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Treating the activated complex for unimolecular dissociation as
uncoupled fragments simplifies the calculation of transition-state
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Chapter I - Introduction
-1, General Discussion

The explosively expanding system of humah knowledge
of "Nature", lf_ttme is a partftlon factor; is composed of
two subsysfemsj "t{me=-varfant" ahd "time-fnvarlaqt". In
the "time-varfant". system there lies the Majof domain Qf'
"Chemical Kinet&cs". | | | o

In near!y all areas of sclentiflc research, whenever
a given system {s brought under {nvestigation, analysis
normally lnvblves the isolation and definftion of what-
ever elements or subsystems appear to contribute in some
essentfal way to the whole system. There is, in other
words, a tendency toward fundamentality. An extension
~of this tendéncy migﬁt appear to suggest that_onﬂy when
~some basic buflding block of matter i{s defined will there
be a truly adequate understanding of natural phenomena.
The fact is that if such a subatance exists, it has thus
far eluded the best effort at detection or definition.
Moreover, {t is only because of the measurable fnteraction
of organized matter fhat we attempt to define the proper=
ties of matter at all. - |

Thus while we strive to'eXplaln(the objects of our
research in the most fundamental terms possiblie, it may |
well be that evén at the prime level of fundamentality,
we may still be forced to deal with matter in terms of the

relationships among ofganized and particulaté entities.




Indeed, attempts to explain the properties of matter at
this level tend, if aﬁything, away from fundémentallty.
Investlgétlon of intefparticle relationshlps; histor{=
cally, has contributed more to a generai‘undersiand{ng of
matter than has preoccupatfon with the intrinsic proper-
ties of the particies themselvee. , |

Among those attempts to probe the behavior of pafti-
culate mattef ls‘theﬁlnvestfgation of the meéhanism of
chemical reacifoh; A better Underétandingibf the reaction
| mechanism is one of the immedlate goals which may lead to
the understandlng of the generéi‘prfnciples of reéctﬁyity.
Through a study of the rate of production of a certain
substance as a function of the concentrations of réactants,
it is frequently possible to find out how many entities of
each kind have to come together, And Information about
the energy threshhold which must be surmounted before any
cluster of reactants may pass into the product, fs generals
|y provided by the iemperature coefficient of the reaction
rate. | ‘

It has been concluded that, even wlth sufficlent
energy, not every molecule can pass through the energy
barrier. Hence the conformation theory of the transition
state enters here. In order to obtain a clear view of the
structures of the molecules during the cbdrsevof Eeaction,
we demand a set of definitely‘defined'functions of each

individual particle involved. Unfortunately, becauée of:
the -lack of exactness of the functions stated by Hefsenberg's
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uncertainty prlnclple' an& the fncompleteness of 6ur Know=
ledge, we Would,be, ig generél, satisffed {f we had an
approximate ldéa of the‘atruciure and conformat}on‘of the
transftion state,

Theoretical predictions thus play a vital role in the
game., In‘ordef to éet up such a system’whiéh wdqtd'produce
“accurate enough results for a.é}gniflcant compa(lson_with
 the experimenﬁaf date, the bhyéical,pafaméters have to be
known with a great'accurécy. Because of the cancellation
effects of the errors during the-computing'brocess, the
ratio of kinetic rates iIs a much better method to examine
the validity of the.theoretiqal mode | than‘ofhers. By
varying the internal or external conditions of certain
~reactiona to study the influence on the relative kinetic
rate ratio, lsotbpic substitution has been suggested as
an easier method to test the aséumpfionsvmade for a great
. number of reactiqns; The‘suberlority of the‘isthpe‘method
lies mainly 1n.the'possibifity of making thé.substitution
within the vefy reacting‘cenggr and_wlth aﬁmlhlmumlbf

change fn parameters,




2. Brief History of the Study of Isotope Effects

In the year 1919 Lindemann {nftfated the study of
fsotope effects with a calculation of the di fference in

2 The real interest of

vapor pressures of lead lsotobes.
the invéstigatéfs was nét attracted unttli 1933 when Urey |
and Rfttenberg published the result of thelr calculatione
" of the equilibrium constants for the reaction33 |

Ha+ZDCI=Dg+HCI - R

‘p" Ha + ZDI

Ds + 2HI.
Thereafter, thg fqvestjgations of éduitlbrium isotope
| exchange reactions was extended to'many systems; mbatly
involving isotopes of hydrogen, carbon, oxygen and
nitrogen. |

In 1947, H. C. Urey published "The Thermodynamic
Properties of Isotopic Substances", which contains vibra-
tional data and bart!tion function ratios for many of the
simpler isofobic molecules, and Bigeleisen'énd‘Mayer5
obtained general expression for a ratio of parfttion fund-
tiqns for {sotope fractionat{on fn equilibrium exchange
reactions. ODuring the following two years Beeck§ discov=-
ered a large carbon isotope fractionationlﬂn the dissoci=-
ation of propane upon electron impact, and.Bigeleisen7
combined the absolute rate theory with his previous work.

In later’ years Polanyle, Westong, and Shavitt'g
proceeded by arriving at the best potential-energy surfaées
for the reactions, and:making absolute calculatfons of the

rates of the reactions that are to be compared; Although




the results of their investigations have thrown light on
the question of obtaining the best‘methops.fpr arriving at
poténtial-énérgy suffaceéj the adlual computation of potene~.
tial energy'surface is,impésslbly complex‘fdf all b0£'the

vt

simplest'systems;




3. Statement and General Purpose of the Investigation'

Recent theoretical work has centered upon'avseérch
for approximated computable models that, {f the calculated
isoiope effects are in agreement with experimental data,
may proVide,some'véfuabie tﬁformatlon about fe&ctlon
‘mechanfsms. Different theoretical mode |'s Havefbeen tnvesf
tigated; bu{ the résﬁlts are somewhat disabpofnting. In:
~addition to the extreme compexity involved in aétual com-
putation, the crudest models have often given predictions
at least as good as those of more refined calculations.

It is hoped that in'developtng a certain general method'
for calculating the kinetic isotope effects, the actual
'computation may_be simplified and the éccuracy'may be"
fmproved. |

In order to examine the Validity of the investigated
method, the decarboxyl;tion of malonic acid‘fs chosen to
be a trial, since‘this particular reaction has already
been thoroughly.lnvestjgated. 'The calculated kinetic
isotope effects will be compared with the presently avail=

12

able experimental data'‘ of this reaction in .the vapor

phase,
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‘Chépter 11 - Reaction Rate Theory
l. Arrhenius Equation

Qualiitative observations of the rate of chemfcal
reactions were'pecbrded by early writers, but the first
signlflcant kfnetic measﬁrements may be said to have been
those of Wilhelmy'3, who in 1850 measured the rate of
inversion of sucrose and fnvestigated the fnfernce of
concentration upon the rate. He came to theléonciusfon: |
G = Coexp(=kT) o | (11-1)
where C, = initial conceniration of sugar |
C = concentratfon of sdgar‘at time t
k = rate constant.
Laier workers have obtained the same result., ‘The impor=
tant paper of Guldberg\and WaageM pointed_dut that the
laws of chemical equilibrium can be derived from the kine-
tic lawé by assumihg that at equilibrium the rates of for-
ward and reverse reéctions are the same,
In 1889 the-Arrhemlbs taw!5 was formuiated.

B k = A exp (E,/RT) | (1152)
where k is the kinetfc rate constant, Ea fs the molar a
activation energy of the reaction, R(cai/mole deg.) is
the gas constant, T is the absolute teﬁperature, and A s
called the'pre-eXpbnential factor or frequency factor.
‘According to Arrhenius, Eq. (11-2) indlcated that moie=~ \

cules must acquire a certain critical energy, Ea' before -

they can react, the Boltzmann factor, exp (Ea/RT),“béing_
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the fraction of molecules that possess the necessary
energy. From thé standpoint of the Arrhenius law, a
jcomplete understahding of the factors determining the rate
constant of a reaction involves an understanding of the
activation energy and the pre-exponentfal factor. Although
the quantum-méchanlcal theories of molecular structures
have been formulated fn detafl, the evaluation of activa=-
tion energy stlll reméins as an unsolved problem. The
problem of calculatiﬁg frequehéy factors on the basis of
fundamental‘prinéiples has been attacked in two ways,
namely, the kinetic theory of collfsions and the statis-
tical mechanics]approadh.(.The latter approacb'will~be.’

introduced fn this Chapter, .




[

2. Potential Energy Surface

The activation energfes of chemical reactions are
most conveniently considered usfng the method of poten=
tial-energy surfaces. The electronic pbtential energy
for a sysiem of n atoms undergding‘"adiabath"'reacfioh
can be considered by means of the Born-Oppenheimer,'6
approximatloh as a continuous and alngle-yélued functloh'
of the nuclear motion. In general, the interaction

between two (n + l)-dlmehs!onal eyafems fs an n-dimen=-
sfonal vector space. The behavior'cf nuclef thus can be
described by. motion on the surface. ‘

The three-dimenalonal diagram fn Fig. II-! 13 em=
ployed to {ntroduce this concept briefly. The potentialQ
energy surface.for the reaction would posseés Iqw valleys
correspoﬁdiﬁg to the energy states of reactant and product;
- and the valleys wculd be separated by negions'of higher
potential energy, The famfly of'parabolas in the X-Z
plane represents all the possible reactant paths. 'Thg’
minimum of the trajectory of the maximum of ali the reac-
tion paths is defined as an actfvatlon point. - The reacting
system at thls'point fs defined as "activated cbmplex" or
transition state. o

It s easily seen from Fig, II-l that if a system at
én acti#atlon point moves along the diréction of the feac;
tion path (X-axis), the value of fts image in the range of

the function, potentlal energy, decreases.' And any change
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of value along the direction of the Y-axis WOuld increase
| the potential energy. This specific member of the famlly
‘is in general the reaction path, and the directton of
steepest descent s defined as the reaction coordinate.

This type of potentia!-enefgy surface would provide
detailed frniformation about the réacting sy§tem in the
.transition-etate. .But, ln\transformlﬁg the real physical
system to the mathematical system, the:actuaj computation -
is extremely complex for even the simplest systems, J
Hence thevtrénsitron—state approach of the absolute rate
theory has become a general method for calculating reac-
tion rates from simple atructural parametere by means of

the princlples of statistical mechanfcs.,
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3. Quasi=Equilibrium Theory

During the course of chemical reactions it is impore~
tant to distinguish clearly between two aspects of the
problem: one is concerned with the direction and extent
of chemical change, the other with the rate with which it
takes place. These two systems, "time-invariant” and
"time-variant", have no simple connections. A chemical
reaction between two substances may'occur almost to comple=~
tion, but the time for’even a very small fraction of the
molecules to react may be extremely long. Although the
theory of equilibria and the theory_of kinetic rates are
non-parametric, there is a close relationship between the
two. This is so because the molecules undergding reaction
and passing through activated states which can be regarded
as in equilibrium with the moleéules fn their normal
states. The concentration of activated molecules caﬁ
therefore be calculated by ordinary equilibrium theory,
so that {f the probabiiity of the decomposition of écti-
vated molebules is known, the rate of reaction can be |
calculated. In general, this is called quasi-equilibrium
theo?y. |
| The probliem of calculating rates therefore resolves
itéelf into two parts: the calculation of the concentra-
tions of activated molecules and the calculation of the

rates of reaction of the activated molecules.




Consider a reaction
A+B=X SC+0D '

which has proceeded to equilibhium} Then, according to
our assumption, the activated compfex X will’also be in
‘equilibrfum,wtth the reactants and produéfs} and ihéir
concentration may be calculated adéufately By the methods
of statistical mechanice_lh'terms.of the cphcentrations‘
of A and B. | | |

The theorywinvolves theyhypothesis, 50wever, thét
even when the reactants and products are not ét equili=
brium with each,other,‘the activated compIQXes are at
equilibrium with the reactants. ‘When we state that the
activated complexes are in equilibrium with the reactants,
we refer only io those compfekés that in the immediate
past were rgactant molecules.

It is to be emphasized‘that thére is no assumption
that there is a classical type of equifibrium‘bétween
{nitial and activated states; addition to the system of
activated complexes moving from the inftial to the ffnaﬂ
stgte would not disturb the equf lfbrfum, as would be
required {f thg'equilibrlum were classfcal.

The quasi-equflibrium theory is supported by the

18, They concluded

derivatloﬁs made by Bishop and Laidler
that reactions are satisfactoriiy interpreted on the basis
of the quasi-equilibrium assumption, provided that Ea/RT
for the reaction has a value of 5 or larger.. If the

value of Ea/RT is smaller than 5, the reaction'will occur




16
so rapidly that there can no longer be equilfbrium eVen
among the reactant'molecules; the more}enefgetlc species
will be removed more'rapidly than the suﬁply of them can
be replenfshed, and there will not be‘g‘Bortzmanh distri=

butfon of reactant molecules,

T
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4. statistical Treatment

The single molecule partttion'functfdn,d is defined
as | o | . .
Q=73 aexp(-E/KT). - (11-3)
where K is the Boltzmahn,cpnstant, Ey is the total énergy
of a molecule in the ,th energy level and q; s a statis=
tical Wéight equél to the number of differenﬁ moiecular
states‘that‘have‘the“same energy.E1.l'The indlvtduél pro-v
ducts qiexp[-E‘/KT] represent fhe relatfve probabiility of
finding a molecule in the {th energy leVe],:wlth energy
E,, and so o S SR | .
P(E;) = a exp[-E,/KT] o (11-a)
represents a diécrete energy distribution function for
molecules restricted to quantized énergy éfates. |
To a good approximation, the totalrgnérgy'of.a mole=
cule can be separated into Independent terms, |

‘;t =Eg +E, +E ot t By (11-5)

where E, fs the total energy of a molecule, E, s the

eléctron!c'energy, E, s the vibrational energy arising

v
from the Jnternal motfons of the nuclet, Er§t is the rota=-
tional energy of the molecule as a whole, and‘Efk is the
-translationalgenergy;‘ |
AcCording.to the Boltzmann forﬁuﬁation‘for the‘dﬁstri-
bution function of a set of molecules among varfous energy

states we have
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P(E) O exp[-E/KT] . (11-6)
Since E {s separable, . ‘ - |
P(E) @ expl(=E € o, g4 E,”_)/m (11-7)
and for the partition function we can write |
Q@ = [Zq exp(-E /KT)]rEq exp(-E /KT)J
X[£0, o4 eXP(=E 4 /KT)I[Zay exp(-Ey /KT)]
o (11-8)
| = Qg0 QrotQtr o o - (11-9)
since'the indiVidual sums are.lndependeht;‘ Thus for‘
energies’whlch'dre separable {n thls hahner we can say that
the partition functlon Q will be a product of individual |
partltion functions for the different kinds of energy.

A, Electront; Partltion Function

The part{tion functfon for electronic'enérgy ifs cal=
culated directly from the observed electronic levels of
the atom or. molecule, using the relationshlp

Q, = queXp[ -E /KT] ' (I1=-10)

At ordinary temperatures the excited electronic levels of
an atom or molecule are usually too high to make a sfgni=
ficant éontributlon to the'partition function. If the
lowest state is a singlet state, the statisticai weight

9o fs unity, so“that‘lf the lowesf state i{s taken as the
zero level and all other levels are sufficiently high, the
partition function fs approxlmately unity. In general, it

may be assumed that excited electronic levels may be




neglected {f their energy is more than 4KT .

