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Chapter I - Introduction

I. General DlscuasldM

The explostvely expanding $ystem of humah knowledge

of"Natur ett, I t" t l.m e Isapart f t f 0 h fa ctor , f s cqmposed 0 f

two 8 U bsY8 t em S I ,.. t t n1 e- va r f ah t tt and h t f me - f nva r Iant tt • I n

the tttime-varfant tt
. system there I I es the major domafn of

"Chemical Kinetics".

In neatly all areas ot scfehtfff~ research. whenever

a gfveh system fa brought Under fnvtsttgatton. analysis

normally Involve. the fsolat,'oh and deffn,tton of what­

ever elements or subsystems appear to eontrlbute In some

essential way to the whole system. There 's, In other

words. a tendertcy toward fundamental tty. An extensIon

, of this tendency ~tght appear to suggest th~tonly when

some basic buf Idln~ block df matter Is defined will there

be a truly adequate understanding of natura~ phenomena.

The fact Is th~t If such a stibstance exIsts, It has thus

far eluded the best effort at detection or deflnftlon.

Moreover. It 'S only becaus~ of the measurable Interaction

of organfzJd matter that W~ attempt to define the proper­

ties of matter at al I~

Thus whl Ie we strive to explain the objects of our

research In the most fundamental terms possible, it may

we I I be that even at the' prime teve i offundam.ehta I I ty.

we may stl II be'forced to dea I wi th matter In terms of the

relationships a~ong organized and particulate entltfes.
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Indeed, attempts to explain the properties of matter at

this level tend, If anything. away from fundamentalfty.

Investigation oftnterpartfcle rtlatjohshfps. hlstort­

cally, has contributed more to a general understanding of

matter than, has preoccupation with the fntrlrlslc proper";'

ties of the partlcies themselves.
, ~\

Among those attempts to' probe the 'behavior of parti­

culate matter Is t~e fnve8tfgatf~h of the mechanfsm of

,chemical reaction. Abetter understanding of th~ reaction

mechanism Is one of the Immediate goals which may lead to

the understanding of the genera' principles of reactlvtty.

Through a 8tU~yof the rate of production of a cer,taln

substance as a function of the concentrations of reactants,

It Is frequeritly possfb,le to find out how many entftles of

each kf nd have to come together. ' Ahd Information about

the energy threshhold which must be Burmount~d before any

c luster of ,reactants may pass f,nto t~eproduet,' Is genera 1-

o Iy provided by the temperature coefficient of the reaction

rate.
( . .

It has been concluded that~ even with sUfftclent,
energy. not every molecule can pass through the .nergy

barrler~ Hence the conformation theory of the transition

state enters here. I n order to obta In a, c Iear vi ew of the

structures, of the molecules during the course of reaction,

we demand a set of deftnltely deflned'functlons of each
I

Individual partfclelnvolved~ Unfortunately. because of,

the-lack of exactnes8 0' the functions stated b~ He.senberg's

I '
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uncertainty principle' and the fncompleten~ss of our know­

ledge, we would,be, In gentral, satlsffed, It W~ had an

approximate Idea of the structure and conformation o~ the

tr,hsltlbn state.

Theofetlcal predictions thus playa vital role 10 the

game. In' or'der to set up such a system which wou t d produce

,accurate enough r~$ults for a slghfffcant compa~t8o~ with

the experimental date, th~ physical, parametefshave to be

known with a gteat accuracy. Because of the tancellatton

effects of the ertoradurl"ng th.~ computing proc~ss. the

ratio of kinetic rates Is a much better method to exaMine

the validity of the, theoretical model than others~ By'

varying the Internal or external conditfons of certain

reactions to ,stUdy the Influence on the relative kinetic

ra te rat'f 0, t sotop f c subs t'l tut Ion has been sugges ted as

an easier method to teat the aS8umptfons Made for a great

, number ~f reactf~ns. The superlo~fty of the '_otope method

lies ma' n I y In, the poss Ibl ff ty of mak f"9 the, subet t tutl ora

wIthin the very reacttMg center and wfth amfntmum of

change In parameters,

;!
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2. Brief HIstory of the 8tudyof Isotope Effects

1n the ye~r 1919 Llnde~ann fnltfat~d the'study'of

Isotope effects wftha calculatfon 'Of the difference ,fn

vapor pressures of, Ieadf sotopes. 2 Thereat Intet~8t of

the Investf gators Was not attracted 'until 1933 when Urey

and Rittenberg published the r.sult of thefr calculations

of theequl,llbrlum constahi~ for the reacttbh~3

,Ha + 2001 - ~a + Hel
I' , Ha + 20t = Da + 2HI. ,

Thereafter, thetnvestJgatfor1sof equf I,fbrlum fsot.ope
, ,

exchangereactfQns was ex~ended to many systems f mbstly

Involving Isotopes of hydrogen. car~on. oxygeh and

nftra gen.

In 1947 t H. C. Urey published "The Thermodynamic

Properties of Isotop'lc SUbstances~.4 which contains vibra­

tional data and partition functfon ratios for many of the

s I'mp Ier Isotop I c mol ecu Ies, ,and Bf ge Ie Isen 'and Mayer:-5

obtained general expression for a ratio of partf,tfohfunc­

tions for Isotope fractionation In equillbr~um exchange

reactions. DurIng the following two years BeeCk6 dfscov~

ered a large carbon Isotope fractfonat~on In the dlssocf~

atlon of propane upon electron Impact, and Bfgelelsen7

combined the absolute rate theory with his previous work.

In 'later'yearsPolanYI8, Weston9, and Shavitt 'O

proceeded by arriving at the best potential-energy surfaces

for the reactions, and:r:makfng absolute calculations of the

ra tee of' the react fans that are :tobe compared. Although
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the results df thefr fnv~stfgatlon8 have thrown light on

the questIon of obtaining the best metho~8 tor arrfvlng at

potent f a I-energy surfaces,. the actu,a I eornpulat f on of poten",

tlal energy surface fs, Impossibly complex for all but the

simp lest, systems'.

I'

. !. ,

'. '
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3. Statement and General Purpose of the Investigation

Recent theoret Ica I w()rk has centered upon 'a search

for approximated computable models that, If the calcuia~ed

Isotope effects are In agreem~nt with experimental data"

may provf de, some va Iuab te fnforma t Ion about react'lon

mechanisms. Different theoretical models have been Invesr

tlgated, but the results are somewhat disappoInting. In

addlti()n,to the extreme c~mpextty Invotvedfn actual com­

putation. the crudest models have often glveh predictions

at least as good as those' of more refined calculations.

It Is hoped' that Indevelopfnga ce,rtatn general method

for calculating the kinetic Isotope effects, the actual

computation may, be simplified arid the accuracy' may be'

Improved.

In order to examine the validity of the Investigated
(

method, the decarboxylation of malonic acldfs chosen to

be a trial', since this partlc,Ular reaction has already

been thorough'ly fnvest.fgated. The calculated kfnetfc

Isotope effects wi II be compared with the presently avaIl­

able exp~rlmental data '2 of this reaction 'nthe vapor

phase.

, . ,
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Chapter It • ~eact'on Aate Theory

I. Arrhenius Equation

Qualitative observations of the rate of chemical
•

reactions were recorded by ,early w'rfters, but the first

significant kinetic measurements may be safd to have been

those of Wflhelmy'J. who In 1850 measured the rate of

Inversion of sucrose and rnvestfgated the tnfluence of

concentration upon the rate. He came to the conclusion:

C ~ Coexp(-kT) (Il-i)

Where Co =fnltial concehtratlon of sugar

C =concentratfonof 8ugarat tfm~ t:

k = rate constant.

Later workers have obtafn~d the same result. The impor~

tant paper,of G~I~berg~and Waage l4 pofntedout t~at the

laws of chemfcal equl Ifbrlum can be derived' from the kine­

tic laws by assuming that at equf Ilbrfum the rates of for­

ward and reverse reactions are the same.

In 1889 the· Arrhemlus law 'S was formulated.

k =A exp (Ea/RT) ( II -2)

where k Is the kinetic rate constant, Ea Is the molar

act I va t i on en ergy 0 f t he react Ion, R( ca IImol e de9.) f. s

the gas constant, T Is the absolute temperature. and A fs

cal fed thepre~expon~ntfal factor or frequency factor.

Accordl.ng to Arrhenius, Eq. (11-2) indIcated tha~ mole­

cules must acquire a certafn critIcal energy. Ea' before

they can react; the ',Boltzmann factor, exp (Ea/Rt),'befng
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the fraction of molecules that possess the necessary

energy. From the standpoInt of the Ar~hentus law. a

, complete understanding of the factors determlntng the rate

constant of a reaction Involves an understanding of the

activation 'energy and the pre-exponential factor.· 'Al'though

the quantum-m'ee han I ca I theor fes of mo Ieeu lars tructu res

have been formulated In detail, the evaluation of activa­

tion energy at' It~ematns as an unsolved problem. The

problem of calculating frequen6y factors on the basis of

fundamentalprfnclples has been attacked In tW9 ways.

namely. the kinetic theory of cotll~tonB ahd,the statis-

t f ca I rnechanf C8', approach. ,THe, Iatter approach wi II be

fntroducad In,thls Chapter.,
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2. Potentfal Ehergy Surface

The activation energies of chemical r~a~tfon8 are

moat convenlentty consIdered usfng the method of poten­

tial-energy surfaces. The electronic pot~ntfal energy

for a system of n atoms undergofng'uadlabatfc" reaetlbh

can be consl dered by means of the Born-oppenhefmer,16

approximation as a continuous and Blngle.~a,ued fun~tlon

of the nuclear,motlon. In geheral. the Ihteractlon

between two(n + I)·dtmen~fonat. eys,tems f8·ant:l-d~men.

sional vector space. The behavior of nueltl thus can be

described by mptfon on the surface.

The t~ree-dfmtnslonal diagram In Fig. 11-1 fs em­

ployed to Introduce thlsc,oncept briefly.' The potentfal­

energy surface for the reaction would possess low valleys

corresponding to the energy ~tates ~f reactant and prOduct,

and the valleys would be separated by ~egions of higher.

potential energy. Th~ f~mf Iy of par~bol~s fn the X-Z

plane represents all the possible reactant paths. The

minimum of the trajectory of the ma~lmum of a~1 the reac~

tion paths Is defined as an actl.vat'on point. ' The reacting

system at this point Is defined as "activated complex" or

transftf~n state.

It fs easily seen from Fig. 11-1 that If a system at

an activation point moves along the direction of the reac­

tion path (X-axis), the value of Its imagefn the range of

the function, potent'al energy; decreases. And, any ,change
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of value along the direction of the Y-axis would Increase

the potential energy. This spec'flc member of th. family

Is In general the re~ctlon path, and the direction of

8te~pe8tdeacent fs defined ae thereactton coordinate.'

Thf~ type of potent'al-energy surface would provide'

detal led Irtformatfon about the reaetfng system tn th~

transft'on-state.,But, In transforrnlng the real physical'

system to the mathematical system, theaetual computation
, ,

I~ extremely complex fbr even the simplest systems.

Hence the trahsftf,on-state approach of the absolute rate

theory has become a general method for c'alculatfng reac­

tl~n rates from~tmpte structural parameters by means of

the prlncfplesof etattsttcaf meehanle ••

\,

13
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3. Quasl-Equl Ifbrlum Theory

During the course of chemlcil reactfons It Is Impor~

tant to dfstlngufsh clearly between two.aspects of the

problem: one 1$ concerned with the dfrectlon and extent

of chemical change. the other With the rate with Which It

takes place. These two systems, "time-Invariant" and

Utlme-varfant tf
, have no simple connections~ A chemical

reaction between two sUbstances may occur almost to comple­

tion, but the time for even a very 8ma~1 fraction of the

molecules to react may be extremely long. Although the

theory of equl Ilbrfa and the theory .of kinetic rates are

non-parametric. there is a close relationship between the

two. This Is so because the molecules undergoing reaction

and passing through activated states which can be regarded

as in equilibrium with the molecules In their normal

states. The concentration of activated· molecules can

therefore be calculated by ordinary equi Ilbrlum theory,

so that If the probabl Ifty of the decomposition of acti­

vated molecules is known, the rate of reaction can be

calculated. In general, this Is cal led quasl-equi Ilbrlum

theory.

The problem of calculating rates therefore resolves

Itself Into two parts: the calculation of the concentra­

tions of actl.vated molecules and the calCUlation of the

rates of reaction of the activated molecules.
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Cons1der a reactfon

A + B =X =C + 0

which has prooeeded to equl Ifbrt~m. Then. according to

our assumptfon, the actIvated co~plex X w' I I also be In

equt Ilbrfum,wlth the reactants and product8~and thefr

concentratton may be caleu~~ted accurat$ly by the methods

of statistical mechanics th terms ,of the concentrations

of A and S.
I

The theory Involves the hypothesis, however, that

even when the reactants and products are not at equfll­

brlum wtth each other, the activated complexes are at
I

equt Ilbrlum wtth the reactants. Wh~n we state that the

activated eo~plexes are In equf Ilbrfum with the reactants.

we'refer 9nly to those comple~es that In the Immediate

paat were reactant molecules.

It 'a to be emphasized that there Is no assumption

that there fs a 'classical type of equIlibrium b~tween

Inltl.al and a~tfvated states; addition to the system of

activated complexes movIng from the Inftlaf to the final

state would not disturb the equl,lfbrfum, as would be

required If theequl Ifbrfum were classtcal~

The quasf-equl Ifbrlum theory, fs supported by the

derivations made by Bishop and Laldler '8 . They concluded

that reactions ~re satfsfactorl Iy fnterpreted on the basis

of the quasf-equf ~Ibrtum assumption, provided that Ea/AT

for the reaction has a value of 5 or larger~, If the

value of Ea/RT ,~ smaller'than 5, ~he reaction Wf II occur



80 rapidly that there can no longer be equl Ifbrfum even

among the r~~ct'nt molecules; the more energetic species

'wi II be removed more rapf d I y than the aupp Iy of them can

be replenished, and-t~ere wfll 'not be aSoltzmanh dfstrl­

butlon of reactant 'molecules.

I'

16
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4. Statistical Treatment

The a'ingle'molecule partition 'functIon ,Q Is deffned

as

(I 1-3)

where K Is the Bo I tzmann, constant, Et f s the tota I energy

of a In 0 I ecut e I h the .th e 11 erg y Ieve tandq f' f s a s tat Is ­

tical ~elght equal to the number df different molecular

states, that ha ve the same energy, E: f • The Indt vi dua I pro- .

due t s qI ex p[ -E 11K T) rep res ent the rei a t I,ve pt' 0 babI 1fty of

finding a molecule In the fth energy level, with ,energy

E
"

and so

, (I t -4)

represents a dIscrete energy dfstrl button :functlon for

molecules restricted to ~uantlzed ehergy states.

Td a good approxImation, the total ~nergy 'of 'a mole~

cule can be separated Into Independent terms,

(I I -5)

where Et Is the total energy of a molecule, Ee I~ the

electronic energy, ~v Is the ~Ibrational energy arising

from the ,Internal mot f ons 'of the nuclei, Erot I8 the rota­

tional energy of the molecule as a whole, and Et~ Is the

trans Iat i ona I ,energy.

Accordlng,to the Boltzmann formulation for the dfstrl~

butlon function of a set or molecules among v~rloU8 energy

states we have



P( E) OC exp t -E/Kt]

Since ~ fs separable,

. P( E) et .exp r(-Ee..Ev ..Etot -Etr )/KrJ

18

(I t -6)' .

and for the partftlon function we can ~rfte~,

Q = rtqeexp(-te/KT)J [tqvexp(-Ey/KT)J

xttqrotexp(-Etot!KT)][EQtrexp(-Etr/KT)]
'. ,

(I 1-8)

=QeQyQrotQtr (11-9)

slnce'the Individual sums are Ihdependent~ ThuS for

en.erg Ies' whIch ate separab Ie f h this mahnet we can say that

the partt'tlohfUhCt'IOh Q wi t I be a product of t ndivl dua t

part It ton funet Ions for the dfffere:nt kf nde of energy.

A. Electronf·c Partition Function

The partftfon functloh for electronic' energy Iscal­

cui ated d f r ec t I y from the 0 baer vedel ec t ron t c' I eve Iso f

the atom or~molecule. usIng the'relationshlp

(11-10)

At ordInary temperatures the excl.ted electronic levels of

an atom or molecule are usually too high to make a slgnt­

flcant contributIon to the'partltlon functIon. If the

lowest state fs a singlet state, the statistical weIght

qe Is unity, so,·that If the lowest atate tstaken as the

zera Ieve I and a I I '0 t he r Ieve Is ar e suf f f c ten t IY f') f 9h.. t he

partition functfon fa approximately unltyv In geheral, ft

may be assum.d that excited electronic levels may be



neg I ected I f the Ir ene,r~y f s more than 4KT.

