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ABSTRACT 

Power consumption is a major concern for modern processors. Voltage scaling is 

one of the most effective mechanisms to reduce power consumption. However, voltage 

scaling is limited by large memory structures, such as caches, where many cells can fail 

at low voltage operation. As a result, voltage scaling is limited by a minimum voltage 

(Vccmin), below which the processor may not operate reliably. Researchers have proposed 

architectural mechanisms, error detection and correction techniques, and circuit solutions 

to allow the cache to operate reliably at low voltages. Architectural solutions reduce 

cache capacity at low voltages at the expense of logic complexity. Circuit solutions 

change the SRAM cell organization and have the disadvantage of reducing the cache 

capacity (for the same area) even when the system runs at a high voltage. Error detection 

and correction mechanisms use Error Correction Codes (ECC) codes to keep the cache 

operation reliable at low voltage, but have the disadvantage of increasing cache access 

time. In this thesis, we propose a novel architectural technique that uses spare cache 

blocks to back up a set-associative cache at low voltage. In our mechanism, we perform 

memory tests at low voltage to detect errors in all cache lines and tag them as faulty or 

fault-free. We have designed shifter and adder circuits for our architecture, and evaluated 

our design using the SimpleScalar simulator. We constructed a fault model for our design 

to find the cache set failure probability at low voltage. Our evaluation shows that, at 

485mV, our designed cache operates with an equivalent bit failure probability to a 
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conventional cache operating at 782mV. We have compared instructions per cycle (IPC), 

miss rates, and cache accesses of our design with a conventional cache operating at 

nominal voltage. We have also compared our cache performance with a cache using the 

previously proposed Bit-Fix mechanism. Our result show that our designed spare cache 

mechanism is 15% more area efficient compared to Bit-Fix. Our proposed approach 

provides a significant improvement in power and EPI (energy per instruction) over a 

conventional cache and Bit-Fix, at the expense of having lower performance at high 

voltage. 
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1. INTRODUCTION 

Reducing supply voltage is the most effective method to reduce power 

consumption in modern processors. However, manufacturing-induced parameter 

variations cause failures of many memory cells at lower voltages. A minimum value of 

supply voltage, Vccmin, is needed for reliable operation [1]. Caches and large memory 

structures constitute a significant fraction of die area and, therefore, are the largest 

inhibitors of Vccmin scaling. The memory hierarchy of a processor contains different levels 

of data and instruction caches. For each of these caches, the bit with the highest operating 

voltage determines the Vccmin of that cache, and the highest Vccmin of all caches determines 

Vccmin of the whole processor. As the defective cells are distributed randomly throughout 

the die, it is likely that the largest cache would determine the Vccmin of the processor as a 

whole [1]. 

The scaling of transistor dimensions in each technology generation increases 

transistor density and improves device performance. This geometric shrinkage allows an 

increasing number of transistors in each new CMOS process generation, which leads to 

higher activity and power density per unit chip area. Therefore, the electric field density 

per unit area increases [2]. Thus, if the operating voltage is not scaled down, the 

performance of the smaller transistors would degrade faster. Therefore, the operating 

voltage must be decreased to keep the power demand and electric field density within 

reasonable limits, and must not exceed the maximum degradation level during product 
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lifetime. In the L2 cache of the Intel Core 2 Duo processor for the 130nm process, Vccmin 

is 1.2V, and, for the 65nm process the Vccmin decreases to 825mv [1]. A few factors, such 

as sub-wavelength lithography, line edge roughness, and random doping fluctuations 

result in a wide distribution of transistor characteristics, which is the main cause of bit 

failures at lower voltages [3].  

Though lowering supply voltage helps to reduce dynamic power consumption and 

increase lifetime reliability, the consequent decrease in the threshold voltage increases the 

leakage power.  In the 90 nm process, leakage represents 21% of the total power, but 

below 45 nm, process leakage power increases to about 50% [4]. A microprocessor is 

composed of billions of transistors, and more than 70% of all transistors are devoted to 

cache in some designs [5]. It has been estimated that total cache leakage energy is 30% of 

L1 cache energy and 70% of L2 cache energy in the 130nm process [4]. Thus, half of the 

total power consumption of memory cells is wasted as leakage power. Moreover, bit cell 

storage capacitance decreases with geometric scaling. Voltage scaling further reduces the 

stored charge. Lower operating voltages cause an increasing level of noise and instability 

of SRAM bit cells. It may also result in flipping of their contents and results in bit cell 

operation failures (e.g., read failures, hold failures, access time failures, and write 

failures) [6]. 

  In addition, processor operation at low voltages is susceptible to soft errors. Soft 

errors occur when an alpha particle or a cosmic ray strikes a memory node and causes 

data loss. Soft Error Rate (SER) increases in the sub-threshold voltage region. The 

combination of growing cache capacity, shrinking SRAM cell dimensions, low operating 
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voltages, and increasing fabrication variability leads to a higher soft error rate (SER) [7, 

8].  

Many architectural, circuit, and device solutions have been proposed to mitigate 

the impact of cache cell failures at low voltages. Most improvements of cache reliability 

are achieved at the expense of reducing cache capacity. While circuit solutions decrease 

cache capacity in both high and low voltage mode, architectural solutions sacrifice cache 

capacity only at low voltages. Our mechanism builds architectural solutions and attempts 

to decrease the capacity reduction at low voltages. 

In the following sections, we introduce some of the design concepts we use for 

our method, and present an outline for the remainder of this thesis. 

 

Fig 1.1: 6T SRAM Cell 
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1.1 Conventional 6T SRAM Cell 

  An SRAM cell consists of two identical CMOS inverters connected in a positive 

loop and two NMOS access transistors. The access writing transistors, M5 and M6, 

control reads and writes in memory nodes Q and Q-bar by WL (Figure 1.1). Initially, bit 

lines (BL and its complement) are pre-charged to read cell data. Then the access 

transistor is turned on by WL to allow a differential voltage (50mV-100mV) between the 

bit lines. A differential voltage amplifier is used to measure the cell value. During a write 

operation, bit lines are first charged to the desired value, and then access transistors give 

access to the cell to store that value.   

Reducing voltage can cause many types of bit cell failures. Bit cells can fail in the 

following four ways: 

1. Read failure: A read failure occurs when the stored value flips during a read 

operation. In a SRAM cell either node Q or Q-bar stores ‘0’. When a noise in the stored 

node, sometimes logic ‘0’ becomes high enough to trip the inverter, and the data flips. At 

low voltage, a cell’s noise margin decreases, and the difference between the trip voltage 

and logic ‘0’ also decreases. Thus the probability of a read failure increases at low 

voltages.  

2. Hold failure: This failure occurs when the stored value in the cell is lost during 

standby. A sudden voltage drop is the main cause of this failure [1]. 

3. Access failure: An access failure occurs when the differential voltage across the 

bit line is not sufficient for the sense amplifier to identify the correct value. It usually 
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occurs during a read operation. Increasing the pulse width of a word line reduces this 

failure. 

4. Write failure: A write failure occurs when the cell cannot overwrite the existing 

value of the node. Geometric reduction of transistor size and low operating voltage are 

the main causes of write failures [1].     

1.2 Memory Architecture 

In a modern microprocessor, there are many memory components that contain 

program instructions and data. There are three kinds of physical memory: registers, 

caches, and main memory. Registers are the temporary memory that store data to be used 

in subsequent computations. Each register usually holds one word. There are some 

specialized registers that hold specific types of data, such as floating point numbers, 

addresses, etc. The registers are much faster compared to caches and main memory. 

However, the fast register memory is very expensive. Therefore, the number of registers 

available is quite small compared to cache and main memory sizes. The cache consists of 

a small, fast memory that acts as a buffer for main memory. A cache can be designed 

using six transistors SRAM or 6T SRAM. There are different levels of cache memory 

depending on size and access time. A higher level cache is bigger and slower compared 

to a lower level cache. The lowest level cache (L1) is typically split into two parts: the 

data cache (DL1), and the instruction cache (IL1). The main memory contains both 

instructions and data. It is typically built using DRAM cells [2].  
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Processor performance depends on the performance of its memory system. The 

latency of fetching, executing, and storing of instructions and data from the memory to 

the processor determines how fast the processor can execute a program. As all memory 

operations (i.e., loads and stores) involve cache accesses, it is very critical to improve 

cache performance. 

1.3 Set-associative Caches and Critical Path 

An n-way set-associative cache memory is divided into sets; where each set 

consist of ‘n’ cache lines. A block from main memory is first mapped onto a specific 

cache set, and then it can be placed anywhere within that set. Address bits are divided 

into tag, index, and offset bits. When the data (instruction) address is available, the index 

bits are used to activate the appropriate set that should contain the cache line. The tag 

array is also divided into separate way banks to hold the tag information for the cache 

blocks in corresponding cache lines of the data array. All tag arrays are probed in parallel 

to produce inputs to the n tag comparators to compare these stored tags to the tag bits of 

the address. The results of these tag comparisons are used to generate the select lines for 

the output way multiplexer on the data side. Once these select lines are available, the 

output way multiplexer will output the correct cache block onto the output data bus. If the 

tag doesn’t match, then the CPU has to bring the data in from memory.  

The main memory data can go into any of the ‘n’ cache lines during a cache fill, 

and the controller picks one of the lines to store the main memory data. The controller 

has a cache replacement policy to select a victim cache line. For example, the least 
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recently used (LRU) policy selects the line that has been accessed earlier than the other 

lines in the set. 

OffsetIndextag

v tag v tag v tag …. …. ----
-

=? =? =?

….

Line1Line0 Line7

Data

………..