B. Translational Partition Function o

The pértltion‘functloh per unit volume (I cc) for the
~translational motién of a molecule of mass m having three
degrees of translational freedom can be showh'9,£o be
'é = 25mk T 3/2 o '(11-||)'
Ttr ‘ h . R R ,

where h is Planck's'conétant.
~C. Vibrationél Partition Functloh 

Thé'vibratfonal partition fuﬁction for égdiatomic
molecdlg.that has only a single internal vibration is
approximated by the expneeﬁlon , | 4 ;‘

| E, = (h + 1/2) hv, L S (11-12)

where n is an integer and n > 0. The vibrational parti-
tion function can be approximated as

Q, = exp[-E/KT] | (11-13)

when hv ,>>KT, and where
€y = (1/2)hv, | |  (11-14)
represents'the'IOWest vibrational energy possfblé for the
molecule and is referred to as the zero-point energy,
because it represents the residual energy of the molecule
af 0o k.‘ | |
For more complex molecules, assuming harmonic vibra=

tions, the vibrational energy is
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| J B
ER T, I V/am (11-15)

where v, s the fundamental frequéncy of the fth vibra-
tional degree of freedom and there are J vibratfonal
degrees:of freedom. For the i th degree of'fréedbm
. o ) . . . '
T exp[=(n + I/Z)hvi/KT]
h=o

= exp[= hv'/ZKT] Z exp[~nhvi/KT]
n=o

= exp[-hv‘/ZKT][l-exp(-hv‘/KT)]" y "(I1=16)
so that the vibrational partition function for a polya=

tomic moleculé,tto'the'harmonic’oscillator‘approxfmation,

is

: Q, = g [GXp(ihv‘/ZKT)][t-exb(-hvi/KT)]'a
o | o | (11=17)

This can be written as

J -

Q, = exp(-E/KT) Il [1-exp(=hv,/KT)1™"
- i=l (I1=-18)

However since the zero-point energy is not independent

of isotopic substitution, it is convenient for our purpose

to write the vibratlonal partition in the form

*

Q, = él texp(hvi/ZKT) - éxp(-hv,/ZkT)Jf"

J
=1

‘ l'[z sinh(hvi/ZKT)]'(\ ' f'”t | (11=-19)




21

D. Rotational Partition Function

The allowed rotational'statés, for a diatomic mole=
cule, will depend on whether or noi the two nuclef are
Idénticai. At tempefatures at which the energy differ-
ence of‘adjacent fdtational stétes is small cémpared to
KT we can Qriténan approximatelmoleculérkpértltion
function | | |

|  BrPIKT Yy
- Qrot = e
where I is the moment of inertia perpendicular to the

axis,

and o, the symmetry number, equals 2 {f the nuclei are
identical and ls,btherwlse equal to |.
For polyatomic molecules, for comparatlveéy'hlghv

temperature, the rotational partltion function is

: I72 32
Q. ;= ggﬂcanaégg) (KT) " (28, + 1)

rot ~ ‘
where A, B, C are the principal moments of inertia, o is
equal to theanmber of indistinguishable ways Ofvorienting
the molecule in space, and ? (ZSi + 1) is the statistical

spin factor for the nuclel.,

E. Rate of Chemical Reaction

The rate of chemical reaction can be wfitién as
o rate = k Cp . o (11-=20)




where k {s the specific rate constent, and Cr,ie’a func=-
tlon of reactant concentrations as experlmehtally'observed.
Then,

(11-21)

where Q_ is the total partition function for the rth
reactant, and‘Ki is a constant which depends dn stable and
metastable configurations, which may or may not be reac-
tion intermedietes. The value of Ki can be calculated
statistically if structural parameters are known, by
assumthg these structeres are in equilibfiqm with the

, reactants. 'It is assemed that K"is independent.of fse-
topic substitution therefore, in the ktnetic rate ratfo

formulation it would be cancelled out.
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8, Absolute Reaction Rate Theory

In Eq. (II=21) Q. fs the total molecular partition

function per unit volume, which for a nonlinear reactant

is \
27M KT 8n®(8n°ABC)"* (KT)" _ 3n-6 Y
8 = (1) [ T T —
h o.h f 2 stnh(EL)
(11=-22)

where Uy = hcwy/KT, w; = fundamental frequencies of
vibration. Eq. II-22 is evaluated by summing over all the
energy states by allowing Vlbrational motfons about the
stable configuration. o ‘

Since the activated complex fs unstable in one coor-
dinate, the reaction coordinate, Eq. II=22 s fnvalid for
the activated complex. Thls di fficulty is avoided by
Eyring 19 by restricting the act‘vated complex by definj=

tion to a narrow range 6 about the activation point,

==

—8 —

v o

Poﬁ&httol Ehe_r-q y

Reaction Coordinete
F‘ g . I I-Z
6-range of transition state.
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The transition state thus comprises all systems on the
‘potential energy surface within a distance % 5/2 from
a surface orthoéonal to the reaction coordinate at the
activation point. If we let x be the reactfon coordiﬁafe,
the Spec!fié reaction rate constant is | .

k = K(vgo/r'! Qlexp(-0E /RT)  (11-23)
where K, the probability of reflection at the energy |
barrier of systems which have 5uff(c{ent energy to sur=

~mount it, fs the transmissfon coefficient; v

x {s the fre=-

quency of moiion in x; and Q {8 the partition function
of activated complex. o

If‘motioﬁ fn x corresponds to a normal mode of vibra=
tion for the activated complex, then thé 3n=7 other nor-
mal modes comprise motions within the transition state

conflguratioh, and the rate constant can be written as

13

: $ + . 3.4 W2
| v. Q 2oM KT 32 . 8n3(Br2A' B CT )" (KT)
ko= K (=X ( )T —— ] x
IlQr h2 : C’ha ) :
r ‘ ‘ : S
3n=7 | ‘ 1
[Tn -lexp(=bE RT) (11-24)

T2 sinn(zh)

where Q; fs the translational partition function'corresr
ponding to the motion of a particle in one-dimensfonal
space, - | |

Since we haye as#umed that all systems iyfing in the

length & shown fin Fig; 11-2 are activated complexes, we

\
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can erther‘assume that the concentration of activated
comp lexes depends_only upon the pofential ene}gy within
the activated state. Therefore the calculated rate wil}
be unchanged 1f the partition function which has a maxi=
mum in x ta,feplaced by one for which potentiai energy |a
' pdnstant in x or by one which has aumfnimum”lh X

The translational motion Bf a partlcle of mass m is'
one-dimensional box of length 6 can be described by the

translattonal partitlon function f’”

| (ZﬂmKT) ‘ | L o
so {f the "effective mass"* is m, the partitioh'function

associated with motfon in X of the actlvated complex is

given by 3
| : o 2mm KT 42 " ‘ S
Q: = [e— 6 o (11-28)
= e e |
_Theffrequency‘in,x'(e
vy = & (11-27)
. . jm (nm xa)
‘ exp xdx o
=§ o p—ET, 1'° (11-28)
‘ . exp(-qr-) dx
=4 x K (11~29)
) 2nm _

* In the case of two "oscillator" system, the effective -
‘mass {s the reduced mass. T - Ce
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In the numerator we take one-half of the integral
+ ‘ Xa o o
J : exp (—7—T—) XdX,
- 0

since we are interested only in those motions which lead

toward product. From Ed.mzs and Eq.l-29

' + V73 an KT /2 T / »
YxQx =% 2nm ) h’—- ) %- , (11-30)

Thus we see thét the actual‘value of 6 is lmmaierial.»"

Hence, the specific reaction rate can be written

Ire

)(n q )-I ( nMKI f” anﬂ(anaA*%uc )" (KT) ]

‘ 3"“7 ' ‘ U' -l ) e |
([ 1 (2 sinn gh ] exp (-£/RT)

! | - | (11-31)
The above expressfon can be derived by alternative methoqs.
As we have menti&ned in the previous sections that
the total partftion function can be separated iﬁto contri=-
butions corresponding to transiational, fotétional. vibra=-
tional, and electronic energieé; The partition function

for vibratfonal motion per normal mode is given by

= [u-exp(—hv/kr)]" exp[hv/2KT] (11-32)

L

If one degree of the vibrational energy of the activated
comp lexes correaponde to the very loose-vibratlon, then |

it can be cons{dergd as the reaction coordinate and'

S
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ay = by 0= exp(= m1™ o (1i33)

V=0 vV—=0

Accordihg to Maclaurin series expansion

exp(= hv/kT) = & L= h”ng)n | . e (11-34)
n=o o | .

when | hv/KT ‘,< ©

then vL$o L ‘ngo“ighvg?T)f ] = ["fvtionzo ‘kbié%ll: ]:'
| | _'_ (11-35)
If we omit the square and higher terms in Eq. II-SA;L o
Eq. I1-27 becomes o o a

JEoa, =100 - (1 - P¥17! exp(hv/akr) = KL o (11-36)
- Hence the equilibrium constant between the reactants and

the activated compléxes can be written as

c*= L1 (KD (8t o (- pE /RT)] (11-37)
nl{r] hv 1 Qr v .
r r

where Q+ is the partition function of activated complexes'
less one degree of vibrational freedom, and [r] is the ’
concentration of reactants. By rearranging Eq. I11=37, we

have

v [x*] = n[r] (5%) [;95— exp( = 8E,/RT)] (11-38)
r r !
K r
The left-hand side of Eq. II-40 can be dividéd by‘the
concentration- of reactants to give the rate éonstaht of

reactfon
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= (&9 [315- exp(= 8E,/RT)] o (11-39)

r ' ‘ .

Slnce not every activated complex reaching the top of the |
potential energy barrier fe converted fnto resction product

we introduce the "transmission coefflcient“ k. ‘Then Eq.

II-39 can be written as .

h ‘% Q
e T

k = x KL Qs exp(- AEO/RT)_j. . " (11-40)
This result is identical with that obtained by Eyring
method fn Eq. 131, o |

In the quantum mechanical treatment of reactfon
vibration, a sllghtly different expreselon from Eq. I1-18
was obtained'

quq . vq[Z sinh (57)] i o (11=41)
However, if we assume Va © va[ and RTQ‘< i, then

= (%I) [+ ;%—]" - e .' (11-42)

The difference between the two is approximately the quentum
mechanical tunneling factor.20 |
The expressfon for the specific ratelcoostant' which

will be employed through ‘the rest of this discusaion, ls
obtained, |
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‘ 172 3/2

(e KTy [n (ZnMrKT.),/. 8n®(8n°A B_.C ) (KT)

h- r h* c;'_h3

IR/ + + ‘s; " :
l . } (2o KTy [a,ﬂ”_(gnéAd;Fg ) (k7Y
2 s_lnh(E-L) - L P

I" _
Uy
-2 sihh(i—-)' '

(11-43)

Ve .
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6. lsotope Effects

A. lsotope Effects on Potentiél-Energy Surfaces

| The caleulation of the infiuence of {sotopic mass on
the rate of rgaqtion,'it {s clear, requirés“avset of very -
detafled descriptions of the roles of the fhdtvidual atoms
and the forces exerted by‘the‘électron cloud."lt'is also
clear that in order to predict the reaction rate and the
isotope effect;of a certain reaction accurately, detafled
fnformatfon about the transition state is required. The
absolute reaétlon rate theory thus has proved to be a
better method ihah others for thlé\purpose at the present
stage, However; in practical cases, this theory'is Iimfted
by our incomplete knowledge of the actual transition state
‘and'the impOSQibility, ét present, of making a quantﬁm; |
mechanical calculation accurate‘enough for any but the
éfﬁéleét systems. A qualitative agreement between the.
theoretlcal prediction and experimental data is, there-
fore, generally sufficient.

. Theoretical models, in general, are based upon the
presently avallable knowledge about stable molecules.

Most bonds which are not directly involved in the reac-
tion will behave normally as to length and force constant.
Fpr-bonds which ére ruptufed in the reaction, the leﬁgth
Wili}generally be increased and the force constant
weakened {f the corresponding mode bf vibrhtion has nhot

disappeared completely as a consequence of the =
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transformation‘of the‘corréabondihg vibrationgl coordinate
- into the coordinate of decompoaitlon. In generai,‘és a. |
result of the weékening of tﬁe‘cofrespondlhg‘vfbratiohal
coordinate, we assume that the frequency of this vibration
is zero. ‘_ | . -

In ordinary calculation of the reactidn’rétes we

know very‘littlé about the transmission coefficignt and
-the amount of tunneling through the potehtial-energy
barrier. Howevef, in theAabsqute,rate théory the tunnele‘
ing contribuiion is generally negligible. And the trans-
mission coefficlent}is not very sensitive to fsotopic |
- mass and wfll cohsequently cancel in the kinetic f{sotope
rate ratio, |

| By definttion; the fsotopes are two forms of an ele=-
- ment differing only in the number of neutrons {n the
nucleus but not in any ordinary chemical properties,
Since fhe electronic structures of two isotopes of the
same element are identical, the mass 6f thé;nucleus‘enters
the calculations only via the "effective mass" of the
system of nucleus plus electrons. Hence the forces 4
which hold the atoms together will be nearly {ndependent
of changes in the masses of the atomic nuclei caused by
faotopic substitution. Then we can say that the poten-
tial=energy surféde and hence the ihteratomic'distances

and the vibrational force constants could be treéted as

invariant under isotopic substitution, with an accuracy
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which is sufficient for our present purpose., But
zero-point énergy (and thus activation energy) and v,
-debend upoh'vlbra{ional frequénéies and’thUS on maeses;
A potential~-energy diggram for the iadtoptc substltuiion4
- of l{ght‘molecules,by'heavler molecules ls‘shown.lq‘

Fig. I11-1.
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B+ Application of Rate Theory to Isotope Effects

Consider the unimolecular decomposition'
X = x'= =Products, ,
in'whféh the val!dity of QET is asaumed, then the rate
constant for thls reaction can be written in the fcrm

2rM KT o2 Bn(87%A B C )" (k)"
k= (n K ) [( "
o h°
Jn-6 i , L"‘" |
X 1 ]‘

{ Uy
: 2 sinh(7f)

(2nMKT)" gnd(8neateic?)” (k1) T -
zvslnh(il)

X

W o*h? “‘ o

- (11-44)
If we replace one atom in X by a llghter isotope, the
reaction is written as:

X' = X" = Products,

and the rate constant is
20MIKT 372 ens(anSA'a'c')”‘ (kT)"?

k' = (B [(——) sl
h h?® - U;ha |
x3nr~;6 i . ]*‘ (ZnM*'KT)ya B"Q(B‘ﬂ A“B*'C*')Vz (KT)?
ly t o
' 2 sinh(-z—L ha o : o h )
3n=7 ¥
X n -

2 einhcf;l)
| o (11-45)




_ , . 35
By comparing Eq. I11-44 and Eq. 11-45, we havg,
B , U,
R 'M’.!V2 g, ’B'C; an-G ' sinh( )
= (&Y [ D) (ﬁg—f— : 1
3 Yoo U atanggdy
S | | S
UM K
: *03/?. Srp 1 1/2 3""7 sinh(z=)
X (M r—%fg-r) I v-——%,
| | " (11-246)
If we rearrange Eq. [1-46 and assume that the tranamls-
slon-coefficlent cancel out, we get
o M ol o ABC. AT'BrICH
r:‘ (W"m—) (‘—**sf) <mxmﬂ-’
Y R
3ne6 sinh(—L) 3n-7 sinh(-l)
X n,»t——-—U—,-‘_n;——-U—:- .
' stnn(gt ‘ sinh(T—-) (11-47)
By multlplyihg both sides of Eq. 11-47 by (o“ ')/(o al)
we arrive our general expression‘
t M*? 32 ArBrcr A“B‘”C‘.' ir2
( )['T‘T‘] = (mr X gv) (x:g;a: X 51-31-51- )
' U
3n=6 slnh(i—-  3ne7 sinh(f——
S T T U T (11-48)
slnh(i—) : slnh(?-——) :

The above expreseion can be simplifﬂed by the use of

‘{denties derived from the Redllch-Teller product rulez'
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These same {dentities can be\obtgined by equating clasg=
sical pariit{on functions with the high-temperature Jimit
of quantum mechahical partitién functions, as suggested
by BIgeleiSen and Meyer?. _The expression derived for
the reactants is . | B | | _
/2 i 3n=6 U}
@y (y (1:1'8'!'51')2 nogh=1 (i)
for the activated comp lex when motioh in'the reactfon
coordinate fs cons!dered as a vibration s |
' Lt $ o uz’3n-6 Ut ,
(m ) (ﬁ1r) (%rr%rﬁ%rr) I .Gl;_ = 13 (11-50)
' S T ,
and.that for the activated complex where motion in the |

reaction coordinate is considered as a translation is

1,/ e A% gtot 2 Mg 30=7 U
(n )’ " (e " unr‘17 ok

[

Mo
' (11-51)
If we combine Eq. 11=49 and‘Eq. I1-51 we gét ‘
CM*'M_. g2 ABC A*'B*'c*'-u 3n 7 UF' 3n-6 U,
ror’r i :
" G e T ok o
I | | (11-52)
By comblnlng Eq. II-48 and Eq. 11-52 we have
. ' : - 3
U'
3n=6 U sinhb—-) 3n=7 U*'sinh(———)
(f-)( ) = (MT‘) o 'J—--TT- n -4 21
i U‘sinh(z-)

(11-53)
or ' ‘
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'yl 3ne U ainh( ) 3n=7 U sfnh(-—)
Wy e—y = (2 p A r . U
r Vx ! stnh( ) ? | Uislnh(i-—
(11-54)

where Vo is the average frequency of motion ln the
~reaction coord!nate.