B. Trans Iat' ana I Part f tit oh Funct Ion

The partition, function per unit volume (I ce) fa'r the <i,

transla~lonal motton of'a molecule· of mass m havln~ three

degrees of translational freedom can be'shown '9 to be

• I. ~2nmK§.+)3.'/2.q - . I'

,tr -. I.h , ,

where h fs Planck·s constant.

C. Vfbra t lana I, Pa,rt It Ion Fun cft on

I ( 1.1 _I I)

The vlbratfonal partitIon func·tlon fo'r a" diatomic

molecUle that has only a single Internal vibration Is

approximated by the expression

(11-12)

where n fs an Integer and n ;: O•. The vi bratf.onal partl­

tton function can be apprOXimated as

(11-13)

..

because It represents the residual energy of th~ molecule
o ./

at 0 K.

For more complex molecules. assuming harmonic vIbra­

tIons, the vibrational energy Is



J co

E =!: L: (n +' 1/2) h". '
,v I f =1 n=0 . '

20

(11-15)

where vI Is the' fundamenta I frequency of the ,1th vt bra­

tlonal degree of freedom and there ate J vibrational

degrees of freedom. For the I th degree of' freedom
co

~ exp[~Cn + I/2)h",/KT]
n=o

~

,= expt .... h"f/2KT] I: eXp[-nhv,/KT]
,n=o I

, , -I= exp["h~1/2KT][ I-exp(-hvt/kt)]' , , (11 .. 16)

so that the vibrational partition function for a polya~

tomfc molecule,'td' the harmonic oscIllator approximation,

fs

(lI~17)

This can be written Q&

(II-IS)

However sfncethezero-polnt energy Is not Independent

of Isotopic substitution, It fs convenient for our p~rpose,

to write the vIbrational partition In the form

'. J
. Q =n [exp(hvf/2KT) - eXPC-hv,/2KT)].-I·

v 1=1
J=n [2 alnh(hv./2KT)]-I., (11-19)

1=1

I '
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o. Rotational Partition Function

..: (BttS I KT ,
Qrot- . oRt. 'J

where I Is the moment of Inertia perpendlcular"to the

axis,
rnj, m2

t = ( '. '.)r"-= ~ra '
mt + ma

and a, the symmetry number, equals 2 If the -nuclei are

Identical and Is otherwise equal to I.

For polyatomfc molecules, for comparatively high

temperature, the rotational partition function Is

Qrot r (2S, + I)

where A, B, C are the principal moments of fnertia, a f~

equal to the n~mber of Indlatfngulahable ways of ortentlng

the molecUle In space,_ and IT (2S 1 + I) fa the statistical
f

spin factor for the nuclet.

E. Rate of Chemical Reaction

The rate of chemical reactfoh can be w~ltten as
rate = k Cr (11-20)



(t 1-2 I)
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where k fs the specific rate constant. and 0r,ls a func­

tion of reactant concentrations as experimentally observed.

Then.

C,r = KI ~ Qr,

where Qr Is the total partltfon functIon for th~ r~h

react~nt, and KI Is a constant which depehds oh stable and

metastable configurations, whfdh mayor may not be r~ac-

tfon Intermedtat.s •. The value of Kf can be calculated

statfstlcally If structural parameters are known, by'

assuming these structures are tn ~qut Ilbrfum with the

reactants. It fs ~88umed that KI fs fnd~p~ndent of fso­

'topfc substitution: therefore. In 'the kInetic rate ratio

formulatt.on ft would be cahce·lred out.

~ I
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a. Absolute Reaction Rate Theory

In Eq. (11-21) Qr Is the total molecular' part'tlon

function per unit 'vOlume, which for ainonllhear reactant

Is

3h-6
n
f o

2 Sfnh(ii>

(11-22 )

where, UI =hcwi/Kt, w, =fundamental frequencies of

vibration. Eq. 11-22 Is evaluated by ,summing over al I the

energy states by al lowing vibrational motions about the

stable configuration.

Since the activated complex fs unstable In· one coor­

dinate, the reaction coordinate, Eq. 11-22 Is Invalid for

the activated complex. This difficulty Is avoided by

Eyrfhg 19 by restricting the adtlvated complex by defini­

tion to a narrow range 6 about the activation point.

=1=

Ff g. 11-2
6-range of transition state.
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The transition state thus comprises all systems on the

'potential energy surface within a, distance t6/2 from

a surface orthogonal to the reaction coordinate at the

actfvatf,on pofnt. If we let x be the reaction coordinate,

the spectffc reaction rate conatant la

k = 1{ (~xQ I n Q~exp( -Ato/Rt) (I 1-23)
r

where K, the probability of reflectfon at the energy

barrier of systems which have sUfflcfent energy to sur­

,mount It. fa the tranamlasloh coefficient; ~x Is the fre-

quency ,of motion tn ,x; and Q 18 the partitIon function

of activated complex.

If motfon In, x corresponds to a normal mode of'vlbra~

tlon for the activated comp1ex, then the 3h-7 other nor­

mal modes comprise motions within the transition state

configuration, and the rate constant can be written as

. .IUfJexP(-6E~RT)
2 sfnh(r) .

(I I -24)

*where Qx Is the translational partition function corres-

ponding to the motion of a particle fn one-dimensional

space.

Since we have assumed that all systemslytng In the

length 6 shown In Fig. 11-2 are actIvated complexes. we
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can further assume that the concentration bf activated

(t t -25)Qtr =

\

complexesdepehds only upon the potentlat energy withIn

the actIvated state~ Therefore th~ calculated rate wi "

be unchanged If the partftfon functIon which has s maxf.

mum In x fs ~eplaced by one fo~ WhIch potentIal energy la

cons tan t fn x 0 r by 0newhf ch ha 8 a mtnf mum',I h x.

The translational motfon of a partIcle ofmaes m fs

one-dImensIonal box or length 6 can be descrfb~d by the

translatIonal ~artltlon fuhetlon

(
, )1/2 "21TmKT "

h
j!

so If the "effectIve massu*ls m th'e partttf.ohfunetfono
associated with motion In x'01 the, actfvated comptex fa

\... ' "; '"

gfv~n by·

~:t
\01( =X 6 (I t -26)

The, frequency In ,x f 8

-.
~ x

Vx - 6' (I 1-27)

- I x-r J: -m xa
• •

exp(2Kf ,> xdx

J+~ , -m ita J
•

exp(2Kf ) dx_00

(I I -28)

= .L x [KT J
6 2nrno

(1 1-29)

* In the case of two "oscillatorV' 'system, the ,effec:'tf VC!­

mass f s the reduced mass. "r ""1'
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In the numerator we take one-half of the fntegral

r m

_ ClIO

•
-m x2 ••

exp ( 2~f) xdx,

since we are Interested only In those motions which lead

toward product. ' From Eq.n-26 and Eq.n-29

= I ( KT )l/t ( 2nmoKT ) lit 6 _ KT
'6 2nm ,hi - ho

(1 I -30)

Thus we see th~t the actual value of 6 fs fmmaterfal. '

Hence, the speclft~ reaction rate can be written
}

k = (R~)(n Qr)-I ( 2Tt~~I r(_8:...l...a........~~~......-...:........
I r ,

3n-7 U
X[V .(2 sl nh ~)-I 1ellp (-Eo/Rt)

(I 1-31 )

The above expression can be derfv~d by alternative ~ethod8.

As we' have ment Ioned In the prey' OUS sections that

the total partition functjon can be separated Into contrt­

'butfons correspondfng to translational, rotational, vibra­

tional, and electronic energles~ The partition function

for vibrational motton per normal mode 18 given by ,
i

Qv = [I-exp(-hv/KT)]-I exp[hv/2KT] ( I 1-32)

If one degree of the vlbrat,fonal energy of the activated

complexes corresponds to the very loosevlbratton, then

It can be considered 8S the reaction coordl'l'late and'



L Q - L [I '- ex p(- hv/K T) ] - I
\1-+0 V - """"0

According to Maclaurin serfes expansion

exp( - hv/K T) =~. '.(. hv/KT~
n=o ' h!

when'l hv/KT 1 < ~ •

(t 1-34)

then L
v~o

[ .. E '.<- h"/t<t~ ] _
n=o nt

fhv IK T)~ ._,'
n t .] /

(I 1-35)

(1 1-36)

I f we omItthe 8 quareand h t gher terms, I n Eq. It -34; .

Eq. 11-27 become~

.\16 0 Cl v = [1 ... (1 - ~)J-I exp(h\l!ZkT) =M

::;;- .. :

Hence the equl Ifbrlum constant between the, reactants and

the activated complexes can be written as

• ILl (!iI) ['..9.LK = exp (. 6Eo/AT)]
rt[r] h" 11 Qrr r . ,

(I I -37)

where Q* 1,8 the'partltlon function of activated complexes

less one degree of vlbratfonal freedom, and [r] Is the

concentration of reactants. By rearranging Eq~ 11-37. we

have

" [X*]=rr [r] (~) [~ exp(- AEO/RT)],
r TT \oI(r •

r
(I 1-38)

The left-hand side of Eq. 11-40 ~an be divided by the

concentration' of reactants to give the rate constaht of

reaction

.,
\ ','
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(11-39 )

, (I t -40)

k =(~) [~.Q exp(~ 6E~/RT)J
r r ,

SInce not every activated complex reach~n~ the top of the

potentia' .nergy blrrf,r f. c~hv.ri.d tnto r••cttoh prOduct

we Introduce the Utransmls810n coefffciant h k.Then Eq.
, ,

11-39 can be written as

k =it F t~ *Qrexp( - AE~/Rt)J •. ·
r

This r~sult Is identical With that dbtalned'by Eyring

met hod f n Eq. t I -3 1•
" ,

In" the qua~tum mechanf,cal treatment of reaction

vibration; a sl fghtly different express'on, ft'om Eq. 11-18

was obtafnf!d:

u ' ,
-,) qQq :: vq[2 sinh (r)]'-I (11-4 I)

hv
However, If we assume vq :: Ivx' and iifS1< I, theh

" I

ua
Q = (~) [I + ~]-Ivq q n 24 (I 1-42)

The difference between the two fs aPP~oxlmately the quantum

mechan' ca I tunne I t,ng factor. 20

The expression for the specific rate constant,' WhIch

wi II be employed through the rest of thladfscu8s1on. Is I

obtained.
f



k = (It U) { nh r

29 .

3n-6
1 n

, t

3n-7
x n

t. o
2 8 f hh(z-L)'

r -

"

(1 t-43)

, '
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6. Isotope Effects

A. l~otope Effects oh Potenttal-~nergy Sur'ac~8

The ealeulattoM 01 the t"flu'nol of ',otoptc ma.1 on

the rate of r,eactlon, It Is clear, requ·lre's 'a set of very

deta1 led descriptions of the roles of the Indlvtdual atoma

and the forces exerted by'the ~Iectron cloud. 1t'ls also

c Iear that In or'der to predl ct the reac tf on rate 8ryd the

isotope effect of a eertalnreactlon accurat.ely, detaIled

InformatIon about thetransltfoh state Is t~qulred. thQ

absolute reactIon rate theory thus has proved to be a

better method thgn oth~r8 for this. purpose at the present

stage. However, In practical cases. this theory fs Ilmfted

by our f ncomplete know'l edge of the aetue I transf tt on state

and the Impossfbf Ilty, at present, of makfng a quantum~

"

mechanical calculation accurate enough for any but the
(' i ;"

sfmple~t systems. A qualitative agreement between the~

theoretical prediction and experf~entajdatafs. there­

fore, general'ysUfffctent.

Theorettcal models, tn general. are based upon the

presently avat lable knowled~e about stable molecules.
\'

Most bonds which are ~ot dfrectly Involved 'nthe reac­

tion will behave normally as to length' and force constant.

For bonds which are ruptured tn the reaction. the length

wi I I generally be tncreased and the force constant"

weakened If the corresponding mode of vfbratfoh has hot

dfsappeared co~pletely asa consequence of the,
,",
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transformatioh of the corr~sportdfng vfbrat~oha' c~ordfnate

Into the coordinate of deeomposf tlon. In genera I. as a,

result ()f the weakentng of the corre~pondtng vfbratfohal

coordinate. we assume that the'requeney 01 thIs vibration

fs zero.

In ordinary calculation of the reaction 'rates we

know very little about the transmission coeffIcient and

, the amount oftunne lIng through the poteht Ia I, energy

barrier. However, In the absolute rate theory the tunnel~

Ing contribution fs general'ynegllgfble. And the trans­

mission coefficIent fs not verysertsfttve to f'aotopfc

mass and wIll consequently cancel ihthe kinetic Isotope

rate ratio.

By deflnf,tion. the Isotopes are two forms of an ele~ ,

ment dIffering Qnty In the number of neut~ons In the

nucleus but not In any ordinary chemical properties.

Since the electronic structures of two 18oto~es of the

same efement ~re Identical. the mass of the'nucleus enters

the calculations only via the "effective massttof the

system of nucleus plus electrons. Hence the forces

which hold the atoms together wi I I be nearly tndependeht

of changes In the masses of the atomfc nuclei caUSed,by

fsotoPlc sUbstitutIon. Then we can say that the poten­

tial-energy surface and hence the Interatomic distances

and the vibrational force constants could be treated 8S

Invar,lant under Isotopfc sUbstitution. with an accuracy
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whfch fa sufflcfent tor our presant purpose. But

zero-point energy (and thus acttvatlon en~rgy) and Vx
I depend UpOI1 vi brationa I frequencf es and :thua on l11asses.

A potential-energy dlagrarn for the feotoplc sUbstItution .

. of If,ght molecUles, bY·heavler molecules fs.shown In

FIg. lIt-I.·

;!

\ .

0.
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Ffg~ 111-1 Potentf.,-Energy diagram for isotope effect.

j'
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B. Appltcatt~n ,of Rate Theory to Isotope Effects

Constder 'the untmolecular decomposltton

X = x*:: Products,

In' which the validity of QEf Is 'assumed. then the rate

constant for this reaction-can be written In the fbrm

of Eq. I 1-45:

3n-6
n
t

-I'___t--..,-- ]
U

2 stnh(f)

3n'·7
n
I

(2 rtM· K'r )J/t

, ha ",
x

2Slnh(~)

, (I 1-44)

If we replace one atom In X by l Ifghter .sotope. the

reaction Is written as:

X· =xt* =Products,

and the rate constant Is
2rtM'KT 3/~ 8n~(8n3A'B'ct)'/t (KT)3Il

k' c (h: ,U) [( r ) , , ' r r r
h h2 a;h3

'

3n-6
X n

I

3n-7
X n

I
'I, tj

(I 1-45)
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By comparing Eq. II~44 and Eq. 11-45, we have,

I
I
II'
:1

II':
rr

(11.-48)

112
)

A·'S+·C··
J( A* B"* C ¥

'$Ufslnh(r)
u* §

sfnh(r->

)(

k •
Mr- ,M*' 112 0' '0* ArBrC r 'A'* 'Ert··c··

, I ,,) t/~

k :: (M! )( gr-) (-1:.' )( on) <Alaie' )( A" s' el
r (J r , r r r I

U u·
3n-6 s t hh(::1.)

3~"7
sfnh(:.l)

)( n I 2 n ,2
0' , U¥,,

8 f nhC..J..) I st nh(tL-) I (11-47)
2

By multfplythg both sides of Eq. 11-47 by (0*'0.')/(0'*0'), r, ' t

we arrfv~our,general expression:

If *~ rearrange E~. 11-46 and aasum~ that the transmts­

s~on~coefflclent cancel out. W~ get

The above expression can be slmpllffedbythe use of,

Identles derIved from the Redlfch~teller product rUle21 •
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These same Identities can be, obtained by equating clas­

sical pattltf~n functions with the hlgh-tempe~ature Itmlt

of quantum mechanical partitioN functl()~a. 'as suggested

by Bigelefsen and Meyer~.,The_expresSlon derived for

the reactants Is '

u·0+ = I
I,

, (I t -49) ,

for the activated ,complex when motion tn'the reattton

coordinate Is conslder~d as a vIbratIon Is

. mt,lli M*,.~ll A' f'e· III 311-6 ~i = 1+
(iii) (F;jTt") (Ali tie") V ... U

f
' . ,. (II-50)

and that fot the ~ctfvated compte~ where mdtton In the

reactIon coordinate Is considered 8S a translatloh 18

(f)I/Z (~)Jll '(~:fR;,g;,)l/f(~)I/Z'3r\r ~ = I

(11-5 I)

If we combine Eq. 11.49 and Eq. 11·51 we get

M~ •M., .. /'I A 'B C A.. t B' *. C' *. II"" M 3n 7 U" e 3 n-6 U
(M a Mf) :tI r; ( A~B~cf x 1\ * B*c.) .• ( 0 tl n ~ n ;;+' .

r, r r r ' ~ . I or f u.
( I I -52')

By combl~fng Eq. 11-48

,*, M
~t ora ,
(~)(o '0 * ), = .(fl!-)

r 0

or

have
'~

, U
f3n-7 ~i 'sfnh(r)

n Of r.
t Ut 8fnh(r)

'( I ~ ~53)
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'v· 3n-6
) = (2.) n

"'x I

, U
U,sl nh(r)

. u:sfnh(~)

3n-7
n
I

where Vx Is the ,average fr~quency of motloh 'n the

reaction coordinate.

