurethane forms, 

elastomers and coatings20. Other nonpolymer uses include insecticides, pesticides and 

herbicides21 for mono isocyantes such as methyl isocyanate20. The most widely used 

compounds are diisocyanates, which contain two isocyanate groups, and 

polyisocyanates, which are usually derived from diisocyanates and may contain 

several isocyanate groups. The most commonly used diisocyanates include MDI 

(glues, hard forms, and plastics), TDI (flexible forms, elasteomers and coatings), and 

HDI (car paints). Others include naphthalene diisocyanate (NDI), methylene bis-

cyclohexylisocyanate (HMDI) (hydrogenated MDI), and isophorone diisocyanate 

(IPDI). Examples of widely used polyisocyanates include HDI biuret and HDI 

isocyanurate. In these applications, formation of a urethane link is the predominant 

reaction. For this reaction the most common isocyanate is TDI (known as Mondur TD-

80, Nacconate, TDI, Voranate T-80, TDI-80, Rubinate TDI in commercial 

preparations) , which is  an 80:20 mixture of 2,4-TDI and 2,6-TDI22. Toluene 

diisocyanates are not known to occur as natural products. They are manufactured by 

the reaction of diaminotoluenes with phosgene8,21. Toluene diisocyanates are reactive 

intermediates that are used in combination with polyether and polyester polyols to 

produce polyurethane products. The production of flexible polyurethane foams 
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represents the primary use of toluene diisocyanates (approximately 90% of the toluene 

supply)20. Polyurethane coatings represent the second largest market for toluene 

diisocyanates. Toluene diisocyanates are also used in the production of polyurethane 

elastomeric casting systems, adhesives, sealants and other uses. TDI is one of the most 

common isocyanates employed in the manufacture of polyurethane foams, elastomers, 

and coatings. Foams are used in furniture, packaging and insulation as well as boat 

building. Flexible foams are made from TDI, whereas the rigid foams are made from 

the less volatile MDI8. Polyurethane coatings are used in leather, wire, tank linings, 

masonry, paints, floors and wood finishes. Elastomers are abrasion and solvent 

resistant, and are used in adhesives, coated fabrics, films, linings, clay pipe seals, and 

in abrasive wheels, and other mechanical items20.  

 

1.2 Health Effects of Diisocyanates 

1.2.1 Routes of Exposure 

The main route of exposure to TDI is through inhalation23. Responses to TDI vary 

widely from mild irritation of the airways to more severe effects, including 

bronchospasm. Other routes of exposure include oral ingestation, eye contamination, 

and skin contamination8. 

 

1.2.2 Toxic Effects 

Respiratory effects are the primary toxicological manifestations of repeated exposure 

to diisocyanates8. Isocyanates are powerful irritants to the mucous membranes of the 
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eyes, gastrointestinal tract and respiratory system24. Direct skin contact can also cause 

marked dermal inflammation. Diisocyanates can also sensitize workers, making them 

subject to allergic rhinitis, allergic contact dermatitis and asthma attacks upon re-

exposure. Death from severe asthma in sensitized subjects has been reported7.  

 

1.2.3 Diisocyanate Structure and Reactivity with Biological Molecules. 

Figure 1.1 shows some of the major reactions that TDI can potentially undergo. Of 

particular importance is the adduct formation to biomolecules. Hydroxyl, amino, and 

sulfhydryl groups are all found in biological systems. TDI has the potential to react 

with any of these groups or water after entry into the body, and therefore it can be 

assumed that no unreacted diisocyanate circulates  after absorption. Isocyanates can 

react with the following amino acids under physiological condition25; the α-amino 

group of the N-terminal amino acids, the sulfhydryl group of cysteine, the hydroxyl 

groups of tryrosine and especially serine, the ε-amino group of lysine and the 

imidazole ring of histidine. 
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Figure 1.1:Competitive reaction pathways of TDI in biological systems 8. 
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The hydrolysis of TDI to give corresponding diamines is normally a minor reaction 

under conditions prevailing in the respiratory tract. At concentrations normally found 

in the work place, the predominant reactions are those involving biomolecules such as 

proteins. The extent to which a particular reaction takes place, if at all, depends on a 

number of parameters including: 

-the physical form of diisocyanate (vapor, aerosol or liquid); 

-the mode of exposure to diisocyanate (inhalation, ingestation or by skin contact, with 

or without solvent); 

-the concentration of diisocyanate at the reaction site; 

-the biological availability of the reactive molecules at the application site (different 

biological systems contain substance and structures which can significantly affect 

reaction pathways) and 

-the prevailing biological pH. 

 

1.2.4 Contact Dermatitis 

Dermatitis may occur as a result of exposure to chemicals in the workplace. Irritant 

contact dermatitis (ICD) is the most common form of chemical induced dermatitis. It 

is a dose-dependent toxicity/non-immunologically mediated effect associated with a 

chemical’s ability to react with skin components and damage the skin. Allergic contact 

dermatitis (ACD) is a T-lymphocyte mediated delayed (Type IV) 

hypersensitivity/immunological reaction26. Examples of this type of reaction include a 

positive tuberculin skin test and the reaction to poison ivy. Both ICD and ACD can be 
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produced by dermal exposure to dNCOs27. Diagnosis of DTH is usually confirmed by 

clinical dermal patch testing.  Currently there are three widely used standardized patch 

tests: 1) Finn chamber, 2) True test and 3) Epiquick28. In these tests, the suspected 

sensitizing agent is dissolved/suspended in a solvent (usually petrolatum). A patch 

containing the diluted agent is applied onto skin and read at 48, 72 and 96 hours. A 

patch test is interpreted based on observation of redness, itching and induration of skin 

at the  site of the patch28,29. 

 

1.2.5 Biomonitoring for TDI Exposure 

Biomonitoring of dNCOs involves either the measurement of specific antibody or of 

dNCO-conjugated biomolecules in blood, tissue or urine samples.  Biomonitoring 

assays estimate total TDI exposure by converting TDI and its urinary metabolites to 

toluene diamine (TDA) by acid or base hydrolysis. A variety of analytical methods 

(e.g. chromatography) are used to determine the amount of TDA generated by 

laboratory hydrolysis30,31.  The detection of TDA in urine samples does not reflect the 

level of free TDA in the body, rather it estimates the combination of conjugated TDI 

derivatives and free-TDA32,32,33. This method does not distinguish between TDI and 

TDA exposure. Sabbioni et al.34 reported a novel dNCO biomarker assay employing 

mild base hydrolysis of hemoglobin from methylene diphenyl diisocyanate (MDI) 

exposed rats to yield the hydantoin from the MDI conjugated lysine of the N-terminal 

valine34,35. 

Biological monitoring for TDI has been suggested and occasionally used to address 
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work place scenarios where individuals are involved in different work related 

processes with large variation of exposure levels. Sophisticated analytical methods are 

used to estimate, in urine or blood samples of TDI-exposed individuals, the total 

amount of the chemical exposure during a work shift. The advantage of this approach 

is that, in principle, the total dose for an individual may be estimated. However, due to 

inter-individual variation metabolism and pharmacokinetics, such biomonitoring data 

may greatly vary36. It also must be noted that such biomonitoring methods only 

estimate an average exposure over an undetermined period, since for example in 

humans, the circulating half lives of hemoglobin and albumin are 120 and 15-20 days, 

respectively35. MDI adducts to HSA have been reported from exposed workers16. 

  

1.2.6 Diisocyanate Immunology and Asthma 

Asthma is a clinical syndrome characterized by reversible airway obstruction, 

bronchial hyper-responsivity, and airway inflammation24,37. Asthma represents a huge 

medical, social and economic burden, because its prevalence is increasing especially, 

in the developed world24. Clinical similarities between diisocyanate-induced asthma 

and asthma caused by more common allergens, such as dust mite, suggest 

immunopathogenic mechanisms may be involved. OA is more difficult to identify and 

separate from general asthmas due to similarities in symptoms. Attempts, however to 

elucidate the pathogenesis of diisocyanate-induced asthma(s) are hampered by the 

high reactivity of these chemicals and the limitation of currently used animal models38-

40. 
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While asthma is considered an inflammatory disorder of the conducting airways, it is 

becoming increasingly apparent that the disease is heterogeneous with respect to 

immunopathology24.  TDI-specific IgE can be detected in only about 20% of the TDI-

asthmatics, suggesting that other immunological pathways, other than Type I allergic 

mechanisms, may predominate in the majority of the asthmatics. Although the role of 

specific IgE antibody has been investigated, results thus far point to discrepancies or 

rather low associations between specific IgE antibodies and disease41-45. Antibody 

detection against dNCO is difficult. This is normally done using a poorly characterized 

haptenated albumin. The contribution of inappropriate antigen in lack of specific-IgE 

detection in dNCO asthmatics is not known, but most studies evaluating different 

haptenated protein preparations, usually find differences in affinities of anti-TDI IgEs, 

but rarely identify a significant increase in TDI specific-IgE prevalence in TDI 

asthmatics. 

 

The short circulating half-life of unbound serum IgE of about 2 days is of unique 

importance to occupational illnesses such as isocyanate asthma. Brief periods away 

from workplace may result in a decrease in serum IgE levels to levels undetected by 

conventional methods46. Without accurate exposure information, negative isocyanate-

specific IgE assays may lead to misdiagnosis and false conclusions about pathogenic 

mechanisms. 

In addition, specific IgG antibodies have been found41,43,47-50 in sera of OA 

patients.TDI specific-IgG  has been documented as a marker of  exposure rather than 
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of disease51. The presence of dNCO specific-IgE and -IgG have been widely 

investigated as diagnostic markers of occupational asthma in diisocyanate-exposed 

workers 13,40,40,41,46,50,52-55. A presumptive diagnosis of dNCO asthma is made from 

work history, report of work-related asthma-like symptoms and nonspecific airway 

reactivity (to methacholine challenge). Presence of dNCO-specific IgE strengthens the 

diagnosis. 

 

Conjugation (haptenation) of diisocyanate to human proteins after exposure is 

commonly accepted as an important primary event in the development of 

diisocyanate-induced allergic sensitization and asthma. Diisocyanates have been 

shown to bind to skin and lung resident proteins. The major adducts found in the blood 

are to hemoglobin and albumin14. TDI-conjugated lung proteins have been co-

localized with keratin, tubulin, laminin and actin14-17. It can be concluded from these 

reports, that, TDI binding, in vivo, demonstrates selectivity with respect to the target 

proteins.The ultimate antigenic protein(s), or all forms of chemical linkage(s) are 

however, not yet known. 

 

A key aspect in the pathogenesis of dNCO asthma is the conjugation of dNCO with 

endogenous human airway proteins which include HSA, actin, and keratin. The 

antigenic epitopes resulting from the interaction of these conjugated proteins with the 

immune system and the subsequent steps leading to disease are poorly understood19. 

Figure 1.2 shows possible pathways in the immunopathogenesis of diisocyanate 
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asthma. 

 

Figure 1.2: Hypothetical model for diisocyanate induced asthma13. 

HDI has been shown to conjugate readily to human lung epithelial cell proteins after 

either vapor or liquid HDI exposure, providing evidence for the link between exposure 

and asthma51,56.  A mouse model of diisocyanate-induced asthma has been developed.  

Airway reactivity and pulmonary eosinophilic inflammation after inhaled TDI 

challenge are the hallmarks of this model.57  

 

Thiols such as glutathione and cysteine are prominent throughout the body. Under 

physiological conditions dNCOs bind preferentially, but reversibly, to thiols58.  This 
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reaction may be protective18 or may act as a carrier allowing the dNCO to be 

distributed within the body or into the cytoplasm.   

 

The objectives of this thesis were: 

A. Delineation of diisocyanate specific peptide/protein binding sites and chemical 

factors that favor protein haptenation. The aim is to help understand the ultimate 

antigenic forms. 

B. Production and characterization of relevant mAbs for use in 

biomarker/biomonitoring assays and as research tools from TDI vapor and TDI-

conjugated proteins. 

C. Isolation and identification of TDI conjugated proteins from TDI vapor-exposed 

cultured lung cells and from tissue of exposed mice. The mAbs identified from Part B, 

above, will be used to probe relevant TDI exposed tissue (both in vitro and in vivo) to 

identify the preferential protein/peptide targets for TDI conjugation. 
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CHAPTER 2 

INSTRUMENTATION, MATERIALS AND METHODS  

 

2.1  INSTRUMENTATION  

2.1.1 Spectrophotometry 

Protein determination and extent of conjugation using 2,4,6-trinitrobenzenesulphonic 

acid (TNBS) assay59 were done on a Beckman DU800 (Fullerton, CA) 

ultraviolet/visible light (UV/Vis) spectrophotometer. The spectrophotometer was 

interfaced to an IBM PC computer and used the DU Series 800 Software (Fullerton, 

CA). Path length of the cuvette was 1 cm. A VWR Scientific 1140A (Niles, IL) 

circulating water bath was coupled to the Beckman DU800 for temperature regulation.  

2.1.2 Mass Spectrometry (MS) 

 Electrospray ionization (ESI) and matrix-assisted laser desorption ionization 

(MALDI) MS techniques are able to detect minor mass changes in large biomolecules 

making them suitable for protein haptenation studies. Tandem mass spectrometry 

enables the acquisition and structural elucidation of protein or peptide sequencing. 

Both ESI and MALDI MS were employed in this project. 
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2.2.2.1 Electrospray Ionization 

The ESI process can be summarized by three processes, which encompass droplet 

formation, droplet shrinkage and gaseous ion formation60-62. A high potential was 

applied at the capillary tip (spray tip), while the analyte solution was passed through 

from a capillary at a constant flow rate. The mass spectrometer used in these studies 

was a Micromass QTOF-II™ (Waters Corporation, Milford, MA) quadrupole time-of-

flight mass spectrometer (qTOF MS). Analyte ions were generated by positive-mode 

electrospray ionization (ESI). Samples were dissolved in 50/50 acetonitrile/water and 

pumped through a narrow, stainless steel capillary (75–150 µm internal diameter) at a 

flow rate of between 1 µL/min and 1 mL/min. 

 

A voltage of 3 or 4 kV was applied to the tip of the capillary, which was situated 

within the ionisation source of the mass spectrometer. The strong electric field, aided 

by a co-axially introduced nebulizing gas (nitrogen) flowing around the outside of the 

capillary, dispersed the solution emerging from the tip into an aerosol of highly 

charged droplets. The source block was maintained at 80°C with the desolvation gas 

(nitrogen) maintained at 150°C and a flow rate of 400 L/hr. The warm flowing 

nitrogen assisted in solvent evaporation and helped to direct the spray towards the 

mass spectrometer. The charged sample ions, free from solvent, passed through a 

sampling cone orifice into an intermediate vacuum region and from there through a 

small aperture into the analyzer of the mass spectrometer which was held under high 

vacuum. The lens voltages were optimised individually for each sample. The settings 
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varied with each set of experiments. Tandem mass spectrometry (MS/MS) data was 

generated by collision-induced dissociation (CID) with argon. Visualization and 

analysis of data was done using the Micromass MassLynx™ 4.0 software suite for 

Windows 2000 (Waters Corporation, Milford, MA). 

 

2.1.2.2  Matrix Assisted Laser Desorption Ionization (MALDI) 

The MALDI technique, first introduced in 1988 by Hillenkamp and Karas, 63was used 

to analyze biomolecules. Samples were diluted with UV absorbing matrix solution 

(50/50 acetonitrile/2% trifluoroacetic acid) and deposited as 1 µL aliquots of each 

sample on a gold sample chip (Ciphergen Biosystems, Inc., Fremont, CA) and allowed 

to air-dry. The MALDI instrument was a linear TOF mass spectrometer (PBS IIc, 

Ciphergen Biosystems, Inc.). All spectra were acquired using a laser power at or 

slightly above the threshold for ion production (laser step 140-160 nm). A total of 130 

individual spectra (single laser shots) were averaged into a composite spectrum for 

each sample spot. When laser beam irradiated analyte-matrix mixture on the chip, 

indirect vaporization of the analyte resulted when the strongly absorbing matrix 

vaporized and carried the analyte with it. Ionization resulted from the proton donation 

of the matrix to the analyte (positive mode). Individual spectra were calibrated, 

baseline corrected, and normalized to total ion current (TIC), followed by 

identification of peak “clusters” representing peaks common to groups of spectra. Data 
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analysis were performed using Biomarker Wizard™ software (Ciphergen Biosystems, 

Inc., Fremont, CA). 

The Micromass Maximum Entropy™ (MaxEnt, Waters Corporation, Milford, MA) 

algorithm was utilized in these studies. The algorithm derives from the operating 

principle which maximizes the probability of getting the parent mass o given an 

apparent mass spectrum (m/z) while assuming Gaussian (normal) statistics for the 

noise distribution64. Post acquisition mass spectral charge deconvolution was 

performed with the “MaxEnt3” algorithm in the ProteinLynx™ 4.1 software suite 

(Waters Corp., Milford, MA).   
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 2.2.  Materials and Methods 

When planning the production of monoclonal antibodies production considerations 

must be given to the sensitizing and screening hapten/antigen(s) including method of 

antigen preparation, immunization procedure, and the choise of animal to immunize.  

 

2.2.1  Conjugation of Diisocyanates, Monoisocyanates or Diisothiocyanates to 

Proteins 

Keyhole limpet hemocyanin (KLH, hemocyanin from Megathura crenulata), mouse 

serum albumin (MSA, fraction V), human serum albumin (HSA, fraction V), 

lysozyme (chicken egg white), keratin protein (derived from hair, wool, horn, nails or 

other similar tissues in animals), and collagen (calf skin type 1 species) were obtained 

from Sigma Aldrich (St. Louis, MO). Dimethyl phenyl isocyanates (DMPI) (2,3 

DMPI, 3,5 DMPI and 2,5 DMPI) were obtained from Alfa Aesar (Wade Hill MA). 2,4 

toluene diisocyanate (2,4 TDI) , 2,6 toluene diisocyanate (2,6 TDI), hexamethylene 

diisocyanate (HDI), o-toluene isocyanate (OTI), p-toluene isocyanate (PTI), phenyl 

isocyanate (PI),  toluene diisothiocyanate phenyl isocyanates (2,4 TITC and 2,6 TITC) 

and  methylene bis-cyclohexylisocyanate (MDI) were obtained from Sigma Aldrich 

(St. Louis, MO). These proteins, without further purification, were used for mouse 

inoculation, mAb production, and ELISA sandwich assays. 

 

 

  



17 
 

Diisocyanates, Monoisocyanates and Diisothiocyanates  
Conjugated to Proteins 

Abbreviation Name Structure 
2,4 TDI 2,4 Toluene Diisocyanate 

N
C

O

N
C

O

 
2,6 TDI 2,6 Toluene Diisocyanate 

N

C
O

N

C
O

 
MDI 4,4 Methylene Diphenyl 

Diisocyanate 
N

C

O

N
C

O

 
HDI Hexamethylene Diisocyanate N

C

O

N
C

O

 
2,5 DMPI 2,5 Dimethylphenylisocyanate 

N
C

O

 
2,3 DMPI 2,3 Dimethylphenylisocyanate 

N C O  
3,4 DMPI 3,4 Dimethylphenylisocyanate 

N

C

O

 
PTI 4 Toluene Isocyanate 

N

C

O

 
OTI 2 Toluene Isocyanate 

N C O  
PI Phenyl Isocyanate 

N C O  
2,4 TITC 2,4 Toluene Diisothiocyanate 

N

C
S

N

C
S

 
 

Figure 2.1: Chemical structures for some of the isocyanates conjugated to carrier  

proteins. 
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All proteins were prepared at 5 mg/mL in phosphate buffed saline (PBS), pH 7.4.  

Five µL aliquots of each dNCO, mono-isocyanate (NCO) or dithioisocyanate (dNCS) 

were added to 450 µL dry HPLC grade acetone (Sigma, MO) and infused with rapid 

stirring into the protein solution at a rate of 1.2 mL/hr at room temperature (RT) using 

a syringe pump (model 100; KD Scientific Inc., Holliston, MA, USA), until a molar 

ratio of 1:40 protein:dNCO (NCO or dNCS) was achieved. The resulting conjugates 

were centrifuged at 300XG for 10 minutes then dialyzed against 3X buffer changes in 

1X PBS at 4°C using molecular porous membrane tubing obtained from Spectrum 

Laboratories, (Rancho Dominguez, CA MWCO:12-14 000 kDa). HSA was acylated 

with acetic anhydride to block all available primary amines prior to reaction with 2,4 

TDI in a separate preparation. The conjugates were filtered through 0.45 µm syringe 

filters (Millipore, Billerica, MA, USA) and stored in aliquots at -20 °C until use.  

 

2.2.2 Protein Determination 

Protein determinations were perfomed on the conjugates using the Bradford method65 

with HSA as standard. The standards were in the range 5-100 µg/mL protein of HSA 

and absorbance measured at 595 nm on a spectrophotometer. Fifty µg/mL of 

conjugated protein and 50 µg/mL carrier protein were assayed similarly to standards. 
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2.2.3  TNBS Assay 

The TNBS reagent primarly assesses chemical adduction with primary amines of 

amino acids59 on the surface of the protein.   