In the case of fntramolecular Isotope effects, the
reactants are ldentlcal for the palr of reactions, and

(Q /Q') = 1, Then, Eq. 11-53 or Eq. II-Sdncan be wrttten

as
o ' i o 3n=7 U, 'sinh(z) ,
)(31;-—) =(33) 1 '
| x‘. ! U,sinh(ii—)

. U
M 3n-7 Ui's{nh(fl)
]

(D)

o l

o w

0 (11-55)
U,sinh(flf) |
In Eq. I1-53 or 11-54 it Is obvious that the first
'term of the righf-hand side is then"Temperature~Indé~
pendent Factor " (TIF), and the second term of the
right-hand sfde ls the “Temperature-Dependent Factor"dlmb
(TDF) Thus the theoretical expressfons for rate con=-
gtantnratiqs of‘isotopfc reactions can be'written,fn tne;

general form

KL= (TIF)  (TOF) | | o (11=86)

The temperéture-dependent factor {s a function of the

frequericies of motions orthogonal to the reaction coor=-
dinate. 1In the case of tntermolecular~reactiona,'It
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depends also upon the fundamental frequenclgs of the
reactants. The temperature~lndependent facior,'(v;/vx)
has been generally cbnaidered.ae the equivaient of |
(mo/mé) » which in actual computation involves consid=
‘erable uncertalnty, This éalculated uncertainty, how=-
ever, would noi,fnfluehae the temperature-aepéndent
factor. This problem-has, in 1958, been reviewed by

Bigeleisen and Wolféberg,22 and they have given a parti-

cular formula 23

for the tempgrature-independen{ function
to be used in the case of three~centered reactions, 24
th Eq. 1155 the term Ujs as defined, is equal to
2;¥L Where @, fe a fundamental frequency of vibration,
In order to calculate the fatio, two sets of‘andamentél
frequencies‘must‘be knowni, _Therefore, a'deté{ied devel=
opment and geheral method of calculétlng thése aet§_of
fundamental\fhequencfea are_desirabie;-‘Tﬁg’féllowlng

chapter Is;devoied to this burboae)
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Chapter IIl =- Molecular Vibretjon

Throughout this investigation the atdms‘are,treated
as point masses connected by forces whlcﬁ keep the atome
near their equilibrium poeittons}} The etectronic |
.effects are nc-:glectevd.'6 The rigorous and logical way - .
to begin the treatment of molecular vibrations, s to
prove that when the proper coordlnate system is used»
the total energy of a molecule can be approximately
separated into three components, translational energy,,

(

rotational energy, and vibrational energy.

'
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i TSepaFatioﬁ of Energles.

.The«coofdinate\system used here is construciud as
follows: The three Cartesian cqoﬁdhnates'whbse ofigln
{s located at the‘center of mass of the molecule; the
three Eulerian angles of a fotafing syStém Qf Cartesian
coordinates, the axes of which coinbide‘with_the priq-‘
cipaj éxes of‘ineriia of‘thelundlstorted molecule; and
the Cartesian‘coordlnates of the atoms with respect to
the rOtafing:cbbrdlnate system. The system whose ori-
gin is located at the éenter Qf‘mass‘of'thg.molecule i;
denoted by I, and the other one s denoted by S. If we
have a particle P in the space of S, there reaulté
three types of mOVements} relative motion, P|S, is fhe
motion of P with respect to 8; leading motion, 8|1, is
the motion of 8 with EeSpect to I; absolute motion,
“P|1, fs the motion of P with respect to I. If the'
three coorqidafes of I are x,y,z with unit vectors
?, 3, Q, respécfively, and the coordinafesﬁdf 8 are
u, v, w with'unitlvectors ?,'&, a,vwe héyé defined the
position of the point mass P. And we can denote‘élas
a function of siX coordina£es: P.(x, ¥y, 2, u,'v, w).

The relative position is shown in Fige III=l,
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X

Fige TII=! 'fhé relative bosition of 8 and 1 systems in
" three dimenaional'space.' | |

With reference to Fig. III=l it is clear that

N A

A A . A A A . '

OP = 00' + O'P = 00' + (ul + vm+ wn) (III=1)
By differentiating Eq. III=| ﬁlthirespect,to time, t, we
get the absolute velocity Vab in terms of leading velo-

city VL, and relative velodity, Vr°

A A A
dOP _ doQ! do'pP

Vab T3t "9t * @t
! N ,
. A A A
= ggon + %? ful +v m+ w nj
déb'l d d am . M d dn
= dl ., A du dm dv dn
=at -t gt g0t vgrmgd) ¥ (v
' A
A A tn %%)
=V£4-‘VJ (
r 111=2)




where V, = = + (u g

d A
Ve = 4% tat M

ala
+3 >

a.‘o.
=

"
N

alo
5 >
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(111=3)

(111=4)

Now, let us take a look at system S. (ng,_tl;-2) }
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A A : - .
Since.| and | are orthogonal then
| =am+ bn N o (111-8)

where a and b are constants.

Consider ‘
AA A A A A ,
mel = am.m + bmen = a ' (III-6)
A;\/\/\A'\ ! |
nel =an'm + bnen =b (III-?)

By substituting Eq. III=6 and III-? into Eq. 111-5
we get ‘ v
A A A A A A A L Coe ,
= (met)y m«+ (ned)y n. . © (111-8)

N .
S8ince I»n = 0, we know that

= =ln o o ‘(III-Q)
By combjning'Eq. I11-8 and Eq. 11159, | '

A AAA AAA
i (m-l) m = (I-n) n

L J

(| m)(nxl) + (n'l)(mxl) + (?n.S)(am

A A A AAA A

] (l'm) n + (n'l) m + (m*n)l] x |
A A
=w x |

R ‘
~ Where w is the angular velocity of the particie P.

A
Since I, m, and n are cyclic permutative, we can write

down | -
A A A ‘
I =w x| (I11-10)
A A A :
m=wXxm
A A A
N=wXn
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If we combine Eqs. III-10 and 1113, we get | |

A N N A A A
V, = 00" + w x (ul + vm + wn)
. A - N 'A . A . " | | ‘ | §
= 00' + w x OP | ' (I11=11)
So the absolute velocity (Eq. I11-2) can be written
A A A AL A A A A A .
Vap = (00') + (w x OP) + V. =R+ wx r +.V_ (III-12)

.

The kinetic energy T of thevwhole‘molecule,‘thereforg,l

can be'wfitten

Y
2T = R®

' A A A

m, + m (&xr)v (&xr) + Im, V3
i i i ‘ i i

A A T A A A  'k A A
+ 2Rew X Imyry + 2RZm,V, + Zon(mirixvi)

o L R

_ | (111-13)
Since the origin, 0, is the center of gravity of the
whole molecule, at every instant it must be true that
A ,

?miri =0 ' L ‘ j ‘? ~ \(;11"4)‘

oA A A A
and ?m'r‘ = ?m{ [(wxr') + V‘] =0
) o .
?n“vf =.U‘ o g
Equation I11=13 becomes
;\ : A A A A i A A A A
2T = R® zm; + mmg (wxr)e (wxr) + mm, V§ o+ 2w-2mi(rixvi)
ot gt i o
(III-IS)

= translational energy +‘rotatfonal energy +

vibrational energy +‘Cdriolla energy25
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Thus far we have proved that the total'energy af 5

molecule‘can be‘approxihately éeparated inio transla-~

'tional,‘rofatiéhal, vibrational, and COriqlis‘energies.

Hereafter, the discussfon will be centered:updn the

vibrational energy and related functions, -
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2. Coordinate Systems
A Generalized Coordinate System
IT a set of properly deflned coordlnates, as stated
in the previous section, i{s chosen, the vibration of a
" molecule can be treated as a conservative.small‘oacll—
lation system. Let us conslder a polyatomic molecule,
lvas a coneervatlve 'system, which can be descrlbed in
terms of a set of generallzed coordlnates, qk’ and the
‘tlme, t., If the molecule possesses n degrees of free-
dom, then k = l 2,...., n, We specify that a conflg- |
uration of stable equlllbrium'exists fof,the system,
and that at equilfbrium the generaiized coordinates
have Values‘qko. In such a configuration Lagrange's
~ equation - , | '
aL _d_ 3L _ = o -
aqk d '_Ek ‘ k —_l.’Z,oooo‘, n . ‘ (III |6)
will be satisfied by

qk=qk0; ‘f'lk'=0‘: °q°k=0: k=1,2,.c00y n

Qs

Now, at the least every nonzero term of the form (%? 'L‘)‘

d
must contain efther g, or g, so that all such terms "
vanish at equillprlum. Therefore, from Lagrang's N
equation, we have

%L | = aT | _au |
Ao 3q'g " dq'g
where the subscrlpta, 0, designates that the quantlty

=0 o (111-17)

is evaluated at eqylllbrlum.
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It is aeeumed\that the transformation equatione
deiining the‘generalized coordinates of the system;
Agoseess qn, do not involve the time explicity. Thus, .
tlme-dependent constraints are to be excluded. Then
potential energy s a functionvof position only, and

the kinetic energy fs a function of velocity only.

Kinetic Energy in Generalized Coordinate System

In a rectangular coordinate system, the kinetic

energy is given by

- 3 ) o o
T = |/2a§| iE' my ga’i T (111 la)‘.

IT we adopt a set of generalized coordinates explicitly
fncluding the time, then the set dfrtraneformations
, connecting the rectangular system and the generalized

system can be written as

Xa,i = xa’i (q"qg’ ool‘oql.;, t) ‘
where a = 1,2, +.e., n 3 i =1,2,3; then . |
Xgri = Xgoq Capt) 0 (111-19)

where j = 1,2, .¢s.,h.

The generaifzed velocity is

Xgri = Xy Cap ap ), - (111-20)
We may aleo write the inverse transformation as ,.'
qJ,- qJ (xOL T R 415 | _(1:1-2|)

;= a5 (Xgopo Xgoqs 8 L (11-22)
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Eq. I11-20 can be written as \

X CHSPEI S
o ? -J BIT g+ 3T : - (111-23)
‘Then, | _ T‘
. 2 h h BX ,' ax ,' N ° h
(X,,¢) =(z © z== 2 q, q,)
h aX X _, ¢ 3X_, ¢
o’i o'l ¢ o’ i
o ZSZ, 3q;, 8t N7 (52— |
‘ - (I111-24)
And Eq. III-18 becomes
. y n 3 ( h  h 3X,,, TR )
=1/2 % T m (T 3§ —2 q, q
a=1 =1 ¢ Uy k=) 29y 3% Uk
h X X ' o .
! i a’i a’i

If the system is scieronomic, 8o that tlme does not
appear explfcitly in the equations of transformation,
then the partial time derivatives vanish, and therefOre

the kinetic energy is a homogeneous quadratic fUnctjon

of the generalized velocities:

o - Xy Myy oo N
=z ‘ﬁk (|/2)mOL an 53, qqu (;11-25)

Thus, we can write down the kiﬁetic energy‘

, mlkajdk’ “ ",‘ | o (111-27)
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And, in general

Q_I. = 0 | k = I,Z,....l, N ' ~  | . (III"ZB)
% | | o

Potential Energy in Generalized Coordinéie'SystemV
Thereforé from Eq. 111-17 and Eq. 111-28 we have
%§k|6 =0, k= l,z,..,y, n (111-29)
Eq. III-29 means that the potential energy has an

extremum at the equillbrium configuration of the system,

Qs Where k = 1,250000, ne If the configurationyis

initially at the zero equiiibrium positidn, we dnoose

Qg = 0. If, originally, q" kO # 0, we can aiways use a

iinear transformation to set qko = 0. Now, if we expand

the . potential energy in a Taylor series about the equi=-

i11brium configuration, ‘we get B

U coen, = '
(qioQ?'v "qn) UU +k-§-| 39, ' g
. . s g
+ '/2 Z Q'—U_'l"""l q. q Foeeoe
ke 299 g J K

| | (111=-30)
In Eq. 111-30, the terms lin‘ear‘inzqk vanish automati=-
cally in conseqUénce of the‘equilibridm‘conditions
(Eq. 111-29). The first term in Eq. 111-30 s the

potential energy of the equilibrium position, and by
shifting the arbitrary zero of potentfal to coincide
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with the equilibrium potentiai, this term may also be
made to vanish. Then, if the motlonvot the generalized
coordinate syStem le‘restrictednto be small, all the
terms in the expansion which contain prodocts of the
q, of degree higher than second may be neglected.

This fis equivalent to restricting our interest to'
simple harmonic oscillations, in which case only the.

terms quadratic in the‘coordinates are‘left. Thus,

' n n , .
u=1/2 v . ‘ : I11=31
/ le kEI fJ,k QJ qk, ( )
| where'we‘deflne
Fooo=f,, =0 | (111~32)
'k)J ok ‘BQJaqk 0 ‘

The motion of the system fs speclfied to take
place in ‘the vicinity of the'equllibrium,contiguratlon,'
and the potential energy has an extremum when the
system iS‘in this configuration.f S8ince the potential
energy, u, is chosen to be 2¢ro at equilibrium, in
general U must be greater than or equal to zero. And
‘lt ls clear that both potentiai energy and kinetic
energy are positive definite quantities, unless the
coordinates, in the case of U, or the velocities, in

the case of T, are zero, in which case they vanish.
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Coefficients of the Energg Equations in Generalized

Coordinate ovstem |

We have concluded that the kinetic‘energy and the
potentiai energy fn the generalized coordinate system.

have the same form‘

. n n . ) . ) H. X ’
T=1/2 _Zl kZl m; K qj 9 - . (I111-33)
= k=1 ‘ / - o L
: n - .‘nv ‘
u=1/2 Y O f T
U=/ jgi k£| ok 9y 9% |

By comparing Eqs. I[11-26 andiIII-Z?, it is clear that
the mJ'k are, in generai,‘fnncfions of coordinates q,
and they may be expanded in a Taylor series about the

equilibrium configuration, at
| | Moo |
My (A eeeean) = my (agg) + z a, Loqz *‘f"'
(111=34)

The lowest nonvanishing approximation to T, since in
Eq. III=-33 T is already quadratic in q,s, is obtained
by dropping all but the first term in Eq. 111-34.
Thus the coefficients, M jics become constants and we

’rewrite equation II1I=27 in fhe}form
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From Eq. IiIeSZ the coefficients ka are only numbers.
Thus, in Eq. I11-33, the ka and the ka are n by n
arrays. of numbers which specify the way in which the

motions of the various coordinates are coupled.