 

Fig 1.2: An n-way set-associative cache 

In a set associative cache, the path of the tag comparison logic is the critical path 

of the overall cache access. The critical path delay for the whole structure of a 

conventional set-associative cache is the cumulative delay time to decode the index 

(Ttag_index_decode), read the tag array (Ttag_array_w/b_line), compare the tag (Ttag_comparison), 

access to the MUX driver (TMUX_driver), and access the output driver (Toutput_driver). Thus, 

the critical path includes selecting lines from the tag comparators to the output 

multiplexor, switching the multiplexers and providing the results to the data bus. The 

delay time can be expressed as, 

Tcache_access = Ttag_index_decode + Ttag_array_w/b_line + Ttag_comparison + TMUX_driver + Toutput_driver 
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Fig 1.3: Critical Path of a set associative cache 

1.4 Domino logic 

In our proposal, we used shifters to correct bit failures that are based on domino 

logic. We introduce some of the domino logic concepts in this section. Most 

combinational gates have been designed using static CMOS gates. Advantages of using 

CMOS gates are rail-to-rail switching and simple sizing. However, an N-input CMOS 

gate requires 2N gates (N pMOS and N nMOS). The width of the pMOS is large due to 

the slow response of hole carriers. A Dynamic gate is an alternative to a static gate that 

reduces the number of pMOS transistors. In a static ‘OR’ gate design, a NOR gate is 

connected in series with an inverter. Here, in a NOR gate pMOS transistors are connected 

in series which results in a large pMOS width.  
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Fig 1.4: Domino gates 

Figure 1.4 presents an OR domino gate. The large-width pMOS problem can be 

solved by domino logic. Domino logic is a CMOS-based evolution of the dynamic logic 

technique, which is based on either pMOS or nMOS. Domino logic is driven by clocked 

logic, where every single logic gate has a clock signal. When the clock signal turns low, 

output node “Out” (i.e., the dynamic node in Figure 1.4) turns high, causing the output of 

the gate (Out1) to turn low. This is the only path for the gate output to turn low. The 

operating period of the cell is when its input clock is low. This period is called the 

precharge phase. The next phase, when the clock is high, is called the evaluate phase. 

The evaluate phase is the functional operating phase in domino cells. Since the domino 

cell only switches from logic low to logic high, there is no need for the inputs A and B to 

drive any pull-up pMOS transistors. The lack of pMOS transistors eventually reduces the 

effective transistor width. Therefore, for a particular current drive, domino logic 

outperforms static logic. The effect of using domino gates in logic gates with a larger 
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number of inputs is significant. There are also advantages of domino logic over dynamic 

logic, e.g., cascading and rail-to-rail logic switching.  

1.5 Cache Failure Probability Models 

At low-voltages, many SRAM cells fail to operate reliably due to process 

variation.  The failing cells are randomly distributed throughout a memory array. Each 

cell has a probability of failure (Pfail(b)). A die containing even a single cell failure must 

be discarded. In our analysis, we assume that the Pfail(b) for each memory array must be 

kept at less than 1 out of 1000 for reliable operation [1]. Achieving reliable operation for 

a cache requires Vccmin of nearly 782mV. One possible mechanism to decrease cache 

Vccmin is to selectively disable defective data in the cache. Such disabling can be carried 

out at different granularities, ranging from cache ways, entire cache lines (coarse), to 

individual bits (fine). As the number of cells in the cache is very large, it is not practical 

to correct and isolate the faulty bit at the granularity of a bit [7]. At low voltage at least 

one bit may fail to operate properly in many lines [1, 3, 9]. It is easier to disable a whole 

line for a faulty cell. Disabling faulty lines degrades performance significantly by 

increasing cache miss rate. For this reason, it is efficient to disable the faulty bit at a 

smaller granularity, such as half line, double word, or word. There are many existing 

techniques that correct the value stored in a failing cache cell. In our proposed technique, 

we have disabled the faulty bit at a word granularity.   
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1.6 Thesis Organization 

The remainder of this thesis is organized as follows. In chapter 2, we review prior 

related work that was proposed to enable low voltage operation. In chapter 3, we describe 

our proposed cache architecture, operation, and the fault model of our design in detail. In 

chapter 4, we explain how we estimated the performance and overhead of our design. We 

present our results in chapter 5 and conclude in chapter 6. 

 

 

 

 

 

 

 

 

 

 

 



  12 

 

2. RELATED WORK 

In this chapter, we describe previously proposed mechanisms to allow a cache to 

operate at low voltages. These techniques include architectural, circuit, and code-based 

error detection and correction mechanisms.  

2.1 Architectural Techniques  

The architectural techniques emphasize disabling the erroneous SRAM cells in 

the cache. These techniques modify the existing 6T SRAM cache architectures by 

disabling bits at different granularities such as word, double-word, or line granularity.  

Wilkerson, et al. [1], have proposed two cache mechanisms (Word-disable and 

Bit-Fix) that can operate below 500mV reliably in a 65nm process by sacrificing 25% to 

50% of cache size at low voltage. Both mechanisms perform a memory test at low 

voltage when the processor boots to discover faulty bits. When the system switches to the 

low voltage mode, it flushes the existing cache data. The tag array is designed with more 

fault-tolerant SRAM cells such as 10T Schmitt Trigger (ST) [6]. It is also possible to use 

SECDED ECC (Single-bit Error Correction, Double-bit Error Detection) code instead of 

the big 10T SRAM in tag array to get reliable performance. Using ST SRAM in the tag 

array requires 2.5X- 4X more area compared to 6T SRAM tag area.  

The Word-disable mechanism [1] isolates defects at a 32-bit word granularity and 

then disables words that contain defective bits. Every cache line keeps a defect map array 
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of one tag bit per word indicating whether cache word is defective. As two physical lines 

store the data of one logical line of memory, tags of the two consecutive ways in a cache 

set are the same. The sixteen words in a 64B cache line are divided into two halves of 8 

words, each with a maximum of four defective words, and each storing four of the eight 

required words. Two four-stage shifters were used in the 16 words line to remove 

defective words. A line with more than four defective words in either half renders the 

whole cache as defective. In this mechanism, the two consecutive ways of physical lines 

were combined to form a single logical line. For example, an L1 cache that is, at high 

voltage, a 32KB 8-way set associative with 64B per line becomes a 16KB 4-way set 

associative cache with 64B per line at low voltage. This mechanism increases the cache 

size by ~15% to store the defect map and 50% of the cache area can be effectively used.  

Another technique described by Wilkerson, et al. [1], is the cache Bit-Fix 

mechanism. It disables any adjacent two bits that contain a faulty bit, and uses 2-bit 

patches to correct the defective bit pair. Bit-Fix, unlike Word-disable, does not store 

defect map in every line. Instead, it stores its repair pattern using one cache line for every 

three data lines. In the high voltage mode, repair patterns are saved in main memory. 

During a read or a write operation, the repair line is fetched in parallel with the data line. 

For example, Bit-Fix organizes an 8-way cache at low voltage into two banks, each with 

three data lines and one repair line. On a cache hit, both the data line from bank A and 

repair pattern line from bank B are read. The data line passes through ‘n’ bit shift stages, 

where ‘n’ represents the number of defective bit pairs. Each stage removes a defective 

pair, replacing it with the fixed pair. In a 512-bit line, 256, 2-bit multiplexers were used. 
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A 140-bit repair pattern can repair a single data cache line (of 512 bits) with ten or fewer 

defects. The main advantage of Bit-Fix over Word disable is that it provides bigger 

effective cache capacity in the low-voltage mode, and therefore increases memory 

accesses by only 7.5% on average (compared to 28% in Word-disable). However, the 

access logic is more complex and needs a higher latency compared to Word-disable, 

making it unsuitable for level-1 caches. 

   Another technique was proposed by Abella, et al. [9]. In this technique, the cache 

line is divided into sub-blocks. Each of the cache lines was extended with a few bits as 

VS (Valid Sub-block bits) to track the faultiness of each sub-block. The number of 

extended bits VS is equal to the number of sub-blocks. The sub-block is considered to be 

faulty if the corresponding sub-block has more faulty bits than allowed by the underlying 

protection scheme. If SECDED protection scheme is used, VS will be reset (0) if two or 

more faulty bits are found in a sub-block; otherwise VS bits are set (1). The VS bit is 

protected in the same way as data and tag by parity or SECDED. When a cache access is 

performed, the address offset bits are used to pick the VS bit corresponding to the sub-

block of desired cache line. If the tags indicate a miss and the VS bit is reset (0), then a 

false hit signal is generated but a miss is reported. In a write back cache, data is updated 

in the higher cache level in valid sub-blocks. In write through caches, higher cache levels 

are updated for stores, and the request is treated as a regular miss. If the tag indicates a hit 

and the VS bit is reset (0), a false miss arises. In this case, the higher cache level provides 

data directly to the requester, and the data cache line is filled in a different, fault-free 

cache line. The main advantage of this mechanism is that data, tags, and VS bits are all 
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protected using the same code. The VS bit can be obtained in BIOS initialization and 

during operation. It is possible to store the VS bit configuration for different voltages in 

main memory. But switching to a different voltage requires flushing the existing cache 

data. This scheme is advantageous to Word-disable as the position of a fault is only 

needed to fetch data directly from a higher-level cache, not to skip the sub-block [1]. But 

it also puts pressure on L1-to–L2 communication bus due to high failures in sub-blocks.  

  Ansari, et al. [5], proposed Zereh Cache (ZC) that remaps the cache structure by 

intelligent arrangement of data in cache lines. ZC partitions the complete cache array into 

sets of equally sized logical groups, where each logical group is allocated with one spare 

cache word line. Each data or spare line is divided into equally sized data chunks to allow 

smaller granularities of spare substitution. The physical cache lines are shuffled to form 

logical groups in order to optimize the utilization of an externally added single spare 

cache line. A self-testing module BIST (Built in Self-Test) has been used. The BIST 

module creates the fault map when the system boots. The fault map array and spare cache 

access are performed in parallel during the time of cache array access. The fault map 

access determines whether the spare data chunk should be routed to the output instead of 

the main cache content. A non-blocking routing is provided by a back-to-back connection 

between the row decoder of the main cache and the cache word-lines through Benes 

Network [14]. The main advantage of this scheme is that effective cache size in the low 

voltage mode is the same as that in high voltage mode, whereas all other schemes 

sacrifice cache capacity in low voltage. However, ZerehCache increases the cache access 

latency, and significantly increases cache design complexity.  
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2.2 Circuit-level Solutions 

  In circuits and device-level techniques, the organization of 6T SRAM cell is 

modified. Calhoun, et al. [7], proposed a bit cell architecture named sub-threshold 

SRAM. It can operate below 400mV in the sub-threshold region in a 65nm process. A 

buffer is used for reading. Read access is single-ended and occurs on a separate bit line, 

which is pre-charged prior to read access. The structural difference between sub-

threshold SRAM and 6T SRAM is that the read word line is distinct from the write word 

line. This 10T sub-threshold SRAM technique keeps the static noise margin (SNM) 

constant below threshold voltage in read access. SNM is the maximum amount of voltage 

noise that can be tolerated at the cross-inverters output nodes. The main disadvantage of 

this technique is the 66% area overhead compared to 6T SRAM. But due to the constant 

SNM, the design has more bit cells in a bit line.  

