
Portland State University
PDXScholar

Dissertations and Theses Dissertations and Theses

1-1-2011

Evolving Nano-scale Associative Memories with Memristors
Arpita Sinha
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: http://pdxscholar.library.pdx.edu/open_access_etds

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of
PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Recommended Citation
Sinha, Arpita, "Evolving Nano-scale Associative Memories with Memristors" (2011). Dissertations and Theses. Paper 445.

10.15760/etd.445

http://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F445&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F445&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F445&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
http://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F445&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/open_access_etds/445?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F445&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.15760/etd.445
mailto:pdxscholar@pdx.edu

Evolving Nano-scale Associative Memories with Memristors

by

Arpita Sinha

A thesis submitted in partial fulfillment of the
requirements for the degree of

Master of Science
in

Electrical and Computer Engineering

Thesis Committee:
Christof Teuscher, Chair

Dan Hammerstrom
Xiaoyu Song

Portland State University
2011

Abstract

Associative Memories (AMs) are essential building blocks for brain-like intelligent

computing with applications in artificial vision, speech recognition, artificial intel-

ligence, and robotics. Computations for such applications typically rely on spatial

and temporal associations in the input patterns and need to be robust against

noise and incomplete patterns. The conventional method for implementing AMs

is through Artificial Neural Networks (ANNs).

Improving the density of ANN based on conventional circuit elements poses

a challenge as devices reach their physical scalability limits. Furthermore, stored

information in AMs is vulnerable to destructive input signals. Novel nano-scale

components, such as memristors, represent one solution to the density problem.

Memristors are non-linear time-dependent circuit elements with an inherently small

form factor. However, novel neuromorphic circuits typically use memristors to

replace synapses in conventional ANN circuits. This sub-optimal use is primarily

because there is no established design methodology to exploit the memristor’s

non-linear properties in a more encompassing way.

The objective of this thesis is to explore denser and more robust AM designs

using memristor networks. We hypothesize that such network AMs will be more

area-efficient than the traditional ANN designs if we can use the memristor’s non-

linear property for spatial and time-dependent temporal association. We have built

a comprehensive simulation framework that employs Genetic Programming (GP)

to evolve AM circuits with memristors. The framework is based on the ParadisEO

metaheuristics API and uses ngspice for the circuit evaluation.

Our results show that we can evolve efficient memristor-based networks that

have the potential to replace conventional ANNs used for AMs. We obtained

i

AMs that a) can learn spatial and temporal correlation in the input patterns; b)

optimize the trade-off between the size and the accuracy of the circuits; and c) are

robust against destructive noise in the inputs. This robustness was achieved at the

expense of additional components in the network.

We have shown that automated circuit discovery is a promising tool for memristor-

based circuits. Future work will focus on evolving circuits that can be used as a

building block for more complicated intelligent computing architectures.

ii

Acknowledgements

I would like to express my heart-felt gratitude to a number of people without

whose support this thesis would not have been possible. My advisor Dr. Christof

Teuscher for his continuous guidance and encouragement throughout the course

of my graduate studies. Alireza and Haera, with whom I had many interesting

and stimulating discussions. Prof. Dan Hammerstrom and Prof. Xiaoyu Song for

agreeing to serve as members of my thesis committee. Fellow graduate students

(both past and present) of our lab for their help, inspiration, exchange of ideas, and

sincere feedback. My friends at PSU, for making the time spent here a memorable

one. And most of all, my husband for his unending support and love.

iii

Contents

Abstract i

Acknowledgements iii

List of Tables ix

List of Figures x

1 Introduction 1

1.1 High-Level Associative Memories: Biological Implication 2

1.2 Associative Memory Implementation with Artificial Neural Networks:

Design and Challenges . 3

1.3 Exploiting Memristors: Towards Nano-scale Designs 7

1.4 Genetic Programming: Exploring the Memristor Design Space . . . 9

1.5 Thesis Statement . 10

1.6 Thesis Contribution . 12

1.7 Thesis Organization . 14

2 Methodology 16

2.1 Genetic Programming: History and Context 16

2.2 The Basics of GP . 18

2.2.1 Node assignment . 18

2.2.2 Genetic representation . 19

2.2.3 Population initialization . 19

iv

2.2.4 Genetic operations . 20

2.2.5 Fitness function . 22

2.2.6 Replacement strategy . 23

2.2.7 The GP algorithm . 23

2.3 Adapting GP for Automated Circuit Design 24

2.3.1 Circuit initialization . 26

2.3.2 Circuit representation . 26

2.3.3 Circuit evaluation . 28

2.3.4 Mutation operation . 30

2.3.5 GP implementation in C3EA 31

2.4 Architecture of C3EA . 34

2.4.1 The evolver algorithm . 35

2.4.2 Features of C3EA . 37

2.5 Parameter Exploration . 39

2.5.1 Population size . 39

2.5.2 Mutation functions . 40

2.5.3 Mutation rates . 41

2.5.4 Replacement strategy . 42

2.6 Discussion . 43

3 Validation 45

3.1 Low-Pass Filter . 45

3.1.1 Embryo circuit . 45

3.1.2 Component, function, and terminal nodes 46

3.1.3 Fitness measure . 47

3.1.4 Control parameters . 49

v

3.1.5 Results for low-pass filter . 49

3.2 Hodgkin-Huxley Neuron Model . 52

3.2.1 Embryo circuit . 52

3.2.2 Component, function, and terminal nodes 52

3.2.3 Fitness measure . 54

3.2.4 Control parameters . 57

3.2.5 Results for the Hodgkin-Huxley model 57

3.3 Discussion . 60

4 Results: Evolving Spatial Associative Memories 61

4.1 The Spatial Association Problem 61

4.2 Experiment 1: Basic spatial AM with sinusoidal input signals . . . 61

4.2.1 Embryo circuit . 63

4.2.2 Component, function, and terminal nodes 64

4.2.3 Fitness measure . 66

4.2.4 Control parameters . 67

4.2.5 Results for basic spatial AM 67

4.2.6 Discussion . 71

4.3 Experiment 2: The size vs. accuracy trade-off 71

4.3.1 Fitness measure . 72

4.3.2 Results for size vs. accuracy trade-off 72

4.3.3 Discussion . 74

4.4 Experiment 3: Basic spatial AM with pulsed input signals 74

4.4.1 Fitness measure . 74

4.4.2 Results for basic spatial AM with pulsed inputs 76

4.4.3 Discussion . 79

vi

4.5 Experiment 4: Noise tolerant spatial AM 82

4.5.1 Embryo circuit . 84

4.5.2 Fitness measure . 84

4.5.3 Results for noise-tolerant AM 87

4.5.4 Discussion . 90

4.6 Discussion . 91

5 Results: Evolving Temporal Associative Memories 93

5.1 Temporal Association Problem . 93

5.2 Experiment 4: Context sensitive system 94

5.2.1 Embryo circuit . 97

5.2.2 Component, function and terminal nodes 97

5.2.3 Fitness measure . 99

5.2.4 Control parameters . 100

5.2.5 Results for context-sensitive system design 100

5.2.6 Discussion . 103

5.3 Experiment 5: Sequence test and limitation check 105

5.3.1 Experiment 5a: Sequence test 105

5.3.2 Experiment 5b: Voltage limit test 106

5.3.3 Experiment 5c: Frequency limit test 108

5.3.4 Discussion . 108

5.4 Experiment 6: Evolving variation tolerant AM 109

5.4.1 Experiment 6a: Evolving voltage-tolerant AM 109

5.4.2 Experiment 6b: Evolving frequency-tolerant AM 113

5.4.3 Discussion . 117

5.5 Discussion . 119

vii

6 Conclusion 121

6.1 Contributions . 121

6.2 Future directions . 123

References 124

viii

List of Tables

3.1 Components and parameter ranges used in low-pass filter evolution. 47

3.2 Additional components and their parameter ranges used in Hodgkin-

Huxley model evolution. 54

4.1 Memristors as component nodes used in AM evolution. 65

4.2 Summarizing the size vs. accuracy trade-off. 73

ix

List of Figures

1.1 An example of the non-linear characteristic in the I–V plot of a

memristor. Figure re-drawn from [11]. 8

2.1 Placing Genetic Programming in the context of related research.

Figure redrawn from [13]. 17

2.2 An example of a program tree illustrating how the root, terminals

and subtrees are defined in tree-based GP. Depth-first execution of

this tree would yield the output y = 4 + 2u. 20

2.3 An example of crossover operation carried out on parents 1 and 2

to yield children 1 and 2. The crossover operator picks randomly

chosen subtrees from parent 1 (at node +) and parent 2 (at node ∗)

and switch them in child 1 and child 2. 21

2.4 An example of mutation operation working on functional node ‘+’

of the parent and transforming it to functional node ‘∗’ in the child

thus changing the interpreted output from y = πu + 2π to y = 2πu. 22

2.5 The GP learning algorithm. 25

2.6 An example of an embryo circuit and a randomly generated tree,

mapped together into a fully developed circuit. 27

2.7 Examples of how the additional mutation operators transform the

parent tree. Nodes in blue are inherited from the parent and nodes

in red are transformed because of the respective mutation function. 32

x

2.8 The architecture of C3EA, a mix of elements inherited from the

ParadisEO framework (*) and elements added or redefined by C3EA

(†). 36

2.9 A flowchart of the GP algorithm as used by C3EA. 37

2.10 Comparison of different population sizes and their effect on evolution

of basic associative memory. We observe that population sizes of 100

and 200 converge around generation 2, 000, while a population size

of 30 takes 1, 200 more generations to converge to the best fitness

value. 40

2.11 Justification for additional mutation functions. We compare evolu-

tion of basic associative memories using original 8 original mutations

vs. using all 13 mutations. While runs using original 8 mutations

converge at a local optima, the runs using all 13 mutations converge

at the actual solution. 41

2.12 Comparison of different mutation rates for basic AM evolution. We

observe that a lower mutation rate of 0.3 ensures smoother evolution

and converges faster than higher mutation rates of 0.6 and 0.9. . . 42

3.1 A one-input one-output embryo circuit used for the low-pass filter

circuit. The input appears at VSOURCE, and the output is probed

at node 2. The mapped sub-circuit from a tree is added between

connection points 1 and 2. RSOURCE and RLOAD are 1kΩ resistors. 46

3.2 The ideal 1kHz low-pass filter frequency-domain response and 20

probe frequencies ranging from 100Hz to 10kHz used in fitness

evaluation for the candidate solution circuits. 48

xi

3.3 The best-evolved low-pass filter circuit with two capacitors and one

inductor. All five GP runs converged to the same circuit as the

optimum solution. 50

3.4 Frequency response of the best-evolved circuit compared with the

ideal low-pass filter response. Here the average error for each of the

20 frequency probe points is 5mV , which implies the circuit is 99.5%

similar to the ideal behavior. 50

3.5 Fitness averaged over five GP runs for evolving low-pass filter. Here

the error-bars denote the standard deviation over the five runs. Both

the standard deviation and the fitness value decrease as the evolu-

tion progresses toward the solution. 51

3.6 A one-input one-output embryo circuit used for the Hodgkin-Huxley

potassium-ion-channel circuit. The stimulus current of 1nA desta-

bilizes the system. The Vel and Rload combination, drive the ions

through the membrane sub-circuit to be evolved between connec-

tion points 1 and 2. The voltage source Vmem (70mV) represents

the membrane potential and capacitor Cmem represents the mem-

brane capacitance. The output is probed at connection point 2. . . 53

3.7 The ideal Hodgkin-Huxley potassium-ion-channel response to 1nA

stimulus current presented between the 5 ms and 6 ms time-steps.

This ideal response has been extracted from the HHsim simulation

environment. There are 201 data points for the fitness evaluation

of the candidate circuits. The data points are sampled every 0.1ms

between 0ms and 23ms. 55

xii

3.8 The best-evolved equivalent circuit for the Hodgkin-Huxley potassium-

ion-channel model. It comprised of four components: a capacitor,

an inductor, a p-type MOSFET, and a diode. Three of the five GP

runs converged to the same circuit as the optimum solution. The

other two had additional redundant component. 58

3.9 The transient response of the best-evolved circuit compared with

the ideal Hodgkin-Huxley potassium-ion-channel response. Here the

average error for each of the 231 data points is 0.5mV . The sudden

drop in the voltage between 14ms and 17ms is due to the discharging

of the capacitor when the p-type MOSFET turns temporarily on

during the same time-frame. 58

3.10 The fitness averaged over five GP runs for evolving the Hodgkin-

Huxley model. Here, the worst and the average fitness plots are

noisy because the plots presented are averaged over five runs each

having a different replacement strategy, and hence the evolution

would vary a lot from one run to the other. 59

3.11 The best-evolved fitness averaged over five GP runs for evolving the

Hodgkin-Huxley model. Here the error-bars represent the standard

deviation between the runs. Both the fitness value and the error de-

crease as the evolution progresses and finally converge to a solution

in less than a 1, 000 generations. 60

xiii

4.1 An example of the ANN-based AM design. N1, N2 are neurons that

lie on the input layer and N3 is a neuron on the output layer. S2 and

S2 are the synapses interconnecting the input and the output neuron

layers. Both neurons and synapses are traditionally implemented

using resistors, op-amps, etc. More recently, Yuriy and Massimiliano

[69] have implemented synapses with memristors. Figure re-drawn

from [69]. 62

4.2 The four phases in the evaluation of an AM block. Phase I, where

the second Input B does not stimulate the Output C. Phase II,

where the first Input A strongly stimulates Output C. Phase III is

the training phase, where the two inputs become associated. Phase

IV, where the Input B starts strongly stimulating the Output C.

The ideal basic AM response to inputs presented during the four

phases as sinusoidal signal trains, each of amplitude 0.2V , frequency

of 600Hz and of duration 33.3ms. There are 2, 001 data points for

fitness evaluation of candidate circuits. The data points are sampled

every 0.1ms between 0ms and 200ms. 63

xiv

4.3 The embryo circuit for basic AM experiments. There are five volt-

age sources. V Phase I Input B creates excitatory inputs at con-

nection point Input B during Phase I, V Phase II Input A cre-

ates excitatory inputs at connection point Input A during Phase

II, V Phase III Input A and V Phase III Input A create exci-

tatory inputs at connection point Input A and Input B respectively

during Phase III and V Phase IV Input B excites Input B during

Phase IV. RLoad is a 1kΩ load resistor and Output C is the probe

point. The candidate AM block design evolves as a sub-circuit be-

tween the connection points Input A, Input B, and Output C. . . . 64

4.4 The best-evolved equivalent circuit for the basic spatial AM func-

tionality. It comprised of four two-terminal memristors. Seven of

the ten GP runs with weight w set to 50% converged to the same cir-

cuit as the optimum solution. The other three runs evolved circuits

with more components. 68

4.5 The transient response of the best-evolved basic AM circuit. Here

the error was observed mostly in the Phase I of the basic AM eval-

uation. The maximum noise amplitude is observed as 20mV giving

a signal-to-noise ratio of 10. 69

4.6 The fitness averaged over ten GP runs for evolving the basic spatial

AM design. Here, the average fitness plots are noisy because the

plots presented are averaged over ten runs each having a different

replacement strategy and hence the evolution would vary a lot from

one run to the other. 70

xv

4.7 The best-evolved fitness averaged over ten GP runs for evolving

the basic spatial AM design. Here, the error-bars represent the

standard deviation between the runs. Both the fitness value and

the error decrease as the evolution progresses and finally converge

to a solution around 4, 000th generation. 70

4.8 The best-evolved basic AM designs and their transient responses

with (a) weight w = 1%, (b) weight w = 50%, and (c) w = 75%.

We observe that the noise amplitude in Phase I drops considerably

as the weight on size is lowered. 73

4.9 The ideal basic AM response to pulsed inputs presented during the

four phases of evaluation. In each phase, the inputs are presented

as 20 pulse signal trains, each of amplitude 0.2V , pulse duration of

1ms and time period of 2ms. There are 2, 001 data points for fitness

evaluation of candidate circuits. The data points are sampled every

0.1ms between 0ms and 200ms. 75

4.10 The best-evolved equivalent circuit for the basic spatial AM design

using pulse train as input. It comprised of four two-terminal mem-

ristors. This design is fundamentally different from the basic AM

design using sinusoidal inputs because of the presence of a feedback-

creating memristor. 77

xvi

4.11 The transient response of the best-evolved basic AM circuit. Here

the error was observed mostly in the Phase I of the basic AM evalu-

ation. The average noise amplitude is observed in Phase I is 12mV

giving a signal-to-noise ratio of 16. We also observe that the am-

plitude of voltage observed during Phases II-IV at the probe point

Output C changes its value incrementally with each pulse in the sig-

nal train, indicating that the memristor’s non-linearity is being put

to use. 78

4.12 The fitness averaged over ten GP runs for evolving the pulsed input

spatial AM design. Here, the error-bars represent the standard de-

viation between the runs.The average fitness plots are noisy because

the plots presented are averaged over ten runs each having a differ-

ent replacement strategy and the evolution varies from one run to

the other. 80

4.13 The best-evolved fitness averaged over ten GP runs for evolving the

pulsed input spatial AM design. Here, the error-bars represent the

standard deviation between the runs. Both the fitness value and the

error decrease as the evolution progresses and finally converge to a

solution around, the 4, 000th generation. 81

xvii

4.14 The best-evolved spike-based AM design was subjected to sinusoidal

noise on Input A during the phase Noise. Subsequently, in phase

Test A and Test B, we tested if the original spike train could retain

its initial learning and still stimulate the probe point Output C.

We observed that while Input A could still stimulate the Output C,

the noise was destructive for Input B’s learnt association. Input B

could no longer stimulate the Output C. The evolved circuit was not

robust against the destructive noise. 83

4.15 The seven phases in the evaluation of a noise-tolerant AM block.

Phases I-IV are the same as in the basic AM evaluation. The

three additional phases are: Noise, where the destructive noise is

introduced at Input A; Test A, where we test whether Input A still

strongly stimulates Output C; and Test B, where we test that the

circuit retains Input B’s learnt “association” and strongly stimu-

lates Output C. The noise-tolerant AM response, at the probe point

Output C, to the inputs presented during the seven phases has 3, 501

data points for fitness evaluation of the candidate circuits. The data

points are sampled every 0.1ms between 0ms and 350ms. 85

4.16 The embryo circuit for the noise-tolerant AM experiments. There

are three additional voltage sources. The sourceV Noise Input A

creates sinusoidal noise at connection point Input A during the

phase Noise. The sources V Test A and V Test B create excita-

tory inputs at connection points Input A and Input B during the

phases Test A and Test B respectively. 86

xviii

4.17 The best-evolved equivalent circuit for the noise-tolerant spatial AM

design comprises of 18 two-terminal memristors. This design has

evolved with components evenly divided between master and slave

sub-circuits of nine memristors each. The master and slave sub-

circuits are connected via some common nodes. The evolved sub-

circuit shows a lot of feedback in its design. 88

4.18 The transient response of the best-evolved noise-tolerant AM circuit.

Here the transient response was within 10% of the target during

all seven of the evaluation phases. The average noise amplitude is

observed in Phase I is 10mV giving a signal-to-noise ratio of 20.