In the case of fntramolecular Isotope effects, the

reactants are fdentfcal' for the,palr of reactions, and

(Qr/Q~)= I."Then, Eq. II-53 or Eq. II-54 can be wrttteo

as

M. 3n"7
=(~) n

~~, I

u
__ '(Vk) 3n-7UI 'sfnh(zl)

) n 0 i

V
x f UfBfnh(~)

U
u','slnh(~)

U•Ulsfnh(~)
(t t -55)

,1" Eq. 11-5:1 or II-54 It 18 Obvious, that the first

term of the right-hand side; Is the *'temperature-Indt!.

pende,,~ Factor· .. (Tt F), and the second term 01 the

right-hand side Is the hTemperature-Oepe~d~"tFactor"

(TOF). Thus the theoretical e>cpress"ons for rate con-

,I- ,

I

st~nt ratios of Isotopic reactions can be written Ih the,j'

general form

The temperature-dependent factor Is a function of the

fre~uericle8 of motlbns orthogon~1 to the reactfo~ coor-,
dtnate. 1" th~ east: of Intermolecular, reacttona,' ft

j:' ' f· b (TI F) (TDF) (1'1 ~S6)
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depends also U~Oh the fUhdamental fr~quentle8 of the

reactants~ The temperature.lndependent factor, (~~/vx)

hasbe~n 'geh'eta I" y edha t dered as the equ f va 1!t1 t Qf

(mo/m~) ; which In actual computation Involves,consld-

erable uhcertatnty. This calculated uncertainty. hbw­

ever, wo~td not fnttuehce the temptrature.d~pendent

factor. this problem has, 'n 1958, been tevfewed by

BI~elefsen and WolfSberg,22 and they hlve gIven a partl~

tular formula 23 for the temperature-Independent functIon

to be uned In the case of three-centered reatttons. 24

tM Eq. tt-59 the ttrm Ut • a8 dtftned. fs'equal to
hew, ' '"
Kr wtUH", WI te a fundaments I frequency of vibration.

trt order to calculata th~ ratio. two sets of fundamental

frequencfee must,be known. Therefore. a detaf ted devel~

opment and gehetsl'method of eatcUI~tlMg th~se sets ~,
I '

fundamental,frequencles ate dtslrabte,. tHe followlhg

chapter tS,devoted to this pur~o8e.

i'

I'

'I

I'
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Chapter III - Molec~lar Vibrations

I. Separation of Energies

2. Coordinate Systems of Smal I VIbrations

A~ Generalized Coordinate System (GOS)

Kinetic Energy in GCS

Potential Energy In GOS

Coefficients of the EnergY' EquatIons In GCa

Eguatlbns,of Motion In GCS

B. Mass-Wet, ghted Cartesl an Coordf nates (MWCC)'

and the Prlhci'pal AxtsTransformatlon

Ma ss -Wei,9h ted Car t es ian' Coo r dinates "

The Principal Axis Transformatfori

C8 Normal Coordinates and Normal Modes of

Vibration
,

D. Internal Coordinate System

Description of Inte'rnal Coordinate System

G Matrix and the Secular, Equation In Terms lof

Internal Coordinates

"

41

47
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Chapter III - Molecular Vibration

Throughout this lnvesttgatlonthe atoms are treated
i '

as p'otnt masses connected by forces whl ch keep the atoms

near thefrequflfbrfum posftl'ons,. The electronic

effects are~eglected.'6 The rtgorous and logical way

to begin the treatment of molecular vibratIons, Is to

prove th~t.when the,proper coordinate system Is used~

the total energy of 'a rnolecul,e can be approximately

separated f nto" three components, transl at I ona I energy,

rotational energy, and vibrational energy.

, '

, ,
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I. ,Separation of Energ I e,G

The, coordl na te system used here Is construc'l'~d as

follows: The three CartesIan coor"tn.nates' whose orfg,tn

,I s loeated at the center of mass of the ~o Iecu Ie; t'Me

three Eu Ier fan ang,1 es of a rota t f n g system of cartes' an ,

coordinates, the axes of which coincide with the prin-

e f pa I ax eS 0 f f ne r t I a of the ,u nd1s tor ted mol e cui e ; and

the Cartesian co'ordlnates of the atoms with respect to

the rotating coordinate system.' The'aystem Whose ori­

gin I's located at 'the center of mass of the molecule Is

denoted by ,. ~nd the other cinefs denoted by S. If we

have a particle P in the space of S, t~ere results

three types of mo'vements; rel,atfve motfon, Pis, Is the

motion of P wi th, respect to S; leading matton, SII, Is

the motton of S with respect to I; absolu,te motfon,

, P II ~ f s the mot i on of P wi t h 'r e spee t ' to I. I f the

three coord ina tes 9f I are x "Y ,Z wf th un I t vectors
1\ A 1\
I , J, k. respectively, and the coordinates of S are

" ,1\ "up v, w with unit vectors I , m, n, we have defined the

posltlo'l ,of the point mass P. And we can denote ,~ ,as

a function pf six coordinates: P,(x, y, z, u, v, w).

The relative positfoh Is shown In'Flg. III-I.

, ,

, I

I
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z

x

Fig. III~I The relative posit'o~ of S and I systems In
, ,

three dimensional space.

With reference to Fig. 1.11-1 it fs clear that

" " " " 1\ '" "OP = 00 t + 0 t p = 06' + (u I + vm'+ wn) '( 11 1-I )

By dlf(er~ntiattng Eq. 111-1 with: respect to t~m~ t. we

get the absolute velocity Vab in terms of leading velo­

city Vt ' an~, rei a t I ve vel 0 efty. V'r 0

" 'A 1\

V - dOP - ~' +~
ab - dt - dt dt

1\

( w £!!Ldt
"+ n ~)

dt
( II 1-2)

1\ "A"= dOC' + !L [ I + m + ]dt' dt U v w n

"1\ " A

=: ~~O' + (u *+ ~ ~) + (v %t + m' ~) +



where
1\ " A A

V _dOC • + (u .Q..L + v '.Qm + w .9.D.)
t - ~ dt dt dt

43 '

(I I 1-3)'

=~
A

dv " +.Q!!,
(\

Vr I + m n (I I I -4)dt dt

Now t let us' take a' look at system s. (FIg. II ~ -2)

i '

z

'I ,

p

"

~--~--------.;;.......;..:.--~ Y' ,
j! •

'.'
....... ' • ., .'., 'tJ: -,-

I' ,

x

I
I '

Ffg.III';'2. S - system
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Since, I and I are orthogorial then

44

, .
" A "
I =am + bn' (II 1-5)

where a and b are constants.

"( I I 1-'6)':1,·" .

I (111.-7)

By sUbstituting Eq. 111-6 and 111-7 Into.: E'q. 111-5,

Consider
•

" " " 1\ 1\ "m' i = am·m + bm.n = a

•
" " " 1\ 1\ A
n -I = an'm + bn'n =b

we get
•
"I =

,
1\ "

(m' I)
1\,

m +
1\ A A

(n .,) n. (I I I ~8)
1\ /\

Since I-n =O~' we know that· ' .1\ 1\ A'/\
I- n + n' I' = 0

- .
, . .

1\ A, A A
n' ~ == -I-n (I I 1-9)'

By combfnfng 'Eq. 111-8 and Eq •. 111-9,, ,

• • •
1\ "" 1\ "A 1\
I = (m. I) m.. (I-n) n

" '.A '" A 1\' A 1\ f\"= (I"~ ) ( nx I) + (n' I ) ( mx,I) +

•,,1\ A
= [(I-m) n +

A "=W )( I

. '

A 1\ A
(n-I) m +

o
AA 1\/\
(m.n)~')(I)

•
" 1\ 1\ 1\

(m'n)l] x 1

1\
where w Is the angular velocity of the particle P.

"" ASince I. m, and n are cyclic permutatfve,'w. can write

down •
" 1\ A
I =w x I (111-10)
- 1\ 1\"m =w x m•
" 1\ "n ,= w x n

I '
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If wecombfne Eqs. 111-10 and I II -3 ,
•

" 1\ ,: " 1\ " 1\'

V' = 00' + w x (u I + vm +wn) ,t .
"1\ "=00', + w X OP

So the absolute velocity (Eq. I I I -2)

we get

(I I I -,I 1)

can be written'

" "
. .

'" " " f\ ": ,,"' "
Vab = (00') '+ (w x 0 p) ,+ Vr = R + Wx r + :'Vr (I II -12) ,

The kinetfcenergy T of the whole molecule. therefore. I

can be wrl tten'

•
1\ "1\,, ,,' A'

2T =R2 !:lnf + Dn l (wxr) • (wxr) + Dn f Vi
iff ,
• •
A" " f\ " ",' i\ "

+ 2R•w 'x L;m f r I + 2R •r.m f Vf + 2w ,E
i

(m f r i x, Vf )
I I,

, (I I, 1-13)

Since the origin. 0, fs the center of gravity of the

Who Ie mo I ecu Ie; a t every f nstan't I t must be' true that

"Fir,= 0 ( I JI-14 )

, " " " "and tm, r I =Dni [(wxr,) + Vf ] - 0
f f

1\

Dn f Vi =,0 , '

f

Equation 111-13 becomes
A '1\"" " " ~ ,,"

2 T = R2 L;m f + Dn f (w xr) II (w xr ) + I:m f Vi + 2w • I:m i (r f xVf )
f ' i,' I I I"

(III-IS)

=translational energy + rotational energy +

vibrational enetgy + Corfolls energy26



Thus far we have proved that the total energy Qf a

mol ecu I e can be ap'proxf mate I y separatedf 'lto trans I a­

,tfonal,roiatfon~l, vibrational, and C6rfolls energies.

Hereafter, the dfscu.slon wi II be centered, upon the

vibratfonal energy and related 'furictfons. '

.. I ,I

I,

I '

46
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2. Coord' nate Bye,tems

A. Generalized Coordinate System

118 set of properly deftned;coordfnatee, 88 8~ated
I

In the previous aectlon, IS,cho~en, the vlbratfon of a

molecule can be treated as a c6nservatfves~al I 08cl I~

Ia t Ion s y stem. Let U8 consider a po'yatomfc molecule,
I ,

as a conservative 'system, which can bedescrfbed In

terms of a set ()f ,genera I f zed coordfnates ,qk",and the

time, t.'If the molecu1e possesses n degrees of free·

dam, then k = ,,2, •••• , n"We specify thata"conffg-

oL d oL =0
~k - dt aQk

wf I I be sat I 8 f fed, by

k = I J ~ , •••• , n (111-16)

,. ..
qk = qkO; qk = 0; qk = 0; k = ,,2, •••• , n

, ' (d oL)Now, at the least every nonzero term of the form dt ~ ,
k

must contain ~Ither ~k or ~k' 80 that all e~ch terms

vanish at equIlibrium. Therefore, from Lagrang's

equation, we have

lll=U, -~I =0 (111-17)
oqk 0 aqk a aqk 0

where the sUbs,crlpts, a,, designates th.at the quantity

fs evaluated at equllfbrfum.
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It, is assumed that the transformation equations

defining the generalized coordfnates of the system,

qt, •••• , qn,do not Involve the time expllclty. Thu~,

tfme-dependent constraints are to be excluded. Then

potentf a,1 energy Is a functf on of posl tl on on Iy, and

the kfnetlc energy fs a function of velocity only.

KlnetfcEnergy In Gen~ralfzed Coo~dfnate aystem

In a rectangular coordinate system, the k1netfc

energy fs given by
n 3

T = 1/2 ·E· E
. a.= Ii:: I

If we adopt a set of generalized coordfnates explfcltly

Including the time, then the set oftransformatfons

, connecting the rectangular 8yste~ and the ~enerallzed

system can be written as

Xa. 'f = Xa.' i ( q1 , q2, ••• • qhi, t )

where 'a. = 1,2" •••• ·, n ;

Xa,' i = Xa.' I (qJ' t)

where J = 1,2, •• ~.,h.

.. = 1,2,3; th en'
"

(111-19)

The genera Ifzed velocity Is
~ ~

• • •
Xa.' i = Xa. ~ I (qJ' qJ' t), (I 11-20)

We may. also write the f nver.s e tran'aforma tlon as
I

I

qJ =qJ (Xa.'I' t) (I II -2 I )

• • •
t) ( I II -22)qJ = qJ (Xa.'i f Xa.' I ' I
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Eq~ 111-20' can be written as

,(1 I 1-23)

'Then.
• tel' h

(Xo,' • f ) =', ( L
j=1

ho Xa,' f
, + 2(~

" J=I ~qJ

And Eq. III-IS becomes
.( II I -24)

n'
T ::: 1/2 1::

'0.=1

h aX'1 oXa.' I+ 2(I:" . g.
J~I aq

J at
i '

If the system ia scteronomfc, so that tlme'do~s' not

appear explicitly In the equations of transformatfon~

then the partl~1 time derivatives vanish, and therefore

the kinetic energy Is a homogeneous quadratic fUnction

of the generalized ve~ocltfe8:

T = ~ 'E (1/2 )m ~XCt' I ~XCt' I . .
9

j
9
K

:
IJk o.OqJ oqk

Thus, we can write down the kInetic energy

n • .
T = 1/2 I; mjkqjqk,'

j,k=1

(I I I -26)

(111-27)
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And, In general

k = I, 2 , ••••', n. (II I -28)

Potential Enetgy 'in Generalized Coordinate'System:

Therefore from Eq. I I I -17 and Eq. 11 I -'28 we' ha ve

~ T " :
~ ,= 0,
oqk 0

k = 1,2, •••,., n (I I1-29)

Eq. III~29 means that the potential, energy has an

extremum at the equilibrium conffguratiohof the system,

qk 0 ' Wher ~ k '~I, 2 , ..... , n. I f the config urat lon, i s

i nit f a I I y a t the zeroe qu't I f br I um poattl 0n, we ch0 0 se

qkO = O. If, orlgf,nally, q"kO t-
linear ,tran~formation to set qkO

, ,

thepotentfal energy in a Taylor

I I f br I urn confl gu ra tf on, 'we ge t

0, we tan al~ays use a

=O. Now, if we expand
, , I

serles,about the ,equf-

n
+ 1/2 r

j,k=1

(II 1-30)

In Eq. I I I -30, the terms I f near, in qk vani sh automatI­

cally In con'seqlJence of theequf I ibrium conditions

(Eq. 111-29). The first term in:Eq. 111-30 Is the

potential energy 6f the equilibrium position, and by

shifting the arbitrary z~ro of potentja~ to, coincide
, ' . "
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wlth,the equilibrium potential, this te'r~ may also be

made to vanish. Then, If the motfon of the generalized

coo~dlnate system fs restrfct~d to be small, all the

terms In the expansion whIch contaln,prod~cts of the

qk of ~egree higher than se~ond may b~ neglect~d.,

This Is equivalent to restricting our Interest to

simple harmonic oscillations, In Which ~a8e only the:

terms quadratic In the coord I nates are:1 e'ft • Thus,

n n
U = 1/2 r E 'fJ,k qJ qk,

J=I k=1

Where 'we define

f k · = f J k = a2 u I, ,J
" , oqJaqk 0

(I I I ~3 I )

T~e motion 6f the 6yst~m Is speclfi~d to tak~

place 'In 'the vicinity of the equilibrium conff,9uratlon,'

and the potential energy has an extremum when the

s y stem f s 1',nth Is con fig urat Ion. , Sin ce the poten t f a I

energy, U, ts chosen to be t~ro at equilibrium, in

general U must be greater than or equal to zero. And

'It is clear that both potential energy and kinetic

energy are positive definite quantities, unless the

coordinates, In the case af'U t or the velocities, In

the case ofT, are zero, In Which case they vanish.

i '
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Coefficients of 'the Energy Equations 'nGenerallzed
, ,

CoordlnateSY6te~

We have concluded that the'klnetfc en~rgy and the

potentfal~nergy In the generalized coordinate system

have the same form:

n n • •T = 1/2 L: 1: mj,k qj qk ( I I 1..33)
j=:'1 k=l,

n n
U = 1/2 E L ' f J, k qJ qk

j=1 k=1

By comparing Eqs. I I 1-26 and ,I I 1-27 , It is c I e,ar that
, I ' ,

the mj,k are. In general,functfons of coordinates qk'

and they may be expanded ina Taylor,serles a~out the

equl If'brlum configuration.