Stock TNBS was made at 5% (50 g/L) and a borate buffer of 0.1 M pH 9.3 (8.796 

g/L). The TNBS was diluted at 1:5.68 TNBS:borate buffer with the borate buffer. 25 

µL of TNBS were added to 1 mL of sample protein diluted in ½ saturated borate 

buffer and allowed to react for 30 min and read at 420 nm. Albumin standards 

included 5, 25, 50, 250 and 500 µg/mL. A protein sample dilution with a resulting 

concentration of 50 µg/mL was made and read at 420 nm on a Beckman DU800 

spectrophotometer (Fullerton, CA).  

 

2.2.4 Preparation of Isocyanate-Peptide Adducts 

All chemical were from Sigma Aldrich. Formic acid (99.5%) was of mass 

spectrometry grade, and acetonitrile and acetone were high performance liquid 

chromatographic (HPLC)-grade. Ortho-toluene isocyanate (OTI), para-toluene 

isocyanate (PTI), 2,4 toluene diisocyanate (2,4 TDI) and 2,6 toluene diisocyanate (2,6 

TDI) were dissolved in HPLC-grade acetone. The peptides Leu-enkephalin (Leu-enk, 

YGGFL), Angiotensin I (DRVYIHPFHL), Substance P-amide (RPKPQQFFGLM-

NH2), and Fibronectin-adhesion promoting peptide (FAPP, WQPPRARI) were 

dissolved in 18 mΩ distilled deionized water (DDI) produced by a Millipore Synthesis 

A-10 (Billerica, MA). Prior to mass spectrometry analysis, peptide-NCO conjugates 

were diluted in 50/50 0.1% formic acid in DDI water/HPLC-grade acetonitrile. 
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Peptides were dissolved in DDI at a concentration of 0.5 mg/mL. Equimolar solutions 

of each of the four isocyanates were prepared in 1 mL HPLC-grade acetone and 

infused into each peptide solution at a rate of 1.2 mL/hr using a syringe pump (Model 

100, KD Scientific Inc., Holliston, MA) with constant stirring. Reactions were carried 

out at room temperature in a chemical fume hood and allowed to stir for 15 minutes 

following completion of the infusion. Peptide-isocyanate adduct solutions were 

filtered using 0.45 µm filters (Millipore, Billerica, MA) and stored at -20°C until 

analysis. 

 

2.2.5  Mass Spectrometry for Peptide Reactivity 

Each peptide adduct solution was diluted 50:1 in 50/50 0.1% formic acid/HPLC-grade 

acetonitrile, yielding a final solution concentration of all peptide-NCO species of 

approximately 100 pmol/µL. Samples were infused at a rate of 5 µL/min to a high 

performance liquid chromatographic-quadruple-time-of-flight micromass (HPLC- Q-

TOF2) (Waters Corp., Milford, MA) mass spectrometer operated in positive 

electrospray (+ESI) mode. Sample analysis was performed at a capillary voltage of 2.5 

kV with dry N2 desolvation gas (NitroFlowLab, Parker Hannifin Corp., Haverhill, 

MA) at a flow rate of 400 L/hr and a temperature of 150° C. Ultra High Purity (UHP) 

Argon was used as a collision gas at collision energies of 5 eV (MS analysis) and 25-

30 eV (MS/MS analysis). For peptide sequencing, the doubly charged [M+2H]2+ ion 

was selected by MS1, with the exception of Leu-enkephalin (the [M+H]+ ion was 

selected). The collision energy was set independently for each peptide to yield optimal 
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relative abundance of sequence-specific fragment ions. Post-acquisition mass spectral 

charge deconvolution was performed with the “MaxEnt3” algorithm in the 

ProteinLynx™ 4.1 software suite (Waters Corp., Milford, MA). The mass 

spectrometer was externally calibrated over the range 70-1570 atomic mass units using 

the CID fragment ion mass spectrum of [Glu]1-fibrinopeptide B 

(EGVNDNEEGFFSAR) [M+2H]2+ ions acquired at collision energy of 35 eV. 

 

2.2.6        Experimental Animals 

Female specific-pathogen-free inbred C57BL/6 mice were purchased from Jackson 

Laboratories (Bar Harbor, ME) at 5 to 6 weeks of age, and used for vapor exposure 

while BALB/c mice were used for the rest of the antibody production. Upon arrival, 

the mice were quarantined for 2 weeks and acclimated to a 12-hour light/dark cycle.  

Animals were housed in ventilated microisolator cages under environmentally 

controlled conditions at the National Institute for Occupational Safety and Health 

(NIOSH) animal facility in compliance with Association for Assessment and 

Accreditation of Laboratory Animal Care (AAALAC ) approved guidelines and an 

approved Institutional Animal Care and Use Committee (IACUC) protocol. The 

animal rooms were monitored for specific pathogens through a disease surveillance 

and sentinel animal program. Food and water were provided ad libitum. 
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2.2.7 TDI Exposure System 

Toluene diisocyanate (TDI; Mondur TD 80 Grade A; 80/20 mixture of 2,4 and 2,6 

isomers, respectively) was provided by Bayer Corporation, Polyurethanes Division 

(Pittsburgh, PA). The TDI exposure system has been described in detail 

previously39,66. Briefly, mice were exposed in a 1200 L stainless steel live-in chamber 

(Unifab Corporation, Kalamazoo, MI) supplied with high efficiency particulate air 

(HEPA) purified and conditioned air supply providing nine air changes per hour and 

maintaining temperature and humidity at 23 ± 2 ºC and 50 ± 5 %, respectively. Mice 

were housed individually in hanging stainless steel mesh cages and remained in the 

chamber on weekdays and were returned to ventilated shoe box style cages on 

weekends. Generation of a TDI vapor atmosphere was achieved by passing dried 

HEPA filtered air over a 50 cm2 surface of liquid TDI followed by dilution to the 

desired concentration with HEPA filtered and humidified air. The TDI concentration 

(50 ± 5 ppb) in the chamber was continuously monitored using a Remote Intelligent 

Sensor (RIS) TDI analyzer (Scott Safety and Health, Monroe, NC). The RIS units 

were calibrated against a fluorescamine assay with a detection limit of 10 ng/mL as 

previously described9. Five mice were exposed to TDI vapor for 4 hr/day, for 12 

consecutive workdays. Lymph nodes and spleens were collected 24 hrs following the 

final exposure. 
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2.2.8 2,4 and 2,6 TDI Immunization Regiment 

BALB/c were immunized 4-6 times, intraperitoneally, at biweekly intervals. Mice 

were primed with 50 µg of 2,4/2,6 TDI-KLH and that antigen concentration 

maintained for each subsequent booster immunization. Mice were immunized with 

2,4/2,6 TDI-KLH at the 1:40 (KLH: dNCO) molar ratio emulsified in TiterMax®. The 

tail vein bleeds were taken before antigen boosting every other week and compared 

with the baseline bleeds to determine the development of specific immunological 

sensitization. The sera (polyclonal) antibodies were screened for specificity to 2,4/2,6 

TDI-HSA and also investigated to see if they can discriminate against other forms of 

isocyanate-protein conjugates to validate that the antibodies were protein carrier-

independent. This was done using the conjugates as solid-phase antigen in an alkaline-

phosphatase-based indirect ELISA. A final boost of 50 µg antigen without the 

adjuvant was given three days prior to hybridoma production. 

 

2.2.9 Monoclonal Antibody Production and Storage 

Hybridomas were produced following standard techniques as previously described 67 

using SP2/0-AG14 myelomas (American Type Culture Collection (ATCC) # CRL-

1581) as fusion partners and polyethylene glycol (PEG) (molecular weight 1500 Da) 

as the fusagen. 

Mice were euthanized by CO2 asphysation. Spleens and (lymph nodes in the case of 

TDI vapour exposed mice) were removed using aseptic techniques. All work was 

carried out under sterile conditions in tissue culture room. All surfaces were wiped 
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with 70% alcohol prior to use and work was carried out in Sterigurd III Advance® 

class II biological safety cabinet ( The Baker Company, Sanford, ME). 

 

A spleen cell suspension was formed using a scalpel to gently free the cells from the 

capsule into a petri dish containing 10 mL of serum-free Dulbecco’s Modified Eagles 

Media (DMEM) (Life Technologies, Rockville, MD). The spleen cell suspension, free 

from large particulates, was transferred to a 15 mL centrifuge tube and centrifuged at 

300 G for 5 min at 4°C. The cells were resuspended in 1 mL of pure water for red cell 

lysis for 1 minute and  three rinses in 10 mL of serum-free DMEM were performed to 

remove burst  red blood cells. The final step was to suspend the spleen cells in 4 mL of 

fetal bovine serum (FBS) . 

 

Mouse spleen cells (1x108 to 1x1015) were fused in a 10:1 ratio with SP2/0-AG14 

myeloma tumor cells PEG solution. The fused cell suspension was diluted in 100 mL 

of complete DMEM supplemented with 1 mM pyruvate, 100 units/mL penicillin, 100 

µg/mL streptomycin, 0.292 mg/mL L-glutamine, 100 µM sodium hypoxanthine, 16 

µM thymidine, 10% fetal calf serum (HyClone, Logan, UT) and 100 units/mL IL-6 

(Boehringer Mannheim, Germany) containing hypoxanthine, aminopterin, and 

thymidine (HAT) (Sigma, MO). 

 

Cell cultures were incubated at 37°C with 10% CO2 (model 370 Steri-Cycle CO2 

incubator, Forma Scientific Inc., Marietta, OH). After 1 week, the wells were scored 
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for clone growth using a Leitz-Wetlar inverted light microscope. One hundred µL of 

complete media per well was replaced with hypoxanthine , aminopterin and thymidine 

(HAT) selection media plus colony stimulating factor IL-6 and cells were allowed to 

grow for another week. Two weeks post fusion, HAT cell culture media was replaced 

(100 µL/well) with complete DMEM plus IL-6. Hybridoma containing wells were 

screened after sufficient growth. Indirect ELISA was used to determine antibody 

secreting hybridomas to the selected protein. Positive wells on the screening plate 

indicated antibody secreting hybridoma wells on the cell fusion culture plate. Prior to 

freezing and limiting dilution, antibody secreting hybridoma cells (100 µL cell 

suspension) were transferred to 24-well tissue culture plates (Nalge Nunc) for 

expansion in complete DMEM plus IL-6 (2 mL/well). After sufficient growth, cells 

were screened against their respective antigen for a second time to confirm antibody 

secreting hybridomas. Positive hybridomas were cloned by limiting dilution. 

Hybridomas (100 mL cell suspension) were seeded onto a 96- well tissue culture plate 

in complete DMEM plus IL-6 media and serially (1:2) diluted across the plate to 

isolate a single hybridoma and establish true individual clones. During the fusion 

process, multiple hybridomas could grow within the same well, so limiting dilution 

was necessary to establish an individual hybridoma and not a collection of 

hybridomas. In addition to clonal limiting dilution, a 1 mL cell suspension from the 

24- well plate was transferred to a tissue culture flask in complete DMEM media for 

further expansion and freezing to ensure hybridoma preservation. Single colonies on 

the dilution plate were identified and screened by indirect ELISA to confirm antigen 
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specific antibody secreting hybridomas and the best three colonies per plate were 

selected for expansion, freezing, antibody production, and subsequent use. Selected 

hybridomas were then grown in tissue culture flasks in complete DMEM media to 

collect sufficient quantities (200 to 300 mL) of supernatant fluid for use. After 

complete cell coverage of the flask, 50 mL of media was added to the flask and 3 to 5 

days later, the media was collected. The process was repeated until sufficient (200 to 

300 mL of cell culture supernatant fluid) quantities of mAbs were harvested. Aliquots 

of stable TDI-specific hybridomas were frozen in a mixture of 10% (v/v) 

dimethylsulfoxide and 90% fetal calf serum for storage in liquid nitrogen.  

 

2.2.10  Enzyme-linked Immunosorbent Assay (ELISA) Formats 

Format for hybridoma screening.  

The screening assay was a critical stage in antibody production because the reagents 

generated are only as good as the selection system employed. The immune system 

generates a wide range of specifities and affinities. It was important that mAbs were 

screened against HSA -TDI conjugates and appropriate controls like KLH and HSA 

included so that only antibodies with desired specificity were selected or otherwise 

valuable time would be lost due to false positives or false negatives. 

 

Hybridoma screening tests were carried out using an indirect ELISA according to 

Schmechel et.al 68,69. MaxiSorp™ ELISA plate wells (Nalge Nunc International, 

Naperville, IL) were coated with 5 µg/mL of 2,4 TDI -HSA  and incubated overnight 
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at room temperature (RT). The plates were kept in a plastic box containing moist filter 

paper. Following overnight incubation and all subsequent ELISA steps, wells were 

washed 3 times with 200 µL PBS with 0.05 % Tween 20 (PBST) /well.  The plates 

were blocked by incubating for 1 hr at RT in 200 µL/well PBST containing 1% non-

fat dry milk powder (PBSTM). Initial hybridoma culture supernatant (CSN) fluids 

were diluted 1/5 in PBSTM and 100 µL/well were incubated for 1 hr at 37 °C. Bound 

antibodies were labeled by incubation with 100 µL/well of Biotin-SP-conjugated 

Affinity Pure goat anti-mouse IgG+ IgM secondary antibody  diluted 1/5000 in 

PBSTM (Jackson Immuno Research Laboratories, Inc., West Grove, PA) for 1 hr at 

37° C. One hundred µL of alkaline phosphatase-conjugated streptavidin at a dilution 

of 1/5000 in PBSTM (Jackson Immuno Research Laboratories, Inc., West Grove, PA) 

was added and incubated for 1 hr at 37 °C. The ELISA was developed by incubating 

100 µL p-nitrophenyl phosphate-containing 2 mg /mL in (1M diethanolamine, 0.001M 

MgCl2 in distilled water, pH 9.8) at RT for 30 minutes. The optical density (OD) was 

determined spectrophotometrically at 405 nm using an UltraMicroplate Reader, Model 

ELx800 (BIO-TEK Instruments, Inc., Winooski, VT). Assay background controls 

were processed in parallel and contained plain cell-free culture medium instead of 

mAb supernatant fluid. Optical densities greater than 3 times the OD at 405 nm of the 

background controls were considered to be positive.  
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Antibody Isotyping and Quantification.  

Antibodies produced by TDI-specific hybridomas were isotyped using a mouse 

monoclonal isotyping reagent kit (Jackson Immuno Research Laboratories, Inc., West 

Grove, PA) according to the manufacturers’ instructions. In brief, plates were coated 

with antigen e.g 2,4 TDI-HSA, blocked and washed as described for the screening 

ELISA. To determine the isotype, bound mAbs were incubated with 100 µL of Biotin-

SP-conjugated goat anti-mouse isotype-specific secondary antibodies (IgG1, IgG2a, 

IgG2b, or IgG3).  

 

The monoclonal antibodies were quantified using isotype specific ELISA kits 

(Jackson Immuno Research Laboratories, Inc., West Grove, PA) according to the 

manufacturers’ instructions. The amount of specific antibody in the supernatant fluid 

was determined from a standard curve generated with specific antibodies of known 

concentrations. The standards and supernatant fluid were assayed in parallel. 

 

Antibody and antigen titration. 

Antibody and antigen titrations were done to determine the optimum concentration of 

antibody and coating antigen to use for the reactivity studies. Plates were coated with 

varying amounts of 2,4-/2,6 TDI-HSA from 40 µg/mL to 0.125 µg/mL, overnight, and 

the solid phase antigens were reacted to antibodies serially diluted from 1:2000 to 1: 

564000. A range of antigen concentration and antibody concentration within the linear 

range was chosen for reactivity assays. 
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ELISA Format for mAb reactivity. 

The mAb’s reactivity toward proteins conjugated to several different dNCOs, NCOs 

and dNCSs was tested using an alkaline phosphatase-mediated indirect ELISA. 

PolySorp™ ELISA plate wells (Nalge Nunc International, Naperville, IL) were coated 

with 5 µg/mL of test antigen by overnight incubation at RT. The plates were processed 

as previously described for the antibody screening ELISA except Biotin-SP-

conjugated Affinity Pure goat anti-mouse IgM or IgG  at a dilution of 1/5000 was used 

as secondary antibody. The results represent the average OD405nm of 4 ELISA well 

replicates, which were corrected by subtracting the average OD405nm of 4 ELISA 

background control wells.  

 

ELISA format for affinity constant (Ka) measurements. 

The method described below is derived and adopted from Beatty 70 et.al. 

Standardization ELISAs were carried out to determine the antibody and antigen 

concentration that would result in saturation kinetics. For 2,4 TDI-HSA antibodies the 

antigen concentrations used were 2.5 µg.mL, 1.25 µg/mL, 0.625 µg/mL and 0.312 

µg/mL. For 2,6 TDI-HSA antibodies the antigen concentrations used were 0.625 

µg.mL, 0.3125 µg/mL, 0.156 µg/mL and 0.0781µg/mL and antibody concentrations 

ranged from10-7 to 10-10 M  in all the assays .The rest of the steps were identical to 

screening ELISA. 
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In summary, ELISA were plates pre-coated with four different concentrations of 2,4-

/2,6 TDI-HSA ([Ag]i, [Ag] ii to [Ag]iv) and were separately incubated with serial 

concentrations of each mAb. Sigmoid curves were constructed using the OD values 

obtained for different concentrations of each mAb to calculate the affinity constant. 

The half maximum OD (OD-50) was determined for all selected curves from which 

the corresponding antibody concentration ([Ab] i, [Ab]  ii, to [Ab] iv) was extrapolated. 

Accordingly, [Ab] i and [Ab] ii are the measurable total Ab concentrations at ODi-50 

and ODii-50 for plates coated with [Ag] i and [Ag] ii, respectively. The affinity constant 

was finally determined using the following equations: 

 

�� � �� � ����     (1) 

Then,   �� 	 
����

���
��    (2) 

   For  ������ 	 �����
2�    (3), 

�� 	 �� � 1�/2�������� � 
����   (4) 

Where Ab = antibody, Ag = antigen, AbAg = antibody-antigen complex and  

n = [Ag]i/[Ag] ii resulting in 6 calculations of Ka  possible with 4 different antigen 

concentration70.Curves were generated by using a four parameter logistic model (Hill-

Slope model) and used to calculate OD-50. 
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2.2.11  Sodium Dodecyl Sulfate- Polyacrylamide Gel Electrophoresis (SDS–

PAGE). 

Gel electrophoresis was performed using 10% SDS–PAGE gel and run in 

tris/glycine/SDS buffer (Bio-Rad, Hercules, CA) at room temperature on a Mini-

PROTEAN II® electrophoresis unit (Bio-Rad, Hercules, CA) set at 100 volts for 2 

hrs. A sample aliquot of the protein conjugate  was combined with equal volumes 

(1:1) of LaemmLe sample buffer, 62.5 mM Tris-HCl, pH 6.8; 2.0% SDS (w/v); 25% 

glycerol; 2.5% β-mercaptoethanol ; and 0.01% (w/v) bromphenol blue and then heated 

(90 to 100 °C for 5 to 10 min) to denature and reduce the proteins in the presence of 

SDS. Gel lanes were loaded with equal amounts of total protein or equal volumes. 

After completing the separation, the gel was placed in a plastic container, rinsed with 

distilled deionized water, stained using GelCode® staining reagent (Pierce, Rockford, 

IL) for 1 h, then destained using distilled deionized water for band visualization or 

used in Western blotting. 

 

2.2.12  Western Immuno-blotting 

After SDS-PAGE protein separation, the gel was placed in a dish and rinsed with 

distilled deionized water. The gel was then loaded into a Mini Transblot Cell (Bio-

Rad) and the protein bands transferred overnight (4 °C) in transfer buffer (25 mM 

Tris, 192 mM glycine, 20% (v/v) methanol, 0.05% (w/v) SDS) to a nitrocellulose 

membranes (0.2 µm, Bio-Rad) using a setting of 40 mA. To prevent non-specific 

binding, the membrane was placed in a plastic container with 50 mL of 3% bovine 
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serum albumin and incubated for 2 h at room temperature on an orbital shaker. After 

blocking, the membrane was rinsed three times with 50 mL of PBST. The membrane 

was incubated for 1 hr with a 1/10 dilution of mAb culture supernatant for 1 h. After 

washing, the blot was incubated with Biotin-SP-conjugated Affinity Pure goat anti-

mouse IgM/IgG secondary antibody at a dilution of 1/5000 in 3% BSA in PBST for 1 

h at 37 °C. Immune complexes were labeled with alkaline phosphatase-conjugated 

streptavidin by incubating a 1/5000 dilution in 3% BSA in PBST for 1 hr at 37 °C. 

Protein bands were visualized using a nitroblue tetrazolium/bromo-chloro-indolyl 

phosphate substrate reagent kit (NBT/BCIP Promega, Madison, WI). Color was 

allowed to develop for 5 min and stopped by washing the membranes with 

distilled/deionized water. 