Kulkarni, et al. [6], proposed modified Schmitt-Trigger-based 10T SRAM with 

feedback mechanism. The proposed SRAM cell focused on making the basic inverter pair 

memory cells robust. In the low voltage mode, the cross-coupled inverter pair loses its 

write and read stability. The Schmitt-trigger increases or decreases the switching 

threshold of an inverter depending on the direction of the input transition using feedback 

mechanism. Therefore, in the low voltage mode, it is expected that the threshold voltage 

will decrease. The basic structural difference between Schmitt-trigger and a normal 

inverter is the feedback loop in both pull-down and pull-up network, which requires six 

transistors instead of two transistors in the inverter circuit. They used feedback only in 

pull-down network, as the pull-up network is normally operative in the low voltage mode 



  17 

to hold the ‘1’ state. So, in the place of a 6T SRAM cell, they proposed a 10T SRAM 

cell. The main advantages of this design are better read and write stability in the low 

voltage mode even at 160 mV. It becomes more tolerant to process variations. The 

proposed ST bit cell operates at 175 mV lower supply voltage than the 6T cell in same 

(10-3 FIT) read and write failure rate. The ST bit cell based cache causes 60% longer 

access time than 6T to keep the read operation stable. It requires about 2X area compared 

to 6T SRAM. However, the size and latency of the cache that uses Schmitt Trigger will 

significantly increase compared to cache that uses 6T SRAM.  

2.3 Coding Techniques         

Coding techniques detect and correct errors of SRAM cells by using error 

detecting and correcting codes (ECC). Yoon, et al. [9], proposed a two-tiered error 

correction and detection scheme, which stores the redundant information in low cost off 

chip DRAM instead of storing in SRAM. In this scheme, interleaved Tier-1 (T1EC) error 

detection code (a parity-based error detection code) is stored in a fixed place of last level 

cache. High-level Tier-2 (T2EC) ECC code (SECDED or Hamming ECC) is also stored 

in the memory system as addressable data instead of storing in every cache line. Thus, the 

error correction T2EC code can be cached in the Last Level cache (LLC) and eventually 

stored in low cost off chip DRAM. When a cache line is read from the LLC (writing data 

in L1 cache or write back in L2), the T1EC is used to detect errors. If an error is detected, 

correction is performed by T2EC, stored in on-chip register T2EC_base. The T2EC array 

and redundant information are stored in DRAM to correct data. At the same time of 

writing to the LLC, the T1EC is computed and stored in the T1EC portion of the cache 
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line. T2EC is only computed for dirty lines that are written back into the LLC from a 

previous-level L1 cache. This newly generated T2EC is mapped to a cacheable DRAM 

address, and if this T2EC address is already in the cache, it is updated with the newly 

computed T2EC. If the T2EC address is a cache miss, a line is allocated in the LLC and 

populated with the relevant T2EC information.  

The main advantage of this technique is the use of DRAM to store ECC (T2EC) 

instead of storing it in costly SRAM. In this technique T1EC is stored in SRAM but 

T2EC is stored in DRAM as EDC takes only 2.4% storage overhead. The redundant data 

to fix errors is stored in DRAM, which reduces area overhead of SRAM. The DRAM 

access latency is high compared to SRAM. The DRAM access latency is 60-120ns, 

whereas the SRAM access latency is 5-24ns.  

  Yoon, et al. [10], proposed another two-tiered error protection scheme based on 

ECC FIFO. The difference between these two schemes is the Memory-Mapped ECC 

(MME) stores T2EC code as cacheable data in LLC, while ECC FIFO does not store any 

T2EC information in SRAM. Instead, when T1EC detects any errors, the T2EC 

redundant information is read and decoded from the T2EC FIFO allocated in DRAM. 

The T2EC FIFO is then searched starting from the newest entry until a matching tag is 

found and the redundant information can be retrieved for that detected error. When a data 

is written in the LLC from DRAM, a T1EC is encoded and written along with the data 

into the LLC. A T2EC is encoded only when a dirty line is written into the LLC from the 

write back L1 cache. The encoded T2EC is combined with the tag, which is a pointer to 

the corresponding physical data line in the LLC. A tag is composed of the set number and 
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the way number of the cache line so that the T2EC can later be associated with a detected 

error. When a data line is read from LLC and the T1EC detects an error, T2EC FIFO is 

searched to find the tag for that line to find the redundant ECC data. It is possible to use 

better error detection and correction schemes (such as SECDED) in T1EC in both ECC 

FIFO and MME schemes, but it requires more area overhead. Overall performance 

degradation of using ECC FIFO is similar to MME. MME increases DRAM traffic less 

compared to ECC FIFO.  

Chishti, et al. [3], proposed multi-bit segmented ECC (MS-ECC) to address 

persistent and non-persistent failure, and to improve cache lifetime reliability at low 

voltages. MS-ECC corrects bits using majority voting by implementing an Orthogonal 

Latin Square Code (OLSC) [11]. In the low voltage mode, the cache is divided into data 

ways and ECC ways at different granularities depending on the required reliability level. 

Each data way and ECC way is again sub-divided into multiple segments and stores the 

ECC for each segment in the corresponding ECC way. For example, the paper uses 64-bit 

segments, so each 64B cache line contains eight segments. There are separate ECC 

decoders and encoders for each of the eight segments that decode and encode segments in 

parallel by using information from both the data and ECC ways. On a read hit, both the 

data line and the corresponding ECC line are fetched and decoded in segments. The 

decoded segments are then concatenated to obtain the entire 512-bit line. On a write hit, 

the ECC of the data line is obtained from the ECC encoder. Then the new data is written 

to the data line and the new ECC is written to the corresponding ECC line. As both the 

data way and the ECC way need to be accessed simultaneously, this mechanism requires 
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doubling the bus width. The disadvantage of the MS-ECC is the cost of OLSC stored in 

SRAM. In the worst case, OLSC may occupy half of the cache area to correct 4 bits per 

segment in a 64B line. 

Sadler, et al. [12], proposed Punctured ECC Recovery Cache (PERC) that fetches 

the error correction bits from PERC to the L1D cache after errors are detected. This 

scheme tolerates more errors than ECC (L1)/ ECC (L2) with slightly better performance 

and lower power. In this scheme, error codes add r check bits to each k-bit piece of data 

to create n-bit (n=r+k) code words that contain information redundancy. The r check bits 

are divided into punctured error detection bits rd (EDCp) and punctured error correction 

bits rc (ECCp). For the L1D cache, the rc bits are stored in PERC. For the L2 cache, the 

error detection and correction codes are stored as non-punctured code ECCnp in the L2 

cache. The number of EDCp and ECCp bits determines number of possible errors that 

could be detected and corrected. The punctured cache has a similar number of frames and 

set associativity as the L1D cache. Each data word in the L1D cache has corresponding 

ECC bits in PERC. The main advantage of this scheme is that error correction is possible 

without storing ECC bits in the expensive L1D cache. The access latency in PERC is 

only 1% higher compared to an unprotected cache. Compared to other ECC schemes 

(SEC, DEC, TEC, QEC), PERC gives higher bit error correction at the same latency. 

This scheme does not require extra bandwidth between the L2 cache and the L1D cache. 

But this scheme has an overhead of one bit per word in the L1D cache. It also requires 

the PERC structure to store ECC for the L1D cache.      
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Kim, et al. [13], proposed an area-efficient non-uniform error protection scheme 

for the L2 cache, which applies ECC in dirty lines and parity bits in clean lines. To 

reduce the number of dirty lines in the cache, they clean the dirty cache lines by 

periodically writing them back to main memory. Cache line cleaning is performed by the 

cleaning logic that includes a cycle counter and a latch storing the next cache set number. 

The cleaning logic checks cache lines belonging to the cache set number stored in the 

latch after a predefined number of cycles. The L2 cache has a parity-bits array for each 

cache way and one ECC array for all cache ways. As the write back in memory may 

increase bus memory traffic, they propose to determine the best dead time of the cache 

line to write in memory. This technique reduces area overhead by 59% compared to a 

normal ECC technique, but it increases memory latency by 1% compared to unprotected 

cache. 
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3. SPARE BLOCK CACHE ARCHITECTURE  

 In this chapter, we explain our proposed spare block cache architecture, cache 

failure probability model, and critical path delay. We design a cache controller that skips 

the faulty words, and shifts the data to the adjacent fault-free word position. We have 

added spare words to store the overflow of words. The critical path of our design has 

been estimated at low voltage mode with 16 spare blocks.   

 

Fig 3.1: A 4-way set associative cache 

We have proposed a cache architecture that can operate reliably at low voltage. At 

low voltage many SRAM cells fail to operate reliably. We have designed a cache that 

disables the faulty words and shifts the data to the adjacent fault-free word positions to 

repair the failing bits. We have designed cache access controller circuits. The cache 

access controller is designed using shifters. The shifters shift the word line data to the 

adjacent fault-free word that was configured to store at the faulty word location. The 

control circuit is used to connect the data word line with the next fault-free SRAM words. 

In Figure 3.1, we show a single set in a 4-way set associate cache. Each cache line has 4 

words. Therefore, in a cache set there are 16 words. In our design, we have used spare 

blocks to back up a cache set. Assume four spare words have been added to back up this 
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16-word cache set. In Figure 3.2, the nominal cache words are w0-w15, and the spare 

words are sw0-sw3. In our proposed technique, we have used “disable bit” to tag the 

words as faulty or fault-free. If the disable bit is ‘1’, then the corresponding word is 

faulty, similarly if disable bit is ‘0’, the word is fault-free. Figure 3.2 show the additional 

20 disable bits that have been used to tag the 20 words of this cache set.  