( I I 1-34)

The lowest nonvanlshfng approximation to T,' sfnce In

Eel. I I I -33 T, Is al rea dy qua dratlei n qk5, f sobt a f ned

by dropping all but the first term InEq. 111-34.

Thus ~he coefficients, mjk • become constants and .e

'rewrite equation 111-27 In the form

n n
T =1/2 L: L:

)=1, k=1
( I 11-35)
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From Eq. III~32, the co~fffclent8 f Jk ~r~ only numbers.
t

Th~s, In Eq. 111-33, the m~k a~d the f Jk ,are ~ by n

arrays of nu~bers'whlch spec~fy the way tn which the

motions of the various coordinates are 'coupled.

Equations of Motion In Generalized Coordinate Sistem

FrolTl Eq. I I I -33, the Lagrang Ian .i ~ given by

n
L = 1/2 I:

J=I

n

k~" (m jk qJ qk - f jk, qJ qk)

"I I I -36)

But, sfnceT fs a function only of the generalized

ve I OC i t fe,s: and U ,f 6 afunct'f on on I y' of, the genera I f zed

coo r d f nates Lag ran 9e' t sequa t f 0 n for the kt h coo r df nate

becomes

.QQ I'+ . doT = 0 ( I 1I -37 )
aqk d{ aqk

The frrst~~rder 'partial differentiations with respect

to the coo,rdl nate' s ys tem of Eq. ~ I I I ;'33 are

.21L = (1/2)
n

aqk' E f jk qJ
( I I I -38)j=1

aT n .
aetk = (1/2) E mjk

q ,
J=I J

The equations of mot fan then become

n ..
(I II -39)L f Jk qJ +rn Jk qj = 0,

J=I

I '
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where explicit use has been made of the symmetry property

of the f Jk, and'm Jk' coeffici ents. Each of the equations

111-39 wi II Involve, in general" all of the,'coordinates

qk' and it ~s this set of simultaneous differential equa­

tf<;>ns which must be solved to obtaIn ,the motton, near, the

,e qu iii b r i um.

The equatfons of motion, 111-39, are ,8 ,set of n"

second~order linear homogeneous differentlal, equations

with constant coefficients. Sf,'nce: we are deal lng' with an

oscl Ilatory system, we expect a solution of ~he form

qj (~) ,= ajex p I (wt-6):'(Itr-40)

where aJ gives the complex a~pl'ftude of the oscl I latton

for each coord Ina te, I and the phase t 6, has' beenf nc Iuded

to gfve the two arbitrary constants, aJ a".d,'6~ required

by the second-order nature of each of the 'differential

equa t ions. I tis unders tood, of course, that l't i, s the

real part of Eq. III~40 which fs to correspond to the
" I

actu a I mot ion., Subs t f tu t f 0 n 0 f .the sol uti 0 n, Eq. I I I -40 ,

into the equations of motton leads to the following

equations for the amplitude factors:

n ,

E 'fJk w:a,m jk) a
J =0 ',( I I 1-41 )

j=1

This is a set'of n I f ~ear homogeneo~s algebraic equations

that the a. must satisfy. For a nontrivial solutfonto
J '

eXist, the determinant of the coefficients must vanish.
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If w:a I a, dena ted bY'A, then

IfJk - ArnJkl ~o (111-42)

To be more explicit" this la a determlnant,of,the o'rder

n x n:

II 1I~m i I· • ..... • fin; ~m I~! =0

Ifn I -~rnn I • • • • •• • • fnn- ~mHH

The equatf~n which larepresented by thl~~etermfnant 1a

,called the characteristic equation or aecular equation of

the system, and is an equatfon,of degree n tn w2
'11 The

roots of the determfnant provide the frequencfes f~r
I

which Eq. 111-40 represents a correct' SOlu,tl,onto the,

equatfons of the motion. For each of these, values of w:a,

the Eqs. III-41rnay be solved forn-I of the amplf~udes In

terms of rema l.n f ng' aJ. For the' cas e of degeneracy ~ the

problem can be solved by speciflc,algebralc tfchnfques

whf chare oml t ted f.n thfs discuss fon II

Sf nce the, prl ncl p I,e of superposl ~I on app I I eafor the I

Eqs. 111-41, the general solution for qJ~ust be w~ftten

as the superposl tl on of the so lutl ons for' each of 'the n
, I

va lues:

(111-44)

The motfon of the coordinate qJ Is therefore compounded

of motions ~Ith each of the n values of the f~equencfes.
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Hence, simplifIed coordinate systems are desirable.

" ,

B. Mass""We,ghted Cartesian Coordinates 'MWC~)

and the Principal Axis Transformatio~

Mass-Weighted Cartesian Coordinates

Suppose th~ approprfa~e generalized coordinates were

the Cartesian coordfnaies of th~ system particles. l~The
, ,

, ,

kl neti c energy then wou Id conta' n only the ,squareaof the

velocIty components. By Introducing generalized coordi­

nates ,whi c,h ,are th~ C'artes', an components mul t,ipl f ed" by

the square 'root of the partltle mass', the k,lnetfc e'nergy,'

can be put in the form !

, n' 'n • •T ::: 1/2 ~, I: 6jk qj qk
)=1 k=1 ,

(111-45)

The Kronetker delta,6 jk , equal~ unlt~ if j =k, and Is
, ,

zeroo the r wi s e • , By compar ~ n9 Eqs. I I I -2 7 an d II 1-45, we

see that in thls coordinate system mJk = 6j~' This coordi­

nate system Is cal led mass-weighted Oarte6t~n coordinates.

And theklnetfc energy can be written

n
T = (1/2) (r.

J=I
• 2 )q.

J
(111-46)

Heney, Eqs. 111-39 become

(111-47)
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and Eq. I I I -4 I can be ,wri tten

n
(fJk

' 2 a 0) ('1'1 I -48)r. 8
J - oJkw = 0

J=I J

If we replace w2 by X, Eq. t I 1-48 ~' s of the fo,rm

n
E (fo k - 6 ok X) a. =0

J=I J J J
(1'.11 -49)

Ace 0 r din 9 to.- the samear 9urn en t as tnt he p r ,ev i 0 U 8 sectl 0 n ;

'Eq. 111-43 I~ this easels written

f , ,- Ae •••••••• e •• f Jn

!2 I f 22 - X.....,~:
I • •

. f n I· • •_. • ~ • • f nri .. ~

:: 0

The Principal AxfsTransformation

For a give,n set of part'lcles, in view of' the identi­

fication between tensor quantities,andthe ~ermltlan

matrl cea,one can ff'nd a set of Cartesian axles, for which

the tensor elements under Inveatl.gation wi II ,be dlagonal-.'

This set of axes Is called the "principal axes". If the

Initial set of~oor.dfnates fs not principal, axes, one can

always transform' this Initial set to' the 'prfnclpalax~s by

a particular orthogonal transformation, known as the

"Principal Axis Transformatf.on".

Let us now' return, to Eq. 111-41 Whfch'i,in matrix

form. can be-written

FA =AMA ( I I 1-5 I )
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The effect of F on A is such as to prod~ce a multiple

of the result, of M acting on A, not merely to pr?duce EAa.

In consequence of the Hermitian prop'erty ofF and, M, It'

wi II be shown that the ei genva lues, A, for which' equati on
,,. I

III-51 can be satfsfle'd are all real'and positive, and the

eigenvectors, a~ which are the co,lumn vectors of matrix A,

are ort~ogonal. In addition, the matrix of the eigen­

vectors, A, diagonalizes both M an~ F, the former to the

unit matriX, E, and the latter to a matrix whose diagonal

elements are the eigenvalues, A.

If we leta
Jk

represent the Jth compohentof th,e kth

eIgenvector, Eq. III-AI can be written as

i '

The complex conjugate of the simi lar equation for At has

the form

n
E

1=1

* n=At r.
1:1

(I, II -53)

We mu I tip lyEq. I I I -53 by a Jk' sum 0 ve r J J ,and sub t r act

, the ,r esui tin g equa t i on from the, s Imil a r pr o'ducto f

I *Eq. III-52 with alt summed over I. The left-hand side of

the difference'equatlon vanishes, leaving only

(1 I I-SA)

I'
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Consider flrst·thespeclal case. of 'Eq. lII~54 when L = k:

n
E

1=1

n
E

)=1
(I I I -55) ,

The sum over I and·J wi 11 nbW be shown to be ~eal and

positive definite. To verify thi~ statem~~t, separate

8 Jk Into its real and Imaginary components: .

a Jk :: (.o.jk' Sjk)

. The summation can then be written:

n n
* n n '

E E . tAl J aJk a lk = [ E E Mlj (ljk o.ik1=1 J=:I 1=1 J=I

n n
+ E I: MIJ ~Jk ~ik1=1 j=1 ,

(II I-56)

n n
E I: MI J (~J' k Q, i k - ~ J' k,Q,J' k ) ]

f =I J= I

(111-57)

The imaginary term in Eq. III-57' vanishes In consequence

of the symmetry of Mij , for an fnterch~nge of the dummy

f n die es , ian d j," c han 9esthe s i 9n 0 f the su mm at f 0 n•

Hence the sum is real. Furthermore, It is'~~en from the'

definition of the coefficients Mij , Eq. 111-34, the summa­

tion in Eq. III-55 c~nnot be zero for real and positive,
, ,

definite kinetic energy. It follows that

*Ak = Ak'
and eigenvalues Ak must be real.

,
, II

(I I I -58)
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Sfnce 't he e f 9en val ueS ,a r erea I, the' ra t f 0 . 0 f the "

'efgenvecto~ components ~Jk determined byEq. III-52 must

al I be real. Multiply Eq. III-52 by a lk and sum over i:

n
E

1=1

n'
r

J=I
FfJ a lk aJk =Ak

n
r

1=1

n
J~I MfJ a fk a Jk

(III-59)
I

(I II -60)

we 'get an equat Ion which can be, sol ved for Ak:

~L:F i J a f k' a jk
Ak =

!:L:M f J a f k ,a Jk

In Eq. 111-60 neither numerator ndr denominator, can be

negative, and'thedenomlnator cannot be zerd. Hence 'A

fs always fintte an~ positive or zero. Therefore, as A

stands for wa , positive A corresponds to realfrequencfes

of oscillatfon.

I n vlew of the real I t Y of the e f genva Iues an d e.f' 9en - '

vectors, Eq. III-54 can be written

, ' I

n
(Xk - A,,) r

h 1=1

n

J~' MfJ aft a Jk = 0 ( I I I -6 I )

If al I th~ ,roots of the secular equation are distfnc;~,
, I

then Eq. 111-61 can hold only if the summation vanfshes

for l not equal to k:

n
E

1=1

n
r

J=I
0' , (I I I -62)
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If we requf~e ~hat,

n n
t: t MIJ at,t tA Jk == I whtn IJ ::I k

1= I J=I
E:qa. I I I -62 and I I 1-63 can be combined as:

n n

I ~ I J~ I Mf J a I.e a Jk ~ 6 1, k'

In matrix notatton, Eq.,III'-64 can be written as
....
AMA= E

(111-64)

(111-65)

Eq'. Ill~65 Is the orthogona.llty condltf,onforthe matrix A
" ,

'In theconflgu~atfon space whose m~trlcte~so~fs M.

In a Cartesian space the metric tensor la'the unit

tensor E and the condition 111-65 la reduced to
tv

AA = E ,(111-66)

This Is the ordinary orthogonality requirement.

In the Eq. Ill-52, If we deflne~tk = Ak6,tkll the

expression can be wrftten

n
L:

J=I

n
-, I:

J=I
Mlj a jk A,tk'

which becomes, In matrix notation:

FA = MAA. (111-68)
I'Y

Multiplying A from the left.Eqe 111-68 takes the form
,... ,..,
AFA =AMAA,

which, by Eq. 111-65 reduces to
,y

AFA =A.

(1.11-69)

(I'z'I-70)
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Eq. 111-69 states that a congruent transformation of F by

A changes it Into a diagonal matrix whose elements are the

eigenvalues Ak•

The matrix A thus slmultaneou~ly dlagpnal1zes both F

and M. The dlag6nallzatloh prociess Is interpreted as

fol lows: A Is the matrix of a linear transformation from

a system of ' Inclined axes to Cartesian orthogonal axes.

At the same time. the new axes are'the perpendicu lar

principal axes of F.so that the matrIx F fs diagonal In

the transformed coordl,nat'e system. Therefore, we can con­

clude that the entire process of obtaining ,the fundamental

frequencies of smalloscl Ilatioh Is a par,tlcular type of

principal axis transformation.

C. NO,rmal Coordinates and Norma,' Mode ~f Vibration

The coo r dinate system usedin the pre v10us' sec t f C? ns

are not, In general, the separation coordinates of the
~ :

problem,' because not everyone of them Is s,lmply periodic

and each solution Is not necessarily representing a funda­

mental frequency of ,the par~lcle system under consld~r,tlon.

However, we can. obta In such a se t of per Iodt c coord'i nates I

by a point transformation from the previous, set of

coordinates qJ.,

We can define a new set of ,coordinates ,gJrelated to

the original coordfnates by the equations

(111-7 , )
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If qj and ~ J are represented as the elements of slng,'e-col-'

umn matrfce~ Q and S respectfv~IYf the deflri'ng equa~fon.

Eq. 111-71, appears as

Q = As

The potential energy can be written as

U = (1/2) 'QFQ,

and the kinetic energy can be expressed as

T =,( 1/2)~MQ
Now, slrice

-Q = ,As = lEA

Eq. 111-73 becomes U = (I/Z) SAFAg

(I, I I -72)

(I I I -73)

(111-74)

(II I -75)

(II I -,76)

According: to, Eq. III-70,. the potent~al energy re'duces

simply to
IV,

U = (1/2l'SAE

Written explicitly, Eq. 111-77 appears as '

U=(1/2) ~ wk ~k
k

In the new coordinates, the kinetl,c energy ,can be

written -,.,
T = (1/2) EA MAa

and according to Eq. 111-65

T =(1/2) ~E

(III -77)

(111-78)

(111-79)

(I I 1-80)

In terms of the new, velocities, the kinetic energy fs

therefore

T = (1/2) '~ ~k (I I 1-81 )
k

Equations 111-79 and 111-81 state that In the new coor-

dinates both ,ttte potential and kfn'etfc energies are sums
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of ,squares on Iy" without any' cr9ss terms _ The Lagrange

equations for ~k a're

.0 1
~k + Wk ~k =0

These equations have solutions

( I 11 -82)

(1,1 1-83)

It Is east Iy seen that eac,h of the new coordinates Is a

simply periodic function in~olvlng only one of the reson­

ant frequencies. Customari Iy, ~'s are cafled normal

coord1nates of, the system.

Each norma I 'c 0 0 r dinate cor res ponds to a v I bra t 10n 0 f

the system wfthon I y one. frequency ,.and these component

osci I lations are spoken of as the notma~ modes of vibra­

tion. AI I of the p~rticles ,in each m~de vibrate with the
, ,

same frequency and With the same, phase, the relative

amplitudes being determined by the matrix elements a lk -
, '

The complete motion is but It up out of the sum of the
"

norma I modes wei ghted, wi th appropr tate amp 1,1 tude and

phase factors contained In the ek's.

D. In terna I ,Coordi nates

In order to set up and carry out the actual compu­

tat i on In t his Inv est I gat Ion, i tis mar e co nv en i en t to
I

apply the six conditions of no rotation and no translation

before the solution of the secu,lar,equation.'
r "~~!' ,

Thf's kind of

reduction in the number of original coordinates may be

carried out in two ways. One method Is to use th~ six
I, '
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con dI t f 0 ns toexpreSSG 1)( 0 f t hie 0 rig fna I ci 00 r din atesin

terms 'of the remai n" ng 3N ..6 coordi ita tee.;! The ,other ,method

t 5 to f nt roduce a new s ~t 0 f 3N..6 co 0 'r din atea S1 f S2 , • • • • •

S3N-6 which are defined by me~ns of the siX conditions and
I ~ ~

3N-6 relations"connectlng t~e SIS with the 'original

coordinates. These coordin~tesystems, ~hich describe

the Internal configuration ·of the mo~eculeYilthout r,egard

for f tsposf ti on 'as a whole ,in space, are known as ,

Internal coordinates.