Equations of Motion in Genéralf;ed Coordina{e System

From Eq. 111-33, the Lagrangian is given by

L = l/é

no ., . o
J=e kglv (ka q,j g - ka QJ qk) |
A |  (111-36)

i3

But, since T is a function only of theogeherallzed
' velocitiesfahd'u‘is a function'only°ofgthé generalized

coordinates Lagrange's equation for the kt‘h‘coord’inate

' becomes
., _d 3l _ g = o (111-37)

The flrstforder‘partial differentiations with respect
to the coordinate ‘system of Eq.'III=33 are

=0/ 3 te _

j=1 (111-38)

2T . n .
—— = 1 /2 e ‘

9k (172) j§| "k 9]

The equations of motion then become
n ‘ » ! ... 0 ‘ o ‘ h ) .
+ ;= \ -

il ka qJ“,WJk Q - 0, e (I11-39)
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where explicit use has been made of the symmefry property
of the ka aﬁd-mjk'cgefficiénis.‘ Each of the equations
III-39 will involve, in general, ali of the coordinates
Qs and it i{s this set of simultaneous differenflal equa=
tions which must be solved to obtaln the motfon near the
equilibrium,. | | ' |

The equations‘df motion, III-39, are.a se£‘pf n
second-order linear homogeneous differenf?al;quatiohs
with constant coefficients, 'ancefwe are dealing with an
oécillatory system, we expect a solution of the form

qj»(p)_: ajexp i (wt=5) k e _f(IfIfAO)
where a; gfves the complex amp|ftude of the oscillation
for each coordinate, and the phase, &, has been included
to give the two arbitrary constants, a andfb; required‘
by the second-order nature of each'qf the:dffferential
equations. It fs understood, of course, that it is the
real part of Eq. III=40 which fs to correspond to the
actual motion. Substitution of the solution, Eq. I11-40,
{nto the equatidns of motion leads to the following

equations for the amp | { tude factors:

E | ' - 3 N = : ' l -
it (fJk ‘ w.ka) a 0 | (I11-41)
LThis is a set of n linear homogeneous algebraic equations
that the a must satisfy. For a nontrivial solution to

exist, the determinant of the coefficients must vanish.
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If w? is denoted by \, then
175 = mekl =0 S B (tll-az)
To be ‘more expliclt this is a determinant of the order
n xn: . “
,,T'xmi,;..;..,;f,nf»Xm.w B | o
o =0 0 (111-43)
fnll'Xm‘l........f n= Mgl | | |
The equatlon which is represented by this determinant is
.called the characterletic equation or secular equation of
the eystem, and is an equation of degree n ln w2, The
-roots of the determinant provide the frequencies for
which Eq. 111-40 represents a correct eolutlonrto_the‘

equatione of the motion. For each‘of'theee«values>of w3,

the Egs. Ilf-el_may be solved for n-l of the amp | f,tudes ln :

terms of remainlng'aJ. For the'caee of degeneracy; the

problem can be solved by specific algebraic techniques

-whlch are omltted in thls discussion, _
Since the-princlple of superposition eoplies for the'
Egs. III-dl the general solution for qJ must be written
as the superposltion of the solutions for each of the n

values: .

=7 ajr coe(wrt_- 6r)

§|Aajr exp llwrt - ér) z

QJ(t)‘”r
(111-44)

‘The motion of the coordinate qJ is therefore compounded

of motions with each of the n values of the frequencies.
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Hence, simplified coordinate systems are desirable,

'B. Mass-Weighted Cartesian Coordinates (MWCC).

and the Principal Axis Transformation

Mass-Weiqhteg_Qertesian Coordinates

Soppose the appropr!ete generafiied coordinates nere‘
 the Cartesian coordlnates of the system partlcles.’,The
kinetic energy then would contain only the squares of the |
velocity components.' By introducing generalized coordi-
nates; which are the Cartesian components multlplied by

‘the square root of the partlcle mass, the klnetic energy .

can be put in the form ‘:: : N ‘,[,

.‘ (111-45)

T=/2 BT by 4y a

'
v

The Kronecker delta,-‘Jk, equals unity if j =k, and 18
zero otherwise. By comparing Eqs.‘III-27 and III-AS, we
see that in this coordinate system m = ij ~ This coordi-
nate system {s called mass=weighted Oertesian coordinates.
And the kinetic energy can be wriften

=(1/2) (2 &)  (111-46)

j=1 ‘J _ : .

vHeney, Egs. IIt339 become

UrE Twky=e e
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and Eq. II1-41 can be written

n

ng‘ (ka aJ h 5jkw2 aj) =0 . (T11-48)

If we replace w® by X, Eq. III=48 {8 of the;form

n : > _ : ‘ T
z o, = 6 , = - I11=49
According to the same argument as inAthe prequus sectibn,

"Eq. I11-43 in this case fs written

fl|" Koooocenoo.ooof'n

I
o

f21 Tag= Aeeeern,

(111-50)
-‘f‘n'ootto‘;oof B ‘x“ ‘

nn

The Principal Axis Transformation
. . o 1

Forwa given set'of‘particles in view ef'ihe identi- ,
ficatlon between tensor quantities and the Hermitian
matrices, onhe can find a set of Cartesian axes: for which
‘the tensor elements‘under investtgation will‘be diagonar.

This set of axes is called the ﬁprinctpal axes". If tne
‘initial set of coordinates is not pfincipal’axes; one can
always transform this initial set td‘the‘pr(ncipal axes by’ ,
a particular erthogenal transformatfon, known es the
"Principal Axis Transformation . |

Let us now return to Eq. III-AI which in'matrlx
form, can be written R

FA=AMA . (111-51)
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The effect of F on A is such as to produée a multiple
of the reshlt:of M'aﬁting on A,‘not merely‘té prpducé Ila.
In conseqdenée of the Hermitian prodefty of F and M, it
will be shownvthatlfhé efgenvalues, )\, for which equation
‘11I1=51 can be satisfied are all real and positive, and the
efgenvectors, a, which are the column vect&rsvof matrix A,
are orthogonal. 1In addition, thg matrix of the efgen=
veétors, A, diagonqlfzes both M and F, the former to {he
unft matrix, E,'and,the lattef io a matrix whose diagonal
elements are the eigenvalues, A, ‘ . 

I we Igt_gjk_represent the Jjth componehf'of the kth

efgenvector, Eq. III=4l can be written as

n N

EoFppan TN BooMpgag (111-52)
= : o JEl )
The complex conjugate of the similar equatfon for i# has
the form | o |
izl Figage = Ay 'El Mij 3y (I11-53)

We muitiply Eq. III=53 by ajk’ sum over Jj, and subtract
" the resultfng equation from the similar prdduct of
Eq. ITI-52 with a?z summed oVer_i. The left-hand side of

the difference equation vanisheé, leaving 6nly‘

‘ : * n n ] " .‘
0= (xk -.xk) ig' jil MU ajk‘aiz R .(1!}554)

[N
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Consider first the special case of Eq. III=54 when 4 = k:
~ *. n_n % o ‘
(;k:-vxk) .z JE. Myj aje 3jx= 0 (;I;-ss)
The suhvbvgr i and j will now be shown to be heal'énd'
'positivé\definfte., To verify thih‘statemant, separate
ajk into 1ts real and imaginary components: , |
a_jk = (‘aka BJk) | ‘ ‘, L (’I:‘II"Sﬁ)

" The summation can then be written:

L I M a, a — -
n n .
+L L M., ‘
n n . -
r M . - I

| (lll-b?)

The imaginary term in Eq. III-57 vanishes in consequence
of the symmetry of Mij’ for an interchange of the dummy
indices, i and j, changes the sign of the summation.
‘Hence the sum is real. Furtherﬁore, it is seen from the -
definition of the coefficients MIJ, Eq. III=34, fhe summa=-
tion in Eq. III=55 cannot be zero for real and positive
definite kinetlc energy. It follows that |

A = xk, R | (111-58)
and efgenvalues \i must be real,
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Since the eigenvalues are real, the‘ratto of the .
‘eigenvector components aJk determined by Eq. III-52 must

all bevreal. Multiply Eqg. II1=-52 by ag and sum over i°

n:

- I
=l

n
z

H™Ms

‘ n o ‘
, Fij 21k 3k ?‘*kf ,E, =0 MiJ.élk Ak

(111759) -

we get an equationvwﬁich can be solved for.xk:

A = = i] ik aJk I (111-60)
ZZM'J a“‘< an | o o
In Eq. IIIf60 nejther numerator norodenomioator_can be
negafiVe,‘andfihe‘denominator cannot be zero. vHence A
is always finfte and posi tive or zero. Therefore, as A
stands for w?, positive A correSponds to real frequencies :
of oscillation. _ 4 H
| In view of the reality of the eigenvalues.ahd.etgen-..
vectors, Eq. III1=54 can be wriiien |
”h' n ' . :

(A = 2,) Z ng‘ Mg ag, aJk =0 (11-61)
If all the roots of the secular equation are distinct
then Eq. III=61 can hold only if the summation vanishes
for 4 not equal to k: |

n n o

T T M

=1 g 1 %e Pk =0 t#EK (111-62)
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1f we roqulfe fhatj | vlll  ’ - f‘ . _:nn' .

] o S -
| JE'j ij By %k = ] wnon 4 = &_; | (fllﬁsa)
Eqs. I11-62 aanIIQes can be oombjnéd as:_{

n
z
=

n n .
Iz Mij a‘z‘ajk = 8 (I11-64)
i=l j=r. 7,

In matrix notation, Eq.. III-64 can be written as
AMA = E - S ~;‘” (111-65)

Eq. 111-65 !s the orthogonality condition for the matrix A
in the configuration;space whose metric tensor is M,
In a Cafteéfan space the metric tensor Is the onii
tensor E and the condition 111-65 is reduced to :
 Ra=e - ' (111-66)
This is the ordinary“orthogonaiity requirémenf; |
In the Eq. I11-52, iIf we define Ak = McOycs the

expression can be Written

n - n |
which beoomesfin'matrix notation: |
FA = MAA., | ' , : (111-68)

Multiplying A from the left, Eq. I11=68 takes the form
AFA = AMAA, | g IR (III-69)
which, by Eq. III=-65 reduces to | ‘ _
AFA = A, o ~(111-70)
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Eq. III-6§ states that a congruent’transformation of F by
A changes it into<a‘diagonal matrix whose elements are‘the
efigenvalues e |

The matrix A thus simultaneously diagonalizes both F
and M. The diagonalization process is interpreted as
follows: A is the matrix of a linear transformation from
a system‘ofrinclined axes to Cartesian orthogonal axes.,
At the same time, the new axeslarefthe perpendicular
principal axes of F,'so that the‘matrix F‘is diagonal in
the transformed coordinate system. Therefore, we can con=
clude that the entire process of obtaining ‘the fundamentai
'frequencies-of smali osciilation is a particular type of

principal axis transformation. c
C. Normal Coordinates and Normal Mode of Vibration

The coordinate system:used‘in the preViods~sections
are not, in general, the separation coordinates of’the
probiem,’because not every one of them is simply periodic
and each soiution is not necessarily representing a funda-
mental frequency of the particle system onder consideration{
However, we can obtain such a set of'periodic coordinates .
by a point transformation.from the previousnset of
coordinates qJ |
We can define'a new set of coordinates §J reiated to

the original coordinates by the equations

g, =% a;, € IR - . (111=71)
R e
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If qJ and §J are represented as the elemenfs of stngle-col-'
umn matrices Q and ¥ respectively, the deflning equation, |

Eqg. III-?l, appears as

Q = A= , | ;i o (111-72)
The potential energy can be written as "iv - |
= (1/2) @, l L (111-13)
and the kinetlc energy can be expreesed as 'vl |

= (1/2) QMQ_‘ e o (111-74)

Now, since o B | |
o =hz= - | ~ (111-75)
Eq; 111=-73 becomes U= (|/2) EAFAE | £ | (I11-76)

According. to Eq. III—?D, the potential energy reduces
gimply to : _ ‘ ‘
= (1/2) =re A ."’ (111-77)
'Written eXplicitly, Eq. III-77 appears as J. |

= (1/2) z o? E2 o . (111-18)

In the new coordinates, the kinetic energy can bé
written | ’ |

= (1/2) EAMAR o ~ (111-79)
and according to Eq. I11-65 | o

= (1/2) & S (111-80)
In terms of the new velocities, the kinetic energy ls
therefore - | 1‘ ,

=(/2) 2 g o o (111-s)
Equatibns IT1=-79 and'III-Bl state that in the new coor-

dinates both the potential and‘kinétic energies are sums
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of squares only, without any cross terms. The Lagrangé
equationé for gk are | | |

€ +ol g =0 O (u1-s2)
These equations haQe solutions : .‘

g = C, exp(= fu,t) . (111-83)
It is easily seen that eaqh_of the new cbordinates fs a
simply perlodic functionvinVOlving only one of the reson-
ant freduencies. 'Customarily,:g'é'are cé[fed.hormal |
coordinates of. the sysfem. -

Each normal-gookdinate corresponds to a vibration of
“the system wi'th oniyﬂone‘frequéhcy,‘and thESe'éomponent
oscillations are‘époken bf as the normal modes of vibra-
tion. All of thé particles in each mode vibrate with the
same freqdéncyfand with the same phase, the relative
amp | i tudes being determined by the matrix elements a4
The complete motion is built ub'out of the‘suﬁ of the -
normal modes weighted with appropriate aﬁptftude‘and

phase factors contained in the Ck'é.
D. Internal Coordinates:

In order to set up and carry out the éctual compu-
tation in this investigation, it is more cohvenient td
apply the six conditionskof no rotation aﬁd no translation
before‘the‘solutioh of the secu]driequationﬁv THFQ kind of
reduction in the number of original'coordihaiéé may be

carried out in two ways. One method is to use the six
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conditions to express esix of the orfginal coordinates in

65

terms of the remaining 3N=6 coordinates., Tne other method

is to introduce a new set of 3N=6 coordinates S, Sa,....,

SSN g Which are defined by means of the six conditions and

3N=6 relations’ connecting the S's with the origlnal

coordinates., These coordinate systems, which describe

the internal configuration of the molecule without regard

for its pos!tlon as a whole in space, are known as .
internal coordinates. o o S |
The set of 3N=6 internal coordinates used in this
- paper is provided by changes in interatomic distances
and changes in the angles between chemical bonds. This

ktype of coordinate provides the most physically signifi=-

cant eet of,coordinates for use in describfng the poten-

tial energy of the molecule. But the kinetic energy is
more easfily set up in terms of Cartesian‘dieplacement'
coordinates of the atoms. A relation between the two
~types is therefore demanded. Each of the 3Nf§4internal
coordinates can be considered as the linear combination,
of 'the 3N Cartesian diSpJacement‘coordinates. IT 8,
represents one of the 3N=6 internal coordinates and gi
one of 3N Cartesian displacement coordinates, then
3N
S
i=1
wherevthe‘coefficiento By; are constants determined by

the geometry of the molecule, If we deflneva Vectorraa

£ = T By E t = 1,2,0000y IN=6 (;Il-aa)
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whose components along'the three axis directions are the
Cartesian displacement coordinatea gi, §J, gk for atom ay,

A
and a vector St whose components are Btl' BtJ"

assocfated with atom a, then Egs. 111-84 can be‘wrltten

(Irx-as)
Physically, the direction of st 1s the directlon in which
a given displacement of atom a will produce the greatest
increase of St The modu lus of St is equal to the"

increase in St produced by unit displacement of the atom

fn this most effective direction.