 

2.2.13  ELISA Dot Blot  

A dot-blot analysis was carried out to evaluate the mAb reactivity towards native and 

denatured proteins and conjugates. Native TDI-conjugates (4 µL of 5 µg/mL of 

antigen per spot) were spotted onto a nitrocellulose membrane (0.2µm, Bio-Rad) and 

allowed to dry overnight. The dot blots were repeated using denatured carrier proteins 

and TDI conjugates that, were treated with (β-)2-mercaptoethanol (final concentration 

25 mL/L) at 100 °C for 10 minutes prior to spotting. All the other steps were identical 

to the Western blot protocol with regard to incubation times and color development.   
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2.2.14  In vitro Exposure System for Cells and Protein Solution 

Mouse serum albumin (MSA, 2 mg/mL, Sigma) or live A549 and BEAS-2B cells 

(ATCC # CCL-185 and CRL-9609 respectively) were exposed to vapor phase TDI 

using a VITROCELL® exposure system (VITROCELL Systems, Inc. Waldkirch, 

Germany). A549 cell line was initiated in 1972 by Giard et al71 through explant 

culture of lung carcinomatous tissue from a 58-year-old Caucasian male. BEAS-2B 

cell line are epithelial cells isolated from normal human bronchial epithelium obtained 

from autopsy of non-cancerous individuals72. Cells were seeded on Transwell® culture 

inserts and grown at 37 °C/5% CO2 to confluence prior to exposure. A vapor 

atmosphere of 50 ppb TDI was generated using the animal exposure system at NIOSH  

according to Johnson et al39. Briefly, neat TDI was injected into a heated air stream 

using a microprocessor controlled syringe pump and then mixed with the appropriate 

volume of dilution air to achieve 50 ppb within the exposure chamber. Concentration 

was monitored in real time using RIS Area Monitors (Scott Instruments, Monroe NC).  

The TDI vapor was drawn across the surface of the MSA solution or cells at the air-

liquid interface using a vacuum pump.  Air flow rate (static open air, 20, 100 and 200 

mL/min) and exposure time (1, 2 and 4 hrs) were varied to determine their impact on 

protein conjugation.  Flow rate of 100 mL/min approximates the minute ventilation of 

a mouse.  The exposure system was maintained at 37 °C throughout the entire 

exposure using a circulating water bath. Immediately following exposure, MSA 

solution was aliquoted and frozen at -80 °C until analysis.  Cells were harvested using 

T-Per total protein extraction reagent (Thermo Scientific/Pierce, Rockford IL) 
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according to the manufacturers protocol and lysates were frozen at -80 °C until 

analysis. 

 

Western immuno-blot detection of TDI-protein conjugation 

One µg of TDI-MSA conjugate (positive control, prepared in solution as per Johnson 

et. al39 and 10 µg of MSA or total cell lysate were separated by electrophoresis using a 

7.5% SDS-PAGE gel for 1 h and then transferred for one hour at 100 V to a 

polyvinylidene fluoride (PVDF) membrane at 4 °C. The membrane was blocked with 

Odyssey Blocking Buffer® (Li-Cor Bioscience, Lincoln NE) for 1 h at room 

temperature and then incubated with various isocyanate-specific mAbs (Clones 60G2, 

2E5, 62G5, 77E6, 79G7, 67C4, 66F7) overnight at 4 °C. After washing, the blot was 

incubated with goat anti-mouse IgG secondary antibody tagged with IRDye® 800CW 

(Li-Cor Bioscience, Lincoln NE) for 1h with a 1:15,000 dilution. The proteins were 

detected using an Odyssey infrared imaging system (Li-Cor Bioscience Lincoln NE). 
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CHAPTER 3 

CHARACTERIZATION OF ISOCYANATE SPECIFIC BINDING SITES ON  

PROTEIN-ISOCYANATE CONJUGATES. 

 

3.1  Introduction 

It is imperative to understand better the bioorganic and physical chemical reactions of 

dNCOs under biologically-relevant conditions. Incorporation of this understanding in 

the production of tools with applications in both biological and dNCO disease 

mechanistic investigations is of paramount importance. Reactive low molecular 

weight (LMW) chemicals are incomplete antigens and as such are incapable of 

eliciting specific IgE or IgG antibody responses alone73. A LMW chemical may act as 

a hapten to form complete antigen by combining with autologous host proteins present 

in the respiratory tract or skin. This chapter presents the preparation and 

characterization of antigens that were used for the production and subsequent analysis 

of monoclonal antibodies. Reagent grade chemicals with a high degree of purity were 

used for the preparation of conjugates. 

 

Chemical characterization was used to determine whether conjugation had been 

achieved and to semi-quantitate the ratio of chemical ligands bound per molecule of 

carrier protein. Chemical characterization of TDI-haptenated proteins is a very 

difficult task, as TDI can polymerize, and form inter/intra cross-links with protein 

sites. Several techniques were employed to evaluate the TDI conjugated proteins. 
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These included: 

(1) loss of primary amines from the protein as assessed by loss of reactivity to 

TNBS74-76. The isocyanate binding fraction was calculated as the percent of amine 

groups that had reacted with isocyanates according to Lemus et al55 as follows: 

A

xA
S

]100[
100%

*

−=     (3.1) where S is the substitution, A* is the absorbance 

at 420 nm of the isocyanate conjugate and A is the absorbance 420 nm of  the carrier 

protein. The number of carrier groups was determined before and after conjugation 

and the difference in amino acids is the number of hapten groups bound to carrier 

amines. 

(2) shift in average protein mass as assessed by MALDI-TOF-MS and gel 

electrophoresis, and 

 (3) identification of specific binding sites following protein enzymatic digestion and 

analysis by HPLC-Q-TOF. 

 

The basis of allergen serology is the specific three-dimensional structure of the 

allergen77, which remains incompletely defined for dNCO asthma and has been a 

major obstacle to research and clinical studies. Isocyanates change protein structure 

upon reaction creating neo-epitopes13,19 and are thus more challenging to standardize 

compared to other allergens. A theoretical understanding and technical methods for 

generating biologically relevant isocyanate antigens is crucial to diisocyanate 

immunoassays and hence, extensive characterization of the antigens, by methods 

outlined above. Wisnewski and colleagues 51 noted standardization issues regarding 
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various methodologies particularly in reference to conjugate preparation. Although it 

would be desirable to generate dNCO-protein conjugates under physiologic or real life 

human exposure conditions, this is difficult to achieve experimentally, in part due to 

practical reasons and that the exact immunologic proteins/epitopes are not fully 

understood. Conjugate preparation is a multi-step process that has to take into account 

the following variables:  

(1) The particular diisocyanate or commercial product to be conjugated 

(2) The protein carrier 

(3) Reaction conditions (e.g., the protein concentration, mixing strategies, reaction 

time and temperature), and 

(4) Post reaction-processing (i.e.,  stopping reaction , conjugate isolation and 

purification) 

 

3.2  Results and Discussion 

 

3.2.1  Choice of Isocyanates  

In theory, it makes sense to prepare the conjugates using commercially relevant 

starting material (e.g., polymeric MDI, HDI prepolymer or 80/20% TDI). In the initial 

study commercially produced 80/20% TDI mixture was used to expose mice to 50 ppb 

vapor. However, optimal vapor exposure conditions for mAb production are not 

known and hyperimmunization may be desired to achieve mAbs with a range of TDI-

protein selectivities. Thus, conjugates prepared using the monomeric forms of TDI, 
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MDI or any other isocyanates were used for both sensitization and mAb 

characterization. The TDI-adduct formation was modified by (1) changing position of 

NCO group on benzene ring, (2) removing one NCO, (3) substituting one NCO with a 

methyl group, or (4) substituting dNCO groups with dNCS groups (See Figure 2.1).  

 

The isocyanate functional groups in TDI can potentially react with a hydroxyl group 

(in hydrophobic pockets) to form a urethane linkage, a thiol group to form a thiourea, 

or an amine group to form a urea. 2, 4-TDI is an asymmetrical molecule and thus has 

two isocyanate groups of different reactivity. The 4-position is more reactive than the 

2-position because it is more accessible21. 2, 6-TDI is a symmetrical molecule and thus 

has two isocyanate groups of similar reactivity, similar to the 2-position of 2, 4-TDI. 

Reaction of one isocyanate group will cause a change in the reactivity of the second 

isocyanate group because both isocyanate groups are attached to the same aromatic 

ring. The first NCO of a diisocyanate may form a urea linkage with a primary amine 

of a protein while the second NCO may be hydrolyzed to an amine with the potential 

to react with additional NCO groups to undergo intra- or intermolecular cross linking 

with other proteins resulting in dimers, trimers and so forth12.  Intra- and 

intermolecular crossing can also be mediated by a single dNCO molecule reacting to 2 

separate amino acids.   
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3.2.2  Choice of Carrier Protein 

In vivo conjugation of TDI to proteins in the human airways is thought to be a primary 

event in TDI exposure40. However, the characterization of dNCO haptenated proteins 

is complicated by the ability of the dNCOs to haptenate multiple proteins, to self-

polymerize and form both intra- and intermolecular cross-links with diverse proteins 

and non-protein species.  

 

HSA is the protein most widely used in the preparation of LMW chemical-protein 

conjugates. Protein carriers other than HSA have also been used successfully for this 

purpose, although they have been of limited clinical use with such antigens78. It is 

important that the right conjugation ratio is achieved since the immunologic reactivity 

of the resulting conjugate may be different depending on the number of exposed 

antigenic epitopes79. 

 

The antigens used in the characterization of the mAbs produced in this thesis were 

divided according to (a) the chemical nature of the carrier protein as basic (lysozyme), 

acidic (HSA) or insoluble (keratin); (b) the origin of the carrier protein as animal or 

human (MSA or HSA). 

 

Diisocyanates may react with a number of different proteins and peptides present in 

the airway fluids and tissues. In most studies, HSA has been the carrier of choice in 

preparing diisocyanate conjugates. Wisnewksi et. al 15 found HSA to be the 
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predominant soluble extracellular HDI-conjugated protein in airway lavage fluid of 

subjects exposed to an HDI aerosol, whereas keratin 18 was the predominant 

sdiisocyanate conjugate in endo bronchial biopsy samples. It has also been shown that 

serum albumin is the major protein in plasma to which both MDI and TDI adducts are 

formed16,80. Studies have also identified other molecules in the respiratory tract that 

are modified by isocyanates including laminin, tubulin17 and glutathione81,82. HDI-

HSA conjugates have been shown to elicit human innate system responses83. In this 

thesis, HSA was chosen as our carrier protein for the screening assay of monoclonal 

antibodies. Other proteins chosen for the characterization of the antibodies, these 

included keratin, lysozyme and MSA. Evaluation of cross-reactivity was also carried 

out with analogous mono- and di- isocyanates using either standard or inhibition 

assays. 

 

3.2.3  Reaction Conditions 

Protein in PBS at pH 7.4 was used for conjugation and introduced the isocyanate in 

dry acetone solvent to prevent hydrolysis and polymer formation before the 

conjugation reaction. Under test tube conditions isocyanates would have the following 

order of reactivity: sulfydrls >> primary amines > secondary amines > hydroxyls20 as 

shown in Scheme 3.1. 
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Scheme 3.1: The highly reactive nature of isocyanates is highlighted in this 

scheme. 
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3.2.4 Post Reaction Sampling 

The use of quenching agents or dialysis to stop the reaction may also contribute to 

variability in the structure of the final antigen. Theoretically, stopping after a certain 

reaction time may influence degree of conjugation or the quenching agent may ‘cap’ 

any unreacted functional group on the second reactive isocyanate group, possibly 

yielding a unique and possibly irrelevant antigenic determinant40. Similarly, dialysis 

with ammonium bicarbonate, for example, may result in formation of a product 

capped with urea52. In our conjugations, it was felt there was no need to quench or 

stop the reaction because the diisocyanates are readily hydrolyzed in aqueous 

environment8. In the reaction mixture hydrolysis was a competing reaction with 

conjugation, hence the need for a slow controlled addition of the isocyanate was used 

to increase conjugation as opposed to hydrolysis. Post reaction stirring was done for 

15mins to completely evaporate the acetone solvent used to deliver the isocyanate. 

Dialysis was also done to remove any soluble toluene diamine (TDA) using a 

molecular cut-off of 14 kDa since our conjugates were greater than 60 kDa and a 

molecular cut-off of 3.5 kDa for the lysozyme (Mwt 14.6 kDa) conjugate since it is a 

smaller protein. After dialysis, the conjugates were sterile filtered at 45 µm pore size 

to remove any precipitated TDA formed from the hydrolysis of dNCOs with the 

aqueous environment. 
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3.3 Reaction Product Characterization 

3.3.1  Bradford Protein Quantification.Assay 

The Bradford protein assay was used to quantify the amount of protein after 

conjugations. Four spectroscopic methods are routinely used to determine the 

concentration of protein in  solution84. These include measurement of the proteins by 

intrinsic UV absorbance or by reaction to protein amino acids producing 

color/absorbance changes (Lowry assay85, the Smith Cooper/Bicinchonic assay and 

the Bradford dye assay65). 

 

The Bradford assay is fairly accurate and fast as compared to the other assays. It is a 

colorimetric assay based on an absorbance shift in the Coomassie dye from the 

previously red form of the Coomassie dye to blue following binding to a protein. The 

bound form of the dye has an absorption spectrum maximum at 595 nm, while the 

unbound form is red at 465 nm65.  The Bradford assay is less susceptible to 

interferences by various chemicals that may be present in the sample86. The amino 

acids of interest are the hydrophilic arginine and hydrophobic phenylalanine, 

tryptophan and proline (aromatic amino acids)86. 

 

The method was not able to quantify  non-polar or basic proteins, such as  keratin and 

lysozyme respectively, as these are insoluble in physiological buffers, because the 

Bradford reagent is water-soluble87. The assay is less accurate for basic or acidic 
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proteins. The assayed protein concentrations were approximately 5 mg/mL (see Table 

3.1).  

 

3.2.2 Extent of Conjugation 

The extent of adduction of the conjugates was analyzed by the two methods presented 

in Table.3.1. Using TNBS we found that there was conjugation. However, some of the 

conjugates gave a negative TNBS assay result. The TNBS reagent assesses primarily 

chemical adduction with primary amines of amino acids 59 on the surface of the 

protein. Additional analyses were also performed using mass spectrometry. For a 

molar ratio of 1:40 HSA:dNCO, the  TNBS assay indicated 10 bound TDI adducts 

which is in agreement with the 11 amine residues available for binding on the surface 

of HAS. Mass spectrometry, however, detected 23 adducts/TDI moieties. This 

difference may be attributed to dNCO reacting with nucleophilic groups other than 

amines with extensive cross-linking and polymerization of the dNCO causing it to 

have a high number of conjugations adducts.  Binding of one isocyanate to the protein 

and hydrolysis of the other on a dNCO will also result in no net change in the number 

of available primary amines and no decrease in TNBS absorbance.   
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Spectral Scan of HSA -TNBS 
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Figure 3.1: Spectral scan of TNBS-HSA complex. [HSA] µg/mL a) 120 b) 60 c) 30 

d) 15 e) 7.5 f) 3.75 g) 1.875 h) 0.9375. Scan showing HSA-TNBS complex spectra. A 

wavelength of 420 nm was used in the TNBS assay to measure amine reactivity and 

extent of reaction, because there is no solvent or reactant interference. 
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Figure 3.2:  HSA standard curve used in the TNBS Assay. Samples whose 

absorbance at 420 nm is within the linear range of the standard curve were assayed, 

their absorbance values compared with the curve and used to calculate the extent of 

conjugation in relation to HSA. 
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Table 3.1: Characterization of protein adducts using spectroscopic procedures. 

Protein Measured 
Concentrati
on (mg/mL) 

% Substitution 
(Using equation 

3.1) 

Number of 
bound 

Isocyanate by 
TNBS 

Number of 
bound 

Isocyanate by 
Mass 

spectrometry 
HSA 5.7 0 0  

2,4 TDI-HSA 
1:40 

4.4  
87 

 
10 

 
23 

2,4 TDI-HSA 
1:10 

4.41  
90 

 
11 

 

2,6 TDI-HSA 
1:40 

4.3  
85 

 
2 

 
43 

2,6 TDI-HSA 
1:10 

3.7  
69 

 
9 

 

2,4;2,6 TDI-
HSA( pure) 

4.1  
85 

 
9 

- 

2,4;2,6-TDI-
HSA 

(industrial) 

4.5  
82 

 
9 

- 

2,4 1st ;2,6 
2nd TDI-HSA 

5.6  
70 

 
8 

 
3 

2,6 1st ;2,4 
2nd TDI-HSA 

5.4  
61 

 
5 

 
3 

Collagen 0.1 0 - 0 
2,6 TDI-
Collagen 

-  
61.8 

- - 

2,4 TDI-
Collagen 

- - - - 

Keratin - 0 - - 
2,4 TDI-
Keratin 

-  
- 

- - 

2,6 TDI-
Keratin 

-  
- 

- - 

Lysozyme - 0 - 0 
2,4-TDI-

Lysozyme 
-  

- 
- 3 

2,6 TDI-
Lysozyme 

-  
- 

- - 

HDI-HSA 4.5 77 8 26 
MDI-HSA 5.0 66 7 25 

AHSA 0.2 - - - 
2,6 TDI-
AHSA 

- - - - 

2,4 TDI-
AHSA 

- - - - 
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Protein Measured 
Concentrati
on (mg/mL) 

% Substitution 
(Using equation 

3.1) 

Number of 
bound 

Isocyanate by 
TNBS 

Number of 
bound 

Isocyanate by 
Mass 

spectrometry 
KLH 6.1 0 - 0 

2,4 TDI-KLH 
1:40 

5.2  
84 

- - 

2,4 TDI-KLH 
1:10 

5.6  
77 

- - 

2,6 TDI-KLH 
1:40 

5.2  
84 

- - 

2,6 TDI–
KLH 1:10 

5.9  
84 

- - 

PTI-HSA 
1:40 

2.5 21 2 3 

PTI-PTI 1:10 4.2 12 1 - 
OTI-HSA 

1:40 
3.1 40 4 - 

OTI-HSA 
1:10 

3.8 26 3 - 

PI-HSA 1:10 4.0 10 1 - 
PI-HSA 1:40 3.0 14 2 5 

2,4 TDI-
MSA 

3.4 53 - 15 

2,6 TDI-
MSA 

3.3 30 - 5 

2,4 TITC-
HSA 

3.4 39 4 4 

2,6 TITC-
HSA 

2,6 37 4 2 

2,3 DMPI-
HSA 

4.6 83 9 25 

2,5 DMPI-
HSA 

3.1 81 9 27 

3,5 DMPI-
HSA 

3.3 73 8 22 

 

The MALDI mass spectra in Figure 3.3 show typical scans collected for the native  

protein and its conjugates. The determination of bound dNCOs was calculated by mass 

difference by subtracting the unconjugated carrier protein mass from the conjugated 

protein mass. The average molecular weight (MW) of HSA was 66679 amu. The 
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average MW for 2,4 TDI-HSA was 70743 amu indicating an average of 23 dNCO 

moles/mole HSA, while that for 2,6 TDI-HSA indicated a 43 dNCO moles/mole HSA. 

Campo44 et. al compared HDI conjugations from various groups using different 

conjugation techniques ranging from 0.3 to 33 dNCO: HSA and in our study we had a 

range from 0 to 43 dNCO:HSA by mass spectrometry. 

 

The spectra also suggested  dimer formation as there  were peaks at around 120 000 

amu (data not shown), an observation corroborated by protein blots shown in Figure 

3.4 . This can be due to one dNCO cross linking two molecules of HSA or due to gas- 

phase dimerization of the proteins . There was no difference in conjugation extent 

between pure 2,4/2,6 TDI- and the industrial 2,4/2.6 TDI-HSA conjugates. 



 

Figure 3.3: Representative mass s

mass spectra of HSA control;

HSA. See Appendix A for some of the conjugate

Representative mass spectra for protein characterization

ss spectra of HSA control; 2, 4 TDI-HSA; 2,6 TDI-HSA; MDI-HSA and HDI

dix A for some of the conjugate MALDI spectra. 

50 

for protein characterization. Typical 

HSA and HDI-
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3.3.3  Conjugate Analysis 

 

 

Figure 3.4: 6% SDS-PAGE Protein blot of conjugates. Lane 1, Precision Plus 

Protein™ standard (Bio-Rad) molecular weight marker; Lane 2, HSA; Lane 3, 2,4 

TDI-HSA; Lane 4,  2,6 TDI-HSA; Lane 5, 2,4:2,6 TDI-HSA; Lane 6, 2,3 DMPI; Lane 

7, 2,5 DMPI; Lane 8, 3,4 DMPI; Lane 9, OTI-HSA; Lane 10, PTI-HSA; Lane 11, 

HSA; Lane 12, MDI-HSA; Lane 13, HDI-HSA; Lane 14, 2,4 TITC and Lane 15 2,6 

TITC. 

