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Abstract

A  new  mathematical  model  of  short-term  synaptic  plasticity  (STP)  at  the  Schaffer

collateral  is  introduced.  Like  other  models  of  STP,  the  new  model  relates  short-term

synaptic plasticity to an interaction between facilitative and depressive dynamic influ-

ences.  Unlike  previous  models,  the  new  model  successfully  simulates  facilitative  and

depressive  dynamics  within  the  framework  of  the  synaptic  vesicle  cycle.  The  novelty

of  the  model  lies  in  the  description  of  a  competitive  interaction  between  calcium-

sensitive proteins for binding sites on the vesicle release machinery. 

By  attributing  specific  molecular  causes  to  observable  presynaptic  effects,  the  new

model of STP can predict the effects of specific alterations to the presynaptic neurotrans-

mitter  release  mechanism.  This  understanding  will  guide  further  experiments  into

presynaptic functionality, and may contribute insights into the development of pharma-

ceuticals that target illnesses manifesting aberrant synaptic dynamics, such as Fragile-

X syndrome and schizophrenia.  

The  new  model  of  STP  will  also  add  realism  to  brain  circuit  models  that  simulate

cognitive processes such as attention and memory. The hippocampal processing loop is

an example of a brain circuit  involved in memory formation. The hippocampus filters

and organizes large amounts of spatio-temporal data in real time according to contex-

tual  significance.  The  role  of  synaptic  dynamics  in  the  hippocampal  system is  specu-

lated  to  help  keep  the  system  close  to  a  region  of  instability  that  increases  encoding

capacity and discriminating capability. In particular, synaptic dynamics at the Schaffer

collateral  are  proposed to  coordinate  the  output  of  the  highly dynamic CA3 region of

the  hippocampus  with  the  phase-code  in  the  CA1  that  modulates  communication

between the hippocampus and the neo-cortex.
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Preface

Computation  in  the  nervous  system  relies  upon  efficient  communication  between

neurons throughout the brain and body. The large distances and tight packing between

neurons requires a communication system that can rapidly transmit signals with mini-

mal loss and effective isolation.  Evolution has met this  challenge by discretizing neu-

ronal  signals  into  electrical  impulses  that  self-propagate  along  insulated  lines.  The

nervous  system  has  co-evolved  a  sophisticated  encoding  and  decoding  system  that

manages to work around the loss of resolution imposed by the signal discretization. A

longstanding  goal  in  neuroscience  has  been  to  decipher  the  spiking  code,  thereby

allowing  a  record  of  neural  computation  to  be  reconstructed  from  observable  spike

patterns. If achieved, this would enhance our understanding of how the brain performs

computations that enable the remarkable integration of sensory and motor functions, as

well as the many processes that we take for granted, but that still elude our understand-

ing [Abbott, 2008]. 

The  physiological  processes  that  are  engaged  in  spike  encoding  are  largely  under-

stood,  and  are  characterized  by  systems  of  differential  equations.  Spike  decoding,  on

the  other  hand,  has  yet  to  be  characterized  to  the  same  level  of  biophysical  detail,

primarily because of  the difficulty in  observing the cellular  processes involved.  How-

ever,  experimental  advances  have  begun  to  clarify  the  mechanisms  responsible  for

spike decoding,  making it possible to begin to accurately model the process.  
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Although details  of  spike decoding are only now starting to be understood, the pro-

cess  has  long  been  known  to  involve  neurotransmitter  diffusion  across  the  synaptic

junctions between neurons. Both the release and uptake of neurotransmitters are tightly

regulated  processes  that  systematically  alter  the  synaptic  gain.  It  appears  that  these

systematic  variations  in  synaptic  gain  are  the  phenomena  that  enable  the  decoding  of

information  in  spike  trains  [Abbott  and  Regehr,  2004;  Whitlock  et  al,  2006;  Durste-

witz,  2009;  Rotman  et  al,  2011].  The  release  and  uptake  of  neurotransmitters  can  be

modeled as separate, but interacting, presynaptic and postsynaptic systems.

In  the  postsynaptic  cell,  neurotransmitter  reception  regulates  synaptic  gain  on  long

time  scales  through  changes  referred  to  as  “long-term  plasticity”  (LTP)  [Lisman,

2009]. The dynamics of neurotransmitter reception are characterized by various kinetic

models, and can be approximated by simple functions [Destexhe et al, 1995]. Progress

has been made toward describing the modulation of neurotransmitter reception through

the coincidence of electrical and chemical activity in the presynaptic and postsynaptic

cells [Pawlak et al, 2010]. 

Variations  in  the  probability  of  presynaptic  neurotransmitter  release,  referred  to  as

“short  term  plasticity”  (STP),  are  a  form  of  dynamic  gain  that  does  not  permanently

change synaptic efficacy [Zucker and Regehr, 2002]. In recent years, new details of the

presynaptic  processes  responsible  for  neurotransmitter  release  have  been  reported

[Sudhof and Rizo, 2011], but these details have not yet been successfully incorporated

into a model of presynaptic spike decoding. This dissertation presents a new model of

STP that synthesizes the current understanding of neurotransmitter release as it applies

to spike-synchronous synaptic gain. The model we refer to as the “dual sensor competi-

tive interaction” (DSCI) model. 
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Variations  in  the  probability  of  presynaptic  neurotransmitter  release,  referred  to  as

“short  term  plasticity”  (STP),  are  a  form  of  dynamic  gain  that  does  not  permanently

change synaptic efficacy [Zucker and Regehr, 2002]. In recent years, new details of the

presynaptic  processes  responsible  for  neurotransmitter  release  have  been  reported

[Sudhof and Rizo, 2011], but these details have not yet been successfully incorporated

into a model of presynaptic spike decoding. This dissertation presents a new model of

STP that synthesizes the current understanding of neurotransmitter release as it applies

to spike-synchronous synaptic gain. The model we refer to as the “dual sensor competi-

tive interaction” (DSCI) model. 

The DSCI model of short term plasticity is used to address questions about presynap-

tic information processing, including whether short term plasticity filters spike patterns

that  convey  behaviorally  relevant  signal  expression  in  the  brain  (specifically  in  the

hippocampus).  In  addition,  this  dissertation  examines  the  effect  of  STP  on  the  input-

output function of a model excitatory neuron. Finally, this dissertation speculates upon

the  system-level  role  of  STP  in  the  hippocampus,  using  contextual  organization  as  a

paradigm for episodic memory formation.

It  is  anticipated  that  the  DSCI  model  will  advance  the  project  of  deciphering  the

neural  communication  code,  enabling  advances  in  neural  prosthetics  and  elucidating

how pathologies  such  as  alzheimers,  epilepsy,  schizophrenia,  and  fragile-X syndrome

disrupt neural processing. Furthermore, the DSCI model could be unified with postsy-

naptic  models  of  neurotransmitter  dynamics  to  examine  the  interactions  between STP

and  LTP,  thereby  fully  addressing  questions  about  spike  decoding  in  memory  forma-

tion and learning.
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C  H  A  P  T  E  R    1
Neural Systems

The brain  is  a  powerful,  adaptable,  and redundant  computational  engine [Hopfield,

1999; Haykin, 1999]. These characteristics of the brain are achieved through the distri-

bution of computations across vast networks of neurons [Kanerva, 1993; Chklovskii et

al,  2004;  Nelson  and  Turrigiano,  2008].  The  distribution  of  processing  in  the  neural

networks  of  the  brain  is  recognizable  on  at  least  three  scales.  At  the  highest  level,

distributed  processing  in  the  brain  involves  the  coordinated  interaction  between

regional  systems  that  perform  operations  such  as  multimodal  sensory  binding,  action

planning,  recollection,  and  recognition.  Consciouness  emerges  from  the  collective

behavior  of  the  regional  systems.  Within  a  region,  networks  of  microcircuits  with

specialized  neurons  perform  lower-level  operations,  such  as  constructing  unimodal

sensory  representations  from  elemental  configurations.  Finally,  computation  is  dis-

tributed  across  the  cellular  processes  of  individual  neurons  in  the  networks  of  the

microcircuits.  Section  1.1  introduces  the  general  intra-neuronal  level  of  processing,

followed in section 1.2 by the regional and inter-neuronal levels of processing specific

to the systems discussed in this dissertation. 

1
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1.1 Intra-neuronal systems

Computation at the scale of a single neuron is distributed across three main cellular

structures: the synapse, the dendrite, and the soma/axon. Synapses transform presynap-

tic  spikes  into  postsynaptic  potentials  (PSPs),  the  dendrite  integrates  and  filters  PSPs

from its  array of synapses,  and the cell  body (soma) generates spikes as a function of

the dendritic signal. Spikes are then transmitted by the axon to other cells. These three

subsystems  are  introduced  to  provide  a  context  for  the  model  of  short  term  synaptic

plasticity (STP) presented in chapter two. 

1.1.1 The synapse

Synapses are specialized zones between nerve cells wherein signals can be reliably

transmitted  through  the  extra-cellular  cytoplasm.  Synaptic  signals  are  transmitted

across a narrow cleft between the presynaptic and postsynaptic terminals via chemical

neurotransmitters that are exocytosed from tiny vesicles in discrete amounts, or quanta.

The  amplitude  of  the  postsynaptic  response,  R,  is  given  by  the  relation,  R � n p q,

where n is the number of quantal release sites, p is the vesicle release probability, and q

is the amplitude of the postsynaptic potential produced by a quanta of neurotransmitter

[Zador, 2001; Stevens, 2003]. 

The  probability  of  neurotransmitter  release  is  regulated  by  a  “release  mechanism”

that  consists  of  a  suite  of  specialized proteins  that  manipulate  the  electrostatic  energy

barrier  associated  with  lipidic  membrane  vesicle  exocytosis  [Rizo  and  Rosunmund,

2008;  Sudhof  and  Rizo,  2011].  Fig.  1.1  illustrates  the  main  features  of  the  synaptic

vescicle cycle, whereby neurotransmitter is packed, stored, and released.   

2
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The  probability  of  neurotransmitter  release  is  regulated  by  a  “release  mechanism”

that  consists  of  a  suite  of  specialized proteins  that  manipulate  the  electrostatic  energy

barrier  associated  with  lipidic  membrane  vesicle  exocytosis  [Rizo  and  Rosunmund,

2008;  Sudhof  and  Rizo,  2011].  Fig.  1.1  illustrates  the  main  features  of  the  synaptic

vescicle cycle, whereby neurotransmitter is packed, stored, and released.   

Figure 1.1. Illustration of presynaptic vesicle fusion and recycling.

The synapse is somewhat paradoxical in that it is a tightly regulated, yet probabilis-

tic system [Goda and Sudhof,  1997; Brunger,  2006; Branco and Staras,  2009].  The

probabilistic nature of neurotransmitter release might be partly explained by the inher-

ent difficulty of controlling the process of lipid membrane fusion [Jahn, et al, 2003].

However,  a  certain  amount  of  noise  can  be  advantageous  to  some  computations

[Mayor and Gerstner, 2004; Averbeck et al, 2006; Rolls and Deco, 2010], so it is also

possible  that  probabilistic  release  could  be  an  evolutionarily  conserved  feature  of

neurotransmission.  At  the  core  of  the  dual  sensor  competetive  interaction  (DSCI)

model, lies the proposition that synapses take advantage of the inherent stochasticity in

the subcellular environment to fine tune neural information processing.

3
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Vesicle fusion and release

Presynaptic  vesicle  fusion  is  synchronized  to  the  incoming  action  potentials  by  a

group  of  proteins  called  the  SNARE  (soluble  N-ethylmaleimide-sensitive  fusion  pro-

tein  attachment  receptor)  complex,  that  hold  neurotransmitter-containing  vesicles  in

close  proximity  to  the  presynaptic  plasma  membrane  at  the  active  zone  [Brunger,

2006]. At low calcium concentrations (as exists in the cell prior to an action potential),

the  SNARE complex  is  primed,  but  membrane  fusion  is  prevented  by  a  high-affinity

SNARE-binding clamp (either complexin [Brunger et al, 2009] and/or apo-synaptotag-

min  [Chicka  and Chapman,  2009]).  At  high  calcium concentrations  (as  elicited  by  an

action  potential),  the  clamp is  relieved  by  a  low-affinity  SNARE-binding  trigger  pro-

tein  (Ca-synaptotagmin)  that  catalyzes  membrane  fusion  within  500Μsec  of  calcium

entry,  thereby  synchronizing  neurotransmitter  release  with  action  potentials  [Yang  et

al,  2010].  The  DSCI  model  characterizes  STP  as  the  competitive  interaction  between

two isoforms of synaptotagmin that compete for access to binding sites on the SNARE

complex. 

Chemical neurotransmission

Neurotransmitters are mostly amino acids or monoamines, but there are also neuroac-

tive peptides that can be released in conjunction with the small molecule neurotransmit-

ters.  Two neurotransmitters, glutamate and Γ-aminobutyric acid (GABA), respectively

account  for  most  of  the excitation and inhibition in the brain.  Other neurotransmitters

are  used  for  various  purposes,  such  as  acetylcholine  for  activating  muscles,  and

dopamine for signaling reward. Neurons can be characterized by the neurotransmitters

that  they  release  (Dale’s  principle),  and  accordingly  there  are  various  systems  in  the

brain that generate specific neurotransmitters for signaling or modulation. The special-

ized  neurotransmitters,  including  dopamine,  serotonin,  norepinephrin,  acetylcholine,

and  several  others,  are  produced  in  specific  brain  regions  that  innervate  many  other

parts of the brain. Some specialized neurotransmitters modulate activity at synapses by

remaining  in  the  synaptic  cleft  for  an  extended  period  of  time  instead  of  getting

absorbed or broken down.    
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parts of the brain. Some specialized neurotransmitters modulate activity at synapses by

remaining  in  the  synaptic  cleft  for  an  extended  period  of  time  instead  of  getting

absorbed or broken down.    

Chemical  synapses  appear  to  have  been  adapted  from  more  primitive  structures

[Sakarya  et  al,  2007].  The  postsynaptic  process  has  a  number  of  conserved  proteins

that  originally  functioned as  chemosensors  in  sea  sponges  [Miller,  2009].  Presynaptic

systems  that  involve  vesicle  exocytosis  likely  co-evolved  with  chemosensors

[Frerking,  personal  communication].  Both  processes  are  ancient  and  fundamental  to

information  processing  important  for  organism  survival.  As  evidenced  by  a  general

increase in synaptic complexity that  trends with phylogenetic complexity [Emes et  al,

2008],  the  chemical  synapse  likely  provided  life  with  the  material  for  functional  ner-

vous  system elaboration  that  an  electrical  synapses,  though  faster  and  more  efficient,

might  not  have.  One  of  the  functional  elaborations  of  chemical  synapses  is  the  fine

tuning of synaptic efficacy on arbitrary time scales. 
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1.1.2 Postsynaptic potentiation

The postsynaptic  response to neurotransmitters is  determined by specific  receptors,

which  in  turn  initiate  events  that  culminate  in  postsynaptic  activity,  including  the

generation  of  postsynaptic  potentials  (PSPs).  PSPs  are  passive  voltage  pulses  with

smaller amplitude and longer temporal extension than spikes, and can be either excita-

tory  (EPSP)  or  inhibitory  (IPSP),  depending  on  which  ion  channels  are  engaged  in

response to the specific neurotransmitter.  EPSPs raise,  or depolarize  the post-synaptic

membrane from the non-zero resting potential, while IPSPs decrease, or hyperpolarize

the membrane potential. 

The  passive  propagation  of  the  postsynaptic  potential  is  described  by  the  cable

equation: Λ2 �x,x V � Τ �t V �V ,  where Λ  is the length constant of the dendrite, and Τ  is

the  membrane  time  constant.  The  electrical  properties  and  geometry  of  the  dendritic

arbor  determine  the  passive  spatial  and  temporal  filtering  of  the  dendrite.  Dendritic

arbors  can  be  approximated  with  finite  “compartments”  having  simple  geometrical

shapes.  

The number, size, location and kinetics of the synaptic inputs on the dendritic arbor

influence the state of the PSP, and therefore contribute to the computational function of

the  neuron.  For  example,  distal  dendritic  inputs  are  typically  more  attenuated  than

proximal  inputs,  unless  augmented by active  propagation [Magee,  2000].  However,  if

coincident with stronger signals, weaker inputs can be associatively enhanced. The size

of  the  synapse  also  determines  the  impedance  of  the  dendritic  input.  For  instance,

smaller synapses have higher impedance, and couple less effectively to the dendrite. 
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influence the state of the PSP, and therefore contribute to the computational function of

the  neuron.  For  example,  distal  dendritic  inputs  are  typically  more  attenuated  than

proximal  inputs,  unless  augmented by active  propagation [Magee,  2000].  However,  if

coincident with stronger signals, weaker inputs can be associatively enhanced. The size

of  the  synapse  also  determines  the  impedance  of  the  dendritic  input.  For  instance,

smaller synapses have higher impedance, and couple less effectively to the dendrite. 

Finally, receptor kinetics vary by type. For instance, N-Methyl-D-aspartate (NMDA)

receptors generate a weaker peak signal than Alpha-amino-3-hydroy-5-methyl-4 isoxa-

zole  proprionic  acid  (AMPA)  receptors,  but  the  NMDA  response  is  about  five  times

longer  than the  AMPA response [Liaw et  al,  2000].  AMPA receptors  are  the  primary

receptor of excitatory signals in the brain, and NMDA receptors are thought to mediate

long  term  plasticity  (LTP)  by  regulating  AMPA  receptor  expression  [Kandel,

Schwartz, and Jessel, 1991].

1.1.3 Synaptic plasticity

Changes  in  synaptic  efficacy  are  categorized  into  long-term  and  short-term  pro-

cesses.  Long-term  plasticity  is  thought  to  be  responsible  for  persistant  learning  and

memory [Siegelbaum and Kandel, 1991], while short-term plasticity most likely effects

the characteristics of signal transmission between neurons [Abbott and Regehr, 2004]. 

Long-term plasticity

The sensitivity of the postsynaptic terminal to neurotransmitter is determined by the

type,  number  and  conductance  of  receptors,  which  can  vary  by  activity-dependent

processes  that  are  generally  referred  to  as  long  term  plasticity  (LTP).  LTP  has  two

temporal  phases:  early  (E-LTP) and late  (L-LTP),  that  are  separated in  time by about

an  hour  after  the  triggering  activity  [Nguyen  and  Kandel,  1997].  Early  LTP  can  be

induced by strong membrane depolarization resulting from high frequency spike trains

or  coordinated  presynaptic  and  postsynaptic  activity  [ibid].  The  most  likely  receptor-

based explanation for E-LTP involves an increase in the conductance of AMPA recep-

tors,  initiated by a rise in calcium concentration in the postsynaptic terminal  resulting

from an  increase  in  the  calcium conductance  of  NMDA receptors  due  to  coincidental

presynaptic and postsynaptic spiking [Graupner, 2010]. Higher AMPA receptor conduc-

tance  subsequently  increases  the  postsynaptic  response  to  neurotransmitter  release.

Late-phase  LTP  partly  results  from  an  increase  in  the  number  of  AMPA  receptors,

which  requires  the  induction  of  protein  synthesis  pathways  by  transcription  factors

[ibid].  Neuromodulators  can  enhance  the  effect  of  late  LTP;  dopamine  in  particular

may be responsible for the coupling of early to late LTP [Pawlak et al, 2010].
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induced by strong membrane depolarization resulting from high frequency spike trains

or  coordinated  presynaptic  and  postsynaptic  activity  [ibid].  The  most  likely  receptor-

based explanation for E-LTP involves an increase in the conductance of AMPA recep-

tors,  initiated by a rise in calcium concentration in the postsynaptic terminal  resulting

from an  increase  in  the  calcium conductance  of  NMDA receptors  due  to  coincidental

presynaptic and postsynaptic spiking [Graupner, 2010]. Higher AMPA receptor conduc-

tance  subsequently  increases  the  postsynaptic  response  to  neurotransmitter  release.

Late-phase  LTP  partly  results  from  an  increase  in  the  number  of  AMPA  receptors,

which  requires  the  induction  of  protein  synthesis  pathways  by  transcription  factors

[ibid].  Neuromodulators  can  enhance  the  effect  of  late  LTP;  dopamine  in  particular

may be responsible for the coupling of early to late LTP [Pawlak et al, 2010].

Coincidental  presynaptic  and  postsynaptic  spiking  activity  is  sufficient  to  trigger

early  LTP,  suggesting  that  the  process  instantiates  the  Hebbian  theory  of  synaptic

modulation  [Lisman  et  al,  2011],  referred  to  as  spike-timing-dependent  plasticity

(STDP),  that  implicates  coincidental  presynaptic  and  postsynaptic  firing  [Markram et

al,  1997].  The  postsynaptic  spike  back-propagates  up  the  dendrite  from the  soma and

affects molecularly tagged synapses. The relative timing of presynaptic and postsynap-

tic spikes determines the direction of the plasticity: presynaptic spiking prior to postsy-

naptic spiking (within about 20ms) results in LTP, while postsynaptic spiking prior to

presynaptic spiking results in LTD [Roberts and Leen, 2010]. 

Short-term plasticity

Short term plasticity (STP) has not received as much attention as LTP, especially in

artificial  neural  networks,  despite  the  fact  that  STP can alter  the  gain  of  the  signal  as

much  as  LTP,  albeit  on  shorter  time  scales  [Koch,  1999].  Perhaps  the  reason  for  the

lack of attention in the artifical  neural  network community is  that  not  much is  known

about  what  STP  does.  However,  studies  that  have  included  STP  in  neural  network

models  have  shown  an  increase  in  the  functionality  of  the  neural  network  models

[Amit and Mongillo, 2003; Buonomano, 2000; Fortune and Rose, 2001; Klyachko and

Stevens, 2006; Maass and Markram, 2002; Mejias and Torres, 2007; Natschlager et al,

2001; Silberberg et al, 2004; Torres et al, 2007].  
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lack of attention in the artifical  neural  network community is  that  not  much is  known

about  what  STP  does.  However,  studies  that  have  included  STP  in  neural  network

models  have  shown  an  increase  in  the  functionality  of  the  neural  network  models

[Amit and Mongillo, 2003; Buonomano, 2000; Fortune and Rose, 2001; Klyachko and

Stevens, 2006; Maass and Markram, 2002; Mejias and Torres, 2007; Natschlager et al,

2001; Silberberg et al, 2004; Torres et al, 2007].  

Proposals for the function of STP include a mechanism to provide spike frequency

adaptation  [Koch,  1999],  sensitivity  to  changing  patterns,  and  rapid  switching  among

stored patterns [Pantic et  al,  2002;  Cortes et  al,  2004;  Marro et  al,  2007;  Torres et  al,

2005;  Cortes  et  al,  2006].  Also,  STP  has  been  proposed  to  improve  associativity

[Marro et al, 1998], as a means of gain control [Varela et al, 1997], coincidence detec-

tion  [Senn  et  al,  1998],  and  decorrelation  [Goldman  et  al,  2002].  STP  has  also  been

proposed  to  allow  a  single  axon  to  encode  information  as  a  spatio-temporal  pattern

across its terminals,  rather than a single sequence of spikes across all  terminals [Liaw

and  Berger,  1999].  More  recently,  a  model  for  transforming  temporal  into  spatial

patterns in a decision making process using STP has been proposed [Deco et al, 2010].

Another recent and intriguing proposal, is that STP optimally estimates the presynaptic

membrane potential from the spike train history [Pfister et al, 2010]. 

All of the proposed functions of STP share in common an activity-dependent alter-

ation  of  synaptic  gain.  Generally,  activity-dependent  gain  adjustments  can  be  under-

stood in terms of nonlinear filtering [Maass and Sontag, 2000]. The fact that STP can

instantiate  an  arbitrary  nonlinear  filter  may  imply  that  synaptic  dynamics  can  extract

relevant details from a noise-corrupted spatio-temporal signal.  It  may also be the case

that specific signal properties are used for transmitting information in different operat-

ing regimes of the brain and that filtering is a necessary component in the detection of

these signals. There may also be a specific alteration of features, such as sharpening or

edge detection that are facilitated by synaptic dynamics.
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ation  of  synaptic  gain.  Generally,  activity-dependent  gain  adjustments  can  be  under-
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instantiate  an  arbitrary  nonlinear  filter  may  imply  that  synaptic  dynamics  can  extract

relevant details from a noise-corrupted spatio-temporal signal.  It  may also be the case

that specific signal properties are used for transmitting information in different operat-

ing regimes of the brain and that filtering is a necessary component in the detection of

these signals. There may also be a specific alteration of features, such as sharpening or

edge detection that are facilitated by synaptic dynamics.

Additionally, the characteristics of STP are tuned to specific brain regions [Dittman

et al,  2000].  For example, climbing fiber synaptic dynamics are characterized by pure

depression,  while  parallel  fiber  synapses  are  characterized  by  pure  facilitation

(climbing  fibers  and  parallel  fibers  are  located  in  the  cerebellum).  Schaffer  collateral

synapses are characterized by a mixture of facilitation and depression. The first  infer-

ence to draw from the regional specificity of short term dynamics is that STP is almost

certainly  not  an  epiphenomenon  of  synaptic  transmission.  Regional  specificity  could

also imply that there are particular computational requirements at synapses in different

regions  in  the  brain.  For  neural  modeling,  the  presence  of  specific  forms  of  STP

throughout  the  brain  means  that  information  processing  in  the  brain  will  not  be  com-

pletely understood until STP is included in the models. 