G Matrix and»the Secular Equations in Terms of Internal

Cdordlnates

?

In terms of maaeawelghted,Cartesian coordlnates the
kinetic energy fs given by Eq. III=45. In matrix nota-
tion it is | -

= (1/2) aq N . (111-86),
In terms of momentum P, ‘ |
where p, .= al = éi‘ o o “‘(Ill-87)
aq;
Eq. III=-86 is written _
= (1/2) PP | | (111-88)
We let the transformation from the mass-weighted Cartesian

displacement coordinates to internal coordlnates be

=@ . . (111-89)
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where . Dt) = BtJ j oo m befng the mass of the particle

involved, If we consider T, the kinetic energy, as a

functioh of vglocities in the internal coordinates system,

then

pi :\LT- :zﬁl E_.L
t

2dp tasy 3
But _ |
al =p
28, .
and ) |
i L RN
a&i ‘aqf‘ t

so Eq. III=-90 can be wrltteh-as

Py = f Py Dgys

and in matrix notation

~N

p = PD

‘According to,Eq. IIfg88, we get

= (1/2) PDDP
where

(Da)tt' =

]
-t =™
O
ﬁ .
O
%

I
-™
=
-1
(s¢)

In Euclidean space, we can define’

N |
Gtt':’_| mr Bti Byryg

'.  (Iri—go)

(111-81)

(III-QZS

"(xxxegs)‘

(I111-94)

(111-95)

(111-96)
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where t, t' = 1,2,.00., 3N=6.

In terms,of<vecters, Gtt.is gfven by

N I\I‘ A . ,
Gtt'f:a.—z.:L 'J'O, S‘tc,' st'a, | o A (II»I‘.-Q’?)
where p = %— is the reciprocal'of the mass'of_atom‘a.
a ~ - L

The kinetic energy now can be written as ‘ ‘
= (1/2) pep. | . (111-98)
If the determinant of G does not vanish and the lnverse .

of G exists, then

sy =4 S (111-99)
Py | : L -
and § = GP. | . ~ (111~-100)

Equation 111-88 can be written aszs

= (1/2) & a=' 8. . (111=101)
Simllafly, we can express'the pOtentIal enengy in”terms of
the same fnternal coordinates‘: : |
= (1/2) §FS IR o (111-102)
Then the problem of small vibratidn leads tbnthe secular |
equation: o ' 1, o )
IF-a"l | = ST e (111-103)
By applying matrix algebra to the above equation, Eq.
III-103 becomes | .
|GF = EX| = 0 | S | (I11-104)
where F is the matrix of force constants wnbse’elements
can be eetfmated directly in terms of bond distances and

angles between involved atoms.
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| Since both F and G matrices are symmetrical, rows
~and columns in Eq. III-IUA can be interchanged to yleld

the following form ‘

|FG - Ex| } L L (I11-105)
where A = 4n? caw' - ‘ )
Eq. IIT-105 is the secular‘equation udéq ih this

investigation to calculate the vibrational frequencies.
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[ Moleculaf Fragmentation Method
A. General Description

According to Eq. 11-55 we see that the transltioh‘
state formulation for the ratio of rate constants for uni=-

" molecular react!bns differihg in iaotopfc constitutfqn'is‘
. _
' . i ‘ : L] Ui : :
vy 3N=6 Uisinh(ﬁ—) 3N=7  Uj sinh(i-) o
T‘ n U n . Ue}l (IV-l)
S BT sinh(§—) P Ui einh(fl )

x
-
I

|
i

where primed and unprimed quantities refer to the two iso=
topic species and # refers to the transition-state struc=-
-~ ture, Yy is the frequency (or average frequency),of‘moiion
in the reaction coordinate, and U; = hcw,/KT‘where Wy is ‘
a vibrational frequency (or a fundamental ffequency of
vibratlon) | | |

The vibrational frequencies of the activated complex‘|
are often calculated by Wilson's F,G, matrix methods 29,
The G matrix is specified by assumlng a physically
‘reasonable structure for the activated complex. The dia=

‘gonal elements of the F matrix can be estimated from the -

assumed structure by analogy to stable molecules; the
off-diagonal elements might be set equalnto zero or
adjusted to conform to assumption abqut the nature of the

3°’ 3|.  The vibrational frequencies

reaction coordinate
afe obtained from thé'rootsvof‘Eq.‘III-IUS.‘ The reactant
frequencies may be obtained by a similar ca(culation or

from spectroscopic data. However, the contfnued product
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involving reactant frequencies in Eq. 1V-I reduces to
unity for an intramolecular isotope effect, where both
reactant species are identical#-'lq thSS'thestlgafibn a
specific example chosen i{s the_decarboxylgtlon of

end=|abelled malonic acid

c!3oon |
kg 12, ~12 13
- —2—¢'%u,c'%004 + ¢'30,
12 |
¢'2m, |
Ko 12, 13 12 O (1v=2)
, c'2n,c!300H + cl20, ‘ v
¢ '200H

where ka/k3 fs a measure of a carbon=12/carbon=i3 intra=
molecular 'isotope effect. Sfince the rate-constant rétio
depends only.bh the‘vfbrational frequencies‘of the acti-
vated complexes for this type of isotope effectt'approxi-
mations and aSéumptions about the transition state that
.simplify the secular equétlons are particularly useful in

these cases,
B Molecular Fragmentation Method

If the assumption is made that the activated complex.
can be treated as vibrationally decoupied fragments, its
secular equation is donsiderably simplified. Uncoupied,
freely rotating models for the activated.compléx have
been used in a numbér of absolute-rate theory calcula=

tions of rate constants32,  These applications have been
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qui te properly limited to dissoctations'wjth abnormally
large pre-exbonéntjél fadtors4(and_the reverse'recohbina-.
tions), since‘the change of several internai modes of
vibraiibn in the reactant to free fotations‘in the actif
vated complex must be associafed.With abnormél]y‘large
entropies of activation. Howéver, in‘céICulations of o
ratios of’rate constants for iéotopic mqlécules, the
decoupled fragment approxfmaiipn has a broader range of
'validity. If the aétfvated complex has awﬁloose" sirug-
ture, with weakly coupied fragments, motions bgtween'
fragments involve vibkations of much lower frequenéy
than:motfons within fragments.‘ The apbroximate separa-

tion of high and low frequencies 29

can then be applied
~to factor the seéular'equatioh into intra- and'inggr-
fragment parig. The IdW-fréquency, fnter-fragment
vibrations, although very important in calculétions of
an individual rate cohstaHt, have Iittle effgct on 'the
continued ‘pr‘oduct' in Eq. IV=I, since [(u/z)"’l sinh (U/2)] .
approaches unity fér small U. The rows an& columns of |
the secular equation that‘correspOnd to inter-fragment
motions_cah thére;ore be deleted,'and the‘approximate
frequencies of infernal vibrations;of the.frégménts;
obtained from the reduced secular equatfon are used fn
"Eq. IV-l, | | |

For a reaction fnvolv}ng Eupture (or!formation) of
one bond, AB = A+B, the activated complex is treated'és

two fragments, and motion in the reaction coordinate fs

PORTLAKD STATE FOILEGE ibeaky
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change {n the distance between the_eenters”ef mass of the
. B , n | . C o, -
two fragments. The theoretical expressfon for an intra-.

‘mojecular isotdbe effect fdr‘this case becomess

Y2 ATBYQY M2 | A'B'C'J”L

MAB ‘#a‘ IAB
! R ]A ey,

Kk = [MAB S

Snéﬁ sinhggﬁi/z) 3"§6 'sidh(ugi/Z)

3/ ' U‘kl
F sinn(Yaizzy -t sinh(TBi/2)

(1v-3)

Eq. IV-3 is the ratio-of the total partition function
of the activated complexes with 3n-6'degreee of vibrational
freedom for each fragment three rotational degrees of
freedom for each fragment, and three translational degrees
‘of freedom for each fragment subJect to the constraint
that the distance between the centers of grav1ty of the

two fragments is constant.

Applying the product rule 5 to'the cdmplete system yields
[”AB /2 {MAB 2. Ipg Ao .2 Agc .2
m R e [_A?“m'reﬂ (A7aTeT]
. | /,'(
Snéﬁ Eéi' | 3n§§ | Eéi = (1V-4)
i UAj i Ug; | d
Mp X Mg

where upg = INERM , the reduced mass of two fragments.
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- Alternatively, one can apply the product rule to each

- fragment fndependently: f ‘ 0

3n 3n-6 3 C :
Wl RS CATRTCT, oy TRy y
and |
3n ' ) . 3n-6v 1 L :
M 172 M 3/2 1/2 : U -
i B ABC : B - 5
? LN L I ? o T (1v-6)

Consequently, Eq. IV-a becomes:

LI 3n=6 &, :
"ﬁ UAisinh(UAf/Z) ”ﬁ Uglsinh(ug,/2)

f UA,slnh(u /2) . "’Ug,sinh(ugi/z)'

'k /k = (uAB/uAB)

(1v-7)

The reaction coordinate in this case is thé*distance
ebetween the centers of gravity of the two fragments, A

33 of two

and B. Since the average relative veloc1ty
independent systems is inversly proportional to the square

root of their mechanical reduced mass,

o : '1/2' ‘ | ' N
TIF = vy /v, = (uAB/u,{B) | S (1v-8)
The extension to .intermolecular isotOpe effects can

‘be made by including a factor for the ratio of total

partition functions for reactants- :
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‘ - -
3n§6 URis'nh(URi/z) nﬂﬁ {sinh(UAi/Z)

k'/k = (upg/uAg) . "
. ‘ : 'Uﬁis'"h(URi/z) : UA,stnh(UAi/z).

3?é6 U*'sinh(Ugi/z);'

i

. (iv-g)
U isinh(u t/2)

However, the fragmentation method is not a good approxi-
‘ mation for the reactant molecule, and the reactant frequen-
cies in Eq. IV=9 are the conventional ones calculated for
the reactant molecule as a whole, B

The simplification provided by this method can be
easily seen from the comparison of Eqgs. IV-3 and V=17,
~The calculation of vibratfional frequencies for the acti-
~vated complex is split into a vibrational analysis of
each of the fragments. The reéulting reduction in the
order of the secular equation permits one‘to?treat mbch
m&re compiicated systems than s possible with mbre_rigor-'
ous methods, | | | |

Reactions involving simultaneous rupture oﬁ forma=-
“tion of two or more bonds can also be treated by this type
of model in terms of three or more uncoupled fragments.
General formulations of v)'(/vx for three-centered quels

which have appeared fn the Iiterature 23, 24

are appli-
cable in these cases. However, the reaction coordinate
can be treated only in terms of inter-fragment motions;
the reaction coordinate as a linear combination of ihter—

nal displacemenfa,‘within as well as between fragments,
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cannot be . incorporated fn this approach.

The molecular fragmentatlon method, which assumes a
"loose" activated complex, cannot be applfed to reactions
that do not involve bond rupture or formatfon in the rate
_bdetermlnlng step. In‘addltlon, of course, assumption of
the validity of quasi-equilibrium theory fs fmplicit in
the general expression of Eq., IV=l,

Despite the Iimitations mentioned above, the molecu-
lar=-fragment models have a wide range of appllcatlon.‘
This approacn should be particularly useful and valuable
in dealing with large, complicated 3tructures, because it
provides slmple, pictorial representations for various
- reaction mechanisme'and greatly simplifies the calcula=~
tion of activated-complex vibrational frequencies. Thus
the method could be used, as the next approximatlon
beyond notlng the presence or absence of klnetlc lsotOpe
effects, in dlstlngulshing between alternate mechanisms,
such as concerted or step-wise cupture of.two bonds. ‘It
could also be used to estimate substituent effects in a

serles‘of analogous isotopic reactions.

C. ‘Application of Molecular Fragmentation Method to the

Decarboxylation of Malonlc-Acid.

The decarboxylation of‘dlbasic carboxylic acids is
pernaps‘the type of reaction whose'carbon fsotope effect
has been most thoroughly studied by different research

workers, The compound CHZ(COOH)zlhas two different
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isotopic isomers containing one heavy carbon atom.!‘Tne
one which contalns the heavy atom ln the methylene group .
could expel carbon dioxide {n two identical ways, the
molecule being leotoplcelly eymmetrlc. Tbe unsymmetric
isomer could react fn two oifferent waye,'the heavy
carbon being contained efther in the carbonidioXide‘or
in the ecetlc acld.' | .

The reaction scheme of a sample containing both
isomers of mono-heavy malonfc acid together with the
ordlnary compound ls fllustrated below for the case of
.CJS (the mass nomber of carbon le‘assumed.io:be 12 if
‘not Indicated): | | R
pOOH | :

CH, ——=CH,COOH+CO, » : 'vi.‘: -~ (Iv=10)
COOH
COOH

2 (1v=11)

« .
?|3H2-——ﬁ20|3H3000H+CO
COOH “
c!300H
| k3CH 000H+c'30 | -
CH 2 ~ (1v=12)

2 : e
| LTV .
. —>CH,C OOH+CO,
COOH
Eq. IV=12 presents the problem of interest in this work.
The malonic acid, with eleven atoms, has twenty-six
normal modes of vibration, Theoretically, even .if the
complete vibrational analysis could be carried out, 50

many parameters would be involved that a meaningful
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interpretation would be virtually impossibie.‘ Therefore,
for the purpose of actual compqtation aﬁd analys{s.za
simplified model for the transition-state ic_deslrable.

If one assumes that during the course of reaction
one carbon-carbon bond was very weak in the transition
state, then this structure could be‘treated'aa two inde=-
pendent fragments; o

A further simplification is the omission of the hydro-
gen atoms from the transition-étate modéls;' This is an
!application of the "cut-off" approximation of Stern and
Wolfsberg. 34 Slnce no hydrogen is bonded directly to the
carbon atoms which are isotopically substituted in the
intramolecular pair of reactions, the characteristic
group frequencies for hydrogen stretching and}bénding

should be nearly identical for ks and k,. However, the

4
'proton masses are included in calculating}the.fragment
reduced-mass ratio for v;/vx. | |

With thesc "fragmentation" and "cut-off" approxi=-
mations, the‘eleven-center acticated complex for malonic
acid decarboxylation is treated as‘one four-center frag=-
ment and‘one three=center fragment (as‘shown in Figes IV=1),
and the 26th order secular equation is reduced to one‘
sth-ordcr and one 3rd-order equation. The detailed
step-wise mathematical derivation of the é‘matrices'is‘

given in the fcllowing section.
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2. The G Matrix |

According to the discussion fn‘Chapter 111, the set of 
‘internal coordihates éhosen inlthis caeé arg Bdnd stretch=
ings and valence angle bendings. In the case ofis-center‘
model, the three internal coordinates (Sxa-é) ére.two
valence bond stretchings and?oﬁe Qalénce angfe bending.
In the 4-center case,‘the six internal coordinates (3x4-6)
are three valence bond stretchings and three-valencé-angle:
bendings. | | |
The notations Qsed here are tﬁe same és‘fn Chapter‘

IIT and are shown in the corresponding figures.