 

Figure 3.4 is a representative SDS-PAGE Coomassie blue stained protein gel of 

diisocyanate-, monoisocyanate- and diisothiocyanate- conjugated HSA. The protein 

stain showed extensive cross-linking of the 2, 4 TDI-HSA and also the other 

diisocyanates. Minor higher MW protein bands were observed in the unconjugated 

HSA standard (lane 2).  There are upward shifts in the dNCO conjugated HSA in 

Lanes 3, 4, 5, 12 and 13. This indicates formation of polymers through intermolecular 
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cross-linking and addition of multiple TDIs to HSA.  It is also apparent that inter-

molecular cross-linking of dNCS haptenated protein (Lanes 14 and 15) was not as 

extensive as seen with dNCO.  The apparent lower molecular weight of some dNCO-

HSA conjugates compared to unconjugated HSA may be due to intra-molecular cross-

linking that prevents complete denaturation and an increase in electrophoretic mobility 

of the conjugates. Monoisocyanates are not capable of cross-linking nucleophilic 

moieties within or between proteins (Lanes 6-10). 

 

3.3.4: Tandem Mass Spectrometry 

Attempts to analyze our conjugates by digestion and tandem mass spectrometry were 

conducted. This proved to be difficult due to the complex nature of the product 

formed. Table 3.2 below shows representative data of the possible NCO-HSA digest 

that we had and the observed shifts in m/z. We then decided to start by using simple 

peptides and a combination of mono-substituted diisocyanate and diisocyanates to 

develop methods and databases that we could use for our dNCO-HSA conjugation 

sites. Figure 3.5 show a MS/MS spectrum from TDI-PI, showing  conjugated Lys236. 
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Table  3.2. Represeantative data of the theoretical MS/MS conjugate peptide 

analysis 

 

Table 3.2 shows possible theoretical fragments that could have reacted with the NCOs. 

After digestion and mass spetral deconvolution, a computer program would search for 

any peaks with mass shifts that would correspond to any of our bound isocyanates. 

Table 3.2 is representative of expected mass to charge ratio of unconjugated HSA, PI 

conjugated, TDI conjugated single charged molecule and doubly charged molecule 

and the positions on the primary structure HSA. 

 

m/z  PI  M+2H  1 TDI  Amino 
acids 
positions  

mc  Peptide sequence 

4089.87
9  

4208.917  2104.96213  4237.03  301-337  1  ECCEKPLLEKSHCIAEVEN
D EMPADLPSLAADFVESK  

4037.89
3  

4156.930  2078.96893  4185.05  509-543  1  RPCFSALEVDETYVPKEFN
A ETFTFHADICTLSEK  

3626.80
8  

3745.845  1873.42648  3773.96  397-426  1  VFDEFKPLVEEPQNLIKQN
C ELFEQLGEYK  

3563.86
0  

3682.897  1841.95248  3711.01  45-75  1  ALVLIAFAQYLQQCPFEDH
V KLVNEVTEFAK  

3514.67
2  

3633.71  1817.35863  3661.82  131-160  1  DDNPNLPRLVRPEVDVMC
TA FHDNEETFLK  

3407.61
0  

3526.647  1763.82758  3554.76  384-413  1  CCAAADPHECYAKVFDEF
KP LVEEPQNLIK  

3365.68
7  

3484.724  1742.86588  3512.84  37-65  1  DLGEENFKALVLIAFAQYL
Q QCPFEDHVK  

3362.52
2  

3481.559  1741.28338  3509.67  311-341  1  SHCIAEVENDEMPADLPSL
A ADFVESKDVCK  

3059.49
9  

3178.536  1589.77208  3206.65  470-496  1  MPCAEDYLSVVLNQLCVL
HE KTPVSDR  

2917.32
2  

3036.36  1518.68363  3064.47  311-337  0  SHCIAEVENDEMPADLPSL
A ADFVESK  

2859.34
7  

2978.384  1489.69588  3006.50  500-524  1  CCTESLVNRRPCFSALEVD
E TYVPK  
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M/z
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MS/MS Spectrum of HSA peptide 234-242 “AFKAWAVAR” 
modified at Lys236 with phenylisocyanate

 

Figure 3.5: Representative spectra showing PI bound to Lys236. 

It has recently been shown that MDI binds to the following lysine residues shown 

overleaf in Figure 3.6. For PI a different lysine moiety is bound than those found with 

HDI15 and MDI88. 
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 Figure 3.6 : Localization of MDI conjugation sites on human albumin. The sites 

of MDI conjugation identified by HPLC-MS/MS are highlighted on a 3-D 

representation of human albumin obtained from the protein/molecular modeling data 

base, and displayed using the Cn3D program from NCBI88.  
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Conclusion 

Identification and characterization of dNCO haptenated proteins from isocyanate 

exposed workers is important for developing the best diagnostic assays. Diisocyanates 

may react to multiple nucleophilic moieties within a protein, although the γ-amine on 

lysines is consistently found as a target. TNBS assay and mass spectrometry 

techniques employed in this chapter resulted in discordant results as to the number of 

isocyanates bound. TNBS assay is used to measure loss of primary amine reactivity. 

For bifunctional electrophiles, such as dNCOs, however, reaction with nucleophilic 

groups other than amines, extensive cross linking and polymerization of the dNCO, 

and binding of one isocyanate to the protein and hydrolysis of the other on a dNCO 

resulting in no net change in the number of available primary amines are all problems 

with this characterization method. The lack of detecting successful conjugation of 

keratin may be because it is insoluble in physiological buffers.TNBS, by the way,is 

water-soluble. Lysozyme is a basic protein and TNBS assay is less accurate for basic 

or acidic proteins87. The extensive cross-linking of proteins is also evident in protein 

blots where higher molecular weight conjugates were observed. The MALDI-TOF-

MS method provides only an average mass shift within a sample, but does not provide 

information with respect to binding sites, or degree of polymerization. These results 

also show how difficult it is to analyze and have standard conjugates with defined 

conjugation reaction ratios40. More advanced techniques including QTOF-MS/MS are 

now being explored 88,89.   
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The complex nature of the products as has been seen in the characterization of the 

products formed, has been highly problematic. Due to this complexity, we decided to 

start with binding peptides to NCOs and then monoisocyanates with HSA as a way of 

developing our methodology and gaining greater insights into the chemistries 

involved. 
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CHAPTER 4 

STRUCTURAL ELUCIDATION OF ISOCYANATE-PEPTIDE ADDUCTS 

USING TANDEM MASS SPECTROMETRY 

 

4.1  Introduction 

Although several protein targets of diisocyanates, in vivo, have been identified, the 

underlying antigenic forms of the diisocyanate are, as yet, unknown16,44,51.  The 

diverse functional groups present in proteins including amines, amides, thiols, alcohols 

and carboxylic acids present a large number of potential reaction sites for the 

isocyanate.  However, under physiological conditions, these are limited to N-terminal 

α-amines, the sulfhydryl group of cysteine, the hydroxyl groups of serine and tyrosine 

( in hydrophobic pockets only), the ε-amine of lysine and the secondary amine of the 

imidazole ring of histidine35.  

 

Tandem mass spectrometry, in particular collision induced dissociation (CID) of 

[M+2H]2+ ions produced via electrospray ionization (ESI),90-92is a powerful technique 

for the determination of not only primary sequence in peptides, but also post-

translational modification91 or chemical adduction. In this study, CID  was applied on 

a high resolution quadrupole time-of-flight (qTOF) mass spectrometer 91 to 

characterize the adducts produced from the reaction of four commercially available 

bioactive peptides with four industrially relevant mono- and diisocyanates in an effort 
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to: a) determine the number, chemical identity, and relative abundance of reaction 

products observed, and 

 b) identify the specific binding site of the isocyanate within the peptide. In particular, 

we have studied adducts formed by 2, 4 and 2, 6 TDI because of the widespread use of 

these chemicals in manufacturing and their well-documented health effects. Due to the 

possibility of complex reaction products including inter- and intramolecular cross-

linking with the diisocyanates, we have also evaluated the binding chemistry of the 

monoisocyanate analogues of 2,4 and 2,6 TDI, PTI and OTI. We hypothesize that the 

binding will be peptide specific and will occur primarily via the n-terminal amine. 

 

4.2 Results and Discussion 

4.2.1  MS Analysis of Isocyanate/Peptide Reaction Products 

Each of the four peptides (Leu-enk, angiotensin I, FAPP and substance P-amide) were 

reacted with two monoisocyanates (OTI and PTI) and two diisocyanates (2, 4 TDI and 

2, 6 TDI) and the resulting reaction products were analyzed by high resolution qTOF-

MS. The relative abundance and accurate mass (± 20 ppm) of the major reaction 

products was measured in qTOF-MS mode and the identity and relative abundance of 

the observed reaction products are listed in Tables 4.1-4.3. For clarity, the relative 

abundance of the unreacted peptide [M+2H]2+ ion has been normalized to 1 for each 

reaction. The only reaction products observed for the monoisocyanates OTI and PTI 

(Table 4.1) were unreacted peptide [M+2H]2+ and adduction of one isocyanate 

[M+NCO+2H]2+ observed at 133.0528 Da higher in m/z. For Leu-enk, angiotensin I 
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and substance P, OTI was 2-5 times more reactive than PTI. However, in the case of 

FAPP, PTI was more reactive. 

 

The observed reaction products of the diisocyanate species 2,4 and 2,6 TDI were 

significantly more varied. A number of reaction products were observed (see Tables 

4.2- 4.3) including the anticipated mono-substituted product [M+dNCO*+2H]2+, 

148.0634 Da higher in m/z (where the asterisk (*) indicates the product formed by 

reaction of one isocyanate moiety with the peptide to form a urea and the second 

isocyanate moiety hydrolyzed to an amine).  

Table 4.1. Relative abundances of ortho- and para-toluene isocyanate/peptide 

reaction products 

Peptide Sequence M M+OTI M+PTI 
Leu-enk YGGFL 1 0.047 0.013 
angiotensin I DRVYIHPFHL 1 8.0 1.4 
FAPP WQPPRARI 1 1.2 3.9 
substance P RPKPQQFFGLM-NH2 1 280 120 
 
Table 4. 2. Relative abundances of 2,4-toluene diisocyanate/peptide reaction 

products  

Peptide Sequence M M+TDI* M+TDI M+2TDI* 2M+TDI  
Leu-enk YGGFL 1 0.034 -- 0.0089 -- 
angiotensin 
I 

DRVYIHPFHL 1 1.2 0.35 0.56 0.28 

FAPP WQPPRARI 1 0.13 -- 0.055 0.094 
substance P RPKPQQFFGLM- 

NH2 
1 0.52 3.0 0.29 1.5 

 
* denotes hydrolysis product (amine group at either position 2 or 4) 
 
 



61 
 

Table 4.3: Relative abundances of 2, 6-toluene diisocyanate/peptide reaction 
products 
 
Peptide Sequence M M+TDI* M+TDI M+2TDI* 2M+TDI 
Leu-enk YGGFL 1 0.037 -- 0.0011 -- 

angiotensin I DRVYIHPFHL 1 2.5 0.13 0.75 0.44 
FAPP WQPPRARI 1 0.14 -- 0.040 0.047 
substance P RPKPQQFFGL

M- NH2 
1 4.7 16 1.7 2.8 

* denotes hydrolysis product (amine group at either position 2 or 4) 
 
In addition to this product, a second mono-substituted product, [M+dNCO+2H]2+, was 

observed in the case of angiotensin I and substance P, 174.0429 Da higher in m/z.  

This product corresponds to both isocyanate functional groups bound to the peptide 

via ureas, i.e. intramolecular crosslinking. For substance P, this was the dominant 

reaction product, whereas it was only a minor reaction product (ca. 30% relative 

abundance) for angiotensin I. Adduction of two hydrolyzed TDI molecules, 

[M+2dNCO*+2H]2+, was observed in low relative abundance, as was intermolecular 

crosslinking of two peptides via TDI, [2M+dNCO+2H]2+. Sabbioni and coworkers 93 

suggested in 2001 that both isocyanate moieties of a diisocyanate would not react at 

the same time with one or more proteins (e.g. formation of [M+dNCO+2H]2+ and 

[2M+dNCO+2H]2+ would not be observed). The current data, however, indicates that 

these products are formed in aqueous solution, and in the case of substance P, they are 

the dominant reaction products.   

 

Addition of a second TDI molecule to the peptide is the result of polymerization of 

isocyanate to the amine of a hydrolyzed diisocyanate, rather than binding of two 

dNCOs to two different amino acid residues (e.g. side chain adduction).  This was 
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determined based on CID data (described below), as well as the observation of two 

TDI molecules bound to Leu-enkephalin, which has only one primary amine, the N-

terminus.   

 

In all cases, the reactivity of the peptides towards isocyanate showed the 

trend:substance P > angiotensin I > fibrinectin adhesion promoting peptide > Leu-

enkephalin.  In general, isocyanates at the 2-position (OTI and 2, 6 TDI) seem to be 

more reactive than those at the 4-position (PTI and 2, 4 TDI) under the conditions 

employed for this study.  This observation is in good agreement with other reports 

98,101.  Although the isocyanate in the 4- position is roughly four times more reactive 

than that in the 2- position toward alcohols (during polyurethane production) the 2-

position is more reactive toward amines.  

 

4.2.2 Tandem MS Analysis of Isocyanate-Peptide Adducts 

Each peptide and its isocyanate adduct product was selected for sequencing by tandem 

mass spectrometry utilizing Ar collision-induced dissociation in the qTOF mass 

spectrometer.  The MS/MS spectrum of each peptide and its corresponding isocyanate 

adducts are presented in Figures 4.1-4.6. For each peptide, the tandem mass spectra of 

the monoisocyanate adducts (OTI and PTI) and the diisocyanate adducts (2, 4 and 2, 6 

TDI) were virtually identical in terms of m/z and relative abundance of the observed 

fragment ions.  For simplicity, the fragment ion spectra of the OTI and 2, 6TDI 

adducts are omitted from Figures 4.1, 4.2, 4.4 and 4.5.   
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Figure 4.1.  Selected tandem mass spectra for Leucine-enkephalin (YGGFL). 
 
  A) Unmodified peptide B) PTI adduct C) 2, 4-TDI adduct  
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Figure 4.1 presents the CID fragment ion mass spectra for Leucine-enkephalin 

(YGGFL) and adducts produced by reaction with PTI and 2, 4 TDI.  The tandem mass 

spectrum of unmodified Leu-enk (Figure 4.1A) is characterized by abundant a- and b-

type fragment ions indicative of N-terminal charge retention.  A few low abundance y-

type ions, indicative of C-terminal charge retention, are observed.  Similarly, the 

fragment ion mass spectra of the peptide-isocyanate adducts (Figure 4.1B, 4.1C) are 

characterized by abundant N-terminal charge retention ions. In each case, the base 

peak in the fragment ion spectrum is of the type [b1+NCO]+, which provides direct 

evidence that the isocyanate is bound to the N-terminus of the peptide.  Furthermore, 

the only immonium ion-isocyanate complex observed is the [Y+NCO]+ ion of 

tyrosine.  A complete set of low abundance yn
+ ions are observed, however, no ions of 

the type [yn+NCO]+ are observed, excluding isocyanate adduction from all residues 

except the N-terminal tyrosine. Loss of the mass of PTI and 2,4 TDI are observed 

from a-, b- and immonium ions, indicating the urea bond formed when the isocyanate 

binds to the N-terminus is labile under CID conditions. 
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Figure 4.2.  Selected tandem mass spectra for angiotensin I (DRVYIHPFHL).   

A) Unmodified peptide B) PTI adduct C) 2,4 TDI adduct 
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The CID tandem mass spectra of angiotensin I (DRVYIHPFHL) and its PTI and 2,4 

TDI adducts are presented in Figure 4.2.  The tandem mass spectrum of the 

angiotensin I [M+2H]2+ ion (Figure 4.2A) shows abundant fragmentation with both N- 

and C-terminal charge retention, particularly for ions containing histidine (y2 and y4, 

for example).  The tandem mass spectra of the isocyanate adducts (Figure 4.2B, 4.2C) 

yield complete sequence information, demonstrating that the isocyanate has bound to 

the N-terminal aspartic acid residue.  Isocyanate is not observed bound to any C-

terminal (y-type) fragment ions, nor is it observed bound to the histidine immonium 

ion.  In particular, lack of observation of a prominent [y2+NCO] + fragment ion 

indicates the secondary amine on the side chain of histidine is not reactive with 

isocyanate under these conditions.  We believe the isocyanate is bound to the N-

terminal amine rather than the side chain carboxylic acid of aspartic acid because no 

C-terminal binding of the isocyanate is observed in any of our spectra, and the pKa of 

the aspartic acid side chain is similar to C-terminal carboxylic acids, both of which 

should be deprotonated at non-acidic pH.   
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Figure 4.3.  Tandem mass spectrum for angiotensin I (DRVYIHPFHL) + 2 2, 

4TDI adducts.   

 

For all four peptides examined in this study, we observe an apparent adduction of two 

TDI molecules (i.e. addition 296.1468 u). In order to determine binding site of second 

TDI molecule, CID was performed on the [M+2TDI+2H]2+ ion of angiotensin I 

(Figure 4.3). The tandem mass spectrum (in particular the [y9+2TDI]+ ion) 

unambiguously identifies the binding site of the second TDI molecule as the N-

terminus; in other words, the TDI molecules are polymerizing at the N-terminus via a 

urea, rather than reacting with a side chain elsewhere within the peptide.   
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Figure 4.4.  Selected tandem mass spectra for fibronectin adhesion promoting 

peptide (WQPPRARI).A) Unmodified peptide B) PTI adduct C) 2, 4TDI adduct 
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Figure 4.4 presents the CID tandem mass spectra for fibronectin adhesion promoting 

peptide (WQPPRARI) and its PTI and 2,4 TDI adducts.  The tandem mass spectrum 

of the FAPP [M+2H]2+ ions (Figure 4.4A) shows predominantly y-type ions indicative 

of C-terminal charge retention.  This is not an unexpected result, given the strongly 

basic residue arginine at positions 5 and 7 within the peptide.  Abundant loss of NH3 

from fragment ions is observed, consistent with the tandem mass spectra of other 

peptides containing Arg, Lys, Gln and Asn.  In addition, a strong [b7+H2O]+ ion is 

observed, as has been well documented for peptides with non-C-terminal protonated 

side chain residues such as Arg, Lys, and His.94 . From the tandem mass spectrometry 

data (Figures 4.4 B, 4.4 C) the isocyanate adducts may be unambiguously assigned to 

the N-terminal tryptophan residue.  No ions of the type [yn+NCO]+ are observed, in 

particular, the lack of [y2+NCO]+ and [y4+NCO]+ indicate that isocyanate does not 

react with the side chain amine of arginine residues.  Further evidence of binding to N-

terminus is obtained though the observation of the [Y+NCO]+ immonium ion and an 

unusual b1 ion.  Formation of acylium b1 ions is generally considered to result in the 

loss of CO to form the stable a1 immonium ion, however, a number of reports have 

described the formation of stable, cyclic b1 ions95,96. 
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Figure 4.5.  Selected tandem mass spectra for substance P-amide 
(RPKPQQFFGLM-NH 2).   
 
A) Unmodified peptide B) PTI adduct C) 2, 4 TDI adduct  
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The tandem mass spectrometry data for substance P amide (RPKPQQFFGLM-NH2) 

and its PTI and 2,4 TDI adducts is presented in Figure 4.5.  Fragmentation of the 

[M+2H]  2+ ion (Figure 4.5A) is characterized by abundant a- and b-type ions, internal 

fragment ions containing lysine, and loss of NH3.  C-terminal y-type ions are observed 

in low relative abundance.  The isocyanate adducts are localized to the N-terminal 

arginine residue (Figure 4.5B, 4.5C), as evidenced by [a1+NCO]+ and [b1+NCO]+ 

fragment ions.  No [yn+NCO]+ ions are observed.  Of particular note, [y9+NCO]+ 

(Lys-containing) and [y1+NCO]+ (C-terminal Met amide-containing) ions are absent, 

suggesting no isocyanate adduction at either the C-terminal amide or the lysine side 

chain at position 3.  The most abundant product of the reaction of diisocyanates (2,4 

TDI and 2,6 TDI) with substance P is the [M+dNCO+2H]2+ adduct resulting from 

intra-molecular cross linking. 
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Figure 4.6.  Tandem mass spectrum for substance P-amide (RPKPQQFFGLM-

NH2) + 174 u adduct. 

The CID fragment ion spectrum of this ion is presented in Figure 4.6.  The 

fragmentation of this ion is similar to that observed for the non-cross linked species in 

Figure 4.5C.  The 174.0429 u adduct from the diisocyanate is located on the N-

terminal arginine, presumably bound to the N-terminus and the primary amine on the 

side chain of arginine.  A very low relative abundance of 174 u adduct is observed for 

the reaction of angiotensin I with diisocyanates (see Tables 4.2, 4.3) which has an 

arginine residue at position two.  Intramolecular cross linking via diisocyanates with 

arginine residues further removed from the N-terminus (FAPP has arginine at 

positions 5 and 7) is not observed. We interpret this data in aggregate to indicate 

diisocyanate rapidly binds to the N-terminal amine and may subsequently react with 

the side chain amine of a residue in close proximity.  We interpret the relative 
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abundance of these products to indicate that the kinetics of the subsequent side chain 

reaction are fast with respect to hydrolysis if the arginine is at position one, but slow 

relative to hydrolysis if the arginine is removed to position two.   