1.1.4 Spike initiation 

The soma is  the  locus  of  decision-making  in  the  neuron.  The  instantaneous  ampli-

tude of the PSP at the soma affects the dynamical state of the neuron, driving it through

transitions in behavioral regimes. Spiking is a transition, or bifurcation, that occurs due

to  the  interaction  of  nonlinear  ion  conductances  in  the  membrane  of  the  neuron

[Izhekevich,  2006].  A  bifurcation  is  a  qualitative  change  in  behavior  of  a  dynamical

system. Active ion channels of several ionic species establish an electrochemical dynam-

ical system capable of bifurcating in numerous ways, for instance from a stable equilib-

rium state to a limit cycle attractor [ibid].  
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The soma is  the  locus  of  decision-making  in  the  neuron.  The  instantaneous  ampli-

tude of the PSP at the soma affects the dynamical state of the neuron, driving it through

transitions in behavioral regimes. Spiking is a transition, or bifurcation, that occurs due

to  the  interaction  of  nonlinear  ion  conductances  in  the  membrane  of  the  neuron

[Izhekevich,  2006].  A  bifurcation  is  a  qualitative  change  in  behavior  of  a  dynamical

system. Active ion channels of several ionic species establish an electrochemical dynam-

ical system capable of bifurcating in numerous ways, for instance from a stable equilib-

rium state to a limit cycle attractor [ibid].  

The essential condition required for spiking is the presence of at  least one amplify-

ing  ionic  current,  and  one  resonant  ionic  current.  The  amplifying  current  creates  a

positive  feedback  loop;  the  resonant  current  creates  a  negative  feedback  loop

[Izhekevich,  2006].  Spiking  occurs  if  the  positive  feedback  loop  is  faster  than  the

negative feedback loop. In the Hodgkin-Huxley (HH) model of action potential genera-

tion,  an  inward  sodium  conductance  controls  the  amplifying  current,  and  a  slower

outward potassium conductance controls the resonant current. 

The time variance in the conductances is caused by voltage-dependent gating mecha-

nisms  in  the  ion  channels.  In  the  original  HH  model,  the  behavior  of  the  gates  is

described  with  sigmoidal  functions.  For  the  sodium  current,  there  are  activation  and

inactivation  gates,  the  behavior  of  which  is  described  by  opposing  sigmoids  that  are

respectively  zero  at  both  voltage  extremes,  and  have  different  kinetics.  There  is  a

voltage range, or activation window, in which the product of the sigmoids is nonzero.

As the voltage at the membrane increases into the range of the activation window, the

sodium  channels  begin  opening,  further  depolarizing  the  membrane,  thus  starting  the

positive  feedback  cycle.  The  positive  feedback  cycle  terminates  as  the  voltage

approaches  the  other  side  of  the  activation  window,  effectively  closing  the  sodium

channels by engaging an inactivation mechanism. 

11

Printed by Mathematica for Students



The time variance in the conductances is caused by voltage-dependent gating mecha-

nisms  in  the  ion  channels.  In  the  original  HH  model,  the  behavior  of  the  gates  is
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voltage range, or activation window, in which the product of the sigmoids is nonzero.

As the voltage at the membrane increases into the range of the activation window, the

sodium  channels  begin  opening,  further  depolarizing  the  membrane,  thus  starting  the

positive  feedback  cycle.  The  positive  feedback  cycle  terminates  as  the  voltage

approaches  the  other  side  of  the  activation  window,  effectively  closing  the  sodium

channels by engaging an inactivation mechanism. 

The narrow shape of the spike is  generated through an interaction with an outward

potassium  current  that  also  turns  on  as  the  membrane  depolarizes.  The  potassium

current turns on at about the same time as the sodium current, but the potassium chan-

nel  dynamics  are  slower,  so  the  potassium current  arrives  at  its  maximum value  later

than  the  sodium current.  The  width  of  the  spike  is  thus  restricted to  about  1  to  5  ms.

Following spike generation, there is a period of refractoriness during which the inactiva-

tion gates on the sodium channels slowly reopen over a period of about 10 ms. Regener-

ation of the hyperpolarized state is performed against the concentration gradient of the

ion  species,  so  active  pumps  are  employed  to  maintain  the  ion  gradient  over  a  long

time scale.

1.1.5 Neural models

There are two general classes of models used to describe neuronal systems: spiking

and  non-spiking.  Non-spiking  models  describe  the  output  of  a  neuron  as  an  analog

signal  intended  to  correspond  to  the  rate  of  spikes  emerging  from  a  cell  or  group  of

cells. The activation function of most non-spiking neural network models is sigmoidal,

simulating  a  typical  neuronal  input/output  rate  function.  Non-spiking  artificial  neural

network models are an efficient and powerful abstraction from the biological details of

information transmission. The utility of non-spiking neural network models lies in the

analytical  and  computational  efficiency  of  the  abstraction  of  the  connectionism  of

neural networks. Artificial neural networks are mentioned, but not used in this study. 
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Spiking models

Spiking  models  are  used  when  some  degree  of  biological  realism  is  required.  The

amount  of  realism depends on the aspects  of  the system being studied,  and can range

from rudimentary,  as  for  example with the integrate and fire models,  to quite  precise,

as  with  multi-compartmental  models  that  closely  mimic  specific  dendritic  morpholo-

gies and channel densities. The spiking model used in this dissertation is a two-compart-

ment conductance model (described in Appendix A).

Spiking models have a variety of forms. A large family of spiking models, including

the  integrate-and-fire,  the  leaky  integrate-and-fire,  and  the  Hodgkin-Huxley  conduc-

tance model are variations on the law of capacitance, q � C V , expressed in differential

form: C �
�t V�t� � I ��i�1

N Ii�t, V� [Dayan and Abbott, 2001]. The sum of the capacitive

current,  C �
�t V�t�,  and ionic currents,  �i�1

N Ii�t, V�,  (describing the flow of any number

of  ion  species  across  the  membrane),  equals  the  total  current,  I,  obeying  Kirchoff's

current  law.  Conductance  models  consider  the  neuronal  membrane  in  terms  of  an

equivalent electrical circuit, as illustrated in Fig. 1.2.
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Figure  1.2.  Equivalent  circuit  representation  of  a  section  of  neural  membrane  as  a
sum of  currents  composed of  variable resitors  in  tandem with  batteries.  Other  than
the  channels,  the  membrane  is  non-conductive,  so  it  has  a  capacitance.  The  vari-
able  conductances  have  voltage-dependent  behavior  that  results  in  an  impulsive

current called an action potential. Adapted from: [Izhekevich, 2006]

The ionic currents, Iion, on a patch of neuron membrane are described by the probabil

ities that the channels are open or closed based on time and voltage-dependent activatio

n and inactivation variables, m and h: 

(1.1)Iion � g ma hb�V �Eion�, m, h � �0, 1�.
Eion is the reversal potential of the ion channel current, the voltage at which the concen-

tration and electrical  potential  gradients  of  the ionic  species  are  in  balance.  The force

driving the ionic current is given by �V �Eion�. The ion channel has a maximal conduc-

tance  value  given  by  g.  The  kinetics  of  the  activation  and  inactivation  variables  are

described by first order O.D.E.s. (showing only the activation function here),

(1.2)
�m
� t
�

m��V��m
Τm�V� .

The voltage dependence of the activation and inactivation variables is expressed in the

activation and inactivation functions, m��V� and h��V�, and in the time constant func-

tions, Τm�v� and Τh�V�. The activation and inactivation functions are usually sigmoidal:
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The voltage dependence of the activation and inactivation variables is expressed in the

activation and inactivation functions, m��V� and h��V�, and in the time constant func-

tions, Τm�v� and Τh�V�. The activation and inactivation functions are usually sigmoidal:

(1.3)m��V� � 1
1� exp ��V1�2�V� � k� ,

and the voltage-dependent time constants are usually unimodal:

(1.4)Τm�V� � cbase� camp exp ���Vmax�V�2
Σ2

�.
The conductance model described above for the ionic currents is in general a kinetic

Markov model that can be applied to most any ionic channel, including neurotransmit-

ter receptors [Destexhe et al, 2001]. The kinetics of AMPA, NMDA and GABA recep-

tors are best described by multi-state kinetics that account for the processes of activa-

tion, inactivation, desensitization, saturation and priming. AMPA and GABAB receptor

kinetics can be simplified to a two-state model having a single term defining the open

state  probability,  along  with  a  voltage-dependent  gating  mechanism  in  the  case  of

NMDA receptors, which have a magnesium block. GABAA  receptor kinetics require a

four-state  model  due  to  a  ligand-gated  second  messenger  system.  Presynaptic  neuro-

transmitter release can also be described with kinetic models, but have not yet included

mechanisms that successfully account for short term plasticity. 

1.2 Inter-neuronal systems

Considered from the systems perspective, the brain is a network of networks, having

regional  and  subregional  specificity  of  nodes  and  connections  [Macaluso  and  Driver,

2005; Philips and Singer, 1997]. Generally, signals from sensory or regulatory systems

are  abstracted,  through  convergence  and/or  divergence,  with  transformation  and/or

association, as they are relayed through network nodes throughout specific processing

regions  [Haykin,  1999].  The  system  maintains  a  representation  of  the  input  signals

consistent  with  feedback  received  from  effector  systems  that  change  the  state  of  the

inputs in a controlled manner. The state representation is a function both of the inputs,

and  of  the  history  of  the  representation  [Meyer,  2012].  The  representation  may  be

influenced  by  recent  and  remote  history,  due  to  memory  systems  that  retain  informa-

tion across several time scales. 
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Considered from the systems perspective, the brain is a network of networks, having

regional  and  subregional  specificity  of  nodes  and  connections  [Macaluso  and  Driver,

2005; Philips and Singer, 1997]. Generally, signals from sensory or regulatory systems

are  abstracted,  through  convergence  and/or  divergence,  with  transformation  and/or

association, as they are relayed through network nodes throughout specific processing

regions  [Haykin,  1999].  The  system  maintains  a  representation  of  the  input  signals

consistent  with  feedback  received  from  effector  systems  that  change  the  state  of  the

inputs in a controlled manner. The state representation is a function both of the inputs,

and  of  the  history  of  the  representation  [Meyer,  2012].  The  representation  may  be

influenced  by  recent  and  remote  history,  due  to  memory  systems  that  retain  informa-

tion across several time scales. 

One of the primary memory systems is the hippocampal formation. The hippocam-

pus in particular operates by abstracting features from signals that originate in cortical

association  regions  and  subcortical  limbic  and  brainstem  regions,  thereby  allowing

cortical/subcortical  associational  processing  that  facilitates  efficient  memory  storage

and recall [Rolls, 2010]. Since hippocampal anatomy is pertinent to understanding the

Schaffer collateral in a broader context, the anatomy of the hippocampus is introduced

in  this  section,  and  then  is  examined  in  more  detail,  along  with  some  aspects  of  the

physiology, in chapter three.

1.2.1 The Hippocampus

The DSCI model of STP was developed using data recorded from the hippocampus.

The hippocampus is  ideal  for  studying synaptic plasticity because the tissue is  conve-

nient to surgically isolate, the neurons are readily excitable, and the synapses are very

plastic.  The laminar  organization of  the  collateral  axons  in  the  hippocampus makes  it

possible to stimulate large numbers of  axons simultaneously,  resulting in a  large field

Excitatory  Post  Synaptic  Potential  signal,  or  fEPSP,  that  reflects  the  bulk  synaptic

efficacy.  Also,  chemical  antagonists  of  the  postsynaptic  receptors  implicated  in  hip-

pocampal LTP are available, so that STP can be isolated from LTP pharmacologically.

Beyond these practicalities, the hippocampus is interesting from a systems perspective

because  of  the  central  position  that  the  hippocampus  has  in  spatial  awareness  and  in

memory encoding and recall. Unique and robust neural signatures of behavioral corre-

lates have been found in the hippocampus, making it possible to directly observe behav-

ioral effects of circuit modifications, and thus to test specific hypotheses of hippocam-

pal function. 
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The DSCI model of STP was developed using data recorded from the hippocampus.

The hippocampus is  ideal  for  studying synaptic plasticity because the tissue is  conve-

nient to surgically isolate, the neurons are readily excitable, and the synapses are very

plastic.  The laminar  organization of  the  collateral  axons  in  the  hippocampus makes  it

possible to stimulate large numbers of  axons simultaneously,  resulting in a  large field

Excitatory  Post  Synaptic  Potential  signal,  or  fEPSP,  that  reflects  the  bulk  synaptic

efficacy.  Also,  chemical  antagonists  of  the  postsynaptic  receptors  implicated  in  hip-

pocampal LTP are available, so that STP can be isolated from LTP pharmacologically.

Beyond these practicalities, the hippocampus is interesting from a systems perspective

because  of  the  central  position  that  the  hippocampus  has  in  spatial  awareness  and  in

memory encoding and recall. Unique and robust neural signatures of behavioral corre-

lates have been found in the hippocampus, making it possible to directly observe behav-

ioral effects of circuit modifications, and thus to test specific hypotheses of hippocam-

pal function. 

Basic anatomy

The hippocampal  formation is  a  cortical  supramodal  association area  in  the  medial

temporal  lobe  that  receives  higher-order  input  directly  from  the  limbic  association

cortex  [Cscicsvari  et  al,  2000].  The  hippocampus  is  cortical  tissue,  but  is  part  of  the

limbic  system,  which  borders  the  neocortex  (Latin,  limbus:  border  or  rim),  and  is

highly connected with the prefrontal cortex [Kandel, Schwartz, and Jessell, 1991]. The

limbic system is known to be associated with aspects of emotion, including the manage-

ment  of  endorphins,  the  “fight  or  flight”  neurotransmitters,  and  dopamine,  the

“reward” neurotransmitter.  The limbic system also modulates  the activity of  the auto-

nomic nervous system. 
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The hippocampal  formation is  a  cortical  supramodal  association area  in  the  medial

temporal  lobe  that  receives  higher-order  input  directly  from  the  limbic  association

cortex  [Cscicsvari  et  al,  2000].  The  hippocampus  is  cortical  tissue,  but  is  part  of  the

limbic  system,  which  borders  the  neocortex  (Latin,  limbus:  border  or  rim),  and  is

highly connected with the prefrontal cortex [Kandel, Schwartz, and Jessell, 1991]. The

limbic system is known to be associated with aspects of emotion, including the manage-

ment  of  endorphins,  the  “fight  or  flight”  neurotransmitters,  and  dopamine,  the

“reward” neurotransmitter.  The limbic system also modulates  the activity of  the auto-

nomic nervous system. 

Figure  1.3.  Cut-away  illustration  of  the  human  Limbic  system.  Figure  credit:
[scribd.com]

The hippocampus receives highly processed, but mostly uncorrelated, input from all

sensory modalities [Rolls and Treves, 1998], and is thought to interact with the neocor-

tex  in  the  process  of  consolidating  and  recalling  long-term  episodic  memories

[Shimamura,  2003;  Anderson  et  al,  2007].  Figure  1.4  illustrates  the  bi-directional

signaling pathways that originate in the sensory regions of the neocortex and converge

on the hippocampus. The hippocampus proper is differentiated unambiguously into the

dentate gyrus (DG) and cornu ammonis (CA) subregions that have been shown to play

distinct  roles  in  the  encoding  of  consciously  retrievable  long-term declarative  memo-

ries that are stored in the neocortex [Anderson et al, 2007; Stark, 2007]. 
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The hippocampus receives highly processed, but mostly uncorrelated, input from all

sensory modalities [Rolls and Treves, 1998], and is thought to interact with the neocor-

tex  in  the  process  of  consolidating  and  recalling  long-term  episodic  memories

[Shimamura,  2003;  Anderson  et  al,  2007].  Figure  1.4  illustrates  the  bi-directional

signaling pathways that originate in the sensory regions of the neocortex and converge

on the hippocampus. The hippocampus proper is differentiated unambiguously into the

dentate gyrus (DG) and cornu ammonis (CA) subregions that have been shown to play

distinct  roles  in  the  encoding  of  consciously  retrievable  long-term declarative  memo-

ries that are stored in the neocortex [Anderson et al, 2007; Stark, 2007]. 

Neocortical  signals  enter  the  hippocampus  from  the  entorhinal  cortex,  layer  two

(ECII),  and  pass,  via  the  perforant  path  (PP),  to  the  dentate  gyrus  (DG),  as  well  as

directly to the Cornu Ammonis, area three (CA3). The DG projects to CA3, and from

CA3 to CA1,  completing a  trisynaptic  loop.  The trisynaptic  loop is  complemented by

two parallel circuits: a monosynaptic loop that originates in EC, layer three (ECIII) and

terminates in CA1 via the temporoammonic pathway (TA), and a disynaptic loop that

projects from both EC2 and EC3 onto CA2, and then from CA2, to CA1 [Chevaleyre

and Siegalbaum, 2010]. The CA1 output projects to the subiculum, before terminating

in the entorhinal cortex, layer five (ECV). The monosynaptic and trisynaptic loops are

shown in schematic in Fig. 1.5 and mapped onto the rat hippocampal anatomy in Fig.

1.6. These parallel pathways operate in tandem to enable memory encoding and recall,

but their exact interaction in these processes are still not known.  
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Figure 1.4. The hippocampal formation sits atop the cortical  hierarchy and receives
abstracted  information  from  the  sensory  and  associational  cortices.  Figure  credit:

[Sweatt, 2004]

Figure 1.5.  Block and schematic  diagrams of  hippocampal  and neocortical  connec-
tions.  The tri-synaptic hippocampal processing loop is  shown in  the drawing on left
(the  CA1�Subiculum  connection  is  not  counted  among  the  synapses  in  the  tri-

synaptic loop). Figure credit: [Rolls, 2007] 
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Figure 1.6. The schematics from Fig. 1.5 mapped onto the anatomy of the rat brain
(minus the connections between EC and the rest of the neocortex). The monosynap-
tic  (ECIII�CA1)  and  trisynaptic  (ECII�DG�CA3�CA1)  circuits  shown.  Only  the

principal cells are depicted.  

1.3 Summary 

The  mechanisms  and  functions  of  STP  in  hippocampal  processing  at  the  Schaffer

collateral  are  still  a  mystery.  We  would  like  to  better  understand  the  principles  of

synaptic  dynamics,  and  how  they  contribute  to  the  processing  of  signals  that  convey

the code for episodic memories between the CA3 and the CA1. 

Chapter  two  is  a  discussion  of  the  efforts  taken  to  describe  synaptic  dynamics,

including  the  most  successful  published  phenomenological  and  mechanistic  models,

followed by a description of the DSCI model of STP.
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C  H  A  P  T  E  R    2

Modeling STP at the Schaffer collateral synapse

2.1 The Schaffer collateral 

The  Schaffer  collateral  is  a  tract  of  collateralized  axons  that  projects  from  region

CA3  in  the  hippocampus  and  terminates  on  region  CA1.  The  signals  carried  on  the

Schaffer  collateral  are  crucial  for  a  number  of  cognitive  operations,  and  are  finely

tuned to  provide  appropriate  stimulation  of  the  CA1 [Ahmed and Mehta,  2009].  Sev-

eral  systems in the CA region,  including an assortment of  interneurons,  several  forms

of  plasticity,  and  at  least  two  interacting  timing  mechanisms,  exist  to  keep  the  CA

region  balanced  between  excitation  and  inhibition  [Klausberger  and  Somogyi,  2008;

Nelson  and  Turrigiano,  2008].  The  deleterious  effects  of  overstimulation  in  the  hip-

pocampus  indicate  the  importance  of  keeping  CA activity  from becoming  too  excita-

tory [Onodera et al, 1986; Stief et al, 2007]. On the other hand, there must be a reason

to  keep  the  balance  of  activity  close  to  such  a  sensitive  regime,  and  from  becoming

overly inhibited [Atallah and Scanziani, 2009].  

2.2 Synaptic dynamics data

For  purpose  of  collecting data  to  fit  and validate  the  STP model,  measurements  of

synaptic  dynamics  at  the  Schaffer  collateral  synapses  were  made  by  recording  the

fEPSP  generated  in  response  to  axonal  stimulation  with  100Μs  pulses  delivered  by  a

dipole  electrode.  The  fEPSP  provides  a  signal  of  the  synaptic  activity  from  a  large

number  of  synapses,  effectively  averaging  out  much  of  the  noise  in  comparison  to

single cell recordings, but at the expense of averaging out synapse-to-synapse variabil-

ity.  However,  since  the  synapse-to-synapse variability  would  have to  be  averaged out

anyway if whole-cell recordings were used, the fEPSP is a much more efficient measure-

ment [Frerking and Roberts, personal communication].
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For  purpose  of  collecting data  to  fit  and validate  the  STP model,  measurements  of

synaptic  dynamics  at  the  Schaffer  collateral  synapses  were  made  by  recording  the

fEPSP  generated  in  response  to  axonal  stimulation  with  100Μs  pulses  delivered  by  a

dipole  electrode.  The  fEPSP  provides  a  signal  of  the  synaptic  activity  from  a  large

number  of  synapses,  effectively  averaging  out  much  of  the  noise  in  comparison  to

single cell recordings, but at the expense of averaging out synapse-to-synapse variabil-

ity.  However,  since  the  synapse-to-synapse variability  would  have to  be  averaged out

anyway if whole-cell recordings were used, the fEPSP is a much more efficient measure-

ment [Frerking and Roberts, personal communication].

The slope of the fEPSP signal effectively approximates the synaptic current through

the law of capacitance, C �V
�t � I, providing a measure that is proportional to the presy-

naptic release probability, as inferred from the current. Since the fEPSP signal becomes

progressively  contaminated  by  population  spikes  from  the  CA1  cells  excited  by  the

post  synaptic  potentials,  the  magnitude  of  the  fEPSP  is  determined  by  measuring  the

initial  slope  of  the  fEPSP,  where  the  signal  is  cleanest.  The  initial  slope  is  also  most

characteristic of the synaptic current that is synchronous with the stimulation.

Traditionally,  synaptic  dynamics  have  been  elicited  with  short  trains  of  stimuli

applied  at  constant  intervals.  However,  constant-rate  input  trains  do  not  sample  the

possible  combinations  of  inter-stimulus  intervals  (ISIs)  that  are  engaged  by  in  vivo

firing patterns. The complicated history-dependency of the response requires a broader

range of ISIs to adequately sample the synaptic dynamics. Therefore, randomized input

trains  are  more  appropriate  for  sampling  synaptic  dynamics  [Zador  and  Dobrunz,

1997].  Physiologically  realistic  ISIs  can  be  drawn  from  distributions  developed  from

recordings  of  spiking  trains  from active  animals  [Frerking  et  al,  2005].  Alternatively,

actual spike trains can be used.
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Traditionally,  synaptic  dynamics  have  been  elicited  with  short  trains  of  stimuli

applied  at  constant  intervals.  However,  constant-rate  input  trains  do  not  sample  the

possible  combinations  of  inter-stimulus  intervals  (ISIs)  that  are  engaged  by  in  vivo

firing patterns. The complicated history-dependency of the response requires a broader

range of ISIs to adequately sample the synaptic dynamics. Therefore, randomized input

trains  are  more  appropriate  for  sampling  synaptic  dynamics  [Zador  and  Dobrunz,

1997].  Physiologically  realistic  ISIs  can  be  drawn  from  distributions  developed  from

recordings  of  spiking  trains  from active  animals  [Frerking  et  al,  2005].  Alternatively,

actual spike trains can be used.

The  input  signals  used  for  the  development  of  the  DSCI  model  consisted  of  eight

constant-rate  “ordered”  ISI  trains  and  two  variable-rate  “complex”  ISI  trains.  The

ordered  trains  each  consisted  of  40  stimuli  at  physiologically  relevant  frequencies,

including,  0.2,  0.5,  1,  2,  5,  10,  20,  and  50Hz  (see  Fig.  2.1).  Each  ordered  train  was

preceded by three pulses at 0.1Hz to establish a baseline level of synaptic gain. These

trains  were  followed  by  a  single  stimulus  after  a  10  second  interval,  to  capture  the

rebound  activity,  or  post-tetanic  potentiation  (PTP).  The  complex  ISI  trains  were

recorded  in  vivo  from rat  CA3  pyramidal  cells  during  a  hippocampus-dependent  task

(Fig.  2.2).  These  trains  consisted  of  about  60  stimuli  with  an  average  frequency  of

about 1Hz, preceded by 30 stimuli at a constant rate of 1Hz to establish a physiologi-

cally relevant basal level of activity. 
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Figure 2.1. Normalized synaptic gain resulting from ordered train stimulation applied
to the Schaffer collateral of a juvenile rat. The term “slopes” refers to the technique
of measuring the initial slope of the fEPSP to derive the gain (see text). Note that the

ranges on the gain axis are not equal in all of the panels.
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Figure 2.2.  Normalized synaptic  gain  resulting from “complex”  natural  train  stimula-
tion applied to the Schaffer collateral of a juvenile rat. 