We also observe that the amplitude of voltage at the probe point

Output C changes its value incrementally with each pulse in the

signal train, indicating that the memristor’s non-linearity is being

put to use. 89

4.19 The fitness averaged over ten GP runs for evolving the noise-tolerant

AM design. Here, the error-bars represent the standard deviation

between the runs. The average fitness plots are noisy because the

plots presented are averaged over ten runs, each pair with a different

replacement strategy and hence the evolution varies from one pair

to the other. 90

4.20 The best-evolved fitness averaged over ten GP runs for evolving

the noise-tolerant AM design. Here, the error-bars represent the

standard deviation between the runs. Both the fitness value and

the error decrease as the evolution progresses and finally converge

to a solution around, the 12, 000th generation. 91

xix

5.1 The state transition diagram for the task of context-recognition.

The transitions occur when the system is presented with either the

input signal (letter A) or the context signal (letter C). Letters X, Y,

and Z are output signals assigned to state 1, don’t care, and state 2

respectively. 95

5.2 The four phases in the evaluation of a context-sensitive AM block.

Phase I, where the input pulses (coded as letter A) stimulates the

output in state 1 (coded as letter X). Phase II, where the context

signal is presented (coded as letter C). We do not evaluate the output

during this phase. The output state during this phase is essentially

don’t-care (coded as letter Y). Phase III, the context is acknowledged

and the input pulses (letter A) stimulate the output in state 2 (coded

as letter Y). Phase IV, we present input pulse (letter A) again, and

this switches the output back to state 1 (letter X). This is the target

context-sensitive AM response to inputs presented during the four

phases as a train of 20 pulsed signals, each of an amplitude 0.2V ,

a pulse duration of 0.1ms and a time-period of 0.2ms. There are

2, 001 data points for fitness evaluation of candidate circuits. The

data points are sampled every 0.01ms between 0ms and 20ms. . . . 96

xx

5.3 The 10×10 cross-wire embryo structure for context-sensitive AM ex-

periments. There are four voltage sources, each creating excitatory

inputs at connection point Input or Context during a designated

phase. The final output at the probe point Output is the difference

of the voltages at Output 1 and Output 2, amplified with a gain

factor of 3. R1 is a 1kΩ load resistor isolating the probe terminal

Output from the ground. 98

5.4 The best-evolved equivalent circuit for the context-sensitive AM de-

sign. It comprised of 14 memristors. This design evolved with no

feedback-creating memristors. 101

5.5 The transient response of the best-evolved context-sensitive AM net-

work. At the probe point Output, the state 1 (with negative ampli-

tude) during Phase I and Phase III is clearly distinguishable from

state 2 (with positive amplitude during Phase III. We also observe

that the amplitude of the voltage during Phase II at the probe

point changes its value incrementally with each pulse in the signal

train, indicating that the memristor properties of non-linearity and

time-dependency are being used to store and switch states. 102

5.6 The fitness averaged over five GP runs for evolving the context-

sensitive AM design. Here, the average fitness plots are noisy be-

cause the plots presented are averaged over five runs, each having a

different replacement strategy, and hence the evolution varies a lot

from one run to another. 104

xxi

5.7 The best-evolved fitness averaged over five GP runs for evolving

the context-sensitive AM design. Here, the error-bars represent the

standard deviation between the runs. Both the fitness value and the

error decrease as the evolution progresses and finally converges to a

solution around generation 12, 000. 104

5.8 The best-evolved circuit from Experiment 4 was subjected to a

longer sequence of random inputs (A C A A C A A A C C A A). The

network recognizes the context signal in the stream and switches to

a correct state for the following input signal (X Y Z X Y Z X X Y

Y Z X). 106

5.9 The best-evolved circuit from Experiment 4 was subjected to the

input pattern (A C A A) with varying amplitudes of: 0.1V , 0.2V ,

and 0.4V . The network gave the correct output response for the

0.1V and 0.2V signals (output (X Y Z X), but the response for the

0.4V signal was ambiguous in Phase III (X Y ? X). 107

5.10 The best-evolved circuit from Experiment 4 was subjected to the

input pattern (A C A A) with varying amplitudes of: 0.1V , 0.2V ,

and 0.3V . The network gave the correct output response (X Y Z

X) for all three amplitudes. The evolved design was tested to be

functional for the signals with amplitudes in the range of 0.1− 0.3V . 107

5.11 The best-evolved circuit from Experiment 4 was subjected to the

input pattern (A C A A) with varying frequencies of: 5kHz, 10kHz,

and 2.5kHz. The network gave the correct output response (X Y Z

X) for all three amplitudes. The evolved design was tested to be

functional for the signals with frequencies in the range of 2.5−10kHz.108

xxii

5.12 Ideal response for the three blocks of the input pattern (A C A A),

with signal amplitudes of: 0.1V , 0.2V , and 0.4V . The network must

learn to give the correct output response (X Y Z X) for all three

amplitudes. The variation-tolerant AM response, at the probe point

Output has 6, 001 data points for fitness evaluation of candidate

networks. The data points are sampled every 0.01ms between 0ms

and 60ms. 110

5.13 The best-evolved circuit for context-sensitive AM design that could

tolerate 100% variation in signal amplitude. It comprised of 13

memristors. The evolved circuit had some bridging between distant

points that created feedback in the design. 111

5.14 The transient response of the best-evolved context-sensitive AM net-

work tolerant of 100% variation in the signal amplitude. The input

pattern (A C A A) was presented in three blocks with varying am-

plitudes of: 0.1V , 0.2V , and 0.4V . The network gave the correct

output response (X Y Z X) for all three amplitudes. The evolved

design show distant connections that create feedback in the design. 112

5.15 The fitness averaged over five GP runs for evolving the context-

sensitive AM design, tolerant of a 100% variation in the signal am-

plitude. 113

5.16 The best-evolved fitness averaged over five GP runs for evolving

the context-sensitive AM design, tolerant of a 100% variation in

the signal amplitude. Here, the error-bars represent the standard

deviation between the runs. 114

xxiii

5.17 Ideal response for the three blocks of the input pattern (A C A A),

with signal amplitudes of: 5kHz, 10kHz, and 2.5kHz. The net-

work must learn to give the correct output response (X Y Z X) for

all three frequencies. The variation-tolerant AM response, at the

probe point Output has 6, 001 data points for fitness evaluation of

candidate networks. The data points are sampled every 0.01ms

between 0ms and 60ms. 115

5.18 The best-evolved circuit for context-sensitive AM design that could

tolerate 100% variation in signal amplitude. It is comprised of 13

memristors. The evolved circuit had some bridging between distant

points that created feedback in the design. 116

5.19 The transient response of the best-evolved context-sensitive AM net-

work tolerant of 100% variation in the signal frequency. The input

pattern (A C A A) was presented in three blocks with varying fre-

quencies of: 5kHz, 10kHz, and 2.5kHz. The network gave the

correct output response (X Y Z X) for all three amplitudes. 117

5.20 The fitness averaged over five GP runs for evolving the context-

sensitive AM design, tolerant of a 100% variation in the signal fre-

quency. 118

5.21 The best-evolved fitness averaged over five GP runs for evolving

the context-sensitive AM design, tolerant of a 100% variation in

the signal frequency. Here, the error-bars represent the standard

deviation between the runs. 118

xxiv

1

Introduction

The real-world computational problems today have to deal with massive quantities

of low precision and ambiguous data. An example for such problems can be seen in

artificial intelligence that deals with unifying computer vision, speech recognition,

content and context recognition etc. [53]. Conventional computational models

used in numerical simulations, model fitting, data analysis etc. are inherently

designed to solve problems that are precise and well-defined. Additionally, they

lack the ability to learn from the complex relationships that exist in space and time.

Hence, conventional models are inefficient in solving this class of problems. There

is an increasing interest in using neuro-cortical models as inspiration for intelligent

computing. Intelligent computing here refers to inference-based models that act

upon real world data and learn/adapt while computing results. The motivation

behind developing intelligent computing models is the human brain. In support,

the BrainScaleS program in Europe [31] and DARPA SyNAPSE program in the

US [28] intend to realize novel computing paradigms that exploit the observations

in biological nervous systems.

Associative Memories (AMs) are regarded as essential building blocks for the

human brain [2]. Hence, drawing from biological inspiration, AMs in intelligent

computing are candidate building blocks capable of memorization as well as learn-

ing and adaptation. An AM block based on a robust circuit design would allow

the realization of hierarchical models.

We hypothesized memristor networks can be useful in robust nano-scale AM

1

designs. In this thesis, we propose a novel methodology for implementing AMs

using memristors as circuits elements.

1.1 High-Level Associative Memories: Biological Implication

An Associative Memory (AM) has the ability to associate different memories to

specific events. Such memories form an integral part of cognition in life forms,

including humans [2]. This ability allows the brain to react or adapt to external

stimuli based on past experiences. The famous Pavlov experiments [47] are a good

example of associative memory: Pavlov observed that if a particular stimulus in the

dog’s surroundings was present when the dog was presented with meat powder, this

stimulus would become associated with food and cause salivation on its own. The

desired characteristics of associative memories have been summarized by Pao [45]

as follows:

• It should store many associated pattern pairs through a self-organizing pro-

cess in a distributed manner.

• It should generate the appropriate response output response despite distorted

or incompletely received inputs.

• It should dynamically append new associations to the existing stored mem-

ory.

Research in high-level AM models inherits these important properties along

with biological plausibility and fast training times. Central to these ideas is the

learning matrix [60], the Hopfield network [27], the bidirectional associative mem-

ory (BAM) [33], and the hierarchical temporal memory (HTM) [20]. The learning

matrix adapts the connection weights using a Hebbian learning rule [24]. In case of

2

the Hopfield network, feedback creates a system which uses input and output pat-

terns to represent its states. The BAM is similar to the Hopfield network, but has

two layers of neurons, and additionally uses connection matrix to calculate both a)

outputs given some inputs and b) inputs given a set of outputs. The HTM concept

involves having a hierarchy of spatial and temporal operators with multiple nodes

in each layer of the hierarchy. All nodes perform identical computations except for

the top layer node, which has additional features for performing classification.

AMs also form a specific area of research within self-organizing systems, com-

monly referred as Kohonen networks or self-organized maps [32]. Kohonen net-

works are rigorous mathematical models for two dimensional array of neurons,

where the weight of each element corresponds to its coordinates in an ordered

map. There are numerous application areas for high-level AMs within the intel-

ligent computing paradigm, such as: pattern recognition, language learning, fact

retrieval, inference and decision making, robotic controls etc. [2].

High-level AM models as above rely on low-level building blocks that can asso-

ciate pairs of inputs or detect sequence/context within an encoded input stream.

Low-level AMs have been traditionally implemented using Artificial Neural Net-

works (ANNs) [58]. The next section describes traditional designs and associated

challenges.

1.2 Associative Memory Implementation with Artificial Neural Net-

works: Design and Challenges

We chronologically review here some traditional designs for electronic ANN im-

plementations of AMs, with an emphasis on the challenges in their large-scale

integration.

3

The first description of ANN integrated circuit [58] implements a continuous-

time analog circuit for AM. The design used a 22 x 22 matrix with 20,000 tran-

sistors, averaging 40 transistors per node to implement a Hopfield AM network.

The design faced a scalability challenge at higher levels of integration. The paper

advocates handling larger problems by a collection of smaller networks or hierar-

chical solutions, while predicting, “significantly different connection technologies”

as essential for success in larger systems.

The next seminal work by Sage and Withers [54] built AMs using discrete-

time analog technology for high-speed computation in combination with analog

nonvolatile storage for synaptic weights. The network demonstrated was a 9x9

Hopfield associative memory network. The issue with the design was that although

the synaptic weights could dynamically adapt, there were only three possible states

to the weights (1, 0, -1). Thus, the network could demonstrate learning for a

very few specific computations only. The message from this study was that a

continuous range weights would be a desirable feature for the synapses. In an

attempt to achieve high resolution synaptic weights, Schwartz and Howard [57]

proposed representing each weight as a difference in voltage between two capacitors.

With the additional circuitry for sense-amplifiers, a 32 x 32 matrix with 75,000

transistors averaged 70 transistors per neural node. The high-level integration

required scaling of the components to nano-scale levels and further simplification

of the node design.

Other efforts from Holler et al. [26] use floating gate technology for the repre-

sentation of synaptic weights to achieve higher synapse density, but the design has

electrically programmable static weights, and the dynamics of input presentation

4

has no bearing on the real-time network associations. A mix of 8 x 8 matrix of dig-

itally stored weights gate the inhibitory/excitatory pulse stream from 4 x 4 input

layer. The pulse stream generation, integration and modulation results in much

lower densities (140 transistors per neural node) than the aforementioned designs.

Among biological applications, Lyon et al. [40] implemented an electronic ana-

log equivalent for the human cochlea (inner-ear). The design uses CMOS trans-

conductance amplifiers circuits, follower-integrator circuits and second-order filter

circuits to emulate perceptron machines. The authors see inherent deficiencies with

digital threshold logic and emphasize the need for high-density analog learning-

based implementations for more precise biological equivalence.

Hammerstrom et al. demonstrated one of the first custom digital ANN pro-

cessor CNAPS [21]. The CNAPS architecture, customized for ANN simulations,

had significant performance vs. cost improvements over arrays of commercial mi-

croprocessors. The authors proposed that further speed-ups could be achieved

by exploiting the high-speed memory structure and the inherent parallelism of

field-programmable-gate-arrays (FPGAs). Along the lines of exploiting the FPGA

advantage, Changian et al. [8] have demonstrated a best-match association using

distributed representations on FPGA hardware. Similarly, Deshpande [12] imple-

mented a Bayesian-memory (BM) module on a FPGA. The term BM is used by

the author to describe a building block in the hierarchical design of an equivalent

HTM model [20]. Both these studies show that the performance of the FPGA

based designs for associative memory models is dominated by the available chip

area and the logic resources. Hammerstrom and Zaveri [22] analyzed the optimum

use of such resources, and compared the performance vs. price trade-off for dif-

ferent architectures. They concluded that the mixed-signal CMOL design had the

5

best performance-to-price ratio. The authors also suggested that [22], “if in the

future, nano devices/materials research provides robust solutions for implement-

ing various analog functions using nanotechnology, this performance over price

advantage is going to increase even further.”

Other fully digital implementations of ANN AM integrated circuits can be seen

in [14,29,41], which present various trade-offs between silicon area and computation

time. 16 x 16 pattern storage and recognition networks are implemented using

multi-chip modules. All authors were convinced that their proposed architectures

would benefit in terms of more complex computations, if digital devices scaled

down another 1,000 fold from then existing 3–µm CMOS fabrication technology.

Additionally, the proposed designs have only one stable state. More than one stable

state exponentially increases the component count within each building block.

A fair insight into the algorithmic implementation of high-level AM algorithm

including learning is achieved from the work of [1]. The design employed analog

amplifiers to act as ‘neurons’, five-bit registers as synapses, and noise amplifiers

for the simulated annealing. The research highlighted several challenges:

• lack of an effective algorithm for learning in modular, hierarchical networks;

• necessity of modularity to manage connectivity;

• simplification of node design in addition to synaptic density;

• constraints, such as power dissipation and capacitive loading across the chips;

• at least 100 x 100 neurons interconnected by 1000 x 1000 synapse for the

simplest of meaningful computation.

As Pao et al. [45] set the rules for high-level AM models, the above experiments

stressed the need for optimizing low-level AM designs that could be hierarchically

6

integrated in densities not achievable even with the current 22nm nand-flash tech-

nologies. Additionally, Bailey et al. [4] assert the need for multiplexed interconnects

for large scale ANN based AM system integration.

The implementation of building-blocks for high-level AMs memories is a chal-

lenging problem in artificial vision, image recognition, and other intelligent and

adaptive computing areas. This challenge has previously been addressed in many

different ways, for example by modeling artificial neural networks using traditional

components such as resistors, capacitors, operational amplifiers, including voltage

and current sources, as summarized above. However, the traditional approaches

lack scalability. The other problem is that an AM building block unlearns as well

if destructive input patterns are introduced.

1.3 Exploiting Memristors: Towards Nano-scale Designs

This thesis explores denser designs with novel nano-scale components that by-

pass the scalability hurdle with their inherently small form factors and with new

properties. The device of choice for our investigation is a memristor.

Memristors were theoretically introduced by Leon O. Chua [9] as passive two

terminal devices in which the resistance is a function of the magnitude, polarity,

and the duration of the applied voltage, and hence, a passive element with memory.

In 1976 Chua and Sung generalized memristors to a class of nonlinear dynamical

systems or the memristive systems [10]. Memristive systems were theoretically

shown to be perfectly non-linear resistors showing hysteresis at lower frequencies

and reducing to linear resistors at higher frequencies. The non-linear characteristic

of a memristor is exemplified in Figure 1.1.

Memristance was observed in nano-scale solid state devices by Strukov et al. [61]

7

Figure 1.1: An example of the non-linear characteristic in the I–V plot of a mem-
ristor. Figure re-drawn from [11].

and it was experimentally confirmed that resistance in memristive systems spans a

continuous range of value. Memristance was quickly observed in several nano-scale

systems, for example, oxide-vacancy-based titanium dioxide electrodes reported

by Williams [66], electrochemically controlled polymeric memristors reported by

Erokhin and Fontana [17], and magnetic memristors as reported by Wang et al. [65].

Soon after their discovery, memristor circuits were shown to perform universal

logic operations, like material implication [7] and useful arithmetic operation [38]

quite accurately. Memristor crossbar latch memory or RRAM have been demon-

strated by Pascal et al. [46] to achieve densities higher than DRAMs. However, a

significant hurdle to realizing the potential of RRAM is the sneak path problem

which occurs in larger passive arrays. Memristor-based circuits have been hand-

designed to emulate biological responses like environment awareness in amoeba [48]

and may find application in pattern recognition [55].

In AM and ANN paradigms, memristors have been explored solely as synapses

8

[59, 69], effectively working as switches between ’on’ and ’off’ resistance values.

We hypothesize that memristor network AMs will be more area-efficient than the

traditional AMs if we exploit their:

• non-linear property for spatial association, and their

• time-dependent property for temporal association.

Memristors, with their nano-scale form factors, continuous resistance range,

non-linearity and time-dependency promise desirable circuits that can emulate low-

level AM model. Discovered only in 2008, these novel devices have no established

design methodology yet as in the case of CMOS technology, which has developed

over the past six decades. In the absence of design experience, we chose automated

circuit discovery, employing stochastic search and evolutionary optimization as a

tool for exploiting memristors design space.

1.4 Genetic Programming: Exploring the Memristor Design Space

For this thesis, we hypothesize that associative memories exploiting the non-linear

and time-dependent properties of memristors will be more area-efficient than as-

sociative memories built traditionally, e.g., by using neural networks. The results

presented in the thesis confirm this hypothesis. In Chapter 2 we will present the

detailed methodology for stochastic search for memristor-based AM designs using

Genetic Programming (GP). We rely on GP as it is a proven technique for circuit

evolution [34] and is simple to implement. And, since our framework is built upon

ParadisEO API [39] in C++, the classes can easily be extended or ported from one

system to the other. The optimum node size is decided within the framework. The

only downside is the parameterized choices related to the algorithm (for example,

9

population/offspring size, mutation rates, replacement and reinsertion policies, fit-

ness functions etc.,) is design-specific and can only be stochastically determined.

This translates into a number of exploratory simulations for fine tuning each spe-

cific experiment. We use our framework to explore denser and robust associative

memory designs using memristors.

1.5 Thesis Statement

The goal of this thesis is to develop a methodology to implement the functionality

of AMs using memristor networks. We have achieved this by developing an evolu-

tionary optimization framework that works in tandem with a circuit simulator to

evolve closed circuits matching the desired target functionality.

The challenge of equivalent circuit designs emulating AMs has previously been

addressed by using ANN models driven by biological inspiration. ANN models try

to add learning at different hierarchical levels, which would ultimately also lead

to intelligent and cognitive computing [45]. However, the traditional designs have

many problems, such as a lack of scalability and susceptibility to noise.

Our approach is novel in that it will rely on novel circuit elements as opposed to

classical neural networks. We present that associative memories using memristors

with their non-linear time-dependent properties are more area-efficient than tra-

ditional AM designs. So far, memristors have been explored/exploited solely as a

synapse in the neural nets, effectively working as on/off switches. Our approach is

transformative because we evolve rather than hand-design memristor networks to

enable the modular abstraction of associative memories. Our results show adding

memristor to the set of active and passive components for neuromorphic designs

leads to compact and simpler AM circuits.

10

Our research will be of interest to groups:

• modeling memristors: as we rely on our evolutionary framework rather than

hand-designing circuits, the modeling teams can focus on closer-to-reality

models for automatic discovery rather than simplified versions for a designer.

• working on intelligent computing models: as we can tune our framework to

provide equivalent circuits for the desired functional blocks optimized for

accuracy, size or noise tolerance.

Our thesis is a demonstration that memristor networks can implement AMs at

nano-scales, which ANNs could achieve at micro-levels. However there are cer-

tain risks associated with the interpretation of results. For example, although the

size of the circuit may be estimated using the 3nm x 3nm memristor fabrication

benchmarks [67], the size advantage is derived from custom designing for differ-

ent block level functionalities and relies on available spice memristor models for

accuracy. Besides, at this stage, there is no simple way to describe the speed of

the circuits. Also, at the moment, we do not have an efficient algorithm that can

describe the block level functionality of AMs especially temporal AMs. Therefore,

the evolved designs are customized and optimized for the specific functionalities

chosen as representative of spatial and temporal AMs respectively.