 

Taken as a whole, the present experiments support the findings of Stark97 who found 

that the rate of reaction of isocyanates with amino groups is related linearly to pKa.  

That work suggested that at pH 7 and below, the N-terminus of peptides and proteins 

would react approximately 100 times faster than the ε-NH2 group of lysine.  

Furthermore, Stark suggested the reaction proceeds via the uncharged -NH2 species, 

rather than the –NH3
+ ion.  Similarly, Mason and Liebler98 used phenyl isocyanate at 

pH 8.0 to label the N-termini of peptides generated by proteolytic digests. Other 

reports34,35  have suggested that the N-terminus of proteins (particularly albumin and 

hemoglobin) is a potential site of diisocyanate adduction, and the results presented 

here demonstrate conclusively on the basis of tandem mass spectrometry data that the 

N-terminal α-amine of these four model peptides is the side of adduction. 

 

4.3 Conclusions 

Analysis of peptide-isocyanate adducts by tandem mass spectrometry reveals that 

isocyanates bind preferentially to the N-terminus of the four peptides examined under 

the conditions employed herein. When a peptide with an N-terminal residue 

containing a side chain amine is reacted with a diisocyanate, intramolecular cross 

linking with the second isocyanate becomes competitive with hydrolysis. The 
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reactivity, however, decreases as the residue is displaced further from the N-terminus.  

When the isocyanate-peptide reaction is carried out under 1:1 stoichiometric 

conditions, the extent of reaction depends on both the choice of isocyanate and 

peptide. In general, the isocyanate in the ortho position seems more reactive than that 

in the para position.  The results of this chapter, when taken in aggregate with those of 

previous studies, indicate that the N-terminus of proteins is a likely target for 

adduction in isocyanate-exposed individuals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



75 
 

CHAPTER 5 

PRODUCTION OF MONOCLONAL ANTIBODIES AGAINST TOLUENE 

DIISOCYANATE HAPTENATED PROTEINS 

 

5.1  Introduction  

Köhler and Milstein99 developed a technique to grow clonal populations of cells 

secreting antibodies with a defined specificity. Their work introduced hybridoma 

technology, which entailed fusion of an antibody-secreting cell isolated from an 

immunized animal with a myeloma cell derived from a of B-cell tumor to have a 

hybridized cell. 

 

To develop mAbs, animals (mice) are injected with an antigen followed by routine 

booster injections 67. These injections usually incorporate an adjuvant.  After 2 to 3 

injections, a small sample of blood is collected from the immunized animal to determine 

blood antigen specific antibody titers. Blood antibody titers provide a measure of the 

animal’s immune response to the injected antigen and the need for continued 

immunization boosters. Upon reaching a predetermined titer of antibodies in the serum, 

a final injection series is administered without adjuvant, prior to spleen removal and 

harvest of spleen cells. After removal of spleen, splenocytes are combined with SP2/0 

mouse myeloma cells67. Cell fusion can be accomplished using electro-fusion or 

chemical fusion with polyethylene glycol. Following cell fusion, cells are diluted and 

plated in multiwell tissue culture plates. Screening of hybridoma containing wells 
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commences 1 to 2 weeks later, or after sufficient growth to near confluence. Cells 

grown in positive wells are expanded, frozen, and then undergo clonal dilution. For 

clonal dilution cells from the original fusion plates are transferred to a second multiwell 

plate, serially diluted, and allowed to grow. Wells with single clonal colonies are re-

screened and positive clones are expanded and frozen. Individual clones are used for 

mAb production using in vitro, static cell culture flasks, or (in vivo, mouse ascites fluid 

technique). Production of mAbs ensures a continous supply of antibodies of defined 

characteristics that can be selected and extensively characterized from hundreds of 

clones in a given fusion. It is the absolute specificity of mAbs for a defined epitope that 

offers a major advantage over polyclonal antibodies where a variety of antibodies are 

encountered in any given antiserum which will have as broad range of affinities and 

specificities for different epitopes in a protein sequence. 

 

5.2  Results and Discussion 

It is difficult to produce mAbs from species other than mice. Young mice, preferably 

female since they are less aggressive and give better immune responses than males, 

are used100. Young animals are used, because the numbers of fibroblast in the spleen 

increases with age. Excessive fibroblast in the primary fusion plate can lead to 

hybridoma cells being out grown by this cellular competitor. 
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5.2.1       Mice Immunization 

Mice were immunized with TDI-conjugated KLH 1:40 ratio, that was prepared for 

injection by emulsifying the antigen with TiterMax® adjuvant according to 

manufactures’ instruction. TiterMax® was used instead of the traditional Freund’s 

complete adjuvant in order to reduce the potential of pain and distress to the animals. 

KLH is an immunogenic carrier protein that, in vivo, increases antigenic immune 

responses to haptens and other weak antigens such as idiotype proteins 101. KLH is the 

most widely employed carrier protein for this purpose 15,55,101. KLH is an effective 

carrier protein for several reasons. Its large size and distinct/foreign epitopes generate 

a substantial immune response, and the abundance of lysine residues for coupling 

haptens allows a high hapten:carrier protein ratio which increases the likelihood of 

generating hapten-specific antibodies101. It also shares no antigenic epitopes with 

mammalian proteins.  

An adjuvant is a substance that augments immune responses in a non-specific manner. 

The most commonly used adjuvants are Friend’s complete or incomplete adjuvant. It 

is water-in-oil emusion in which killed and dried Mycobactreium bovis bacteria are 

suspended in oil phase102. 

 

Other adjuvants include aluminum compounds such as aluminum hydroxide gel and 

other alums such as potassium alum (K2SO4 .Al2SO4) that strongly adsorb protein 

antigens from solution to form a precipitate. Alum-precipitated proteins are often 

administered together with killed Bordetella persituss organisms (whooping cough 
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vaccine)103. In recent years, there have been numerous new adjuvants, including 

pluronic block polymers that give large surface area, such as Titremax B. An adjuvant 

should be able to provide long-lasting local deposition of the antigen from which the 

antigen would be released slowly over a long period providing a prolonged, in vivo, 

boosting of the immune sytem. 

 

The route of immunization depends on the nature of antigen. Intra-peritoneal  (IP), 

intramuscular (IM),  intradermal (ID)  or subcutaneous (SC) injection can be used. The 

spleen is the most accessible source of B-lymphocytes for fusion. The number of times 

one immunizes the mouse prior to fusion will determine the class of antibody that you 

produce. The length of time between the immunizations also influences the affinity of 

antibodies produced. This is called affinity maturation. The physiological purpose of 

antibody production in an animal is to clear the antigen from the body. After some 

time only high affinity, B cells are clonally expanded. The longer the interval between 

immunizations the greater the preferential selection of high affinity B cells. In mice, 

you have to balance the number of immunizations and length of intervals between 

them to reduce risk of fibroblast accumulation in older animals. 

 

Enzyme Linked Immunosorbent Assay (ELISA) 

ELISA is a common technique used for the detection of specific antibodies, soluble 

antigens, or surface antigens104. Factors that have contributed to IgG mAb ELISA 



79 
 

utility include their sensitivity, long shelf-life of reagents, lack of radiation hazards, 

ease of preparation of reagents, the speed and reproducibility of the assays and the 

variety of ELISA formats that can be generated. No sophisticated equipment is 

necessary and ELISA’s have a wide range of  applications105,106. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5.1: ELISA principle for hybridoma screening.  
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coated onto a plate well. A non specific/target protein such as albumin or casein, is 

used to block all unbound surfaces (block non-specific antibody binding); culture 

supernatant fluid with potential antibody of interest is added and incubated until 

equilibrium is reached (2 hrs at RT). Unbound antibody is removed by washing. An 

enzyme labeled detection anti-mouse-IgG is added, incubated and unbound labeled 

IgG removed by washing. The enzyme substrate is added and plate incubated.  Color 

development is monitored spectrophotometrically and is directly proportional to both 

the amount of labeled antibody bound and to the hybridoma antigen-specific antibody  

 

5.2.2 Screening of Mice for Antibody Production  

After several weeks of biweekly immunizations, blood samples were obtained from 

mice for measurement of specific IgG levels. TDI-specific antibody titer was 

determined by ELISA, using 2,4/2,6TDI-HSA, carrier protein (HSA) and also the 

protein with which it was immunized against i.e. 2,4/2,6TDI-KLH. A 1:40 ratio was 

used as the screening antigen ratio because, according to Table 5.1 below, using 

pooled human sera from individuals with known IgG titers against TDI, MDI and 

HDI, the reactivity of human sera increases with increase in conjugation ratio. 

Wisnewski and collegues88 also found out that the 1:40 conjugation ratio with MDI 

reacted the most with human sera from a different population exposed to MDI. 
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Table 5.1: Pooled human sera reactivity with various protein conjugation ratios 

Protein Conjugation 
ratio 

Optical density at 
405nm 

HSA  0.10 

2,4 TDI-HSA 1:40 1.608 

1:10 1.120 

2,6 TDI-HSA 1:40 1.704 

1:10 0.408 

2,4;2.6 TDI-HSA 
(mix) 

1:40 1.562 

1:10 1.316 

PI-HSA 1:40 0.123 

1:10 0.083 

OTI-HSA 1:40 1.831 

1:10 0.425 

PTI-HSA 1:40 0.515 

1:10 0.108 

 
*The pooled human sera were a donation from Dr. Zana Lummus (University of 
Cincinnati).  
 

If the antibody reactivity of the 2,4/2,6 TDI-HSA had a titer optical density (OD) 

value of approximately 1 for the 1:100000 serum dilution, cell fusion was  performed. 

If the titer was low, OD < 1, the mouse was given booster immunizations until an 
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adequate response was achieved, as determined by repeated blood sampling. When the 

antibody titer was high enough, the mice were boosted by injecting antigen, IP without 

adjuvant, 3 days before fusion (approximately, 2 weeks after the previous 

immunization). The final boost was given 3 days before fusion to ensure the presence 

of many B immunoblast (antigen activated B cells that are in division), which are the 

most successful fusion partners for myeloma cells. The mice were euthanized and their 

spleens removed for in vitro hybridoma cell production. 

 

For TDI- vapor exposure immunization, five mice were exposed to TDI vapor for 4 

hr/day, for 12 consecutive work days. Lymph nodes and spleens were collected 24 hrs 

following the final exposure. Spleens and lymph nodes were removed aseptically and 

lymphocytes harvested after lysing red blood cells by osmotic shock. Hybridomas 

were produced following standard techniques as previously described 67  

Table 5.2: Immunization Titers. Mean replicate OD405nm value. 

Mouse 
# 

2,4-TDI-HSA 2,6-TDI-HSA 

 Prebleed Bleed 
1 

Bleed 
2 

Bleed 
3 

Terminal 
bleed  

Prebleed Bleed 
1 

Bleed 
2 

Bleed 
3 

Terminal 
bleed  

1R 0002 0.009 0.057 0.770 1.023 0.003 0.003 0.006 0.175 1.363 
2R 0.008 0.003 0.474 1.285 1.325 0.009 0.012 0.005 1.354 1.891 
1L 0.002 0.006 0.036 1.025 2.53 0.048 0.014 0.005 0.384 1.236 
2L 0.030 0.002 0.135 0.697 1.692 0.024 0.006 0.041 0.127 1.154 
0 0.005 0.010 0.106 1.99 2.217 0.004 0.009 0.009 0.700 1.857 
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Figure 5.2: Graph showing titer increase for 2, 6 TDI-KLH immunized mice. 

Table 5.2 and Figure 5.2 show the increase in the anti TDI-HSA titers with time. Our 

immunization titers showed a significant increase in 2,4-TDI-HSA specific antibodies 

for all the mice. Reactivity towards 2,6-TDI-HSA was lower compared with the 2,4-

TDI-HSA titers (Table 5.2). 
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The bleeds were characterized in terms of their reactivities as shown in Table 5.3 

below. 

Table 5.3: Polyclonal cross reactivity after 3rd immunization 

 Mouse 
# 

KLH 2,4/2,6TDI-
KLH 

HSA 2,4TDI-
HSA 

2,6TDI-
HSA 

MSA 2,4TDI-
MSA 

2,6TDI-
MSA 

2,4 
TDI-
KLH 

1R 3.920 4.091 0.016 1.023 0.019 0.185 0.672 0.198 
2R 4.105 4.231 0.012 1.325 0.055 0.175 3.150 0.183 
1L 3.863 3.930 0.014 2.53 0.048 0.171 0.463 0.165 
2L 3.914 4.101 0.013 1.692 0.033 0.167 1.342 0.158 
0 4.231 4.254 0.026 2.217 0.586 0.166 0.936 0.136 

2,6 
TDI-
KLH 

1R 3.856 3.777 0.009 0.123 1.363 0.213 0.254 0.956 
2R 3.456 4.064 0.024 0.215 1.891 0.232 0.213 1.325 
1L 3.541 3.950 0.015 0.145 1.236 0.184 0.256 1.569 
2L 4.213 4.024 0.020 0.245 1.154 0.240 0.236 1.325 
0 4.01 3.766 0.036 0.254 1.857 0.156 0.198 1.895 

 

The polyclonal sera had high titers to KLH alone since we immunized the mouse 

using conjugated KLH. There were very high specific titer responses to the 

immunizing isomer. The MSA titers were higher than HSA titers due to auto 

antibodies since the sera was derived from mice. Table 5.3 shows the cross reactivity 

screening of the polyclonal antibodies. The results show that our polyclonal antibodies 

are carrier  protein independent and specific to the  isocyanate bound protein only as 

evidenced by 2,4/2,6 TDI-HSA and 2,4/2,6 TDI-MSA on top of our immunizing 

antigen, 2,4/2,6TDI-KLH having the higher. titers. There was insignificant non-

specific binding to human or mouse albumin by the polyclonal IgGs. 

 

5.2.3  Hybridoma Production and Screening 

Fusing antibody-producing spleen cells, which have a limited life span, with cells 

derived from an immortal tumor of lymphocytes (myeloma) results in a hybridoma 
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that is capable of unlimited growth. Hybridoma production is divided into harvest of 

splenic lymphocytes, myeloma cell production, fusion, cloning and screening.   

Myeloma cell preparation. 

Myeloma cells are immortal cells that are cultured with 8-azaguanine to ensure their 

sensitivity to the hypoxanthine-aminopterin-thymidine (HAT) selection medium, 

which is used subsequently for cell fusion107.
  
Cell viability of exponentially growing 

cells was checked microscopically prior to use. 

Fusion. 

Specific variables considered during the fusion were the fusagen, cell ratio, medium, 

conditions for achieving contact, time, temperature and processing after the fusion. 

The original fusagen used was Sendai virus99 but this has now been superseded by 

PEG, which is safer to use and does not require virus culture. The cheapest, simplest 

and most reliable method is PEG fusion103. Freshly harvested spleen cells and 

myeloma cells were fused by incubating at a 1:10 ratio of spleen: myeloma cells in the 

presence of the fusagen in PEG solution for 10 minutes at 37°C, cells were co-pelleted 

by centrifugation at 3XG following incubation. The myeloma cells are hypothanthine-

guanine phosphoribosyltransferase deficient (HGPRT-), and therefore are unable to 

use the purine salvage pathway when de novo purine synthesis is blocked by 

aminopterin.  The unfused spleen cells eventually die because they are not 

immortal108. Only the immortalized hybridoma cells survive when incubated in HAT 

medium. 
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Table 5.4: Fusion results summary for 2,4 TDI-KLH immunized mice 

Mouse % of wells 
with growth 

Number of  
clones per well 

% of positive 
clones 

1R 0 0 0 
2R 87.3 2.2 0.118 
1L 97.4 2,41 0.3823 
2L 72,4 1.75 0 
0 92 2.71 1.25 
 

There was an average growth rate of 87% and 2.3 clones per well and of these, 0.44% 

of the seeded wells were positive for anti-TDI-protein. The 2,6 TDI-KLH and TDI 

vapor exposed mice fusions had lower fusion rates . After fusion, some of the 

hybridomas were not viable and were lost during the screening process. During the 

fusion process a ratio of 1 myeloma cell for every 10 spleen cells was used and by this 

alone 90% of the spleen cells are lost. This is the optimal ratio of myeloma/spleenic 

cells for at higher myeloma concentrations they tend to self-react producing fewer 

hybridomas. Target clones may be lost due to being out-competed by non-target 

clones since antibody producing colonies tend to grow slower than those that are not 

producing antibody. Also not all spleenocytes are our targeted cells. So even if there 

were a cell colony in the spleen that produced our target antibody specific for 2,4 TDI 

conjugated proteins, we potentially may have failed to capture it. Hence, the rather 

remarkably low percentage of successful clones. A total of 59 hybridomas specific for 

2,4/2,6 TDI-HSA were produced . 

Cloning.  

Single clones from positive wells were isolated by  by employing the limiting dilution 

technique, twice. When the cells were first plated out they contained different cells in 
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a single well, hence after growth there may have been many clones in the well. The 

specific antibody secreting clone, therefore, was likely to be mixed with clones that 

were either non-secreting or were producing non-specific antibodies. 

Limiting dilution is a method based on Poisson distribution109. Dilution of cells to an 

appropriate number per culture plate well can maximize the proportion of wells that 

contain one single clone. Critical parameters included, counting of cells to obtain 

approximately 0.8 cells per 100 µL of medium in a 300 µL well. Immortalized cells 

replicated within each well and the number of clones per well counted using an 

inverted microscope. After 7 days, culture fluid was recovered from each well and 

screened for specific-TDI-conjugated protein IgG/M. All negative wells were 

discarded. Cells from positive wells were immediately re-cloned to prevent 

overgrowth by co-cultured non-secreting hybrids. 20-50% of wells seeded at ~0.8 

cells/well exhibited growth. Loss of antibody producing clones was expected between 

clonings110. Positive wells were re-cloned until each well contains only cells from the 

same original hybridoma. 

Freezing and Recovery of Hybridoma Cell Lines. 

Hybridoma cells were suspended in 10% dimethyl sulfoxide (DMSO) in fetal calf 

serum and frozen rapidly in a dry ice-ethanol and glycerol bath followed by transfer to 

liquid nitrogen storage111. Hybridomas are stable as stored for years and can 

subsequently be resurrected and cultured for antibody production. 

Each task described above can be summarized as in Figure 5.3. 
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Figure 5.3 : Summary diagram of monoclonal antibody production112. 
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5.2.4 Antibody Isotyping and Concentration Determination 

The monoclonal antibodies were quantified using isotype specific ELISA kits 

according to the manufacturers’ instructions. Antibody concentrations in the culture 

supernatants fluids ranged from 0.160 µg/mL to 169 µg/mL with an average 

concentration of 52 µg/mL. Seven mAbs reacted with 2,4 TDI –HSA, 1 mAb reacted 

with 2,6 TDI-HSA only, while 46 were found to react  with 2,4 and 2,6 TDI HSA 

conjugates. Twenty-nine hybridomas were found to be IgG1, 14 IgG2a, 4 IgG2b, 2 

IgG3, and 10 IgM. See Table 5.4 for complete list of mAbs produced. 

 

Antibodies are heteromeric molecules consisting of heavy and light chains, each of 

which contains a variable and a constant region. Heavy chain constant regions include 

µ, α, γ1, γ2a, γ2b, γ3, γ4,σ or ε depending on species; light-chain contant regions 

include κ and λ112. Immunoglobulin heavy constant regions are referred to as isotypes, 

determine many biological and immunochemical properties of the antibody including 

complement fixing, binding to Fc receptors and binding to proteins A and G113. 
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Figure 5.4: Representative standard curve for IgG quantification.  

Samples were assayed in parallel in double serial dilution. A dilution in the linear 

range figure was used to calculate the concentration of antibodies. Antibody 

concentration by in vitro cell culture usually ranges from 20-50 µg/mL. 
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Figure 5.5: Shows the antibody OD at 405 nm in a serial dilution for use in 

antibody determination.Clone mAbs: a) 2E5, b) 10C2, c) 29E5 and d) 6C4. 