All data was collected from juvenile rat hippocampal slices and prepared according

to [Ohliger-Frerking et al, 2003]. In the slices, the Schaffer collateral axons were sev-

ered between areas CA3 and CA1 to remove the source of activity from the recurrent

CA3  network.  A  bipolar  stimulating  electrode  was  placed  directly  in  the  Schaffer

collateral  on  the  CA1 side  of  the  lesion  to  stimulate  the  axons.  Two pharmacological

agents  were  applied  to  the  slices.  The  NMDA  receptor  antagonist,  (2R)-amino-5-

phosphonovaleric  acid  (AP5),  was  applied  to  block  NMDA  receptors,  effectively

eliminating  LTP  and  ensuring  that  only  STP  would  be  elicited  during  the  stimulus

train.  Secondly,  picrotoxin,  a  GABA antagonist,  was  used  to  block  GABA receptors,

thereby  preventing  potential  contamination  of  the  measured  signal  by  IPSPs  from

interneurons.  The  recordings  were  made  at  34�C.  Two  complete  sets  of  recordings,

each  including  the  constant  rate  and  complex  trains,  were  obtained  under  equivalent

conditions, in unique experiments performed on different days. Each set of recordings

was  obtained  in  a  single  slice.  Data  collection  was  performed  by  Matt  Frerking  in

2007. The data set will hereafter be referred to as the “Frerking data.” 
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All data was collected from juvenile rat hippocampal slices and prepared according

to [Ohliger-Frerking et al, 2003]. In the slices, the Schaffer collateral axons were sev-

ered between areas CA3 and CA1 to remove the source of activity from the recurrent

CA3  network.  A  bipolar  stimulating  electrode  was  placed  directly  in  the  Schaffer

collateral  on  the  CA1 side  of  the  lesion  to  stimulate  the  axons.  Two pharmacological

agents  were  applied  to  the  slices.  The  NMDA  receptor  antagonist,  (2R)-amino-5-

phosphonovaleric  acid  (AP5),  was  applied  to  block  NMDA  receptors,  effectively

eliminating  LTP  and  ensuring  that  only  STP  would  be  elicited  during  the  stimulus

train.  Secondly,  picrotoxin,  a  GABA antagonist,  was  used  to  block  GABA receptors,

thereby  preventing  potential  contamination  of  the  measured  signal  by  IPSPs  from

interneurons.  The  recordings  were  made  at  34�C.  Two  complete  sets  of  recordings,

each  including  the  constant  rate  and  complex  trains,  were  obtained  under  equivalent

conditions, in unique experiments performed on different days. Each set of recordings

was  obtained  in  a  single  slice.  Data  collection  was  performed  by  Matt  Frerking  in

2007. The data set will hereafter be referred to as the “Frerking data.” 

The synaptic gain was normalized to the first three points in the 0.1Hz run-up to the

constant-rate  trains,  and  to  the  first  point  in  the  complex  trains.  The  data  shows  the

characteristic  combination  of  facilitation  and  depression  seen  in  Schaffer  collateral

STP (see Figs. 2.1 and 2.2). Repeated presentations of the same train yielded r2 values

between  0.8  to  0.85.  This  value  of  correlation  represents  the  upper  limit  of  any

expected fit, and higher values would indicate over-fitting by describing noise in addi-

tion to the data.

2.3 Review of the STP modeling effort

Most models of short term synaptic plasticity combine various independent facilita-

tive  and  depressive  processes  to  phenomenologically  reproduce  the  range  of  dynamic

behaviors observed in synapses throughout the brain [Varela et al, 1997]. The indepen-

dent terms in these models are typically first-order O.D.E.s with instantaneous forcing

terms. None of the published phenomenological models have yet shown a characteriza-

tion of  combined facilitory and depressive synaptic dynamics that  generalizes to arbi-

trary  ISIs.  The  main  difficulty  seems  to  be  in  capturing  use-dependency  across  all

conditions. Simpler phenomenological models don’t track vesicle usage explicitly, but

instead represent use-dependency through the interaction of the facilitative and depres-

sive  terms.  In  particular,  these  models  have  trouble  simultaneously  describing normal

operating conditions,  where vesicle  reloading can keep up with vesicle  depletion,  and

the  condition  in  which  the  synapses  are  operating  in  a  partially  depleted  state.  Some

variations on the phenomenological models attempt to include use-dependency explic-

itly by introducing variables that mimic vesicle refractory and release-ready states, but

these models do not generalize particularly well either [Tsodyks et al, 1998; Dittman et

al, 2000].
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Most models of short term synaptic plasticity combine various independent facilita-

tive  and  depressive  processes  to  phenomenologically  reproduce  the  range  of  dynamic
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dent terms in these models are typically first-order O.D.E.s with instantaneous forcing

terms. None of the published phenomenological models have yet shown a characteriza-

tion of  combined facilitory and depressive synaptic dynamics that  generalizes to arbi-

trary  ISIs.  The  main  difficulty  seems  to  be  in  capturing  use-dependency  across  all

conditions. Simpler phenomenological models don’t track vesicle usage explicitly, but

instead represent use-dependency through the interaction of the facilitative and depres-

sive  terms.  In  particular,  these  models  have  trouble  simultaneously  describing normal

operating conditions,  where vesicle  reloading can keep up with vesicle  depletion,  and

the  condition  in  which  the  synapses  are  operating  in  a  partially  depleted  state.  Some

variations on the phenomenological models attempt to include use-dependency explic-

itly by introducing variables that mimic vesicle refractory and release-ready states, but

these models do not generalize particularly well either [Tsodyks et al, 1998; Dittman et

al, 2000].

Another class of STP model characterizes the observed short term dynamics with a

series of response surfaces derived via the Volterra series expansion [Song et al, 2009].

While the Volterra series expansion for  synaptic  dynamics is  in  principle complete,  it

is also cumbersome, since the history dependency extends potentially dozens of spikes

back  in  time.  The  complete  characterization  of  synaptic  dynamics  by  Volterra  series

requires the determination of as many nonlinear kernels as there are points in the his-

tory.  Since  it's  not  practical  to  go  beyond  about  five  kernels,  this  method  is  seldom

used. Furthermore, it  shares with other phenomenological approaches an indirect con-

nection  between experimentally  observable  manipulations  and  model  parameters.  The

Volterra  series  expansion  does  however  provide  a  formalism  that  has  been  used  to

prove the general nonlinear filtering properties of synaptic dynamics [Maass and Son-

tag, 2000].

2.3.1 Phenomenological models

Despite  the  lack  of  predictive  power,  the  phenomenological  approach  is  relatively

simple,  so  it  has  utility  in  large-scale  computational  models.  Generalization  of  a  phe-

nomenological model for descriptive purposes would imply that the form of the model

would suffice to simulate the behavior of the synapses in the same conditions used to

develop  the  model.  There  would  not,  however,  be  any  direct  connections  between

model  parameters  and  physiological  parameters.  With  this  understanding,  the  phe-

nomenological approach was applied to the Frerking data. 
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Despite  the  lack  of  predictive  power,  the  phenomenological  approach  is  relatively

simple,  so  it  has  utility  in  large-scale  computational  models.  Generalization  of  a  phe-

nomenological model for descriptive purposes would imply that the form of the model

would suffice to simulate the behavior of the synapses in the same conditions used to

develop  the  model.  There  would  not,  however,  be  any  direct  connections  between

model  parameters  and  physiological  parameters.  With  this  understanding,  the  phe-

nomenological approach was applied to the Frerking data. 

The Varela model

The simplest phenomenological model [Varela et al, 1997], was applied first. In the

Varela model, the gain of the fEPSP is simulated by the product of independent facilita-

tive (F), and depressive (D) terms,

(2.1)Gn,m�t, Α� ��
i�1

n

Fi�t, Αi��
j�1

m

Dj�t, Α j�,
where  n  is  the  number  of  facilitory  terms,  m  is  the  number  of  depressive  terms,

Gn,m�t, Α� is the simulation at time t  from the model having n facilitory and m depres-

sive  terms,  and  Α  is  the  vector  of  model  parameters.  Each  Αi  and  Α j  has  two compo-

nents, an update value and a time constant, for example, Αi � ��up,Fi, ΤFi�. The Α vector

is  the  concatenation  of  all  Αi  and  Α j.  The  meaning  of  the  parameters  is  explained  in

Eqns.(2.3)  and  (2.4).  The  parameters  in  Α  were  randomly  initialized  from  uniform

distributions in sets of 1000. Variations of Eqn. (2.1) were applied to the fEPSP data.

All  possible  combinations  of  �n n � �, 1 � n � 5� and �m m � �, 1 � m � 5�  were

tried,  using  sequential  quadratic  programming  to  optimize  the  fit  of  the  model  to  the

data.  The  criteria  function  for  the  optimization  routine  was  the  sum of  the  2-norm of

the difference between the model and the data:
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(2.2)min� f �t, Α��
Α��2 �n�m� ��j�1

M �
i�1

Nj ��Gn,m�ti, Α��G
�

j�ti�� ,

where M  is the number of individual data sets, Nj  the number of points in the jth  data

set, and G
�

j�ti� the data value in set j at ti.   

The  terms  in  the  Varela  model  are  described  by  first  order  O.D.E.s  with  instanta-

neous  forcing  functions  applied  at  the  spike  arrival  times.  For  example,  the  facilitory

terms are described by: 

(2.3)
�

� t
Fi�t� � 1�Fi�t�

ΤFi

� �up,Fi�
k�1

N

∆�t� tk�, �up,Fi � �0, �max,i�,
where ΤFi  is the decay time constant of the ith facilitory term, ∆�t� tk� is the Dirac delta

function applied at the kth  spike arrival, and �up,Fiis the update applied at each arriving

spike.  Equation  (2.3)  has  a  convenient  solution  in  terms  of  the  Heaviside  function,

��t� tk�:
(2.4)Fi�t� � 1��up,Fi�

k�1

N

�
��t�tk�
ΤFi ��t� tk�.

Thus,  for facilitation, all  the responses can be evaluated simultaneously.  If  there is  an

imposed limit on the amount of facilitation that can accumulate, then the updates must

be  individually  determined  with  each  spike  arrival.  The  depressive  terms  are  similar,

but the updating is multiplicative:

(2.5)Dj�t� ��
k�1

N

1��up,Dj �
��t�tk�
ΤDj ��t� tk� , �up,Dj � ��1, 0�.
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It  was  found  that  the  Varela  model  could  adequately  describe  the  ordered  or  the

complex data  separately,  but  not  with  the  same parameters,  thus  failing to  generalize.

The discrepancy between the models was most apparent at the shortest ISIs, where the

complex  trains  show  large  instantaneous  depression,  while  the  ordered  trains  show

gradual depression following some amount of rapid facilitation. Models that were fit to

the ordered trains facilitated on most of the short ISIs in the complex data. No combina-

tion  of  parameters,  models,  or  training  regimes,  including  simultaneous  training  on

ordered  and  complex  data,  could  overcome  this  discrepancy.  Therefore  it  was  deter-

mined that the Varela model can describe a specific activity regime, but cannot general-

ize to arbitrary ISI trains. 

Figures  2.3-2.6  illustrate  the  behavior  of  a  Varela  model  with  two  facilitative  and

three  depressive  terms,  which  was  the  minimal  configuration  found  to  adequately

describe either the ordered or the complex Frerking data. Figure 2.3 shows the success

of the model in fitting the ordered data. Figure 2.4 shows the failure of the same model

in predicting the complex data. Table 2.1 lists the parameters of the model. Figure 2.5

shows the  success  of  the  same form of  model  (2F3D) fitted  to  the  complex data,  and

Fig. 2.6 shows the failure of the same model to predict the ordered data. Table 2.2 lists

the parameters from this model.  
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Figure 2.3. A descriptive first-order model having two facilitory and three depressive
terms (2F3D) trained on ordered data (Table 2.1). 
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Complex Train 1

Complex Train 2

Time (s)

Time (s)

Figure  2.4.  The  model  shown  in  Fig.  2.3  applied  to  the  complex  data  (Table  2.1).
The  failure  most  clearly  occurs  at  the  shortest  ISIs,  where  the  model  predicts  a

strong facilitation, but the data shows a strong depression.

Table 2.1. Parameters of the 2F3D model trained on ordered data (Figs. 2.3, 2.4).

Τ �ms� update
F1 77 1.7487
F2 6701 0.0886
D1 35 0.1543
D2 3644 0.9394
D3 33 284 0.9923
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Complex Train 1

Complex Train 2

Time (s)
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Figure 2.5. A descriptive first-order model having 2 facilitory and 3 depressive terms
(2F3D) trained on complex data (Table 2.2). Here the model appears to capture the

use-dependent depression.

Table  2.2.  Parameters  of  the  2F3D  model  trained  on  complex  data  (Figs.  2.5,
2.6).

Τ �ms� update
F1 75 2.3542
F2 12 778 0.0269
D1 92 0.1037
D2 3287 0.997
D3 43 971 0.9917
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Figure  2.6.  The  model  shown  in  Fig.  2.5  applied  to  ordered  data  (Table  2.2).  The
model fails to predict high-frequency behavior.

The Dittman model

Phenomenological  models  that  attempt  to  describe  use-dependency,  as  exemplified

by Dittman [Dittman et al, 2000] and extended by Dobrunz [Sun et al, 2005] have the

general form,
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(2.6)G�t� � Α NT F�t�D�t�,
where Α = mean fEPSC amplitude, NT  = number of release sites, and F�t�D�t� = proba-

bility of release �  [0,1]. The most prevalent process in the presynaptic terminal is the

influx  and  reuptake  of  calcium.  The  facilitory  and  depressive  terms  in  the  Dittman

model indirectly model the residual calcium concentration by considering the concentra-

tion of undetermined calcium-bound molecules, CaXF and CaXD. Since these proposed

molecules  do  not  directly  represent  calcium levels,  and  are  not  attributed  to  any  spe-

cific  process,  the  model  amounts  to  essentially  a  reprisal  of  the  Varela  model,  except

that the F and D terms are scaled to the interval [0,1] and the D term is described by a

nonlinear ODE that accelerates recovery. The rescaling allows the expression for G�t�
in Eqn. (2.6) to be compared to the form of Eqn. (2.1). Both of the CaX dynamic equa-

tions are first-order:

(2.7)
�CaX
� t

�
�CaX�t�
Τ

��∆�t� t0�.
The rescaling of CaXF to arrive at F is given by: 

(2.8)F�t� � F1�
1�F1

1�KF �CaXF�t� ,
where  KF  is  the  dissociation  constant  of  the  calcium-bound  molecule,  CaXF.  The  D

term is modified to include CaXD�t� dependent recovery, 

(2.9)
�D�t�
� t

� �1�D�t�� krecov�CaXD�t���D�t� F�t��D ∆�t� t0�,
where krecov�CaXD� is given by:
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(2.10)krecov�CaXD�t�� � k0�
kmax� k0

1�KD �CaXD�t� .
The success of the Dittman model at fitting the Frerking data set was on par with a

1F2D Varela model.  The discrepancy between the short  ISI  responses in the complex

trains and the short ISIs in the ordered trains persisted. 

Other phenomenological models

Variations  and  elaborations  of  the  semi-mechanistic  use-dependent  models  exist.

The more successful such models include the Markram [Tsodyks et al, 1998], Dobrunz

[Sun et  al,  2005],  Klyachko [Kandaswamy et  al,  2010],  and McRae [Lee (CCJ)  et  al,

2009] models. 

The Markram model [Tsodyks et al, 1998] tracks the fractional states of the synapse

in the cycle of vesicle activity that switches from release-ready, x�t�, to releasing, y�t�,
to refractory, z�t�, then to release-ready again: 

(2.11)

� x
� t
�

z�t�
Τrec
�P�t� x�t� ∆�t� tap�

� y
� t
� P�t� x�t� ∆�t� tap�� y�t�

Τin

� z
� t
�

y�t�
Τin
�

z�t�
Τrec

,

where P�t�  is  the average release probability,  Τin  is  the time constant  of  entry into the

refractory state, Τrec is the time constant of recovery to the release-ready state, and tap is

the time of occurrence of action potentials. This model was not applied to the Frerking

data, and its published results do not generalize well [Tsodyks and Markram, 1997].

The  Dobrunz  model  [Sun  et  al,  2005]  includes  Dittman's  pseudo-calcium  depen-

dency  and  Markram's  tracking  of  the  states  of  the  synapse,  but  describes  the  release

probability in terms of the average number of readily releasable (RRP) vesicles, n�t�:
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The  Dobrunz  model  [Sun  et  al,  2005]  includes  Dittman's  pseudo-calcium  depen-

dency  and  Markram's  tracking  of  the  states  of  the  synapse,  but  describes  the  release

probability in terms of the average number of readily releasable (RRP) vesicles, n�t�:
(2.12)P�t� � 1� �1�Α �t��n�t�,

where Α�t�  is the average individual vesicle release probability. The individual vesicle

release probability depends on the equilibrium occupancy of  the release site  by a  cal-

cium-bound molecule, CaXF:

(2.13)Α�t� � Α1�
1�Α1

1�KF �CaXF�t� .
The size of the readily releasable pool (RRP), n�t�, decreases after each spike by an

amount  equal  to  the  average release  (the  release  probability  per  active  synapse multi-

plied by the fraction of active synapses). The empty sites are refilled to the maximum

size, nT , at a constant rate, R, and n�t� is given by:

(2.14)
�n
� t
� �P�t� x�t� ∆�t� tap�� �nT � n�t�� R.

The final conceptual contribution made by the Dobrunz model is an indirect calcium

dependency on the recovery rate of synapses to the release-ready state, Τrec, in the x�t�
equation in Eqns.(2.11):

(2.15)
1
Τrec
� krec � k0�

kmax� k0

1�KD �CaXD�t� .
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Despite  these  reasonable  changes  to  the  framework laid  by  Dittman and  Markram,

the Dobrunz model also has trouble producing a unified description of more than one

set of constant ISI data [Sun et al, 2005]. The time constant for the CaXF  equation has

to be adjusted in order to describe the experimental data having 2, 5, and more (steady

state) constant rate stimuli. 

The Klyachko model [Kandaswamy et al, 2010] relates three instantaneously updat-

ing and exponentially decaying facilitative terms,  �1,  �2,  and Α,  to  the vesicle  release

probability, Π, through Dodge-Rahamimoff relations [Dodge and Rahamimoff, 1967]:  

(2.16)Π � Λ
�1

1�Η1 �1
� 1

�2

1�Η2 �2
� 1

Α

1� Μ Α
� 1 ,

where Λ, Η, and Μ are constants. Depression was described as a two-pool vesicle deple-

tion process involving vesicle release from a finite readily releasable pool, and refilling

from a larger recycling pool, and an infinite reserve pool. The recycling pool was also

refilled  from  the  reserve  pool.  Thus,  there  were  three  refilling  rates  that  were  kept

constant,  rather  than given a  calcium-dependent  acceleration.  Overall  synaptic  release

was  defined  as:  Psyn � 1� �1�Π�n,  where  n  is  the  number  of  vesicles  in  the  readily

releasable  pool,  which  was  tracked  according  to  the  two-pool  depletion  model.  The

initial  number  of  vesicle  was  set  to  8  in  the  readily  releasable  pool,  and  to  17  in  the

recycling  pool.  The  facilitative  parameters  and  vesicle  pool  refilling  rates  were

obtained by fitting to data from constant-rate trains. 

The  Klyachko  model  is  remarkable  because  it  fit  natural  trains  quite  well

�r2 � 0.774� using the parameters obtained from fitting to constant-rate data. However,

the published results didn’t include any data that had gain values less than one.
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The  Klyachko  model  is  remarkable  because  it  fit  natural  trains  quite  well

�r2 � 0.774� using the parameters obtained from fitting to constant-rate data. However,

the published results didn’t include any data that had gain values less than one.

The McRae model [Lee (CCJ) et al, 2009] comes the closest to a mechanistic model

among  the  phenomenological  models  mentioned  here.  Calcium  entry  and  decay  is

modeled as a first order process:  

(2.17)ΤCa
�Ca�t�
� t

� ��Ca�Ca0��KCa ICa � ��Ca�Ca0��KCa�
k�1

M

∆�t� tk�,
where KCa is a constant gain value that converts calcium current into the unit of concen-

tration, and ∆(·) is the Dirac delta function. The rate of neurotransmitter release, NT�t�,
is then related to the number of releasable vesicles, Nrel, the probability of release, Prel,

and the calcium current, ICa, by:

(2.18)
�NT�t�
� t

� n Nrel Prel ICa � n Ntotal Rrel Prel ICa,

where n is a stoichiometric coefficient, Rrel  is the ratio of releasable vesicles, and Ntotal

is  the  sum  of  empty  and  releasable  vesicles.  During  stimulation,  Rrel  depends  on  the

difference between the rate of recovery, krecov, and the rate of exocytosis, Prel ICa: 

(2.19)
�Rrel�t�
� t

� krecov�1�Rrel��Prel ICa Rrel.

The McRae model then relates Prel  to the calcium concentration through the Hill equa-

tion (see Appendix B): 

(2.20)Prel � Prel,max
CanHill

CanHill �Krel,1�2nHill
,

where nHill  is the cooperativity of the reaction, and Krel,1�2 is the calcium concentration

at  half  max  occupancy.  The  value  of  nHill  was  set  to  four.  The  McRae  model  also

includes a similar term describing asynchronous release, that has a lower cooperativity.

The asynchronous term is  added to  the  synchronous release  term.  Finally,  the  McRae

model includes a calcium dependent increase to the rate of recovery, krecov: 
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where nHill  is the cooperativity of the reaction, and Krel,1�2 is the calcium concentration

at  half  max  occupancy.  The  value  of  nHill  was  set  to  four.  The  McRae  model  also

includes a similar term describing asynchronous release, that has a lower cooperativity.

The asynchronous term is  added to  the  synchronous release  term.  Finally,  the  McRae

model includes a calcium dependent increase to the rate of recovery, krecov: 

(2.21)krecov � krecov,0� �krecov,max� krecov,0� Ca
Ca�Krecov,1�2 .

The McRae model was shown to describe both facilitative and depressive processes

that  occurred independently  in  parallel  fiber  and calyx of  Held  synapses,  and concur-

rently  in  neocortical  pyramidal  cell  synapses.  However,  the  model  was  not  demon-

strated  on  non-constant  trains.  Nevertheless,  the  McRae  model  provides  valuable

insights  into  describing  calcium-dependent  processes,  including  the  non-constant

recovery rate of releasable vesicles.

The  Markram,  Dobrunz,  Klyachko,  and  McRae  models  were  not  applied  to  the

Frerking  data.  However,  the  Klyachko  paper,  had  an  intriguing  suggestion  for  the

formulation of vesicle release in terms of the energetic barrier to vesicle fusion in the

presence  of  calcium,  UCa,  through  the  vesicle  fusion  rate,  Ρ,  and  the  duration  of  cal-

cium  action,  ΤCa,  according  to  the  relation,  Π � Ρ ΤCa � Γ exp��UCa � k T�,  where  k  is

the  Boltzmann  constant,  T  the  temperature,  and  Γ  a  proportionality  constant.  The

energy barrier was suggested to be reduced in the presence of calcium due to the action

of  synaptotagmin.  While  these  suggestions  were  not  implemented  in  the  Klyachko

model, they did inspire the treatment of vesicle fusion in the DSCI model. 
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Summary of the phenomenological modeling approach

The form of the phenomenological model roughly indicates the number and type of

processes  (facilitative,  F,  or  depressive,  D)  that  are  required  to  explain  the  Frerking

STP data, as well as the primary behavior that remains to be explained by a mechanis-

tic  model,  namely the rapidly acting and rapidly recovering use-dependent  depression

seen  in  the  complex  data.  Although  the  exponential  processes  probably  indicate  the

rough  form  and  number  of  processes  required,  there  need  not  be  a  direct  correlation

between F and D processes and synaptic mechanisms. 

The limited success of the phenomenological models suggests that another modeling

approach be taken. The mechanistic approach is advantageous because model parame-

ters can be bounded according to experimental observations, and the direct correspon-

dence  between  parameters  and  mechanisms  allows  comparison  between  experimental

manipulation  and  modeling  simulations.  The  correspondence  between  parameters  and

observables means that a mechanistic model should have predictive power under condi-

tions where synaptic processes are altered, which could guide experiments. 

2.3.2 Mechanistic models

There has been really only one notable attempt to  simultaneously explain facilitive

and  depressive  synaptic  dynamics  mechanistically  [Pan  and  Zucker,  2009].  In  their

paper,  Pan  and  Zucker  describe  mechanisms  that  have  been  unable  to  describe  both

behaviors in previous models, including heterogeneity of active zone parameters (size,

number  and  density)  [Bradacs  et  al,  1997;  King  et  al,  1996],  “metabolic  activity”

[Nguyen  and  Kandel,  1997],  calcium  entry  or  local  concentration  during  an  action

potential  [Msghina et  al,  1997],  and the size of  the readily releasable pool  of  vesicles

[Millar et al, 2002].  
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There has been really only one notable attempt to  simultaneously explain facilitive

and  depressive  synaptic  dynamics  mechanistically  [Pan  and  Zucker,  2009].  In  their

paper,  Pan  and  Zucker  describe  mechanisms  that  have  been  unable  to  describe  both

behaviors in previous models, including heterogeneity of active zone parameters (size,

number  and  density)  [Bradacs  et  al,  1997;  King  et  al,  1996],  “metabolic  activity”

[Nguyen  and  Kandel,  1997],  calcium  entry  or  local  concentration  during  an  action

potential  [Msghina et  al,  1997],  and the size of  the readily releasable pool  of  vesicles

[Millar et al, 2002].  

The Zucker model

The  Zucker  model  describes  short-term  time-resolved  neurotransmitter  quantal

release  dynamics  of  both  phasic  and  tonic  crayfish  neuromescular  junctions  (NMJs).

Phasic NMJs display depressive behavior, while tonic NMJs display facilitative behav-

ior.  Since  presynaptic  processes  are  largely  similar  between  crayfish  neuromuscular

junctions and vertebrate central synapses [Atwood and Karunanithi, 2002; Zucker et al,

1999], the types of mechanisms that would be needed in order to describe mammalian

synapses should be similar to, or at least include, the processes described by Zucker.    