To validate our framework, we performed initial experiments and successfully

evolved the equivalent circuits for:

• low-pass filters that match [37] in evolution, convergence and final evolved

circuit.

• Hodgkin-Huxley model for a potassium channel in a neuron with [11] as

reference and improving upon their results.

11

Our key result is that we evolved efficient memristor-based networks that have

the potential to replace conventional artificial neural networks used for associative

memories.

1.6 Thesis Contribution

We now summarize the main contribution of this thesis:

1. We have developed a generic framework for designing analog memristor-based

circuits. GP approach ordinarily has a tree type data structure and hence

the mapping is generally presented [37] for single input and single output

port circuits. This mapping was extended in order to apply GP for evolving

multiple input/output ports AM circuits.

2. Since our framework is in C++, the classes can easily be extended or ported

from one system to the other. The optimum node size is decided within the

framework and has no hard bound limits.

3. The following 5 mutations were added by us to improve the quality of the

circuits:

(a) Branch mutation: Picks a random branch and replaces it by a newly

generated branch.

(b) Point mutation: Picks a non-terminal random node and mutates it into

a new randomly chosen node.

(c) Hoist mutation: Picks a random non-terminal node and makes the node

and its sub-trees the main tree.

12

(d) Collapse mutation: Picks up a random non-terminal node and collapses

its sub-trees.

(e) Expansion mutation: generates a new tree and replaces a randomly

chosen terminal node in the original tree as a sub-tree.

4. In the absence of a solid design methodology, we show that automated circuit

discovery is a promising tool for memristor-based circuits. Our results show

that we can efficiently implement complex functions with few components.

5. Our key result is that we evolved efficient memristor-based networks that

have the potential to replace the conventional artificial neural networks used

for associative memories.

(a) We could evolve associative memories that can learn

• spatial correlation between inputs and

• temporal correlations within the inputs stream.

(b) We have explored the trade-off between the size and the accuracy of the

circuits.

(c) We could evolve circuits that were robust against noise and variation on

the input. This robustness was achieved with some cost of additional

nodes in the network.

Our results show that we can efficiently implement complex functions with

memristors leading to compact complex inferring machines. See chapter 6 for the

interpretation of our results.

13

1.7 Thesis Organization

The rest of the dissertation is organized in the following manner. In Chapter 2, we

present our evolutionary framework based on genetic programming to automate

the design of analog circuits. In this chapter we focus on the methodology and the

design choices of the framework itself. Additionally, section 2.3.5 serve as a user

guide to running the program and designing new experiments. The frame work

was validated by evolving two different circuits, namely 1) a low-pass filter, and

2) an analog circuit model for ion channels. The design for these experiments and

results are presented in Chapter 3.

We extend the design exploration towards spatial associative memories in Chap-

ter 4. In section 4.1, formalizing the spatial association problem in terms of our

target function. We present evolutionary data and evolved designs for basic asso-

ciative memory blocks in section 4.2. We have furthermore explored the trade-off

between the size and the accuracy of the circuits by weighting both the aspects

into the evaluated fitness. In section 4.3 We show that by varying the cost as-

sociated with the circuit size, the framework can be tuned to give more accurate

results or lower noise levels vs. smaller designs. Finally in section 4.5, we introduce

destructive noise on inputs and evolve designs that retain learning despite noise

on input.

We delve into the temporal AM designs in Chapter 5. The representative

task undertaken is that of context-recognition in a data stream and is described

in section 5.1. The evolutionary statistics and design results for basic context-

learning temporal designs are presented in section 5.2. We perform tests related

to the frequency and voltage limits for the evolved design in section 5.3 and evolve

variation tolerant designs in section 5.4.

14

The concluding remarks and directions of future research are presented in Chap-

ter 6.

15

2

Methodology

2.1 Genetic Programming: History and Context

In the 1950’s, terms like “Machine Intelligence” [64], “Artificial Intelligence” or

AI [42], “Machine Learning” [56], all seeking human-like intelligence from behaviors

exhibited by machines, were introduced. The vast domain of AI research in the

next fifty years can broadly be categorized into a) Conventional AI [23] and b)

Computational Intelligence (CI) [16, 49]. Conventional AI uses logical and formal

knowledge to replicate human intelligence, while CI involves learning by successive

trials and errors. In a modern context, machine learning is defined as “the study of

computer algorithms that improve automatically through experience” [43], which

is closer to CI. Evolutionary computation (EC) is a narrower field of research

within CI that draws inspiration from nature. It has led to the development

of Evolutionary Algorithms (EAs) that selectively breed a population to reach a

desired end-point. The general term EA groups a set of four methods that actualize

Darwinian principles of natural selection [3]. See Figure 2.1 for this overview.

Research and development of Genetic Programming (GP) was preceded by re-

search in Genetic Algorithms (GA), Evolutionary Strategies [6] and Evolutionary

Programming [15]. Since the method’s first successful demonstration in 1992 [37],

the GP approach has been shown to have applications in the design of both analog

and digital circuits, control systems, robotics [34] and many more. The differenti-

ating factor between GA and GP is the genome representation. GAs use strings

of a fixed length to characterize a solution, whereas GPs can conform to multiple

16

Figure 2.1: Placing Genetic Programming in the context of related research. Figure
redrawn from [13].

17

representations of variable sizes. This is one of the strengths of GP, it can adapt to

the problem complexity without any maximum node size restrictions. Effectively,

GAs are efficient in parameter optimization given a fixed structure, whereas GP

can explore both structure and parameter spaces. Koza presents GP as a superset

of all EA methods and claims it to be theoretically possible “for a properly designed

GP system to evolve any solution produced by other evolutionary algorithms” [34].

We chose GP over other methods for its versatility in terms of structure, scal-

ability to solutions of any conceivable size, and availability of APIs to build upon

well-tested and documented frameworks like the ParadisEO framework [39]. The

next section will introduce the basic concepts of GP.

2.2 The Basics of GP

Genetic programming evolves a random population of competing solutions in order

to match the desired functionality. More specifically, the population is transformed

in each generation with the help of genetic operators. The objective is to minimize

a specific criterion, also called the fitness function. The genetic operators include

crossover, mutation and reproduction. GP typically runs on a tree-based data

representation with ordered nodes. Other representations would include: linear

structures [68] and graph structures [30]. We adopt the most common tree-based

GP approach and will now introduce its primary elements.

2.2.1 Node assignment

A solution structure is built upon nodes of two types: functions and terminals. The

function nodes act upon the inputs and map them to the outputs. The terminals

18

are useful in terminating a growing tree. For example, in circuit evolution, a typi-

cal set of function nodes may have circuit-constructing components, like resistors,

capacitors etc. along with circuit-processing functions, like series and parallel. Cre-

ating a comprehensive pool of functions and terminals is an important preparatory

step. Without a suitable set of nodes, the GP algorithm may not reach a solution

or take a long time in doing so.

2.2.2 Genetic representation

In tree-based GP, all candidate solutions have functions and terminals randomly

interconnected in an ordered tree structure. A GP tree comprises of a root node

positioned at the top of the tree, while the leaves appear at the fringes and are

called terminal nodes. Any subgroup of nodes is defined as a subtree. A tree with a

terminal at its root node is defined as a null-tree. Executing the example tree from

Figure 2.2 in depth-first fashion would result in terminal 4 added to multiplication

of terminals u and 2, giving y = 4+2u as an output. A GP tree is formally termed

as an individual.

2.2.3 Population initialization

A GP run is initiated by creating a population. A population is comprised of a

group of individuals (the randomly generated GP trees). Generating individuals

by random interconnecting nodes involves two processes called seeding and expan-

sion. Seeding can be done at random or hand crafted seeds from the results of

previous runs may be used to create new individuals. There are three strategies

for expansion: grow, full, and ramped-half-and-half [39]. The grow strategy ran-

domly chooses between functions and terminals and allows each branch to grow

19

Figure 2.2: An example of a program tree illustrating how the root, terminals and
subtrees are defined in tree-based GP. Depth-first execution of this tree would yield
the output y = 4 + 2u.

until they find terminals. The full strategy chooses from the function nodes alone

until the specified tree depth is attained and then uses terminal functions to re-

strict the growth. The third strategy, ramped-half-and-half, switches between the

full and grow approach during initialization of a population. The most effective

seeding technique and the best expansion strategy must both be experimentally

determined.

2.2.4 Genetic operations

Once the population is initialized, the algorithm proceeds by varying the popula-

tion with genetic operations. Three primary operations are: crossover, mutation

and reproduction. For every new generation, a new population is created by ap-

plying these genetic operations to the parent population.

20

Figure 2.3: An example of crossover operation carried out on parents 1 and 2 to
yield children 1 and 2. The crossover operator picks randomly chosen subtrees
from parent 1 (at node +) and parent 2 (at node ∗) and switch them in child 1
and child 2.

• Crossover: The crossover operation swaps randomly chosen subtrees of two

parents. The idea behind crossover is that useful building blocks exist within

the population and crossover permits recombination of these blocks for a

better solution. Figure 2.3 depicts a crossover example.

• Mutation: The mutation operator acts upon a single individual. There are

a number of conceivable mutations in a tree acting upon either a node, a

branch, or a subtree. For example a functional node could be mutated to a

different node in the child changing the interpreted output as can be seen in

Figure 2.4. Mutation is aimed at diversifying the population so the algorithm

can avoid any local minima within the solution space.

21

Figure 2.4: An example of mutation operation working on functional node ‘+’ of
the parent and transforming it to functional node ‘∗’ in the child thus changing
the interpreted output from y = πu + 2π to y = 2πu.

• Reproduction: The selected individual is cloned without any modification

into the next generation, allowing good solutions to survive.

2.2.5 Fitness function

The fitness function determines how well an individual is able to solve the target

problem. It varies greatly from one problem to another. For example, if the

problem was to fit some data points on a curve, the fitness function could simply

calculate the squared-error across all data points. The calculated squared-error will

be assigned as fitness value for that individual. The assigned fitness value governs

the selection of that individual for genetic operations and hence its survival in

the next population. Within a GP cycle, the fitness function is responsible for

execution and evaluation of each individual in a population for every generation.

Fitness functions are problem-specific and could have multiple evaluation criteria.

22

2.2.6 Replacement strategy

Replacement is the step where GP creates a new generation by choosing individuals

from both the parent population and the new child population created by using

genetic operations. Replacement aims at allowing only the fittest individuals to

survive while maintaining population diversity and keeping the population size

constant. The two main approaches are: a) generational and b) merge-and-reduce

[39]. With generational GP, the child population created by the genetic operators

replaces the parent population completely. With merge-and-reduce GP, we first

merge both parents and offspring and then reduce this combined population to

the correct size. To choose the right replacement strategy, one should consider the

trade-off between faster evolution and the risk of getting trapped in a local optima.

2.2.7 The GP algorithm

To summarize, the following preparatory steps have to be performed before starting

a GP run:

• Define the functions and the terminal set.

• Define the fitness criterion.

• Define the parameters, such as the population size, the maximum tree depth,

the probability for each genetic operation, tournament size, stopping crite-

rion, etc.

Once equipped with the main GP elements, the basic learning algorithm, as

shown in Figure 2.5, comprises of the following steps:

1. Initialization: Create an initial population.

23

2. Evaluation: Evaluate the entire population and assign each individual a

fitness value.

3. Replacement: Add offsprings to the new generation.

4. Stop Criteria: Check the termination criterion (e.g. a minimal fitness value

or a maximum number of generations).

5. Selection: Select individual(s) for the chosen genetic operation.

6. Variation: Apply genetic operators until the new generation is fully popu-

lated.

7. Repeat steps 2-6 while the termination criterion is not satisfied.

2.3 Adapting GP for Automated Circuit Design

The flexibility of GP with regard to exploration of analog circuit designs is well

acknowledged [37]. However, fine-tuning of the algorithm for performance and

efficiency remains a problem-specific challenge. A large number of GP applications

in circuit design are only a proof-of-concept that the GP approach is useful. Their

use of GP is limited to rediscovering simple tasks with traditional components

for which the optimal solutions are well-known [5, 35, 36]. We have outlined in

Chapter 1 that this thesis focuses on exploring non-linear memristor networks

that can solve complex tasks, like associative memories. In order to apply GP to

this task, we established a mapping from tree structure to closed circuits. Koza

et al. [34] discuss this mapping along with the preparatory steps for the circuit

evolution. This section describes how we have implemented GP for non-linear

analog circuit design.

24

Figure 2.5: The GP learning algorithm.

25

2.3.1 Circuit initialization

The initialization step transforms all the possible nodes into a vector. There are

three types of possible nodes: the component nodes, the function nodes, and the

terminal nodes. The component nodes are used to construct a circuit and have

the following options: R for resistors, L for inductors, C for capacitors, D for diodes,

NMOS and PMOS for MSOFETs, and X for memristors. The function nodes are used

to modify the topology of the developing circuit. The possible function nodes

are SERIES, PARALLEL, TO GND, FLIP and RANDOM. Each function node has a well-

defined objective. For example, the SERIES and PARALLEL functions result in series

or parallel addition of components, respectively. The FLIP function reverses the

polarity of a component. END is the only available terminal node and is used for

terminating a growing tree.

2.3.2 Circuit representation

The ParadisEO framework [39] initiates as many null-trees with zero nodes as the

specified population size. Nodes are randomly chosen from the initialization vector

to fill the top node. Each node has a defined arity. Here the term arity refers to

the number of child nodes. An arity-2 node (SERIES and PARALLEL in our case)

have two ordered subtrees and arity-1 nodes have only one subtree. The growth

of each individual tree continues until it hits a terminal node (END in our case).

Each node is given the structure of an operation with an ID, a value, a type, a

function, and its connections. The connections are filled during the evaluation

phase. A ngspice executable netlist is generated by mapping an individual into a

sub-circuit. This sub-circuit is added to an embryo circuit. The purpose of embryo

circuit is to provide input signals, loads, and directives for ngspice [44] execution of

26

the individual. Figure 2.6 is an example of how we develop an ngspice executable

circuit from a randomly generated tree.

Figure 2.6: An example of an embryo circuit and a randomly generated tree,
mapped together into a fully developed circuit.

In the example from Figure 2.6, the ports from the embryo circuit, say 1 as

input port and 2 as output port, are passed to the root node of the tree, which

is component node C-10µF. This component node adds the following line in the

netlist:

C1 1 2 10u

Next, node C passes its connections (1 and 2) to function node TO GND. TO GND is

defined as a ground-setting function node which receives ports (1, 2) from node C

and passes, (1, 0) to its child node L−1µ. Similar to C−10µ, L−1µ is a component

node and it adds the following line in the netlist:

L1 1 0 1u

L then passes (1,0) to its child node; the terminal in this case. The terminal node

no longer extends the netlist. The tree from the example has now been mapped

into a sub-circuit.

27

In order to map any randomly generated tree to a sub-circuit, the compo-

nent nodes add a component and the function nodes, manipulate the incoming

connections. All possible nodes introduced in section 2.3.1, have a well-defined

functionality. The node functionalities are the basis for our GP implementation

and a few of original function nodes from Koza’s mapping [37] were further gener-

alized using a more comprehensive set of function nodes defined by Bennett et al.

in [5]. For example, Koza originally talks of TO GND function node, which grounds

the output port. Since there are always two connected nodes - parent node and

child node, Bennett splits TO GND into TO GND1 and TO GND2 that operate on

its parent and child node respectively and have an equal probability of either the

input connection point or the output connection point being set to ground. Similar

extensions were been implemented for FLIP and RANDOM functions.

2.3.3 Circuit evaluation

The purpose of the fitness function is three-fold. First, it translates an individual

into a circuit netlist. Second, it runs the netlist through ngspice. And third, based

on the optimization criteria, it assigns a fitness value to the individual.

During the netlist generation stage, the input connections are initialized and an

empty netlist is created. This netlist is then populated by component nodes from

the candidate solution tree. The populated netlist is then written into an ngspice

executable format. The desired netlist format corresponding to a component node

in the tree can be seen from the examples below:

Case R/L/C: R/L/C-ID connection-1 connection-2 value

e.g. 1: R1 1 2 1000

e.g. 2: L3 3 6 35000 or

28

e.g. 3: C3 2 4 1e-5 etc.

Case NMOS/PMOS: M-ID connection-1 to connection-4 mosfet-model Width Length

e.g. 1: M1 1 2 3 0 nm Width=5e-6 Length=10e-6

e.g. 2: M1 1 2 3 0 pm Width=10e-6 Length=10e-6

Case Diode: D-ID connection1 connection 2 Diode-model #

e.g.: D2 2 5 Diode-3

Case Memristor: X-ID connection1 connection2 memristor-model

e.g.: X2 3 4 memristor

Once the sub-circuit netlist is generated, it is appended to an embryo circuit

as seen in Figure 2.6 and then passed to ngspice for circuit analysis. The analysis

from ngspice is read back by the fitness function and matched against a target

response for the squared-error calculation.

Finally, the squared-error and the number of components are weighted to give

the final fitness value. We normalize both squared-error and number of components

before computing their weighted average. The error component is normalized with

the highest possible error, which is determined experimentally from initial runs.

The size component of the fitness is normalized against the maximum number of

components allowed, i.e., 200 in our case. The final fitness value is then calculated

as:

fitness = (1− w)× squaredError + w × netlistSize (2.1)

Here, w is a weight that determines the importance between the cost and the

squared error. A typical value of the weight used in our experiments is 0.5 or

50%. The objective of our GP implementation is set to minimize the fitness. This

implies that the closer an individual evaluates to zero, the closer it gets to reducing

both error and size, thus giving us the optimum solution.

29

2.3.4 Mutation operation

In ParadisEO, the evaluated population is ranked by the fitness. If the stopping

criterion (i.e., the number of generations in our case) is not met, each individual

undergoes a mutation with a probability defined in the parameters to evolve into an

offspring. There are 13 possible mutations built into the framework. The following

8 mutation functions were based on [11,34].

1. Parameter change: A components value is assigned as a new randomly

chosen value.

2. Series addition: A new component is added in series configuration to the

component. The type and value of the new component is randomly chosen.

3. Parallel addition: A new component is added in parallel configuration

to the component. The type and value of the new component is randomly

chosen.

4. Component deletion: A component is removed from the circuit.

5. Type change: A component’s type is swapped to a different one randomly.

6. Ground setting: A component is connected to the ground.

7. Adding a component randomly: A new component bridges between two

randomly chosen wires (not identical wire).

8. Replacement mutation: A component is replaced with a new component

(possibly of the same type).

We added the following five mutations. The value of adding these mutations

will be presented in section 2.5.2.

30

1. Branch mutation: Picks a random branch and replaces it by a newly

generated branch.

2. Point mutation: Picks a non-terminal random node and mutates it into a

new randomly chosen node.

3. Hoist mutation: Picks a random non-terminal node and makes that node

and its sub-trees the main tree.

4. Collapse mutation: Picks up a random non-terminal node and collapses

its sub-trees.

5. Expansion mutation: Generates a new tree and replaces a randomly cho-

sen terminal node in the original tree as a sub-tree.

These, additional mutations were inspired by the mutation function in the genetic

algorithm community, see e.g. [19]. Each of the five added mutations can be

visualized from Figure 2.7.

2.3.5 GP implementation in C3EA

We now describe how GP elements described above are implemented in our appli-

cation Compact Complex Circuit Evolution Algorithm or for short C3EA.

We maintain the traditional tree-based approach in C3EA for several reasons.

First, with the tree-based GP, we can conceive any circuit design with a suffi-

cient pool of component nodes and function nodes. Furthermore, the tree-based

representation is supported widely by open-source GP frameworks. A different

representation (e.g., linear structures [68]) would require a new GP framework

built from scratch.

31

Figure 2.7: Examples of how the additional mutation operators transform the
parent tree. Nodes in blue are inherited from the parent and nodes in red are
transformed because of the respective mutation function.

32

C3EA allows multiple input and output ports in evolving circuits by leaving the

ports empty during the tree generation and instead filling them during the tree’s

evaluation. During evaluation, the ports are identified and additional checks are

performed that ensure all input and output ports are connected. C3EA can also

evolve circuits with feedback loops by making use of the function node RANDOM.