The set of 3N-6 Internal coordlriates u~ed In this

paper Is provided b~ changes In Interato~lc distances

and changes I,n the. angles between 'ch~mical bo~d~~ This

type of coordinate provides the most physic~1 Iy signifi­

cant set of coordinates for use in describIng the poten-
,j

tlal energy of the molecule. Bu~ the kinetic energy Is

more east Iy set up In terms of Cartesian displacement

cqordinates of the atoms. A relation between the two
I

typea la therefore demanded. Eaph of the 3N~6,inte~nal

coordinates can be considered as the linear combination

of 'the 3N Cartesian dlaplacemen,t coordinates. If St

represents one of 'the 3N-6 I nt.ernal coordl.nates and ~i

one of 3N Cartesian displacement coordinates. then

3N
St = 1::

1=1
t = 'I ,2 ••••• , 3N~6 (III-84)

wher e the coef ftc len t s Btl are cons tants 'd et ermI.n ed by

the geometry of the mo Iecu Ie. If we defl ne a vector Po. '
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whose components along' the three aXfs dfr~ct1ohS are the

Cartes f a,n d1sp'l aoemen t
",

and a vector Sttt whose

associated wIth, atom a,

as27

~ !

coord' natee ~ t f ~ J',~k 'for atom tl;

" " "components are Btf , BtJ , Btk
then Eqse 111-84 can be written

" "S • Pta a. (I I 1-85)

", I

, Physi ca "y, the di recti on of Sta. '1 s the dl recti on In whf ch

a gf ven di sp I'acement of atom a. wi II: produce' t~e greatest

fncrease of St- The modulus of Sta is equal to the

increase In St produced by' uni t df's,p Iacement q'f the atom

In this most effective direction_ .

G Matrix and the Secular Equations in Terms of Internal

Coordinates

In terms of mass-weighted Cartesian coordinates th~

kin etic energ y Is gI ve n byE q e' ] I I -45 • I n mat r fx nota­

t I on I tis
N..

T = (1/2) QQ

In terms of momentum P,

where P - ~T - ·. I ,- --:- - qf
aqf '

Eq. 111-86 Is written

T = (1/2) PP

(I I 1-86)
I

(I I I -87)

'( I II -88)

We let the transformation from the mass-weighted Cartesian

displacement coordinates to fnternal coordinates be

S = DQ (I I I -89)
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Wher e 0tJ =Bt J mJ • m be 1.n g the mas S 0 f ~he par t f c Ie,

'Involved. 'If we consfder T, the klnetfc:energy, asa
I

function of velocities In the Internal co~rdlnates system,

then
•

PI
-.U = }:U oSt

• • ,. .
~ qI t OSt'~ql

But

U = Pt·oSt

and ·.

oSt _ oSt
= °tf--- -,-•

Oql oq"

so Eq. I I 1-90 can be written 8S'

(I I 1-90) ,

,( 1 I I -9 I)

(I I 1-92 )

PI = E Pt 0tf t ' (III -93)
t

and In matrix notation
tV N

P .= PO (111-94)
, '

,According to Eq. I I I ~88, we get
N IV

\ T = , 1/2) POOP (I I 1-95),I

where
fV N

(DO) ttl = L: Dt I °i t'1

= E 0tf °t· tf

L M- I
Bt f *= Btl i 'I 1

In Euc I I dean space', we can deflne28

3N
LGtt' = E Btf Bt , f 'I II -96)

1=1 ml
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where t, t' =1,2, •••• , 3N-6.

In terms, of vectors , Gttl is 9 I v.en by

N
Gt t l ,= 1:
, 0.= I '

I
where 10k =­a. ma.

(III-97)

fs the reciprocal of the mass of atom a.
: '

The kinetlc'energy now can be written as
I'V

T = (1/2)PGP. ( I I I -98)

If the determinant of G does nOt vanish and the' I,nverse

of G exists, then

and

St = oT
'~Pt

•
8 ::: GP.

, r'

(I I~-99)

(111-100)

Equation 111-88 can be' written 'as29
IV ,

T = (1/2) S G-I s. (111-101)

8imi larly, we can express the potential energy in'terms of

the same internal coordinates
, ',N

V = (1/2) SFS
,~

( I I, I - 'I 02 )

Thenthe pro b lem 0 f sma I I v I bra t Ion I e ads to the sec u Ia r

equation'

( I I 1;'1 03)

By applying matrix algebra to the above eq~ation, Eq. '

I I I -103 becomes

IGF - E). I = 0 (I I I -I 04)

where F is the matrix 'of force constants whose elements

can be estimated directly In terms of bond dl8tanc~s 'and

,ang Ies between, In vo Ived a toms.
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Since both F 'and G matrices aresymmetrfc'al" ,rows

and columns In Eq. 111-104 can be 'nterchanged to' yield

the following form

IFG - ,E).I = 0 (III-lOS)

where). = 4n2c~w'.

Eq. 111-105 fs the secular equation used In thf~

investigation to calculate the vibrational fr~quencfe8.

I '

'I

I!

" I
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I. Molecular Fragmentation Method

A•. General Description

According to Eq. II-55 we see that the transition

state formulation for the ratio ot rate constahts for unl-

~sotoplcconstftutlon Is'
, .

. *u
Uf ' sf nh(r>
------:-U'!""'l';...., ( I V-I)

u; afnh(~ )

3N-7
n
I

t' ~~ 3N-6
k - nk-V;

f

molecular reactJonsdlffe'rfng In

U'
Ulslnh(r>

U
, UIs'l nh(r>

where primed and unprlmed quantities refer to the two Iso~

topic species and. refers to the;transltion-state struc~

ture, Vx la the frequency (or average frequ~nc~)of,m~tlon

f n the reaction coordl na te, and UI = hcu)'t/KT where wI Is.

a vibrational frequency (or a fundamental frequency of

vibration).

The vibrational frequencies of the activated complex

are often calculated by WI Ison'a F,G, matrix methods 29.

The G matrix Is specified' by assuming a physically

reasonable structure for the activated complex. 'The dia­

gonal elements of the F matrix can be estimated from the

assumed structure by analogy to stable molecules; the

off-diagonal elements might be set equal to zero or

adjusted to conform toassumptfon about the nature of the

reaction coord.lnate 30,31. The vibrational frequencies

are obtained from th~ roota of'Eq. 111-105. The reactant

frequencies may ~e obtained by a sfml lar calculation or

from spectroscopr'c data. However, the continued product
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Involving reactant frequencies In Eq. IV-I reduces to
. I

unity for an Intramolecular fa6tope effect, wh~te both

reactant species are f dentical. In thlsfnvestl gatfon a

specific example chosen Ie thedecarboxylailon 01
I '

end-label Jed malonic acid
I. "

k3
)r C12 H C1200H + 0 '30 :

3 2

c '2 H2

k4 ) C12 HC 13 00H + C12 0 (I V-2)
3 2

C1200H

wh~re k4/k3 fsa measure of a carbon-12/carbon-13 intra­

molecular 'isotope effect. Since the rate-constant ratio

depends only, on the vibrational ~requencfes of t~e acti­

vated comp Iexes for thi s type of Isotope effect" approx f­

matlons and assumptions about, the tr:-ansitlon state that

simplify the secular equations are partlcu'larly useful in

these cases.

B. Molecular Fragmentation Method

If the assumption is made that the activated complex·

can be treated as vibrational Iy decoupled fragments, its

secular equation is considerably simplified. Uncoupled,

freely rotating models for the activated complex have

been used in a number of absolute-tate theory calcula~
. , ! ' '

tiona of rate ~onatants32. These appllcatf~ns haVe been
! '
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qu i te proper Iy It ml ted to dissoc La t ions wi th abnorma I IY

large pre-exponentt a I fac'tors(and, the reverse 'recomb Ina­

tions). Since the6hange of several internal mode~'of

vibration in the reactant to free rotations in the actl-

vated complex,must be associated with abnormally large

entropies of activation. However, In calculations of

ratios of rate constants for Isotopic molecules, the

decoupled fragment approximation has a broader range of

val'idlty. If the activated complex has a uloose" struc­

ture, with weakly coupled fragments, motions betw~en
I

fragments involve vibrations of much lower frequency
I

than motions within fragments. The approxI~~te separa-

tion of high and low ftequencies 29 can then be applied

,to factor the secular equation into intra- and inter-
~ ~

fragment parts. The low-frequency, Inter-:fragment

vibrations. although very important in calculations of
, ,

an individual rate ,cons tan t , have 1ftt Iee f f ~c ton It he

continued 'product in. Eq. IV-I" ~ince [(U/2r
'

sinh '(U/2)]

approaches unity for smal I U. The rows and columns of

the secu Iarequa t Ion t hat cor res p0'nd to, Int e r - fr agmen t

motions can therefore be deleted" and the apprOXimate

frequenc1 es of fnterna I vI bratf ans :of the ,fragments,

obtained from the reduced secular equation are used In

, Eq. I V-I.

For a reactIon Involving rupture (or 'format i on) of

one bond, AS = A+B, the activated complex is treated as

tWo fragments, andmotfon In the .react fon 'coord fna te fs,
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change 1n the distance between the centers"of mass of the
,!

two fragments. The the6retfeal exp~essfon :for"an fntra~

'moJecular isotope effect for,thls ca~e becomes~

k'k
MAB "3/2= [;vr-J,
, AS

I AB1/l A' B' C ,tlz A' 8 ' C ' ill.

[I AS] [A S C ] A [A B C \.

3n-6
~
i

*sinh(uAi / 2 )
r

3n-6
H
t ,

, t'

lsi n h( ~ 8f /2 )

, sf n h( Uti /2 )
(I V-3)

Eq. ,IV-3 is the ratio'''of the total part~tion function

of the acttvated complexes with 3n-6 degre~s of vibrational

'freedom for each fragment, three rolatf onal', degrees of
! '

freedom for each fragment, and three translational degrees

of freedom for each fragment sUbject to the constrai,nt
I

that the df stance between the c,enters of graVf ty of ,the
I

two fragments is constant.

App,1 yl ng ,the produc,t ru Ie 5 'to 'the complete system yields

~AB 1{2 ,MAS 3/2, lAB A 8 C' 1/2
[~J [MA'a] [~J[A'B'C,J

"-A8 Aa A

3n-6 U*t 3n-6 U*,
~ Ai

"
Bi I, ( IV-4)Ul l ur =

f i af

where
. MA X MS the reduced of two fragments~~Aa = M + M ' mass

A· a, '
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'. Alternatively, one can apply the product rul e to each

fragment in d,ep enden tl y: 'I. ,

3n
Mi 1/2 MA ~/2 ABC liz

3n-6 u* ,
fi ,~ Ai = I (I V-S)[11:""] [fYtA] [A "B' ct ] A orr-i i i

and

3n M; 1/i! Me 3/2'
3n-6 u*'

"
ABC ill

"
Sf I ' tIV-6)[fYfT] [m-] [A's' ci] , ,011 =

1 8 8 i

Consequently, Eq. IV-4 bec~mes:

k' /k

I

The reaction coordinate fn this case is the d~stance

! between the, centers of gravity .of the two fragments, A
and B. Since the average\I,relative' velocity 33'Of two

Independent systems is inversly proportfon~1 to th~square

root of their mechanical reduced mass,

(IV-B)

The extension to ,intermolecular isotope effects can

be made by including a factor for the ratio of total

partition functions for reactants:
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However, the fragmentation

(I V-9)x
3n-6

fi
I

'* :t:.
Uslsinh(Usf!Z)

U;f8Inh(U~i!2)

method Is not a good approxi-

matfon for the reactant molecu.le, and the ~eactant frequen~

cles In Eq.IV-9 are the conventional ones calculated for

the reactant molecule as a whole.

The simplification provided by this method can be

eas I I y seen fr'om the compar Ison of Eqs. I V-3 and I V-7.
I

. The calculation of vibrational frequencies for the acti-

vated complex's spilt Into a vibrational analysis, of

each of the fragments. The resulting redu~tio~ in the

order of the secular equatfpn .permlts one to treat much

more complicated systems than Is possible with more.. rlgor-

oua methods~

Reactions Involving simultaneous rupture. or forma­

tion of two or more bonds can also be treated by this type

of model In t~rms of three or more uncoupled fragments.

General formulations of ~~!vx for three-centered models

which have appeared In the literature 23, 24 are appli­

cable In these cases. However, the reaction coordinate

can be treated only in terms of inter-fragment motions;

the reaction coordinate as a linear comblnatt.on of inter­

nal displacements, with'n as 'wel I as between fragments,
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cannot be Incorporated In this approach.

The ~olecular ~ragmentation method, which assumes a

"loose" activated complex, cannot be'applled to ,reactions

that do not involve' bond rupture or formation In the rate

determining step. In' addition, of :course, assumption of

thevalidfty of quasi-equilibrium theory fs implicit In

the general expression of Eq. IV-I.

Despite the IJmltatlons mentioned above, the molecu­

lar-fragmentm6dels have a wide' range of application.

This approach should be partfcularlyuaeful and valuable

in dealing with large, complicated structures, because It

provides simple, pictorial representations for various

reaction mechanisms and greatly simplifies the calcula­

tlonof activated-complex ,vibrational frequencl~s. rhus

the met hod cou ,I d be, use d, aa the ne'x tap pr ox Imat Ion
I : I

beyond noting the presence or absence of ~inetic Isotope

effects, In distinguishing between alternate mechanlsma,

such as concerted or step-wise rupture of two bonds. It

could also be used to estimate substftuenteffecte "In a

series of analogous isotopic reactions.

c. 'Application of Molecular Fragmentation Method to the

Decarboxylation of Malonic Acid

The decarboxylation of dib~sic carboxyli~ acide is

perhaps the type of reac'tion whose ~arbon isotope effect

has been most thoroughly studied by different research

workers. The compound CH2(COOH)2 has two differen~

"
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Isotopic isomers containln'9 one heavy carbc;>n atom. ! The

one which contains tha heavy atom In the methylenegrou~

could expel carbon dioxide In two Identical ways. the

molecule befng feotopteally symmetric. The uneymmetrfc
, ,

,
isomer could react In two different ways, the heavy

carbon being contained either In the carbon' ~Ioxide or

In the acetic acid.

The reaction scheme of a samp,le conta'ining both

isomers of mono-heavy malonic acid togeth~r with the

ordinary compound Is f Ilustrated below for the case of

C,13 (the mass number of carbon t 8 assumed ,to be 121 f

not Indicated):

900H
I k I
fH2 ---11'-1' CH3COOH+C02
eOOH

COOH

b13H ~C 13 H COOH+CO
f 2 3, 2
COOH

e 1300H
I --_k.~CHCOOH+CI30
CH

Z
3 2

I ~4CH3CI300H+C02
eaOH

(IV-IO)

(IV-II) ,

(IV-12)

Eq. IV-12 presents the problem of interest In this work.

The malonic ~cfd, w~th eleven atoms, has twenty-six

normal modes of vibration. Theoretically, even ,If the

camp Iete vi bra tional ana·1 ys Is cou Id be carrl ed au t, so

many parameters would be involved that a meaningful
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interpretation would be virtually impossible. Therefore,

for the purpose of actual computation and aryalysls; ,a

simplified model for the transitfon~state is desirable.

If one assumes that during the course',of reac~ton

one carbon-carbon bond was very weak in the transition

state, then this structure could be treated as two inde-
I "

pendent fragments~

A further simplffication is the omission of t~e hydro-

gen atoms from the trans I t i on-6 ta temode Is'. Thl s 'Is an

application of the Itcut-off" approximation of Stern and

Wolfsberg~34 Since no'hydrogen Is bonded directly to the

carbon atoms'which are Isotopical.ly substituted ,in the

intramolecular pair of reactions, the characterl~tlc

group frequencies for hydrogen stretching and b~nding

should be nearly identical for k3and k
4

• However, 'the

proton masses are included in calculating the fragment

reduced-mass ratio for v'/vx •
I x

With these "fragmentation" and "cut-off" approxi-

mations, the eleven-center activated complex for malonic

acid decarboxylation is treated as one four-center frag­

ment and one th~ee-center fragment (as shown In Fig~ IV-I),

and the 26th order secular equation is reduced to one

6th-order and one 3rd-order equat~on. The detai led

step-wise mathematical derivation of the Gmatrfces'ls'

given in the following section. i '
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2. The G Matrix

According to the discussion in Chapter III, the set of,

fnternal coordlnat~G chosen in this case are bond $tretch~

Ings and valence angle bendings. In the case of 3-center

mode I, the three Interna I coordi~ates (3x3,-6) are, two
i

valence bond stretchlngs and one valence a~gle bending.

In the 4-centercase, the six internal ~oordinat~8 (3x4-6)

are three valence bondstretchfngs and three' valence angle

bendfngs.

The notations used here a~e the same as In Chapter

III and are shown In the corresponding ~igures~

A. The Three-Center Fragment

A non-linear triatomic fragment should possess

3x3-6 =3 degrees of freedom. Therefore threecoordf­

nates, two bond 6 t ret chi n9s and 0 neva I en ce an 9 I e bending,

are chosen accordln~ to the Internal coordiriate system.

Valence Bond Stretching Coordinates

A B

Fig. IV-2 The,valence bond stret6hing coordinates.