 

Fig 3.2: Faulty words and disable bits 

We assume there are four faulty words detected in the cache set. Figure 3.2 shows 

w1, w14, w15, and spare word sw2 as faulty. The faulty words are marked as ‘X’. In our 

approach, the data word lines are not connected directly to the SRAM word. Switches are 

used between SRAM words and data word lines to switch the data word line data to a 

fault-free SRAM word. Figure 3.3 illustrates word shifting. The design data word line0 is 

connected with word w0, while data word line1 is not connected with word w1, as word 

w1 is faulty. pMOS switches  connect the data word line1 with the next fault-free word w2 

and data word line2 stores data in word w3. The rest of the data word lines store data by 

shifting one word until another faulty word has been detected. Consequently, data word 

line12 has been stored in word w13. In Figure 3.3, we show that next two faulty are w14 

and w15. Data word line13 cannot be stored data at word w14 or w15, since those are faulty. 

Therefore, data word line13 stores data in the first spare word sw0, and the data word 
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line14 connects with sw1. The next data word line15 cannot store at the next spare word 

sw2, as this spare is also faulty, so it connects with spare word sw3. The faulty data word 

line is skipped, and data is stored in fault-free words. 

 

Fig 3.3: word shifting 

For the purposes of this example, we assume that every word has four SRAM bits 

(b00-b03). Therefore, there are four bit lines (bl0_0-bl0_3) in a data word line (data word 

line0). In Figure 3.4, we observe that a bit in word w1 is faulty (any of the bits b10 to b13). 

As we are disabling at a word granularity, we tag the whole word w1 as faulty. Therefore, 

the data word line1 connects to the word w2 instead of word w1, as w2 is the next fault-

free word. Similarly, data word line2 stores data in word w3 instead of word w2, as w2 has 

already been used by bits from data word line w1. Therefore, the bit line bl1_0 connects 

with the SRAM bit b20 instead of connecting with SRAM b10. Similarly, all other bit lines 

(bl1_1 to bl1_3) of data word line w1 store data using bits of word w2. This switching of 

connections is done by the pMOS gates.    
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Fig 3.4: Four consecutive words with faulty word w1 

In our approach, we focus on designing a reliable cache that operates at low 

voltage without sacrificing cache capacity significantly. The shifting mechanism employs 

a physical organization utilizing the sub-block disable technique [9]. However, we allow 

faulty cache blocks to reside in the next fault-free position. Once a faulty block is 

disabled, all blocks are displaced by at least one position. The cache is able to operate at 

low voltages by disabling and shifting words simultaneously into fault-free positions.  

Figure 3.5 presents an 8-way set associative cache with 16 spare words. In a 

traditional cache, every cache line has 16 words and a set of eight lines has 128 words. 

We add a spare block of 16 words to back up the 128 words. In our proposed 

architecture, a cache set has a total of 144 words. We use 144 extra bits to tag the words 

as faulty or fault-free. 
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Fig 3.5: Proposed cache architecture with spare blocks 

In the following sections, we describe the cache failure probability model and the 

architecture of our proposed spare block cache architecture. We have added spare words 

to back up a cache set to keep the cache set failure probability acceptable at low voltage. 

In the next section, we present the fault model of our proposed cache design. 

 

Fig 3.6: Cache set 

3.1. Cache Failure Probability Model 

 We developed a model to estimate the SRAM failure probability of our spare 

block architecture. We use the bit failure probability measured by Kulkarni, et al. [6]. We 

denote the failure probability of an SRAM cell as Pfail(b). The fault-free probability of a 
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cell is denoted by Pfail(b)  , where  Pfail(b) = 1 - Pfail(b). We divide the cache line at a 

word granularity. There are 32 bits in a word, and bit failures are independent of each 

other. The fault-free probability of an SRAM word is, Pfail(w)  , where  Pfail(w) = (1 - 

Pfail(b))32. In our design, we have implemented 32KB and 2MB 8-way set associative 

caches, in which each cache set has eight lines and each line has 16 words. Thus, a cache 

set has 128 words. The fault probability of a cache line and cache set can be expressed as, 

Pfail(l) and Pfail(s) respectively. Therefore, fault-free probability of a cache set is, Pfail(s)  

= (  Pfail(w) )128. If at least one bit cell fails to operate reliably, the cache set is treated as 

faulty. But, at low voltage some bit cells fail to operate reliably. Therefore, we tag a word 

as faulty if at least one bit cell in that word fails to operate reliably at low voltage mode. 

In our proposed cache architecture, we used spare words to back up a cache set. In our 

proposed fault probability model, we denote the cache set failure probability as Sfail(s). In 

our design, if one spare word is used, the cache set is fault-tolerant to one cache word 

failure. Here, after a faulty word has been found, all the words shift by one word position. 

The spare word stores the last word of the cache set. Thus using a number of spare words 

actually increases the fault coverage of the cache set. We have denoted the number of 

words in a cache set and spare words in a cache set as, Nw and Nsw respectively. Hence, 

with the spare block cache architecture, the cache set fault-free probability is, Sfail(s)  , 

where,  

Sfail(s)   =  
nNN

fail

Nn

n

n
failn

NN wsw
sw

wsw wPwPC
−+

=

=

+∑ )()(
0

   ………    (3.1) 
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We calculated both of the probabilities of availability of fault-free sets in the 

cache without any disable mechanism and with proposed spare block mechanism. We 

tried to estimate the acceptable failure probability of a cache set. Then we have estimated 

how many spare words need to be used to back up the cache set to achieve that cache set 

failure probability at low voltage. We have seen that if we use 16 spare words, we can 

operate the cache reliably at 485mV with acceptable cache set failure probability than a 

conventional cache operating at nominal voltage.  

In the equation 3.1, the fault-free probability of a cache set without any spare 

block is
wN

fail wP )( . However, when the spare block is added, the spare words back up 

the faulty words. Therefore, the number of acceptable faulty words can be less than or 

equal to the number of spare words. Thus using of number of spare words actually 

increases the fault-free probability a cache set. In our design, we use 16 spare words to 

back up a cache set.  

In the nominal condition when all of the words are fault-free, the cache set fault-

free probability for the spare block architecture is higher than the nominal cache set fault-

free probability without spare words (i.e. Sfail(s)  >  Pfail(s) ). The fault-free probability 

of our cache word is, 
1281

)()( sSwS failfail = , as there are 128 words in a cache set. 

Similarly, as there are 32 bits in a word, the bit fault-free probability of our proposed 

architecture can be described as, 
321

)()( wSbS failfail = . Hence, the bit failure probability 

is, )(1)( bSbS failfail −= . The bit failure probability of our proposed cache architecture is 
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lower than that of the nominal cache architecture without spare blocks (i.e. Sfail(b) < 

Pfail(b)) due to use of spare words.  

3.2. Cache Controller Architecture 

We have designed a cache controller to back up a cache set at low voltage. In our 

proposed technique, we detect errors in cache set using memory tests, and disabled at a 

word granularity. We add spare cache blocks to a conventional set associative cache. We 

designed serial shifter circuits to control the switching between SRAM words and data 

word lines. The pMOS gates are used as switches between SRAM words and data word 

lines. 
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Fig 3.7: Cache controller and pMOS switches between words and data word line 

In our architecture, data cannot be accessed directly by I/O lines to SRAM cells. 

In this design, the pMOS gates control the access to the SRAM. We have tagged the 
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words of a cache set by disable bits to indicate whether the word is faulty or fault-free. 

These disable bits are also stored in separate SRAM cells. The disable bits are used as 

control bits of the shifters. The output of the shifter is used as the controller of the pMOS 

gates that control 16 consecutive words. Between these 16 words, a maximum of one 

pMOS gate gets logic low ‘0’ from the shifter output. If one of these sixteen bits is logic 

‘0’, then the data can be stored in the corresponding word position controlled by the 

pMOS gate. Thus a word line can store in any of 16 consecutive word positions. The 

architecture of the conventional cache and the proposed spare cache is presented below. 

Figure 1.1 presents a 6T SRAM cell which is used in cache memory. In 

conventional design, every storage cell is connected with two column lines and one row 

line (I/O lines). Information is written into the cell and read out of the cell through the 

column lines and controlled by the row lines. The memory management unit (MMU) 

controls cache accesses. MMU includes a small amount of memory that holds a table 

matching the virtual addresses to physical addresses. We have presented a nominal cache 

set in figure 1.2. The memory is separated as following: index, tag, and offset bits. The 

table in which the address is stored is called the Translation Look-aside Buffer (TLB). 

All requests for data are sent to the MMU, which determines whether the data is in the 

cache. A read/write controller controls read and write operations in cache.  The address 

lines are usually tied to the memory system address bus, while the I/O data lines are tied 

to the data bus. The I/O lines are bidirectional. For write operations, the I/O lines carry 

the data to be written into the memory cells. For read operations, the lines carry the 

output of the memory cells. When the address is present in TLB, the index bits enable the 
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matched row. In read operations, tag bits of the line address are compared with the tag 

bits of the corresponding set in the cache. If any tag matches with the tag of a line, the 

corresponding data is selected by the multiplexer and data is sent to the data bus. Offset 

bits select the portion of data needed by the processor from the line by using a 

multiplexer. In write operations, the cache controller picks one of the set lines to store 

data using the cache replacement policy. 

In the conventional 8-way set associative L1 cache, there are eight lines in a set. 

Each line stores 16 words of data. Any of these 16 words can be selected by the offset 

bits. The match of tag bits selects the data line of a set. In our proposed design, we have 

tested all the words of the set and tagged by disable bits. Thus, in a set of eight lines of 

128 words, there are 128 disable bits. As described earlier at low voltage mode, as many 

cells start to fail, a spare cache block of 16 words is added. In our proposed design we 

also verified the 16 spare words and tagged them by disable bits. Thus 144 bits have been 

used as disable bits for a cache set. We have used these disable bits as control bits of the 

shifter.  

3.2.1 Serial Design for Cache Controller 

 We designed a shifter circuit to skip the faulty word position and move the data to 

next fault-free word position. At first, we design the shifter as a barrel shifter which 

controls all the pMOS switches between data word lines and SRAM words. The shifter 

also generates input for next shifter, which is the next word access controller of the set.  
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Fig 3.8: Serial Access for Cache Controller 

In Figure 3.8, we present a serial cache access controller of twelve words in a 

cache set. We added four spare words to back up the cache set at low voltage. Therefore, 

there are sixteen disable bits to mark the sixteen words as faulty or fault-free. The first 

shifter generates pMOS gate inputs to switch between first data word line wl0 and SRAM 

word w0. It also generates the output for second the shifter input. Each of the shifter 

inputs depends on the previous shifter’s output. Outputs from all the shifters are required 

to generate input of the sixteenth shifter. The timing overhead becomes crucial when 



  33 

there are many words in a cache set. In our conventional caches, there are 128 words in a 

cache set, and we add 16 spare words to back up the cache set. Storing the data in the 

144th word requires passing all the previous 144 shifters.  