The Zucker model uses a sequential two-pool vesicle depletion model with calcium-

dependent  mobilization  of  vesicles  from  a  lower  release  probability  pool  to  a  higher

release probability pool.  The influx of calcium is based on a Hodgekin/Huxley model

of invertebrate P/Q calcium channels [Llinas,  1999].  Spatial  diffusion of calcium ions

is  realistically  modeled  to  simulate  positional  priming  of  vesicles  near  calcium  chan-

nels. Fast and slow calcium buffers are included in the model. A 12-state kinetic model

of  synaptotagmin  calcium  binding  with  distinct  calcium  binding  domains  (C2A  and

C2B) is included. Finally, release site refractoriness (the short period of time following

vesicle fusion during which subsequent fusion events do not or cannot occur) is mod-

eled. 
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The Zucker model uses a sequential two-pool vesicle depletion model with calcium-

dependent  mobilization  of  vesicles  from  a  lower  release  probability  pool  to  a  higher

release probability pool.  The influx of calcium is based on a Hodgekin/Huxley model

of invertebrate P/Q calcium channels [Llinas,  1999].  Spatial  diffusion of calcium ions

is  realistically  modeled  to  simulate  positional  priming  of  vesicles  near  calcium  chan-

nels. Fast and slow calcium buffers are included in the model. A 12-state kinetic model

of  synaptotagmin  calcium  binding  with  distinct  calcium  binding  domains  (C2A  and

C2B) is included. Finally, release site refractoriness (the short period of time following

vesicle fusion during which subsequent fusion events do not or cannot occur) is mod-

eled. 

The Zucker model has 28 parameters, most of which were constrained by physiologi-

cally observed values, but several of which were allowed to vary during fitting. Among

those  allowed  to  vary  were  the  sizes  of  the  two  primed  vesicle  pools.  In  order  to

account for the behavior seen at tonic synapses, the estimation of the size of the primed

vesicle  pool  had  to  be  much  less  than  a  single  vesicle,  which  may  be  an  unrealistic

result.  However,  the  amount  of  facilitation  seen  at  crayish  tonic  NMJs  is  huge  (�

1000%), so the initial value of releasable vesicles might have to very small. 

The Zucker model was able to describe several features of synaptic behavior, includ-

ing  the  recovery  of  transmission  following  readily  releasable  vesicle  depletion,  the

effect  of  endogenous  and  exogenous  calcium  buffers  (including  fura-2  and  diazo-2),

and to  a  limited extent,  the  kinetics  of  transmitter  release and synaptic  plasticity.  The

main  problem  with  the  Zucker  model  is  that  it  doesn't  simultaneously  reproduce  the

behavior of the phasic and the tonic synapses using the same set  of parameter values.

While  these  synapses  are  distinct  in  the  crayfish,  the  lack  of  a  simultaneous  fit  indi-

cates  that  the  interaction  of  facilitative  and  depressive  effects  probably  eludes  the

Zucker model, despite the attention to detail. Zucker also did not publish results of his

model  with  variable  interval  stimulus  trains,  so  the  generalization  of  the  model  is

unknown. The Zucker model was not applied to the Frerking data.

Summary of the mechanistic modeling approach

The  complexity  of  the  Zucker  model  prevents  it  from  being  useful  in  a  computa-

tional  setting,  where  processing  efficiency  is  required.  For  this  purpose,  an  efficient

model  is  needed  that  comes  from  a  simpler  perspective.  This  means  making  some

decisions  about  the  importance  of  modeling  the  diffusion  of  calcium,  for  instance,  or

including a complete description of synaptotagmin calcium-binding kinetics. 
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The  complexity  of  the  Zucker  model  prevents  it  from  being  useful  in  a  computa-

tional  setting,  where  processing  efficiency  is  required.  For  this  purpose,  an  efficient

model  is  needed  that  comes  from  a  simpler  perspective.  This  means  making  some

decisions  about  the  importance  of  modeling  the  diffusion  of  calcium,  for  instance,  or

including a complete description of synaptotagmin calcium-binding kinetics. 

The  following  section  describes  several  mechanisms  that  are  operative  at  Schaffer

collateral  (SC)  presynaptic  terminals,  and  introduces  a  new  biophysical  model  of  the

SC short term dynamics based upon those mechanisms. 

2.4 New biophysical model of STP

The  presynaptic  mechanisms  approximated  in  the  dual  sensor  competitive  interac-

tion (DSCI) model of STP are introduced here, along with supporting evidence for the

mechanisms. The model equations are compiled in Appendix B. 

2.4.1 Postsynaptic processes

Postsynaptic processes are not thought to exhibit influence over short term synaptic

plasticity  in  the  hippocampus  [Atluri  and  Regehr,  1996;  Hashimoto  and  Kano,  1998;

Dobrunz  and  Stevens,  1999;  Hanse  and  Gustafson,  2001;  Zucker  and  Regehr,  2002].

Nevertheless,  postsynaptic processes,  including receptor saturation and desensitization

[Xu-Friedman and Regehr, 2004], and retrograde signaling [Davis and Murphey, 1994]

could,  in  principle,  influence  synaptic  dynamics.  Receptor  saturation  and  desensitiza-

tion would both operate as depressive factors [Trussel et al, 1993], whereas retrograde

signaling could be either facilitative or depressive [Akopian and Walsh, 2002; Wilson

and Nicoll,  2002].  Postsynaptic receptors in the CA1 have been found not  to desensi-

tize  under  paired  pulse  facilitation  [Hjelmstad  et  al,  1999],  although  intervals  only  as

short as 30 msec were reported. Despite this caveat, the DSCI model of STP does not

include  postsynaptic  saturation  or  desensitization.  Nor  does  the  DSCI  model  include

any  dependence  on  the  state  of  postsynaptic  LTP,  which  has  been  shown  to  effect

presynaptic  release  probability,  possibly  through  retrograde  signaling  [Liebold  and

Bendels, 2009; Regehr et al, 2009].  
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Postsynaptic processes are not thought to exhibit influence over short term synaptic

plasticity  in  the  hippocampus  [Atluri  and  Regehr,  1996;  Hashimoto  and  Kano,  1998;

Dobrunz  and  Stevens,  1999;  Hanse  and  Gustafson,  2001;  Zucker  and  Regehr,  2002].

Nevertheless,  postsynaptic processes,  including receptor saturation and desensitization

[Xu-Friedman and Regehr, 2004], and retrograde signaling [Davis and Murphey, 1994]

could,  in  principle,  influence  synaptic  dynamics.  Receptor  saturation  and  desensitiza-

tion would both operate as depressive factors [Trussel et al, 1993], whereas retrograde

signaling could be either facilitative or depressive [Akopian and Walsh, 2002; Wilson

and Nicoll,  2002].  Postsynaptic receptors in the CA1 have been found not  to desensi-

tize  under  paired  pulse  facilitation  [Hjelmstad  et  al,  1999],  although  intervals  only  as

short as 30 msec were reported. Despite this caveat, the DSCI model of STP does not

include  postsynaptic  saturation  or  desensitization.  Nor  does  the  DSCI  model  include

any  dependence  on  the  state  of  postsynaptic  LTP,  which  has  been  shown  to  effect

presynaptic  release  probability,  possibly  through  retrograde  signaling  [Liebold  and

Bendels, 2009; Regehr et al, 2009].  

2.4.2 Presynaptic processes

Of  the  myriad  presynaptic  processes  that  affect  neurotransmitter  release  [Stevens,

2003;  Sudhof,  2004;  Catterall  and  Few,  2008;  Davies  and  Zamponi,  2008;  Rizo  and

Rosenmund,  2008],  the  DSCI model  invokes only a  subset,  and mainly those directly

involving  the  release  machinery.  The  DSCI  model  rests  upon  the  following  observa-

tions and assumptions: 

1) Observation: Synchronous exocytosis depends cooperatively on calcium through

a catalytic intermediary identified as synaptotagmin [Rusakov, 2006]. 

2) Observation: Synaptotagmin (specifically isoform syt1 in the hippocampus [Xue

et  al,  2010])  can trigger neurotransmitter  release at  high calcium concentration levels,

but suppress release at low levels. 

3)  Assumption:  Intermediate  states  of  the  kinetics  that  cooperatively  bind  calcium

are  short-lived  enough  to  approach  equilibrium  on  the  time  scale  of  the  changes  in

calcium  concentration  that  occur  between  spikes  [Chapman,  2008;  Lee  (CCJ)  et  al,

2009]. 
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3)  Assumption:  Intermediate  states  of  the  kinetics  that  cooperatively  bind  calcium

are  short-lived  enough  to  approach  equilibrium  on  the  time  scale  of  the  changes  in

calcium  concentration  that  occur  between  spikes  [Chapman,  2008;  Lee  (CCJ)  et  al,

2009]. 

4) Observation: Synaptotagmin contributes energy to exocytosis through a calcium-

dependent  interaction  with  a  membrane-bound  release  mechanism,  identified  as  the

SNARE complex [Stewart et al, 2000; Jahn et al, 2003; Gaffaney et al, 2008]. 

5)  Observation:  At  least  two  isoforms  of  synaptotagmin,  each  having  unique  cal-

cium-binding kinetics, and each contributing a unique amount of energy to exocytosis,

compete  for  one  binding  site  at  each  SNARE complex  [Bhalla  et  al,  2005;  Sun et  al,

2007]. 

6)  Observation:  There  are  at  least  three  SNARE  complexes  associated  with  each

releasable vesicle [Hua and Scheller, 2001; Mohrmann et al, 2010]. 

7) Observation: Releasable vesicles exist in two distinct populations defined by the

rates  at  which  vesicles  are  replaced,  and  potentially,  but  not  necessarily,  by  vesicle

proximity to calcium channels [Sudhof, 2004]. 

8) Assumption: There is a single type of voltage-gated calcium channel (this assump-

tion  is  unequivocally  wrong  [Jarvis  and  Zamponi,  2005],  but  justifiable  because  cal-

cium entry  kinetics  are  modeled  as  instantaneous  processes,  and  no  calcium channels

blockers were applied during data collection). 

9)  Assumption:  Vesicular  release  is  uniquantal  [Hanse  and  Gustafson,  2001;

Stevens, 2003; Nadkarni et al, 2010]. 

10)  Assumption:  Residual  calcium  concentration  can  be  described  as  homogenous

within a single compartment [Neher and Augustine, 1992; Tank et al, 1995; Lee (CCJ)

et al, 2009]. 

11)  Assumption:  The  number  of  vesicles  in  the  readily-releasable  pool  does  not

exceed the resting population value [Lee (CCJ) et al, 2009].
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11)  Assumption:  The  number  of  vesicles  in  the  readily-releasable  pool  does  not

exceed the resting population value [Lee (CCJ) et al, 2009].

12)  Assumption:  There  is  no  trafficking  between  willing  and  reluctant  pools

(probably not true: see [Lee (JS) et al, 2012]).

The  novelty  of  the  DSCI  model  lies  in  the  description  of  simultaneous  facilitative

and  depressive  components  of  STP  based  on  a  competitive  interaction  between  two

unique  calcium  sensors.  The  DSCI  model  is  noteworthy  because  the  simultaneous

description  of  short-term  facilitation  and  depression  in  complex  trains  has  eluded

mechanistic  models  of  STP  [Lee  (CCJ)  et  al,  2009;  Pan  and  Zucker,  2009],  and

because the DSCI model unifies both processes using an emerging paradigm of neuro-

transmitter  release  involving  dual  calcium  sensors  [Sun  et  al,  2007].  Due  to  the  con-

served  nature  of  the  calcium sensors,  the  model  may  have  applicability  at  other  CNS

synapses.  The  model  is  also  extensible,  so  that  multiple  types  of  calcium  channels,

mobility  between  vesicle  pools,  and  other  molecular  contributions  to  vesicle  priming

could be included.

2.4.3 Release rates, vesicle pools, and calcium sensors 

Presynaptic processes that affect synaptic dynamics ultimately act upon the rates of

exocytosis,  endocytosis,  and  refilling  of  neurotransmitter-containing  presynaptic  vesi-

cles [Sudhof, 2004; Lee (CCJ) et al,  2009]. However, attributing specific mechanisms

to any of these vesicle cycling processes is complicated by the observation of simultane-

ous heterogenous neurotransmitter (NT) release rates [Walter et al, 2011]. To simplify

matters, neurotransmitter release rates can be attributed to vesicle release rates through

the  existence  of  unique  populations  of  vesicles  at  the  active  zone  and  through  varia-

tions  in  the  molecular  composition  of  the  release  mechanism  [ibid].  The  interaction

between these components of vesicle release is still  unknown though, so both compo-

nents  are  included  in  the  DSCI  model,  and  introduced  here,  starting  with  the  identity

and composition of the vesicle pools.
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Presynaptic processes that affect synaptic dynamics ultimately act upon the rates of

exocytosis,  endocytosis,  and  refilling  of  neurotransmitter-containing  presynaptic  vesi-

cles [Sudhof, 2004; Lee (CCJ) et al,  2009]. However, attributing specific mechanisms

to any of these vesicle cycling processes is complicated by the observation of simultane-

ous heterogenous neurotransmitter (NT) release rates [Walter et al, 2011]. To simplify

matters, neurotransmitter release rates can be attributed to vesicle release rates through

the  existence  of  unique  populations  of  vesicles  at  the  active  zone  and  through  varia-

tions  in  the  molecular  composition  of  the  release  mechanism  [ibid].  The  interaction

between these components of vesicle release is still  unknown though, so both compo-

nents  are  included  in  the  DSCI  model,  and  introduced  here,  starting  with  the  identity

and composition of the vesicle pools.

Vesicles that are docked at the active zone in the presynaptic terminal exist in read-

ily-releasable  and  reserve  states,  or  “pools”,  as  determined  by  release  rate  (which  is

directly  proportional  to  release  probability)  [Sudhof,  2004].  In  the  hippocampus,  the

readily-releasable  pool  (RRP)  has  on  average  between  2  and  12  vesicles  [Harris  and

Sultan,  1995].  At  the  larger  calyx of  Held synapse,  located in  the  auditory brainstem,

the  readily  releasable  pool  of  vesicles  can be  further  divided into  immediately-releas-

ing,  and  reluctantly-releasing  vesicles  [Sakaba  and  Neher,  2001].  Immediately-

releasable  vesicles  (referred  to  here  as  “willing”  vesicles)  are  able  to  exocytose  syn-

chronously with the spike-induced membrane depolarization. The willing pool is small

and depletes  quickly during repeated stimulation,  but  can be rapidly replenished from

docked  and  undocked  populations  of  vesicles  [Hosoi  et  al,  2007]  (although  see

[Gabriel  et  al,  2011]).  The  reluctant  vesicle  pool  requires  greater  stimulation  for  syn-

chronous release, but paradoxically is responsible for asynchronous release that occurs

at residual calcium concentrations [Sakaba, 2006].
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There are two hypotheses concerning the composition of docked vesicles. The older,

generally  accepted  view,  known  as  positional  priming,  characterizes  the  readily-

releasable  pool  in  terms  of  vesicle  proximity  to  voltage-gated  calcium  channels

(VGCCs)  [Neher  and  Sakaba,  2008].  According  to  the  positional  priming  hypothesis,

voltage-gated  calcium channels,  and  the  vesicle  release  machinery  (the  SNARE com-

plexes),  are  dissociated  from  each  other  in  the  active  zone.  The  positional  priming

hypothesis  predicts  that  reluctant  vesicles  are  converted  into  willing  vesicles  by  a

process that moves the reluctant vesicles closer to the calcium channels (or vice-versa). 

Support  for  the  positional  priming  hypothesis  comes  from  the  observation  that  a

mutation in synaptotagmin that disrupts the binding of synaptotagmin with the SNARE

complex, also disrupts the synchrony between action potentials and NT release,  while

destabilizing  (reducing)  the  RRP,  yet  leaving  the  calcium  sensitivity  of  exocytosis

intact  [Young  and  Neher,  2009].  Evidence  also  exists  for  an  actin-dependent  process

that dynamically resizes the reluctant and willing pools while conserving the total RRP

population [Lee (JS) et al, 2012]. 

The  DSCI  model  approximates  positional  priming  by  distinguishing  willing  and

reluctant vesicle pools according to their degree of exposure to the maximum calcium

concentration  near  the  VGCCs.  Willing  vesicles  experience  the  full  concentration,

while  reluctant  vesicles  see  a  fixed  fractional  amount  of  the  full  concentration  (see

section  2.4.4).  The  numbers  of  readily  releasable  vesicles  in  the  willing  and  reluctant

pools  at  rest  (in  the  absence  of  spikes)  are  given  as  fractions,  Φn:  (0 � Φn � 1),  of  the

total  number,  nrest,  of  readily  releasable  vesicles  in  the  presynaptic  terminal  at  rest:

nrest,willing � nrest �Φn ,  and  nrest,reluctant � nrest � �1�Φn�.  Vesicles  are  not  exchanged

between pools in the DSCI model, so Φn is constant. The maximum number of vesicles

is limited to the resting value. 
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The  DSCI  model  approximates  positional  priming  by  distinguishing  willing  and

reluctant vesicle pools according to their degree of exposure to the maximum calcium

concentration  near  the  VGCCs.  Willing  vesicles  experience  the  full  concentration,

while  reluctant  vesicles  see  a  fixed  fractional  amount  of  the  full  concentration  (see

section  2.4.4).  The  numbers  of  readily  releasable  vesicles  in  the  willing  and  reluctant

pools  at  rest  (in  the  absence  of  spikes)  are  given  as  fractions,  Φn:  (0 � Φn � 1),  of  the

total  number,  nrest,  of  readily  releasable  vesicles  in  the  presynaptic  terminal  at  rest:

nrest,willing � nrest �Φn ,  and  nrest,reluctant � nrest � �1�Φn�.  Vesicles  are  not  exchanged

between pools in the DSCI model, so Φn is constant. The maximum number of vesicles

is limited to the resting value. 

According  to  another  hypotheses  concerning  the  composition  of  docked  vesicles,

the SNARE complex is tethered to one or two VGCCs, forming an excitosome [Atlas,

2010].  This  hypothesis,  which has been called the molecular priming  hypothesis  [Lee

(JS)  et  al,  2012],  incorporates  the  other  component  of  presynaptic  vesicle  release  that

can be interpreted in terms of NT release rate, namely, variations in the composition of

the  release  mechanism.  In  the  molecular  priming  hypothesis,  docked  vesicles  are

bound  to  excitosomes  in  a  calcium-independent  process,  but  the  willing  vesicles

(referred  to  as  “releasable”  vesicles  in  [Atlas,  2010])  undergo  an  additional  calcium-

dependent priming process that puts them in a state that is more energetically favorable

for exocytosis. The vesicle priming process is attributed to a conformational change in

specific  isoforms  of  synaptotagmin  (syt1  or  syt2),  initiated  by  calcium  at  one  of  the

two C2 calcium-binding domains (the C2A domain [Shin et al, 2009]). Neurotransmit-

ter release is triggered when the VGCCs open, allowing an influx of calcium that can

bind to the remaining C2 domain (the C2B domain), and cause a rapid conformational

change  that  pushes  membrane  fusion  over  the  final  energy  barrier.  The  C2A  domain

binds three calcium ions, and the C2B domain binds two [Kochubey et al, 2011].
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Support  for  the  molecular  priming  hypothesis  comes  from  models  of  the  calcium

nanodomain,  indicating  that  the  vesicles  must  be  within  about  10nm  of  the  calcium

channels  to  experience  calcium  concentrations  high  enough  to  engage  the  release

mechanism [Stanley, 1997]. Also, there are subunits of the VGCCs that bind with high

affinity to SNARE components [Kim and Catterall, 1997; Cohen and Atlas, 2004], and

that  if  are  knocked  out,  obliterate  evoked  release  [Cohen  et  al,  2007].  Some  results,

such as the actin-dependent process discovered by Lee et al [Lee (JS) et al, 2012] can

also be interpreted to support the molecular priming hypothesis. 

The  molecular  priming  hypothesis  is  incorporated  in  the  DSCI  model  by  defining

individual vesicle release probabilities in terms of the unique calcium binding kinetics

of two synaptotagmin isoforms (see section 2.4.7 on the determination of ESNARE). 

2.4.4 Extracellular calcium influx and decay

Divalent calcium cations initiate and regulate many processes in presynaptic termi-

nals  [Rusakov,  2006;  Neher  and  Sakaba,  2008;  Catterall  and  Few,  2008;  Davies  and

Zamponi,  2008].  Calcium  enters  the  presynaptic  terminal  through  voltage-gated  cal-

cium  channels  (VGCCs)  that  are  opened  by  membrane  depolarization  induced  by

action  potentials.  For  the  duration  of  the  depolarization  event  (�1ms),  VGCCs  pump

Ca2�  rapidly  into  the  cell,  thereby  building  transient  domains  of  �Ca2��,  called  nan-

odomains,  within  about  50-100nm  of  the  calcium  channels,  that  can  be  25-200ΜM

higher than the average �Ca2��  in the bouton [Naraghi and Neher,  1997; Augustine et

al, 2003]. The steep drop-off in calcium concentration from the nanodomains has also

been attributed to rapid calcium-binding processes [Augustine, 2001].  
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Divalent calcium cations initiate and regulate many processes in presynaptic termi-

nals  [Rusakov,  2006;  Neher  and  Sakaba,  2008;  Catterall  and  Few,  2008;  Davies  and

Zamponi,  2008].  Calcium  enters  the  presynaptic  terminal  through  voltage-gated  cal-

cium  channels  (VGCCs)  that  are  opened  by  membrane  depolarization  induced  by

action  potentials.  For  the  duration  of  the  depolarization  event  (�1ms),  VGCCs  pump

Ca2�  rapidly  into  the  cell,  thereby  building  transient  domains  of  �Ca2��,  called  nan-

odomains,  within  about  50-100nm  of  the  calcium  channels,  that  can  be  25-200ΜM

higher than the average �Ca2��  in the bouton [Naraghi and Neher,  1997; Augustine et

al, 2003]. The steep drop-off in calcium concentration from the nanodomains has also

been attributed to rapid calcium-binding processes [Augustine, 2001].  

The use of the subscript Μ in the DSCI equations to denote nanodomain �Ca2�� is a

holdover  from  the  terminology  used  to  describe  microdomains,  which  are  transient

�Ca2�� domains resolved on the scale of the active zone.

Nanodomain calcium 

Calcium influx in response to presynaptic membrane depolarization is approximated

in the DSCI model by an instantaneous impulse, �Ca,Μ. This is an acceptable approxima-

tion since calcium transients reach peak values within about 500Μs [Meinrenken et al,

2003], which is less than the width of most spikes, and shorter than any ISI produced

by hippocampal pyramidal neurons.  The nanodomain calcium concentration,  upon the

arrival of the ith spike, is given by:

(2.22)�Ca2��Μ,i � �Ca2��res,i��Ca,Μ,

where �Ca2��res,i  is  the mean residual cytosolic calcium concentration evaluated at  the

time of the ith spike. Spatially, this expression neglects variations in calcium concentra-

tion on the microdomain scale, which would play into the positional priming hypothe-

sis.  The DSCI approximates  positional  priming by limiting the  exposure  of  the  reluc-

tantly-releasing vesicle pool to a fixed fraction,  ΦCa,Μ,  of  the full  nanodomain calcium

concentration:   
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(2.23)�Ca2��Μ,i,reluctant � ΦCa,Μ�Ca2��Μ,i.
Residual cytosolic calcium

After  the  voltage-gated  calcium  channels  close,  the  nanodomain  calcium  diffuses

into  the  bulk  cytoplasm,  where  the  calcium  is  buffered,  removed,  and  sequestered

[Billups and Forsythe,  2002;  Tank et  al,  1995].  The residual  calcium concentration in

the  cytoplasm  can  reach  values  in  the  low  ΜM  range  during  repetitive  stimulation

[Kochubey  et  al,  2011].  The  decay  kinetics  of  the  residual  calcium concentration  can

be adequately approximated with a  single compartment [Neher and Augustine,  1992],

using  a  bi-exponential  function  [Koester  and  Sakmann,  2000].  Furthermore,  calcium

diffusion from nanodomains occurs rapidly enough to justify an instantaneous approxi-

mation  of  the  updates  to  the  two  components  of  the  residual  calcium  concentration

[Roberts,  1994;  Sinha  et  al,  1997].  Thus,  the  DSCI  model  describes  the  update  and

decay of the residual calcium concentration at the time of the ithspike by: 

(2.24)�Ca2��res,i � �Ca2��res,0��
k�1

i

��t� tk�1� ��Ca,int �
��t�tk�1�
ΤCa,int ��Ca,slow �

��t�tk�1�
ΤCa,slow �,

where �� � �  is  the Heaviside function,  the subscript,  “Ca,int”,  denotes  an intermediate

time  scale,  and  the  subscript,  “Ca,slow”,  denotes  a  slow time  scale.  Decay  time  con-

stants  were  determined by Koester  and Sakmann to  be  552msec and 40msec.  The bi-

exponential  expression  is  the  sum  of  the  solutions  of  two  first  order  linear  O.D.E.s,

each describing an independent calcium decay process:
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(2.25)�

� t
�Ca2��res,int � �

�Ca2��res,int

ΤCa,int
��Ca,int ∆�t� tspike�

(2.26)�

� t
�Ca2��res,slow � �

�Ca2��res,int

ΤCa,slow
��Ca,slow ∆�t� tspike�,

where ∆ is the Dirac delta function, �Ca2��res is a function of time, and tspike is the time

of spike arrival at the synaptic bouton. 

2.4.5 Vesicle reloading

Both  the  willing  and  reluctant  vesicle  pool  refilling  rates  can  be  described  by  first

order  kinetics,  however  the  willing  pool  refill  rate  experiences  an  activity-dependent

acceleration  [Otsu  et  al,  2004].  Otsu  et  al  found  that  the  willing  pool  recovered  from

depletion with a time constant between about 425 and 840ms, while the reluctant pool

recovered with a time constant between about 15 and 27 seconds. The acceleration of

the  willing pool  refilling rate  may be  due to  recruitment  from the  reluctant  pool  [Lee

(JS)  et  al,  2012],  or  other  processes  [Sakaba  and  Neher,  2001].  Recovery  has  been

proposed  to  be  a  nonlinearly  calcium-dependent  process  [Dittman,  2000;  Hosoi  et  al,

2007].  