A. The valence bond stretching between atom 3 and
atom I.

B. The va lence bond stretching between atom 3,and

a tom 2.
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The bond stretching coordfnates In, the three-center

fragment S, and 82 are chosen such that SI ~escrfbe8 the,

stretching between atom 3 and atom I and SZ.descrtbes the

etretehtng between atom 3 and .tom 2, In ffgurl IV-2

r'a are the dfrectlon bond distance and ~','s.'are the

unit vectors defined as the maximum bond stretchfngs
I

along the bond distances accordingly. Then the vectors

"Stex. can be easily formulated as

"S ta : t = ,; a. '= I, 2 , 3

1\ "
8 I 1= e3 I
1\

S'2'= 0
f\

S 13=-e31

t - 2; a. = 1,2,3-
A

821 = 0
f\

822 = e32

"" ' 823 =-e32

Valence Angle Bending Coordinate

(IV-13)

(IV-14)

The valence angle bending coordfnate 83 fs,deflned

accordfng to Eq. 111-85:

(IV-IS)

: '

\ '

'i· .,
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The maximum displacement of q> Is shown in figure IV-3.

B

: .where a = 1,2

Fig. ~ IV-3 The maximum displacement of cp.

A.The diagram of the whole system.

B. The relation between a~om 3 and at~m I.

From figure IV-3 we can write down the following relations

immediately.
" 1\ 1\, "
r' = r '+3~ 3a Pa ,- P3

then

" " 1\ 1\ /\, r • Pa - P3 = 6r3o. (IV-16)r3a. - ,30.,

Inn er, ",
If we take the product .of ,r3a , we get

"" " " 1\ " 1\,' 1\
r3a.· r3a. = (r3a ~ Pa - P3) • (r3 a. + P a - P3)

and

The third term in the right-hand side of Eq. IV-17 ia the

square of the difference between two displacement vectors,

Which is comparatively smal I aryd can be neglected. Then

Eq •. I V-I 7, accor df n9 .tothe baa i c de f f n I· t f on 0 f un f t "

vector, canbe,expreased as ,

1\ . 1\" .2
e3a. • (Pa.'· P3)= 6(r3a.) /2r3a (IV-18)
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But from Eq. IV-16_ we know that
1\ " 1\

6r3a. =Po. - 113

'and

..
" 1\

'e3 o.- Ar3 a. = 6r3a.

6r3 a. = ~3a.· (;0. ~3) =6( r:3a.)'l2!r3a. ,(IV-19)

Now, look at figure IV-3A we can s~y that
1\ "cos '<p 7 e31 • e32 I (IV-20)

By differentiating Eq. IV-20, we get
A " A" A

d (cos <p) = sin <p d <p= i 31• de32 + ~32'de311 (IV-21)

According to the defin f t Ion of unit vee to r: ,,', the f f rat '
1\ ",',dffferentiatfori of e3a =f3a./r3a. Is

(IV-22)

Then

" " -I f\ " "e31 • de32 = (r32 ) (P2 - P3) • e3 I

-I 'A A "(r32 ) (cos <p)e32
1

( P2 P3) (IV-23)
1\ " -I " " '

e32 ·,de3'1 - (r31 ) ( PI - P3)' 0 ': ~3 2-
-( r 31 '-' (cos <p) " A f\

(I V-24)e3 I - ,( P I - P3)

,Substitute Eqa. IV-23'and IV-24 Into Eq. IV-21, we have

-I " "1\- sfn<pd<p =(r31 ) (e32 - cos <p e31 )'PI

-I " 1\ 1\
+ (r32 ) (e31 - co.,~ e32 ) tp2

1\ 1\' _I
+ [(cos <p e32 - e31 )(r32 )

"" -I"+ (cos cp e3 I - e3'2) (r3 I) ] • P3 "
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then
t\ . " _I ", '

dql= [(cos' cp e3 1 - e32r (r3 1 61.n cp) ] ',P I

~ A )-1 A+ [(cos cp e32 - e31 ) (r32 sin cp , J'~~

,,' , " I', 1\

+ ([(r31 ~ 1'"32 cos ~)e31 + (r32 - 'r~1 'cos cp) e32 J

( r 3 I r 32 sin cp)-I} • P3 " (I V-25 )

By comparfng Eqs. IV-25 and I V-IS, we conclude that

" ,
8 t a.,: t :; :3, a. = I ,,2 ,3. : (IV-26)

1\ r l A "831 := ( r
31 sin cp (cos cp e31 - e32 )

" cpr l " "832 = (r32 sfn (cos cp 9 32 - e31 )

" sfn cpr'833 = (r3 'l r :32

x [(r3 1 - r 32 cos cp) ~31 + (r32 - r·3 I cos qI) '~32]

The Elements of "G""Matrfx for Three-Center Fragment

The "G" matrix elements now can be formulated

accordin9 to Eq. 111-97

3 1\ 1\

,9t't' :c t ' ~ 8t • St'0.=1 a. a, a..

where

- ,( )-1 i t', t' , I 2 3 '
'J.4a, - ma:' =, , ·

( IV-27)

. Eq. I V-27, tn matrix notation, can be wr.itten as
1\ " A ,/\ " "(II 912

9
13

) (~') ell

8 12
8

13
) (8 II 821 831 )

923= ~2 • ~21 " ~23 '~12
1\ ,..

G = 921 922 822 822 832
" " ' f\

, 931 932 933 ~3 831 8'32 833 ;8 13 823 833

(I V-28)

I I ,I
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By 6ubst i tutf ng Eqs. I V-13" IV-14, and IV-26 Into Eq.

'IV-28, the "G"'matrfx,elements for 'the three-ce,nter

fragment are:

.' -I '=g32 = ~ (r31 ) (~3sfn~)
, "'2 -2. . '

='(t31 ) (IJ,I) + (r32 ) (~2)

+ [( r31)~+, (r32 )·1 - (2 cos ~) (r3I r32)-z ] ~3

JJ.2 + ~3 ,

gil, = ~ I + ~3

gl2 =g21 =~3C08 ~

9 I 3 = 93 I =-( r 32r' (~3s I n~)

g22 =

g23

933

(IV-29)

B. The Four-Center Fragment

This fragment fs composed by four atoms, three valence

bonds, and three valence angles~ Hence~ we would have

3x4-6 = 6, degrees of freedom. The six tnterhal coordinates

are three valence bond stretchfngs and· three valenc~ angle '

bendf n98 (Ff g. 1\1,-4)

Fig. IV-4 The four-center 'fragment



87

Valence Bond Stretching Coordinates

Based on the same assumptions made ,In the prevf ous

section. the three valence bond stretc~fngcoordfnate

@,®

BCD
are shown In FIg. IV-5.

®
Fig. IV~5 The valence bond stretching coordinates

A.. The val~nce bond stret~hlng betwe~n atom 4

and atom I.

B. The valence bondstretchfng between atom 4

and atom 2.

C. The valence bond,~tretchfng between atom 4

and atom 3'.
1\

Then. the vectors Sta can be f~rmulated as:tollows:
{\,

S to. : t = I; a. = I, 2 , 3 , 4 • ( I V-3 0 )
~ ~ "

S II = e41
A
8 1_2 = 0

", S 13 = 0

" "8 14 =-e41

t =2; a. =1,2,3,4. (IV-~I)

"821 = 0

" "822 = e42
"
S23 = 0

" "824 =-e
42



, .
t == 3; ex. = 1,2,3,4.

1\

831 .= a
"832 = a
" . "833 = e43

" "834 =-e43

Valence Angle Bendfng Coordinates

88

(I V-32)

The val ence angl e bendfng'coordf nates, ,of the four

center fragment are defIned according to Eq. III~85.

" ".
8· • Pto, ex. , t =4,5,6. , (IV-33)

The maximum displacements of three ,'a are shown In

Ff g. JV-6.

FIg. IV-6. The maximum di sp lacements of cpv s •

A. 84 = ~CP3

B. 85 = ~CPI

C~ 86 = lHP2
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From Fig, IV-S, the unit vector~ are defined as

" ".e4n = r 4n/r4n n = 1,2,3

The first dffferentiattons of Eqs. IV-34 are

,Si nee

" ",e4 1' e42 =cos <f'3

then

(I V-34)

. (I V~35) .

( IV-J6)

I

(I V-J7)

By going through the s.ame derfvatlons as Eqa, IV-21to

t= 4; n =1,2,3,4 (IV-39) .
1\ ... \ " ",
8 41 = (r4l sfn CP3) (cos q>3 e41 - e42 )
1\ -I " ",8 42 = (r42 sln CP3) (cos CJ'3 e42 - e41 )

"843 = 0
A -I "844 = (r4l r 42 sfn Cf'3 ) [( r 41 -r42 cos CJ'J) e41

(r42 "+ - r 41 cos CP3) e42 ]

IV-25, ~e get·
~l . " 1\ 1\'

dCflJ =(r4 1 sin CP3) (c os Cfl3 e4 1 ... e42) • P,'

+, (r42 sfnCP3)-1 (cos CP3~4~ - ;41)'~2
- \ 1\ ' '. 1\ '. '

+ (r41 r 42 sin <f'3) (r4 I ,-:- r 41 e42 c 0 s~: I

1\ A. A.

• r42e4lcos~ + r42e42~'P4

Accardi ng to "Eqs , 'IV-33 and I V-38 ,we get
1\
8 t a.:

,~. '

(I V-3S)
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In formulating t=5 and t=6 ·the processes are exactly

the same as t=4 •. Since the Index~8 are p~r~~tatlve, we

can write down

(I V-40)

1\

e43 )

"e42 )
1\

r 43 C'09 q>,)e42 .

-I f\.

(r42sin ~I) (cos ~le42

... \ "
(r438fn ~1)(cOS 'l e43 -

, . -I

(r42r43sfn ~1)[(r42 -

, '" ;

(r43'~ r 42 cos ,,)e43 ]

t=5;
f\

'SSI = 0
1\

S52' =
."
S53 =
/\

,S54 =

(IV-41)"Sta. : t =
"8 61 =
"8 62 =
"863 --
"864 --

6; 0.'= 1,2,3,4.
_\ . " 1\.

(r~18fn ~2)(cOS q>2 e41 - e43 )

o
. ...1 " " '

(r43 sfncpz) '(cos Cf'Ze43 - e'42)
-\ "

(r41 r 43 sf n CP2) .; [(r41 - r 43 COS CP2) e41
, ,

. ' "
(r43 - r 41 cos ~2)e~3J

The Elements of "G" Matrix for Four-Center Fragment'

(lV-4Z)

According to Eqa. 111-97, the "G" matr~x elements

"n thf sease are
4

1\ "
gt t' =(),~ I ,~a. Sto. 8 t ' a.

... 1
wher~i~a. =(mo.); t, t' = 1, •••• ,6.
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By Bubstl tuting Eqs. IV-3D, IV.-31, IV-32, rV-39, IV-4D

and I V-41 1ntoEq. I V-43, we get the elements' of the "G"
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matrl x for the four-center fragment as fo Ilows: , (I V-44) ,

gil = 1-1 I + ~4

912 = 921
.....

!J,4 cOS CP3 I ,

913 = 93 I = j.L4 COS
'I, .,

<f'2

914 = 941 - ~4(r4Ir42sln CP3 )-'. [( r'42 cos Cf'3 - rAI)-
+ (r41 c'os <f'3 - r'42) ,cos <J'3 ]

9,5 =,9SI,=1J,4(r42 r 43 s 1n q>, )-1 [(r43 c08 ,cp , - r 42 )cos ,<f'3

+(r42 cos Cf'1 - r 43 )cos r.p2]
'I . '

916 =961 =!J,4(r4',r4381n ~2f: [(r43 cos<P2 - r.~)

+ (r. , co8 CP2' '., r 43 )co8 Cf'2] ::"','

922 = J.L2 + ~,4

923 =,932 = ~4cOS cP I I'

924 c, 94.2 = ~4 (r41 r 42 8 I' n cpJ,)-1 [( r 4Z C08 ' ,CP3 - r 41 ) cos' tl'3

+ (r41 cos <f'3 - r 42 ) ] ,

925 = g52 = ~4 (r42 r 43 81 n ~, r l
[(r43 C,OS cp 1 - ...4Z)

I

+ (r42 cos Cf'1' - r43 ) cos Cf' 1J " .

926,= 962 = j.L4(r4I r 43 sln 1'.f'2')-'[:(r43 c08 CPz'! - 'r41 )cos CP3'

+ (r41 cos CP2 - r 43) cos cP I] .

933 =. 1J.3 + J.L4

934' =943 = 1J.4(r41 r 42 sln Cf'3 r'.[(r42 cos "CP3 ,- r 41 )cos CP2

+(r4I cos CP3 - r 42 )cos CPI]
. -I

935 =953 = ~4(r42r43sfn CPI) [(r43cos~CPI - f 42 )cOS CP,

+(r42 cOS cp 1 - r 43)]
-I

936 =963 = 1J.4(r41 r 43 sfn 1'.f'2) [(r43 cos '2 - ~41)co~ CP2

+(r4I cos Cf'2 - r43 )]
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-2 ' -2 ' , ' - 2. '

'944 ='~,(r41) + ~2(r42)+ ~~(r4Ir42sfn '3) [(r4 ,-
2 "

, r42 cos q>3)' - 2(r41 -r.42 COS CP3.) ,
, ' , '1

~(r42 - r 41 cos '3) C08 3 + (r42 • r 4 ,co8 '3) ]
. f ,,' -I ' , '

945 ::: 954 = 1J.2(r42 sfn "sfnCP3)' (C08 ~2 - cos Cf',COS (pJ) ,

~ J.L 4 (r4' r :2 r 43 s Incp, S f n'3 r' {( r41 ' .. r 42 cosCPJ)

X[(r42 - r43 cos ,,)C~8 Cf'J

+( r 43 - r 42 cos cp ,) cos '2]

+(r42 - r 41 cos cpj[(r42 .. f43COSCP,)'

+( f 43 - r 42c 08 cp,) C08 cP I ]} ,
'2. -I,

946 =964 =~1(r418fn CP2 sfn CP3) (cos CP, ~ ~08Cf'2 * C08CP3)
2. " ' ,-I

, + J.L4( f 4' r 42 r 43 8 f n '2sf n '3) £,(r41, - r 42 C08 ({)3)

,[(r41 - r43cos Cf'2) + (r43 - f 41 COS Cf'2)eosCP2]

+ (r42 ,- r 4 1cos '3) [ ( r4 I - r 43 c08 CP2)C 08 CP3

t.(r43 - r 4 ,cos Cf'2)COS CPI]
, "'2' -2, ,-l '

955 =~2(r42) + ~3(r43) + J.L4(r42 r43 s,n cp,) [(r42 ".
, l
r 43 cos 'I) + 2(r42 - r 43 cos ")

~(r43 ~ r42 cos ',,)cOS CP, + (r43 • r~2c08 cp,fJ
1 '

956 = 965 = ~3( r:3'SI n cp 18f n "2'- (c08'3 ., cos c:P Jcos CP2)
, l " ,,-I

+ JJ. 4( r4 , r 42 r 43 S t'n cp I8 f n C:P2 )

)(. {( r 42 - r 43 c08: CPI) [r4' - r 43COS CP2)COS Cf'3

+ (r43 - f 4 ,COS Cf'2)COS CP,] + (r43 · - r42 cos CPI)

~[(r4' - r43c~s '2)C08 CP2)CO~'~2

t(r43 - r 4 ,cos'CP2)])

-z '-1" ~l
966 =~,(r41) + J.LJ(r43 ) + ~4(~4Ir4J8fn '2) [('41 -

" l I

r 43 coa '2) +2(r41 - r 43 co8 '2)(r43 ~ r 4 ,cos2)COSCP2

+(, r 4J - r 4 , COS (2)~ ]
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The above derivatfons are ·the general ~ormulatfons of

non-linear three-cent'er (Eqs. IV-29), planar four-center
, I· I

(Eqs. IV-44) cases. There are Inffnlte many models one

can set ~p. But they are not of f nterest In tht 8 Inves­

tlgatfon. The numerfc~1 assign,mente of Eqs.: IV~29 and

IV-44 are given "fn the fol lowing 8ectton8~

t"
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3. Calculations and Results

lnpu·t parameter~ for several specific models were

selected by arbltrari Iy assigning a bond order, to each

bond and then empirically relating bond orders to bond

lengths, bond angles,' and force constants.,

Assigned bond orders were: for the four-center

fragment, I for bond 2-4, 2-X for bond 1-4, and I.,.X

for bond 3-4;. for the three-center fragment. 1+* for

~ond 2-3 and 2 for bond 1-3. AI I bonds are, spettffed

In terms of the notation of 'Ff9.'IV-I.C.A'value of the
, ,

parameter X from 0 to I was specf ff ed for e'ach set of

ca Icu Iatl ons; X=Q corresponds to th~ 'reactant structure

and X=I to the product structure, assuml,ng eno I forma­

tion In the rate-determining step.

The bond angle In the three-center fragment, "
I

was assumed to be 120° for X=O,' 1800 for X=I ,and a ,I f near

function of X for Intermediate values. The :four-centet
, .

fragment was assumed to be planar, with al I three bond

ang Ies equa I to 1200
, fo r a I I va lues of X.