Only using this shifter would significantly increase cache access latency. We 

design two other shifters (i.e., 1st and 2nd level shifters) that generate this type of shifters 

input in parallel. From here forward we are going to use “3rd level shifter” to describe the 

shifter we described in this section. We divide the disable bits into groups, and the first 

3rd level shifter of each group gets its input from the 1st or 2nd level shifters instead of the 

previous 3rd level shifter.        

3.2.2 Controller Implementation       

In our proposed cache architecture, we designed the cache controller with three 

types of shifter circuits. Those are defined as the 1st, 2nd, and 3rd level shifters. The output 

of the 3rd level shifter is used as the controller of pMOS gates to use as a switch between 

data word lines and SRAM words. We divide the 144 disable bits into 18 groups, where 

each group includes eight consecutive disable bits. The disable bits of a group are used as 

inputs to the 1st level shifter. Moreover, every disable bit is used as the control bit of a 3rd 

level shifter. Inputs of the first shifter of each group are initialized by the output of the 

prior 1st level shifter circuit.  
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Fig 3.9: Cache access controller with three types of shifters 

The design and operation of the cache access controller are demonstrated in 

Figure 3.9 with a small cache. The cache has 12 SRAM words and 12 data word lines in a 

cache set. In our proposed spare block cache architecture, we add 4 spare words to back 

up the cache set. The cache words are marked as faulty or fault-free with the disable bits. 

We assume that the 3rd, 5th, 10th, and 11th words are faulty and set the disable bit to ‘1’. 

We use the 3rd level shifters to control the data word line access to the SRAM words. The 

3rd level shifter is a barrel shifter, whose input is from the previous 3rd level shifter and 

the control bits are the disable bits. Thus, the sixteenth 3rd level shifter inputs depend on 
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the fifteenth 3rd level shifter output, the fifteenth 3rd level shifter input depends on the 

fourteenth 3rd level shifter output, and so on. As the third level shifters control the 

connection between data word lines and SRAM words, the inner SRAM words access 

require a lot of time. That significantly increases cycle time. Therefore, we design two 

other types of shifters that parallelize cache word access.  

We divide the 16-word cache set into 4 groups. There are four 3rd level shifters 

and their corresponding 4 disable bits in each group. In the first group, the disable bit 

sequence is 0010. Here, the third disable bit is ‘1’, which demonstrates the 3rd word is 

faulty. The 1st level shifter is designed such a way that it adds the number of ‘1’s in a 

disable bit group, which is eventually the number of faulty words found in a group. The 

output of the 1st level shifter is left-shifted according to the number of faulty words in a 

group. Therefore, the output of the first group 1st level shifter is 00010, and the output of 

third 1st level shifter is 00100 since the 1st and 3rd groups have one and two faulty words, 

respectively. The 2nd level shifter adds the number of faulty words found in a group and 

left-shifts the position of ‘1’. As an example, the first 2nd level shifter adds the number of 

faulty words of the 1st and 2nd group. The number of output bits of the 1st and 2nd level 

shifters depends on the number of spare words used in a cache set. Here 1st and 2nd level 

shifters output are five bits, as we have four spare words. Each word can be stored in any 

of five possible positions. The first 3rd level shifter of each group gets shifter inputs from 

1st or 2nd level shifter outputs and the remaining three 3rd level shifters get their inputs 

from the previous 3rd level shifter. Next, we discuss shifters and pMOS gates of our 

proposed spare block cache architecture. 



  36 

The 1st level shifter 

We have designed the 1st level shifter circuit as an eight input parallel left-shifter 

using domino gates. The shifter takes eight consecutive disable bits of a group as inputs 

and generates 16 bits as output. We used seventeen 1st level shifters for 144 disable bits. 

The last eight disable bits have been used only as the control bits of the corresponding 3rd 

level shifters. The working mechanism of the 1st level shifter is as an adder, but it is 

designed as a shifter. The output of the 1st level shifter is used as an input to the 2nd level 

shifter or directly to the 3rd level shifter. When the output of the 1st level shifter is used as 

the input to the 3rd level shifter, it is inverted. The logical equation of every bit of the 1st 

level shifter output is:  

P0 = (f0 + f1 + f2   …..+ f7)’,                                                                  .....             (3.2) 

P1 = f0 (f1 + f2 + ….. f7)’ + f1 (f0 + f2 + ….. f7)’ + ……. + f7 (f1 + f2 + ….. f6)’,   ….. (3.3) 

………………. 

P8 = f0 f1 f2 ….. f7,                                                                                  …              (3.4) 

and P9 to P15 is equal to zero, where f is the disable bit and P is the output bit of 1st level 

shifter. 
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Fig 3.10 Shifter design in cache controller with 64B lines and 16 spare words 
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   As an example, if all the words of a group are fault-free, the sequence of eight 

disable bits is ‘00000000’. Hence, the output of the 1st level shifter is sixteen bits long, 

‘0000000000000001’. Number of 1’s in the disable bits string of a group determines how 

many faulty words were found in the group and how much the output would shift left. As 

an example, if the disable bit string is ‘10111001’, there are five faulty words and the 

output is left-shifted by five positions as ‘000000000100000’. In the proposed design, the 

output of 1st level shifter is inverted while being used as an input to 3rd level shifter. 

However, the output of the 1st level shifter is un-inverted while being used as an input to 

the 2nd level shifter. 

The 2nd level shifter 

In our proposed technique, we have designed the 2nd level shifter using domino 

gates. As mentioned earlier, the adders are designed as a shifter circuit but they generate 

output as an adder. The input of the 2nd level shifter is either from two 1st level shifter 

outputs, or both 1st and 2nd level shifter outputs, or two 2nd level shifter outputs. The two 

inputs of the 2nd level shifter are strings of sixteen bits, where any one of the sixteen bits 

could be one. The position of ‘1’ from least significant bit determines the number of 

faulty words found in the previous level (if input is ‘0000000000010000’, there are 4 

faulty words found). 2nd level shifters add the number of the faulty words found from the 

previous stages. The output bits of the 2nd level shifters can be described by: 

 RN = ∑n=0 n=N-1 P1n. P2.(N-n),                  ….          (3.5) 
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where, RN is the output bit number, P1n and P2(N-n) are the two input bit numbers. The 

output of the 2nd level shifter is used as an input to either of the 3rd level shifters, or to the 

2nd level shifter. The output of the 2nd level shifter needs to be inverted when it is used as 

the input to the 3rd level shifter. 

 Let the output of two 1st level shifters be ‘0000000000001000’ and 

‘0000000001000000’. There are three and six faulty words in these two groups, 

respectively. Hence, the outputs of the two 1st level shifters get added by the 2nd level 

shifter. Thus, the output of the 2nd level shifter is ‘0000001000000000’, where the ‘1’ is 

left-shifted by nine positions. If this output is used as the 3rd level shifter input, then it is 

inverted to ‘1111110111111111’. The un-inverted output is used as an input to the 2nd 

level shifter. 

The 3rd level shifter 

In our proposed technique, the 3rd level shifter works as a barrel shifter, in which 

the disable bit is used as the control bit. We have used this shifter as the control circuit to 

connect between the bit line and the SRAM cell. We divided the disable bits into eighteen 

groups. The first 3rd level shifter of each group gets its inputs from the 1st level or 2nd 

level shifters via an inverter. Otherwise, the rest of the 3rd level shifters receive inputs 

from the previous 3rd level shifter outputs. The shifter generates two types of outputs: one 

type is used as input to the next 3rd level shifter, and the other is used as control bits for 

the gate inputs of pMOS to access the SRAM cells. 
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Fig 3.11: Three bit 3rd level shifter circuits 

The first 3rd level shifter outputs of the first group can be denoted as D0, and SO0, 

where D0 is the pMOS gate control input and SO0 is the shifter output. The logical 

equation of the pMOS gate control input (D0) for the first 3rd level shifter of the group 

can be expressed as,  

D0
 = 0

0 SIF  + F0. (1111111111111111),                                   ….                        (3.6) 

where, F0= first disable bit, SI0 = the first 3rd level shifter input of the first group. Table 

3.1 presents the truth table of the 3rd level shifter circuit. 
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Table 3.1: Truth table for 3rd level Shifter Circuit 

Disable 
bit 

Shifter 
Input(SI)  

pMOS gate control 
input (D) 

Shifter 
Output(SO)  

0 Q Q Q 
1 Q All 1 1 left shifted Q 

 

In the conventional design, a direct connection is possible between SRAM words 

and data word lines, as a word can be stored in only one position. However, in our 

design, a word can be stored in any of 16 consecutive word positions. In Figure 3.11, the 

3rd level shifter output ‘D’ is used as the pMOS gate control bit to access the SRAM cell. 

The 3rd level shifter input (SI) represents the number of faulty words found in all previous 

word positions. The disable bit (F) represents if this word is faulty (1) or fault-free (0). In 

Table 3.1, if the disable bit is ‘0’, the shifter output (SO) is the same as the shifter input 

(SI); and if the disable bit is ‘1’, the shifter output (SO) is left-shifted by one. 