'

A. The Three~Center Fragment

A non-linear triatomic fragmeht should possess
3x3=-6 = 3 degrees of freedom. Therefore threefcoordi-
nates, tWo_bond stretchings and one valence angle bending,l

are chosen accordind_to the internal coordinate system.

[

Valence Bond Stretching Coordinates

Fige IV=2 The valence bond stretching coordinates.
A. The valence bond stretching between atom 3 and
atom l; | _ ‘ |
B. The valence bond stretching between atom 3 and
~ atom 2. o o | |
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The bond stretching coordinates in, the three~center

fragment SI and 82 are chosen such ‘that 8l descr[bes the‘
stretching between‘atom 3 and atom | and Sz,describes the
stretching betwean atom 3 and atom 2. In flgura IVa2

F's are the direction bond distance and stfare the

unit vectors defined as the‘maximum‘bond sffetchings

along the bond distances accordingly. .Then.thé vectorsr.

.

Sta can be easily formulated as

Sta t=1; a=1,2,3 S o (IV=13)
A A
S11 = e3
A )
8)2=0 |
A} ' |
Si3 =&y o
t=2; a«=1,2,3 : o (1v=14)
821 = o
A
822 = €35
A
Sz3 ="e3,

Valence Angle Bending Coordinate

The valence angle bending coordinate S3 fs.defined

according to Eq. III=-85:

3 A /\

(1v=15)
a=1 .

a .
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The maximum diéplabément of ¢ s shown in figure IV=3,

Fig.’lv-ﬁ The maximum displacement of ¢.
~ A, The diagram of the whole éystem,
'B. The relation between atom 3 and atom I.
From figure IV=J we can wri te down the following relations

immedfatély.

A N /\,‘., A ‘ _
Fag = F3g * Pq = P3 where a = 1,2
then ,
A A A A A - A :
rga “ T30 ¥ Pg “P3 = ArSd ! : - (}V-lﬁ)

. A ‘
If we take the inner-product_of.rgq, we get

A A A o N A A A A

Fio* T3q = (F3q * g = P3) °‘(r3a * Py = P3)
and | | o : o

(rgf = (R + 2rgy (5 = 0g) + (py = b)) (1V=17)

The third term in the right-hand side of Eq. IV-17 is the
square of the difference'between two displacement vgctors
which is comparatively small and can be'negfected. Then
Eq. IV=17, according to the basic definition of unit
vector,_can‘be,éxpfessed‘as“ T e

Noon A 2 | o |
€34 ° (pa - 93)_= A(rSQ) /2r3a : C ' (1v-18)
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But from Eq. IV-IB we know that
/\ .

ArSa = = 93 :
and
A A . o
,esd' Araa - Ar:,a ) | ' ;. |
. AN A . . 2 S .
Soobrg, = eg e (g -‘pS) = A(t3a)/§/r3a o - (1v=19)
Now, look at figure IV=3A we can say that' 
A A ‘ | )
08 @ T €30 €3p o S (1v=20)

By differentiating Eq. IV-ZU; we get
. ’ A} A .
d (cos ) = -s8in g d g = €5 * deg, + e32ode3| (IV-ZI)

According to the definition of unit vector, the firat

differentiation of e3 = rsa/r30L is o | |
A 2 . a

Then |

N

N -1 A A :
esnfdesz = (rz) (oy - p3)' ez

(r32Yi (COS W) 332 (92 - 03) (IV°23)‘

A Ao -1 : ‘
ez 983y = (rgy)' (5) = p3) + ey, -

~| A '
(r3|) (CQS @) 83|‘(p' - 03) o ,(IV-Za)
~Substitute Eqs, IV=23 and IV=24 into Eq. IV=2|, we have
' ~, A A A
- 8ingdg =‘(r3|) (e32 - cos ¢ e:,”).pl

+ [(cos ¢ e32 - esl)(r32)
| N
+ (cos o e3l - 332) (r3,) Iopg
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then

i

do [(cos ¢ e3| - e32) (r3l sin o) ] p|‘

4+ [(cos o e = O ) (r sin m) e p ‘
N 32 = 31/ ‘T3z 2

+ {[(rSI - raz cos ¢)63| f (rsz = rau cos W) 332]
(r3| 5o 8in K p3 . ‘» .ﬁ '  (IV-ZS)

By comparing Eqs. 1V=25 and IV-IS, we conclude that
A ' :
A . D e A : T ‘
§3l==,(r3l sin ¢) (cos w-es' - e32)

: : <4l
833 = (r:”r32 sin o)

The Elements of "G" Matrix for Three-Center Fragment

The "G" matrix elementa now can be formulated

according to Eq. III-97

. 3 A A Lo ‘ ,
9t = I ¥a Siq Sta, . o (1v-27)
where
= (ma)”;‘t,tf =1,2,3,
"Eq. IV=27, in matrix notation, can be written as
) A A A A A
(%11 %z 93y (M) /841 812 Sy3\ (S B2y Say
e A . A A N A A
= (921 922 923) T |¥2)°| 821 822 B3] ) B2 %22 B3
93| 932 933 "3l 8y S32 833/ 313 323 333

(1v-28)
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By substituting Egs. IV=13, IV-14, and IV-26 into Eq.‘
1v-28, tbe‘"G"'matrleeledents fof'the three-cénter
fragment are: o | | | e
9pp S By * ey | | Lo (1v-29)
912 = 92| = Kzcos ¢ | o
915 = 93, =(rzp) (uzsin o)

. 922 T Hg *tuz S
Oy3 = 939 = = (rg,)" (ugsin ?)
g3 = (rg V) * (r3p)” (up) )

o+ [(r3,ff+,(r3252- (2 cos'w)(r3,f32)'z] Ko

B. The Four=<Center Fragment

This fragment is composéd’by four aiom#, three valence
bonds, and three valence angteq. Hence, we‘wquld havé
3x4Q6'= 6'degrées of freedom, The six intefnal cOordinatés
are three valence bond stretchings and-thrée valence angle

bendings (Fig. 1V-4)




87

Valence Bond Stretching Coordinates

Based on the same assumptfons made in the previous

gection, the three valence bond stretching[boordinate

s‘, 82, and 83 are shown in Fig, IV=5,

A

€,

L

T

¢ o

@ ©

Fig. IV=5 The valence bond stretching coordinates

Then, the

A
S

ta:

A. The valence bond‘stretdhing bétwéen atom 4

‘and atom I,

B. The valence bond stretching between atom 4

and atom 2.
C. The valence bond stretching between atom 4

and atom 3.

A . o o
vectors StOL can be fOrmulated as follows:
t=1; o=1,2,3,4, - (1v=30)
A A I . L ,
Si1 = &4
A
A
'EIS =0
A i
S1a =7¢ o
t=2; o=1,2,3,4, , o (1v=3t)
R | o ,
§3; =0
é\ - A
S22 €42
A A
824 7Y

N




88

t=3; a=1,2,3,4. (1v-32)
A | o
S3,.= 0
A
84, = 0
A A
833 = €43
A - A .
834 = 843

Valence Angle Bending Coordinates

The valence‘ahgle bending coordinates of the four
center fragment are defined according to Eq. I1I=-85.
t = 4,5,6. . (1v-33)

The maximum displacements of three ¢'s are shown in

Fig. IV=6. ‘ R

Fig. IV=6. The maximum dfsblacements of m's}
A. 8, = bog |
B. 85 = dgp
N ,CE 8¢ = e,
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From Fig. IV-S, the.unit vectors are defined as
A A : _ o
0 = Tag/Taq @ = 1,23 T (1v=34)

The first differentiations of Eqs. IV=34 are

A C -2 A A ' i o o ‘ ‘
‘dedq,“v(rda) (rQadrAa - r4adr4a) T (;v-ss)
'lSince | |
A A o f R o .
€, B4y = COB ¢3. o (1v=36)

‘then
: L - : ‘ ‘ ER L >
d cos @3¢, =-8in gzdp, = éﬁl‘dgkz + eaz‘dé;|‘ (1v=37) ‘
By going through the same derivations as Egs. IV=21 to
1v-25, we get .  ,,‘ . e o
S -1 A A A
doy = (ryy sin ¢3) (cos oge, = e4))ep,
.- N A A
* (rgpsin og) " (cos oze4p = €4y)eny

s e, A CA U D
(rgraz8in o3) (ryy = rypegpc0sy

+
- ra234|cosg + razéaz)-Sa o "'[ (1v-38)
According to’Eqs.'iV-SS_and IV;38¢we get | ,
Qtd: At‘= 4;, a = 1,2{3,4'» A ;A E'Aff '- - (1v=39)
- 8gp = (rgyein wz{‘(¢°3 %381 €42)
i42‘= (rg28in o5) (cos 9342 ~-€4'),
843 =0 o |
§44 = (ryyTygsin “’3)-l [(ry, '4f42¢°3‘¢3)'ék|

+

. . A
(raz = rq)c08 v3) €45l
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in formu(ating't=5 and t=6‘the.pr6cessg8 are exactly
the same as t=4, Since the indexes are permqtatfve, we

can write down

A - s o ,
84y t/5 a=1,2,3,4. - o (1v-40)
‘S5l = 0 , ) . !
N . ‘ - A. A 4

855 = (rypsin o)) (cos pie,, = e;3)

A -1 A A ,
fss = (ry38in 9)) (cos g e 5 = e;5)

. . ! : o A
8g4 = (rgpryzsin o )[(ry; = ry3ces 9)ey
: . L ' , . A ; ot ' * :
(rg3 = rgc08 9)e,3]
. A . : - . A A .. . :
fel =.(raa°‘" 97) (cos gyey, "e43)‘
82 = 0 | |
A : _ =l ©A A
fes = (ry38in 0p) (cos gye45 = €,))
. =\ L ' A

Sgq = (rg ry3sin @) [y, = ryzcos cP2)34|

: A
(ras = 4108 95)e,3]

The Elements of "G" Matrix for‘Four-Cen{er>Frggment‘

According to Eqs. 11197, the "G" matrix elements

in this case aré

4 | | N |
9ggr = I 8. s o v=42)
| a=l Po Sta St'a | ; (1v-42)

e

where u, = (m Y's t, t' = 1,....,6. o

o . u X . | g,\ R ‘%GI o
- (?“""?w _ Mlg , : : .(‘: o ; ) (iIV*‘l-S)
AN S R




By substituting Egs. IV-30, IV-31, IV-32, IV-39,

and IV-4| into}Eq. IV=43, we_gét the elements of

matrix for

911
9)2
- 93
914

—-—
=

il

] it

_n

= 952 = pylry ryzsin ¢2) [(ryzc08 q’2

e
952 = wglrypryzsin o)) f(’43°99 ?

the four-center fragment:aa fol]ows::

Wy + by

921 = #4008 o3 ” S
95| = B4C08 9, )

941 '"““a('”iu"azs"rl ¢3)- f(’42°°9 3 =

+(r, c08 ¢; - raz)coa ¥ ]

,951”=‘”4‘r42’433‘" ¢|) (r43°°3 ¢l -

91 = walry ryzsin q’2) [(r43°°° ¢2 -

-+ (rgyc08 9y ra3)cos 9yl -

by *+ by

‘930 = u4C°8 ? | o  ﬂ:1
3 | . 4 -
a2 = walry T4p8in 93) [(r, cos o -

+(r4icos ¢g = raz)J

+(r, cos ¥y - 43)cos 01

B3 Ty

, -1 o

943 = Balry Typstn ¢3)‘[(r42c°°"?3
+(r, co8 o5 = raz)cos N

953 = ”4(’42r433‘“ ?;) [(r43°°8 ? -

963 = u4<r4.f438in ¢2) [(’43°°3 P2

9|
1V-40
the "G"

‘(IV-44);
Far)
ru3)c08 o5

ral)coe:cp3

‘raz)

’r4|)cos ¥g

rgqp)cos o,
F42)€08 o

ra,)cqq Pp
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| 2 2 - Y K
944 = (rgy) + uplrgg) + u,(ry rypsin o3) " [(ry, -
| r42c9§'¢3f< - 2(1'4I -Lﬁazcos ¥g) | '
x(r",‘2 -‘r4|coe ¥3) COS4 + (ry, - r4|c03‘¢3)z]-
O45 = 954 = uy(ra sin ©,81n ¢3f'(cos Wzlf cos 9cos g3)
4 M4(r4|r42r43aln ¢|sin ¢3) {(r4|‘- Fa2 €9895)
x[(r42 = 143608 ¢ )cos ¢ .
4 (rug - r42€08 9 )cos o, ]
+(ryo = T4y c08 ¢l (ryp = r43003‘¢')’
- H{ry3 = rypcos cp|)°°3 91} |
946 = 9g4 = K (rZ sin g,8in wg) (cos w, - cos g, # coe¢3)
+u4(r4|r42r4331n ¢zsin o3) {(ra,‘- r42€98 93)
[rg) = razco8 ¢p) + (r,; = F41698 9;)c080,]
+(f42 = F4yc08 ¢3)[(F4| - razcbs 95)C08 o
+(r43 - r4|cos wz)cos 9] | o
955 = Mz(raz) + u3(r43) + ua(razrassin ¢|) [(ryp = '
rs3Cc08 ¢|) + 2(r42 - F43CO8 ¢|) '
X(rys = rypc08 9 )cos o) + (r43 - 408 ¢l)]
"956 = ggg5 = u3(r4331n ¢ 8in wz) (cos ¢3‘- cos ¢ cos ¢2)
.-+u4(r4| FuaTa3sin o sin ¢2) .
x{(r42 = r43c08 ?)lry, - r43€08 ¢2)cos s
+(r43 - rA,cos ¢,)cos ®;] + (r43r- r42C08 wl)
x[(r4|'- fascos ;) cos w2)°9§‘?2‘
+(r43 - r4|cos ¢2)]} ,

966 = b (g )+ u3("43) *+ wg(ry ryzsin wz) f(’AI
F 4308 ¢2) + 2(r4| = T43€08 (pz)(r43 f v4|9°32)°°s¢zﬁ

+(r43 - ra|cos ¢2) ]
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The above derivations are the general~formqlat{ons of
non-linear three-cént§f (EquvIV-ZQ),ptanak four-center
(Eqs. IV=44) cases, There are'ihf}nite many models one
can set up. But they are not df fnterest in‘thfs fnves=~
tigation. The numerical assignments of Eq{) 1V=-29 aﬁd'

IV-44 are given {n the following sections. . .
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'3. Calculations and Results

Input parameters for several specific models were
selected by arbitrarily assigning a bond order to each
bond and then empirically relating bond or&erslto boﬁd
lengths, bond éngles; and fdrce‘conafants;7  |

Assigned bond orders were: for the fohrecenter
~fragment, | for bond 2-4, 2-X for bond I;A;‘ahd I+X
for bond 3-4; for the three-cen{gr fragment, [+X for 
bond 2-3 and 2 for bond I=3. All bonds are specified
in terms of the notation Of'?ig.’lvf[.c. ;A Valdé of‘the '
4 paramefer X from 0 to | was speﬁif!ed for eé;n set of
calculations; X=0 corfesponds'to‘the'reactaht,struéturé
and X=| to the product structure, assumthgiénol forma=-
tion in the rate-determining step.