Absorbances within the linear range were used in the calculation of antibody 

concentration. See Table 5.4 for full list antibody concentrations for all the clones. 
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Table 5.5: Summary of isotyping and antibody concentration 
 

Mice Clone 2,4 
TDI-
HSA 

2,6 
TDI-
HSA 

IgG1 IgG2a IgG2b IgG3 IgM Concentration 
µg/mL 

 2,4 T
D

I-K
LH

 

2E5 
�   �     39 

10C2 �  �     101 
40C6 � �  �    21 
41B9 �  �     95 
42E2 � � �     52 
43B4 � � �     169 
43G6 � � �     65 
46G1
0 

� �   �   27 

49B1
0 

� � �     70 

50B5 � � �     23 
50F8 � � �     100 
51E6 � � �     48 
52G1
1 

� � �     40 

56G8 �   �    16 
57B5 � � �     59 
57D5 � �  �    11 
57F2 �  �     37 
59E5 � � �     91 
59B3 �  �     31 
60D1
0 

� �  �    23 

60G2 � � �     104 
61C2 � �  �    33 
62E4 � � �     52 
62G5 � �  �    17 
63D3 � � �     29 
66C2 � � �     51 
66F7 � � �     60 
66F1
0 

� � �     32 

67C4 �   �    32 
73F1
1 

� �  �    46 

75C8 � � �     75 
75E4 � � �     74 
77E6 � � �     80 
79C7 �   �    35 
79G3 � �   �   39 
79G7 � �  �    33 
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Mice Clone 2,4 
TDI-
HSA 

2,6 
TDI-
HSA 

IgG1 IgG2a IgG2b IgG3 IgM Concentration 
µg/mL 

2,6 T
D

I-K
LH

 
 16C6 � � �     56 

31F2 � �  �    20 
32B6 � � ��     71 
53C2 � �  �    34 
53C6 � � �     88 
54F8 � �   �   85 
57G8 � �   �   66 
59E5  �    �  6 
60C5 � � �     10 
60C1
1 

� � �     70 

68D3 � �    �  38 
68E4 � �  �    134 
68D5 � �  �    130 

          

T
D

I  
V

apor E
xposed 

  6C4 � �     � 0.129 
16F4 � �     � 0.164 
27G6 � �     � 0.276 
29E6 � �     � 0.160 
35D6 � �     � 0.82 
40C6 � �     � 0.394 
41G6 � �     � 0.240 
42C3 � �     � 0.260 
56F9 � �     � 0.467 
         

 

The species and isotype of each mAb must be determined for assay format 

development and future purification. IgM antibodies are useful for cytotoxicity assays 

but do not bind to protein A114. There are several methods available for isoytpe 

determination and all involve use of isotype-specific secondary anti-IgG antibodies 

combined with a visual detection system. 
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Table 5.6 : Comparison of antibody-binding characteristics for Protein A and 

Protein G115 that are commonly used for mAb purification 

 Isotype Protein A Protein G 

 

Mouse 

IgG1 W M 

IgG2a S S 

IgG2b S S 

IgG3 S S 

Total IgG S S 

IgM NB NB 

 

Rat 

IgG1 W M 

IgG2a NB W 

IgG2b NB W 

IgG2c S S 

Total IgG W M 

   

 

Legend: W= weak binding NB=no binding M= medium binding S= Strong 

 

Supernatant fluids from standard flask cultures usually range from 10 to 50 ug/mL114, 

although this can vary according to the individual hybridoma and the degree of 

confluence of the cultures at the time of harvesting. 
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CHAPTER 6 

CHARACTERIZATION OF MONOCLONAL ANTIBODIES AGAINST 

TOLUENE DIISOCYANATE HAPTENATED PROTEINS FROM VAPOR-

EXPOSED MICE  

 

6.1  Introduction 

TDI is an industrially important polymer cross-linker used in the production of 

polyurethane.Workplace exposure to TDI and other diisocyanates is reported to be a 

leading cause of low molecular weight–induced OA. Currently we have a limited 

understanding of the pathogenesis of OA. mAbs that recognize TDI bound proteins 

would be valuable tools or reagents, both in exposure monitoring and in TDI-induced 

asthma research. In this chapter, we sought to develop toluene TDI-specific mAbs for 

potential use in the development of standardized immunoassays for exposure and 

biomarker assessments. Mice were exposed 4 h/day for 12 consecutive weekdays to 50 

ppb, 2,4;2,6 TDI vapor (80=20 mixture). Splenocytes were isolated 24 h after the last 

exposure for hybridoma production. Hybridomas were screened in a solid-phase 

indirect enzyme-linked immunosorbent assay against a 2,4 TDI–human serum 

albumin (2,4 TDI-HSA) protein conjugate. A total of 10 hybridomas were obtained 

and subsequent isotyping showed that they all secreted IgM mAbs. All hybridomas 

produced κ light chain antibodies and their concentrations in the culture supernant 

fluid ranged from 82 to 467 ng/mL. Although most mAbs strongly reacted with 

dNCO-HSA conjugates, they also showed significant cross-reactivity with 
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unconjugated HSA (Appendix B).  Only three mAbs designated as 16F4, 29E5 and 

56F9 were found to preferentially react with dNCO conjugated HSA and were 

selected for further characterization (Table 6.1). The properties of these MAbs 

(isotype and reactivity to various protein-isocyanate conjugate epitopes) were 

characterized using ELISA, dot blot, and Western blot analyses. Western blot analyses 

demonstrated that some TDI conjugates form inter- and intra-molecular links, 

resulting in multimers and a change in the electrophoretic mobility of the conjugate. 

These antibodies may be useful tools for the isolation of endogenous diisocyanate-

modified proteins after natural or experimental exposures and for characterization of 

the toxicity of specific dNCOs. 

 

6.2  Reactivity Studies  

ELISA 

Preliminary ELISAs were performed to optimize the antigen concentration and to 

select the linear range of the mAb reactivity against 2,4 TDI-HSA. Based on the 

reactivity shown in Figure 6.1, an antigen concentration of 5 µg/mL was selected for 

the analysis of all three mAbs. 
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Figure 6.1: Optimization of coating concentration of 2,4 TDI-HSA. Each value 

represents the mean of duplicate wells. The mean control OD405 was 0.02, for HSA. 

 

Each antibody was titrated as shown in Figure 6.2 and mAbs 16F4, 29E5 and 56F9 

were used at a concentration of 10 ng/mL, 80 ng/mL and 30 ng/mL, respectively to 

ensure an antibody concentration in the linear range of reactivity. 
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Figure 6.2: Representative Antibody Titration. mAb titration was performed to 

identify the mAb concentration to be used in subsequent reactivity studies.  Log-linear 

responses were found for mAb up to 100 ng/mL under the present ELISA conditions. 
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Table 6.1: Summary of reactivity for mAbs 16F4, 29E5 and 56F9. 

Chemical Name Structure 
Test 
Antigen 
(5 µg/mL) 

Optical density [405 nm, 30 min] 
16F4 
(10 ng/mL) 

29E5 
(80 ng/mL) 

56F9  
(29 ng/mL) 

Human Serum 
Albumin 

 
HSA 0.078±0.047 0.065±0.004 0.089±.022 

2,4-toluene 
diisocyanate 

 

N

C
O

N

C
O

 

2.4-TDI-
HSA 2.512±0.121 1.274±0.128 2.140±0.109 
2.4-TDI-
KLH 0.578±0.037 3.635±0.164 0.881±0.088 
2.4-TDI-
MSA 0.398±0.071 0.236±0.067 0.443±0.043 
2.4-TDI-
keratin 

-
0.012±0.005 

-
0.004±0.004 0.031±0.015 

2,4-TDI-
lysozyme -0.019±0.01 0.022±0.005 0.011±0.005 
2,4-TDI-
collagen 

-
0.010±0.018 

-
0.015±0.025 0.005±0.064 

2,6-toluene 
diisocyanate 

N

C
O

N

C
O

 

2.6-TDI-
HSA 2.356±0.039 1.824±0.180 1.596±0.02 
2.6-TDI-
KLH 0.047±.028 0.267±0.013 0.142±0.02 
2.6-TDI-
MSA 0.279±0.027 0.092±0.028 0.367±0.066 
2.6-TDI-
keratin 

-
0.002±0.005 0.016±0.011 0.039±0.011 

2.6-TDI-
lysozyme 

-
0.008±0.002 

-
0.013±0.007 0.012±0.012 

2,4 TDI-
collagen 

-
0.016±1.009 0.010±0.005 0.005±0.012 

2,4;2.6 TDI 
(Industrial mix)  

2,4;2,6 
TDI-HSA 0.723±0.038 0.954±0.08 0.149±0.036 

4,4-methylene 
diphenyl 
diisocyanate 

N
C

O

N
C

O

 

MDI-
HSA 0.491±0.029 0.370±0.017 0.091±0.017 

hexamethylene 
diisocyanate 

N

C

O

N

C
O

 
HDI-HSA 

0.858±0.023 1.590±0.132 0.765±0.022 
2,5-dimethyl 
phenylisocyanate 

N

C
O

 

2,5-
DMPI-
HSA 0.832±0.097 0.150±0.046 0.174±0.028 

3,4-dimethyl 
phenylisocyanate 

N

C
O

 

3,4-
DMPI-
HSA 0.633±0.03 0.132±0.015 0.226±0.032 

4-toluene 
isocyanate 

N

C
O

 
PTI-HSA 

0.015±0.021 0.025±0.191 0.020±0.091 
2-toluene 
isocyanate 

N C O 
OTI-HSA 

0.070±0.037 0.009±0.015 0.087±0.01 
phenyl 
isocyanate 

N C O 
PI-HSA 

-
0.004±0.014 0.011±0.012 0.007±0.006 

2,4-toluene 
diisothiocyanate N

C
S

N
C

S

 
2,4-TITC-
HSA 0.096±0.018 0.119±0.009 0.227±0.017 

2,6-toluene 
diisothiocyanate 

N

C
S

N

C
S

 

2,6-TITC-
HSA 0.006±0.041 

-
0.016±0.035 0.135±0.05 
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Table 6.1 provides a summary of the reactivity of the mAbs toward proteins 

conjugated with dNCOs, NCOs and NCSs. It can be seen that all three mAbs react 

with 2,4 TDI-HSA, 2,6 TDI-HSA, HDI-HSA, 2,4 TDI-MSA and 2,4 TDI-KLH. 

Monoclonals 16F4 and 29E5 also react with 2,4;2,6 TDI-HSA conjugates and MDI –

HSA. MAbs 16F4 and 59F9 also react with 2,6 TDI-MSA. 16F4 was the only mAb to 

react with 2,3 DMPI and 2,5 DMPI while 29E5 was the only mAb to react with 2,6 

TDI-KLH. None of the other conjugates were recognized by the mAbs in the ELISA 

format. 

 

Western blot Analyses. 

The representative Western blot analysis for mAb 56F9 (Figure 6.3) showed that it 

reacted with the denatured form TDI-conjugated proteins. The pattern of reactivity of 

all 3 mAbs was similar; varying only in intensity of the reaction.  



 

Figure 6.3: Western Blot Analyses of mAb 56F9

standard (Biorad); lane 2, 

2,4:2,6 TDI-HSA; lane 6, 2,3 DMPI

HSA; lane 9, OTI-HSA and  lane 10, PTI

 

The mAbs reacted to TDI conjugated proteins that contained both intra

intermolecular TDI mediated cross

Western blots that was not seen in

methyl substituted monoisocyanates in Western blots, yet only 16F4 was reactive in 

ELISA (see Table 6.1). The OTI

Western blots than ELISA for all three 

Western Blot Analyses of mAb 56F9. Lane 1, Precision Plus Protein™ 

standard (Biorad); lane 2, HSA; lane 3, 2,4 TDI-HSA; lane 4, 2,6 TDI-HSA; lane 5, 

HSA; lane 6, 2,3 DMPI-HSA; lane 7, 2,5 DMPI-HSA; lane 8, 3,4 DMPI

HSA and  lane 10, PTI-HSA 

to TDI conjugated proteins that contained both intra-

intermolecular TDI mediated cross-links.  There was also some reactivity in the 

Western blots that was not seen in the ELISA assay format. All mAbs reacted with

methyl substituted monoisocyanates in Western blots, yet only 16F4 was reactive in 

1). The OTI- and PTI-HSA conjugates had greater reactivity in 

Western blots than ELISA for all three mAbs. 
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ane 1, Precision Plus Protein™ 

HSA; lane 5, 

HSA; lane 8, 3,4 DMPI-

- and 

links.  There was also some reactivity in the 

reacted with 

methyl substituted monoisocyanates in Western blots, yet only 16F4 was reactive in 

HSA conjugates had greater reactivity in 
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Dot Blot Analysis. 

Figure 6.4 A-C are dot blots that show mAb 16F4, 29E5 and 56F9,  reactivity to 

native and denatured protein conjugates, A and B respectively. All the mAbs had 

similar reactivity in the denatured protein blots, which only differed in intensity. 16F4 

and 56F9 had similar reactivities towards both native forms of isocyanate-protein 

conjugates, while 29E5 reacted towards 2,4 TDI/KLH and 2,6 TDI-KLH. 

 
   A     B 
 

 
 
 Figure 6.4A: Dot ELISA for 16F4 with (A) native and (B) denatured protein. 
N.B: Key below Figure 6.4C. 
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   A     B 
 

 
 
Figure 6.4B: Dot ELISA for 29E5 with (A) native and (B) denatured protein 
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   A     B 

 
Figure 6.4C: Dot ELISA for 56F9 with (A) native and (B) denatured protein 
 
 
Key: For Figures 6.4 A, B and C 
 
 
Lane A1:  HSA   Lane A2: 2,4 TDI-HSA Lane A3: 2,6 TDI-HSA      
Lane A4:  HSA-2,4;2,6 TDI (industrial mix)   Lane A5: HSA-2,5 DMPI 
Lane B1: HSA-3,4 DMPI Lane B2:  HSA-2,4 DMPI  Lane B3:HSA-OTILane 
B4: HSA-OTI   Lane B5:  HSA-MDI   Lane C1: HSA-HDI  
Lane C2: HSA-2,4TITC Lane C3:  HSA-2,6 TITC  Lane C4: HSA-PI 
Lane C5: KLH  Lane D1:  KLH-2,4 TDI Lane D2 KLH-2,6 TDI 
Lane D3-D5: Empty 
 
All mAbs showed strongest reactivity towards 2,4 TDI-HSA, 2,4 TDI-KLH and 2,6 

TDI-KLH and reacted least with 2,4;2,6 TDI-HSA (mix) . 29E5 had no other unique 

reactivities while mAbs, 16F4 and 56F9 also reacted with 2,6 TDI-HSA, methyl 

substituted monoisocyanates, HDI-HSA and MDI-HSA. The pattern of reactivity of 

the mAbs to denatured conjugated proteins observed in the dot blots (Figure 6.4) was 
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consistent with that observed by Western blot analyses. None of the mAbs reacted 

with HSA native protein. 

 

6.3 Discussion 

All mAbs produced herein reacted with proteins that contained intra- and inter-

molecular TDI-mediated cross-linking, suggesting that their reactivity was not 

impaired by the presence of cross-linking. Examination of the mAbs reactivity 

towards monoisocyanate-haptenated proteins was used to assess the need of molecular 

cross-linking on the ability of the mAbs to recognize TDI-haptenated proteins.  OTI 

and PTI are monoisocyanates with the second isocyanate group removed from the 

ortho and para positions relative the methyl group. 2, 3 DMPI, 2,5 DMPI and 3,5 

DMPI are monoisocyanates with the ortho and para positions substituted with methyl 

groups. PI has only one isocyanate and no methyl group attached to the phenyl ring. 

All monoclonal antibodies recognized monoisocyanate haptenated albumin suggesting 

that the cross-linking was not critical to immununogen recognition. 

 

 The assay format, however, was found to influence the mAb reactivity with the 

various haptenated species.  Having an isocyanate or a substitution at the ortho 

position on the tolyl group was critical to mAb recognition in the ELISA format. This 

was true for all three mAbs, suggesting a possible influence of ELISA plate chemistry 

in the interactions between the mAbs and haptenized protein. The mAbs recognized 

haptenated albumin in which there was substitution of one isocyanate on the tolyl 
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group, (in the Western blot and Dot blot formats) but not simple removal of the 

isocyanate.  Interestingly, higher molecular weight proteins than ~66.5 KDa  in the 

stock HSA  as observed in the protein blot were also haptenated by TDI and 

recognized by the mAbs (Figures 3.2 and 6.2).  These mAbs also recognized MDI 

and/or HDI conjugated HSA, in addition to the TDI-HSA.  This suggests that the 

resultant bond formation following reaction of the dNCO to protein was important in 

recognition of TDI haptenated proteins by the mAbs. 

  

The reactivity of the antibodies may also be influenced by choice of the experimental 

carrier protein. mAbs reacted with 2,4 TDI bound to HSA or MSA and also to KLH 

which is a non mammalian protein indicating the importance of the dNCO- protein 

bond rather than the source species  of the carrier protein. Although lysozyme and 

keratin were demonstrated by matrix assisted laser desorption ionization and/or loss of 

primary amines (Fig 3.3) to be haptenated, none of the mAbs in present study showed 

reactivity towards their conjugates.  This may be due to the poor binding of the 

conjugates to ELISA plate surface, lower haptenation rates or steric inaccessibility of 

the TDI group on these carrier proteins.   

 

A total of 10 mAbs (all IgMs) generated from TDI vapor-exposed mice were isolated 

during the initial screening against TDI-HSA. Only 3 mAbs, however, showed none or 

very low reactivity to unconjugated HSA (see Appendix B). The reason for the high 

reactivity of the other mAbs with HSA is not known but we were unable to block this 
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binding with either milk or BSA. It is possible that haptenation of proteins may also 

lead to recognition of the self protein by the immune system as seen with exposure to 

aldehydes 116 . This, however, has not been investigated for isocyanate exposures.  

Interestingly, these TDI vapor sensitized mice had IgG anti-2,4 TDI-MSA titers of 

18,106 ± 7994 (sera dilution to reach an ELISA OD >0.1).  IgM anti-2,4 TDI-MSA 

was not assessed in these mice; however, anti-2,4 TDI-MSA IgM was not observed in 

the sera of another group of mice exposed to an identical inhalation protocol .  

 

Future potential applications of these mAbs include the isolation of endogenous carrier 

proteins that are conjugated following natural or experimental exposure episodes. The 

purified proteins can then be identified and their structure and chemical linkages 

determined by mass spectrometry. In chapter 4 we demonstrated the potential for such 

methods for isocyanate-peptide adducts using tandem mass spectrometry 117. The 

mAbs may also be useful reagents for the development of immunoassays designed for 

dNCO exposure assessments. 

 

In summary, we have successfully developed monoclonal antibodies that recognize 

dNCO–protein adducts from TDI vapor-exposed mice. The specificity of these 

antibodies was demonstrated by ELISA, Western blot and Dot blot analyses. The 

antibodies may be useful tools for the identification of endogenous dNCO-modified 

proteins and the characterization of the importance of the type of the chemical linkage 

in terms of isocyanate toxicity. 
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CHAPTER 7 

CHARACTERIZATION OF MONOCLONAL ANTIBODIES AGAINST 2,4/2,6 

TDI-HSA FROM 2,4/2,6 TDI-KLH IMMUNIZED MICE 

 

7.1   Introduction 

Diisocyanates (dNCOs) are very reactive low molecular weight chemicals that are 

widely used in the manufacture of polyurethane products. Diisocyanate exposure is 

one of the most commonly reported causes of occupational asthma. Although dNCOs 

have been identified as causative agents of respiratory diseases, the specific 

mechanisms by which these diseases occur are largely unknown. Toluene diisocyanate 

(TDI)-specific monoclonal antibodies (mAb) with potential use in immunoassays for 

exposure and biomarker assessments were produced in the present study. A total of 49 

unique mAbs were produced (29 IgG1, 14 IgG2a, 4 IgG2b and 2 IgG3) against 2,4- and 

2,6-toluene diisocyanate (TDI) bound protein. The reactivities of the mAbs were 

characterized by ELISA, Dot blot and Western blot against various mono- and 

diisocyanate and dithioisocyanate protein conjugates.  A subset of the mAbs were 

specific for 2,4 or 2,6 TDI-conjugated proteins only, while others reacted to multiple 

dNCO conjugates  including methylene diphenyl diisocyanate (MDI) - and 

hexamethelene diisocyanate (HDI) – human serum albumin (HSA). In general, 2,4/2,6 

TDI reactive mAbs displayed (1) stronger recognition of mono-NCO haptenated 

proteins when the NCO was in the ortho position relative to the tolyl group, and were 

able to discriminate between (2) isocyanate and isothiocyanate conjugates (i.e. 
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between the urea and thiourea linkage); and (3) between aromatic and aliphatic dNCO.  

The mAbs produced were not carrier protein specific with estimated affinity constants 

toward TDI-HSA ranging from 2.21 x 107 to 1.07 x 1010 M-1.  Preliminary studies 

using TDI vapor exposed cells suggest potential utility of these mAbs for both 

research and biomonitoring. 

 

7.2  Results  

Antibody concentrations in the culture supernatant fluids range from 0.160 µg/mL to 

169 µg/mL with an average concentration of 52 µg/mL. Isotyping showed 29 

hybridomas secreted IgG1, 14 IgG2a, 4 IgG2b, and 2 IgG3 antibodies. All hybridomas 

produced κ light chains. Preliminary ELISAs were performed to optimize the antigen 

concentration and to select the linear range of the mAb reactivity against 2,4 TDI-

HSA.  