Furthermore, if the disable bit (F) is ‘0’, the pMOS gate control input (D) is same as the 

shifter input (SI), and if the disable bit (F) is ‘1’, the pMOS gate control input (D) is all 

ones. In Figure 3.11, we show a three-bit 3rd level shifter circuit. If the disable bit (F) is 

‘0’, the transmission gates TD00, TD01, and TD02 are ‘ON’ and shifter inputs SI0, SI1, and 

SI2 connect with pMOS gate control input D0, D1, and D2. Also when the disable bit (F) is 

‘0’, the shifter output (SO) is same as shifter input (SI). If the disable bit is ‘1’, 

transmission gates TD10, TD11, TD12, TS10, TS11, and TS12 are ‘ON’, pMOS gate control 
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input, D0, D1, and D2 are set to ‘1’, and the shifter input (SI) is left-shifted by one position 

in the shifter output (SO).    
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Fig 3.12: Small spare block cache architecture with 3rd level shifters 

3rd level shifter and SRAM cell access example 

Figure 3.12 presents a small spare cache architecture where the cache has four 2-

bit words. Two 2-bit word spare blocks are used to back up the 4-word cache, so six 

disable bits are required to tag the cache words. For example, we need to store four words 

of two bits (10), (00), (01), (10) in the data word line sequence of I0, I1, I2, I3 in the cache 
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with the disable bit sequence of 0, 1, 1, 0, 0, 0. Initial input to the shifter is SI2 SI1 SI0 = 

110, where the LSB is SI0 = 0. Since the first disable bit is ‘0’, the first word pMOS 

control input (D) is equal to the shifter input 110. Therefore, the first word’s pMOS gates 

get a ‘0’ input and get turned ON, and data in first data word line I0 is stored in the first 

cache word w0. The first shifter output (SO) stays same as shifter input (SI). The second 

disable bit is ‘1’, so second shifter output (SO) is left-shifted to 101. The pMOS gate 

control bits (D) are set to all 1’s, i.e., 111. Therefore, no data is stored in O1 as the pMOS 

gates are turned off. The next word is also faulty, so a similar condition will arise, as the 

shifter output (SO) is left shifted (011) and the pMOS control bits (D) are all ‘1’ (111). 

The fourth word is fault-free so the shifter output and pMOS gate control bits are the 

same as the input ‘011’. Thus a connection between second data word line and fourth 

word SRAMs is created. This allows us to have data word lines I0, I1, I2, I3 store data at 

the w0, w3, sw0, and sw1 word positions.  
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Fig 3.13: SRAM cell access control across multiple cache sets 
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3.2.3 SRAM cells with control gates 

  In Figure 3.13, we present SRAM access control in our proposed spare block 

cache. The fifteenth 3rd level shifter controls the access to the 15th word. All SRAM bits 

are controlled by the same 3rd level shifter. The pMOS gates are used as a switch only 

once in each column of SRAM bits. The 3rd level shifter controls access to every word in 

the cache set. Every bit line in a data word line can store any one of the 16 SRAMs in any 

of 16 consecutive words. The drains of 16 parallel pMOS gates (p0 – p15) are connected 

with access transistors (m5) and the sources are connected with the bit lines 

0_00_15 BittoBit , respectively. Inverse bit-lines ( 0_00_15 BittoBit ) are similarly 

connected through parallel pMOS gates ( 150 ptop ). We used each of these 16 pMOS 

gates as switches between the bit lines and SRAM. The pMOS gates are controlled by the 

pMOS gate control input from the 3rd level shifter output (D). As an example, the source 

of pMOS p1 is connected with the first bit line (Bit14_0) of the 14th word. Similarly, pMOS 

1p is connected with the first inverse bit line ( 0_14Bit ) of 14th word. All SRAM cells of a 

column are connected to the same line. The access transistor m5 determines which 

SRAM stores the data through the switching of word line wl0 to wln. 

Example of SRAM Cell Access Control Across Multiple Cache Sets  

 In the conventional cache design, index bits are used to select a cache set. 

However, in our design, index bits select the disable bits in addition to the cache set. 

SRAM cell access is controlled by the pMOS transistor. Each word is controlled by the 

corresponding 3rd level shifter. The data word line is connected to consecutive 16 SRAM 
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words. The pMOSs are connected with all the SRAM cells at the same position in 

different indexes. In conventional SRAM, the access transistor is the only route to access 

an SRAM cell. However, in our design, any of 16 bit lines have access to an SRAM cell 

through pMOS gates. Figure 3.13 demonstrates that each bit SRAM can be accessed by 

16 bit lines through pMOS gates. As an example, the twentieth 3rd level shifter input (SI) 

is ‘1111111111111011’. As two faulty words have been found and twentieth word is 

fault-free, the eighteenth data word line is connected to the twentieth word position. All 

the SRAM cells of the twentieth word connect to the 18th word bit-lines at the 

corresponding positions through the pMOS gates. Therefore, pMOS gate control input is 

‘1’ at pMOS gates from p0 to p15 except p2. Gate p2 gets logic ‘0’ as an input, and will be 

“ON”. So word 2 is skipped and each word starting from word 2 is shifted by one word 

position. 
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Fig 3.14: Critical path of Spare block cache  
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3.2.4 Critical Path for Cache Access 

The longest path or slowest logic path in a circuit is called the critical path. The 

critical path of a cache is dependent on cache access during the read operation. The cache 

access is determined by index and tag bits of the requested physical address. When the 

data address is available, the index bits are used to activate the cache set that should 

contain the cache line. The cache is tagged by the physical address, and it requires 

translating the virtual address. In a conventional cache, tag access time is estimated to be 

longer than data access time due to comparator delay [17]. Therefore, the critical path in 

this model is during the tag access operation. In a set associative cache, when the address 

is available, the appropriate cache set is activated. This set is shared by all associative 

way-lines. In each way-line, the bit-lines will get the values of the cache block stored in 

that way. The sense amplifier detects transitions on the bit lines and produces logic values 

at the inputs to the output way multiplexor. The tag array is also divided into separate 

way banks, holding the tag information for the cache blocks in the corresponding data 

ways. All way banks in the tag array are probed in parallel to produce inputs to the n tag 

comparators. Tag comparators compare the stored tags to the tag bits of the address. The 

results of these tag comparisons are used to generate the select lines for the output way 

multiplexor on the data side. Once these select lines are available, the output way 

multiplexor will output the correct cache block onto the output data bus. The set-

associative cache introduces significant critical path delay because of the time to select 

lines from the tag comparators to the output multiplexer, the time to switch the 

multiplexer, and to provide the result on the data bus (Figure 1.2).  
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In our proposed technique, the critical path changes from the conventional cache 

design. Since the shifters consume significant time to operate, shifters have a significant 

effect on critical path delay. We estimate the critical path delay by computing path effort 

(F) and parasitic delay (P) using the method of logical effort [21]. The equations can be 

described as:  

Path effort: F = GBH        ……………….  (3.7) 

Stage effort: f = F 1/N         ………………. (3.8) 

Delay: D = N F 1/N + P      ………………. (3.9)                                                       

Here the path logical effort (G) is the products of the logical efforts of each stage 

along the path, and the path electrical effort (H) is the ratio between the output 

capacitance the path must drive and the input capacitance presented by the path. The path 

branching effort (B) is the product of the branching efforts between stages, and N is the 

number of stages across the path. In Figure 3.15 we show that there are six stages in the 

critical path of our shifters.  

In our proposed design, we read the physical address from the translation 

lookaside buffer (TLB) and use it to access the cache. The index will select the cache set 

and disable bits. The 1st level shifter operation starts when the disable bit line is selected 

and shifters get disable bits for that cache set. However data and tag access start in 

parallel with shifter operation. In order to access SRAM, 3rd level shifters need to provide 

pMOS gate input. Hence, the bit line is unable to store or fetch bits from the SRAM cells 

before the pMOS is turned ON. The pMOS transistor is controlled by the output of 3rd 
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level shifter. We have designed 1st and 2nd level shifters with domino gates instead of 

static gates to minimize the number of transistors used.  

The 1st level shifter is an 8-bit input, 16-bit output adder. We computed maximum 

effort and parasitic delay of all output bits to estimate the logical effort and delay of the 

shifters. Therefore, the logical effort and parasitic delay of 1st level shifter is: G1 = 9/3, 

and P1 = 73/3 (Figure 3.15). 
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Fig 3.15: Critical path of the cache controller 

The 2nd level shifter is also a 16-bit input, 16-bit output adder. The logical effort is 

equal to all output bits, g0 = g1 = ………. = g15 = 3/3, however, the parasitic is different 
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for all output bits. Hence the maximum parasitic is pmax = 49/3. Therefore, the logical 

effort and parasitic delay of the 2nd level shifter is G2 = 1, and P2 = 49/3.  

We have designed the 3rd level shifter with transmission gates, where each of the 

shifters controls 16 pMOS gates. In our design, the 3rd level shifter gets its input from the 

previous 3rd level shifter of that group through only one transmission gate. The 2nd level 

shifter provides the input to the first 3rd level shifter of a group. Therefore, reaching the 

last 3rd level shifter of a group requires passing 8 transmission gates. Each of these 

transmission gates controls 32 pMOS transistors. Each pMOS controls an SRAM cell. 

Hence, we have assumed total load driven by the last 2nd level shifter is 128 pMOS 

transistors. If we assume that the width of pMOS is twice that of nMOS width (C) due to 

mobility, the total pMOS load will be 256C [21]. 

In Figure 3.15, we show that there are six stages in the critical path of the cache 

controller. The longest logical path starts from the fifth 1st level shifter, which takes 8 

disable bits from 40 to 47 as inputs, and generates outputs that are used as inputs for the 

2nd level shifter. After crossing five 3rd level shifters, the 136th 3rd level shifter gets inputs 

and generates pMOS gate inputs. In a conventional cache design, the critical path delay is 

17.4 FO4 [17]. In our design the delay can be estimated by path effort, G = 3, branch 

effort, B = 9, electrical effort, H = 256 / 9. Therefore, path effort, F = GBH = 256 

Thus, the Delay is: D = N F 1/N + P = 121.12  

We can convert the delay to FO4 unit by dividing by 5 [17, 21]. The Delay is, therefore, 

D = 121.12/5 = 24.22 FO4 
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We use FO4 as the delay unit since FO4 is a process-independent delay unit. One 

FO4 is the delay of an inverter, driven by an inverter 4 times smaller than itself, or 

driving an inverter 4 times larger than itself. Our spare block cache architecture delay is 

24.22 FO4, which means that our circuit requires 24.22 more time to drive compared to 

an inverter.  

In our design, we observe that the main contribution in delay is from the parasitic 

components. The parasitic is much higher in static gates compared to domino gates. 