The bond'angle in the three-center fragment, m;
was assumed to be f20° for X=0, 180° for X=I, and é,llnear"
function of X for intermediate véers. Théafour-center
fragment was assumed to be'pianaf, with ail three bond
angles equal to 120°, for all values of X. L

Bond lengths for bond orders of | and 2 were esti-

35 for stable molecules:

mated from compiled date
1.54 A for C=C, 1.33 A for C=C, 1.43 A for C-0, and 1.22 A
for‘C=0. These bond lengths were assumed tpfvary linearly
wi th bond orders betﬁeen | and 2. In addition, smal |
varfations were made in the lengths of bdnd‘2-é jﬁ the

four-center fragment and bond;l}S in the.thréefcenterl
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fragment. As X went from 0 to. I, the former went from |
1.37 R to 1.43 & and the latter went from 1.22 A to
118 R, | L

Simflarly, Stretching'force éonstantSHWere eatiméted
for bond orders of | and-2 and were varied linearly wlth
intermediate bond orders. The asslgned stretching forCe
constants 23 'ln millldynes/A, were 5.0 for: C-C 9, 0 for
¢=C, 6.0 for C-0, and 13.0 for c_o.‘ In addition, the'g
'c =0 stretching force constant for bond 2-3, in the
three-center fragment was varied from 13, 0 to 15.0
_mdynes/A as X varied from 0 to l.

In asslgning bendlng force constants, the assump=
tions were that for the four-center fragment all f¢¢f, ]
= 0.6 mdyne/A and that for the three-center fragment

ww/r'rj.varted‘from_0.6,to .0 mydne/A Iinearly with X,

All off-diagonal force constantg were set equal tq
zero. | |

The above method for Specifying fragment structures
and force constants is arbitrary and empirical, and {t ls
not intended to be accurate in getall. However, it does_
permit a systematic varfation in transitionFstate modéls.
from reéctént to product configurétions in terms of a
single parameter, X. |

The actual computatfons have neen carried out on the
PSC IBM 1620. The input data for the calcuigtions were
bond lengths, bond angles, force constanfs,;and atomic

masses. A sequence of programs was written to calculate
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the elements of G, the FG product, the eigénvaiues of the
secuiar eqdatibns,add'finally the isotope effécis.
(Appendix) - - | |

Three fragment models are shown fn Tablesgiv-l to
V=4, The,fragment'structureslfn Model | approximate to
.corresponding portions ofbthe reactant maldnicgcid; In
Mode! 2 they approximate the product strﬁqtﬁfes,:except
that ¢ in the three-center fragmenf is l?ﬁé>rath6r than
IBUO, ‘Model 3 s an ihtermediaie case,'wlﬁh‘x = 1/2.

The calculated isotope effects for these:models are
compared with experiment'? in Table IV-S;'vit can‘be:seén"
that the fntermediate‘set of fﬁégmént‘struéﬁufés, Mode | 3,
gives agfeement with the experimental ka/ki. For this
reaction, then; a mbleculaerragment calcufatfon‘fof»a.

chemically reasonable model is consistent wfth experiment.

1

SR




~4-Center
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~Table IV=l Fragment Models"

3-Cenfef ‘i‘

97




| 98
Table 1V-2 Model | - Reactant

4-Center - o B | ‘______—3“09'7""9" |
rap = 1.22 A | "’3|="722'R

o : ‘ - e
= 1A gy =87
rag = 1.54 A

. o 9y =120

| . | S

Plaz T 9243 T @43 = 120 S
o ' ‘v‘f'|'=fl3.0000

f22.%5;0000""
o  fyy = 1.0030
f,, = 13.0000 - g
), = 6.0000
fs3 = 5.0000
Ty = 1.0030 ‘)

1.1270

-

o

(=)
]




Table IV-3 Model 2 < Product

' 4-Center '
4-Center

‘ . [~}

. ) . ) o .
Plaz = P243 = P43 T 120

f,, =6.0000
fyy = 6.0000 -
9.0000
1.2270

~Hh =h
S (&}
T ]

H ]

1.1580

(4]}
o
L}

i

-
-—

=

 3-Center

e o
rgy =8 A

| 1,25 A

[
0

o

1t

= 14.0000

99

1.4750 ©
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Table 1V-4 Model 3 - Intermediate

4=-Center -

Ta)
Fa2
Ta3

LY

[ 2

i3
«Ll o w
>»0 O PO

v o °
P1az T P243 T P43 F 120

.k

]

]

1]

10.0000

6.0000

7.0000
11170

1.2010
I.1410

-
i

S
[
B ]

I

{;S-Center

0

1
(&%)
N

o

-
[}

= 14,0000
= 10.0000
='1,2480

-h

N

N
1
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Table 1V-5 Calculated and‘Expérimental Values of k,/ky

o o e o
473° Kk 513 K. 673K

o

Model | .04l . 1.031  1.02a
Model 2 . 1.000 . 1.006 . 1.004
Model 3 1.026

| 1,019 f.eis
Experiment 1.023 + 0.004 1,017 +'0.004 1.013 + 0.004 =
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Chapter V ~ Summary and ﬁurther Calculations

I Genera|‘8umméry‘,‘ | FA P l‘. 103

2. Further Calculations e




103

I+ General Summary

By assumihg the,valfdity of qoasi-eoujlibrium-fheory
(QEf), the kinetic rate constaot'for a Unimolecular"
reactfoh can be formulated. By the method of isotope-
substitution one can determine the kinetic rate-constant
ratio k'/k, which provides rather detailed and valuable
information of the transitlon state. | “

For two reactions with Identical reactants, the rate
constent ratio depends only upoo the respectlve transition
states. . Assuming two identical geometries In the transi- :
tion state wtth dlfference only in lsotOpic const{tution,
the ratio of rate constants for unimolecular reactlons

can be written as

- Sm— - ¥igin —
k_-ﬁ& 3nn6 U;sinh(s ) 3nn7 U slnh(z )
k f.\)x ' { . { *'

U;sinh(;— Ui sinh(i——)

' Where‘prlmed‘and unprimed quantities refer to the two
isotopic species and * refers to‘the transition-state -
structure, v is the frequency of motion lo the reaction
coordinate, and Uy = hcw'/KT where w, is a Qibratiodal'
frequeocy. The calculatlon of vibrational‘frequencles
for each structure requires solutfon of a matrix equation
" of order 3n-7 or 3n-6 where nis the number of atoms, and

becomes extremely complicated for molecules of moderate

size. However, in bond-rupture processes, ﬁn spite of
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the usual sense of transition-stateytheor;;'it was
assumed thaf.tne bond?rupture is already completed in the
transition state and that motion in the reaction coordf=
nate can be treated as simple translationaf separation of
| molecular‘frcgments, Then thejcalculattone,are simpli-
fied a greatvdeal. Furtnermore by applylng Stern‘and
Wolfsberg's "cut-off" approximatfon, ‘the hydrogen atomc
(non-isotopic sitee) are omitted. R |

The specific problem treated in this investigation
‘{8 carbon isotope effect in the decarboxylatton of

malonic acid.‘,; ‘ o I“=y o - ~~t.;5'. u‘ 

c!3 oon R
S "3 ls R
ka I3
- —h c'300H + co2
COOH

‘vMalonic;ecid*is approximated as a eevenécenter model -

Thus, we have reduced a 26th order secular equatfon to

' one stn order and one 3rd order aecular equation.

NI '
~ The general method of calculation is to set up the
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F and G matrices according to Wilson's method. 

|FG = Ex|‘='0'where lez Anz ¢ wy?
~ The efgenvalue and efgenvector iteration and matrix-de= _'
flafibn methods.ére-émpioyed to sone our_equatfons.r A
sequence‘of coﬁputek programs has been Wrttfen, and the
calculations have been carried out on the PSC IBM 1620,
The calculated. results are in good agreement with the
presently available experimental data. - .

The applicability of this method can bé extendéd to
reactions involving simultaneous and step-wise multiple
' bond-rupture and formation. It can also be used to-
estimate substituent effects ln a series of analogous

lsotopic reactions.g't
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2. . Further Calculations

From the preViqus results (Téb]e IV-S); ﬁe;see that_'
Model 3 provided agreement with'the exeerimentai data.
Since the chofce of force constants was arbftrary and
empirical as described in Chapfer'lv;'lt wddld'be eeeen~~ :
tial to test the sensit!vity of the isotope effecte wlth
respect to the change in force constants.

8ince Model 3 in Chapter IV is a chemically reesone -
able model, two varfations of Model 3 ha&eebeen'ehoeen.
to be‘calculated, The geometrical conflgurations are
‘chosen to be the same as Model 3 in Table IV-4. The
"model descr!ptfons and the results Are Iisted in'

‘Table V-l to V-3, | ) W

The model deséfibed in Table Vel 18 denoted as
Model 3A where the force constants have been 1ncreased
by ten percent of the original force conetants used in
Model 3 calculations.‘ The model described ﬂn Tabie v-z,
denoted as Mode | 38, ls exactly the same as Model 3
except that the force constants have been decreased by
ten per cent. , _ | | _ 

It can be seen frdm Teble‘v-s ihat for the‘decar-
‘boxyiatlon of malonic acid the molecular-fragment calcu¥
lations for a range of chemically reasdnable modele are
consfstent with experjment, However, this egreement
does not necessarily confirm tﬁe.SUcéess of_thi3 method
of calculation. In:ofder to test the genefel'valjdlty

of this method, even for this épeclf(c'reeéﬁ{oﬁ; a -
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comparison with the feauli of more detailed calculafion ;
{8 desirable, Theorettcally, thts simpllffed approach
should provide as good a result as any other rlgorous .
method., Then a complete mathematical analysis of thfa

type of problem ehould be of genera! intereat.
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Praz = P43 T P43 = 120

Table V=l Model 3A. - Intermediate Structure

108

1

- With 10% Increase in_thQ,Force Cons%énts

4—Cenier
ra'-= |,$3‘R
©
Fap = 1,40 A
) o
a3 ='|.43,A

= 11.0000 x:
= 6.6000
= 7.7000

= 1.2287
= 1.3211

= 1.2551

‘.‘rst
F32-

—
"

w—
T~

-

= 150

: 3-¢entér

. . 19
i.20 A
o

1,30 A

=}

= "‘ ',00000 .
-ff11;3723'.
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Table V-2 Model 3B - Intermediate Structure |
- With IU%‘Decfease in the Fbrcé\Coné;anté

4-Center o .'?‘ | . L 3-Center
Fa) = 1,33 A ‘ - rsg_:‘!.ZU_
o - ’ : : L ,
Fa2 =vl.40‘f AT PR -‘rsih§_l.30
Ta3 = 1.43 A |
P4z T 9243 T qp|43=12°°  —,12;6000
| | ‘= 9.0000
= 1,232

-
|

- =
i i

f,, = 9.0000
5.4000
fag = s.sqoo
f,4 = 1.0053

.

N

N
il

fgs = 1.0809
= 1.0269

-h
o
(s,%

|




Table V-3 Calculated and Experimental Values of k/ky

a13°%K
Model 3 1.026
Model 3 A - 1,028
Model 3 B 1.024

Experiment 1.023

110

| ka/ks'af 7

s13’k - 613K
1019 1.005
o200 laoie

O T I TE

'+ 0.004 |.d|7;t u.nua'ﬂllujsvtu.oqa
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APPENDIX = COMPUTER PROGRAMS =~

e
RO

Main Program
"g" Matrix

A. Three-Center Fragment B
B. .Four-Center Fragment A

C. Four-Center Fragment B

Eigen-Vaer Problem

Isotopic Kinetic Rate Ratio

o2
T

o125
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. Main Program

27408 5
ZZFOR 5
*POBJP4 | | . R o
DIMENSION.A(é;é),a(a,s),6(5,6),XL1(6),XL2(6).XLz(s);
xLa(e) 5 S, | :
COMMON A,B,C,XLI,XL?,XLS,XLa;Uf,UZ,Uﬁ;Ud,RADI,BADZ,v
RAD3 : T :f'_f' L
COMMON COMPI,COMP2,COMP3 R4 1,R42,Ra3
| CALL THREE L &
CALL EIGEN(C,XLI,3)
CALL THREE
CALL EIGEN(C,XL2,3)
CALL SIXA
CALL SIXB
~ CALL EIGEN(C,XL3,6)
CALL SIXA
CALL SIXB
CALL EIGEN(C,XL4,§)
CALL RATIO |
G0 TO | o S
2 QA=ACn,1)  " o »‘jf o o
QA=SQRTF(QA) R e
QA=ABSF(QA) SR :(?
QA = CO8 F(1.0) . B
QA = 8IN F(1.0)

it

1]




 FORMAT(EI6.8) R
CPRINT 3,((c(1,4),1=1,3),J=1,3) -
QA=QA##2 . .

QA = Exp‘r(l;b)'v
‘QA=LOGF(QA)

END -

222z

3




| a
2. "@"MATRIX

A. THREE-CENTER MODEL
22J0B 5
ZZFOR &

*LDISKTHREE |
SUBROUTINE THREE

C  DEFINE @ MATRIX AND THE PRobucT OF GEANb F
DIMENSION A(6,6), e(e 6),c(6, s) XLI(G) xLz(s) st(a),
XLa(e)
COMMON A,B,C, XLI XL2,XL3,XL4, ur, uz uz ua RADI RAD2,
RAD3

COMMON COMP1,COMP2,COMP3 R4 1, Ra2, Ras
IHFORMAT(FB 5,2F5,3,3F8.6,11)
2 FORMAT(9F6.4)
3 FORMAT(6(F10.5,2X))
g9 FORMAT(/(sFio.s,zx))
199 FORMAT(//3F10.5,2X))
10 READ 1,ANGR31,R32,AMI,AM2,AM3
PUNCH 3,ANG,R31,R32,AM1,AMZ,AM3

Ul = 1.,0/AMI
Uz = 1.0/AM2 | , ’ | ,
U3 = 1.0/AM3 s

'RAD = ANG*3.141592/180.0

C  DEFINE THE ELEMENTS OF G(A) MATRIX =




s
F R R R R R R A )

c

NI : _'={':_' ff :

 A(2 1)=U3*Co8 F(RAD) | ”‘lilv | ' '1'4,

A3, |)_-03*SIN F(RAD)/R32 : .,¥' :';ﬁ_f”j‘

AC1,2)=A(2,1) S Lo

IA(z 2)=u2 + U3 -

A3, 2)--us*sxn F(RAD)/Rsl Lo

A(1,3)=A(3, I) .