The DSCI model replenishes the reluctant vesicle pool at the arrival of the ith  spike

by an amount, nrefill,reluctant,i, according to:

(2.27)nreluctant,i � nreluctant,i�1� nrefill,reluctant,i,

where

(2.28)nrefill,reluctant,i � min�nrest,reluctant � nreluctant,i�1, nrest,reluctant Ηreluctant,i�,
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and

(2.29)Ηreluctant,i � 1��
��ti�ti�1�
Τslow .

Equation  (2.29)  is  the  solution  of,  Τslow
�Ηreluctant�t�
�t � 1� Ηreluctant�t�,  evaluated  at

�t � ti� ti�1, with Ηreluctant�0� � 0. As �t� 0, Ηreluctant � 0, and as �t��, Ηreluctant � 1.

The  physical  interpretation  is  that  endocytosis,  vesicle  refilling,  and  reluctant  pool

replacement  all  happen  at  a  rate  proportional  to  the  vacancy  in  the  reluctant  pool

[Trommershauser et al, 2003]. 

Similarly  to  the  reluctant  pool,  the  willing  vesicle  pool  is  updated  at  the  arrival  of

the ith spike according to,

(2.30)nwilling,i � nwilling,i�1� nrefill,willing,i,

where

(2.31)nrefill,willing,i � min�nrest,willing� nwilling,i�1, nrest,willing Ηwilling,i�.
The acceleration of  the willing pool  refilling rate  (Eqn.  2.34)  can be written as  the

product of several terms, the first of which is the fractional value: 

(2.32)Η�willing,i � 1��
��ti�ti�1�
Τfast ,

obtained  from  the  solution  of  Τfast
�Η�willing

�t � 1�Η�willing,  evaluated  at  �t � ti� ti�1,  with

Η�willing�0� � 0.  The value of  Η�willing,i  is  weighted by a factor  proportional  to �t  and the

residual calcium concentration by the Michaelis-Menton expression:

(2.33)krefill,fast,i � Amprefill,fast �
��ti�ti�1�
Τk,refill

�Ca2��res,i�Ca2��res,i�Kdrefill,fast
,
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where  Amprefill,fast  is  a  constant,  and  Kd  is  the  dissociation  constant.  The  calcium-

dependent  term  in  Eqn.  (2.33)  describes  the  fractional  saturation  of  an  unidentified

calcium sensor that catalyzes the willing pool acceleration, and that has calcium bind-

ing  kinetics  that  greatly  exceed  the  rate  at  which  residual  calcium  concentraion

changes. The exponential term is the solution to the equation, Τk,refill
�
�t k
��t� � �k

��t�. One

possible  interpretation  of  the  willing  pool  reloading  process  is  that  a  calcium-depen-

dent  mechanism  provides  a  transient  increase  in  the  willing  pool  accessibility  to

resources  from  the  reserve  pool.  Another  interpretation  is  that  reluctant  vesicles  are

briefly  converted  to  willing  status  by  way  of  another  calcium-sensing  mechanism,

however, this interpretation is incompatible with the DSCI model, since vesicle traffick-

ing between pools is not described.   

The final form of the fractional update to the willing pool is the weighted average of

Η�willing,i with Ηreluctant,i:

(2.34)Ηwilling,i �
krefill,fast,i Η

�
willing,i�Ηreluctant,i

krefill,fast,i� 1
.

In the limit of long ISIs, krefill,fast � 0, so Ηwilling � Ηreluctant, which decays exponentially

at  the  rate  of  Τslow.  However,  for  ISIs  on  the  same  order  of  magnitude  as  Τk,refill,  the

willing pool receives additional calcium-dependent reloading at the higher rate of Τfast.

2.4.6 Quantal release probability 

Vesicle release depends on the probability of the release mechanism overcoming the

energy required for lipid bi-layer membrane fusion [Jahn et al, 2003]. In synapses, the

energy of membrane fusion has been estimated at about 40 kB T, where kB is the Boltz-

mann constant and T is the absolute temperature [Li et al, 2007].  Pves can be described

in terms of the energy of fusion, Efusion, through the statistical relation:
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Vesicle release depends on the probability of the release mechanism overcoming the

energy required for lipid bi-layer membrane fusion [Jahn et al, 2003]. In synapses, the

energy of membrane fusion has been estimated at about 40 kB T, where kB is the Boltz-

mann constant and T is the absolute temperature [Li et al, 2007].  Pves can be described

in terms of the energy of fusion, Efusion, through the statistical relation:

(2.35)Pves�Efusion� � 1
Z
��Β Efusion,

where  Β � 1
kB T .  The  term  ��Β Efusion  is  the  Boltzmann  factor  for  the  state  of  vesicle

fusion, and Z is the partition function (the sum over accessible states). Although inter-

mediate states exist, synaptic membrane vesicle fusion can be simplified as a two-state

system  (either  the  vesicle  fuses  with  the  membrane,  or  it  does  not).  For  a  two-state

system, with a ground state energy, E0 � 0, the partition function is given by: 

(2.36)Z ��
i�0

1

��Β Ei � 1���Β E1.

Without  assistance,  the  probability  of  membrane-vesicle  fusion  is  essentially  zero

since  E1 � Efusion.  The  SNARE  complex  effectively  contributes  an  energy,  ESNARE,

towards  overcoming  the  membrane  fusion  energy  barrier.  Thus  the  probability  of

vesicle  fusion  can  be  written  in  terms  of  the  difference  in  energies,

Ediff � ESNARE�Efusion:

(2.37)Pves�Ediff� � ��Β Ediff

1���Β Ediff
.

Note  that  when  Ediff � 0,  this  probability  is  1/2.  However,  the  probability  essentially

goes to one when ESNARE exceeds Efusion by a few kB T.  
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2.4.7 Determination of vesicle release energy 

The  distinction  between  the  willing  and  reluctant  vesicles  will  be  left  out  of  the

notation  in  the  following  equations,  although  the  processes  described  happen  at  both

vesicle populations (see Appendix A for a complete description). 

Contributions to ESNARE  come from the SNARE complexes associated with a vesi-

cle,  the  number  of  which,  NSNARE,  has  been determined to  be  at  least  three  [Hua and

Scheller,  2001;  Domanska  et  al,  2009;  Mohrmann  et  al,  2010].  In  the  DSCI  model,

NSNARE  is  fixed  to  a  value  of  four  per  vesicle,  with  no  variation  in  number  between

vesicle  pools.  The  energetic  contribution  to  ESNARE  also  depends  on  the  isoform  of

synaptotagmin  bound  to  the  SNARE  complex  [Zhang  et  al,  2010].  The  presence  of

multiple  isoforms of  synaptotagmin suggests  the  possibility  of  an  interaction  between

calcium sensors  [Bhalla  et  al,  2005].  The  DSCI  model  interprets  this  interaction  as  a

competion for binding sites on the SNARE complexes.  

Synaptotagmin 1 (syt1) is  the primary calcium sensor in the rat  CA1 [Berton et  al,

1997],  and  has  been  well  established  to  play  the  majority  role  in  calcium-dependent

vesicle  exocytosis  [Geppert  et  al,  1994;  Yoshihara  and Littleton,  2002].  Although the

identity  of  a  secondary  calcium  sensor  has  not  yet  been  definitively  determined,  the

existence  of  a  secondary  sensor  has  been  established  [Geppert  et  al,  1994;  Kochubey

and  Schneggenburger,  2011].  The  secondary  sensor  has  been  found  to  contribute  to

paired-pulse facilitation (and PPF was enhanced in syt1-null mutants, perhaps due to a

reduction in  the  RRP) [Saraswati  et  al,  2007].  Another  isoform of  synaptotagmin is  a

natural candidate for the secondary sensor.
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Synaptotagmin 1 (syt1) is  the primary calcium sensor in the rat  CA1 [Berton et  al,

1997],  and  has  been  well  established  to  play  the  majority  role  in  calcium-dependent

vesicle  exocytosis  [Geppert  et  al,  1994;  Yoshihara  and Littleton,  2002].  Although the

identity  of  a  secondary  calcium  sensor  has  not  yet  been  definitively  determined,  the

existence  of  a  secondary  sensor  has  been  established  [Geppert  et  al,  1994;  Kochubey

and  Schneggenburger,  2011].  The  secondary  sensor  has  been  found  to  contribute  to

paired-pulse facilitation (and PPF was enhanced in syt1-null mutants, perhaps due to a

reduction in  the  RRP) [Saraswati  et  al,  2007].  Another  isoform of  synaptotagmin is  a

natural candidate for the secondary sensor.

 After synaptotagmin isoforms 1 and 2, isoform 7 (syt7) is the most abundant brain-

specific  synaptotagmin  isoform [Sugita  et  al,  2001].  Syt7  is  expressed  in  the  rat  hip-

pocampus [ibid], but whereas syt1 and syt2 are localized to the vesicle membrane, syt7

is  expressed  in  the  plasma  membrane,  particularly  at  the  active  zone.  Syt7  has  been

found  to  be  involved  in  asynchronous  release  in  CNS  neurons  [Wen  et  al,  2010

(although,  see Saraswati  et  al,  2007;  Maximov et  al,  2008)].  In  chromaffin cells,  syt7

has been positively identified as the secondary calcium sensor [Schonn et al, 2008].   

Synaptotagmin  isoforms  2,  3,  and  4  are  also  expressed  in  adult  rat  hippocampii,

although  not  as  strongly  as  syt1  [Berton  et  al,  1997].  Syt4  has  been  found  to  affect

STP,  particularly  as  a  negative  regulator  of  vesicle  release  [Ferguson  et  al,  2004],

where  it  appears  to  be  involved  in  fusion  pore  dilation  [Zhang  et  al,  2010].  Syt7  has

also been implicated in fusion pore stabilization and dilation [Segovia et al, 2010].

How  would  an  asynchronous  process  contribute  to  the  dynamics  of  synchronous

release? One interpretation is  that  asynchronous release is  a  minor contributor to syn-

chronous  release,  and  that  the  asynchronous  contribution  increases  during  sustained

activity as the willing pool is depleted [Maximov and Sudhof, 2005; Sun et al,  2007].

Indeed,  specific  knockdown  of  syt1  impairs,  without  completely  abolishing,  syn-

chronous transmission, in what is observed to be a high-pass filtering of spike rate [Xu

et al, 2012; Buzsaki, 2012]. In response to syt1 knockdown, single spikes fail to elicit

responses,  while  high-frequency  trains  (10Hz  to  50Hz),  such  as  occur  during  bursts

and gamma oscillations,  alter  the kinetics,  but  only slightly reduce the overall  magni-

tude of synaptic transmission. At very high frequencies (up to 200Hz), as occurs during

sharp  waves,  the  response  is  hardly  impaired,  except  for  a  several  millisecond  delay

(provided that there are at least 5 spikes in the stimulus). Xu et al attributed the altered

behavior of transmission to an ancillary calcium sensor that is normally clamped in the

presence of syt1.   
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How  would  an  asynchronous  process  contribute  to  the  dynamics  of  synchronous

release? One interpretation is  that  asynchronous release is  a  minor contributor to syn-

chronous  release,  and  that  the  asynchronous  contribution  increases  during  sustained

activity as the willing pool is depleted [Maximov and Sudhof, 2005; Sun et al,  2007].

Indeed,  specific  knockdown  of  syt1  impairs,  without  completely  abolishing,  syn-

chronous transmission, in what is observed to be a high-pass filtering of spike rate [Xu

et al, 2012; Buzsaki, 2012]. In response to syt1 knockdown, single spikes fail to elicit

responses,  while  high-frequency  trains  (10Hz  to  50Hz),  such  as  occur  during  bursts

and gamma oscillations,  alter  the kinetics,  but  only slightly reduce the overall  magni-

tude of synaptic transmission. At very high frequencies (up to 200Hz), as occurs during

sharp  waves,  the  response  is  hardly  impaired,  except  for  a  several  millisecond  delay

(provided that there are at least 5 spikes in the stimulus). Xu et al attributed the altered

behavior of transmission to an ancillary calcium sensor that is normally clamped in the

presence of syt1.   

At  very  low  calcium  concentrations,  or  essentially  in  the  absence  of  calcium,  the

vesicle  release  machinery  is  clamped,  preventing  membrane  fusion,  while  at  higher

calcium concentrations,  vesicle  release  is  promoted [Kochubey and Schneggenburger,

2011].  Synaptotagmin's  actions  have  been  explained  either  as  inhibiting  membrane

fusion  (i.e.,  acting  as  the  clamp)  [Popov  and  Poo,  1993],  or  as  promoting  membrane

fusion  [Walter  et  al,  2011].  However,  synaptotagmin  could  in  principle  act  as  both

clamp and promotor, depending on the calcium concentration [Kochubey et al, 2011]. 

The vesicle priming stage may also involve the displacement of complexin,  another

protein associated with the SNARE complex that plays a role in priming and clamping

the RRP vesicles [Tang et al, 2006; Maximov et al, 2009; Yang et al, 2010]. The com-

plexin  clamp  is  not  included  in  the  DSCI  model.  However,  the  behavior  of  the  less

effective synaptotagmin isoform might be interpreted as an isoform-specific interaction

with  complexin,  since  deletions  of  either  complexin  or  syt1  disinhibit  the  secondary

calcium sensor [Yang et al, 2010]. In the DSCI model, the secondary calcium sensor is

attributed to an isoform of synaptotagmin that competes more effectively for the synap-

totagmin  insertion  site  in  the  SNARE  complex  at  lower  calcium  concentrations,  yet

delivers less energy to overcoming the membrane fusion barrier in high calcium concen-

trations.  The  DSCI  model  also  assumes  that  the  SNARE  complex  is  initially  in  the

complexin-primed and clamped state. 
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The vesicle priming stage may also involve the displacement of complexin,  another

protein associated with the SNARE complex that plays a role in priming and clamping

the RRP vesicles [Tang et al, 2006; Maximov et al, 2009; Yang et al, 2010]. The com-

plexin  clamp  is  not  included  in  the  DSCI  model.  However,  the  behavior  of  the  less

effective synaptotagmin isoform might be interpreted as an isoform-specific interaction

with  complexin,  since  deletions  of  either  complexin  or  syt1  disinhibit  the  secondary

calcium sensor [Yang et al, 2010]. In the DSCI model, the secondary calcium sensor is

attributed to an isoform of synaptotagmin that competes more effectively for the synap-

totagmin  insertion  site  in  the  SNARE  complex  at  lower  calcium  concentrations,  yet

delivers less energy to overcoming the membrane fusion barrier in high calcium concen-

trations.  The  DSCI  model  also  assumes  that  the  SNARE  complex  is  initially  in  the

complexin-primed and clamped state. 

In the DSCI model, the syt1 isoform does not saturate the SNARE binding sites due

to differences in calcium-dependent kinetics (affinity and cooperativity) at the binding

sites [Geppert, et al, 1994; Hui et al, 2005; Wen et al, 2010]. Syt7 has a greater binding

affinity for calcium than does syt1 [Bhalla et al, 2005], so that at lower calcium concen-

trations, as occur in the residual cytosolic volume, syt7 outcompetes syt1 for available

calcium, whereas during the rapid influx of calcium through VGCCs, syt1 can become

fully  calcium bound,  and  subsequently  compete  more  effectively  for  positions  on  the

SNARE complex. At synapses, however, syt1 and syt7 may not be “redundant”, since

syt1  is  a  vesicle-bound  protein,  while  syt7  is  a  plasma  membrane-bound  protein

[Sugita et al,  2010]. Syt7 is not the only high-affinity syt isoform (others include 3, 5

and 10), so competition may exist between syt1 and another syt isoform.  

In the absence of competition between syt isoforms, the fractional occupancy, �, of

the  isoform sytX,  at  a  SNARE complex (as  a  function of  residual  calcium concentra-

tion) is approximated by the Hill equation (assuming equilibrium kinetics, i.e., that the

reactant  concentrations  change  on  a  slower  time  scale  than  the  processes  of  binding

and unbinding - see Appendix B for a derivation of the Hill equation):

(2.38)�sytX,SNARE��Ca2��� � �Ca2��nCa,sytX,SNARE

KCa,sytX,SNARE
nCa,sytX,SNARE � �Ca2��nCa,sytX,SNARE

,
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where  nCa,sytX,SNARE  is  the  calcium  cooperativity  of  sytX-SNARE  binding,  and

KCa,sytX,SNARE
nCa,sytX,SNARE  is  the  calcium  concentration  at  half-maximal  occupancy,  or  the  micro-

scopic  dissociation  constant  (and  since  all  binding  sites  are  assumed  identical,

KCa,sytX,SNARE  is  equal  to  the  apparent  dissociation  constant).  The  affinity  of  calcium

binding to syt1 is about 20ΜM [Sheng et al, 1996; Sugita et al, 2010], and the coopera-

tivity is between 2 and 5 [Neher and Sakaba, 2008]. The kinetics of the sytX-SNARE

binding  process,  assuming  that  any  intermediate  forms  are  very  short-lived,  can  be

written as:

(2.39)SytX� n Ca2� �SNARE
koff

kon SytXCaSNARE,

which is equivalent to:

(2.40)
�

� t
SytXCaSNARE � kon SytX�SNARE�Ca2��n� koff SytXCaSNARE.

Since [SytX] can be assumed constant, this simplifies to:

(2.41)
�

� t
SytXCaSNARE � k

�
on SNARE�Ca2��n� koff SytXCaSNARE,

where k
�

on � kon SytX. Since the number of SNARE complexes is constant, the SNARE

concentration is equal to NSNARE�SytXCaSNARE. This substitution yields:  

(2.42)
�

� t
SytXCaSNARE �

k
�

on�NSNARE�SytXCaSNARE��Ca2��n� koff SytXCaSNARE,

or, after simplification,  
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(2.43)
�

� t
SytXCaSNARE � k

��
on�Ca2��n� �k��on�Ca2��n� koff� SytXCaSNARE,

where  k
��

on � k
�

on NSNARE.  The  fractional  occupancy  of  SytX  on  a  SNARE  complex,

�sytX,SNARE,  is  converted  to  a  probability  of  occupancy through the  linear  transforma-

tion: 

(2.44)
psytX,SNARE��Ca2��� �

psytX,SNARE,min� �psytX,SNARE,max� psytX,SNARE,min��sytX,SNARE��Ca2���,
where psytX,SNARE,max  and psytX,SNARE,min  are the maximum and minimum probabilities

of sytX occupancy at SNARE sites as a function of residual calcium concentration. A

differential form of psytX,SNARE can be found by substitution:

(2.45)
psytX,SNARE �

psytX,SNARE,min� �psytX,SNARE,max� psytX,SNARE,min� SytXCaSNARE
NSNARE

(2.46)
�

� t
psytX,SNARE �

�psytX,SNARE,max� psytX,SNARE,min�
NSNARE

�

� t
SytXCaSNARE

(2.47)

�

� t
psytX,SNARE �

�psytX,SNARE,max� psytX,SNARE,min�
NSNARE

�
k
��

on�Ca2��res
nCa,sytX,SNARE � �k��on�Ca2��res

nCa,sytX,SNARE � koff� SytXCaSNARE�.
The  calcium-dependent  probability  that  competition  will  occur  at  a  binding  site,

given the individual calcium-dependent probabilities of syt occupancy, is calculated as

the probability of the events occurring simultaneously: 

(2.48)pcomp��Ca2��� � psyt1,SNARE��Ca2��� psyt7,SNARE��Ca2���.
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Since willing and reluctant vesicles are treated independently, probabilities of competi-

tion  have  to  be  considered  for  both  vesicle  types.  To  get  the  binding  probabilities  of

each syt isoform (which can add to values less than one), the probability of competition

is  subtracted  from the  probability  of  occupancy  for  each  syt  isoform.  The  probability

that each isoform will win a competition is then added back in, resulting in:

(2.49)p� sytX,SNARE � psytX,SNARE� pcomp� psytX,comp,

where the �Ca2�� notation has been dropped. The probability that syt1 will win a compe-

tition is given by:

(2.50)psyt1,comp �
pcomp

psyt7,SNARE

psyt1,SNARE
� 1

,

and similarly for psyt7,comp. The number of syt isoforms at each vesicle type is given by: 

(2.51)NsytX � p� sytX,SNARE NSNARE.

To  calculate  ESNARE,  the  calcium-dependent  kinetics  of  SNARE-mediated  vesicle

fusion  for  each  syt  isoform  must  be  considered.  The  concentration  of  nanodomain

calcium is different for the two vesicle types: for willing vesicles, the calcium concentra-

tion  during  a  spike  is  the  full  nanodomain  concentration,  whereas  for  the  reluctant

vesicles, the calcium concentration during a spike is approximated by a fixed fraction,

ΦCa,Μ, of the full nanodomain concentration. Given the nanodomain calcium concentra-

tion,  the  fraction  of  syt-bound  SNARE  complexes  that  trigger  membrane  fusion  as  a

function  of  calcium (for  each  syt  isoform),  �sytX,willing��Ca2��Μ�,  can  be  approximated

by the Hill equation (again assuming equilibrium kinetics): 
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(2.52)�sytX,willing��Ca2��Μ� � �Ca2��ΜnCa,sytX,trigger

KCa,sytX,trigger
nCa,sytX,trigger � �Ca2��ΜnCa,sytX,trigger

(2.53)�sytX,reluctant��Ca2��Μ� � ΦCa,Μ�Ca2��ΜnCa,sytX,trigger

KCa,sytX,trigger
nCa,sytX,trigger �ΦCa,Μ�Ca2��ΜnCa,sytX,trigger

.

The assumption of equilibrium kinetics may be more questionable during this process,

though,  since some intermediate  states  of  the  SNARE complex have rate  constants  in

the msec range [Pan and Zucker, 2009]. 

The  fractional  conformational  change  can  then  be  multiplied  by  NsytX  for  each

vesicle type, converting it to a number:

(2.54)N
�

sytX��Ca2��Μ� � NsytX �sytX��Ca2��Μ�.
Finally,  the  energetic  contribution  to  membrane  fusion  for  each  vesicle  type  can  be

determined. For the willing vesicles,

(2.55)ESNARE��Ca2��Μ� � Esyt1 N
�

syt1��Ca2��Μ� � Esyt7 N
�

syt7��Ca2��Μ�,
and similarly for the reluctant vesicles.

2.4.8 Probability of release  

Vesicle  release  is  assumed  to  be  uniquantal.  The  probability  of  quantal  release  is

conveniently written in terms of the probability of the failure of a vesicle to exocytose:

1�Pves.  For  n  vesicles  in  the  primed  state,  the  probability  that  none  of  the  vesicles

release a  quantum of  neurotransmitter  is  �1�Pves�n.  Thus,  the  probability  that  at  least

one  vesicle  will  release  is  1� �1�Pves�n.  Given  two  types  of  vesicles,  the  overall

release probability is one minus the probability of both types failing to release:
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Vesicle  release  is  assumed  to  be  uniquantal.  The  probability  of  quantal  release  is

conveniently written in terms of the probability of the failure of a vesicle to exocytose:

1�Pves.  For  n  vesicles  in  the  primed  state,  the  probability  that  none  of  the  vesicles

release a  quantum of  neurotransmitter  is  �1�Pves�n.  Thus,  the  probability  that  at  least

one  vesicle  will  release  is  1� �1�Pves�n.  Given  two  types  of  vesicles,  the  overall

release probability is one minus the probability of both types failing to release:

(2.56)Prelease � 1� �1�Pves,willing�nves,willing �1�Pves,reluctant�nves,reluctant.

Several  pieces  of  experimental  evidence  suggest  this  release  probability  at  excitatory

CA1 synapses is on average between about 0.2 and 0.4 at rest [Hjelmstad et al, 1997].

2.5 Behavior of the DSCI model

The behavior of the DSCI model of STP is documented in this section. First, values

for  the  model  parameters  are  reported.  Then  the  release  probability  behavior  of  the

model is compared to the Frerking data. The residual calcium, the vesicle pool popula-

tions, and the occupancy of syt isoforms on the SNARE complexes, are also shown.

Deviations from the data are also examined. First,  the errors are shown vs. stimuli.

Then the response of the errors to perturbations in each parameter are shown (also vs.

stimuli). 

2.5.1 Parameter optimization  

The model  parameters,  their  estimated bounds,  and sources for  the estimations,  are

shown in Table 2.3. The bounds in the parameter estimations are due to measurement

uncertainties  and  differences  between  sample  preparations  and  experimental  tech-

niques. The influence of a change in any given parameter is difficult to predict due to

the  nonlinear  interactions  with  other  parameters.  However,  the  problem  of  finding

exact parameter values can be treated as a constrained optimization problem. Appendix

C discusses the optimization methods that were applied to the problem of determining

exact parameter values. 

66

Printed by Mathematica for Students



The model  parameters,  their  estimated bounds,  and sources for  the estimations,  are

shown in Table 2.3. The bounds in the parameter estimations are due to measurement

uncertainties  and  differences  between  sample  preparations  and  experimental  tech-

niques. The influence of a change in any given parameter is difficult to predict due to

the  nonlinear  interactions  with  other  parameters.  However,  the  problem  of  finding

exact parameter values can be treated as a constrained optimization problem. Appendix

C discusses the optimization methods that were applied to the problem of determining

exact parameter values. 