In the following are some features of the GP elements as implemented in C3EA:

• Introduction of function nodes as possible nodes within a tree. This en-

ables topological diversity starting from the very first initial population. See

section 2.3.1

• An executable representation of analog circuits based on the traditional pro-

gram tree. See section 2.3.2

• Three stage ngspice execution: a) the program tree is converted into a sub-

circuit netlist, b) the sub-circuit is inserted into an embryo circuit of test

signals and load components, and c) the component spice model along with

combined netlist is then executed in ngspice. See section 2.3.3

• Definition of two types of fitness criterion: First, an accuracy-based fitness for

guiding the evolution towards the target response. Second, a size-dependent

cost for optimizing the number of evolved components for the fewest possible

components. See section 2.3.3.

• Parameterization of replacement strategy: The choice of replacement strat-

egy between a) generational and b) four different types of merge-and-reduce,

was left as a run-time choice. See section 2.2.6

• Simultaneous search for circuit structure and parameter tuning. This is

33

achieved by having 13 different types of mutation functions, selected with

a uniform probability. See section 2.3.4

• The actual circuit evaluation is implemented in the ngspice environment and

GP itself is implemented as a C++ application, based on an open-source

evolutionary computation framework, ParadisEO [39].

2.4 Architecture of C3EA

C3EA is built upon the meta-heuristics framework ParadisEO [39]. The structure

of C3EA is depicted in Figure 2.8. Each part of this structure has been imple-

mented as a C++ class and hence is portable and can be specialized independently.

The main blocks that make C3EA are: the evolution system and the evolver.

An evolution system is a set of generic modules provided by ParadisEO for

managing all functions and data structures needed by C3EA during the evolu-

tion. The templates allow customizing the system to a specific problem. The EO

algorithm sets up the framework for executing a specific run. The population is

structured into three layers: generation, population, and individual. ParadisEO

enables execution and ranking of each individual of every population in every gen-

eration. The continuation classes permit the evolutionary run to continue until the

stopping criteria is met. The selection, transformation, and replacement classes in-

troduce the variation within a population across generations as per user-defined

configuration.

The evolver is specific to C3EA and is a collection of operators that customize

GP for analog circuit design. The following operators were implemented in C3EA:

the initialization operator creates trees and individuals and the mutation opera-

tors modify the structure of individuals. The evaluation operator interfaces with

34

ngspice for circuit evaluation. The operator also provides each individual with a

fitness value via a fitness function. The statistical operator plots the overall per-

formance of C3EA for each successful run and the result-plotting operator plots

the response of the best-evolved circuit.

Finally, since C3EA is designed as a generic analog circuit evolver, the config-

uration file permits run time customization of the experiments. This file allows

users to choose:

• the experiment to run,

• the maximum number of generations,

• the population size,

• the initial tree depth,

• the maximum possible nodes,

• mutation rates,

• whether to allow or disallow different component nodes and finally,

• to choose between all possible replacement strategies.

2.4.1 The evolver algorithm

The C3EA evolver, as mentioned above, is a structured package of operators. The

ordering and type of operators determine the working of the GP algorithm. The

basic loop from Figure 2.5 is extended to represent the changes needed for analog

circuit design and the result is shown in Figure 2.9. The genetic operators are

chosen with roulette-wheel selection. The mutation operator gets a part of the

35

Figure 2.8: The architecture of C3EA, a mix of elements inherited from the Par-
adisEO framework (*) and elements added or redefined by C3EA (†).

36

wheel (proportional to a user-specified mutation probability), the wheel spins, and

depending on the spin outcome, either mutation or reproduction is selected. If

mutation is selected, only one type from 13 possible mutations is applied to create

the offspring. Again, each mutation is given a uniform distribution on a roulette

wheel.

Figure 2.9: A flowchart of the GP algorithm as used by C3EA.

2.4.2 Features of C3EA

The following are some special features built into C3EA framework:

• Configuration file: The configuration file read at run-time can be used to

choose the experiment, and set all the parameters. The file also defines the

37

components to use in circuit evolution. An example configuration file looks

like the following:

configuration.txt

which experiment: 2
nGenerations: 2000
population size: 100
offspring size: 2
MaxSize: 200
InitMaxDepth: 4
mutation rate: 0.8
ElitismRate: 0.1
EugenismRate: 0.0
sOffspringElitismRate: 0.0
sOffspringEugenismRate: 0.0
use R: 1
use C: 1
use L: 0
use Diode: 0
use MOSFET: 0
use Memristor: 1
reduced mutation: 1
which replacement: 4

• Statistical milestones: At a rate specified by the user, a statistical operator
writes the complete population together with the algorithm configuration
and parameters to a single file, called a milestone. The advantage is that
the run can be aborted at any moment, without any loss of data or the
results achieved so far. The milestone (with optional changes) can be used to
restart the GP run. A typical example is the modification of the termination
criterion (e.g., the maximum number of generations) before the GP run is
continued.

• Population seed: It is possible to provide GP with initial designs (or seed
structures). During the initialization of a population, the seeded embryonic
structures are copied and when the size of the seed is less than the population
size, the remainder is created randomly with the initialization operators.

38

• Post-processing: The post-processing allows averaged plotting of fitness pro-
files from various GP runs for gathering statistics. It is possible to plot the
ngspice outputs for the best evolved designs from each run.

2.5 Parameter Exploration

C3EA has been implemented in C++, hence the classes can easily be extended or

ported from one system to the other. The optimum node size is decided within

the framework and has no fixed limits. There are several parameterized choices

related to the GP algorithm (for example, population/offspring size, mutation

rates, replacement strategy etc.). These choices are problem-specific and evolver-

specific, and can only be experimentally determined. In the following are the

parameter determining experiments we performed in order to fine tune our C3EA

framework.

2.5.1 Population size

Choosing the parameter population size is a trade-off between more variation vs.

simulation time. The larger the population size, the more the variation and the

sooner the algorithm may find a solution. But a large population also increases

the simulation time per generation. We determined the optimum population size

of 100 by running simulations and looking for an average number of generations

taken to converge. The experiments were done for basic associative memory de-

signs, details of which will be presented in Chapter 4. Figure 2.10 compares fitness

vs. generations averaged over 15 experiments, each for population sizes 30, 100

and 200. It was observed that population sizes of 100 and 200 converged to the

solution around generation 2, 000 while population size 30 converged around gen-

eration 3, 200. With the fastest convergence rate and reasonable simulation times,

39

a population size of 100 was chosen as a default.

Figure 2.10: Comparison of different population sizes and their effect on evolution
of basic associative memory. We observe that population sizes of 100 and 200
converge around generation 2, 000, while a population size of 30 takes 1, 200 more
generations to converge to the best fitness value.

2.5.2 Mutation functions

While performing initial experiments, it was observed that the evolutionary run

would often get stuck in a local optima and would not converge to the actual

solution. The problem was narrowed down to the mutation functions. The set of 8

mutations suggested by Koza in [34] would add, delete or transform the component

nodes only, and not the function nodes or the terminals, thus limiting the search

space. The genetic algorithm community has several topology modifying functions

(see [19]). We added 5 additional mutation functions that could act upon the tree

itself. For details on the added mutation functions see section 2.3.4. In order to

justify the value of these added mutations, we ran some basic associative memory

design experiments comparing performance of all 13 mutations against that of

40

original 8. Figure 2.11 presents a comparison for the evolutionary data averaged

over 10 experiments for: a) runs with original 8 mutations and b) runs with all

13 mutations. We observe that within the first 5, 000 generations, while the runs

with original 8 mutation runs converges at a local optima, the runs with all 13

mutations settle at a lower-fitness global optima.

Figure 2.11: Justification for additional mutation functions. We compare evolution
of basic associative memories using original 8 original mutations vs. using all 13
mutations. While runs using original 8 mutations converge at a local optima, the
runs using all 13 mutations converge at the actual solution.

2.5.3 Mutation rates

Unlike population size, mutation rate does not affect the simulation time. Here,

the parameter affects the search for the best solution itself. With higher rates, a

higher percentage of the population gets mutated from one generation to the next.

Since the best individuals are first selected for mutation, there is a probability

that the evolution loses its good solution(s) and then gets stuck in some local

minimum. The choice of a high-enough rate to ensure optimal solution is very

41

much determined by the severity of change any mutation has on the corresponding

circuit. The reduced mutation sets resulted in minor variations, thus the higher

mutation rates of 0.8 used by Cornforth et al. in [11] resulted in faster convergence.

With the added five mutations, the suitable mutation rate had to be experimentally

determined. We ran three different experiments of 10 runs with mutation rates

of 0.3, 0.6, and 0.9. The fitness data presented in Figure 2.12 confirms that the

lower mutation rate of 0.3 ensures smoother evolution and converges faster than

the higher mutation rates of 0.6 and 0.9. Thus, a mutation rate of 0.3 is set as a

default for all subsequent experiments.

Figure 2.12: Comparison of different mutation rates for basic AM evolution. We
observe that a lower mutation rate of 0.3 ensures smoother evolution and converges
faster than higher mutation rates of 0.6 and 0.9.

2.5.4 Replacement strategy

Replacement aims at allowing only the fittest individuals to survive while maintain-

ing population diversity and keeping the population size constant. The following

42

instances of replacement are available as ParadisEO classes:

1. Generational: All offspring replace all parents.

2. Merge and Reduce: It merges both populations of parents and offspring,

and then reduces this big population to the right size. The other replacements

are a subset of merge and reduce:

(a) Comma: Selects the best offspring.

(b) Plus: The best from offspring and parents become the next generation.

(c) Reduce Merge: The parents are first reduced, and then merged with

the offspring.

(d) Worse: The worse parents are killed and replaced by all offsprings.

(e) Deterministic Tournament: Parents to be killed are chosen by a

(reverse) deterministic tournament.

(f) Survive and Die: Allows strong elitism and eugenism in both the

parent population and the offspring population.

Incidentally, no particular strategy is optimal for all experimented fitness func-

tions. Hence, the strategy was left as a parameter in the configuration file. All

experiments were run in parallel with all the strategies. The best solution from all

the runs are presented as results in this thesis.

2.6 Discussion

C3EA evolver allows automated design of circuits with a high degree of flexibility,

i.e., the search space for GP is quite large. But, because the computational power

is limited, not every point in the search space can be explored. Thus, some degree

43

of creativity is required to let C3EA create novel non-linear designs. One method

to simplify the design task is to apply a well-chosen subset of components. This is

equivalent to giving GP a direction. For example, in the associative memory ex-

ploration with memristor networks, we disallowed some computationally intensive

components like inductors, transistors, and diodes. This somewhat constrains GP,

but results in more appropriate designs in terms of components, structure, and

parameters.

Search of memristor designs with multiple parameters (e.g., on and off re-

sistances and threshold voltages) led to circuits that could not be evaluated in

ngspice. The design load is lessened by leaving the parameters constant as in the

original memristor ngspice model and not proceeding with value mutation (see

section 2.3.4) if a memristor is selected for mutation.

C3EA implements Koza’s tree mapping, but this mapping allows for single

input and single output ports. Here, Koza’s mapping is extended to process mul-

tiple ports at both inputs and outputs. This is done by first, pre-defining the

desired ports within the fitness function and then ensuring that all these ports

are connected in any candidate circuit. If any of the desired ports is found to

be unconnected, the evolved circuit is immediately given the worst fitness, thus

preventing ngspice from slowing down the evolutionary run.

44

3

Validation

This section demonstrates the ability of C3EA to evolve analog circuits with the

desired target functions. The evolved circuits used for validation include two cir-

cuits: a) a low-pass filter, and b) a Hodgkin-Huxley model for a potassium channel

in a neuron.

3.1 Low-Pass Filter

This problem involves designing a low-pass filter having a one-input one-output

circuit using capacitors and inductors that passes all frequencies below 1kHz and

suppresses all frequencies above 2kHz. Section 2.2.7 introduced the preparatory

steps for evolving analog circuits using GP. We now present the preparatory steps

and results from the low-pass filter experiments.

3.1.1 Embryo circuit

In the automated process for low-pass filter circuit design, an electrical circuit

is created by combining a fixed embryo circuit with a randomly generated tree

(section 2.3.2). The tree contains various component nodes and function nodes

(described in section 3.1.2) that are mapped into a sub-circuit. Each tree in the

population creates one candidate circuit. The evaluation process uses the program

tree to convert an embryo circuit into a ngspice executable candidate circuit, and

the specific embryo used depends on the number of inputs and outputs.

Figure 3.1 shows a one-input one-output embryo circuit in which VSOURCE

45

is the alternating current input signal that drives the circuit. There is a fixed 1kΩ

load resistor RLOAD and a fixed 1kΩ source resistor RSOURCE in the embryo.

In addition to the fixed components, we have defined two fixed nodes: 1 and 2.

All the randomly generated trees are mapped into a sub-circuit and attached to

these fixed nodes. Node 2 is also the probe point for the output signal.

Figure 3.1: A one-input one-output embryo circuit used for the low-pass filter
circuit. The input appears at VSOURCE, and the output is probed at node 2.
The mapped sub-circuit from a tree is added between connection points 1 and 2.
RSOURCE and RLOAD are 1kΩ resistors.

3.1.2 Component, function, and terminal nodes

The set of component nodes for a target problem dictates the type of electrical

components that may be used to construct the circuit. Resistors (R), capacitors (C),

and inductors (L) were used for evolving this low-pass filter task. The component

nodes insert components into a developing sub-circuit and establishes its numerical

value randomly from a predefined range of values presented in Table 3.1.

The function nodes manipulate the connections of the developing sub-circuit

and hence modifies the circuit topology. The function nodes used in the evolution of

46

Table 3.1: Components and parameter ranges used in low-pass filter evolution.
Component Parameter range
Resistor R = 1− 1× 109kΩ
Capacitor C = 1− 1× 109fF
Inductor L = 1− 1× 109kH

low-pass filter circuits are: SERIES, PARALLEL, FLIP, TO GND, RANDOM. The function

nodes SERIES and PARALLEL allow serial and parallel addition of their two sub-

trees in the candidate circuit. The function node FLIP performs polarity-reversal

and attaches the positive end of its child node to its negative end. The function

node TO GND creates a connection to ground for its child node. The function node

RANDOM connects distant parts of a circuit by randomly selecting one connection

for its child node. The zero-argument terminal node END terminates the growing

branch of a tree, thereby ending that particular circuit development path.

3.1.3 Fitness measure

The target low-pass filter has a pass-band below 1kHz and a stop-band above

2kHz. The circuit is driven by an incoming AC voltage with a 2V amplitude.

With 1kΩ RSOURCE and RLOAD in the embryo circuit, the incoming 2V signal

is divided in half. Thus, a voltage in the pass-band of exactly 1V and a voltage in

the stop-band of exactly 0V are regarded as ideal. A voltage in the pass-band of

between 970mV and 1V and a voltage in the stop-band of between 0V and 30mV

are regarded as acceptable. The voltage at connection point 2 is measured in the

frequency domain. The software ngspice performs an AC small signal analysis

and reports the circuit behavior for frequencies chosen over two decades (between

100Hz and 100kHz). Each decade is divided into 10 parts (using a logarithmic

scale), so there are 20 probe frequencies for this problem. Figure 3.2 presents

47

the ideal low-pass filter frequency-domain response along with the 20 probe points

used in the fitness evaluation.

Figure 3.2: The ideal 1kHz low-pass filter frequency-domain response and 20
probe frequencies ranging from 100Hz to 10kHz used in fitness evaluation for the
candidate solution circuits.

The fitness for each candidate circuit is measured in terms of the sum of

squared-error between the actual value of the voltage at connection point 2 (see

Figure 3.1) and the target value for voltage. A fitness of zero represents an ideal

low-pass filter. Since the maximum error at each probe frequency can be 1 V.

Hence, the maximum sum of squared-error is determined as 20. This value is used

to normalize the fitness and to assign a fitness value as:

fitnessnormalized =

∑20
i=1 (Errori)

2

20
(3.1)

Here, i is the data point number, and Errori is the difference between the actual

voltage at the probe point and the target voltage for the frequency of 100× i Hz.

We divide the sum of the squared-error by 20 in order to normalize the fitness

48

against maximum error.

3.1.4 Control parameters

We chose a population size of 100 for all tasks. For this problem, the 90% prob-

ability of the mutation operation on each generation were the same as those used

by Koza et al. [36]. This being the first experiment with C3EA, we used Koza’s

original eight mutations as described in section 2.3.4 and the replacement strategy

was left to the default (generational replacement), where all off-springs replace all

the parents. We did not try to optimize the control parameters for the low-pass

filter evolution. Each GP run was terminated at 2, 000 generations, and the best

individual over five runs was presented as a result.

3.1.5 Results for low-pass filter

The best-evolved circuit (Figure 3.3) has two capacitors and one inductor. This

circuit has a sum of squared-error of 0.1V and a normalized fitness value of 5×10−3

across the 20 probe frequency points. This circuit has a recognizable “bridged Π”

arrangement. The “Π” consists of capacitors C1 and C2 and the inductor L1. The

frequency domain behavior of this best-evolved design is 99.5% similar to the ideal

response.

Figure 3.4 shows the frequency-response of this best-evolved circuit against the

ideal response. All five GP runs converged to the same circuit within the first 700

generations.

In Figure 3.5, we present the fitness vs. generation averaged over the five GP

runs. The error bar gives the standard deviation on best, average, and the worst

fitness every 100 generations. In all five GP runs, the best fitness was observed

49

Figure 3.3: The best-evolved low-pass filter circuit with two capacitors and one
inductor. All five GP runs converged to the same circuit as the optimum solution.

Figure 3.4: Frequency response of the best-evolved circuit compared with the ideal
low-pass filter response. Here the average error for each of the 20 frequency probe
points is 5mV , which implies the circuit is 99.5% similar to the ideal behavior.

50

to improve over successive generations and converge to a solution. For each run,

satisfactory results were generated between generation 500 and 700. Many of the

random initial circuits and many that are created by the mutation operation in

subsequent generations cannot be simulated by ngspice. These circuits receive a

high penalty and a normalized fitness value of 1 and become the worst-of-generation

program for that generation. In the fitness plot we observe that the initial worst

fitness value remains constantly at 1. This implies that some initial circuits were

not able to be simulated by ngspice. But, from the quick drop in the average

fitness value, we can conclude that most circuits were simulatable after only a

few generations. This demonstrates that the evolutionary selection process creates

offsprings from fitter parents that are ngspice-simulatable.

Figure 3.5: Fitness averaged over five GP runs for evolving low-pass filter. Here
the error-bars denote the standard deviation over the five runs. Both the standard
deviation and the fitness value decrease as the evolution progresses toward the
solution.

51

3.2 Hodgkin-Huxley Neuron Model

The Hodgkin-Huxley model [25] in computational neuroscience is a mathematical

description of the action potential across the membrane layer in a neuron. Corn-

forth et al. [11] applied a GP technique of analog circuit evolution to the task

of creating an equivalent circuit for the Hodgkin-Huxley ion-channel models. To

validate our framework, we used C3EA to evolve the Hodgkin-Huxley potassium-

ion-channel model and compared our results with those presented in [11].

3.2.1 Embryo circuit

We used the same embryo circuit as Cornforth et al. [11]. The embryo circuit as

shown in Figure 3.6 is a model for the cell membrane without any ion-channels.

The stimulus current of 1nA is presented for 1ms to drive the potassium-ion-

channel sub-circuit. The voltage source Vel (70mV) and load resistor Rload (1GΩ)

combine to represent the intrinsic driving force on ions. Vel and Rload model the

leak potential and the resistance to ion-flow across the membrane. A capacitor

Cmem (1pF) forms the membrane capacitance. A voltage source Vmem (70mV)

emulates the membrane potential and the connection points labeled 1 and 2 are

used as connection points for the evolved sub-circuits. The GP task is to find a

sub-circuit such that the entire circuit at the probe point 2 reproduces the behavior

of the Hodgkin-Huxley potassium-ion-channel. We will describe the behavior of

the Hodgkin-Huxley model in section 3.2.3.