Bond lengths for bond orders of and 2 were e~tf-

mated frbm campi led date 3S for stable molecul~s:
o 0 0 0

1.54 A for O-C, 1.33 A for C=C, ' 1843 A for C-O, and 1.22 A

for C=O. ,These bond. Iengths were assumed to vary II near Iy

wi th bond ,orders between I and 2. I:n addf tl on, sma Ii

variations were made, In the lengths of bond 2-4 In the

four-center fr~gment and bond 1-3 tn the three-center
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fragment. As X went from 0 to. 'I, the former w~nt from
o 0 0

'1.37 A to 1.43 A ,and the latter' went from 1.22 A to
. ,I

o
I. 18 A.

SImI Iar Iy. s t retc.h I ng ,for ce cons tants .. we r e eat Im'a ted

for bond orders of l.and, 2 and were varied; ,If n.ear Iy! w.1 th

Intermediate bond orders. The assigned stfeichfn9 force

constant's 29. 'In mIll I dyne~/A, were 5.0 forC-C, 9.0 for
I'

o=c, 6.0 for c-o, and 13.0 for C=O. In addition, the

c=o stretch' ng' force constant for bond 2-3 ,In ,the

three-center fragment was varied from 13.0 to 15.0
o '

, mdynes/A asX varied from 0 to I.

I nass I gn In9 bend t ng force' constants, '~he assump­

t�ons were,thatfor thefour-eenter fragment all fcp/trj
,0,

= 0.6mdyne/A and that for. the thr,ee-centerfragmeht
o ,

f cpcp/r I r J ' var I ed from 0.6 to 1.0 mydne/A, ,'I"nearl y wl,th X.

AI I off-diagonal force constants were set equal to

zero.

The above method for speclf~lng fragment structures

and force constanta la arbitrary and empirical, and It Is'

not. Intended to beaccura te in deta fl. However, I t does

permit a systematic variation In transftior-state models

from reactant to product configurations In terms of a

single parameter, X.'

The ae tua I compu ta t fans have been car r,1 ,ed, au t on the'

PSC IBM 1620. The input data for the calculations were

bond lengths, bond angles, forc~ constants, and atomic

masses. A sequence of programa was wrfttento calculate
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the ele~ents of G, the FG produ~t, the eigenvalues of the

secular equatibns, arid finally the ,Isotope effects.

(Appendix)

Three fragment models are shown In Tables :IV-I to

I V-4. The fragmen t s truc tures In Mode I I approx ima te to

,correspondi ng port i ona of the reac tent rna lontc ae f d. In
, ,

Model 2 they approximate the product struqt~res.,except
, 0 "

that cp In the three-:-center fragment fs 170 ,rather than
o

180 • Model 3 Is an fntermedla~e case,'wl~h X = 1/2.

The calculated isotope effects for these models ar~

compared wi th exper Imen t 12 in Tab Ie I V-S '. It can I be' seen

that the fhtermediate set of f~~gm~nt structures, Model 3,

gives agreement with the experimental k4/k3'. For this

reaction" then, a molecular-fragmentcalcu,fatfon 'for a,

chemf ca Ily reas,onab Ie model ,Is cons f stent With experiment.

. I



4-Center

Table'IV~IFragmentModels

3-Center

q, = 6r l3

Q2, = 6r23

q3 = 6cp,.32

97

q I = 6r'4
. ,;, ,I-' .

,

"

q2 - 6r24- m, = m2
',: Ie,

q3 = 6r34
m3 = 13,

q4 = 6cp'42 '
I mt = 12

qs = 6CP243
3

q6 = 6tp,43

m, :: m2 = .16

m3 - 12-
nl4 = 12 ,

mt = 134

," 'j



4-Center

'Tab I e I V-2 Mode 1 - Reactant

3-Center

98

0

r 41 ,=: 1.22 A
0

r 42 = I .37 A
0

r43 = 1.54 A

0

CPl42 =CP243 =, CP'43 - 120-

f, I = 13.0000

f 22 = 6.0000

f 33 = 5.0000

f 44 = 1.0030
, "

:fS5 = 1.2660

f 66 = 1.1270

, 0

r3 1 = 1.22 A
o

r32 = 1.37 A

o
cp 1'32 = 120

f II ::: '-,13.0000
i '

f 22 = 6.'0000
, .I:

f 33 = 1.0030

I
I '

, t



Tabl e IV-3 Mode I 2 .., Product

'I ,
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4-Center
I

o
rAI = r 42 = 1.43 A

o
r 43 = I 1.35 A

I

o

~142 =~243 =,~143 = 120

f 1, = '6.0000

f 22 = 6.0000

f 33 = 9.0000

f 44 = 1.2270

f ss = I • 1580

f 66 = 1.1580

3-Center

0

r31 - I. 18 A

rj~
;:' '~25 A

I

0

<p = f70

,, f I I ::: t5. 0000 ",

f 2'2=:,14.0000

, f 3'3' '=':1.4750 I,'

o I I. •.

, :

, ,

"



Tab let V-4 Mode I 3:·· t ntermedf ate

4-Center " ,.. :3 -Center

100

o
= 1.33 A

o
1.40 A,· " ,;,

o
rJ 1 =::1 .20 A

o
f J2 ,=... ~ .30 A

Q

== 1.43 A

,q>
o

- 1.50

f l t = 10.0000

f 22 = 6.0000

f 33 = 7.0000

f 44 - 1• 1170-
f S5 = 1.2010

'f66 - I • 1410-

,.' 'I

.. f I I = I A.0000 ' ,

f 22 = 10.0000

f 33 =: 1.2480

, :

, "
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Table IV-5 Calculated and Experimental Values of k~/k3\

Model

Mode I 2

Model 3

o
473 K

1.041

1.010

. 1.026

o
573 K

1.031

1.006

I .0 '9 .

. 0

.:673 . K

1.024

1.004
I

',·1'.0 t5 .

Experiment . '1.023 t 0.004
I .

1.017 +:0'.004" ~013 + 0.004- . 1-

"

"1 t

I '

I:,



Chapter V - Summary and Further Calculatfons

· .

I~ General Summary

2. Furt~er Calculatfon~

, ,

,.,

, ;
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I. General Summary

By assumfng the validity of quasf~equflfbrfum-theory

(QEt)_ the kinetic rate constant 'for a ~nfmoleQular '

reaction can be formu I a ted. By the method ,of Isotope

substitution one can determine the kinetic rate-constant

ratfo k'/k, which provtdes rather detal led and valuable

Information of the transition state.

For two r~actlons with Identical reactants, the rate

constant ratio depends only upon the respectlv~ transition

states .. "Assuming twp Identical ge'ometrfes:,fn the transl-
, 'r '1

tlon state wtt~ difference only infsotopic':',constftutfon.
I '

the rat f 0 0 f rate cons tan t s for un f mol ecui art'eact tons

can b~ written as

3n-6
n
I

3n-7
n
f'

'I; ,

where primed' and unprlmed quant'ftlea refer to the two

Isotopl c 8p ec f es and * refers to the trans I tf on~s ta te

structure, ~x Is the frequency of motion In the reaction

coordinate, and U, = hcwf/KT where wI' la a vibrational

frequency. The calculation of vfbrat'ona~ frequencfe~

for each structur~'req~lres solution of a matrix equ~tlon,!
of order'3n-7 or 3n~6 wheren Is the number ~fatom8. and

becomes extremely complicated for molecuresof ~oderate

8 f ze • 'However, In ~ond.rup'ture processes. Ih ,apl. te 'of,
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the usual sense of transftlon-state theory. f~ was

assumed that the bond-rupture Is already ~ompleted In the

transftlon state and that motfon In the reaetlon coprdl­

nate'can be treated as simple translattonaf separation of

rna I ecu I at fr-,agments., Then the 'ca 'cu' atf ons are 8' mp,1 I ­

'fled a great deal. Furthermore, by apptyfn~ Stern and

Wo Ifsberg f S "cut-off" approxlmatlon f the' hydrogen atoms

(non-Isotopic sites) are omftted.
, ,

The spec f ff c prob t em trea ~ed I'n ',th fs 'Invest. ga t lo~

fs carbon Isotope effect fn the decarboxyl,atf01"1 of,

ma I on f c ac,' d.

, ;

eOOH

, Ma Ion f cae I d f s apIp r 0 x f mated as a s even-'c e'nter mo del

, I

,~: I' " .•

and the transition etate I.e approxImated by three- and

four-cente~ fr~gment8. . 1--.e-\-. 0 '0

T~us, we have reduced a 26th order secular equation to
I

one 6thor de randone 3r d 0 rder 8 ecui a r 'equa t f 0 n •
• 1(, ',:

The general method of catdulatlon Is to set' up the

,j



lOS

F and G matrices ac60rdlng to Wilson's method.

IFG - EAt ='0' where At =4n2 c2 w,a

The eigenvalue and eigenvector Iteration andmatrtx-de­

flatton methodsare·t!mploYed to.sol~e our equatf'ons. A

sequence of computer programs hafJ been wrt·tten, and'the

calculations have been carr f edout, on the~SC IBM 1620.

The calculated, results are In good agreement With the

presentl~ avaf lable expertmental data.

the ~ppltcabl lity of thIs method can be extended to '

reactlonsln~olvlng sImultaneous and step-wise multfple

~ond-rupture'and formation. It can also be ,used to'

estimate 8ubstttuent effects Ina sertes, o,f an~,I~goU8

Isotopfd reactions.
, :

I"~,

I,'

I

\ ,
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2. , Fut"ther Calculations

From the pre".oua resu I ts (Tabl e I V-s), we see that

Model 3 ~rovlded agreement with the experImental data.

Since the chofce of force con8tant~ was arbitrary and

emplrfca,~ as descrfbed In Chapter IV,' It wch.tld' be esseh·,

tlal to test the sensitfvlty of the Isotope, effecta wIth

respect to th~ change In fotce 'constants,.

Since Model J 'fn Chapter IV 's,a chemically teaeol1·

able m~det, two varlattonsof Mod~1 j have been ~ho~en,

to be ca Icui ated. The geometrlea I cOhftguratf ChI are

chos er1 to be the same as Mode I ,3 tn Tab I e I V-4. The
I I ,I

'model descriptions and the results a~e If~te~ tn'

Table v~t to V~3~

The model ,desc~ t bed f n Tab'l e V-I f S denoted a~, '

Model 3AWhere'the force consta~t8 have been increased

by ten percent of theorfgfnal "forceCohstants' used In

Model 3 calcul,atfons.!'The Model descrIbed In table V-2,

denoted as Model 38,'18 exactly 'the same as :Mbdef 3

except thatth$ forceconstQhts have be~n decre~8ed by

ten per cent.

It can be aeen from Table'V-3 that for the decar­

boxylation of malonic acid ~he MoleCUlar-fragment calcu­

latfonafor a range Of chemIcally reas6nable modele are

consfstent wfth experiment. However. this agreement, "

does not necessarily conftrm the success ofthts methbd

of ca I cu ~at ton. In order to test the ge,nera I ' va I,f dl.ty

of thf 8 method, even for thf 8 8'peq f fi c rea:c ~f on, ' a'

I

;',1,

, '



comparison with th~ result of moredeta11ed calculation

f s desf rab Ie. , .Theoretl ca·'ly, tht 8· sImp If fred approach
. . ' ",.' .

should provfde 8S good a result ~s any o~her rigorous

method. Then a com~lete mathem~tfcal ahalysts of t~f8

type of prob Iem shoul d be 'of general Jhterest.,

I:' t""I'

It'

107



Table V-I Model 3A·. IntermedIate Structure

With 10% Increaee In the Force Constants

loa

4-Center

0

r 4 1 = I .33· A
0

r 42 = I .40 A
0

r 43 - 1.43 A-
, 0

cp 142 ::: CP2 43 ~ <p 143 ~. 120

f I I = I I .0000 '

f 22 =6.6000

f 33 =7.7000

f 44
1 = 1.2287

f sa - 1.32 1I-
f 66 - 1.2551-

3--Center

10'

. .r3 1,:: . I .20 ,A
, O'

r32 =' 1.30 A

I

f II ;::== . 15 ,,4000

f 22 ,:: '.1 ,1 .0000

f 33 ·:·1 .• 3728,

I '

I .



Table V-2 Model 3B - Interm~dfate structure'

With 10_ Dtcreas& fn t~e ~orctCon~~ants

, • I·,

4-Center

4)

r 41 = 1.33. A
o

r 42 ::::' 1.40 A
o

r 43 = 1.43 A

o

. ~142 = ~243 =~143 = 120

.' I

f II = 9.0000

f 22 = 5.4000

f 33 = 6.3000

f 44 = 1.0053

f 55 - 1.0809-
f 66

=. t .0269

.\

• I

3-Center

0

r3.1, := I .. 20 A
0

r32
:: I .30 A'

0

q> - 150-

f 1.1":: ~ 2.6000

f 22 '= 9.0000
.. ' 1 :1 !

'33 = I. '123~

,. 1- -

'1·:.'
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Table V-3 Calculat~d and Experfm~ntal Val~~s o~ k4/k3

I •Q17 ,t o. 004 ,I •0 13 to. 004

,0

473 K"

,Mode I 3 , , • 026

Model 3 A , •028

Model 3 B 1.024

Exper fmen t. 1.023 t 0.004

o
573K

t.019

, I .020

, 1.017

" I

o
,613 K

,"",1.015

,,1,.016,

''l,.0 13'

I,

,j'
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A. Three-Center Fragment

B. ,rOur-CeMte~ Frag~en~A
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3. Efgen-Value Prbblem

;4 • I 9 otoPfe'Kin et f c Ra t e R11 t f 0"

,':
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I. Mafn Program

ZZJOB 5

ZZFOR, 5

*POBJP4
" . . .

DIMENSIONA(6,6),B(6,6),d(6,6),XLJ(6l,XL2(6).XL3(6),

XL4(6)

COMMON A, 8, C, XL I, XL2 ,XL3 '.,XL4, Ur, U2, U3,U4" RAD I ,RAD2;

RAD'3 '
, .':

COMMON CaMP I , COMP2 ,COMP3 f R41 , R42, A43

CALL THREE

CALL EIGEN(C,XLI,J)

CALL THREE

CALL EIGEN(C,XL2,3)

CALL SIXA

CALL StXB

CALL EIGEN(C,XL3,6)

CALL SIXA

c, t

2

CALL SIXB

CALL EIGEN(C,XL4,6"

CALL RATIO

GO TO I

QA=A(I,I)

QA=SQRTF(QA)

QA=ABSF( QA)

QA = cos F( I .0)

QA = SIN F( I .0)

'I, "

,', I

, • t •



3 FORMAT(Et6.a)

. PRINT 3,«C(I,J).t=I.3),J'=1;3)'··

QA=QA**2

. QA = EXP F( 1.0) .

QA=LOGF(QA)

END' ,

zzzz·

i·, I, I

",i,

I •

I '

~ 13



I ,

I 14

2 • If Gtt MA TR I X

A. THREE-CENTER MODEL

ZZJOB 5

ZZFOR 5

*LOISKtHREE:

SUBROUTINE TH~EE

c
, ,

C ' DEFtNEG 'MATRIX AND THE ~ROOUCT OF GAND F

,DIMENSION A(6,6) ,B(6;6),C(6,6)tXLI,(e),~L2(6),XL3(6) j

XL4(6)
1'\ •.

COMMON A. B, C, ~L I , XL2 ,XL3, XL4. ur,U2 ;U~*'lJ4"RAO ~ ,AA02"

RAD3

COMMON COMPI, COM P2 , COM P3 ,. R4 1" R42 , R43

toRMA T( F8 Ii 5 , 2FS , 3, 3FB. 6 , 1,' IJ ' ,
2 FORMAT(9F6.4)

3 ,FORMA T( 6( FlO .5 ,2X) )

99 FORMAT(/(3FIO.5,2X»

199 FORMAT(113FIO.5.2X»

10 READ I,ANGR31 9 R32 ,AM I ,AM2',AM3

PUNCH 3,ANG,R3i,R32,AMI,AM2,A~3

UI :: t. O/AM I

U2 :: I.O/AM2

U3 = I.O/AM3

RAD = ANG*3. 141592/180.0 ,

C

C DEFlNE "tHE ELEMENTS OF G(A) MA TRt X
, '", I

, I

,I '

• 1".1



, I

, r 15 .'