The results  of  parameter  optimization are listed in  Table 2.4.  Data set  #1 is  the

original Frerking data shown in Figs. 2.1 and 2.2. Data set #2 is another set of data

collected by Matt Frerking in March, 2007. The same set of ISIs was used in the collec-

tion of data set #2. The reponse characteristics of data set #2 are different than data set

#1. Most notably, the high frequency response in data set #2 shows a larger facilitation

with a corresponding lower depression. Also, the large depressive deflections seen in

the complex trains in data set #1 are absent in data set #2. The parameters fit to data set

#1 do not describe data set #2. However, by allowing only the calcium and vesicle

refillling parameters to vary, a reasonable fit to data set #2 was obtained, indicating the

generalizability of the model. Table 2.4 summarizes the optimized parameters for both

data sets. In both tables, red shading indicates fixed parameters. In Table 2.4, orange

shading indicates parameters that were fixed after fitting to data set #1, and yellow

shading indicates parameters that reached a bound during fitting.

67

Printed by Mathematica for Students



Table 2.3. The DSCI model parameter ranges (see text).
Parameter Min Max Units Source�Ca2��res,0 0.0316228 0.1 ΜM �Sinha et al,1997;Yao et

al,2009;Nadkarni et al,2010�
�Ca,Μ 30 160 ΜM �Augustine et al,2003�
�Ca,int 0.05 1.25 ΜM �Helmchen et al,1997;Muller et al,2007�
�Ca,slow 0.005 0.015 ΜM �Helmchen et al,1997;Muller et al,2007�
ΤCa,int 0.025 0.1 s �Helmchen et al,1997;Muller et al,2007�
ΤCa,slow 1 10 s �Helmchen et al,1997;Muller et al,2007�
nrest 2 10 � �Harris and Sultan,1995�
Φn 0.1 0.9 fraction �Lee �JS� et al,2012�
Τfast 0.45 5 s �Otsu et al,2004�
Τslow 5 25 s �Otsu et al,2004�
Τk,refill 1 20 s ��
Amprefill,fast 0.1 15 � ��
Kdrefill,fast 0.01 1 ΜM ��
ΦCa,Μ 0.05 1 fraction ��
psyt1,SNARE,min,willing 0 1 probability ��
psyt1,SNARE,min,reluctant 0 1 probability ��
psyt7,SNARE,min 0.5 1 probability ��
psyt1,SNARE,max,willing 1 1 probability ��
psyt1,SNARE,max,reluctant 1 1 probability ��
psyt7,SNARE,max 1 1 probability ��
KCa,syt1,SNARE 0.01 0.5 ΜM �Bhalla et al,2005;Sun et al,2007�
KCa,syt7,SNARE 0.005 0.2 ΜM �Bhalla et al,2005;Sun et al,2007�
KCa,syt1,trigger 20 20 ΜM �Sun et al,2007�
KCa,syt7,trigger 0 5 ΜM �Sun et al,2007�
Esyt1 9 15 kBT ��
Esyt7 7 15 kBT ��
Efusion 40 40 kBT �Li et al,2007�
NSNARE 4 4 � �Hua and Scheller,2001;

Mohrmann et al,2010�
nCa,syt1,trigger 2 4.5 � �Sun et al,2007�
nCa,syt7,trigger 0.5 4 � �Sun et al,2007�
nCa,syt1,SNARE 1 3 � �Sun et al,2007�
nCa,syt7,SNARE 1 3 � �Sun et al,2007�
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Table 2.4. Optimized parameters for the DSCI model (see text).
Parameter Data Set 1 Data Set 2 Min Max Units�Ca2��res,0 0.0960727 0.1 0.0316228 0.1 ΜM
�Ca,Μ 124.102 105.061 30 160 ΜM
�Ca,int 1.1043 1.0692 0.05 1.25 ΜM
�Ca,slow 0.0057 0.015 0.005 0.015 ΜM
ΤCa,int 0.025 0.025 0.025 0.1 s
ΤCa,slow 5.7719 3.7538 1 10 s
nrest 4.7765 2 2 10 �

Φn 0.7314 0.7323 0.1 0.9 fraction
Τfast 0.45 0.45 0.45 5 s
Τslow 25 25 5 25 s
Τk,refill 4.6449 3.9099 1 20 s
Amprefill,fast 15 15 0.1 15 �

Kdrefill,fast 0.0089 0.01 0.01 1 ΜM
ΦCa,Μ 1 1 0.05 1 fraction
psyt1,SNARE,min,willing 0.8075 0.8075 0 1 probability
psyt1,SNARE,min,reluctant 0.8075 0.8075 0 1 probability
psyt7,SNARE,min 0.8075 0.8075 0.5 1 probability
psyt1,SNARE,max,willing 1 1 1 1 probability
psyt1,SNARE,max,reluctant 1 1 1 1 probability
psyt7,SNARE,max 1 1 1 1 probability
KCa,syt1,SNARE 0.0336 0.0556 0.01 0.5 ΜM
KCa,syt7,SNARE 0.0336 0.0556 0.005 0.2 ΜM
KCa,syt1,trigger 20 20 20 20 ΜM
KCa,syt7,trigger 3.7803 3.7803 0 5 ΜM
Esyt1 11.49 11.49 9 15 kBT
Esyt7 8.2249 8.2249 7 15 kBT
Efusion 40 40 40 40 kBT
NSNARE 4 4 4 4 �

nCa,syt1,trigger 2.1887 2.1887 2 4.5 �

nCa,syt7,trigger 0.6882 0.6882 0.5 4 �

nCa,syt1,SNARE 1.5609 1.5609 1 3 �

nCa,syt7,SNARE 2.5654 2.5654 1 3 �
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2.5.2 The DSCI model explains the Frerking data

The  fits  of  the  DSCI  model  to  the  Frerking  data,  corresponding  to  the  parameters

listed  in  Table  2.4,  are  shown in  Figs.  2.8-2.11.  For  each  data  set,  fits  to  the  training

and  testing  data  are  shown.  Goodness  of  fit  is  indicated  by  the  squared  correlation

coefficient,  or  coefficient  of  determination,  which  quantifies  the  explanation  of  vari-

ance. The total combined-data coefficient of determination of the DSCI model for data

set  #1  is  r2 � 0.81.  The  total  combined-data  coefficient  of  determination  of  the  DSCI

model for data set #2 is r2 � 0.34. Scatter plots of both data sets are shown in Fig. 2.7.

One cause of the lower r2  for data set #2 is an anomolous signal in the 2Hz data (Fig.

2.9E). Without the 2Hz ordered data, the r2 for data set #2 is 0.45.  

Figure 2.7. DSCI model correlations to all data. (A) data set #1. (B) data set #2. 
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Figure 2.8. DSCI model fit to training data from data set #1. Blue line is model, black
points are data. A) 50Hz, B) 20Hz, C) 10Hz, D) 5Hz, E) 2Hz, F) complex train #1.
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Figure 2.9. DSCI model fit to testing data from data set #1. Blue line is model, black
points are data. A) 1Hz, B) 0.5Hz, C) 0.2Hz, D) complex train #2. 
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Figure  2.10.  DSCI  model  fit  to  training  data  from  data  set  #2.  Blue  line  is  model,
black points are data. A) 50Hz, B) 20Hz, C) 10Hz, D) 5Hz, E) 2Hz, F) complex train

#1. 
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Figure 2.11. DSCI model fit to testing data from data set #2. Blue line is model, black
points are data. A) 1Hz, B) 0.5Hz, C) 0.2Hz, D) complex train #2. 
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2.5.3 Calcium behavior in the DSCI model

Residual  calcium  is  recorded  at  the  stimulation  times,  and  builds  to  the  expected

level of �1ΜM during high-frequency stimulation (Fig. 2.12) [Tank et al, 1995; Helm-

chen et al, 1997].
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Figure  2.12.  Residual  calcium at  spike  times  in  data  set  #1.  A)  50Hz,  B)  20Hz,  C)
10Hz, D) 5Hz, E) 2Hz, F) complex train #1. 
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Calcium dependency of release probability 

In receptor-ligand binding kinetics, the cooperativity of the reaction is approximated

by the  slope  of  the  log-log  relationship  of  the  ligand  concentration  to  the  ratio  of  the

fraction,  Θ ��1 � Θ�,  of  occupied  to  unoccupied  binding  sites.  This  relation  is  attained

by a reformulation of the Hill equation (also see Appendix B):

(2.57)Θ �
�L�n

Kd � �L�n
(2.58)

Θ

1� Θ
�
�L�n
Kd

(2.59)Log
Θ

1� Θ
� n Log��L���Log�Kd�

In the approximation of  synaptic  vesicle  release to  a  receptor-ligand binding reaction,

the release rate, or release probability, is equated with the left-hand side of Eqn. (2.59),

and the slope, n, is interpreted to be the number of Ca2� ions that cooperatively bind to

each SNARE complex in the release mechanism. Although the relationship seen in Fig.

2.13 is not linear, the log-log relationship of calcium to release rate has been observed

to similarly bend over at high calcium concentration [Sun et al, 2007]. 
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Prel

peak �Ca2��  (ΜM)

n = 2.7428

Figure 2.13.  Calcium dependency of  vesicle  release probability  in  the DSCI model.
Mean  slope  is  interpreted  to  be  an  approximation  of  the  cooperativity  of  peak

release. 

2.5.4 Vesicle pool behavior

The  kinetics  of  the  willing  and  reluctant  vesicle  pools  are  shown  in  Fig.  2.14.

Because the two vesicle pools experience the same calcium signal, the ratio of syt 1 to

syt7  is  the  same  for  both  vesicle  pools,  and  therefore  the  individual  vesicle  release

probabilities are the same for the two pools. The only difference in contribution to total

release probability from the two pools is the number of vesicles (Eqn. 2.56).
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Figure 2.14. Vesicle pool populations at spike time in data set #1. Green line: willing
vesicles.  Blue line:  reluctant vesicles.  Black line:  all  vesicles.  A)  50Hz, B)  20Hz, C)

10Hz, D) 5Hz, E) 2Hz, F) complex train #1.
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2.5.5 Synaptotagmin occupancies

The  ISI-dependency  of  synaptotagmin  isoform  fraction  on  SNARE  complexes  is

shown in Fig. 2.15. 
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Figure 2.15. Synaptotagmin isoform complements at spike times in data set #1. Red
line: Syt7. Blue line: Syt1. A) 50Hz, B) 20Hz, C) 10Hz, D) 5Hz, E) 2Hz, F) complex

train #1.
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Figure 2.16. Prel vs. �Syt7 : Syt1� ratio at spike times in data set #1. Arrows represent
direction of time. A) 50Hz, B) 20Hz, C) 10Hz, D) 5Hz, E) 2Hz, F) complex train #1.
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Figure  2.17.  Pves vs. �Syt7 : Syt1�  ratio  at  spike  times  in  data  set  #1.  Arrows  repre-
sent direction of time. A) 50Hz, B) 20Hz, C) 10Hz, D) 5Hz, E) 2Hz, F) complex train

#1.
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2.5.6 Parameter sensitivities

To assess the sensitivity of  the model to changes in the parameters,  the parameters

were  adjusted  individually  by  �1/2%  of  their  respective  ranges,  and  the  resulting

changes  behavior  of  the  DSCI model  observed.  Variations  from an unperturbed base-

line release probability are shown Figs. 2.18-2.22. The parameters fitted to data set #1

were used. ISIs from the training data were concatenated, including five of the constant-

rate trains (the 2Hz, 5Hz, 10Hz, 20Hz, and 50Hz trains) and one of the complex trains

(#1). The ISI information is removed, leaving only stimulus index of the concatenated

stimulus  trains.  The  divisions  between  stimulus  trains  are  readily  apparent  in  the  fig-

ures.  Red  points  are  the  response  to  +1/2%  relative  changes  in  the  parameters;  black

points are responses to -1/2% relative changes. 
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Figure 2.18. Parameter sensitivities (± 1/2%). A) log�Ca2��res,0. B) �Ca,Μ. C) �Ca,int. D)
�Ca,slow. E) ΤCa,int. F) ΤCa,slow. 
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Figure  2.19.  Parameter  sensitivities  (±  1/2%).  A)  nrest.  B)  Φn.  C)  Τfast.  D)  Τslow.  E)
Τk ,refill. F) Amprefill,fast.
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Figure  2.20.  Parameter  sensitivities  (±  1/2%).  A)  Kdrefill,fast.  B)  ΦCa,Μ.  C)
psyt7,SNARE,min. D) psyt7,SNARE,max. E) KCa,syt1,SNARE. F) KCa,syt7,SNARE.
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Figure  2.21.  Parameter  sensitivities  (±  1/2%).  A)  KCa,syt1,trigger.  B)  KCa,syt7,trigger.  C)
Esyt. D) Esyt7. E) NSNARE. F) nCa,syt1,trigger.
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Figure  2.22.  Parameter  sensitivities  (±  1/2%).  A)  nCa,syt7,trigger.  B)  nCa,syt1,SNARE.  C)
nCa,syt7,SNARE.

2.5.7 Pharmacological verification (potential)

Pharmacological  treatments  corresponding  to  individual  parameters  in  the  DSCI

model could be applied to evaluate the predictive power of the model. An example is 4-

aminopyridine (4-AP), a potassium channel blocker and calcium channel activator [Wu

et  al,  2009;  Hjelmstad,  et  al,  1997].  By blocking  the  potassium channel,  4-AP allows

the  sodium  channel  to  dominate  the  membrane  potential,  increasing  the  width  of  the

action  potential.  In  combination  with  the  direct  activation  of  calcium  channels,  this

allows  the  cytosolic  calcium  concentration  to  saturate  the  buffer  and  sensor  mecha-

nisms. The DSCI model could be used to predict the behavior of synaptic dynamics in

response to a saturating calcium signal by increasing the three calcium update parame-

ters,  �Ca,Μ,  �Ca,int  and  �Ca,slow.  As  a  first  approximation,  these  three  parameters  could

be increased by an amount that is linearly proportional to the increased spike width.  
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2.5.8 Unaccounted-for features

The DSCI model  seems less  able  to  describe some of  the  lower-frequency facilita-

tive  behavior,  especially  in  the  constant-rate  trains.  The  DSCI  model  also  does  not

attempt  to  describe post-tetanic potentiation (PTP),  so it  is  not  surprising that  there is

large  error  at  these  points.  The DSCI model  cannot  completely  describe  the  late-train

depression  seen  in  the  complex  train  used  during  training  (see  Fig.  2.7.F,  last  30

points).  Finally,  the  model  cannot  accurately  track  the  rate  of  depression  seen  in  the

high-frequency constant rate data (Fig. 2.7.A and B). 

2.6 Predictions of the DSCI model

What does the DSCI model indicate about the phenomena lurking behind the assump-

tions used to formulate the model? 

2.6.1 The molecular hypothesis

By eliminating the difference in peak calcium concentration experienced by willing

and reluctant vesicles (by driving ΦCa,Μ � 0), the model supports the molecular hypothe-

sis, or the idea that vesicle proximity to calcium channels doesn’t fully explain synap-

tic  dynamics  [Wolfel  et  al,  2007].  It  is  important  to  bear  in  mind  that  the  molecular

hypothesis  is  not  a  model  of  STP,  so  the  DSCI  model  is  unique  from  the  molecular

hypothesis in describing STP processes. 
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hypothesis  is  not  a  model  of  STP,  so  the  DSCI  model  is  unique  from  the  molecular
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2.6.2 The distinction between vesicle pools

The ratio of  willing to reluctant  vesicles,  Φn,  changed remarkably little  in the fit  to

the  second  data  set,  even  though  the  total  number  of  vesicles  changed  by  a  large

amount. The fit is more sensitive to the fraction of willing to reluctant vesicles than to

the number of vesicles, but probably because the gain is normalized. The difference in

refilling rates between the vesicles pools was also exploited by the model. The optimiza-

tion of the error function essentially made the refilling rates as different as the bounds

would allow. It might seem that the fit was trying to get rid of the reluctant pool. How-

ever,  the  fit  retained  a  remnant  of  the  reluctant  pool  to  contribute  to  depression  via

vesicle  depletion.  The  reluctant  vesicle  depletion  doesn’t  account  for  the  late-train

depression seen in the first of the two complex data trains, however. 

2.6.3 The release machinery

Due to the difference between the contributions to the energy of membrane fusion

between  the  primary  and  secondary  calcium  sensors  (syt1  and  syt7)  in  the  DSCI

model, the DSCI model can’t match the syt1 knock-down results of [Xu et al, 2012].

Even though the results  of  Xu et  al  include asynchronous release,  the synchronous

charge transfer still  exceeds what the current DSCI parameters would predict  by at

least an order of magnitude. The discrepancy between the DSCI model and the results

of  syt1  knock-down  indicate  another  constraint  in  the  parameters  that  should  be

included in the optimization stage. 
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2.7 Summary

A mechanistic model of STP has been introduced that displays enough generality to

describe  concurrent  facilitative  and  depressive  synaptic  dynamics.  This  is  the  first

mechanistic model of STP capable of describing both facilitation and depression simul-

taneously, and should prove to be a useful tool for exploring hypotheses about synaptic

functionality.  

The  new  model  of  STP  is  based  on  contemporaneous  observations  of  the  proteins

responsible  for  synaptic  vesicle  exocytosis.  In  particular,  the  understanding  that  there

are multiple calcium-sensing release-triggering proteins,  provided the inspiration for a

description of neurotransmitter release probability based on the competitive interaction

between  calcium  sensors  for  binding-site  occupancy  on  the  release  machinery.  The

calcium-dependent  efficiency  of  the  release  machinery  to  stimulate  membrane  fusion

has been described in terms of the binding affinity of the calcium sensors to the release

machinery and the calcium affinity of the release-triggering conformational change of

the calcium sensors.

Insight into the neurotransmitter release process provided by the new model of STP

may  result  in  the  ability  to  ascribe  characteristics  of  synaptic  dynamics  to  the  con-

stituency  of  calcium  sensors  at  the  synaptic  active  zone.  This  understanding  could

result  in  the  development  of  pharmaceuticals  that  are  targeted  to  correct  cognitive

deficits caused by alterations to the dynamic properties of synaptic transmission. 
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C  H  A  P  T  E  R    3

Characterizing STP at the Schaffer collateral synapse

Given  the  physiologically  realistic  DSCI  model  of  the  synaptic  dynamics  at  the

Schaffer collateral, the nature of the processing at the Schaffer collateral is examined in

this  chapter.  Two hypotheses  designed to  elucidate  the  function of  STP at  the  SC are

presented and tested. The hypotheses are intended to assess whether SC synaptic dynam-

ics  favor  certain  signal  characteristics,  and  if  so,  how  the  CA1  neuronal  output  is

affected.  Statistical  variation  in  the  signals  carried  on  the  Schaffer  collateral  are

observed in the distribution of ISIs. The simulations reported here are considered from

the perspective that STP behaves like a filter tuned to expected ISI distributions. From

this perspective, the characteristics of the STP filter can be understood in the context of

the operational regimes of the hippocampus. 

3.1 Preliminary considerations

3.1.1 Input sources 

Input  spike  trains  were  generated  within  a  statistical  framework.  First,  spike  times

were  drawn  from  a  probability  distribution,  then  additional  variation,  correlation,  or

modulation was imposed upon the spike trains. In a manner similar to [Frerking et al,

2005],  spike  trains  were  created having end-to-end segments  of  arbitrary  length,  each

segment having its own properties (mean rate, number of correlated trains, correlation

coefficient,  modulation,  etc).  Multiple  spike  trains,  not  necessarily  having  the  same

length or number of spikes were generated in this way to simulate inputs at individual

synapses.  With  enough  inputs,  the  average  rate  of  the  inputs  on  any  given  segment

approached a  constant  value.  Figure  3.1  shows the  distribution of  cumulative  ISIs  for

15 seconds, with 75 input trains drawn in three five-second segments at mean rates of

1Hz,  5Hz  and  2Hz  from the  empirical  distribution  of  [Frerking  et  al,  2005]  (see  Fig.

3.3 below). Figure 3.2 shows the rastor plot for the 75 inputs. 
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approached a  constant  value.  Figure  3.1  shows the  distribution of  cumulative  ISIs  for

15 seconds, with 75 input trains drawn in three five-second segments at mean rates of

1Hz,  5Hz  and  2Hz  from the  empirical  distribution  of  [Frerking  et  al,  2005]  (see  Fig.

3.3 below). Figure 3.2 shows the rastor plot for the 75 inputs. 

Figure 3.1. Histogram of the spike times for a sample input having 75 spike trains in
three segments:  1Hz for  5  sec,  5Hz for  5  sec,  2  Hz for  5  sec.  ISIs  drawn from the
empirical  distribution  in  [Frerking  et  al,  2005].  Compare  to  Fig.11B.  in  [ibid].  Black

lines above bars show the mean frequency of inputs in each segment. 
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Figure 3.2. Rastor plot and histogram of the spike times for a sample input having 75
spike trains in three segments. Input scenario described in Fig. 3.1. 

Empirical ISI distribution 

Spiking  signals  were  recorded  from  the  CA3  of  awake  and  behaving  animals

exposed to two different stimuli:  an odor cue and a spatial  cue [Frerking et  al,  2005].

Nonrandom  spike  sequences  were  observed,  yet  it  was  found  that  the  ISI  probability

distributions of the responses were the main factor in generating the nonrandom spike

sequences.  Because  the  majority  (�90%)  of  the  ISI  variance  could  be  described  by

samples drawn randomly from a probability distribution, it was proposed that an empiri-

cal  probability  distribution  describing  the  average  behavior  of  CA3  cells  would  be

useful  for  generating  spike  trains  for  studies  of  synaptic  physiology,  especially  by

alleviating  the  problem  of  introducing  non-representative  activity  patterns  that  may

arise when actual spike trains are used as stimuli [Frerking et al, 2005]. ISI probability

distributions were collected having mean rates within about 0.2Hz and 8Hz, compiled

and  interpolated  to  create  the  continuous  function  of  ISI  distributions  vs.  mean  fre-

quency [ibid] shown in Fig. 3.3.  
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distributions were collected having mean rates within about 0.2Hz and 8Hz, compiled
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Figure 3.3. Contour plot of the [Frerking et al, 2005] empirical ISI probability distribu-
tion (red = 0.075, blue = 0).
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Sources of variation 

Variation  was  introduced  to  the  input  signals  in  several  forms.  A  physiological

source  of  stochastic  background  synaptic  currents  [Destexhe  et  al,  2001]  was  added

during  numerical  integration  of  the  CA1  neuron  (See  Appendix  4  for  details).  Back-

ground current fluctuations were estimated to account for as much as 80% of the total

conductance  of  a  cortical  pyramidal  cell  [Destexhe  and  Pare,  1999].  If  the  entorhinal

cortex (EC) current source to the CA1 is assumed to be mostly uncorrelated, then the

Destexhe current could serve as an estimation of the EC inputs. Like the EC inputs, the

background current fluctuations are not sufficient to invoke spiking, but can influence

subthreshold behavior, which can modulate the probability that the cell will fire. Since

inputs from the EC can be modulated (for instance, by local field potential oscillations

- see Ch. 4),  the model of stochastic background currents was given an optional sinu-

soidal modulation. 

The other sources of variance affected only the correlation and jitter of spikes from

the CA3. The correlation of signals from the CA3 was simulated by a spike-swapping

procedure [Niebur, 2007]. Using the Niebur procedure, a controlled percentage of input

trains  could  be  correlated  with  a  reference  train  to  a  specified  degree.  Additionally,

spike  trains  could  optionally  receive  oscillatory  modulation  of  fixed  phase  and  fre-

quency, representing, for instance, fast gamma modulation from the CA3. Spike trains

could  also  be  decorrelated  by  randomly  jittering  the  spike  times.  The  added  random

jitter was implemented with a Gaussian process (random samples drawn from a normal

distribution).
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the CA3. The correlation of signals from the CA3 was simulated by a spike-swapping
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quency, representing, for instance, fast gamma modulation from the CA3. Spike trains

could  also  be  decorrelated  by  randomly  jittering  the  spike  times.  The  added  random

jitter was implemented with a Gaussian process (random samples drawn from a normal

distribution).

3.1.2 A model CA1 pyramidal cell

A two-compartment model of a CA1 pyramidal cell was used to examine the effect

of  STP on the  output  of  an  excitatory  neuron.  The  CA1 model  is  a  modification of  a

well-known  CA3  model  [Pinsky  and  Rinzel,  1994].  The  modification  attenuates  the

characteristic CA3 bursting behavior by reducing the conductance of the slow dendritic

calcium current. The CA1 model is described in Appendix D. 

3.1.3 Spike train measures 

The  “Law  of  Requisite  Variety”  [Ashby,  1956]  states  (paraphrasing):  ‘A  system’s

response  to  variety  in  the  states  of  its  inputs  is  limited  to  the  variety  of  the  system’s

internal states’.  The variety of a neuronal response exists (in large part)  in the pattern

of timing between spikes.  Quantifying the variety in spike trains is  the subject  of  this

section.  