3.2.2 Component, function, and terminal nodes

In addition to the component nodes presented in section 3.1.2, we added diode

nodes, and p-type and n-type MOSFET nodes. These components were added

52

Figure 3.6: A one-input one-output embryo circuit used for the Hodgkin-Huxley
potassium-ion-channel circuit. The stimulus current of 1nA destabilizes the sys-
tem. The Vel and Rload combination, drive the ions through the membrane sub-
circuit to be evolved between connection points 1 and 2. The voltage source Vmem

(70mV) represents the membrane potential and capacitor Cmem represents the
membrane capacitance. The output is probed at connection point 2.

to match the component pool used by Cornforth et al. [11]. The diode-creating

component node D inserts diode into a developing sub-circuit. There are also

six MOSFET-creating component nodes: NMOS1, NMOS2, NMOS3, PMOS1, PMOS2,

and PMOS3. These MOSFET-creating component nodes insert a transistor into the

developing sub-circuit. Depending on whether the inserted transistor is p-type or

n-type, the source and the body terminals are connected to the positive or the

negative power supply. As for the gate and the drain terminals, one is randomly

chosen and connected to the parent node and the other to the child node. There

are only six such functions in this family because the other possibilities are not

electronically reasonable. See Table 3.2 for the parameter range of these added

component nodes.

We used an extended set of function nodes for the Hodgkin-Huxley potassium-

ion-channel model. This circuit set was adopted from Bennett et al. [5], and

includes the following function nodes: SERIES, PARALLEL, FLIP1, FLIP2, TO GND1,

53

Table 3.2: Additional components and their parameter ranges used in Hodgkin-
Huxley model evolution.

Component Parameter range
Diode D, Model = Diode1−Diode25
P-type mosfet M, length = 10µm,width = [5, 10, 20]µm
N-type mosfet M, length = 10µm,width = [5, 10, 20]µm

TO GND2, RANDOM1, and RANDOM2. The function nodes SERIES and PARALLEL are

the same as in the low-pass filter experiments, i.e., they allow serial and parallel

addition of components. The original function node FLIP was split into: a) FLIP1

that performs polarity-reversal on its parent node, and b) FLIP2 that performs

polarity reversal on its child node. Similarly, the original function TO GND was

split into: a) TO GND1 that sets its parent node to ground, and b) TO GND2 sets a

connection to ground for its child node. The function node RANDOM that connects

distant parts of the circuit was again split into: a) RANDOM1 acting on the parent

node, and b) RANDOM2 acting on the child node. END is used for terminating the

growing branch of a tree.

3.2.3 Fitness measure

We obtained the target response for the Hodgkin-Huxley potassium-ion-channel us-

ing the HHsim simulation environment [63]. The ideal membrane voltage response

shown in Figure 3.7 is obtained using a step stimulus current of 1nA applied for

1ms.

To evaluate the fitness of a candidate equivalent circuit, we stimulate it with

a step current of 1nA in ngspice and compare the resulting membrane voltage

at connection point 2 with the target voltage obtained from HHsim simulated

membrane voltage. The ngspice simulation data is recorded at 0.1ms resolution for

54

Figure 3.7: The ideal Hodgkin-Huxley potassium-ion-channel response to 1nA
stimulus current presented between the 5 ms and 6 ms time-steps. This ideal
response has been extracted from the HHsim simulation environment. There are
201 data points for the fitness evaluation of the candidate circuits. The data points
are sampled every 0.1ms between 0ms and 23ms.

55

23ms and each of those 231 data points are compared with the corresponding data

points from the target HHsim data. The fitness value is then computed from the

sum of the squared-error at each data point weighted against the size of the evolved

sub-circuit (see section 2.3.3). The squared-error component is normalized with

the highest possible error, which was determined experimentally from initial runs

to be 108. The size component of the fitness is normalized against the maximum

number of components allowed, i.e., 200 in our case. A reasonable value of the

weight w determined for this experiment is 0.05%. This value was determined by

first running the experiments for accuracy alone and determining the acceptable

range of the normalized squared-error. We then adjusted the weight such that

the circuit size component dominates the evolution only when the squared-error

was minimized to an acceptable level of 2 × 10−5. The final fitness value is then

calculated as:

fitnessnormalized = 99.5%×
∑231

i=1 (Errori)
2

108
+ 0.05%× sizenetlist

200
(3.2)

Here, i is the data point iteration number, Errori is the difference between the

actual voltage at the probe point and the target voltage for ith sample point every

0.1ms. We divide the sum of the squared-error by 108 in order to normalize the

squared-error against the maximum error. The term sizenetlist

200
is the normalized

cost associated with the size of the circuit. Then the final fitnessnormalized is the

weighted average of the normalized squared-error and the normalized size cost.

56

3.2.4 Control parameters

We chose the population size to be 100. For this problem, the 80% probability of

the mutation operation on each generation were the same as those used by Corn-

forth et al. [11]. During the initial few runs with Koza’s original eight mutation

functions, the GP runs would get stuck in some local minima. We solved this

problem by adding five new mutation functions as described in section 2.3.4. We

tried all five replacement strategies from section 2.5.4 in different GP runs. Each

GP run was terminated at 5, 000 generations and the best individual from five

runs, each with a different replacement strategy, is presented as a result.

3.2.5 Results for the Hodgkin-Huxley model

C3EA evolved compact circuits mimicking the behavior of an idealized Hodgkin-

Huxley model for the potassium-ion-channel in a neuron. Figure 3.8 shows a circuit

that evolved with four components that include: a p-type MOSFET, an inductor,

a capacitor, and a diode. With four components and a weight of 0.05%, the cost

of the evolved circuit size evaluates to 2× 10−5.

Figure 3.9 shows the step response of the best-evolved equivalent circuit from

Figure 3.8 comparing it against the idealized model response from the HHsim

simulator. For this circuit, the normalized squared-error over 231 data points was

7×10−5. The final assigned normalized fitness value, calculated from equation 3.2,

was 4.5× 10−5

Figure 3.10 shows the best, average and the worst fitness averaged over five

GP runs. The fitness data was noisy on the worst and the average fitness plots

because each of the five runs had a different replacement strategy and hence quite

different evolutionary dynamics. The best fitness of each run converged to final

57

Figure 3.8: The best-evolved equivalent circuit for the Hodgkin-Huxley potassium-
ion-channel model. It comprised of four components: a capacitor, an inductor,
a p-type MOSFET, and a diode. Three of the five GP runs converged to the
same circuit as the optimum solution. The other two had additional redundant
component.

Figure 3.9: The transient response of the best-evolved circuit compared with the
ideal Hodgkin-Huxley potassium-ion-channel response. Here the average error for
each of the 231 data points is 0.5mV . The sudden drop in the voltage between 14ms
and 17ms is due to the discharging of the capacitor when the p-type MOSFET
turns temporarily on during the same time-frame.

58

fitness values within the first 1, 000 evolutionary generations. In Figure 3.11, we

plot the best fitness evolution alone along with error-bars every 200 generations.

The error-bars represent the standard deviation among the five GP runs. The

Hodgkin-Huxley task was more complex than the low-pass filter problem. We

added the four-terminal transistors and diodes to the set of component nodes. We

also experimented with adding cost to the size of the evolved-circuit in fitness

assignment. Furthermore, we added new mutation functions in order to avoid

being stuck in local minima. Yet, with some fine-tuning, C3EA could reproducibly

evolve an acceptable solution for this problem.

Figure 3.10: The fitness averaged over five GP runs for evolving the Hodgkin-
Huxley model. Here, the worst and the average fitness plots are noisy because
the plots presented are averaged over five runs each having a different replacement
strategy, and hence the evolution would vary a lot from one run to the other.

59

Figure 3.11: The best-evolved fitness averaged over five GP runs for evolving
the Hodgkin-Huxley model. Here the error-bars represent the standard deviation
between the runs. Both the fitness value and the error decrease as the evolution
progresses and finally converge to a solution in less than a 1, 000 generations.

3.3 Discussion

We confirmed that C3EA can be used to automatically construct equivalent analog

circuits for a given problem. We tested this idea with two experiments: a) low-

pass filters, and b) an equivalent circuit for the Hodgkin-Huxley potassium-ion-

channels. We confirmed that the evolved circuits agree with the target system’s

response to a large degree. Since the next experiments were related to exploring

the memristor networks, a new component node for memristors (X) was added to

the existing component node pool. However, memristors were not found useful in

the low-pass filter and the Hodgkin-Huxley experiments. While using memristors,

we observed that the memristors were either rejected by the selection process or

they only replaced some redundant resistors.

60

4

Results: Evolving Spatial Associative Memories

4.1 The Spatial Association Problem

With our C3EA evolutionary framework validated (see chapter 3), we next deal

with evolving spatial associative memories (AM). The spatial AM evolution is

aimed at emulating Pavlov’s classical conditioning experiments [47]. The evolved

designs are compared against the results in [69] since they have solved the same

classical conditioning problem with artificial neural networks (ANNs) with mem-

ristors as synapses.

4.2 Experiment 1: Basic spatial AM with sinusoidal input signals

An AM has the ability to associate different memories to specific events. Such

memories form an integral part of cognition in most life forms, including humans

[2]. This ability allows the brain to react or adapt to external stimuli based on

past experiences. The famous Pavlov experiments [47] are a good example of

AM: Pavlov observed that if a particular stimulus in the dog’s surroundings was

present when the dog was presented with meat powder, this stimulus would become

associated with food and cause salivation on its own. Application areas for AMs

are numerous: artificial vision, speech recognition, artificial intelligence [32], and

other intelligent and adaptive computing areas.

Implementing dense and robust AM design is a challenging problem. This

challenge has previously been addressed by modeling ANNs using two layers of

neurons interconnected by synapses as shown in Figure 4.1. Both neurons and

61

synapses are traditionally implemented with components such as resistors, capac-

itors, operational amplifiers, including voltage and current sources. However, this

traditional approach lacks density and scalability (see section 1.2). We are inter-

ested in exploring denser designs by using memristors, the novel nano-scale com-

ponent that bypasses the density and scalability hurdle with its inherently small

form factor. HP has demonstrated practical memristors working at 3nm x 3nm

sizes [67]. Previously, memristors have been explored solely as a synapse in neural

networks [69], effectively working as on/off switches. We use our C3EA framework

to evolve memristor-based AM designs that are more area-efficient than the ANN

AM blocks, and hence, have the potential to replace them.

Figure 4.1: An example of the ANN-based AM design. N1, N2 are neurons that
lie on the input layer and N3 is a neuron on the output layer. S2 and S2 are the
synapses interconnecting the input and the output neuron layers. Both neurons
and synapses are traditionally implemented using resistors, op-amps, etc. More
recently, Yuriy and Massimiliano [69] have implemented synapses with memristors.
Figure re-drawn from [69].

The basic functionality for the target AM has been adopted from Yuriy and

Massimiliano [69]. There are four phases in the evaluation of the transient response

of such memories (Figure 4.2):

• Phase I: Input B does not stimulate Output C.

• Phase II: Input A strongly stimulates Output C.

62

• Phase III: Training phase, where the inputs become “associated.”

• Phase IV: Input B starts strongly stimulating Output C.

Figure 4.2: The four phases in the evaluation of an AM block. Phase I, where the
second Input B does not stimulate the Output C. Phase II, where the first Input A
strongly stimulates Output C. Phase III is the training phase, where the two inputs
become associated. Phase IV, where the Input B starts strongly stimulating the
Output C. The ideal basic AM response to inputs presented during the four phases
as sinusoidal signal trains, each of amplitude 0.2V , frequency of 600Hz and of
duration 33.3ms. There are 2, 001 data points for fitness evaluation of candidate
circuits. The data points are sampled every 0.1ms between 0ms and 200ms.

4.2.1 Embryo circuit

The purpose of the embryo circuit is to provide the input signal and loads for

the ngspice evaluation of each randomly generated candidate AM sub-circuit. We

used the embryo shown in Figure 4.3 for this experiment. There are five voltage

sources, each excites a particular input during a designated phase. For example,

the voltage source V Phase I Input B is the source that excites the node Input B

63

during the Phase I of the evaluation. RLoad is a 1kΩ load resistor isolating the

probe terminal Output C from the ground.

Figure 4.3: The embryo circuit for basic AM experiments. There are five
voltage sources. V Phase I Input B creates excitatory inputs at connec-
tion point Input B during Phase I, V Phase II Input A creates excitatory in-
puts at connection point Input A during Phase II, V Phase III Input A and
V Phase III Input A create excitatory inputs at connection point Input A and
Input B respectively during Phase III and V Phase IV Input B excites Input B

during Phase IV. RLoad is a 1kΩ load resistor and Output C is the probe point.
The candidate AM block design evolves as a sub-circuit between the connection
points Input A, Input B, and Output C.

4.2.2 Component, function, and terminal nodes

In addition to the component nodes with the parameter ranges presented in Ta-

bles 3.1 and 3.2, we added a memristor component node. These memristor-creating

component nodes insert either a two-terminal or a three-terminal memristor into

the developing sub-circuit. For the memristor component node, the following

ngspice memristor model from [50] was used.

64

Table 4.1: Memristors as component nodes used in AM evolution.
Component Model
two-terminal memristor X, memristor with connection 6 set to ground
three-terminal memristor Xmem, memristor with connection 6 randomly chosen

The ngspice memristor model adapted from [50]:

.SUBCKT memristor 1 2 6

Eres 1 9 POLY(2) (8, 0) (11, 0) 0 0 0 0 1

Vsense 9 4 DC 0V

Fcopy 0 8 Vsense 1

Rstep 8 0 1K

Rser 2 4 10

Fmem 6 0 POLY(2) Vsense Ecopy -0.5E-10 0 1E-10 0 -1 0 0 0 1

Cmem 6 0 90nF

Rsp 6 0 1000Meg

Ecopy 7 0 0 6 1

Rc 7 0 1

Ecpy2 10 0 6 0 1

Vref ref 0 DC 1V

R1 10 11 100K

Ssat1 11 0 0 11 SWX

Ssat2 11 ref 11 ref SWX

.MODEL SWX SW(Ron=0.001, Roff=1000Meg, Vt=0.00001V, Vh=0.00001V)

.ENDS

This three-terminal memristor model has two passive device terminals, terminal

‘1’ for the input and terminal ‘2’ for the output connection. The third terminal

‘6’ in the model functions as a control for external bias voltages if required. For

the two-terminal memristor component nodes, the control terminal ’6’ was set at a

default bias of 0V . See Table 4.1 for the parameter range of these added memristor

component nodes.

We used the extended set of function nodes presented in section 3.2.2. The

function nodes included were: SERIES, PARALLEL, FLIP1, FLIP2, TO GND1, TO GND2,

RANDOM1, and RANDOM2. The zero-argument terminal node END is maintained for

65

terminating the growing branch of a tree.

4.2.3 Fitness measure

This first set of basic AM experiments were conducted with sinusoidal signals with

amplitude 0.5V , frequency 600Hz and signal duration of 33ms, i.e., 20 oscillatory

pulses per signal train. We used oscillatory inputs in order to compare our results

with those of Yuriy and Massimiliano [69]. The target response for basic AM with

sinusoidal inputs with the four phases of evaluation was presented in Figure 4.2.

To evaluate the fitness of a candidate equivalent circuit, we stimulate it with the

sinusoidal signals as shown in Figure 4.2. The figure also shows the corresponding

target response at the probe point Output C. We compare the candidate sub-

circuits’ resulting voltage at probe point Output C with the target response. The

ngspice simulation data is recorded at 0.1ms resolution for 200ms and each of

those 2, 001 data points are compared with the corresponding data points from

the target response. The fitness value is then computed from the sum of the

squared-error at each data point weighted against the size of the evolved sub-

circuit (see section 2.3.3). The squared-error component is normalized with the

highest possible error, which was determined experimentally from initial runs to

be 2.67 × 107. The size component of fitness is normalized against the maximum

number of components allowed, i.e., 200 in our case. A reasonable value of the

weight w determined for this experiment is 50%. This value was determined by

first running the experiments for accuracy alone and determining the acceptable

range of the normalized squared-error. We then adjusted the weight such that

the circuit size component dominates the evolution only when the squared-error

was minimized to an acceptable level of 1.5× 10−2. The final fitness value is then

66

calculated as:

fitnessnormalized =

∑2001

i=1
(Errori)

2

2.67×107 + sizenetlist

200

2
(4.1)

Here, Errori is the difference between the actual voltage at the probe point

and the target voltage for ith sample point every 0.1ms . We divide the sum of

the squared-error by 2.67×107 in order to normalize the squared-error against the

maximum error. The term sizenetlist

200
is the normalized cost associated with the size

of the circuit. The final fitnessnormalized is then calculated as the average of the

normalized squared-error and the normalized size cost (w = 50%).

4.2.4 Control parameters

We used the default population size of 100. For this problem, the probability

of the mutation was set to 30% as determined from the parameter exploration

experiments detailed in section 2.5.1. We used the full 13 mutation functions

(see section 2.5.2) and tried all five replacement strategies from section 2.5.4 in

different GP runs. Each GP run was terminated at 5, 000 generations and the best

individual from ten runs, each with a different replacement strategy, is presented

as a result.

4.2.5 Results for basic spatial AM

C3EA evolved simple memristor networks with the AM functionality. Figure 4.4

shows an evolved circuit with four two-terminal memristors. With four components

and a size normalization factor of 200, the cost of the evolved circuit size evaluates

to 2× 10−2.

Figure 4.5 shows the transient response of the best-evolved equivalent circuit

67

Figure 4.4: The best-evolved equivalent circuit for the basic spatial AM function-
ality. It comprised of four two-terminal memristors. Seven of the ten GP runs
with weight w set to 50% converged to the same circuit as the optimum solution.
The other three runs evolved circuits with more components.

from Figure 4.4 comparing it against the ideal response at Output C from Fig-

ure 4.2. For this circuit, the normalized squared-error over 2, 001 data points was

3.2 × 10−3. The final assigned normalized fitness value, calculated from equa-

tion 4.1, was 1.16× 10−2. The maximum amplitude of noise was observed during

the Phase I of the evaluation with an amplitude of 20mV giving a signal-to-noise

ratio of 10. In Phase IV, we observe that the spatial learning results in full rail

200mV stimulation at the output.

Figure 4.6 shows the best, the average, and the worst fitness averaged over ten

GP runs. Due to the random nature of creating and mutating individuals, some

mapped circuits cannot be simulated in ngspice. Within C3EA, these individuals

are automatically assigned the maximum normalized squared-error of 1. With

the weight w set to 50%, the final fitness value for such individuals would be the

average of squared-error and the cost of the netlist size, i.e., 0.5 + sizenormalized

2
.

This explains why the worst fitness stays in the range of 0.5-0.6 throughout the

run, implying that in every generation there were some individuals that were not

executable by ngspice. The average fitness data was noisy with a high standard

deviation among the different runs. This may be because each of the ten runs had

68

Figure 4.5: The transient response of the best-evolved basic AM circuit. Here
the error was observed mostly in the Phase I of the basic AM evaluation. The
maximum noise amplitude is observed as 20mV giving a signal-to-noise ratio of
10.

a different replacement strategy and hence different evolutionary dynamics. The

best fitness of each run converged to a final fitness values within the first 4, 000

generations. In Figure 4.7, we plot the best fitness evolution along with error-bars

every 200 generations. The error-bars represent the standard deviation among the

ten GP runs. Seven out of the ten runs converged to the same fitness value. For

the other three, the error-bars indicates the final fitness values were within 1% of

the best fitness of the seven well-converged runs. This indicates all best-evolved

individuals are close in performance.

69

Figure 4.6: The fitness averaged over ten GP runs for evolving the basic spatial
AM design. Here, the average fitness plots are noisy because the plots presented
are averaged over ten runs each having a different replacement strategy and hence
the evolution would vary a lot from one run to the other.

Figure 4.7: The best-evolved fitness averaged over ten GP runs for evolving the
basic spatial AM design. Here, the error-bars represent the standard deviation
between the runs. Both the fitness value and the error decrease as the evolution
progresses and finally converge to a solution around 4, 000th generation.

70

4.2.6 Discussion

Memristors evidently simplified the design of AMs significantly from the micro-

controller-based neural model presented in [69]. However, in the case of the best-

evolved circuits response presented in Figure 4.5, for Phase I, one can see that

the Output C contains some noise. Some noise is both anticipated and tolerated in

analog designs as both inputs and outputs are coupled through passive devices. The

definition of acceptable noise level is a design choice. Our second set of experiments

explored the circuit size vs. accuracy trade-off. Meanwhile, we believe that the

evolution resulted in such compact circuits because memristors, like resistors, when

in series, can result in a voltage drop and when in parallel can act as a voltage

divider. Thus, bigger networks generated during the initial generations would,

because of more memristors in series and parallel, have lower rail-to-rail voltages

in Phase II–IV. A lower rail-to-rail voltage and a larger network size would imply

higher squared-error and higher size-cost respectively. Thus, such bigger networks

were eventually eliminated during the process of evolution, yielding compact 3-7

memristor circuits as the solution.