I '

c
. C * ... * * * * * ... * * ... ** * *. - * :* - ... :*. * * * ~ .. *" ",

, I

\ ..A( ~ , I ) =U I + U3',

,A(2, 1)=U3*COS F(RAD)

A(3, t ) =-U3*Sl N f( FtAD)/R32,

A( I ,2) =A (2; I)

A(2.2)=U2 ... U3

A(3;2)=-U3*SIN F(RAO)/R31

A( I ,3)=A(3, t)

, A(2,3)=A(3,2) ,

A(3.3)=U~/R31**2: +, U2/R32**2+U3*( '~O/R31**2 .+'
'~O/R32**2 - 12 .0*C08 F(~AD)/(~31*'R32»

c

c * * * * .. * ... * ... * :*,,* * *, * ... * .' ....... ',.- .. * * * *
'f' '

c '

I';· I ,I

, I '

) ,

, ; ,



6 TSUM=O.O

20. PUNCH 199.(C(K,J),J=t,3)

RETURN

END

zzzz

I.,'

.\

i '

I;



I '
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, !
I ,

, I,'"

, B., SI ~-Center Mode 1(1\)

ZZJOB 5

ZZFOR 5

*LKISKSIXA

SUBROUTINE 81XA' , ,
" " '.' . .:.'" '.1

DIMENSION, A(6,6) .B(6.6),C(6.6) ,XLI (6) ,XL2(6) ,XL3(6),

XL4(6)

COMMON A,B,C,XLI,XL2,XL3.'XL4,UI,U2.U3,U4.RAOI,RAD2,
" "I, ,

RADJ

COMMON COMPI,COMP2,COMP3~R41.A42,R43

FORMAT(IO(F6.2»

3 FORMAT(I/5 (FlO. 4»

I '

READ I ,ANG I ,ANG2,ANG3, R41, R42, R43 .,AM I "AM2 tAM3 ,Ah14

, PUNCH 3"ANG I ;ANG2',ANG3 ,R4,I,R42,R43 ,AMI ',AM2 ,AMj,AM4
I , • " ',' • '. I .

'1'\ •

UI ,= I .O/AM I , .

U2 = t.O/AM2

U3 = I.O/AM3

U4 = I.O/AM4

RADI = ANGI*3.141592!180.0

RAD2 =. ANG2,*J. 141592/180.0

RADJ ~ANG*3.141592/t80.0

COMPI = COS F(RA03)*(R41-R42*COS F(RAQ3»*(R42-R43*

COS F( RAo 1»+ ICO~F( RA02)* (R41-A42*'COS F( RA03»* (R43­

R42*COS F(RADI»+(A42-2R41*COS F(RAD3ll*(R42-R43*COS
I \ I I.

F(RADI) )+C08 F(RADf)* (R42~3R41*COSF(F?AD3)J*(~43-
-, '

R42*COS F(RADI» ,

" ,

, I



I I B
, ,

COMP2 =,(R41-R42*C08 F(RAD3»*(R41-R43*COS F(RA02»+

cos F(RAOZ)*t(R4'I-R42*COS'F(RADJ»*(R43-R41*COS'

,F(RAOZ»+COS F(RAD3)*(R4Z-2R41*COS F(RA03»*(R4~­

R~3*C08 F( RAD2) )+C08 F( RAD 1)* (R42-3R41*COSF'(RAD3»*

'(R43-R41*COS F(RADZ»

COMP3 == (R42~R43*COa F(RADt»*(R41-R43*COS ~(RAD2»*

ICOS F( RADJ )+(R42 -R43*COS' F(RAD I) l* (R'43-R4.1*COS

r(RAD2) )*ZCOS,F(RAOI )+(R4j-R42*COS ,F(RAO',) )*(R~I"

R43*COB F( RAD2) )*3008 F(RA02:)+(R43~A4Z'*COSF(RAD 1»*

(R43-R41*COS F(RAD2»

C

C

C

DEFINE VARIABLES OF, MATRIX G(A)
'\

I '

c * * * * ** * * ** * * * * '* * ,* * *, **:' *,' * * .'*it

, r

c ,'·,,1"

A( t , I) ,=: l:J I+U4

,A( I .2). =U4'" COS F( RA 03 )

A( 1.3) :: U4*COS F( RA02)

A( 1,4) = U4*«R4Z*COS 'F(RAOJ)-R41)+COS F(RAD3)*

(R41*COS F(RAD3)-IR42»/R41*R42*SIN F(RA03»

,A( I ,5) = U4*(C08 F(RAD3)*(R4J*COS F(~DI )-R42)+COS

F( RAD2)* (R42* ICOSF( RAO I) -R43» I( R42*R43*SI N F(RAO'»
, , ,

A( 1,6) = U4*«~4~*'COS F(RA02)-R41)+COS F(RAD2)*(R41*
,~ ,

COS F(RAD2)-IR43»!(R41*R43*SIN F(RAD2»,'

,A(2, I) ':: A( 1.2)

,A(2.2) =U2+U4 ,

,A(2.3) ,,= U4*C08 F(RAD~) ,
i , ' , r

,\ '
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A(2,4) = UA*«RAI*COS F(RA03)-R42)+COS F(RAD3),*(R42* '
, I

COS F(RA03)·IRAI»!(A41*R42*SlN F(~AD3)

A(2,5) ::: UA* « R43*COS F( RAD I) -R42 ):,-cqs F(RAO 1)* ,

(A42*OOS '(AAOI) .. IA43))/(A42*A43*SIN F(A~DI» I

A(2,6) ::: U4* (COS F(RAD3 )*( A43*COSF CR~D2) -RAt )~'

.. lC08 F( AAD I )* (1l41 *OOS F( AAD2 ).:.~43 »/<R41 1l,R4:S*StN .

F(RA02) )

A(3, I)=A ( I ,3 )

A(3 , 2) = A(~ ,3)

A(:3.3) ="U3+U4

A(3_4) :: U4*(COS F(RA02)*(R42*COS F(RA03)-R41).+

100S r(,RADI )*(RAI*COS r(AADJ)-R42»!tA'41*R42*SlN

F(RA03»
I

A(:3, 5) :::' U4* « R~2*OOS F(RAD I):-R43l+COS F(RAb 1)*

(R43*COS 'F(RADI) -I R42»/(R42*R43*SIN F(RAO I»
, '

A(3,6) =U4*«R41*COS F(RA02)-R43)+COS ~(RAD2)*,

(R43*COS F(RA02)-IR4 t »!(R4,t*R43*atN F(RAD2»,

"REtuRN

END'

zzzz

" ,

" t

I '
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C. Sf x-Center Model" (e)

ZZJOB 5

ZZFOR 5

*LDISKStXB

,(

, !

I '

SUBROUTINE SI XB'

DIMENSION A(6,6),B(6,e),C(6,e),XL2(6),XL3(6),

XL4(6)
• " t ' • '; • 'I

COMMON, A, B. C, XL t •XL2 , XLJ ,XL4, UI , U2,U3., U4, RAO I ,RAD2,
, ',I, '

RAD3 I

COMMON CaMP I • ' COMP2 ,COMP3, R4 , ,R42 .R43',

, c DEFINE VARIABLES OF MATRIx G(A)'

C * * * * * * *' * ** * ** * * :* ·* .. * * '* * * * * ... ...
A,( A, ') ::: A( I. 4)

A(4,2) =A(2,4)

A(4,3) ::: A(3,4)

A(4.4) =U'/R4t**2+U2/R42**2+U4*«R4[~R42*COS

F(RA03) )**2- t2 .0*COS F(RADJ )*( R4' -R42*COS 1="( RA03»* '
(R42-R41*COS F(RAD3»+2(R4t~R41*COS F{AAD3»**2)/(4f*

R42*SIN F(RA03)**2
, , ,

'A(4.5) :: U2*(COS F(RAD~)-C08 F(RADI)*,COS F(RAD3»/ '

(R42**2*ISIN F(RAOI)*SIN F(RAD3»+U4*~bMPI/ I'

2(R4' *(R42**2 )*R43*SI N F(RAO i)*SIN F(~AD3»

A( 4, 6} :=" Uf* (cos F( RAD I) ~COS F( RAD2 )*C08 F(RA03» /

I «R41**2)*SIN F(RAD2)*SIN F(RAD3»+U4*COMP2/

«R4'**2)*A42*R4~*2SIN F(AA,D2)*SIN F(RAD3»

,I ,



'I:

C

IZI

A(S,l) = A(I,S)

A(S,2) =,A(2,5)

A(5,3) =A(3,S)

,A(S,4) = A(4,S) ,

A(S,5) =U~/R42**2+03/R43**Z+~4*«R42~R4j*C08

F( RAD I) )**2+ 12 ~O* (R42-R43*COS F(RAD I),)*(R4j-R42*COS'

F( RAD I) )*COS F( RAD I}+2 (R43-R4,2*COS FrRAO I) )**2)/

(R42*R43*81 N FeRADI) )**2
I

A(5,6) = U3*(COSF(RAD3)";'COS F(RAO', )'~COS F(RAD2»/ '
, ' ,

(R43**2* lSI N F( RAD l )*81 N F( RA02) )+U4*COMP3/(R4 '1,*R42*
I

R43**2*28IN F(RADI)*SINF(RA02»

A(6, I)' :: A( I ,6).

A(6,2) =A(2,6)

A(6,3) =A(3,6)'

A(6,4) =A(4,6)

A(6,S) = A(S,6)

AC6,6) =UI/R41**2+U3/R43**2+U4*( (R41"R43*CO~', '

F(RAD2»**Z+IZ.O*CbS F(RADZ)*(R41=R43~bOS'

F(RA02»* (R43 -R41 *C08 F(RAD2) )+2 (R43 -R41*COS

r(RA02 »**2) I(R41 *R43*SI N r( ~A02»**2 '

, I

c * * • * * * * ~ * * * * * * ~. * * * * * * * * *,.'*
c ,

2 FORMAT( F6. 4 ,F6 .4, F6.4. F6 .4' ,F6 •Ii ,'F'6_,'4)
, ',' , .. " ('t" ,

9 FORMAT(//6'(F8. 4, 2X» , '

99,FORMAT(//6(F9.6,ZX»

I02t='ORMAT (//6(FIO.6,2X»



DO 7 K = 1,6

7 PUNCH I02,(A(K,I),t=1 ,6),.:'

00 to L = 1,6

I0 READ 2, ( B( I , L) , 1=1 ,6) ,
I

00 8 K = 1,6

B PUNCH 9,(8(J,K)"J.=1 ,6),

TSUM =0.0

00 20 K=I,6

,DO 6 J=I, 6

DO 5 1=1,6

SUM = A(K,t)*S(f,J)

6 tSUM=TSUM"+SUM

C(K ,J·)=TSUM

6 TSUM=O.O

20 PUNCH 99,(C(K~J),J~I.6)

100 RETURN

END

·zzzz

t i'l , "

, '

'j!

" ,

I .

122

I.
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3. Efgen-Value ProbleM

ZZJOB ,5 '

,ZZFOR 5

*LDISKEIGEN 0170

, I
I ,

'1"'" '

SUBRoutINE EIGE:N(A,XL,Nl ;

DIMENSION X(6 j 2),XL(6)
" '" I

DIMENSION A(6,6) ,8(6,6) ,0(6,6) ,'XLI (6)~XL~(~).
1 ": • " ,", • ,

XL3 ( 6) t XL4( 6) ,

l, ,

COMMON COMPI,COMP2,COMP3,R41,R~2,R43'

'K=N

KA=I

19 KA=O

KN=30

C INITILIZE TRIAL' EIGENVEctOR

XL(KR)=O.O

, DO, t I =I ,K

X( I , I )=1 .0

C MULTIPLY BV MATRIX

9 DO 2 t =1 ,K

X(I,2)=O.O

DO 2 J=I,K

2 X( I t 2) =A ( I , J )*X(J, I ) +X(I _,2)

C FI NO LARGEST ELEMEN T , ,

L=I

R=ABSF(X( 1,2»

00 3 1=2,K

AI=ABSF(X,( I ,2»

i '

I '

: "'I

" '
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\ '

I • ~

48

47

50

51

" I

49

I F( SENSE aWI"tCH I) 47 II 48

CALL EXIT

DO 49 I =1< A, N '

PRINT 50

FORMAT(34HENTER ONE VALUE: IN F :TYPE NOTA t'ION)
, J "

ACCEPT 5'" XL( t) I

FORMAT(F20.4)

CONTINUE

GO to 30

, 4 I XL (KR) =X ( L , 2)

C TEST FOR LAMBDA APP.=,O.O

IF (XL(KR»5,6,S

",{ .



6 IF(KA)8,7,a

7 KA=I

X( I _I)=X ( I,I ) - 1.0 .

GO to 9 . ;' , "

C TEST FOR COMPLETION OF CURREN/t I TEAAtl ON

, 5 A 1=0.0

.00 10 1=I ,K

X(I,2)=X(I,2)/XL(KR)

AI=AI+ABSF(X(1,1)=X(I,2)

10 X(I,')=X(I,2)

tF(~I-.OOOOI)II.II,9

C START MATRIX DEFLATION

II J==L+ I

IF(L-K) I I0, I2 t I 2

I 10 DO 13 t =J •K

X( 1- I ,2) =x(I t 2 )

DO 13 IA=I,K

13 A(,I At t- I ) =A ( IA • I, l
12 KI=K-'

00 t,4 I =I t K I

14 X(I t I ) =A (L, I) ,

I F( L-K) 15. I 6, I 6

I 5 DO 17 I =J t K

DO 17 fA=l,K

I 7 A( I -I t I A) =A (I , I A)

C COMPLETE MATRIX DEFLATION

16 DO I 8 I=I , t< 1 '

I.,.

125
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I

DO 18 J=I ,K I

18 A(I •J ),=A (I, J) ..X(1.2 )*X (J f: t ) ,

'K=KI

KR=KR+ I ' '

I F( K- t ) 20 , 20 " 19

20 'XL(KR)::A( I , I)

A( I , I) =I .0

GO to 30 , '
,! '

B DO 31 I=KR,N

31 XL(I)=O.O

30 REtURN
:

END,
"

!

I ,

,.1,' i

" • ,I

I

\"

, jl

"

"

, , I'
" '
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4. ISOTOPIC KINETIO' RATE RATIO

ZZJOB 5

ZZFO~ 5

*LDt SKRA TI 0

SUBROUTINE RAtIO,

c

c * * * * * OBTAIN THE ISOTOP KINEtIC RATIO*' *' * * * * *
c I ,I

DIMENSION F(6),FP(6),W(6),WP(6)

01 MENS ION A( 6,' 6) , B( 6,6) ;C(6,6) • XL I ( el'.'XL2 ( 6).

XL3(6),XL4(6) " 1

C

C

C

COMMON A, Btl C. XL I, XL2, XL3, Xl4 ,U I, U2; U3, U4 ,RAD t ~RA02.

RAD3
,OJ

COMMON COMP ItCOMP2 t COMP3 ,R41 ,R42 , R43
, ,

FO~MAT(F6.4tF6~4,F6.4~F6.4)

2 FORMAf(FIO.6)

3 FORMAT(/(EI6~08»

4 FORMAT(6FIO.6)

READ MASSES FORSOTH MODE~~,

18=0

50 READ I ,AM I ,AM2 ,AM3

AM=AM I+AM2+AM3

READt ,AMI ,AM2,AM3,AM4

FM=AMI+AM2+AM3+AM4

IF(IS)51 ,51 ,52

I ';,

I •



CALCULATE BEGINNING ~AT10 "

c
c

C'

Stu ~ ~M*aM/(AM+8M)

'IS:I '

GO TO 50

e2 UP.AM*SM/(AM+BM)
,

IS = 0

R=U/UP

A=SQRTF(R)

PUNCH '3.fl

READ2,r

I ,

I,',

'j:

, "

128

" !

, f

C

C

C

CALCULATE WAV~LENGTH CONSTANt.
/' i

rAO = (. t 177E+05 )*7.0/( t**44'.0) ,

PUNC"'3,FAC

ENtE~CONTINUOUSMULTIPLICATIONLooP

N=3

DO 54 K = I, N

W(K)=XL I (I<)

PUNCH 3 f W(K)'

WP(K) =Xl2(K)

54 PUNCH 3 f WP(K) ,

53 DO I00 LL::; I ; N ;
I' "

. '

12

III'

" ,



I '

: '

'F(LL) =FAC*SQRTF(W(LL»

FP(LL) =FAC-SQRTF(WP(LL»

AI =.F(LL)/2.0'

A2 =FfJ(LL)/2.0

R :: R* (SQRTF(WP(LL) )/SQRrr:<w,(LL» '*E)('PF(At-A2)
1J . ' ~"

101 R=R*(' .O-EXPF(-F(LL»)/( r:.O~EXPF("FP(LL»)

PUNCH 3;R

100 CONTINUE

IF'(tS)IIO,IIO~IS()' .

110 IS = I

129

N =6, ,:

DO 55 K = I, N

W(K) = XL3(K)

PUNCH 3,W(K)

WP(K) '= XL4(K)

55 PUNCH 3,WP(K)'

GO TO 53

150'PUNCH3;R'

RETURN

END

zzzz

~, ,.

, r

• I ;,

. ,t "'\

I ,

, I

I .
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