Rate 

The  number  of  spikes  in  a  period  of  time,  Τ,  is  a  measure  of  neuronal  activity

[Dayan and Abbott, 2001]. However, determining which period of time should be used

is controversial [Rieke et al, 1999]. In the limit of Τ�0, the precise timing of spikes is

assumed to be critical for signal information transfer, an assumption unlikely in all but

the largest synapses (such as the calyx of Held). In the limit, Τ��, the rate of spikes is

assumed to carry behavioral significance, requiring unrealistic integration times. These

two  limits  represent  a  dichotomy  within  the  neuroscience  community,  and  the  Truth

probably lies somewhere in-between. For instance, some neural processes suggest that

precise  spike  timing  is  important  (for  instance,  spike  timing  dependent  plasticity  and

phase  modulation),  while  the  overwhelming  presence  of  noise  in  the  response  of  a

neuron  suggests  otherwise  [Frerking,  personal  communication;  Liaw  and  Berger,

1999]. The average spiking rate, and the spike rate vs. time may both be important for

transmitting information over spike trains. 
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Figure 3.4. CA1 model output spike rate vs. time response (STP - nonSTP) for DSCI
model  #1.  Input  rates  shown  in  Fig.  3.6.  All  inputs  drawn  from  empirical  CA3  ISI

distribution (Fig. 3.3).
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Figure 3.5. CA1 model output spike rate vs. time response (STP - nonSTP) for DSCI
model  #2  (Input  rates  shown  in  Fig.  3.6).  All  inputs  drawn  from  empirical  CA3  ISI

distribution (Fig. 3.3).
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Figure 3.6. Input rates for responses shown in Figs. 3.4 and 3.5.

96

Printed by Mathematica for Students



Information 

Entropy is related to the probability, pi, of observing a particular state, i, in a sample

taken randomly from a set of states that includes state i. Entropy, S, is defined as:   

(3.1)S � ��
i

pi log2 pi, 0 � pi � 1 � i, and�
i

pi � 1.

An  entropy  measure  for  spike  trains  has  been  developed  [Strong  et  al,  1998].  The

Strong entropy considers the observable states to be the possible binary words consist-

ing  of  concatenated  spike  states  (spike  or  no  spike)  within  a  time  window,  T,  dis-

cretized into bins of width �Τ. For example, one of the 210  possible binary words in a

one-second window discretized into 100msec bins, is “0100100001”, where “1” repre-

sents at least one spike in the 100msec bin, and “0”, no spike. The entropy of interest

occurs  in  the  limit  of  T��:  S��Τ� � limT�� S�T, �Τ� �T.  Since  this  limit  is  never

achievable  in  practice,  an  approximation  was  developed  by  Strong  et  al,  in  which

(presumably by the principal of ergodicity) shorter time windows can be used to obtain

a reliable estimate of S. By averaging over multiple presentations of the same stimulus,

an  estimate  of  the  variability  in  the  response,  called  the  “noise  entropy”,  can  be  sub-

tracted from the total  entropy to obtain a  value for  the information transmitted by the

cell. 

Distance 

Spike  trains  may  be  considered  as  points  in  a  high-dimensional  space.  Naturally,

some measure of  distance between spike trains may then be defined.  Several  distance

measures have been proposed for spike trains [Victor and Purpura, 1997; van Rossum,

2001; Szucs, 1998]. The van Rossum measure is distinctive because it has a physiologi-

cal interpretation. The van Rossum distance assumes that spikes influence other spikes

through the postsynaptic potential  (PSP) [van Rossum, 2001].  The influence of a PSP

can be estimated by an exponentially  decaying function that  represents  the activity  of

postsynaptic  receptors,  such as  AMPA or  NMDA, that  produce an  extended response

to a spike. The van Rossum distance is defined by:
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(3.2)D2� f , g�tc � 1
tc
�

0

�� f �t�� g�t��2 � t,

where  f �t�  and  g�t�  are  the  two  spike  trains,  convolved  with  a  decaying  exponential

function:

(3.3)f �t� ��
i�1

M
��t� ti� ���t�ti��tc

(3.4)g�t� ��
i�1

N
��t� ti� ���t�ti��tc.

�(·) is the Heaviside step function, M and N are the number of spikes in trains f and g,

and ti are the spike arrival times. 

3.2 STP transfer function

3.2.1 Constant-rate stimuli

The  effect  of  the  DSCI  model  of  STP  was  characterized  by  response  both  to  con-

stant-rate stimuli, and to variable-rate stimuli. The gain curves of the DSCI model were

characterized  for  both  parameter  vectors  listed  in  Table  2.4.  For  constant-rate  inputs

between 0.5Hz and 50Hz, the PPF, maximum gain, steady-state response, and maximal

depression  were  determined.  1000  stimuli  were  applied  to  determine  the  asymptotic

steady-state  response.  As  in  the  constant-rate  data,  three  stimuli  at  0.1Hz  were  pre-

sented  prior  to  each  of  the  input  spike  trains.  Constant-rate  results  are  shown  in  Fig.

3.7. 
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Figure  3.7.  Gain  response  of  DSCI  STP  to  constant-ISI  inputs.  STP  models  (see
text) are distinguished by solid and dashed lines.

3.2.2 Variable-rate stimuli

Synaptic  gain  vs.  ISI  for  variable-rate  stimuli  are  shown  in  Fig.  3.8.  Input  trains

were generated from an empirical distribution of ISIs from CA3 cells that were respon-

sive  to  test  stimuli  (see  Fig.  3.3)  [Frerking  et  al,  2005].  Responses  of  the  two  STP

models  to  ISI  trains  with  mean frequencies  of  1Hz are  shown.  The STP gains  in  Fig.

3.8 have been fit to the rescaled group delay of a six-pole filter. The choice to fit to the

group delay  was  made to  prove the  point  that  the  physiological  meaning imparted  by

the spike code at the Schaffer collateral could be interpreted in more than one way. For

instance, it is also possible to fit the data shown in Fig. 3.8 directly to the gain of a six-

pole filter, in which case the spike code might signify the amplitude of the presynaptic

signal.  Section  3.3  explores  the  STP  gain  in  response  to  variable-ISI  inputs  in  more

depth.
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were generated from an empirical distribution of ISIs from CA3 cells that were respon-
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depth.

Figure 3.8.  ISI-dependent DSCI STP gain for variable-ISI stimuli  at  1Hz mean rate.
(A):  Empirical  CA3  distribution,  DSCI  model  #1.  (B):  Empirical  CA3  distribution,

DSCI model #2.

3.3 Effect of STP on Schaffer collateral processing

Here,  two  specific  hypotheses  that  address  the  central  question  about  the  effect  of

STP  on  Schaffer  collateral  processing,  are  presented  and  tested  using  the  tools  intro-

duced above.  
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3.3.1 Hypothesis 1

Input  spike  trains  that  have  been  generated  from  responsive  CA3  ISI  distributions

induce significantly different levels of facilitation when applied to the STP model than

do spike trains generated from non-responsive CA3 ISI distributions. 

Test

The difference between responsive and non-responsive CA3 spike trains is assumed

to  be  largely  reflected  in  the  distributions  of  a  representative  sample  from  each

(responsive  and  non-responsive)  type  of  train.  The  empirical  CA3  distribution

[Frerking et  al,  2005]  is  more  representative  of  the  responsive-cell  population  of  ISIs

(see Fig. 8 [ibid]). The non-responsive set must be approximated from the description

given in [Frerking et al, 2005]. The reported difference between the two responses is a

redistribution of energy from the middle part of the spectrum (centered around 5Hz and

extending from about 0.3Hz to about 100Hz) to the extreme outer ends of the spectrum

(centered  at  about  200Hz  and  0.1Hz)  in  the  non-responsive  set.  To  approximate  the

non-responsive set, the empirical CA3 distribution was sampled, then re-distributed in

an approximation of Fig. 8 A3  [ibid] by adding scaled log-normal probability distribu-

tions and renormalizing. Figures 3.9-3.11 recapitulate Fig. 8, A1�3 [ibid].    
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Figure 3.9. Responsive CA3 ISI distribution at 1Hz mean rate (also see Fig. 3.3).
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Figure 3.10. Approximate non-responsive CA3 ISI distribution at 1Hz mean rate.

102

Printed by Mathematica for Students



0.01 0.1 1 10
�0.010

�0.005

0.000

0.005

0.010

�ISI �sec��

�PDF
����

Figure 3.11. Difference of distributions shown in Figs. 3.9 and 3.10.

The  meaning  conveyed  by  the  pattern  of  ISIs  (must  be)  specific  to  the  computa-

tional function of the specific microcircuit. In the CA3-CA1 circuit, one of the computa-

tional  functions  is  to  sequentially  track  the  changes  in  the  state  of  the  recurrent  CA3

network  as  the  circuit  reconstructs  the  causal  expectations  initiated  by  a  set  of  cues

from the DG and ECII. The sequential order of states is registered to the slow gamma

(20-40Hz) local field potential (LFP) generated by the CA3. For example, the position

of the subject in an environment, as indicated by the activity of a place cell, c0, in the

CA3,  is  related  to  recalled  paths  through  space  (the  activity  of  other  place  cells,

c1, …, cn) by the relative phase of the firing of c0, with respect to theta (5-12Hz) modu-

lation of the LFP. The inital firing of place cell c0  upon reception of the cue state late

in  the  theta  cycle  precesses  to  earlier  theta  phase  as  the  sequence  of  states  in  CA3

unfolds. From the reference point of a cell in CA1 receiving input from c0, the meaning

of the signal from c0 is related to the transition of the states in CA3. 
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The  meaning  conveyed  by  the  pattern  of  ISIs  (must  be)  specific  to  the  computa-

tional function of the specific microcircuit. In the CA3-CA1 circuit, one of the computa-

tional  functions  is  to  sequentially  track  the  changes  in  the  state  of  the  recurrent  CA3

network  as  the  circuit  reconstructs  the  causal  expectations  initiated  by  a  set  of  cues

from the DG and ECII. The sequential order of states is registered to the slow gamma

(20-40Hz) local field potential (LFP) generated by the CA3. For example, the position

of the subject in an environment, as indicated by the activity of a place cell, c0, in the

CA3,  is  related  to  recalled  paths  through  space  (the  activity  of  other  place  cells,

c1, …, cn) by the relative phase of the firing of c0, with respect to theta (5-12Hz) modu-

lation of the LFP. The inital firing of place cell c0  upon reception of the cue state late

in  the  theta  cycle  precesses  to  earlier  theta  phase  as  the  sequence  of  states  in  CA3

unfolds. From the reference point of a cell in CA1 receiving input from c0, the meaning

of the signal from c0 is related to the transition of the states in CA3. 

There  are  at  least  two  ways  to  interpret  the  phenomenon  of  phase  precession  in

terms of presynaptic filtering. Theta modulation may be considered as an envelope of

the  gamma  signal,  in  which  case  the  phase  relationship  of  the  gamma  signal  with

respect to theta would be encoded in the group delay of gamma (the rate of change of

the phase of  gamma).  In  this  case,  STP might  decode the  signal  from the CA3 in  the

domain of the group delay, as illustrated by the fits (red lines) in Fig. 3.8. It also possi-

ble  to  interpret  the  signal  from the  CA3 directly  as  a  gain,  in  which  case  STP would

behave like a filter in which the sampling rate is non-constant, while the amplitude of

the samples is constant. Both alternatives were considered and found to provide equiva-

lently good fits to the data.  

Fitting  the  STP  gain  vs.  ISI  to  filter  characteristics  went  as  follows:  ISI  samples

were  drawn  from  the  responsive  and  non-responsive  distributions,  and  150-second-

long  input  spike  trains  were  constructed  from  the  sampled  ISIs.  Three  hundred  such

150 second-long input trains were applied to the DSCI model of STP for each distribu-

tion  (responsive  and  non-responsive)  at  mean  sampling  frequencies  of  1Hz,  2Hz  and

3Hz.  The synaptic  gain values were paired to  their  immediately preceding ISI  values.

Samples from the resulting ISI�1 vs. gain curves (see Fig. 3.8) were then fit to both the

group delay and the gain of a six-pole discrete filter,  the transfer function of which is

given by (in the z-domain):
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(3.5)H�z� � Y �z�
X�z� � Β0� z�1 Β1�…� z�1 Β6

Α0� z�1 Α1�…� z�1 Α6
,

where z � A �iΩ.  The gain of the transfer function is given by the magnitude, G(z),  of

H�z� : G�z� � �H�z��.  The  group  delay  is  defined  as  the  delay  of  the  modulation  enve-

lope  of  a  frequency  component  of  a  signal:  Τg � �
�Φ�Ω�
�Ω

,  where  Φ(Ω)  is  the  phase

response of the filter, defined as: Φ�Ω� � arg�H��iΩ��. An exploration of the filter charac-

teristics for the two interpretations indicate that the fit to the group delay directly yields

a linear phase reponse. However, it is uncertain what the meaning of the gain is in this

interpretation.  The magnitude  and phase  response from the  group delay  fit  are  shown

in Fig. 3.12. The filter is not minimum phase, but is stable. Figure 3.13 shows an exam-

ple filter, the gain of which was used to fit the STP gain.

Figure  3.12.  Gain  and  phase  of  filter  corresponding  to  the  group  delay  fit  to  DSCI
STP gain. 
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Figure 3.13. Gain and phase of filter corresponding to the gain fit to DSCI STP gain. 

The  gain  vs.  ISI�1  curves  only  take  into  account  the  immediately  preceding  ISI.

However,  STP  gain  is  expected  to  show  systematic  variability  as  a  function  of  more

than  one  preceding  ISI  within  the  time  window  of  use-dependency.  For  this  reason,

gain as a function of ISI doublets and triplets was also determined. The ISI triplet gain

respnse  forms  a  volume  of  data  points,

y�ISI�t� 2�, ISI�t� 1�, ISI�t� 0�� � f �ISI�t� 2�, ISI�t� 1�, ISI�t� 0��.  Slices  through

the  volume  can  be  obtained  by  constraining  one  of  the  dimensions  to  a  subset  of  its

domain.  For  instance,  the  first  of  the  ISIs  in  the  triplets  can  be  held  constant.  Taking

slices at constant values on the ISI(t  - 2) axis allows us to examine how the STP gain

changes as the first ISI in a triplet changes. Six such interpolated surfaces are shown in

Fig. 3.14.

106

Printed by Mathematica for Students



Figure 3.14. DSCI STP gain for different values of ISI(t - 2). A) 0.01sec, B) 0.05 sec,
C) 0.1 sec, D) 0.5 sec, E) 1 sec, F) 5 sec.  

3.3.2 Hypothesis 2:

Changes  in  CA1  model  output  train  statistics  vary  non-linearly  in  response  to  lin-

early varying input train characteristics as a result of the inclusion of STP. 

Test

Hypothesis 2 tests the idea that there are regimes in the characteristics of the inputs

that  are  more  sensitive  to  the  effects  of  STP,  and  therefore  more  likely  to  generate

outputs that are meaningful. Here “meaningful” implies the presence of a nonlinearity

in  some  characteristic  of  the  CA1  output  as  a  function  of  a  linear  variation  in  some

characteristic  of  the  input.  To  test  this  hypothesis,  two  sets  of  ISI  trains  of  similar

duration (about 10 seconds) were drawn from the responsive empirical CA3 ISI distribu-

tion, and then interpolated in 10 discrete steps from a condition in which 80% of the 75

input trains were given no imposed correlation with complex train #1 from the Frerk-

ing data, to the condition in which 80% of the 75 input trains were given 100% correla-

tion with (i.e., made equal to) complex train #1 from the Frerking data, resulting in 10

sets  of  inputs  that  varied  smoothly  between  two  extremes.  These  interpolated  sets  of

input  trains  were  applied  to  the  CA1 pyramidal  cell  model  with  and  without  the  STP

models  (models  1  and  2).  Differences  between  the  input  and  output  trains  under  all

three  conditions  (no  STP,  STP  model  1,  and  STP  model  2)  were  measured  using  the

distance and rate metrics. 
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Hypothesis 2 tests the idea that there are regimes in the characteristics of the inputs

that  are  more  sensitive  to  the  effects  of  STP,  and  therefore  more  likely  to  generate

outputs that are meaningful. Here “meaningful” implies the presence of a nonlinearity

in  some  characteristic  of  the  CA1  output  as  a  function  of  a  linear  variation  in  some

characteristic  of  the  input.  To  test  this  hypothesis,  two  sets  of  ISI  trains  of  similar

duration (about 10 seconds) were drawn from the responsive empirical CA3 ISI distribu-

tion, and then interpolated in 10 discrete steps from a condition in which 80% of the 75

input trains were given no imposed correlation with complex train #1 from the Frerk-

ing data, to the condition in which 80% of the 75 input trains were given 100% correla-

tion with (i.e., made equal to) complex train #1 from the Frerking data, resulting in 10

sets  of  inputs  that  varied  smoothly  between  two  extremes.  These  interpolated  sets  of

input  trains  were  applied  to  the  CA1 pyramidal  cell  model  with  and  without  the  STP

models  (models  1  and  2).  Differences  between  the  input  and  output  trains  under  all

three  conditions  (no  STP,  STP  model  1,  and  STP  model  2)  were  measured  using  the

distance and rate metrics. 

Four tests were performed at a mean sampling frequency of 1 Hz, but with different

rates of periodic modulation applied to the correlated trains. The four applied modula-

tion rates were: 50 Hz, 75 Hz, 100 Hz and 125 Hz. These rates were chosen to span the

range over which gamma modulation would act. In fact, however, except for the 50 Hz

modulation, these rates exceed the slow gamma modulation from CA3 acting upon the

Schaffer collaterals. For this reason, this series of tests should be performed again with

a  modulation  range  that  extends  from about  20Hz to  about  50Hz.  Stochastic  synaptic

background current  was added according to [Destexhe et  al,  2001] (see Appendix D).

An additional separate set of four tests were performed under the same conditions, but

also including modulation to  the stochastic  background noise at  a  rate  of  25 Hz.  This

rate is closer to the slow gamma from CA3. The higher frequency modulation might be

interpreted as  representing the  fast  gamma arriving on the  distal  dendrites  from ECII,

although  during  recall  the  distal  inputs  to  CA1  may  display  less  influence  over  CA1

behavior [Jones and McHough, 2011].
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Four tests were performed at a mean sampling frequency of 1 Hz, but with different

rates of periodic modulation applied to the correlated trains. The four applied modula-

tion rates were: 50 Hz, 75 Hz, 100 Hz and 125 Hz. These rates were chosen to span the

range over which gamma modulation would act. In fact, however, except for the 50 Hz

modulation, these rates exceed the slow gamma modulation from CA3 acting upon the

Schaffer collaterals. For this reason, this series of tests should be performed again with

a  modulation  range  that  extends  from about  20Hz to  about  50Hz.  Stochastic  synaptic

background current  was added according to [Destexhe et  al,  2001] (see Appendix D).

An additional separate set of four tests were performed under the same conditions, but

also including modulation to  the stochastic  background noise at  a  rate  of  25 Hz.  This

rate is closer to the slow gamma from CA3. The higher frequency modulation might be

interpreted as  representing the  fast  gamma arriving on the  distal  dendrites  from ECII,

although  during  recall  the  distal  inputs  to  CA1  may  display  less  influence  over  CA1

behavior [Jones and McHough, 2011].

The mean van Rossum distance, �∆� j, between the inputs trains and the output train

at each interpolated step, j, was collected from the STP and non-STP tests. In addition,

the  mean  rates,  �Θ� j,  of  the  input  and  output  trains,  for  STP  and  non-STP  tests,  were

recorded.  For  each  of  the  four  separate  tests  (at  modulation  rates  Φi),  30  data  points

were collected, consisting of the pairs:   

(3.6)Ρ j � � �Θout,STP� j � �Θout,nonSTP� j�Θin� j , �∆STP� j � �∆nonSTP� j�.
The points, Ρ, fell neatly on a straight line (not shown). The interpretation is that differ-

ences  imposed  upon  spike  trains  by  STP,  as  assessed  by  the  van  Rossum  distance

measure,  could  be  explained  by  the  differences  in  rate  induced  by  STP  effects.  The

slope and offset parameters of the linear fits were recorded for both models of STP (the

parameters  fit  to  the  two data  sets).  Robust  estimates  of  the  error  in  the  linear  model

parameters were obtained using nlinfit.m and nlparci.m in the Matlab statistics toolbox.

95% confidence intervals for the linear model parameter estimations are shown in Figs.

3.15 and 3.16 for the two STP model tests described above. In all cases, the slopes are

not significantly different between the two models of STP. However, the second model

of  STP  does  show  offsets  in  the  linear  fits  of  the  Ρ  parameter  that  are  significantly

different  than  zero,  unlike  the  first  model  of  STP,  implying  that  change  in  rate  alone

cannot explain the effect of STP in the second model.
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The points, Ρ, fell neatly on a straight line (not shown). The interpretation is that differ-

ences  imposed  upon  spike  trains  by  STP,  as  assessed  by  the  van  Rossum  distance

measure,  could  be  explained  by  the  differences  in  rate  induced  by  STP  effects.  The

slope and offset parameters of the linear fits were recorded for both models of STP (the

parameters  fit  to  the  two data  sets).  Robust  estimates  of  the  error  in  the  linear  model

parameters were obtained using nlinfit.m and nlparci.m in the Matlab statistics toolbox.

95% confidence intervals for the linear model parameter estimations are shown in Figs.

3.15 and 3.16 for the two STP model tests described above. In all cases, the slopes are

not significantly different between the two models of STP. However, the second model

of  STP  does  show  offsets  in  the  linear  fits  of  the  Ρ  parameter  that  are  significantly

different  than  zero,  unlike  the  first  model  of  STP,  implying  that  change  in  rate  alone

cannot explain the effect of STP in the second model.

Figure  3.15.  Slopes  (left  panel)  and  offsets  (right  panel)  of  linear  fits  of  the  test
statistic, Ρ, defined in Eqn.(3.6). Confidence intervals are 95%. The morph condition
in the four tests was the correlation of 80% of the 75 inputs with the complex train #1
from the Frerking data (steps of 10 from 0% to 100% correlation). Tests 1 through 4
were performed with different rates of modulation applied to the correlation. In test 1,
the correlation was modulated at 50 Hz, test 2 at 75 Hz, test 3 at 100 Hz, and test 4

at 125 Hz. In all cases, background noise was included, but not modulated. 

Figure 3.16. Same as Fig. 3.15, except with background noise modulated at 25 Hz. 
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3.4 Summary

Using the DSCI model, two distinct hypotheses about synaptic functionality were

tested. The dynamic synaptic response to variable-ISI input trains drawn from a physio-

logically derived (empirical) ISI distribution shows a region of gain in the 10 - 40 Hz

range. The physiological significance of this region of gain is explored more in chapter

4, but in summary, this is the range of slow gamma oscillations generated in CA3 and

used to convey information regarding the sequencing of events. The interpretation of

the STP gain response has also been shown to potentially conform to filters operating

in either the domain of group delay or of gain. Finally, STP was shown to have a linear

variation in one measure of distance between input and output spike trains of a model

CA1 pyramidal cell as a function of a linearly varying alteration in a characteristic of

the input trains. This result could imply that, at least for the characteristic measured,

STP does not preferentially increase response to characteristics of the input trains. This

result does not rule out the possibility that there is alteration on shorter time scales than

was observed, or to different characteristics than were tested. 
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C  H  A  P  T  E  R   4 

Interpretation of STP the Schaffer collateral

The goal of this chapter is to provide insight into the function of the Schaffer collat-

eral in the context of hippocampal processing as it relates to cognition and cognitive

pathologies. Behavioral, anatomical, and physiological observations of the hippocam-

pal  formation are  compared with  machine-learning concepts  to  provide  a  computa-

tional perspective on the operation of the hippocampus. With a broader perspective on

the function of the hippocampus, our understanding of the role of STP at the Schaffer

collateral may then be constrained.  

The hippocampus is proposed to provide a solution to three dilemmas of storage and

representation, including the balance of circuit stability with plasticity [Abraham and

Robins,  2005],  the  maintenance  of  representational  specificity  and  generalizability

[Summerfield et al, 2011], and the translation between sparse and dense codes [Ahmed

and  Mehta,  2009;  Willmore  and  Tolhurst,  2001].  STP at  the  Schaffer  collateral  is

proposed to improve the sensitivity to certain regimes of operation by modulating the

balance, timing, ratio, and/or influence of excitation and inhibition in the CA1 that is

critical for the organization of associative and episodic memory [Hirase and Recce,

2011].  
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4.1 Anatomy and function

4.1.1 A very brief history of hippocampology

The modern era of hippocampal study began with the observation of patient “H.M.”,

who developed anterograde amnesia  following surgery in  which parts  of  his  temporal

lobes,  including  his  hippocampi,  were  removed  in  order  to  relieve  severe  epileptic

seizures  [Scoville  and  Milner,  1957].  Anterograde  amnesia  is  the  inability  to  create

new  memories  of  events  or  episodes.  Patient  H.M.  was  able  to  remember  items  only

for  brief  periods  of  time  (some  minutes)  prior  to  distraction.  H.M.  also  experienced

retrograde  amnesia  extending  back  to  approximately  the  period  of  time  prior  to  the

surgery during which he first experienced epilepsy. The case of patient H.M. motivated

an  era  of  animal  studies  in  an  attempt  to  understand  the  role  of  the  hippocampus  in

amnesia and memory [Kandel, 2006]. 

Animal studies that took place in the 1960's failed to locate the hippocampus as the

definitive site of memory consolidation. However, one finding that emerged from this

period was the observation that hippocampectomized rats, while able to learn a condi-

tioned behavior as well as normal rats, were less able to “withhold a prepotent behav-

ioral  response,”  that  is,  change  behavior  when  conditions  changed  [Kimble,  1968;

Anderson et al, 2007]. Hippocampectomized rats had no problem with simple Y- or T-

mazes,  but  failed  “miserably”  in  complex  multichoice  configurations  (complicated

mazes) [Kveim et al, 1964; Anderson et al, 2007]. 
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A few things happened in the early 1970's  that  changed the experimental  approach

to  hippocampal  studies.  First,  long  term  memory  was  recognized  as  having  different

types.  Endel  Tulving  classified  memories  according  to  their  dependence  on  context

[Tulving,  2002].  Memories  that  depended  on  context,  he  called  episodic  memories.