4.3 Experiment 2: The size vs. accuracy trade-off

We anticipated that by varying the weight w associated with the circuit size,

our framework can be tuned to give more accurate results or lower noise levels

vs. smaller designs. This set of experiments was meant to explore this size vs.

accuracy trade-off. The only change in the experimental set-up was in the fitness

evaluation. The embryo circuit, component and function nodes, and the control

parameters were inherited from the previous experiment.

71

4.3.1 Fitness measure

In order to explore the trade-off in fitness evaluation, we parameterized the weight

w in our fitness function. The value of w was received at run-time from the C3EA

configuration file. The final fitness value is then calculated as:

fitnessnormalized = (1− w)×
∑2001

i=1 (Errori)
2

2.67× 107
+ w × sizenetlist

200
(4.2)

Here, i is the incremental data point step, and Errori is the difference between

the actual voltage at the probe point and the target voltage for ith sample point

every 0.1ms. We divide the sum of the squared-error by 2.67 × 107 in order to

normalize the squared-error against the maximum error. The term sizenetlist

200
is the

normalized cost associated with the size of the circuit. The final fitnessnormalized

is the weighted average of the normalized squared-error and the normalized size

cost, where the weight parameter w is left as a run-time choice for this set of

experiments.

4.3.2 Results for size vs. accuracy trade-off

Table 4.2 presents fitness values for various experiments with different size-accuracy

trade-offs, highlighting the importance of the weight parameter. As we increase the

constraint on size by increasing w, the framework starts reducing the component

count (see size and memristor count columns) with some loss of accuracy (see

the squared-error column). The associated result for each experiment is shown in

Figure 4.8. We observe that the noise amplitude in Phase I increases with w but

memristor count decreases. We also observe that the best-evolved circuits retain

rail-to-rail voltage swing of 200mV , thus almost zero noise in Phases II-IV.

72

Table 4.2: Summarizing the size vs. accuracy trade-off.

Experiment
squared− error size F itness Memristor

normalized normalized normalized count
w = 1% 1.25× 10−3 2.50× 10−2 2.44× 10−3 5
w = 50% 3.20× 10−3 2.00× 10−2 1.16× 10−2 4
w = 75% 5.00× 10−3 1.50× 10−2 1.25× 10−2 3

Figure 4.8: The best-evolved basic AM designs and their transient responses with
(a) weight w = 1%, (b) weight w = 50%, and (c) w = 75%. We observe that the
noise amplitude in Phase I drops considerably as the weight on size is lowered.

73

4.3.3 Discussion

With this experiment, we demonstrated that one of C3EA’s parameters, w, allows

designers to explore the trade-off between smaller circuits and less noise. By vary-

ing the cost associated with the circuit size, the framework can be tuned to give

more accurate results or lower noise levels vs. smaller designs.

4.4 Experiment 3: Basic spatial AM with pulsed input signals

We performed this third set of basic AM experiments with pulsed inputs or spikes.

There were two reasons for experimenting with pulse or spike trains: first, because

spikes are considered as most common form of communication signals in biological

systems [51], and second, we wanted to introduce variation in the input pattern

and see how much that effects the evolved AM design. In this set of basic AM

experiments, we used positive square pulses of amplitude 0.2V , pulse width of 1ms

and time period of 2ms, again with 20 pulses constituting each signal train. The

ideal response for this set of experiments is shown in Figure 4.9. In this experiment,

since all we had changed was the input signals, we could reuse the embryo circuit,

nodes, and control parameters from experiment 1 (see sections 4.2.1, 4.2.2, and

4.2.4). Minor alteration in the fitness measure were needed and are discussed

next.

4.4.1 Fitness measure

In order to evaluate the fitness of a candidate equivalent circuit, we stimulate

it with pulsed input signals as shown in Figure 4.9. The target Output C re-

sponse is compared with the candidate sub-circuits’ resulting voltage at probe

point Output C. We simulate the candidate circuit in ngspice and record data with

74

Figure 4.9: The ideal basic AM response to pulsed inputs presented during the
four phases of evaluation. In each phase, the inputs are presented as 20 pulse
signal trains, each of amplitude 0.2V , pulse duration of 1ms and time period of
2ms. There are 2, 001 data points for fitness evaluation of candidate circuits. The
data points are sampled every 0.1ms between 0ms and 200ms.

75

0.1ms resolution for 200ms. Each of those 2, 001 data points is compared with the

corresponding data points from the target response (Figure 4.9). The fitness value

is then computed from the sum of the squared-error at each data point weighted

against the size of the evolved sub-circuit (see section 2.3.3). The normalization

factor for the squared-error was experimentally determined to be 2.2 × 107. The

size component of fitness is normalized against the maximum number of compo-

nents allowed, 200 in our case. A reasonable value of the weight w determined for

this experiment is 50%. The weight was chosen such that the circuit size compo-

nent dominates the evolution only when the squared-error was minimized to an

acceptable level of 5.0× 10−2. The final fitness value is then calculated as:

fitnessnormalized =

∑2001

i=1
(Errori)

2

2.2×107 + sizenetlist

200

2
(4.3)

Here, i is the incremental data point step, and Errori is the difference between the

actual voltage at the probe point and the target voltage for ith sample point every

0.1ms . We divide the sum of the squared-error by 2.2× 107 in order to normalize

the squared-error against the maximum error. The term sizenetlist

200
is the normalized

cost associated with the size of the circuit. Then the final fitnessnormalized is the

average of the normalized squared-error and the normalized size cost (w = 50%).

4.4.2 Results for basic spatial AM with pulsed inputs

C3EA evolved simple memristor networks with the AM functionality using spike

or pulse trains as the input signal. Figure 4.10 evolved with four two-terminal

memristors. With four components and a weight of 50%, the cost of the evolved

circuit size evaluates to 2 × 10−2. Despite the same component count, the best-

evolved designs for the pulsed input is fundamentally different from the evolved

76

designs for the sinusoidal inputs (see Figures 4.4 and 4.8) because of the presence

of a feedback-creating memristor.

Figure 4.10: The best-evolved equivalent circuit for the basic spatial AM design
using pulse train as input. It comprised of four two-terminal memristors. This
design is fundamentally different from the basic AM design using sinusoidal inputs
because of the presence of a feedback-creating memristor.

Figure 4.11 shows the transient response of the best-evolved equivalent cir-

cuit from Figure 4.4 comparing it against the ideal response at Output C from

Figure 4.2. For this circuit, the normalized squared-error over 2, 001 data points

was 1.3× 10−2. The final assigned normalized fitness value, calculated from equa-

tion 4.3, was 3.3×10−2. The average amplitude of noise observed during Phase I of

the evaluation was 12mV giving a signal-to-noise ratio of 16. In Phases II-IV, we

observe that the amplitude of stimulation remains within 10% of the target, and

also that the amplitude changes incrementally with each pulse in the signal train.

This change of amplitude indicates the gradual shift in the state of the memristors,

hence we claim that the evolved AM design does exploit the non-linear property

of the memristors.

Figure 4.12 shows the best, the average, and the worst fitness averaged over ten

77

Figure 4.11: The transient response of the best-evolved basic AM circuit. Here the
error was observed mostly in the Phase I of the basic AM evaluation. The average
noise amplitude is observed in Phase I is 12mV giving a signal-to-noise ratio of
16. We also observe that the amplitude of voltage observed during Phases II-IV
at the probe point Output C changes its value incrementally with each pulse in the
signal train, indicating that the memristor’s non-linearity is being put to use.

78

GP runs. Due to the random nature of the circuit evolution, some individuals can-

not be simulated in ngspice. As in the previous experiment, these non-executable

individuals are assigned the maximum normalized squared-error of 1. With the

weight w set to 50%, the final fitness value for such individuals should be around

0.5. The worst fitness plot stays mostly in the range of 0.5-0.6 indicating that

some non-executable individuals were present in each generation for all the GP

runs. The noise and high standard deviation on the average fitness plot was ex-

pected because we plot the average of ten GP runs or five pairs, each pair with

a different replacement strategy. The best fitness of each run converged to final

fitness values within the first 4, 000 generations. In Figure 4.13, we plot the best

fitness evolution along with error-bars every 200 generations. The error-bars rep-

resent the standard deviation among the ten GP runs. Six out of the ten runs

converged to the same fitness value. For the other four, the error-bars indicates

the final fitness values were within 5% of the best fitness of the six well-converged

runs. This implies, all the best-evolved individuals are close in performance.

4.4.3 Discussion

There are some key insights to be gained from this set of experiments.

• Despite the same component count, the evolved circuit for pulsed input sig-

nals (see Figure 4.10) were fundamentally different from the evolved circuit

for sinusoidal inputs (see Figure 4.4) because of the additional feedback-

creating memristor in case of the pulsed input. We observed that feedback-

creating memristors were consistently selected during the evolution of pulsed

AM designs. This may be because a train of positive pulses can change

memristor states drastically and sometimes unnecessarily. A feedback in the

79

Figure 4.12: The fitness averaged over ten GP runs for evolving the pulsed input
spatial AM design. Here, the error-bars represent the standard deviation between
the runs.The average fitness plots are noisy because the plots presented are aver-
aged over ten runs each having a different replacement strategy and the evolution
varies from one run to the other.

design lowers the potential difference for the remaining components and thus

prevents any unnecessary change of memristor states.

• We also observed gradual change in voltage at the probe point Output C (see

Figure 4.11). This implies that the memristors were continuously changing

their internal state with each pulsed input. This memristor state change

was not observed in AM designs with sinusoidal inputs (see Figure 4.5) be-

cause the change in state during the positive input cycle was undone by the

following negative input cycle.

• The average noise across all four evaluation phases was lower for the spike

input AM design than the corresponding sinusoidal input AM designs.

80

Figure 4.13: The best-evolved fitness averaged over ten GP runs for evolving the
pulsed input spatial AM design. Here, the error-bars represent the standard de-
viation between the runs. Both the fitness value and the error decrease as the
evolution progresses and finally converge to a solution around, the 4, 000th gener-
ation.

81

Before concluding the spike input AM experiments, we tested the evolved circuit

for robustness against the noise on inputs. After the four phases of basic AM

evaluation, we introduced a sinusoidal signal train on Input A. This can be seen

as the phase named Noise in Figure 4.14. We re-tested the “association” in the

following phases, namely the Test A and Test B. The phase Test A placed the

original 0.2V amplitude, 20 pulse spike train on Input A. The circuit behaved

normally and stimulated the probe point Output C. But, in Test B phase, the

original spike train, when placed on Input B, had no stimulation on the Output C.

This implied that the noise was destructive for the initial “association” or learning

demonstrated in Phase IV and that the evolved circuit was not robust. The evolved

circuit was functional as a basic AM block, but in order to have robust designs, the

robustness-check was to be added in the circuit-evaluation phase of the evolution.

The following experiment was performed in order to test if adding a robustness-

check in the evaluation phase could evolve memristor-based and noise-tolerant AM

designs.

4.5 Experiment 4: Noise tolerant spatial AM

In this set of experiments, the basic AM evaluation phase was extended to include

robustness-checks in the target function such that when sinusoidal inputs are pre-

sented, the evolved design retains the “association” learned during the first four

evaluation phases. This is accomplished by having, a total of seven phases in the

evaluation of the transient response of such memories (Figure 4.15):

• Phase I: Input B does not stimulate Output C.

• Phase II: Input A strongly stimulates Output C.

82

Figure 4.14: The best-evolved spike-based AM design was subjected to sinusoidal
noise on Input A during the phase Noise. Subsequently, in phase Test A and Test
B, we tested if the original spike train could retain its initial learning and still
stimulate the probe point Output C. We observed that while Input A could still
stimulate the Output C, the noise was destructive for Input B’s learnt association.
Input B could no longer stimulate the Output C. The evolved circuit was not robust
against the destructive noise.

83

• Phase III: Training phase, where the inputs become “associated.”

• Phase IV: Input B starts strongly stimulating Output C.

• Noise: The sinusoidal noise is introduced to the circuit.

• Test A: This is the test phase for Input A, that it still strongly stimulates

Output C.

• Test B: This is the test phase for Input B, i.e., it must retain the learnt

“association” and strongly stimulate Output C.

The nodes and control parameters are kept the same as in Experiment 1 (see

sections 4.2.2 and 4.2.4). We ran these experiments for 15, 000 generations. Some

changes required in the embryo circuit and the fitness measure are discussed next.

4.5.1 Embryo circuit

The embryo circuit for the noise-tolerant AM design evolution is shown in Fig-

ure 4.16. The purpose of the three additional voltage sources (V Noise Input A,

V Test A, and V Test B) is to provide the input signal for the additional three

phases in the ngspice evaluation of each randomly generated candidate noise-

tolerant AM sub-circuit.

4.5.2 Fitness measure

In order to evaluate the fitness of a candidate noise-tolerant design, we stimulate it

with input signals as shown in Figure 4.15. The target Output C response is com-

pared with the candidate sub-circuits’ resulting voltage at probe point Output C.

We simulate the candidate circuit in ngspice and record data with 0.1ms resolution

84

Figure 4.15: The seven phases in the evaluation of a noise-tolerant AM block.
Phases I-IV are the same as in the basic AM evaluation. The three additional
phases are: Noise, where the destructive noise is introduced at Input A; Test A,
where we test whether Input A still strongly stimulates Output C; and Test B,
where we test that the circuit retains Input B’s learnt “association” and strongly
stimulates Output C. The noise-tolerant AM response, at the probe point Output C,
to the inputs presented during the seven phases has 3, 501 data points for fitness
evaluation of the candidate circuits. The data points are sampled every 0.1ms
between 0ms and 350ms.

85

Figure 4.16: The embryo circuit for the noise-tolerant AM experiments. There are
three additional voltage sources. The sourceV Noise Input A creates sinusoidal
noise at connection point Input A during the phase Noise. The sources V Test A
and V Test B create excitatory inputs at connection points Input A and Input B

during the phases Test A and Test B respectively.

86

for 350ms. Each of those 3, 501 data points is compared with the corresponding

data points from the target response (Figure 4.15). The fitness value is then com-

puted from the sum of the squared-error at each data point weighted against the

size of the evolved sub-circuit (see section 2.3.3). The normalization factor for the

squared-error was experimentally determined to be 6.3× 108. The size component

of fitness is normalized against the maximum number of components allowed, 200

in our case. The value of the weight w is retained as 50%. The final fitness value

is then calculated as:

fitnessnormalized =

∑3501

i=1
(Errori)

2

6.3×108 + sizenetlist

200

2
(4.4)

Here, Errori is the difference between the actual voltage at the probe point and

the target voltage for ith sample point every 0.1ms. We divide the sum of the

squared-error by 6.3 × 108 in order to normalize the squared-error against the

maximum error. The term sizenetlist

200
is the normalized cost associated with the size

of the circuit. Then the final fitnessnormalized is the average of the normalized

squared-error and the normalized size cost (w = 50%).

4.5.3 Results for noise-tolerant AM

C3EA evolved memristor networks with the noise-tolerant AM functionality using

a spike train as the input signal for training and test along with a sinusoidal input

train introduced as noise. Figure 4.17 evolved with 18 two-terminal memristors.

With 18 components and a weight of 50%, the cost of the evolved circuit size

evaluates to 9 × 10−2. The best-evolved noise-tolerant design seems to be evenly

split into master and slave sub-circuits with nine memristors each. The master

and slave sub-circuits are connected via common nodes. The evolved sub-circuit

87

shows a lot of feedback in its design.

Figure 4.17: The best-evolved equivalent circuit for the noise-tolerant spatial AM
design comprises of 18 two-terminal memristors. This design has evolved with
components evenly divided between master and slave sub-circuits of nine mem-
ristors each. The master and slave sub-circuits are connected via some common
nodes. The evolved sub-circuit shows a lot of feedback in its design.

Figure 4.18 shows the transient response of the best-evolved noise-tolerant AM

circuit from Figure 4.17 comparing it against the ideal response at Output C from

Figure 4.15. For this circuit, the normalized squared-error over 3, 501 data points

was 1.71 × 10−3. The final assigned normalized fitness value, calculated from

equation 4.4, was 9.17 × 10−2. The average amplitude of noise observed across

all seven evaluation phases was 10mV giving a signal-to-noise ratio of 20. We

also observe that the initial learning from Phases I-IV is retained in the test

phases Test A and Test B. The stimulation amplitude remains within 10% of the

target (see Figure 4.15) during all of the seven phases. Also, the amplitude changes

88

incrementally with each pulse in the signal train. This gradual change of amplitude

indicates the shift in the state of the memristors, hence we claim that the evolved

noise-tolerant AM design exploits the non-linear property of the memristors.

Figure 4.18: The transient response of the best-evolved noise-tolerant AM circuit.
Here the transient response was within 10% of the target during all seven of the
evaluation phases. The average noise amplitude is observed in Phase I is 10mV
giving a signal-to-noise ratio of 20. We also observe that the amplitude of voltage
at the probe point Output C changes its value incrementally with each pulse in the
signal train, indicating that the memristor’s non-linearity is being put to use.

Figure 4.19 shows the best, the average, and the worst fitness averaged over ten

GP runs. Due to the random nature of the circuit evolution, some individuals can-

not be simulated in ngspice. As in the previous experiments, these non-executable

individuals are assigned the maximum normalized squared-error of 1. With the

weight w set to 50%, the final fitness value for such individuals should be around

0.5. The worst fitness plot stays mostly in the range of 0.6-0.7, indicating that

some large-sized non-executable individuals were present in each generation for all

the GP runs. The noise and high standard deviation on the average fitness plot

was expected because we plot the average of ten GP runs or five pairs, each pair

89

with a different replacement strategy. The best fitness of each run converged to

final fitness values within the first 12, 000 generations. In Figure 4.20, we plot the

best fitness evolution along with error-bars every 500 generations. The error-bars

represent the standard deviation among the ten GP runs. Four out of the ten runs

converged to the same fitness value. For the other six, the error-bars indicates the

final fitness values were within 5% of the best fitness of the four well-converged

runs. This implies that all the best individuals are close in performance.

Figure 4.19: The fitness averaged over ten GP runs for evolving the noise-tolerant
AM design. Here, the error-bars represent the standard deviation between the runs.
The average fitness plots are noisy because the plots presented are averaged over
ten runs, each pair with a different replacement strategy and hence the evolution
varies from one pair to the other.

4.5.4 Discussion

The result presented here are valid for one kind of noise using a sinusoidal in-

put train. This experiment is a proof-of-concept that if the desired robustness

or noise-tolerance could be modeled within the fitness function, then C3EA can

90

Figure 4.20: The best-evolved fitness averaged over ten GP runs for evolving the
noise-tolerant AM design. Here, the error-bars represent the standard deviation
between the runs. Both the fitness value and the error decrease as the evolution
progresses and finally converge to a solution around, the 12, 000th generation.

be a handy tool for automated circuit design. The evolved noise-tolerant designs

from this experiment exhibit reasonable accuracy but at the cost of more compo-

nents and more complexity compared to the four-memristor basic AM designs (see

section 4.4.2).

4.6 Discussion

In this chapter we have presented our results for memristor-based AM designs.

We described the details of each experimental setup along with circuit evolution

statistics. One of the framework parameters, w, was varied in order to explore the

trade-off between smaller circuits and less noise. HP has demonstrated practical

memristors working at 3nm x 3nm sizes. At these densities our evolved AM designs

can easily rival even the current sub-25 nm flash memory technology in terms of

area. In the absence of a solid design methodology, we believe that automated

91

circuit discovery is a promising tool for memristor-based circuits. Our results

show that we can efficiently implement complex functions with few components.

The evolved circuit can be used as a building block for more complicated systems.

For example, associative memories can be used as a building block for hierarchical

learning systems (see section 1.1). The framework could thus be fed the evolved

designs from Experiments 1-3 as sub-circuits in order to model higher level systems.

We also demonstrated that C3EA can evolve noise-tolerant AM designs if the

tolerance-checks are added to the fitness function.