Therefore, we chose to design shifters using domino gates. 
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4. OVERHEAD AND FAULT COVERAGE 

4.1 Hardware overhead 

 We designed a cache access controller for our proposed spare block cache 

architecture. The size of the access controller is independent of the cache size. We used 

three types of shifters and pMOS gates to design the cache access controller. We use 

disable bits to mark whether the word is faulty or fault-free. The disable bits are used as 

the input to the shifters. The shifters generate pMOS gate control signals to switch 

between bit lines and SRAM bits. We also used sixteen words to back up the faulty 

words in each cache set in low voltage mode. It takes 144 SRAM cells to store disable 

bits to mark the faulty words in each cache set. This is equivalent to adding 16.0156% 

extra SRAM words in each cache.  

Table 4.1: Transistors and Overhead of proposed technique in L1 and L2 cache 

 
 

Source Transistors Number of times used total(32KB) Total(2MB)
1st level shifter 2474 17 42058 42058
2nd level shifter 304 28 8512 8512
3rd level shifter 130 144 18720 18720
pMOS at interconnect 32 4740 151680 151680
Valid bits 864 64(32KB), 4096(2MB) 55296 3538944
Back up words 3072 64(32KB), 4096(2MB) 196608 12582912

472874 16342826
Conventional Cache set 24576 64(32KB), 4096(2MB) 1572864 100663296

30.06 16.24

Total transistors in overhead

Overhead(%)  

Table 4.1 describes the estimated overhead at the transistor level for our proposed 

cache design. We used domino gates to design the shifters. Each 1st level, 2nd level, and 
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3rd level shifter required 2474, 304, and 130 transistors to design, respectively. The total 

overhead is the overhead of all the transistors we added to our design. The percentage 

overhead is the ratio between the number of extra transistors in our design and the 

number of transistors in a conventional SRAM cache. We note that in Table 4.1, the 

overhead is about 30% in a 32KB cache and 16.24% in a 2MB cache. The overhead 

percentage decreases significantly as the cache size increases. This shows that our 

proposed architecture is scalable. 

 We also implemented our technique in a 6MB L3 cache. It is important to note 

that the high level cache access is different in our design. In a low level cache, we store 

the data of faulty words to the next fault-free word of the same or the next cache line. But 

in a high level cache, we store the faulty words directly to the spare block words. Thus, 

the selected cache line, spare block words, and the disable bits are activated only when 

the tag matches. We have used a sequence of OR gates, comparators, and MUXs to 

generate the disable bit sequence for the 3rd level shifter inputs to the spare blocks for the 

selected cache line. In a high level cache design, the main drawback of this technique is 

the increase in the cache access latency. We have computed the transistor overhead 

increases by 16.87% in a 6MB L3 cache with our design.  

4.2 Cache Failure Probability Model 

We implemented the cache failure probability model of our design in GCC. We 

used the high precision C library, GMP, to evaluate the fault coverage at low voltage. We 

use the high precision library GMP to measure the failure probability accurately with a 

32-bit processor. The bit failure probability is computed by using the failure probabilities 
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for different voltages between 782mV and 405mV [1]. We simulated the fault model for 

8 and 16 spare blocks per cache set, and evaluated the results for a 32KB L1-data and 

2MB L2-unified cache.  

Table 4.2: Cache set failure probability for the spare block cache architecture 

  
Base 

Cache Set 
Failure, 
Pfail(s) 

With 8 spare 
word per set 

With 16 spare 
word per set 

Vcc 
(mV) 

Bit Failure, 
Pfail(b) Sfail(s)_8spare Sfail(s)_16spare 

405 1x10-2 1 1 1 
485 1x10-3 9.83x10-01 0.029 3.411x10-06 
55 1x10-4 3.36x10-01 8.062x10-10 1.33x10-21 
605 1x10-5 4.01x10-02 1.134x10-18 1.925x10-38 
655 1x10-6 4.09x10-03 1.173x10-27 1.398x10-53 
702 1x10-7 4.10x10-04 1.177x10-36 1.3831x10-65 
743 1x10-8 4.10x10-05 1.178x10-45 1.383x10-77 
782 1x10-9 4.10x10-06 1.178x10-54 1.384x10-89 

 

Table 4.2 presents the cache set failure probability with eight and 16 spare words. 

Our simulation results show that the failure probability of the cache sets without using 

any spare block is 4.10x10-06 at 782mV, 9.83x10-01 at 485mV, and 1 at 405mV. The bit 

failure probability at 782mV is 1x10-9. Below this voltage, bit failure probability 

increases. With this bit failure the cache set failure probability is found 4.1x10-06. 

Therefore we can assume that the tolerable failure probability of the cache set is less than 

or equal to 4.10x10-06.  Our design directly affects the cache set failure probability as we 

use spare blocks to back up the cache set. We also note that the cache set failure 

probability increases as the voltage decreases due to increase of bit failure probability. 
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Also note from Table 4.2 that eight spare words per cache set result in a failure rate of 

1.18x10-54 at 782mV, and 8.06x10-10 at 550mV. We conclude that if we use eight spare 

words in each cache set, we can operate the cache at around 550mV with an acceptable 

cache set failure probability. If we use 16 spare words, we can operate at 485mV with set 

failure probability of 3.41x10-06, which is slightly better failure rate than a conventional 

cache design at 782mV.  

 

Fig 4.1: Voltage vs. Cache Set Failure Probability 

Figure 4.1 shows the voltage vs. cache set failure probability. The X-axis of the 

graph is the failure probability of a cache set, and the Y-axis represents the operating 

voltage. We note that the spare block design results in a cache set which has higher fault 

tolerant behavior at a voltage below 500mV.  

We evaluate the cache failure probability of 32KB and 2MB 8-way set associative 

caches. Each cache set has eight lines in each set. In each line there are 16 words, so each 
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set has 128 words. Thus, a 32KB cache has 64 sets and a 2MB cache has 4096 sets. We 

have evaluated the failure probability of these two types of caches with 8 and 16 spare 

blocks. The simulation results show that both of these caches can reliably operate reliably 

around 550mV and 485mV when 8 and 16 spare blocks are used, respectively. We 

plotted three graphs of the cache failure probability at different configurations: the 

nominal cache without any spare blocks, with eight spare blocks, and sixteen spare 

blocks. The cache failure probability is calculated from bit failure probability at different 

voltages [1]. A horizontal dotted line is drawn from the point where the nominal cache 

can operate reliably. We used that line as the margin of acceptable cache failure 

probability. So, the intersection point of the dotted line and a plotted graph represents 

acceptable voltage for the given configuration. The cache failure rate is acceptable at 

485mV when 16 spare words are used and at 530mV when 8 spare words are used.  

 

Fig 4.2: 32 KB cache failure probabilities at different voltages 
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 Figures 4.2 and 4.3 show the 32KB and 2MB cache failure probability at different 

voltages. It indicates the baseline 32KB cache failure probability is 2.62x10-4, and the 

baseline 2MB cache failure probability is 1.66x10-2 at 782mV. The horizontal dotted line 

denotes the acceptable limits for reliable cache operation. The notation 32KB_6T denotes 

a 32KB L1 data cache with conventional design. 32KB_8Spare and 32KB_16Spare 

denotes a 32KB L1 data cache with 8 spare words and 16 spare words, respectively. The 

horizontal dotted line intersects the 32KB_8Spare graph at 530mV, and the 

32KB_16Spare graph at 485mV. This line shows that our 32KB L1 designs can operate 

reliably at 530mV and 485mV. 

 

Fig 4.3: 2 MB cache failure probabilities at different voltages 

 Figure 4.3 describes the 2MB cache failure probability at different voltages. The 

notation 2MB_6T denotes a 2MB L2 unified cache with conventional design. 

2MB_8Spare and 2MB_16Spare respectively denote a 2MB L2 cache with 8 spare words 
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and 16 spare words. The horizontal dotted line intersects the 2MB_8Spare graph at 

530mV and 2MB_16Spare graph at 485mV. This line shows that our 2MB designs can 

operate reliably at 530mV and 485mV. 
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5. PERFORMANCE AND POWER EVALUATION 

 We evaluated our spare block cache architecture using six benchmarks and 

compared the results with a nominal 6T SRAM cache and with the Bit-Fix mechanism. In 

this section, we present the experimental results of our proposed cache design. Section 

5.1 presents our simulation methodology. The performance impact of our design and the 

tradeoffs involved in choosing cache parameters at each cache level are described in 

Section 5.2. Section 5.3 compares our design with the 6T SRAM nominal cache and the 

Bit-Fix mechanism in terms of area overhead, power consumption, and energy efficiency.  

5.1 Simulation Methodology 

 We used the cycle-accurate SimpleScalar simulator [22]. We simulate an out-of-

order processor core with two-level cache memory hierarchy and a 20-stage pipeline. The 

fetch, decode, and issue width of the processor is eight instructions per cycle, and 

memory access width is sixteen bytes. The size of the Register Update Unit (RUU) is 256 

instructions and issue width is eight instructions per cycle. In order to quantify the 

relative performance loss as a result of higher cache latency and smaller cache size, we 

also simulated a defect-free reliable baseline cache. The (unrealistic) baseline cache has 

no latency overhead or capacity loss at the nominal voltage. In order to simplify our 

discussion, we fix the low voltage at 485mV instead of using a different voltage for each 

mechanism. In our experiments, we simulated six different benchmarks. We use 

instructions per cycle (IPC) as the performance metric. We normalize the IPC of each 
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category to the baseline to show relative performance. We evaluated our cache in such a 

way that our cache size plus overhead is equal to the size of the conventional cache. Thus 

the effective size of our cache is less than the effective size of the conventional cache. 

Chapter 3.2.4 presents the critical path delay estimation by which we calculate the 

increase in cache access time in our design. The cache access time of our design is 1.3 

times greater than the conventional cache. We evaluate our design in L1 and L2 caches 

separately and in a combined fashion (in both L1 and L2 cache). The L1 instruction cache 

is not affected in all our experiments. When we evaluate our design in only the L1 or L2 

cache, we use the conventional design of the other cache (L2 or L1).  