 

Monoclonal antibodies were grouped in 7 groups based on similar patterns of 

reactivity to the protein conjugated listed in Table 7.1. Seven mAbs react only with 2,4 

TDI–HSA, and 1 mAb reacted only to 2,6 TDI-HSA. Table 7.1 shows ELISA results 

for 7 mAbs, each representing one group of mAbs with similar reactivity as well as the 

dot ELISA results for mAbs tested by dot ELISA. The 10C2 group only reacted with 

2,4 TDI-conjugated proteins while 59E5 only reacted with 2,6 TDI-conjugated 

proteins. The rest of the mAbs reacted with 2,4/2,6 TDI-HSA, 2,4/2,6 TDI-KLH, and 

2,4/2,6 TDI-MSA. None of the mAbs reacted with 2,4/2,6 TDI-Lysozyme (data not 
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shown). The 60G2 and 79G6 groups reacted with HDI-HSA and MDI-HSA 

conjugates. See Appendix C; Table 1 and 2 for detailed reactivity of 2,4/2,6 TDI-KLH 

immunized mice) The mAbs displayed similar reactivities in the Dot blot assays 

(Figure 7.1) to ELISA results. There were no qualitative differences between the 

native and denatured dot blots, although denatured proteins seemed to result in higher 

assay sensitivity. The mAbs were also tested against a commercial 80/20 2,4/2,6 TDI 

mixture and MDI containing Gorrilla glue (The Gorilla Glue Company, Cincinnati, 

OH) conjugated to HSA. All mAbs reacted with the commercial 80/20 2,4/2,6 TDI 

mixture. Interestingly, 60G2 reacted with the Gorilla glue conjugate in the ELISA 

format but not in the dot blots.  

Table 7.1:  Results of the ELISA analysis of 7 monoclonal antibodies against 
toluene diisocyanate conjugated proteinsa.  
 

Test Antigen 
(4µg/ml) 

ELISA readings ( OD405nm ) and Dot blot scoring (+++) 
2E5  
(8)* 

60G2 
(3)  

62G5 
(4)  

79G7  
(1) 

16C6 
(3) 

32B6 
(5) 

59E9 
(1) 

2.4 TDI-HSA 2.70 3.57 2.88 3.20 2.54 2.65 0 
+++ +++ +++ +++ +++ +++ 0 

2.4 TDI-KLH 2.29 3.74 3.88 3.69 2.85 2.65 0 
+++ +++ +++ +++ +++ +++ 0 

2.4-TDI-MSA 2.57 3.61 3.21 3.62 2.45 2.40  
+++ +++ +++ +++ ++ +++ 0 

2.4 TDI-keratin 1.08 3.11 0.55 1.31 0 2.01 0 
++ +++ ++ +++ 0 + 0 

2.6 TDI-HSA 0 3.66 3.77 2.60 3.13 3.68 3.96 
0 +++ +++ ++ +++ +++ +++ 

2.6 TDI-KLH 0 3.44 3.92 3.23 2.19 3.01 3.03 
0 +++ +++ +++ ++ ++ 0 

2.6 TDI-MSA 0 0.86 1.72 0.50 0.30 0.66 0 
0 ++ +++ ++  +++ + 

2.6 TDI-keratin 0 0 2.03 0.42 2.18 3.16 0 
0 ++ +++ + 0 +++ + 

2,6 TDI-collagen 0 0 1.75 0 0 0 0 
0 0 0 0 0 0 0 

HDI-HSA 0 0.21 0 0.75 0 0 0 
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Test Antigen 
(4µg/ml) 

ELISA readings ( OD405nm ) and Dot blot scoring (+++) 
2E5  
(8)* 

60G2 
(3)  

62G5 
(4)  

79G7  
(1) 

16C6 
(3) 

32B6 
(5) 

59E9 
(1) 

0 + 0 + 0 0 0 

MDI-HSA 0 0.66 0 0.21 0 0 0 

0 ++ 0 + 0 0 0 

2,4;2,6 TDI-HSA 3.85 3.81 3.26 3.56 3.78 2.80 1.13 

+++ +++ +++ +++ +++ +++ + 

2,5-DMPI-HSA 0 0.64 2.15 3.2 0 0.62 0 

0 + +++ +++ 0 + 0 

3,4-DMPI-HSA  0.27 0.77 0.61 0 0 0 

0 + +++ +++ 0 + 0 

 0 0 0 0 0 0 0 

PI-HSA 0  
+ 

0 0 0 0 0 

2,4-TITC-HSA 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 

2,6-TITC-HSA 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

OTI-HSA 
0 0 3.65 3.8 0 0 0 

0 0 +++ ++ 0 0 0 

PTI-HSA   0 0 0 0 0 

0 0 0 0 0 0 0 

 

aThese results represent the mean OD405 of 4 ELISA well repeats which were 

corrected by subtracting the average OD of 4 ELISA background control wells. Assay 

background controls were processed in parallel but contained HSA as the coating 

antigen. Positive values were considered to be 3 times the OD405 value of HSA or 
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conjugating protein like MSA. A zero value indicates that the OD405 or visual dot were 

insignificant. 2E5, 60G2, 62G5 and 76G7 are from 2,4 TDI-KLH immunized mice, 

while 16C6, 32B6 and 59E5 are from 2,6 TDI-KLH immunized mice. 2,4/2,6 

lysozyme, 2,4 TDI-collagen, PI-HSA, PTI-HSA,  and 2,4/2,6 TITC (data not shown as 

they had insignificant reactivities). 

*Indicates number of antibodies in that group. 

Dot Blot Key: +++  Strong reaction, ++  Moderate reaction, +    Weak reaction 

 

 

 

 

 

 

 

 



 

 
Figure 7.1: Native and Denatured 
76G6. Lane configuration is the same for both panels
Key: 
Lane A1: HSA   
Lane A4:  HSA-2,4;2,6 TDI  
Lane B2: HSA-Gorrilla glue
Lane B5:  HSA-OTI  
Lane C3:  HSA-3,5 DMPI  
Lane D1:  AHSA-2,4 TDI  
Lane D4:  KLH-2,4 TDI  
Lane E2:  Lysozyme-2,4 TDI
Lane E5:  Collagen-2,4 TDI
Lane F3: Keratin-2,4 TDI  
Lane G1: MSA-2,4 TDI  
Lane G4:CH3NH -2,4 TDI 
 
   
 

Native and Denatured Protein Dot Blot analysis of mAbs 
. Lane configuration is the same for both panels. 

 Lane A2: HSA-2,4 TDI  Lane A3: HSA
2,4;2,6 TDI   Lane A5: HSA-HDI  Lane B1: HSA

Gorrilla glue Lane B3: HSA-2,4 TITC   Lane B4: HSA
 Lane C1: HSA-PTI  Lane C2: HSA
 Lane C4:HSA-2,5 DMPI  Lane C5: AHSA
 Lane D2: AHSA-2,6 TDI  Lane D3: KLH
 Lane D5: KLH-2,6 TDI  Lane  E1: Lysozyme

2,4 TDI Lane E3: Lysozyme-2,6 TDI Lane E4 : Collagen
2,4 TDI Lane F1:Collagen 2,6 TD  Lane F2: Keratin

 Lane F4: Keratin-2,6 TDI  Lane F5:MSA
 Lane G2:MSA-2,6 TDI  Lane G3: CH3NH2
 Lane G5: CH3NH-2,6 TDI 
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Protein Dot Blot analysis of mAbs 2E5 and 

HSA-2,6 TDI      
HSA-MDI  

: HSA-2,6 TITC 
HSA-PI 
AHSA 
KLH 
Lysozyme 
Collagen  

Keratin 
MSA 
CH3NH2 



 

The reactivities of select mAbs

Figure 7.2, antibodies from clone 2E5 

with both 2,4- and 2,6-TDI

HDI/MDI bound HSA probably 

formed by reacting NCO to the

 

Figure 7.2: Western blots of mAb, 2E5 reactivity and mAb 60G2 reactivity

 Lane 1 MWt markers, lane 2 HSA, lane 3 HSA

HSA-PI, lane 6 HSA-MDI, lane 7 HDI

lane 10 HSA-2,4 TITC 

 

 

 

 

of select mAbs were also analyzed using Western blot. 

from clone 2E5 were specific to 2,4-TDI-HSA. 60G2

TDI-HSA. The mAB 60G2 also had weak reactivity to 

HDI/MDI bound HSA probably through specific recognition of the urea bond 

NCO to the protein amine.  

Western blots of mAb, 2E5 reactivity and mAb 60G2 reactivity

markers, lane 2 HSA, lane 3 HSA-2,4TDI, lane 4 2,6 TDI

MDI, lane 7 HDI-HSA, lane 8 OTI-HSA, lane 9 H
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  As shown in 

60G2 reacted 

reactivity to 

the urea bond linkage 

 

Western blots of mAb, 2E5 reactivity and mAb 60G2 reactivity. 

2,4TDI, lane 4 2,6 TDI-HSA, lane 5 

HSA, lane 9 HSA-PTI and 



 

Determination of affinity constant 

 Affinity is a quantitative measure of 

independent molecules. 

using quadruple serial concentrations of antigen and constant mAb concentrations. 

Representative curves for mAbs 10C2 and 16C6 ar

correspondingly calculated average K

79G7 had the lowest Ka

1.07 x 1010 M-1.  

 

 Figure 7.3: Representative binding curv

extrapolating the affinity constant of the mAbs

  c) 0.625µg/ml and d) 0.312 

6.733 x 10-10 M and 1.866 x10

 

 

Determination of affinity constant (Ka) by ELISA 

Affinity is a quantitative measure of the strength of an interaction between two 

independent molecules. The affinities of select antibodies were determined by ELISA 

using quadruple serial concentrations of antigen and constant mAb concentrations. 

Representative curves for mAbs 10C2 and 16C6 are shown in Figure 7.3 and the 

correspondingly calculated average Ka for select mAbs is shown in Table 7.2, mAb 

a value of 2.21 x 107 M-1 and 59E5 had the highest K

Representative binding curves from 10C2 and 16C6 employed for 

extrapolating the affinity constant of the mAbs. a) 2.5 µg/ml, b) 1.25 µg/ml,

0.625µg/ml and d) 0.312 µg/ml and the antibody concentration kept 

and 1.866 x10-9 M, respectively 
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Table 7.2: Affinity constant of representative mAbs against 2,4/2,6 TDI-HSA 
conjugates by ELISA. 
2,4 TDI-HSA 2,6 TDI-HSA 

Clone Class and 
 subclass 

Affinity constant  
(Ka)  M

-1 
Clone Class and  

subclass 
Affinity constant  
(Ka)  M

-1 
10C2 IgG1 8.80 x 109 16C6 IgG1 2.33 x 109 

60G2 IgG1 2.65 x 109 31F2 IgG2a 3.81 x 1010 

62G5 IgG2a 2.23 x 109 32B6 IgG1 5.69 x 109 

79G7 IgG2a 2.21 x 109 53C2 IgG1 2.62 x 108 

42E2 IgG1 9.73 x 108 54F8 IgG2b 3.51 x 109 

43B4 IgG1 2.9 x 107 59E5 IgG3 1.07 x 1010 

49B10 IgG1 2.49 x 107 60C11 IgG1 2.26 x 109 

59E9 IgG1 2.21 x 109 68D5 IgG2a 9.82 x 109 

 

Experimental TDI Cell exposure 

 The overarching goal in developing IgG mAbs specific for isocyanate conjugated 

proteins is to develop tools and assays useful for exposure assessment, disease 

surveillance/diagnosis and disease research.  To this end, we have tested the potential 

of several of our mAbs to recognize haptenized proteins formed under similar 

conditions that may be found in the workplace.  We exposed protein solutions and live 

air-liquid interface cell cultures to an occupationally relevant concentration of TDI 

vapor (50 ppb; 80/20 2,4-/2,6-TDI).  Immunoblot analysis of the MSA protein 

solutions demonstrated two prominent bands at 60-80 kda (TDI-MSA monomers) and 
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160-250 kda (TDI-MSA polymers).  Solutions of MSA that were left open in the TDI 

atmosphere (lanes 6 and 7, Figure 7.4) showed time dependent conjugation through 

passive diffusion.  We also examined the effect of actively drawing the TDI 

atmosphere over the surface of the MSA solution using the Vitrocell in vitro exposure 

system.  Active flow exposure resulted in a flow rate-dependent conjugation of MSA.  

Conjugation of MSA was barely detectable at a flow rate of 20 ml/min (lane 4, Figure 

7.4) whereas marked conjugation was observed at 200 ml/min (lane 5, Figure 7.4) for 

1 hour.  Next, we determined if vapor TDI (50 ppb) could conjugate cell-associated 

proteins using live A549 cells at the air-liquid interface.  These cultures were left open 

to the TDI atmosphere to facilitate passive diffusion for a duration of 1 hour (lanes 2 

and 3, Figure 7.4).  Protein conjugation patterns resulting from these exposures were 

similar to the MSA solutions with bands concentrated around 80 kda and 250 kda.   

A549 cells are a human alveolar adenocarcinoma cell line and served as a tool for 

proof of concept.   
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Figure 7.4: Western Blot of TDI ( Vapor Exposed Mouse Albumin (MSA) and 

Human Lung Epithelial Cells A549 and developed with anti-TDI-protein mAb 

60G2. Dark bands on MSA and cell extract lanes indicate binding of mAb. Lane 1) 

Pre-stained MW Marker, lane 2) A549 Cells ( TDI passive diffusion, 1 hr) and 3) 

BEAS-2B cells (TDI passive diffusion, 4 hrs), lane 4) TDI-MSA (TDI diffusion rate 

20 mL/min, 1hr) , lane 5) TDI-MSA (TDI diffusion rate 200 mL/min, 1hr), lane 6) 

TDI-MSA( TDI passive diffusion, 4 hrs), lane 8) Unexposed MSA( negative control) , 

lane 8). 
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Our next series of experiments employed BEAS-2B cells, a human bronchial epithelial 

cell line, which represents an appropriate in vitro to study the biological effects of TDI 

on airway epithelium.  BEAS-2B cells were grown to confluence and actively exposed 

to 50 ppb TDI vapor using the Vitrocell exposure system.  Flow rate across the surface 

of the air-liquid interface cultures was set at 100 ml/min to approximate the minute 

ventilation of a mouse.  Immunoblot analysis shows numerous TDI-specific protein 

bands in the range of 30-250 kda (Figure 7.5).  The binding of mAbs to TDI-

conjugated BEAS-2B proteins was variable with the 2,4-TDI conjugate binding mAbs 

generally showing stronger reactivity . 

 

 

 

Figure 7.5 Immunoblot analysis of BEAS-2B protein extracts following exposure 

to 50 ppb TDI vapor for 4 hours at a flow rate of 100 ml/min.  
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 Cell extracts separated by electrophoresis and then subjected to immune-detection 

using mAbs 60G2, 62G5 79G7, 67C4, 66F7 and 77E6. 

 

7.3    Discussion  

In  Chapter 6 we successfully produced TDI-specific mAbs from the spleens and 

lymph nodes of mice with TDI rhinitis following inhalation of TDI-vapor 117.  

However, all clones isolated in that study were IgM , an isotype that is not ideal for 

long term storage and development of assays. Therefore the objective of present study 

was to develop a unique set of high affinity IgG mAbs specific for isocyanate 

conjugates. The present approach employed TDI-conjugated KLH as the immunogen 

and we obtained IgG mAbs with a wide variety of specificities that should be relevant 

for both research and exposure characterization.  The hybridomas were screened 

against TDI-HSA that was generated by reacting TDI to HSA at a 40:1 molar ratio.  

Wienswiski et al88 reported that MDI-specific IgG from pooled human sera of 

individuals exposed to MDI displayed the greatest amount of binding to the 40:1 

MDI:HSA  reaction ratio. TDI quickly hydrolyzes or reacts with nucleophiles in the 

body, thus dNCO specific antibody production is not found. In addition, dNCOs 

would react directly with nucleophilic moieties on mAb preventing their use to 

directly detect dNCO. 
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The majority of mAbs that were produced cross-reacted with multiple dNCOs but 

mAbs specific for 2,4 TDI- or 2,6 TDI- protein were also generated (Table 7.1). In 

general, mAbs that recognized both 2,4 and 2,6 TDI-HSA, displayed stronger 

recognition to mono-NCO haptenated proteins when the NCO was in the ortho 

position relative to the tolyl group. This was demonstrated by the following order of 

binding affinities with 2,3 DMPI >3,4 DMPI and OTI>>PTI or PI from the ELISAs 

(Figure 7.5).  Antibody recognition was greatly reduced when one NCO was removed 

vs. substituted (by a methyl group).  In the ELISA format, most mAbs were able to 

discriminate between isocyanate and isothiocyanate conjugates (i.e. between urea and 

thiourea linkage) and also between aromatic and aliphatic dNCOs conjugated to HSA. 

There was little immuno-assay dependence since the Dot blots and the ELISA were 

highly concordant. Greater mAb reactivity was observed denatured protein conjugates 

in the Dot blots probably due to the exposure of cryptic TDI epitopes by unfolding the 

protein. This is in agreement with our earlier observation with the isocyanate-specific 

IgM mAb reactivity derived from TDI-vapor exposed mice 117. Western blots also 

show extensive polymerization and dimerization of the dNCO-protein conjugates 

showing reactivity at 150 KDa and above. Antibody staining indicating molecular 

sizes less that HSA are most likely attributable to intramolecular TDI cross-linking 

preventing complete protein denaturation and faster migration through the gel. 

The overall reactivity pattern is summarized as below in Figure 7.6 overleaf. 

 



 

Figure 7.6. Reactivity pattern for TDI mAbs

 

Svensson-Elfmark and others

exposed to TDI exhibiting immune reactivity against methyl isocyanate

conjugates. Human studies have previously shown cross

antibodies of exposed workers to MDI and HSA conjugat

such as TDI or HDI55,119

There was little immuno

good agreement. Greater mAb reactivit

conjugates in the dot blots probably due to the exposure of cryptic TDI epitopes by 

unfolding the protein. This is in agreement with 

vapor exposed IgM mAb reactivity 

polymerization and dimerization of the 

Reactivity pattern for TDI mAbs  

Elfmark and others118 demonstrated cross reactivity between rat

exposed to TDI exhibiting immune reactivity against methyl isocyanate

Human studies have previously shown cross-reactivity between IgG

antibodies of exposed workers to MDI and HSA conjugates with other isocyanates 

55,119. 

There was little immuno-assay dependence since the Dot blots and the ELISA were in 

good agreement. Greater mAb reactivity was observed with denatured protein 

conjugates in the dot blots probably due to the exposure of cryptic TDI epitopes by 

unfolding the protein. This is in agreement with our earlier observation with

vapor exposed IgM mAb reactivity 117. Western blots also show extensive 

polymerization and dimerization of the dNCO-protein conjugates showing reactivity at 
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150 KDa and above. Antibody staining, indicating molecular sizes less that HSA are 

most likely attributable to intramolecular TDI cross-linking preventing complete 

protein denaturation and faster migration through the gel. 

 

The affinity constant (Ka) of mAb is an important parameter for the application of 

mAbs 70. High affinity mAb increase the specificity and sensitivity of immunoassays 

and may be more useful in development of a diagnostic method for detection of in vivo 

conjugated proteins. The mAbs produced in this study have high affinity Ka > 107 for 

2,4/2,6 TDI conjugated HSA and are fit for developing tests for detection of TDI 

bound proteins. The mAb with the most specific reactivity to 2,6 TDI-protein (only), 

59E5, also had the highest affinity, while the more promiscuous mAb, 79G7, had the 

lowest affinity to 2,4 TDI-HSA.  As expected, the more discriminating mAbs had 

greater affinities than the less discriminating mAbs. 

 

A preliminary in vitro TDI vapor exposure study was performed using  mAb 60G2 as 

the detection antibody.  This mAb displayed a broader range of reactivity in our 

characterization studies (Table 7.1).  Recognition of TDI haptenated MSA was 

exposure-dependent with greater mAb reactivity with higher exposure flow rates or 

higher exposure time.  The immune-blot pattern of mAb reactivity to the TDI vapor 

conjugated MSA was similar to the liquid infusion conjugation method used to 

produce the positive control for these assays suggesting that TDI may react similarly 

with proteins in the fluid lining the airway mucosa. Significantly, detection of TDI 
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conjugated proteins isolated from A549 cells exposed to only 50 ppb TDI vapor for 1 

h  was demonstrated by immune-blot analysis using mAbs produced in present study 

demonstrates the physiological relevance of the anti-TDI-protein mAbs. 