92

5

Results: Evolving Temporal Associative Memories

In this chapter we present how we used C3EA to evolve analog memristor-based

networks that can solve a general problem of recognizing patterns in a time-

dependent sequence of input signals. The algorithm uses a patterned set of pulsed

signals to train and process the sequence. The stream presented comprised of: a)

the input signals, and b) the context signals. The objective is to implement a

context-sensitive state-machine. Tank and Hopfield [62] implemented an analog

model of a neural network that could process the state information concentrated

in time and switch its neural states based on the environment or the context.

They proposed that such networks have applications in the area of pattern and

speech recognition. For example, the word “the” has a different pronunciation

when placed before a consonant (pronounced as ‘D@’) or a vowel (pronounced

‘Di’). We focus on a simplified problem of recognizing the context signal, and

consequently switching states, in a continuous stream of coded characters.

5.1 Temporal Association Problem

Kohonen [32] studied neural networks that operate as finite-state-machines that

use the present inputs to produce the present outputs, which in turn are used

as a partial inputs for the next system iteration. Other related work includes a

temporal-associative network by Fukushima [18], hierarchical temopral memories

by George and Hawkins [20], and sequence recognition and completion by Rumel-

hart and McClelland [52]. Memristor-based networks that recognize sequences,

93

to the best of our knowledge, have not been demonstrated yet. This problem is

addressed in the present work. It is illustrated by two signals, in which the letters

A and C represent a particular momentary stimulus state. The letter C is assigned

the special property of being the context. A model stimulus sequence is presented

in the first row below. The second row is the model response expected.

Input: A C A A C A A A C C A A

Output: X Y Z X Y Z X X Y Y Z X

Here, letter A is assigned a standard response output of letter X (state 1). But

every time the context letter C is presented, letter A that follows the letter C must

output letter Z (state 2). The output response for the letter C is Y (a don’t-care

state). The target state-machine is shown in Figure 5.1.

5.2 Experiment 4: Context sensitive system

Figure 5.2 shows the training pattern presented to C3EA with the context signal

(letter C) and the input signal (letter A). The two signals are separated in time to

ensure the evolved network discovers the temporal association between the context

signal and output state. The figure also presents the ideal output signal during

the four phases of the network evaluation, which are:

• Phase I: The input pulses (coded as letter A) stimulates the output in state

1 (coded as letter X).

• Phase II: The context signal is presented (coded as letter C). We do not

evaluate the output during this phase. The output state during this phase

94

Figure 5.1: The state transition diagram for the task of context-recognition. The
transitions occur when the system is presented with either the input signal (letter
A) or the context signal (letter C). Letters X, Y, and Z are output signals assigned
to state 1, don’t care, and state 2 respectively.

95

is essentially don’t-care (coded as letter Y).

• Phase III: The context is acknowledged and the input pulses (letter A)

stimulate the output in state 2 (coded as letter Y).

• Phase IV: We present input pulse (letter A) again, and this switches the

output back to state 1 (letter X).

Figure 5.2: The four phases in the evaluation of a context-sensitive AM block.
Phase I, where the input pulses (coded as letter A) stimulates the output in state 1
(coded as letter X). Phase II, where the context signal is presented (coded as letter
C). We do not evaluate the output during this phase. The output state during
this phase is essentially don’t-care (coded as letter Y). Phase III, the context is
acknowledged and the input pulses (letter A) stimulate the output in state 2 (coded
as letter Y). Phase IV, we present input pulse (letter A) again, and this switches the
output back to state 1 (letter X). This is the target context-sensitive AM response
to inputs presented during the four phases as a train of 20 pulsed signals, each of
an amplitude 0.2V , a pulse duration of 0.1ms and a time-period of 0.2ms. There
are 2, 001 data points for fitness evaluation of candidate circuits. The data points
are sampled every 0.01ms between 0ms and 20ms.

96

5.2.1 Embryo circuit

The purpose of the embryo circuit is to provide the input and the context signal and

loads for the ngspice evaluation of each randomly generated candidate memristor-

based context-sensitive AM network. We used a 10 × 10 cross-wire structure as

the embryo shown in Figure 5.3. This embryo structure was adopted from Tank

and Hopfield’s analog neural network implementation [62]. There are four voltage

sources, each excites the connection points Input or Context during a designated

phases. The output signals are tapped at two connection points (Output 1 and

Output 2). The final output at the probe point Output is the difference of the

voltages at Output 1 and Output 2, amplified with a gain factor of 3. R1 is a 1kΩ

load resistor isolating the probe terminal Output from the ground.

5.2.2 Component, function and terminal nodes

We used the two-terminal memristor-creating component node from section 4.2.2

for this experiment. Each of the 100 cross-points in the 10 × 10 cross-wire struc-

ture is assigned an ordered label by its coordinates. The memristor-creating node

randomly selects a cross-point and attaches a memristor to it.

We used the extended set of function nodes presented in section 3.2.2. The

function nodes included were: SERIES, PARALLEL, FLIP1, FLIP2, TO GND1, TO GND2,

RANDOM1, and RANDOM2. The function nodes RANDOM1 and RANDOM2 connects distant

points on the network by randomly altering one of the cross-wire identifying coor-

dinate labels. The zero-argument terminal node END is maintained for terminating

the growing branch of a tree.

97

Figure 5.3: The 10 × 10 cross-wire embryo structure for context-sensitive AM
experiments. There are four voltage sources, each creating excitatory inputs at
connection point Input or Context during a designated phase. The final output at
the probe point Output is the difference of the voltages at Output 1 and Output 2,
amplified with a gain factor of 3. R1 is a 1kΩ load resistor isolating the probe
terminal Output from the ground.

98

5.2.3 Fitness measure

In order to evaluate the fitness of a candidate networks, we stimulate it with

pulsed context and input signals in sequence as shown in Figure 5.2. The target

output response is compared with the candidate networks’ voltage at probe point

Output. We simulate the candidate network in ngspice and record data with

0.01ms resolution for 20ms. Each of those 2, 001 data points are compared with the

corresponding data points from the target response (Figure 5.2). The fitness value

is then computed from the sum of the squared-error at each data point weighted

against the size of the evolved sub-circuit (see section 2.3.3). The normalization

factor for the squared-error was experimentally determined to be 8×107. The size

component of fitness is normalized against the maximum number of components in

the network, 800 in our case. Note that although the network size for the embryo

is 10 × 10, more components are possible in the network by series or parallel

addition. The weight w used for this experiment is 50%. The final fitness value is

then calculated as:

fitnessnormalized =

∑2001

i=1
(Errori)

2

8×107 + sizenetlist

800

2
(5.1)

Here, i is the incremental data point step, and Errori is the difference between the

actual voltage at the probe point and the target voltage for ith sample point every

0.01ms. We divide the sum of the squared-error by 8× 107 in order to normalize

the squared-error against maximum error. The term sizenetlist

800
is the normalized

cost associated with the size of the circuit. Then the final fitnessnormalized is the

average of the normalized squared-error and the normalized size cost (w = 50%).

99

5.2.4 Control parameters

We used the default population size of 100. For this problem, the probability

of the mutation was set to 30% as determined from the parameter exploration

experiments detailed in section 2.5.1 and we used the full 13 mutation functions

(see section 2.5.2). We tried all five replacement strategies from section 2.5.4 in

different GP runs. Each GP run was terminated at 15,000 generations and the best

individual from five runs, each with a different replacement strategy is presented

as a result.

5.2.5 Results for context-sensitive system design

C3EA evolved simple memristor networks, shown in Figure 5.4, with the context-

sensitive AM functionality using pulse trains as the input and the context signal.

With 14 components and a maximum component count of 800, the cost of the

evolved circuit size evaluates to 1.75× 10−2. All the best-evolved designs from the

five GP runs evolved with no feedback-creating memristors.

Figure 5.5 shows the transient response of the best-evolved equivalent circuit

from Figure 5.4 comparing it against the ideal response at Output from Figure 5.2.

For this circuit, the normalized squared-error over 2, 001 data points was 4.1×10−3.

The final assigned normalized fitness value, calculated from equation 5.1, was

1.08 × 10−2. In Phase II, we observe that the amplitude of stimulation changes

incrementally with each pulse in the signal train. This continuous change of ampli-

tude implies a gradual shift in the state of the memristors, which is responsible for

the correct response at Output during Phases III and IV. The observed change in

state of the memristors implies that the non-linear and time-dependent properties

of the memristor are being used to store and switch states.

100

Figure 5.4: The best-evolved equivalent circuit for the context-sensitive AM design.
It comprised of 14 memristors. This design evolved with no feedback-creating
memristors.

101

Figure 5.5: The transient response of the best-evolved context-sensitive AM net-
work. At the probe point Output, the state 1 (with negative amplitude) during
Phase I and Phase III is clearly distinguishable from state 2 (with positive ampli-
tude during Phase III. We also observe that the amplitude of the voltage during
Phase II at the probe point changes its value incrementally with each pulse in the
signal train, indicating that the memristor properties of non-linearity and time-
dependency are being used to store and switch states.

102

Figure 5.6 shows the best, the average, and the worst fitness averaged over

five GP runs. Due to the random nature of the circuit creation, some individuals

cannot be simulated in ngspice. Like in previous experiment, these non-executable

individuals are assigned the maximum normalized squared-error of 1. With the

weight w set to 50%, the final fitness value for such individuals should be around

0.5. The worst fitness plot stays mostly in the range of 0.5-0.6 indicating that some

non-executable individuals were present in each generation for all the GP runs. The

noise and high standard deviation on the average fitness plot was expected because

we plot the average of five GP runs, each with a different replacement strategy.

The best fitness of each run converged to final fitness values within first 12, 000

generations. In Figure 5.7, we plot the best fitness evolution along with error-bars

every 500 generations. The error-bars represent the standard deviation among the

five GP runs. All the five runs converged to a fitness value within 3% of the best

fitness of all the runs. This implies that all the best-evolved individuals are close

in performance.

5.2.6 Discussion

This experiment explicitly uses the non-linear and time-dependent properties of

memristors to both store and switch states and the corresponding outputs. The

network training was performed with a short sequence of the input and the context

signals. We observed that the evolved network used the information from an earlier

and current phase to process its outputs. Thus, the evolved networks had the

ability to recognize context and have a temporary state for storage over short

trains of pulsed inputs.

103

Figure 5.6: The fitness averaged over five GP runs for evolving the context-sensitive
AM design. Here, the average fitness plots are noisy because the plots presented
are averaged over five runs, each having a different replacement strategy, and hence
the evolution varies a lot from one run to another.

Figure 5.7: The best-evolved fitness averaged over five GP runs for evolving the
context-sensitive AM design. Here, the error-bars represent the standard deviation
between the runs. Both the fitness value and the error decrease as the evolution
progresses and finally converges to a solution around generation 12, 000.

104

5.3 Experiment 5: Sequence test and limitation check

The context-sensitive design evolved in Experiment 4 gave clearly distinguishable

states within the pattern it was trained against. In this set of experiments we in-

vestigated whether the evolved design could recognize the context letter in a longer

stream of random inputs. Additionally, we have also established the tolerances for

frequency and voltage in the evolved design.

5.3.1 Experiment 5a: Sequence test

We subjected the evolved network from Figure 5.4 to an input sequence as pre-

sented in the first row below. The second row is the expected response.

Input: A C A A C A A A C C A A

Output: X Y Z X Y Z X X Y Y Z X

Here, letter A is assigned a standard response output of letter X (state 1 with

negative polarity). But, every time the context letter C is presented, letter A that

follows the letter C must output letter Z (state 2 with positive polarity). The

output response for the letter C is Y (a don’t-care state).

The transient response for the above sequence of inputs is shown in Figure 5.8.

The network recognizes the context signal in the stream and switches to a correct

state for the following input signal. The test shows, the training pattern from

Figure 5.2 was sufficient even for a longer input stream with a random sequence

of inputs.

105

Figure 5.8: The best-evolved circuit from Experiment 4 was subjected to a longer
sequence of random inputs (A C A A C A A A C C A A). The network recognizes
the context signal in the stream and switches to a correct state for the following
input signal (X Y Z X Y Z X X Y Y Z X).

5.3.2 Experiment 5b: Voltage limit test

Next, we performed a tolerance check on the evolved design by varying the ampli-

tude of the input signals. The input pattern (A C A A), was presented with the

signal amplitudes of: 0.1V , 0.2V , and 0.4V . Figure 5.9 shows the response of the

evolved design. The input streams with 0.1V and 0.2V amplitudes had the correct

response (X Y Z X). But, the response for the input stream with 0.4 V was ambigu-

ous in Phase III (X Y ? X). This implies that with 0.4V input signal amplitude,

we had exceeded the design limit for the evolved network from Experiment 4.

We re-tested the limit by presenting the same input pattern (A C A A), now

with the signal amplitudes of: 0.1V , 0.2V , and 0.3V . Figure 5.10 shows that the

transient response was correct (X Y Z X) for all three amplitudes. We established

that the evolved network from Experiment 4 functions correctly for the signals

with amplitudes in the range of 0.1− 0.3V .

106

Figure 5.9: The best-evolved circuit from Experiment 4 was subjected to the input
pattern (A C A A) with varying amplitudes of: 0.1V , 0.2V , and 0.4V . The network
gave the correct output response for the 0.1V and 0.2V signals (output (X Y Z X),
but the response for the 0.4V signal was ambiguous in Phase III (X Y ? X).

Figure 5.10: The best-evolved circuit from Experiment 4 was subjected to the
input pattern (A C A A) with varying amplitudes of: 0.1V , 0.2V , and 0.3V . The
network gave the correct output response (X Y Z X) for all three amplitudes. The
evolved design was tested to be functional for the signals with amplitudes in the
range of 0.1− 0.3V .

107

5.3.3 Experiment 5c: Frequency limit test

Finally, we tested the evolved network from Experiment 4 for signal frequency

limits. We applied the input pattern (A C A A) with frequencies of: 5kHz, 10kHz,

and 2.5kHz. The evolved design gave correct output response (X Y Z X) for all

three cases. The transient response of the circuit is shown in figure 5.11. Thus,

we tested the evolved design from Experiment 4 functions correctly for the signals

with frequencies in the range of 2.5− 10kHz.

Figure 5.11: The best-evolved circuit from Experiment 4 was subjected to the
input pattern (A C A A) with varying frequencies of: 5kHz, 10kHz, and 2.5kHz.
The network gave the correct output response (X Y Z X) for all three amplitudes.
The evolved design was tested to be functional for the signals with frequencies in
the range of 2.5− 10kHz.

5.3.4 Discussion

These experiments were conducted on the evolved design from Experiment 4. The

evolved 14 memristor context-sensitive network was tested for robustness against

variations on the input signals. We gained the following insights from this set of

108

experiments:

• The sequence of four input training pattern (A C A A) was sufficient to train

the network for a longer stream of random inputs.

• There was no feedback-creating memristor in the evolved design. Feedback-

creating memristors were used in previous spatial AM designs (see section

4.4.3) to suppress unwanted change of states. Given that this context-

sensitive system actively used the memristors’ change of state, any networks

with feedbacks were rejected during the selection process.

• The evolved design could tolerate 100% variation in frequency and 50% vari-

ation in the amplitude of the input signal.

5.4 Experiment 6: Evolving variation tolerant AM

Experiment 5b with a 100% variation on signal amplitude failed to give us the de-

sired response. This prompted us to add the 100% variation-tolerance requirement

in the fitness function and let C3EA explore the target design.

5.4.1 Experiment 6a: Evolving voltage-tolerant AM

For this experiment, the four phases in the context-sensitive AM evaluation were

extended to include the 100% signal amplitude variation-checks. This is accom-

plished by having three blocks of four phases in the evaluation of the transient

response, one block each for the signals with amplitudes: 0.1V , 0.2V , and 0.4V .

Figure 5.12) shows the ideal transient response.

The nodes and control parameters are kept the same as those in Experiment

4 (see sections 5.2.2 and 5.2.4). We ran these experiments for 15, 000 generations.

109

The embryo circuit essentially remains the same 10× 10 cross-wire structure. The

number of voltage sources is altered to match the input and the context signal

pattern shown in Figure 5.12. The only change in the fitness measure from section

5.2.3 equation 5.1 was in the normalization factor for the squared-error which was

experimentally determined to be 2.4× 108.

Figure 5.12: Ideal response for the three blocks of the input pattern (A C A A),
with signal amplitudes of: 0.1V , 0.2V , and 0.4V . The network must learn to give
the correct output response (X Y Z X) for all three amplitudes. The variation-
tolerant AM response, at the probe point Output has 6, 001 data points for fitness
evaluation of candidate networks. The data points are sampled every 0.01ms
between 0ms and 60ms.

Results for voltage-tolerant AM design

C3EA evolved 100% signal amplitude variation-tolerant networks with the context-

sensitive AM functionality as shown in Figure 5.13. With 13 components and a

maximum component count of 800, the cost of the evolved circuit size evaluates

to 1.625 × 10−2. All the best-evolved designs from the five GP runs evolved with

distant points connected that created feedback in the design.

110

Figure 5.13: The best-evolved circuit for context-sensitive AM design that could
tolerate 100% variation in signal amplitude. It comprised of 13 memristors. The
evolved circuit had some bridging between distant points that created feedback in
the design.

111

Figure 5.14 shows the transient response of the best-evolved equivalent cir-

cuit from Figure 5.13. For this circuit, the normalized squared-error over 6, 001

data points was 0.16. The final assigned normalized fitness value, calculated from

equation 5.1, was 0.088. The evolved circuit had some bridging between distant

points that created feedback in the design. These distant connections that create

feedback may be responsible for the voltage tolerance.

Figure 5.14: The transient response of the best-evolved context-sensitive AM net-
work tolerant of 100% variation in the signal amplitude. The input pattern (A C A

A) was presented in three blocks with varying amplitudes of: 0.1V , 0.2V , and 0.4V .
The network gave the correct output response (X Y Z X) for all three amplitudes.
The evolved design show distant connections that create feedback in the design.

Figure 5.15 shows the best, the average, and the worst fitness averaged over five

GP runs, each with a different replacement strategy. The evolutionary dynamics

are similar to the results from Experiment 4 (see Figure 5.6). The worst fitness

plot stays mostly in the range of 0.55-0.65, indicating that some non-executable

individuals were present in each generation for all the GP runs. The best fitness

of each run converged to its final fitness value around 12, 000 generations. In

Figure 5.16, we plot the best fitness evolution along with error-bars every 500

112

generations. The error-bars represent the standard deviation among the five GP

runs. All the five runs converged to a fitness value within 2% of the best fitness

of all the runs. This implies that all the best-evolved individuals are very close in

performance.

Figure 5.15: The fitness averaged over five GP runs for evolving the context-
sensitive AM design, tolerant of a 100% variation in the signal amplitude.

5.4.2 Experiment 6b: Evolving frequency-tolerant AM

For this experiment, the four phases in the context-sensitive AM evaluation were

extended to include the 100% signal frequency variation-checks. This is accom-

plished by having three blocks of four phases in the evaluation of the transient

response, one block each for the signals with frequencies: 5kHz, 10kHz, and

2.5kHz. Figure 5.17 shows the ideal transient response.

The nodes and control parameters are kept the same as those in Experiment

4 (see sections 5.2.2 and 5.2.4). We ran these experiments for 15, 000 generations.

The embryo circuit essentially remains the same 10× 10 cross-wire structure. The

113

Figure 5.16: The best-evolved fitness averaged over five GP runs for evolving the
context-sensitive AM design, tolerant of a 100% variation in the signal amplitude.
Here, the error-bars represent the standard deviation between the runs.

number of voltage sources is altered to match the input and the context signal

pattern shown in Figure 5.17. The fitness measure was the same as in equation 5.1

with the normalization factor for the squared-error changed to an experimentally

determined value of 2.4× 108.

Results for frequency-tolerant AM design

C3EA evolved 100% signal frequency variation-tolerant networks with the context-

sensitive AM functionality as shown in Figure 5.18. With 14 components and a

maximum component count of 800, the cost of the evolved circuit size evaluates to

1.75 × 10−2. All the best-evolved designs from the five GP runs evolved with no

feedback-creating memristors.