Table 5.1: Baseline processor configuration 

Voltage Dependent Parameter 
  High Vol. Low Vol. 
Memory Access latency     
L1 Data 3 cycle 4 cycle 
L2 Data 20 cycle 26 cycle 
Cache ways     
L1 Data cache 8 ways 5 ways 
L2 Unified cache 8 ways 7 ways 
Voltage 782mV 485mV 
Voltage independent Parameter 
Fetch/schedule/retire width 8/8/8 Byte/word 
Branch Prediction Type Comb (bimodal & 2-level) 
Memory Access latency 400 cycles 
Memory Bus Width 16 bytes 
Number of Integer ALU 6 
Number of Floating Point ALU 6 
Pipeline Length 20 
Cache line size 64 bytes 
L1 Data Cache 32KB, 8 ways,3 cycles 
L2 Unified cache 2MB, 8 ways,20 cycles 
Number of instruction skipped 100 million 
Number of instruction executed 50 million & 100 million 
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5.2 Performance  

 In this section, we compare the performance of our cache with a conventional 

cache at nominal voltage. Table 5.1 shows the baseline processor configuration. We 

normalized our data to baseline processor performance. As a base configuration, we use 

an 8-way set-associative 32KB L1 data cache and a 2MB unified L2 cache. The hit 

latency for the nominal L1 data and L2 unified cache is 3 cycles and 20 cycles, 

respectively. The critical path delay of our design is 1.3 times the delay of the nominal 

cache. The L1 data cache hit latency becomes 4 cycles, and the L2 unified cache hit 

latency becomes 26 cycles in our design. We have evaluated our design with six 

benchmarks: gcc, ijpeg, li, compress, vortex, and m88ksim from the SPEC95 benchmark 

suite. The area overhead is 30% and 16.24% respectively in the 32KB and 2MB cache 

using our spare block cache architecture. Therefore, we evaluate a 5-way L1 data cache 

and a 7-way L2 cache instead of 8-way for our design. This way reduction decreases the 

effective size of the 32KB L1 data cache to 22.4KB and the 2MB cache to 1.675MB. 

Figure 5.1, 5.2, 5.3, 5.4, and 5.5 describe performance of L1_spare, L2_spare, and 

L1L2_spare as we have implemented our design with L1 data cache only, L2 unified 

cache only, and both L1 and L2 cache, respectively.  
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Fig 5.1: Normalized IPC comparison in different benchmarks 

Figure 5.1 compares the instruction per cycle (IPC) of our cache with a 

conventional cache operating at nominal voltage. The figure shows that the maximum 

IPC decreases when the spare cache has been implemented in both caches. To quantify 

the performance of our cache we have normalized the IPC relative to the IPC of defect-

free conventional cache. It shows that if our technique is implemented in the L1 data 

cache, the IPC decreases by 3%. However, the IPC decreases 10% when our design has 

been implemented in the L2 unified cache only.  If we implement our design in both the 

L1 data and L2 unified cache, the IPC reduction is about 12%.  
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Fig 5.2: Normalized L1 data cache miss rate in different benchmarks 

 

Fig 5.3: Normalized L2 unified cache miss rate in different benchmarks 
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Figure 5.2 and 5.3 show the normalized cache miss rate for the L1 data, and the 

L2 unified cache. The L2 cache accesses increase about 2X in the ijpeg benchmark. 

However, the L2 cache miss rate does not increase much when the L2 cache size is 

reduced.  

Figure 5.4 shows that the L1 data cache access increases by 5% in our design. 

This increase is mainly because the L1 data cache has been reduced by 30% in our 

design. The effective cache size reduces to 70% of the nominal cache, and the cache 

becomes 5-way set-associative cache instead of 8-way. The cache miss rate increases 

more in the L1 data cache. Similarly, the L2 unified cache becomes a 7-way cache in our 

design, but the cache miss rate is almost the same as the nominal cache. 

 

Fig 5.4: Normalized L1 data cache access in different benchmark 

 In Figure 5.4, the L1 cache accesses are almost equal to the conventional cache 

accesses in all benchmarks except compress. Most instructions of this benchmark are in a 
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small loop with a very few branches. Therefore, when the L1 cache size decreases, it 

needs to access cache more to write the data more often. We can see in Figure 5.1 that the 

L1 cache miss rate increases significantly in the compress benchmark. In Figure 5.4, we 

show that the L1 cache accesses increase when we implement our design in both of the 

L1, and L2 caches (L1L2_L1d_spare) compared to when our design implemented only in 

L1 data cache. In Figure 5.5 we show the normalized L2 cache accesses. We observe that 

the L2 cache accesses increase when L1 cache failure rate increases.     

 

Fig 5.5: Normalized L2 unified cache access in different benchmark 
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Table 5.2: Conventional cache, Bit-Fix mechanism, and our proposed architecture in L1 

and L2 cache 

Scheme Vccmin (mV) Norm. 
cache area 

Norm. 
power IPC Norm. 

EPI 
Conventional 782 1 1 1 1 

L1d_spare 485(L1), 782(L2) 1.005 0.988 0.972 0.987 

L2u_spare 485(L2), 782(L1) 1.158 0.25 0.91 0.275 

L1L2_spare 485(L1), 485(L2) 1.162 0.239 0.881 0.262 

L1_bitfix 500(L1), 782(L2) 1.005 0.989 0.989 0.993 

L2_bitfix 782(L1), 500(L2) 1.325 0.273 0.991 0.276 

L1L2_bitfix 500(L1), 500(L2) 1.33 0.261 0.981 0.265 

 

 Table 5.2 presents the detailed comparison between our spare block cache at low 

voltage and a conventional cache at nominal voltage. We also implemented the Bit-Fix 

mechanism [1] and evaluated its performance with SimpleScalar. We normalize the area, 

power, IPC, and EPI results of each technique to the corresponding results of the 

conventional 6T cell-based cache. The lowest operating voltage (Vccmin) of our cache is 

485mV. However, the Vccmin is 782mV in the conventional cache. In order to estimate the 

power consumption, we assume that the dynamic power scales quadratically with supply 

voltage (i.e. power α voltage2) and linearly with frequency [1, 3]. We also assume that 

static power scales with the cube of supply voltage [1]. We have also assumed that the 

frequency is linearly proportional to voltage (frequency α voltage). Therefore, we have 

estimated the dynamic power as the cube of supply voltage. As an example, in the 
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scheme L1d_spare, the L1 data cache is operating at 485mV, and the L2 cache is 

operating at 782mV. The dynamic power of the L1 data cache is proportional to 0.4853, 

and the L2 cache is proportional to 0.7823. As the size of the L2 cache is 64 times larger 

than the L1 data cache, the total dynamic power for the L2 cache is 64 times that of L1 

cache. Therefore, we calculated total power as a summation of power for both caches 

operating at their own voltage. We normalize the cache power with the nominal L1 and 

L2 cache power operating at 782mV. We assume the leakage is an exponential function 

of operating voltage (Vcc) [1, 3]. We calculated the IPC as the geometric mean of all the 

benchmark’s IPC. We also assume that energy scales with the cube of supply voltage 

(energy α voltage3) operating at a fixed amount of time. We use the number of cycles to 

execute 50 million instructions to estimate time. We have found the operating frequency 

of the processor at different voltages measured by Wilkerson, et al. [1], and Chishti, et al. 

[3]. Thus, the energy is measured for the entire execution time. Energy per Instruction 

(EPI) is the average energy required to execute each instruction. Table 5.2 shows 

compared to the processor with the 6T cell-based cache, our design reduces the power 

consumption by 1% when it is implemented in the L1 data cache only, by 75% when 

implemented in the L2 unified cache only, and by 76% when implemented in both 

caches. Table 5.2 shows that the increase in cache area is lower in our design compared 

to the Bit-Fix mechanism. However, the cache access latency increases 1.3 times in our 

design compared to the conventional cache and Bit-Fix mechanism. Therefore, the total 

cycle requirement to execute 50million instruction is higher in our design, and the cache 

access latency of our design reduces the IPC.  
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6. CONCLUSION 

 Reducing the supply voltage is the most effective way to reduce power 

consumption in a microprocessor. However, reducing voltage is limited by large memory 

structures, such as caches, where many cells can fail at low voltage operation. As a result, 

voltage scaling is limited by a minimum voltage (Vccmin), below which some components 

of the processor may not operate reliably. We have proposed a cache architecture that can 

operate reliably at low voltages. Our evaluation shows that, at 485mV, our designed 

cache operates with an equivalent bit cell failure probability to a conventional cache 

operating at 782mV. 

We designed a novel spare block cache architecture that is power-efficient and 

requires less overhead compared to prior techniques. At low voltage, we skip the faulty 

word and move the data to an adjacent fault-free word position. We used spare words to 

store the overflow of words. The proposed cache can tolerate 16 faulty words in a cache 

set. The designed cache controller controls the cache word access. We have designed 

shifters that are used in the cache access controller to move the data to an adjacent fault-

free word position. The pMOS gates are used as a switch between the bit lines and 

SRAM bits. Our developed cache access controller is independent of cache size. Our 

optimized controller increases cache access latency by 30% compared to conventional 

cache access latency.  
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We proposed a robust design to tolerate failures at word granularity. Our designed 

3rd level shifter generates the pMOS gate input for all of the cache words. We have 

designed the 1st and 2nd level shifter to speed up generating the pMOS gate input. We 

used domino gates in designing shifters to decrease latency and overhead. Due to the 

added spare word blocks, the cache set failure probability improves at low voltage. We 

proposed a fault model to estimate the cache failure probability of our cache at low 

voltage. Our fault model shows that our proposed cache can operate at cache failure 

probability of 2.18x10-04 for 32KB L1 data cache and 1.39x10-02 for 2MB L2 unified 

cache at 485mV. This failure probability is better than a conventional cache operating at 

782mV. We implemented our cache in the SimpleScalar simulator. We have compared 

our design to a baseline using 8-way set associative 32KB L1 cache and 2MB L2 cache, 

and to the Bit-Fix mechanism.  

Our design increases the overhead relative to the baseline L1 and L2 caches by 

about 30.06% and 16.24%, respectively. Our estimation of critical path delay indicates 

that the critical delay of our proposed cache is 24.22FO4, which is 1.3 times the critical 

delay of the conventional cache (17.4FO4). Therefore, we estimate the cache access time 

is 1.3X larger than the conventional cache access time. The power consumption is about 

76% less than the conventional cache. The IPC decreases by 3%-12% for our cache 

versus a conventional cache.  

The efficient execution of multithreaded programs on future multi-cores requires 

fast cache operation at ultra low voltage. The current work can be extended to caches in  



  70 

 

multi threaded processors. In multi-threaded processor the cache access latency may have 

a more significant effect.    
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