 

We also exposed BEAS-2B cells, a human bronchial epithelial cell line, to TDI vapor 

for 4 hours at 100 ml/min.  Immunoblot analysis was performed with several of our 

mAbs and demonstrates the presence of a large number of protein bands throughout 

the 30-250 kDa size range.  These bands are likely to represent a myriad of conjugated 

proteins and their respective polymers and is the first step towards identification of 

potential epithelial protein targets following TDI exposure. The identity of the specific 

cellular proteins bound by TDI has not yet been demonstrated.The immune-blot for 

A549 and BEAS-2B demonstrates that they are not all HSA as their molecular weight 

range is outside that of albumin. Current studies are being performed in our laboratory 

to identify protein targets and susceptibility sites on proteins using mass spectrometry, 

research that may prove fruitful in identification of useful biomarkers of exposure and 

disease.  Another goal is to develop highly sensitive laboratory assays that can be used 

to screen biological samples from workers and also for incorporation into hypothesis-

based research on disease mechanisms. 
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In summary, we have successfully developed unique high affinity monoclonal 

antibodies that recognize dNCO–protein adducts resulting from conjugation with 2,4 

or 2,6 TDI. The specificity of these antibodies was demonstrated by ELISA, Immuno-

blot and Dot blot analyses. Utility as potential tools for the identification of 

endogenous dNCO-modified proteins and the characterization of the disease relevant 

chemical linkages is also evident from results of our characterization and reactivity 

studies. 
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APPENDIX A 

MALDI SPECTRA  

 
Appendix A shows some of the spectra used to construct Table 3.1. The name of the 
conjugates and accompanying notes are on the right hand sides of the spectra. 
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APPENDIX B 

TDI-VAPOR EXPOSED mABS CHARACTERIZATION 

Table 1 showing 9 IgM mAbs reactivity with various isocyanate conjugates. The OD 

values are mean values of 4 well readings.  16F4, 29E6 and 56F9 (highlighted in gold) 

had reactivity to HSA that was less than 3 times the OD values of the blank indicating 

that their reactivity by ELISA to HSA (only) conjugate was minimal. Reactivity of 

43B4 (highlighted in green) to 2,4 TDI-HSA was used a contol for assay variability. 

There were no significcnt difference in the control values between plates and days of 

assay. 

 

Table 1: ELISA reactivity of TDI-Vapor Mice 

ELISA- Plate #: 1/2 3/4 5/6 7/8 9/10 11/12 13/14 15/16 17/18 
mAb: 6C4 16F4 27G6 29E6 35D6 40C6 41G9 42C3 59F9 
ANTIGEN OD 405 nm VALUES 
HSA 0.386 0.059 0.591 0.065 4.458 0.242 0.559 0.412 0.156 
2.4.-TDI-HSA, 
1:40, no mAb  
(Control) 

0.019 0.005 0.066 0.020 0.145 0.029 0.014 0.056 0.100 

2.4.-TDI-HSA, 
1:40  

4.454 4.039 4.305 1.140 4.236 4.137 4.081 4.194 2.850 

2.4.-TDI-HSA, 
1:0.1  

0.265 0.082 0.418 0.078 4.56 4.253 0.375 0.146 0.080 

2.6.-TDI-HSA, 
1:40  

4.495 4.413 4.261 2.982 4.33 4.226 4.410 4.218 4.344 

2.6.-TDI-HSA, 
1:0.1  

0.353 0.048 0.690 0.051 4.471 0.151 0.377 0.238 0.100 

2.4, 2.6.-TDI-HSA, 
1:40, industry mix  

4.345 4.295 4.242 1.249 4.077 4.071 4.347 4.191 2.958 

2.4., 2.6.-TDI-
HSA, 1:40, pure 
mix  

4.303 4.469 4.253 1.599 3.849 4.077 4.359 4.278 3.507 

2.4., 2.6.-TDI-
HSA, 1:40, pure 
mix  

4.579 4.285 4.152 0.954 3.802 4.037 4.519 4.038 2.148 

2.6., 2.4.-TDI 2.532 0.328 1.231 0.142 3.729 0.948 4.182 1.433 0.188 
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ELISA- Plate #: 1/2 3/4 5/6 7/8 9/10 11/12 13/14 15/16 17/18 
mAb: 6C4 16F4 27G6 29E6 35D6 40C6 41G9 42C3 59F9 
ANTIGEN OD 405 nm VALUES 
HSA, 1:40, pure 
mix  
2.4.-TDI-AHSA  0.046 0.321 0.038 0.076 4.410 0.184 0.272 0.271 0.065 
2.6.-TDI-AHSA  0.008 1.113 0.125 0.031 4.196 0.265 0.318 0.408 0.097 
AHSA  -

0.004 
0.009 0.102 0.043 4.507 0.178 0.254 0.271 0.094 

MDI-HSA  4.203 4.192 3.359 0.772 4.430 3.310 4.385 4.227 1.249 
HDI-HSA  4.464 4.259 3.730 1.882 4.628 4.157 4.413 4.313 4.171 
PTI-HSA  0.188 0.035 0.522 0.071 4.574 0.171 0.316 0.184 0.093 
OTI-HSA  0.356 0.046 0.754 0.103 4.198 0.197 1.004 0.311 0.133 
2.4.-TITC-HSA  1.247 0.118 1.397 0.121 4.502 0.415 2.068 0.714 0.148 
2.6.-TITC-HSA  0.422 0.026 1.001 0.079 4.463 0.152 1.193 0.387 0.086 
2.4.-TDI-HSA, 
1:40, mAb 43B4 

4.082 4.028 4.28 4.406 4.365 4.251 4.010 4.197 4.336 

2.4.-TDI-HSA, 
1:40, no anti-IgG 

-
0.019 

-0.011 0.053 -
0.067 

0.017 -
0.016 

0.014 0.030 0.059 

2.4.-TDI-HSA, 
1:40 

4.305 4.357 4.300 2.682 4.144 4.083 4.059 4.240 4.395 

2.3.-DMPI-HSA 4.323 1.043 2.841 0.122 2.464 1.632 3.650 3.285 0.116 
2.5.-DMPI-HSA 4.332 0.852 2.407 0.083 4.235 1.458 4.018 3.127 0.177 
3.5.-DMPI-HSA 4.438 0.477 0.873 0.039 4.206 0.709 3.956 1.957 0.120 
2.4.-TDI-MSA 4.211 1.110 0.698 0.281 4.086 2.269 4.345 4.059 0.859 
2.6.-TDI-MSA 1.865 0.164 0.193 -

0.037 
4.535 0.688 2.515 1.769 0.472 

MSA 0.917 0.026 0.103 0.088 4.224 0.320 1.966 1.352 0.217 
2.4.-TDI-collagen -

0.021 
0.001 0.041 0.025 4.129 0.093 0.200 0.132 0.016 

2.6.TDI-collagen 0.025 0.003 0.062 0.037 4.04 0.100 0.13 0.04 0.004 

Collagen -
0.021 

-0.006 0.072 -
0.037 

4.339 0.123 0.282 0.080 0.014 

2.4.TDI-keratin -
0.004 

0.005 0.039 0.023 4.301 0.120 0.224 0.119 0.072 

2.6.TDI-keratin 0.040 0.030 0.016 0.022 3.661 0.201 0.410 0.892 0.081 
Keratin -

0.008 
-0.007 -

0.036 
0.005 4.421 0.134 0.166 0.043 0.078 

2.4.TDI-lysozyme 0.019 -0.003 -
0.026 

-
0.047 

4.015 0.082 0.174 -0.008 0.001 

2.6.TDI-lysozyme 0.046 -0.009 0.013 0.067 4.260 0.094 0.093 0.109 0.017 

Lysozyme 0.121 0.004 0.057 0.014 3.272 0.108 0.176 0.070 0.002 

2.4.TDI-KLH 3.969 1.825 1.628 3.982 3.570 3.547 4.258 4.168 1.831 
2.6.TDI-KLH 1.007 0.053 0.191 0.329 3.969 0.316 2.197 0.539 0.183 
KLH 0.684 0.005 0.105 0.084 4.307 0.130 0.460 0.115 0.026 
PI-HSA 0.082 0.010 0.139 0.055 3.515 0.140 0.318 0.230 0.080 
2.4.-TDI-HSA, 4.045 4.044 4.115 4.044 4.170 4.247 4.364 4.296 4.461 
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ELISA- Plate #: 1/2 3/4 5/6 7/8 9/10 11/12 13/14 15/16 17/18 
mAb: 6C4 16F4 27G6 29E6 35D6 40C6 41G9 42C3 59F9 
ANTIGEN OD 405 nm VALUES 
1:40, mAb 43B4 
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APPENDIX C 
 

IgG mABS CHARACTERIZATION 

Log 10mAb Concentration 
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Figure 1: Titration curve for 2,6 TDI-KLH mAbs against 2,6 TDI-HSA to determine 

the concentration to be used for reactivity studies in  Table 2 below. A similar curve 

was also constructed for Table 1. 
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Table 1 provides a grouping of 35 IgG mAbs produced from 2,4 TDI-KLH 

immunized mice into 11 groups based on similarity of reactivity pattern toward 

haptenated proteins. These groups were then cut down to 4 in the Table in Table 7.1 

namely 2E5, 60G2, 62G5 and 79G7 based on overlapping and unique reactivities. 

 

Table 2 provides the reactivity of 13 IgG mAbs produced from 2,6 TDI-KLH 

immunized mice.The mabs have limited reactivity when compared with 2,4 TDI-KLH 

immunized mice (Table 1). Only 16C6, 32B6 and 59E5 are represented in Table 7.1. 

43B3 was again used as the positive control for assay variability analysis. There were 

no significant inter-assay variabilities observed. 
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Table 1:ELISA data for 2,4 TDI-HSA screened mAbs 
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Table 2: ELISA data for 2,6 TDI-HSA screened mAbs. 

Protein Optical density [405 nm, 30 min] 

16C
6 

31F
2 

32B
6 

53C
2 

53C
6 

54F
8 

57G
8 

59E
5 

60C
5 

60C1
1 

68D
3 

68D
5 

68E
4 

HSA 0.14 0.1
4 

0.1
3 

0.18 0.18 0.1
4 

0.13 0.1
1 

0.11 0.12 0.11 0.02 0.0
2 

2.4 TDI-
HSA 

3.54 0.3
8 

4.0
6 

3.68 4.16 4.0
5 

4.06 0.0
3 

3.92 3.92 1.31 0.33 0.6
6 

2.4 TDI-
KLH 

0.10 0.0
4 

0.0
2 

0.84 0.88 1.1
9 

1.00 0.0
6 

0.00 0.03 0.03 0.01 0.0
2 

2.4 TDI-
MSA 

0.09 0.0
3 

0.6
3 

1.90 2.70 0.3
9 

1.83 0.0
0 

0.09 0.07 0.10 0.04 0.0
6 

2.4 TDI-
keratin 

0.04 0.0
3 

0.0
5 

0.21 2.51 2.2
7 

0.32 0.0
0 

0.02 0.09 0.06 0.01 0.0
3 

2,4TDI-
lysozyme 

0.01 0.0
2 

0.0
1 

0.05 0.01 0.0
8 

0.03 0.0
3 

0.04 0.01 0.01 0.02 0.0
6 

2,4 TDI-
collagen 

0.05 0.0
2 

0.0
6 

0.02 0.04 0.0
3 

0.03 0.0
3 

0.03 0.05 0.02 0.03 0.0
2 

2.6 TDI-
HSA 

4.13 3.5
4 

3.6
8 

3.44 3.86 2.9
8 

3.45 3.9
5 

4.03 3.94 4.04 3.57 4.1
5 

2.6 TDI-
KLH 

2.19 0.2
0 

4.0
2 

3.52 4.07 3.6
6 

3.55 3.0
3 

2.77 1.89 1.83 0.48 2.7
9 

2.6 TDI-
MSA 

0.30 0.1
4 

0.6
6 

3.07 0.60 0.7
8 

2.98 0.1
2 

0.18 0.36 0.33 0.77 1.5
9 

2.6 TDI-
keratin 

2.18 2.6
9 

4.1
2 

3.93 3.47 0.0
8 

4.05 0.0
1 

1.17 3.89 1.34 3.27 4.2
2 

2.6 TDI-
lysozyme 

0.13 0.0
3 

0.0
6 

0.25 0.12 0.0
9 

0.60 0.0
0 

0.02 0.08 0.02 0.04 0.0
8 

2,6 TDI-
collagen 

0.06 0.0
3 

0.0
5 

0.05 0.03 0.0
5 

0.06 0.0
3 

0.01 0.00 0.01 0.02 0.0
3 

2,4;2,6 
TDI-HSA 

3.79 0.8
7 

3.8
9 

2.45 4.01 2.9
8 

4.21 0.4
0 

3.82 2.72 1.79 3.62 4.0
5 

MDI-HSA 0.05 0.0
3 

0.0
4 

0.03 0.06 0.0
5 

0.02 0.0
7 

0.02 0.04 0.06 0.00 0.0
2 

HDI-HSA 0.04 0.0
4 

0.0
2 

0.03 0.05 0.0
4 

0.04 0.0
1 

0.02 0.04 0.01 0.01 0.0
3 

2,5 DMPI-
HSA 

0.07 0.0
3 

0.0
3 

0.05 0.02 0.0
2 

0.11 0.0
2 

0.02 0.02 0.02 0.03 0.0
2 

3,5 DMPI-
HSA 

0.83 0.0
4 

0.0
4 

0.06 0.03 0.0
3 

0.05 0.0
6 

0.03 0.02 0.02 0.01 0.0
2 

PTI-HSA 0.05 0.0
3 

0.0
1 

0.03 0.03 0.0
1 

0.02 0.0
0 

0.00 0.03 0.00 0.01 0.0
2 

OTI-HSA 0.05 0.0
5 

0.0
6 

0.02 0.03 0.0
5 

0.02 0.0
0 

0.00 0.01 0.00 0.00 0.0
2 

PI-HSA 0.02 0.0
4 

0.0
5 

0.03 0.03 0.0
4 

0.03 0.0
5 

0.03 0.01 0.02 0.01 0.0
4 
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Protein Optical density [405 nm, 30 min] 

16C
6 

31F
2 

32B
6 

53C
2 

53C
6 

54F
8 

57G
8 

59E
5 

60C
5 

60C1
1 

68D
3 

68D
5 

68E
4 

2,4 TITC-
HSA 

0.07 0.0
3 

0.0
1 

0.05 0.03 0.0
5 

0.02 0.0
0 

0.03 0.03 0.01 0.01 0.0
8 

2,6 TITC-
HSA 

0.06 0.0
3 

0.0
5 

0.02 0.04 0.0
4 

0.02 0.0
1 

0.08 0.01 0.02 0.02 0.0
2 

MSA 0.09 0.0
3 

0.1
5 

0.13 0.12 0.0
6 

0.10 0.1
5 

0.11 0.08 0.16 0.15 0.1
4 

collagen 0.02 0.0
4 

0.0
4 

0.02 0.02 0.0
5 

0.02 0.0
3 

0.02 0.01 0.02 0.01 0.0
1 

keratin 0.03 0.0
4 

0.0
3 

0.02 0.02 0.1
0 

0.02 0.0
1 

0.04 0.01 0.10 0.01 0.0
2 

lysozyme 0.02 0.0
4 

0.0
4 

0.03 0.02 0.0
3 

0.04 0.0
5 

0.01 0.01 0.01 0.02 0.0
2 

KLH 0.04 0.0
3 

0.0
3 

0.00 0.02 0.0
3 

0.02 0.0
4 

0.04 0.00 0.00 0.01 0.0
4 

2.4. TDI-
HSA, 
1:40, 
mAb 
43B4 

3.77 3.5
6 

3.7
8 

3.28 3.98 3.9
9 

3.66 4.0
3 

3.55 3.46 4.13 3.86 3.7
6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
Dot ELISA blots for mAbs 16C6, 53C2, 59E5, 68D5, 2E5, 43B4, 60G2 and 62G5
 
 

 

KEY:  
Lane A1: HSA   
Lane A4:  HSA-2,4;2,6 TDI  
Lane B2: HSA-Gorrilla glue
Lane B5:  HSA-OTI  
Lane C3:  HSA-3,5 DMPI  
Lane D1:  AHSA-2,4 TDI  
Lane D4:  KLH-2,4 TDI  
Lane  E2:  Lysozyme-2,4 TDI
Lane E5:  Collagen-2,4 TDI
Lane F3: Keratin-2,4 TDI  
Lane G1: MSA-2,4 TDI  
Lane G4:CH3NH -2,4 TDI 
 

Dot ELISA blots for mAbs 16C6, 53C2, 59E5, 68D5, 2E5, 43B4, 60G2 and 62G5

  Lane A2: HSA-2,4 TDI  Lane A3: HSA
2,4;2,6 TDI   Lane A5: HSA-HDI  Lane B1: HSA

Gorrilla glue  Lane B3: HSA-2,4 TITC   Lane B4: HSA
  Lane C1: HSA-PTI  Lane C2: HSA
  Lane C4:HSA-2,5 DMPI  Lane C5: AHSA
  Lane D2: AHSA-2,6 TDI  Lane D3: KLH
  Lane D5: KLH-2,6 TDI  Lane  E1: Lysozyme

2,4 TDI  Lane E3: Lysozyme-2,6 TDI Lane E4 : Collagen
2,4 TDI  Lane F1:Collagen 2,6 TD Lane F2: Keratin

 Lane F4: Keratin-2,6 TDI  Lane F5:MSA
 Lane G2:MSA-2,6 TDI  Lane G3: CH3NH2
 Lane G5: CH3NH-2,6 TDI 
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Dot ELISA blots for mAbs 16C6, 53C2, 59E5, 68D5, 2E5, 43B4, 60G2 and 62G5. 

 

HSA-2,6 TDI      
HSA-MDI  

: HSA-2,6 TITC 
HSA-PI 
AHSA 
KLH 
Lysozyme 
Collagen  

Keratin 
MSA 
CH3NH2 



 

 

Key: 

Lane A1: HSA   
Lane A4:  HSA-2,4;2,6 TDI  
Lane B2: HSA-Gorrilla glue
Lane B5:  HSA-OTI  
Lane C3:  HSA-3,5 DMPI  
Lane D1:  AHSA-2,4 TDI  
Lane D4:  KLH-2,4 TDI  
Lane  E2:  Lysozyme-2,4 TDI
Lane E5:  Collagen-2,4 TDI
Lane F3: Keratin-2,4 TDI  
Lane G1: MSA-2,4 TDI  
Lane G4:CH3NH -2,4 TDI 
 
 

  Lane A2: HSA-2,4 TDI  Lane A3: HSA
2,4;2,6 TDI   Lane A5: HSA-HDI  Lane B1: HSA

Gorrilla glue  Lane B3: HSA-2,4 TITC   Lane B4: HSA
  Lane C1: HSA-PTI  Lane C2: HSA
  Lane C4:HSA-2,5 DMPI  Lane C5: AHSA
  Lane D2: AHSA-2,6 TDI  Lane D3: KLH
  Lane D5: KLH-2,6 TDI  Lane  E1: Lysozyme

2,4 TDI  Lane E3: Lysozyme-2,6 TDI Lane E4 : Collagen
2,4 TDI  Lane F1:Collagen 2,6 TD Lane F2: Keratin

 Lane F4: Keratin-2,6 TDI  Lane F5:MSA
 Lane G2:MSA-2,6 TDI  Lane G3: CH3NH2
 Lane G5: CH3NH-2,6 TDI 
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HSA-2,6 TDI      
HSA-MDI  

: HSA-2,6 TITC 
HSA-PI 
AHSA 
KLH 
Lysozyme 
Collagen  

Keratin 
MSA 
CH3NH2 



 

 

 

KEY: Lane A1: HSA  
Lane A4:  HSA-2,4;2,6 TDI  
Lane B2: HSA-Gorrilla glue
Lane B5:  HSA-OTI  
Lane C3:  HSA-3,5 DMPI  
Lane D1:  AHSA-2,4 TDI  
Lane D4:  KLH-2,4 TDI  
Lane  E2:  Lysozyme-2,4 TDI
Lane E5:  Collagen-2,4 TDI
Lane F3: Keratin-2,4 TDI  
Lane G1: MSA-2,4 TDI  
Lane G4:CH3NH -2,4 TDI 
 

  Lane A2: HSA-2,4 TDI  Lane A3: HSA
2,4;2,6 TDI   Lane A5: HSA-HDI  Lane B1: HSA

Gorrilla glue  Lane B3: HSA-2,4 TITC   Lane B4: HSA
  Lane C1: HSA-PTI  Lane C2: HSA
  Lane C4:HSA-2,5 DMPI  Lane C5: AHSA
  Lane D2: AHSA-2,6 TDI  Lane D3: KLH
  Lane D5: KLH-2,6 TDI  Lane  E1: Lysozyme

2,4 TDI  Lane E3: Lysozyme-2,6 TDI Lane E4 : Collagen
2,4 TDI  Lane F1:Collagen 2,6 TD Lane F2: Keratin

 Lane F4: Keratin-2,6 TDI  Lane F5:MSA
 Lane G2:MSA-2,6 TDI  Lane G3: CH3NH2
 Lane G5: CH3NH-2,6 TDI 
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HSA-2,6 TDI      
HSA-MDI  

: HSA-2,6 TITC 
HSA-PI 
AHSA 
KLH 
Lysozyme 
Collagen  

Keratin 
MSA 
CH3NH2 
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