Figure 5.19 shows the transient response of the best-evolved equivalent cir-

cuit from Figure 5.18. For this circuit, the normalized squared-error over 6, 001

114

Figure 5.17: Ideal response for the three blocks of the input pattern (A C A A),
with signal amplitudes of: 5kHz, 10kHz, and 2.5kHz. The network must learn to
give the correct output response (X Y Z X) for all three frequencies. The variation-
tolerant AM response, at the probe point Output has 6, 001 data points for fitness
evaluation of candidate networks. The data points are sampled every 0.01ms
between 0ms and 60ms.

data points was 0.16. The final assigned normalized fitness value, calculated from

equation 5.1, was 3.9 × 10−3. The evolved design was very similar to the evolved

network in Experiment 4, with no observed feedbacks in the design. The best cir-

cuit from Experiment 4 was 100% frequency-tolerant (see section 5.3.3). Both of

these circuits (Figures 5.4 and 5.18) show no feedback in the evolved design, we

thus believe that the presence of feedbacks might be suppressing some necessary

memristor state changes, and thus evolved networks with feedback were rejected

during the selection process.

Figure 5.20 shows the best, the average, and the worst fitness averaged over five

GP runs, each with a different replacement strategy. The evolutionary dynamics

are similar to results from Experiment 4 (see Figure 5.6). The worst fitness plot

stays mostly in the range of 0.5-0.6 indicating that some non-executable individuals

115

Figure 5.18: The best-evolved circuit for context-sensitive AM design that could
tolerate 100% variation in signal amplitude. It is comprised of 13 memristors. The
evolved circuit had some bridging between distant points that created feedback in
the design.

116

Figure 5.19: The transient response of the best-evolved context-sensitive AM net-
work tolerant of 100% variation in the signal frequency. The input pattern (A C A

A) was presented in three blocks with varying frequencies of: 5kHz, 10kHz, and
2.5kHz. The network gave the correct output response (X Y Z X) for all three
amplitudes.

were present in each generation for all the GP runs. The best fitness of each run

converged to its final fitness value around 12, 000 generations. In Figure 5.21, we

plot the best fitness evolution along with error-bars every 500 generations. The

error-bars represent the standard deviation among the five GP runs. All the five

runs converged to a fitness value within 3% of the best fitness of all the runs. This

implies that all the best-evolved individuals are close in performance.

5.4.3 Discussion

Using C3EA, we could evolve 100% amplitude- and frequency-tolerant context-

sensitive AM designs. The amplitude-tolerant design evolved with some feedback-

creating memristors. This feedback were not seen in the frequency-tolerant designs.

We believe C3EA, during the selection process, accepts or rejects networks with

feedbacks in order to minimize the fitness function. The evolved design in each case

117

Figure 5.20: The fitness averaged over five GP runs for evolving the context-
sensitive AM design, tolerant of a 100% variation in the signal frequency.

Figure 5.21: The best-evolved fitness averaged over five GP runs for evolving the
context-sensitive AM design, tolerant of a 100% variation in the signal frequency.
Here, the error-bars represent the standard deviation between the runs.

118

showed easily discernible output states that followed the target response within

95% accuracy.

5.5 Discussion

The experiments described in this chapter use an organized pattern of signals in

time to associate inputs with the environment or the context. The C3EA frame-

work is able to evolve memristor-based networks with a correct solution. C3EA

was able to solve this complex task with 14–22 components because of the inher-

ent non-linear and time-dependent properties of the memristor. The non-linearity

in memristors not only allows the processing of the current set of information,

but also, alters its memristance in response for the next set of information. But,

because of the random nature of the circuit evolution, we do not know how the

memristors encode the state.

A thorough interpretation of the C3EA evolved designs, in terms of topology

and response to variation, can lead to establishing the standardized design rules for

memristor based circuits. Such standardized design rules will become important

in large scale integration of memristor-based architectures. Additionally, model-

ing variation into a design becomes more critical as computation moves into the

nano-scale paradigm. A design methodology can be formalized to counter these

variations. For example, we have shown that feedback in the design could help

make the network more robust against amplitude variation. Similar strategies can

be formalized by running C3EA on other variation related design problems.

We have shown that simple memristor-based networks are capable of solving

the complex tasks like context-recognition by continuously storing and altering its

states in response to the input signals presented in time. On testing the evolved

119

network against a random input stream, we realized that a sample input pattern

may be sufficient to establish the correct context-recognition over an extended set

of random inputs. The circuit need not be trained for all possible sequences.

120

6

Conclusion

In this thesis, we have closely examined the GP approach to topology generation for

automated analog AM design. Methodologies have been developed individually for

two kinds of AM design tasks: spatial and temporal. These AM design exploration

tasks were further augmented with more refined search to overcome size, noise or

variation limitations. We have also developed a circuit size vs. accuracy optimiza-

tion technique and have applied it successfully in the AM design. The technique

is based on weighing the trade-offs within the fitness function. Section 6.1 lists a

summary of all the major contributions of this thesis, while section 6.2 enumerates

some possible directions for future research.

6.1 Contributions

• GP-based C3EA framework: We have introduced C3EA, a GP-based frame-

work for automated analog circuit design. Representing circuit solutions as

trees, the topology for the first generation of circuits are generated randomly.

But the values of all the components used therein are assigned from a pre-

defined range. Subsequent solutions are generated through conventional GP

reproduction mechanisms involving selection, mutation and replacement. We

added five new mutation functions to increase the variation within a popu-

lation, thus minimizing the chances of getting stuck in a local minima. The

121

randomly generated structurally incorrect circuits are assigned the worst fit-

ness. This reduces the otherwise useless computational overhead of simu-

lating faulty circuits. For validating C3EA, benchmark analog circuits with

known solutions, like L-C-based low-pass filter and an equivalent circuit for

the Hodgkin-Huxley model were synthesized using C3EA.

• Memristor-based spatial AM designs were evolved. In the absence of a solid

design methodology, we show that automated circuit discovery is a promising

tool for memristor-based circuits. Our results show that we can efficiently

implement complex tasks, like Pavlov’s classical conditioning models, with

only a few memristors. We inferred from the evolved 3–5 memristor AM

designs, that the rail-to-rail swing requirement in the target function ensured

that bigger evolved networks were rejected during the selection process. This

implied that our target function for the AM design was self-constraining in

terms of size. Additionally, one of the framework parameters, w, explicitly

allows the designers to explore the trade-off between smaller circuits and less

noise. The evolved circuits for spatial AMs can be used as a building block

for more complicated systems.

• We chose the task of context-recognition to demonstrate memristor-based

temporal AM designs. The evolved designs were shown to exploit the non-

linear and time-dependent property of memristors. We analyzed that feed-

back in the evolved-design was used by C3EA to suppress any unwanted

change in the network states. One of the key observations was that, although

the training sequence for context-recognition task was a short sequence of four

inputs in time, the design responded correctly even when presented with a

122

longer sequence of random inputs. Implying that for specific tasks, a well-

chosen set of sample training pattern can lead to a generalized learning of the

association we are trying to accomplish. We also evolved context-sensitive

AM designs that were tolerant to a 100% variation in signal frequency or

amplitude.

• One drawback of our GP-based approach is that we do not understand the

evolved designs completely. It is difficult to point the critical and redundant

elements in the evolved design.

6.2 Future directions

• C3EA could be further optimized by re-organizing the code for GPU proces-

sor. In its present state, C3EA’s bottleneck lies in interfacing with ngspice

through files. As a next step, we would try to work on adapting the ngspice

code to interface directly with C3EA without any file read or writes.

• We would like to explore some new hierarchical designs for multi-input spatial

and temporal associations. For the high level networks, we want to eliminate

ngspice interface altogether and move to a mathematical time-step modeling

of memristor networks. The other option could be using the verilog model

compiler (VMC) for preliminary fitness evaluation.

• Finally we would like to evolve modular designs that can scale and are device

defect tolerant.

123

References

[1] J. Alspector, B. Gupta, and R. B. Allen. Performance of a stochastic learning

microchip, pages 66–78. IEEE Press, Piscataway, NJ, USA, 1990.

[2] J. R. Anderson and G. H. Bower. Human associative memory: a brief edition.

The Experimental Psychology Series/ Arthur W. Melton consulting ed. L.

Erlbaum Associates, 1980.

[3] T. Bäck. Evolutionary algorithms in theory and practice: evolution strategies,

evolutionary programming, genetic algorithms. Oxford University Press, 1996.

[4] J. Bailey and D. Hammerstrom. Why VLSI implementations of associative

VLCNs require connection multiplexing. In Neural Networks, 1988., IEEE

International Conference on, pages 173–180 vol.2, 1988.

[5] F. H. Bennett III, J. R. Koza, M. A. Keane, J. Yu, W. Mydlowec, and

O. Stiffelman. Evolution by means of genetic programming of analog circuits

that perform digital functions. In GECCO-99: Proceedings of the Genetic and

Evolutionary Computation Conference, July, volume 1317, pages 1477–1483,

1999.

[6] H. G. Beyer and H. P. Schwefel. Evolution strategies: A comprehensive intro-

duction, volume 1. Kluwer Academic Publishers, Hingham, MA, USA, 2002.

[7] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S.

Williams. ‘Memristive’ switches enable ‘stateful’ logic operations via material

implication. Nature, 464(7290):873–876, 2010.

124

[8] G. Changjian, H. Hammerstrom, S. Zhu, and M. Butts. FPGA implementa-

tion of very large associative memories - scaling issues. In Ed. Amos Omondi,

editor, FPGA Implementations of Neural Networks, Boston, MA, USA, 2003.

Kluwer Academic Publishers.

[9] L. Chua. Memristor-the missing circuit element. Circuit Theory, IEEE Trans-

actions on, 18(5):507–519, 1971.

[10] L. O. Chua and Sung M. K. Memristive devices and systems. Proceedings of

the IEEE, 64(2):209–223, 1976.

[11] T. Cornforth, K. J. Kim, and H. Lipson. Evolution of analog circuit models of

ion channels. In Gianluca Tempesti, Andy Tyrrell, and Julian Miller, editors,

Evolvable Systems: From Biology to Hardware, volume 6274 of Lecture Notes

in Computer Science, pages 157–168. Springer Berlin / Heidelberg, 2010.

[12] M. Deshpande. FPGA implementation & acceleration of building blocks for

biologically inspired computational models. In M.S. AAT 1491185, Portland,

OR, USA, 2011. Portland State University.

[13] J. M. Dolsma. Nonlinear Controller Design based on Genetic Programming.

DCT2007.107. PhD thesis, Technische Universiteit Eindhoven, 2007.

[14] M. Duranton and J. A. Sirat. Learning on VLSI: a general purpose digital

neurochip. In Neural Networks, 1989. IJCNN., International Joint Conference

on, page 613 vol.2, 1989.

[15] E. Eiben. Introduction to Evolutionary Computing. Springer, Berlin, 2003.

[16] A. Engelbrecht. Computational Intelligence. J. Wiley & Sons, New York,

2002.

125

[17] V. Erokhin and M. P. Fontana. Electrochemically controlled polymeric device:

a memristor (and more) found two years ago. ArXiv e-prints arXiv:0807.0333,

2008.

[18] K. Fukushima. A model of associative memory in the brain. Biological Cy-

bernetics, 12(2):58–63, 1973.

[19] Z. Gan, Z. Yang, T. Shang, T. Yu, and M. Jiang. Automated synthesis of

passive analog filters using graph representation. Expert Systems with Appli-

cations: An International Journal, 37:1887–1898, 2010.

[20] D. George and J. Hawkins. A hierarchical bayesian model of invariant pat-

tern recognition in the visual cortex. In Neural Networks, 2005. IJCNN ’05.

Proceedings. 2005 IEEE International Joint Conference on, volume 3, pages

1812–1817, 2005.

[21] D. Hammerstrom, W. Henry, and M. Kuhn. The CNAPS architecture for neu-

ral network emulation. Parallel Digital Implementations of Neural Networks,

pages 107–138, 1993.

[22] D. Hammerstrom and M. S. Zaveri. Prospects for building cortex-scale

CMOL/CMOS circuits: A design space exploration. In NORCHIP, pages

1–8, 2009.

[23] J. Haugeland. Artificial Intelligence. MIT Press, Cambridge, 1985.

[24] D. O. Hebb. The organization of behavior, pages 43–54. MIT Press, Cam-

bridge, MA, USA, 1988.

126

[25] A. Hodgkin and A. Huxley. A quantitative description of membrane current

and its application to conduction and excitation in nerve. Bulletin of Mathe-

matical Biology, 52:25–71, 1990. 10.1007/BF02459568.

[26] M. Holler, S. Tam, H. Castro, and R. Benson. An electrically trainable arti-

ficial neural network (etann) with 10240 ‘floating gate’ synapses. In Neural

Networks, 1989. IJCNN., International Joint Conference on, pages 191–196

vol.2, 1989.

[27] J. J. Hopfield. Neural networks and physical systems with emergent collective

computational abilities. Proceedings of the National Academy of Sciences,

79(8):2554–2558, 1982.

[28] T. Hylton. Systems of neuromorphic adaptive plastic scalable electronics

(SyNAPSE) program. url: http://www.darpa.mil/, 2011.

[29] A. Johannet, L. Personnaz, G. Dreyfus, J.-D. Gascuel, and M. Weinfeld. Spec-

ification and implementation of a digital Hopfield-type associative memory

with on-chip training. Neural Networks, IEEE Transactions on, 3(4):529–539,

1992.

[30] W. Kantschik and W. Banzhaf. Linear-graph GP - a new GP structure. In

Proceedings of the 5th European Conference on Genetic Programming, Eu-

roGP ’02, pages 83–92, London, UK, 2002. Springer-Verlag.

[31] M. Karlheinz. Brain-inspired multiscale computationin neuromorphic hybrid

systems. url: http://brainscales.kip.uni-heidelberg.de/, 2011.

[32] T. Kohonen. Self-Organization and Associative Memory, volume 8. Springer-

Verlag, 1989.

127

[33] B. Kosko. Bidirectional associative memories. Systems, Man and Cybernetics,

IEEE Transactions on, 18(1):49–60, 1988.

[34] J. R. Koza. Genetic programming III: darwinian invention and problem solv-

ing. Complex adaptive systems. Morgan Kaufmann, 1999.

[35] J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane. Automated

design of both the topology and sizing of analog electrical circuits using genetic

programming. In Artificial Intelligence in Design, volume 96, pages 151–170,

1996.

[36] J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane. Four problems

for which a computer program evolved by genetic programming is competitive

with human performance. In Evolutionary Computation, 1996., Proceedings

of IEEE International Conference on, pages 1–10, 1996.

[37] J. R. Koza, F. H. Bennett III, D. Andre, M. A. Keane, and F. Dunlap. Auto-

mated synthesis of analog electrical circuits by means of genetic programming.

Evolutionary Computation, IEEE Transactions on, 1(2):109–128, 1997.

[38] M. Laiho and E. Lehtonen. Arithmetic operations within memristor-based

analog memory. In Cellular Nanoscale Networks and Their Applications

(CNNA), 2010 12th International Workshop on, pages 1–4, 2010.

[39] A. Liefooghe, L. Jourdan, and E. G. Talbi. A Unified Model

for Evolutionary Multiobjective Optimization and its Implementation

in a General Purpose Software Framework: ParadisEO-MOEO. url:

http://paradiseo.gforge.inria.fr/. Rapport de recherche RR-6906, INRIA,

2009.

128

[40] R. F. Lyon and C. Mead. An analog electronic cochlea. Acoustics, Speech and

Signal Processing, IEEE Transactions on, 36(7):1119–1134, 1988.

[41] S. Mackie and J. S. Denker. A digital implementation of a best match classifier.

In Custom Integrated Circuits Conference, 1988., Proceedings of the IEEE

1988, pages 10.4/1–10.4/4, 1988.

[42] J. McCarthy, M. L. Minsky, N. Rochester, and C. E. Shannon. A proposal

for the Dartmouth summer research project on artificial intelligence, august

31, 1955. AI Magazine, 27(4):12, 2006.

[43] T. M. Mitchell. Machine Learning. McGraw-Hill series in computer science.

McGraw-Hill, 1997.

[44] P. Nenzi. NGSPICE: mixed mode - mixed level circuit simulator. url:

http://ngspice.sourceforge.net/, 2010.

[45] Y. H. Pao. Adaptive pattern recognition and neural networks. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1989.

[46] O. V. Pascal, R. Warren, J. K. Philip, R. S. Duncan, S. Joseph, and R. W.

Stanley. Writing to and reading from a nano-scale crossbar memory based on

memristors. Nanotechnology, 20(42):5204, 2009.

[47] I. P. Pavlov and G. V. Anrep. Conditioned Reflexes. Dover Publications,

2003.

[48] Y. V. Pershin, S. La Fontaine, and M. di Ventra. Memristive model of amoeba

learning. Phys. Rev. E, 80(2):021926, 2009.

129

[49] D. Poole. Computational Intelligence. Oxford University Press, Oxford Ox-

fordshire, 1997.

[50] A. Rak and G. Cserey. Macromodeling of the memristor in SPICE. Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on,

29(4):632–636, 2010.

[51] P. D. Roberts and C. C. Bell. Spike timing dependent synaptic plasticity in

biological systems. Biological Cybernetics, 87(5):392–403, 2002.

[52] D. E. Rumelhart and J. L. McClelland. Parallel distributed processing: ex-

plorations in the microstructure of cognition. Foundations, 1:358–361, 1986.

[53] S. J. Russell and P. Norvig. Artifcial Intelligence: A Modern Approach, 2nd

Ed. Prentice Hall, Englewood Cliks, NJ, 2002.

[54] J. P. Sage and R. S. Withers. Analog nonvolatile memory for neural network

implementations, pages 22–33. IEEE Press, Piscataway, NJ, USA, 1990.

[55] T. Saigusa, A. Tero, T. Nakagaki, and Y. Kuramoto. Amoebae anticipate

periodic events. Phys. Rev. Lett., 100(1):018101, 2008.

[56] A. Samuel. Some studies in machine learning using the game of checkers. IBM

Journal of Research and Development, 3:210–229, 1959.

[57] D. B. Schwartz and R. E. Howard. A programmable analog neural network

chip. In Custom Integrated Circuits Conference, 1988., Proceedings of the

IEEE 1988, pages 10.2/1–10.2/4, 1988.

130

[58] M. Sivilotti, M. Emerling, and C. Mead. A novel associative memory im-

plemented using collective computation. IEEE Press, Piscataway, NJ, USA,

1990.

[59] G. Snider, R. Amerson, D. Carter, H. Abdalla, M. S. Qureshi, J. Le And-

veille and, M. Versace, H. Ames, S. Patrick, B. Chandler, A. Gorchetchnikov,

and E. Mingolla. From synapses to circuitry: Using memristive memory to

explore the electronic brain. Computer, 44(2):21–28, 2011.

[60] K. Steinbuch and U. A. W. Piske. Learning matrices and their applications.

Electronic Computers, IEEE Transactions on, EC-12(6):846–862, 1963.

[61] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams. The missing

memristor found. Nature, 453(7191):80–83, 2008.

[62] D. W. Tank and J. J. Hopfield. Neural computation by concentrating infor-

mation in time. Proceedings of the National Academy of Sciences, 84(7):1896–

1900, 1987.

[63] D. S. Touretzky, A. Ladsariya, M. V. Albert, J. W. Johnson, and N. D. Daw.

HHsim: an open source, real-time, graphical Hodgkin-Huxley simulator. url:

http://www.cs.cmu.edu/∼ dst/HHsim/, 2004.

[64] A. M. Turing. Computing machinery and intelligence. Mind, 59(236):433–460,

1950.

[65] X. Wang, Y. Chen, H. Xi, H. Li, and D. Dimitrov. Spintronic Memristor

Through Spin-Torque-Induced Magnetization Motion. IEEE Electron Device

Letters, 30:294–297, 2009.

131

[66] R. S. Williams. How we found the missing memristor. Spectrum, IEEE,

45(12):28–35, 2008.

[67] R. S. Williams. url: http://www.youtube.com/watch?v=bKGhvKyjgLY,

2010.

[68] B. Wolfgang. Genetic programming: an introduction on the automatic evolu-

tion of computer programs and its applications. The Morgan Kaufmann Series

in Artificial Intelligence. Morgan Kaufmann Publishers, 1998.

[69] V. P. Yuriy and D. V. Massimiliano. Experimental demonstration of associa-

tive memory with memristive neural networks. Neural Networks, 23(7):881–

886, 2010.

132

	Portland State University
	PDXScholar
	1-1-2011

	Evolving Nano-scale Associative Memories with Memristors
	Arpita Sinha
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1373300478.pdf.wdC_Q