A(Z 3)=A(3,2) | . c

A(3, 3)~UI/R3|**2 + UZ/RSZ**Z + U3*(l o/nan**z +
‘o/Rsz**z - 12, o*cos F(RAD)/(RSI*RSZ))

C % % % 0 % % S % % % B B K X H KR AR R

D0 7 K=1,3
7 PUNCH 99, (A(K,1),1=1,3) |

READ 2,((B(1,4),1-1,3),0=1,3)

D0 8 J=1,3 |
8 PUNCH 99, (B(I, J) 1=1,3)

TSUM=0.,0

D0 20 K=1|,3

DO 6 J=1,3

0O 5 1=1,3

SUM=A(K,1)*B(1,J)
5 TSUM=TSUM+SUM_

c(K,J)=TSUM-'




T
6 TSUM=0.0 | |
20 PUNCH 199, (C(K,J),J=1,3)

- RETURN
o
2222
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. B.. Sfx-Center Model (A)
zzdoB 5 ]
ZZFOR 5
V*LKISKSIXA
| SUBROUTINE 8IXA' | . BRI |
DIMENSION A(6, s) B(G 6), c(e 6) xLl(s) XLZ(B) xLS(s),
XLa(6) ‘ G |
COMMON A ,8,C,XL1,XL2,XL3, XLA ut,uz, us , U4, RADI, RAoz,
RA03 g
COMMON COMPI, compz COMP3 , Ral, R42, Ras
| FORMAT(10(FS. 2))
3 FORMAT(//S(FIO 4))
READ 1,ANGI,ANG2,ANG3, R4, R42 R43,AMI AMZ AM3 , AM4
“PUNCH 3,ANGI Anez ANG3 ,R41, R42 R43 AMi AM2 AM3 AM4

Ul = 1.0/AMI  ‘, ','.‘
Uz = 1.0/AM2 b
Us = 1.0/m3 :
U4 = 1.0/AM4

RADI = ANGI*3, |4|592/|Bo.o

RAD2 =.ANG2%3.I4I592/IB0.0

RAD3 = ANG*3,141592/180.0 :

COMP| = COS F(RAD3)*(R4|-RA2%COS F(RAD3))*(R42-Ra3#
cos F(RADI!))+1C0S8 F(RADZ);(R4I-R42*COS'F(RADS))*(RA3~
R42*COS F(RADI))+(R42-2R4I*COS F(RADS))*(RAZ-RAS*COS ‘
F(RADI))+COS F(RADI)*(RdZ—SRdI*COS F(RAoz))*(Ras-
R42#COS F(RADI))




c
C

DEFINE VARIABLES OF MATRIX G(A)

. 118
COMP2 = (Ra‘-Raz*cos F(RAD$))*(R4I-R43*COS F(RADZ))+_ 

€08 F(RADZ)*I(R&[-RAZ*COS F(RAD3))*(R43-R4 1*COS
F(RAD2))+C0S F(RAD3)*(R42-2R4 1*CO8 F(RAD3))* (R4 1~

R43*CO8 F(RAD2))+C08 F(RAD!)*(RAZ-SRAI*COS F(RAos))*

'(Raz-Rau*cos F(RAD2))

COMP3 = (R42~R43*COB F(RADI))*(R&InRAS*COS F(RADZ))*
Jolek:} F(RA03)+(R42-R43*cos'F(RADt))*(RAJ-Raﬁ*cos
F(RAD2))*2C08 F(RADI)+(R43~R42%C08 F(RAD]))*(RnIa

© R43*CO8 F(RAD2))*3C08 F(RADZ)+(R43-R42*COS F(RADI))*

(RAS-RAI*COS F(RADZ))

[
iy

C % % % % % % % % % % B K B R R B R R H N KRB E B R

c

A(2,2) = u2+Ua o

ACLLI) =ul+us

-A(|,2) = U4a*CO8 F(RAD3) ” |

A(1,3) = Ua*cos F(RAD2) :

A(1,4) = Ua*((Ra2%CO8 F(RAD$)-R4|)+cos F(RAD3)*

(R41%CO8 F(RAD3)~1R42))/R4 I%R42%SIN F(RAD3))

A(1,5) = U4%(COS F(RAD3)*(Ra3%CO8 F(RADI)-R42)+C08
F(RADZ)*(RAZ*ICOS #(RAD!)-R43))/(R42*R43*81N F(RAD!))“
A(1,6) = a*((Ras*cos F(RADZ)-RA!)+COS F(RADZ)*(Rdﬂ*
CO8 F(RAD2)=1R43))/ (R4 1#R4TBIN. F(RAoz)) |
A(2,1) = A(1, 2) '

A(2,3)

Ua*Cos F(RADI)
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A(2,4) = Ua*((RAI*CO8 F(RAD3)-R42)+CO8 F(RAos)*(Razf :
COS F(RAD3)= |RA|))/(R4|*R42*81N F(RAD3)) | |
A(2,5) = Ua*((Ra3%Co8 F(RAD()=R42)+CO8 F(RADI)*‘ 
(RAZ#COS F(RADI)~IR43))/(RAZHRASHSIN F(RADI))
A(2,6) = U4*(CO8 F(RAD3)*(RA3%CO8 F(RAD2)~Ra1)+ -

 1cos F(RADI ) (Ra 1%C08 r(RAoz)-Ras))/(Ra|*R43*31N :

2222

F(RAD2))

AG3,1) = ACL3)
A(3,2) = A(2,3)
A(3, 3) = U3+Ua

A3, 4) = ua*(cos F(RADZ)*(RAZ*COS F(RADS)-RA!)+

1CO8 F(RADI)*(RaI*COS F(RADS)-RAZ))/(RAI*RAZ*SIN3
F(RAD3))

A(3,5) = Ua*((Raz*co8 F(RAD|)~R43)+008 F(RADI)*_
(R43*COS F(RADI)~ |R42))/(R42*R43*81N.F(RAD|))

 A(3,6) = Ua*((Ral*COS F(RAoz)-R43)+cbs F(RADZ)*

(Ras*cos F(RADZ) |R4I))/(R4I*R43*SIN F(RADz)) .
'RETURN | A i
END
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C. Six-Center Model (B)

zzgo85 . S | i}f
ZZFOR 5 | ' :
*LDISKSIXB
SUBROUTINE SIXB . |
DIMENSION A(6 5) B(6,6), c(e 6) XLZ(E) XLs(s), :
XL4(6) | |
 COMMON A,B,C,XL1,XL2,XL3, XL4 ut,uz, u3 ua RADI, RAD2,
| RAD3
| COMMON COMPI, COMP2,COMP3, Ra1,RaZ, R43
'C DEFINE VARIABLES OF MATRIX G(A) |
C************#**i******'****#
A(4,1) = A(1,4) |
A(4,2) = A(2,4)
A(4,3) = A(3,4)
A(4,4) = UI/Ra|%%24U2/Ra2%%2+Us* ( (R4 | -R42%COS
F(RAD3))##2-12.0%C0S F(RAoz)*(Ral-Raz*cos F(RADS))*‘
 (R62-R4 1%C08 F(RAos))+z(R42-R4|*cos F(RADS))**Z)/(AI*
RAZ*SIN F(RAD3)#*2
"A(4,8) = U2%(COS F(RADZ)-COS F(RAD!)*COS F(RADS))/
(Ra2##2% ISIN F(RADI)*SIN F(RADB))+U4*COMPI/ .
2(R41*(RAa2##2)*#R43*SIN F(RADI)*SIN F(RAoz))
A(4,6) = UI*(CO8 F(RADl);cos'F(RAoz)*cos_F(RAbz))/
|((Ra1#%2)%8IN F(RAD2)*SIN F(RAD3))+UssCOMP2/
((R4|**2)*R42*R43*231N F(RADZ)*SIN‘F(AADS)) '
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A(s,1) = A(1,5)

A(5,2) =zA(2,5)

A(5,3) = A(3,5)

A(5,8) = A(4, s)f ‘ B
A(5,5) = UZ/R42**2+U3/R43**2+U4*((R42 Raz*cos |

F(RAD1))*%2+12.0% (RA2~RA3*COS F(RADI))*(Ras-Raz*cos
F(RADI))*COS F(RAD|)+2(R43-R42*COS F(RADI))**Z)/
(RaZ*RA3*BIN F(RADI))*+2 o o |
A(5,6) = UI*(COS F(RAD3)-CO8 F(RADl)*COS F(RADz))/""
(Ra3%*2% 1SIN F(RADI)*SIN F(RADZ))+U4*COMP3/(RAI*Raz*
R43**2%28IN F(RADI)*SIN F(RADZ)) ,ﬁ& SR

A(6,1) = A(1,6)
A(6,2) = A(2,6)
A(6,3) = A(3,6)

A(6,8) = A(4,6)
A(s,s) = A(5,6) |
A(6,6) = U!/R4l**2+U3/R43**2+04*((R4l-RdS*COS
F(RADZ))**2+l2 0*COS F(RAoz)*(Ral—Raz*cos
F(RADZ))*(Raz-Rau*cos F(RADZ))+2(R43~R4I*COS
F(RADZ))**2)/(R4I*R43*SIN F(RADZ))**Z :j
- . o , e B
c***'*»****'****#‘*_.a_*_f**-";4‘;‘****-#‘*'-
2 FORMAT(FB'A F6.4,F6.4, F6 4 F6.4,F6 4)
g FORMAT(//&(Fe.a 2X))
99,F0RMAT(//6(F9.6,2x)) o
102 FORMAT (//6(F10.6,2X))

c




10

20

100

2222

DO 7 K = 1,6

PUNGH 102,(A(K,1),1=1,6) =

ool =1,6 = -

READ 2,(B(I,L),1=1,6)

00 8 K =1,6

PUNCH 9,(B(J;K);J=|,s)‘ : »
TSUM = 0.0 -
DO 20 K=1,6
DO 6 J=1,6
DO 5 I=1,6
8UM = A(k,t)fe(i;q)' N  :.2

TSUM=TSUM+SUM
C(K,J)=TSUM
TSUM=0.0

PUNCH 99, (C(K,J),J=1,6) .

RETURN

END -

122
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3. Eigen-Value Problem ' o
22J0B 5
2ZFOR &
*LDISKEIGEN 0170 | L
SUBROUTINE ETGEN(AXL,NY
DIMENSION x(e 2),xL(6) f o fi R
'DIMENSION A(5 6),B(6,6), c(e 5) XLI(B) XL2(5),“‘ 
XL3(6),XL4(6) L i o
COMMON coMPl, COMPZ CoMP3, Ral Raz R43
K=N
KR=|
19 KA=O
KN=30 |
C INITILIZE TRIAL EIGENVECTOR .

xL(KR)-o 0
00 1 1=l ';,»; B L
Lx(, )=, .0 . . 'lgﬂ"'
c MULTIPLY BY MATRIX | R 'f;*f R

9 DO 2 1=1,K
X(1,2)=0.0
DO 2 J=I,K |
2 X(1L,2)=A(1,9)eX(d,1)9X(1,2)
C FIND LARGEST ELEMENT .~ 1
. N L o
* R=ABSF(X(1,2))
DO 3 1=2,K
f'R|=ABéF(x(1,z))'
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IF(R=R1)4,3,3 | .
4 L=l |
| ReRI | | e
3 CONTINUE ,‘ e gf' . ‘_‘,j'
C STORE APPROXIMATION TO LAMBDA A L
RI—ABSF(XL(KR)-X(L 2))-ABSF(XL(KR))
IF(RI)41,41,42 S T
42 KN=KNel SR N  fi‘f.
IF(KN)43,43,41 B R
43  PRINT 44 | |
44  FORMAT(I7HLAMBDA I8 COMPLEX)
0 55 1=1,K B
55  PUNCH 46,(A(I,d),J=1,K) |
46 FORMAT(//ZHCM 3£20. B/IOX 3€20. e)
PAUSE | *
| IF(SENSE SWITCH 1)47,48
48 CALL EXIT
A7 DO 49 I=KR,N
PRINT 50 ‘ |
50 FORMAT(3AHENTER ONE VALUE IN F TYPE NOTATION)
ACCEPT 51,XL(1) "
51  FORMAT(F20.4)
49  CONTINUE
G0 TO 30
-4l XL(KR)=X(L,2)
C TEST FOR LAMBDA APP, = 0,0
IF (XL(KR))S,6,56




125
6 IF(KA)B,7,8 .
7 KA=l
CXC1,1)=X(1,1)=1.0
G0 T0 9 . R
C TEST FOR COMPLETION OF CURRENT ITERATION -
s Al=0.0 . oo
DO 10 I=l,k . f. ?.7 ,*_4ff e
CX(1,2)=x(1,2)/xL(kR)
A|=A|+ABSF(x(I,|);x(1,2)}f'ﬁi .
10 X(I,1)=x(1,2) T
IF(A1-.00001)11,11,9
C START MATRIX DEFLATION R |
TRy B R N
| F(L-K)110,02,02 o
110 DO 13 t=J,K | o N
CX(1-1,2)=X(1,2) .
DO 13 IA=1,K | ' o m
13 A(IA,1-1)=A(IA,1)
12 Kl |
DO 14 I=1,kI L T |
14 X(1,1)=A(L,1) o ,,'ﬁv'-?f: e
IF(L=K) 15, 16, 16 R
15 DO 17 I=J,K | .
DO 17 1A=l,Kk
17 A(I-1,1A)=A(I,1A)
C COMPLETE MATRIX DEFLATION
16 DO 18 I=I,KI S




18

20

31
- 30

00 18 y=l,KI o |
AL O)EA(LLI)-X(L,2)X (0, )
K=k .
'KR=KR+ | C
1IF(K=1)20,20, 19
OXL(KRY=A(T, 1) T
AL D=0

GO To 30

00 31 I=KR,N
CXL(1)=0.0
RETURN

126




2

4. 1SOTOPIC KINETIC RATE RATIO

Z7JOB 5
ZZFOR 5
*LDISKRATIO
SUBROUTINE RATIO.
c | R R
C % % % » » OBTAIN THE ISOTOP KINETIC RATION # % # % % %
| DIMENSION F(6),FP(6),W(6), wp(sj
DIMENSION A(6 6), B(G 6), c(s s) XLI(B) XLZ(B), |
XL3(6),XL4(6) | | S
COMMON A,B,C,XLI,XL2,XL3, XL4 ut,uz ua.ua RADI ,RAD2 ,
RAD3 . | '4 |
'COMMON COMPI, COMPZ COMP3, R4l R42 Raa‘g;\
| FORMAT(F6.4,F6. 4,F6.4,F6. 4) i

2 FORMAT(F10.6)
3 FORMAT(/(E16.08))
4 FORMAT(6F10.6)
c oy . "
c READ MASSES FOR BOTH MODELS
; oPES TOR.BOTH o
18=0

50 READI,AMI,AM2, AMS
AM-AMI+AM2+AM3 R _
READI,AM{,AM2 ,AM3, ave X -
FM=AM I+AMZ+AM3+AME R
1F(18)5|,sl;52 RURTA S ‘; - Qf




51U = AMKBM/(AMSBM) ﬂ' ';'?’: ﬁ&;;
R DEERRAE SRR
wTOS0

52 UP = AMRBM/(AMsBM) . .
1s =0 B D

o
Lo
L

CALCULATE BEGINNING RATIO =
R=SQRTF(R) R R
PUNCH3,R

" READZ,T L o

CALCULATE WAVELENGTH CONSTANT ~ . .

FAC = (.1 177E+08)%7.0/(T+*44.0)
PUNCH3,FAC oy |

ENTER CONTINUOUS MULTIPLICATION LOOP

N=3 | 3
DO 54 K = I,N
W(K)=XLI(K) -
PUNCH 3,W(K) "+
WP(K) = XL2(K)
54 PUNCH 3,WP(K) =
53 DO 100 Luzl,Nfllv"




10}

100 S Lo S
IF(I8) 110,110,150
18 = | R 1 };“f5‘ﬂf" |

10

55

150

- 7222

Al

'PUNCH 3 W(K) | S i
RO = Ha)
PUNCH 3,WP(K) | |

END

129

F(LL) =fFAC*SQRTF(W(LL))  .,

FP(LL) = FAC*SQRTF(WP(LL))

F(LL)/2.0

FP(LL)/2 0 , S
R*(SQRTF(WP(LL))/SQRTF(W(LL)))*EXPF(AI-AZ)

n

A2

‘R-R*(I.O-EXPF(-F(LL)))/(I.O-EXPF(-FP(LL)))
lPUNCH 3,R

CONTINUE

N=6 S
DO 55 K = I,N =
W(K) = XL3(K).

G0 1053 - SRS |
PUNCH3,R
RETURN " | ' |
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