Other  memories,  typically  of  the  factual  type,  he  termed  semantic.  Terry  Winograd

further  categorized  memory  by  grouping  episodic  and  semantic  memory  types  into

declarative memory, in contrast to procedural memory, which refers to rehearsed skills

and stimulus-response habits [Anderson et al, 2007]. The second thing to happen in the

1970's was that behaviorists realized that their tests for animal memory were not opti-

mal for observing hippocampal function [ibid]. As a result, more specific and appropri-

ate object-recognition tasks were developed, allowing studies into the establishment of

memory systems to gain more traction.

4.1.2 Spatial representation

Another major development in the 1970's was the use of implanted microelectrodes

to  monitor  single-neuron  activity  in  awake,  behaving  animals  [Hirano  et  al,  1970;

Vinogradova et al, 1970]. From the results of single electrode recordings, the cognitive

map theory of the hippocampus was hypothesized [O’Keefe and Dostrovsky, 1971]. A

cognitive map is a mental representation of the environment that provides navigational

information.  The cognitive map concept  came out  of  the theory of  expectancy,  which

explained  experiments  showing  that  rats  could  learn  behaviors  that  were  not  directly

reinforced  (as  strict  behaviorism  requires)  [Tolman,  1948].  The  theory  of  expectancy

supercedes strict behaviorism by abstracting the stimulus-response paradigm to include

a  mental  survey  of  surroundings  that  allows  the  flexibility  to  discover  shortcuts  or

novel solutions to problems [Buckner, 2010].
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Another major development in the 1970's was the use of implanted microelectrodes

to  monitor  single-neuron  activity  in  awake,  behaving  animals  [Hirano  et  al,  1970;

Vinogradova et al, 1970]. From the results of single electrode recordings, the cognitive

map theory of the hippocampus was hypothesized [O’Keefe and Dostrovsky, 1971]. A

cognitive map is a mental representation of the environment that provides navigational

information.  The cognitive map concept  came out  of  the theory of  expectancy,  which

explained  experiments  showing  that  rats  could  learn  behaviors  that  were  not  directly

reinforced  (as  strict  behaviorism  requires)  [Tolman,  1948].  The  theory  of  expectancy

supercedes strict behaviorism by abstracting the stimulus-response paradigm to include

a  mental  survey  of  surroundings  that  allows  the  flexibility  to  discover  shortcuts  or

novel solutions to problems [Buckner, 2010].

According  to  cognitive  map  theory,  the  hippocampus  supports  spatial  episodic

memory  formation  and  retrieval.  Several  electrophysiological  findings  supported  this

idea,  including  the  discovery  of  place  cells  [O'Keefe  and  Dostrovsky,  1971].  Place

cells  are  pyramidal  neurons  in  the  hippocampus  that  fire  consistently  when  the  test

subject  is  in,  or  passes  through,  a  localized  region  of  an  environment.  The  identifica-

tion  of  spatially-sensitive  receptive  fields  in  the  hippocampus  resulted  in  a  paradigm

shift in the study of learning and memory [Mizumori, 2006]. 

Other cells that fire under specific conditions related to spatial awareness have since

been discovered. Among these are head direction cells [Taube et al, 1990], border cells

[Solstad et al, 2008], spatial view cells [Franzius et al, 2007], and perhaps most remark-

ably, grid cells [Hafting et al, 2005]. Grid cells have multiple regular firing fields that

form  two-dimensional  triangular  lattices  covering  an  observable  environment.  The

spacing  of  the  lattices  varies  as  a  function  of  position  on  the  dorsoventral  axis  of  the

EC, indicating that grid cells potentially convey metric information [de Almeida et al,

2009]. In lighted environments, grid cells orient to visual cues, but grid fields persist in

the dark, so it is thought that the formation of grid fields is related to motion awareness

(proprioception), as well as visual cues. Grid cells are not located in the hippocampus

proper,  but  in  the  entorhinal  cortex  (EC).  However,  the  superficial  layers  of  the  EC

project directly to the DG and CA, providing the hippocampus with its primary neocorti-

cal input.   
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Other cells that fire under specific conditions related to spatial awareness have since

been discovered. Among these are head direction cells [Taube et al, 1990], border cells

[Solstad et al, 2008], spatial view cells [Franzius et al, 2007], and perhaps most remark-

ably, grid cells [Hafting et al, 2005]. Grid cells have multiple regular firing fields that

form  two-dimensional  triangular  lattices  covering  an  observable  environment.  The

spacing  of  the  lattices  varies  as  a  function  of  position  on  the  dorsoventral  axis  of  the

EC, indicating that grid cells potentially convey metric information [de Almeida et al,

2009]. In lighted environments, grid cells orient to visual cues, but grid fields persist in

the dark, so it is thought that the formation of grid fields is related to motion awareness

(proprioception), as well as visual cues. Grid cells are not located in the hippocampus

proper,  but  in  the  entorhinal  cortex  (EC).  However,  the  superficial  layers  of  the  EC

project directly to the DG and CA, providing the hippocampus with its primary neocorti-

cal input.   

The  firing  properties  of  spatially  responsive  cells  change,  or  “remap”,  in  different

environments, or under varying behavioral circumstances [Colgin et al, 2008]. Remap-

ping allows the hippocampal system to create context-specific representations of envi-

ronments, which can be used to “disambiguate the behavioral contingencies” of similar

stimuli that can occur in different spatial or behavioral contexts [Knierim et al, 2006].

In  other  words,  different  maps  can  exist  for  the  same  environment,  but  relating  to

different contingencies (i.e., contexts) [Leutgeb and Leutgeb, 2007].

4.1.3 Navigation as cognitive template

The  prominent  representation  of  space  in  the  hippocampus  and  associated  regions

indicates  the  importance  of  the  hippocampus  for  navigation  [O'Keefe  and  Nadel,

1978].  At  the  same  time,  the  hippocampus  is  crucially  involved  in  the  establishment,

maintenance,  and  manipulation  of  episodic  and  declarative  memories  [Scoville  and

Milner, 1957; Buckmaster et al, 2004; Nadel and Hardt, 2010]. The interdependency of

these  functions  may  provide  insight  into  the  workings  of  the  hippocampal  region

[Eichenbaum, 2004; Mizumori, 2004].  

The  convergence  of  spatial  awareness  with  declarative  memory  formation  in  the

hippocampal  region might  be understood as  a  solution to an organizational  challenge.

In the simplest terms, one might postulate that since the things we remember tend to be

spatially  located,  the  association  of  memories  with  positional  awareness  is  the  most

parsimonious  solution  to  the  challenge  of  organizing  memories.  It  may  be  harder,

though, to explain how abstract declarative content that does not have a direct associa-

tion to spatial awareness is nonetheless dependent upon the hippocampus. However, if

we  postulate  that  declarative  memory  formation  employs  the  same  organizational

principles  as  used  during  the  ongoing  encoding  of  situational  awareness,  including

route  planning,  then  these  principles  might  be  understood as  templates  for  organizing

non-spatial associations as well. 
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The  convergence  of  spatial  awareness  with  declarative  memory  formation  in  the

hippocampal  region might  be understood as  a  solution to an organizational  challenge.

In the simplest terms, one might postulate that since the things we remember tend to be

spatially  located,  the  association  of  memories  with  positional  awareness  is  the  most

parsimonious  solution  to  the  challenge  of  organizing  memories.  It  may  be  harder,

though, to explain how abstract declarative content that does not have a direct associa-

tion to spatial awareness is nonetheless dependent upon the hippocampus. However, if

we  postulate  that  declarative  memory  formation  employs  the  same  organizational

principles  as  used  during  the  ongoing  encoding  of  situational  awareness,  including

route  planning,  then  these  principles  might  be  understood as  templates  for  organizing

non-spatial associations as well. 

A few examples might help make the point. For one, the phenomenon of transitive

inference,  or  “the  ability  to  integrate  experiences  that  share  overlapping elements  and

then  use  the  consequent  relations  to  guide  novel  judgments  about  elements  that  are

indirectly  related”,  has  been  found  to  involve  the  hippocampus  [DeVito  et  al,  2009a;

Reber  et  al,  2012].  Additionally,  the  ability  to  flexibly  manipulate  relationships

between  familiar  items  has  been  found  to  be  dependent  on  the  intact  hippocampal

system  in  primates  [Buckmaster  et  al,  2004].  In  rats,  hippocampal  region  CA3,  by

supporting arbitrary associations, has been found to be required for relational encoding

in episodic memory processing [Kesner et al, 2008].

Supposing  then,  that  the  navigational  function  of  the  hippocampus  encompasses

arbitrary associations, perhaps the scope of hippocampal function can be stated gener-

ally  enough  to  characterize  navigational  processing  in  abstract  cognitive  spaces.  To

that  end,  it  is  proposed  that  the  function  of  the  hippocampus  is  to  map  attributes  of

objects  and  situations  to  locations  on  representational  charts,  that  themselves  are  part

of an atlas covering the space of known object-situation attributes. Memories of object-

situation  interactions  could  either  by  located  on  existing  charts,  or  on  new  charts,

thereby forming a more complete atlas [Derdikman and Moser, 2010]. 
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Supposing  then,  that  the  navigational  function  of  the  hippocampus  encompasses

arbitrary associations, perhaps the scope of hippocampal function can be stated gener-

ally  enough  to  characterize  navigational  processing  in  abstract  cognitive  spaces.  To

that  end,  it  is  proposed  that  the  function  of  the  hippocampus  is  to  map  attributes  of

objects  and  situations  to  locations  on  representational  charts,  that  themselves  are  part

of an atlas covering the space of known object-situation attributes. Memories of object-

situation  interactions  could  either  by  located  on  existing  charts,  or  on  new  charts,

thereby forming a more complete atlas [Derdikman and Moser, 2010]. 

4.1.4 Cognitive maps and schemas 

While cognitive map theory is strictly spatial, the survey of surroundings established

in  the  hippocampus  is  thought  to  encompass  “the  full  range  of  regularities  present  in

the  experience”  [Eichenbaum  et  al,  1999].  If  the  hippocampus  is  indeed  the  locus  of

cognitive map generation, and if nonspatial information is combined with spatial infor-

mation  in  the  hippocampus,  then  spatial  maps  may  represent  only  one  aspect  of  the

organization of cognition established in the hippocampus. 

The  generalization  of  the  cognitive  map is  captured  by  the  concept  of  the  schema,

which are  mental  models,  or  general  cognitive  structures  that  aid  in  making sense  of,

and  remembering,  new  information.  Schemas  are  “derived  from  an  episode  or  pre-

scribed  activity,  and  are  repeatable  and  generalizable  to  likewise  future  situations”

[from  http://www.nature-nurture.org/index.php/future-direction/appraisals/schemas-vs-

appraisals/], and represent domain-specific aspects of an individual’s perceptual experi-

ences and behavioral responses to those experiences [Piaget, 1972; Markus, 1977]. The

distinction between the cognitive map and schema theories is simply that the cognitive

map technically represents spatial awareness in isolation from other aspects of experi-

ence  [Eichenbaum  et  al,  1999;  Sweatt,  2004;  Wood  et  al,  1999].  The  schema  theory

seems  to  match  Eichenbaum’s  broader  interpretation  of  the  function  of  place  cells  in

the hippocampus.
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The generalization  of  the  cognitive  map is  captured  by  the  concept  of  the  schema,

which are  mental  models,  or  general  cognitive  structures  that  aid  in  making sense  of,

and  remembering,  new  information.  Schemas  are  “derived  from  an  episode  or  pre-

scribed  activity,  and  are  repeatable  and  generalizable  to  likewise  future  situations”

[from  http://www.nature-nurture.org/index.php/future-direction/appraisals/schemas-vs-

appraisals/], and represent domain-specific aspects of an individual’s perceptual experi-

ences and behavioral responses to those experiences [Piaget, 1972; Markus, 1977]. The

distinction between the cognitive map and schema theories is simply that the cognitive

map technically represents spatial awareness in isolation from other aspects of experi-

ence  [Eichenbaum  et  al,  1999;  Sweatt,  2004;  Wood  et  al,  1999].  The  schema  theory

seems  to  match  Eichenbaum’s  broader  interpretation  of  the  function  of  place  cells  in

the hippocampus.

It  has been proposed and experimentally demonstrated that the hippocampus estab-

lishes  schemas  [Tse  et  al.,  2007].  Tse  demonstrated  that  hippocampally-established

schemas  allow  for  single-trial  learning  by  first  establishing  a  cognitive  structure  into

which  similar  experiences  can  be  rapidly  added.  In  Tse’s  experiment,  the  schemas

consisted  of  flavor-location  paired  associates  (PAs).  After  extensive  training  over  a

period of weeks to familiarize six PAs, two new PAs were introduced, replacing two of

the original six PAs, but were introduced in only one training session. The recognition

of the new PAs that were introduced after the familiarization period with a fixed set of

PAs was significantly greater after 24 hours, than was the recognition of the new PAs

following a training period in which the training PAs were not fixed, but instead varied

every  day.  An  NMDA  receptor-dependent  mechanism  was  later  identified  as  specifi-

cally responsible for encoding the new PAs [Bethus et al, 2010]. 

In  a  direct  connection  with  computational  intelligence  theory,  schemas  parallel  the

contextual  manifold  concept  of  Lendaris  and  Santiago  [Lendaris,  2009;  Santiago,

2004].  The contextual  manifold instantiates  a  continuous framework for  the organiza-

tion of  existing knowledge into  which new knowledge can be  readily  interwoven and

indexed. For example, in reference to control theory, a context, as defined by Lendaris,

consists of a triplet of a plant,  an environment,  and a criterion function,  where a plant

is a controllable system, an environment is a set of parameters that affect the behavior

of the plant, and a criterion function is the definition of performance for the plant in the

environment.  The  contextual  triplet  indexes  into  a  repository,  or  manifold,  of  con-

trollers that have been learned through prior experience [Lendaris, 2009]. 
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In  a  direct  connection  with  computational  intelligence  theory,  schemas  parallel  the

contextual  manifold  concept  of  Lendaris  and  Santiago  [Lendaris,  2009;  Santiago,

2004].  The contextual  manifold instantiates  a  continuous framework for  the organiza-

tion of  existing knowledge into  which new knowledge can be  readily  interwoven and

indexed. For example, in reference to control theory, a context, as defined by Lendaris,

consists of a triplet of a plant,  an environment,  and a criterion function,  where a plant

is a controllable system, an environment is a set of parameters that affect the behavior

of the plant, and a criterion function is the definition of performance for the plant in the

environment.  The  contextual  triplet  indexes  into  a  repository,  or  manifold,  of  con-

trollers that have been learned through prior experience [Lendaris, 2009]. 

The  major  advantage  of  contextual  organization,  especially  in  high-dimensional

systems,  is  that  items  are  located  based  upon  some  measure  of  similarity  [Kanerva,

1993].  Such an organizational  strategy simplifies  the task of  storing new information,

and  making  inferences  based  on  the  likelihood  that  information  located  in  nearby

coordinates  has  more  relevance  than  information  stored  in  distant  coordinates.  Essen-

tially,  a  contextualized  organizational  strategy  performs  a  process  known as  manifold

learning,  whereby high-dimensional  data  is  mapped to a  lower dimensional  space (an

abstracted level of representation), while preserving metrical and/or topological relation-

ships  in  the  data,  thereby  forming  a  coherent  basis  for  “reasoning  about  the  world”

[Roweis and Saul, 2000], or making informed decisions. 

4.1.5 Anatomical subregions

At  this  point,  the  discussion  turns  to  a  review  of  the  anatomy,  physiology,  and

function of  the  hippocampus in  preparation for  elaborating on the  proposed organiza-

tional strategy of the hippocampus and the similarity of that strategy to the contextual

manifold principle. 

The hippocampus is characterized by a stark division of anatomical subregions, each

of  which  performs  a  unique   function,  influenced  by  the  upstream  (afferent)  biasing

from region(s) receiving some set of input features in common with the biased efferent

region(s).  The  subregions  of  the  hippocampus  and  their  major  connections  with  the

neocortex are illustrated in Fig. 4.1.
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Figure  4.1.  Basic  cortico-hippocampal  connections.  Descending  pathways  in  blue;
ascending in green.

Both  neocortical  and  subcortical  projections  converge  on  the  hippocampus.  The

neocortical  projections  convey  sensory  representations  relating  to  spatial  and  object

awareness.  Some areas  of  the  neocortex  connected  to  the  hippocampus,  including  the

orbitofrontal  [Brown  et  al,  2010]  and  medial  prefrontal  cortex  [DeVito  and  Eichen-

baum,  2011],  are  implicated  in  sequential  event  anticipation,  novelty  detection,  and

flexible  response  selection  and  suppression.  Subcortical  projections  provide  global

modulation  related  to  attention,  reward,  timing  and  emotional  relevance.  Subcortical

regions  also  display  functions  related  to  the  organization  of  responses  (amygdala,

nucleus accumbens, basal ganglia, hypothalamus), and “internal adjustments related to

the  anticipation  of  action”  (amygdala,  hypothalamus)  [Cotterill,  2001;  McNaughton,

2006].   
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Both  neocortical  and  subcortical  projections  converge  on  the  hippocampus.  The

neocortical  projections  convey  sensory  representations  relating  to  spatial  and  object

awareness.  Some areas  of  the  neocortex  connected  to  the  hippocampus,  including  the

orbitofrontal  [Brown  et  al,  2010]  and  medial  prefrontal  cortex  [DeVito  and  Eichen-

baum,  2011],  are  implicated  in  sequential  event  anticipation,  novelty  detection,  and

flexible  response  selection  and  suppression.  Subcortical  projections  provide  global

modulation  related  to  attention,  reward,  timing  and  emotional  relevance.  Subcortical

regions  also  display  functions  related  to  the  organization  of  responses  (amygdala,

nucleus accumbens, basal ganglia, hypothalamus), and “internal adjustments related to

the  anticipation  of  action”  (amygdala,  hypothalamus)  [Cotterill,  2001;  McNaughton,

2006].   

The  combination  of  neocortical  and  subcortical  projections  suggests  that  enough

information potentially converges on the hippocampus to represent the sensory, motiva-

tional and emotional aspects of experience. Behavioral observations tend to agree with

the anatomical suggestion. The hippocampus has an observed function in the formation

and  retrieval  of  spatial  [O'Keefe  and  Nadel,  1978;  Moser  et  al,  2008],  contextual

[Nadel et al, 1985; Levy et al, 1995; Treves, 2009; McHugh and Tonegawa, 2009] and

relational  [Buckmaster  et  al,  2004;  Kesner  et  al,  2008]  aspects  of  episodic  memories.

The  hippocampus  is  tightly  connected  with  the  amygdala,  providing  direct  access  to

emotional content of memories [Phelps, 2004]. The hippocampus is also active during

goal-oriented behavior and spatial navigation [O'Keefe and Nadel, 1978; McNaughton,

2006;  Vinogradova,  2001].  Furthermore,  hippocampal  memory  traces  can  be  flexibly

applied in contexts different than in which they were learned [Acsady and Kali, 2007],

and  learning  has  been  observed  to  accelerate  after  contextual  information  is  consoli-

dated [Tse et al, 2007]. 

Entorhinal cortex

Almost  all  of  the  neocortical  projections  to  the  hippocampus  funnel  through  the

entorhinal cortex (EC) [Amaral and Lavenex, 2007]. The neocortical projections to the

EC are typically categorized into two pathways originating in sensory and associational

regions of  the  neocortex,  and terminating in  the  lateral  and medial  entorhinal  cortices

(LEC  and  MEC,  respectively)  [Canto  et  al,  2008].  The  two  pathways  process  spatial

and  object  information  mostly  independently,  displaying  a  pattern  of  convergence  to

the  EC,  followed by  largely  reciprocating  divergence  back  to  the  neocortex  [Lavenex

and  Amaral,  2000],  implying  that  inputs  and  outputs  are  kept  mostly  in  register,

thereby potentially  preserving topological  relationships between representations in  the

EC  and  the  rest  of  the  neocortex  [Agster  and  Burwell,  2009].  The  two  pathways  are

associatively mixed in the hippocampus, and probably in the entorhinal cortex as well

[Eichenbaum and Lipton, 2008; Canto et al, 2008]. 
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Almost  all  of  the  neocortical  projections  to  the  hippocampus  funnel  through  the

entorhinal cortex (EC) [Amaral and Lavenex, 2007]. The neocortical projections to the

EC are typically categorized into two pathways originating in sensory and associational

regions of  the  neocortex,  and terminating in  the  lateral  and medial  entorhinal  cortices

(LEC  and  MEC,  respectively)  [Canto  et  al,  2008].  The  two  pathways  process  spatial

and  object  information  mostly  independently,  displaying  a  pattern  of  convergence  to

the  EC,  followed by  largely  reciprocating  divergence  back  to  the  neocortex  [Lavenex

and  Amaral,  2000],  implying  that  inputs  and  outputs  are  kept  mostly  in  register,

thereby potentially  preserving topological  relationships between representations in  the

EC  and  the  rest  of  the  neocortex  [Agster  and  Burwell,  2009].  The  two  pathways  are

associatively mixed in the hippocampus, and probably in the entorhinal cortex as well

[Eichenbaum and Lipton, 2008; Canto et al, 2008]. 

Layers I-III of the entorhinal cortex (the superficial layers), receive most neocortical

projection, while layers IV-VI (the deep layers), receive most hippocampal projections.

The  superficial  EC  layers  II  and  III  project  to  the  hippocampus,  while  the  deep  EC

layer V projects back to the neocortex. One of the exceptions to this rule is that layer V

also sends some projections to the DG [Canto et al, 2008; Amaral and Lavenex, 2007],

possibly  implicating  layer  V  in  the  comparison  (match/mismatch)  function  variously

ascribed to hippocampal and extra-hippocampal regions [Kumaran and Maguire, 2007;

Villarreal et al, 2007; Hasselmo, 2005; Vinogradova, 2001].     

Layers II and III interact strongly, displaying a pattern of divergenge from II to III,

and  convergence  from III  to  II.  Layer  II  has  two  types  of  excitatory  cells:  pyramidal

and stellate. The pyramidal cells receive most inputs from other layers in EC, while the

stellate cells send outputs to the hippocampus and broadly innervate EC layer I, possi-

bly  indicating  surround  inhibition,  since  layer  I  contains  mostly  interneurons.  The

apical dendrites of layer III and V pyramidal cells are narrowly constrained and termi-

nate  in  layer  I,  indicating  specificity  of  cortical  inputs  (bearing  in  mind  the  influence

from  layer  II).  Basal  dendrites  of  EC  V  are  clustered  near  the  soma,  also  indicating

input  specificity  from  the  hippocampus.  Deep  layer  inputs  to  superficial  layers  are

known  to  integrate  position,  direction  and  speed  information  [Sargolini  et  al,  2006],

providing more specificity.
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Layers II and III interact strongly, displaying a pattern of divergenge from II to III,

and  convergence  from III  to  II.  Layer  II  has  two  types  of  excitatory  cells:  pyramidal

and stellate. The pyramidal cells receive most inputs from other layers in EC, while the

stellate cells send outputs to the hippocampus and broadly innervate EC layer I, possi-

bly  indicating  surround  inhibition,  since  layer  I  contains  mostly  interneurons.  The

apical dendrites of layer III and V pyramidal cells are narrowly constrained and termi-

nate  in  layer  I,  indicating  specificity  of  cortical  inputs  (bearing  in  mind  the  influence

from  layer  II).  Basal  dendrites  of  EC  V  are  clustered  near  the  soma,  also  indicating

input  specificity  from  the  hippocampus.  Deep  layer  inputs  to  superficial  layers  are

known  to  integrate  position,  direction  and  speed  information  [Sargolini  et  al,  2006],

providing more specificity.

Anatomical  connections in EC indicate that  the deep and superficial  layers  interact

[Beed at al, 2010; Canto et al, 2008]. Deep to superficial projections are predominant,

mainly from EC V to EC III,  and have been found to be spatially clustered, implying

segregation  of  computational  units.  The  report  of  clustered  projections  must  be

weighed  against  another  report,  finding  that  pyramidal  cell  axons  in  layers  II  and  V

both extend broadly in their respective layers (with layer V also innervating layer III in

a convergent manner),  while layer III  axons tend to be more confined to a cylindrical

region  around  the  soma,  and  extend  through  all  layers  [Quilichini  et  al,  2010].  The

spatial  clustering of  deep layer  projections reported by Beed potentially  indicates  that

deep layers perform a more selective operation, while the broader dendritic and axonal

influence in  the superficial  layers  suggests  more of  an associative function.  However,

according to Quilichini et al, EC III may be responsible for the limited spatial extent of

excitability between deep and superficial layers, implicating layer III in the coupling of

EC input and output representations.  
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Inter-layer  interaction  in  the  EC  has  been  observed  in  the  form  of  “reverberant

activity”  lasting  for  more  than  200ms  after  a  single  stimulus  in  the  superficial  layers

[Iijima et  al,  1996].  In  this  study,  stimulation  of  EC layer  II  generated  activity  in  the

deep  layers  of  EC  before  activity  was  observed  to  spread  to  the  hippocampus.  The

activity  in  the  EC  was  subsequently  sustained  in  part  by  hippocampal  outputs  from

CA1 and subiculum. This  type of  study has several  caveats:  the stimulation pattern is

completely unlike anything that would be seen in vivo, and the resolution of the optical

signal  is  low.  Also,  as  in  most  ex-vivo  hippocampal  studies,  the  slice  preparation

severs  the  temporo-sagital  connections,  possibly  removing  important  components  of

the circuit.  Nevertheless,  this study does suggest that  an observable interaction occurs

along the anatomical connections between the EC and hippocampus.

Inputs to the hippocampus from EC layer III, but not from layer II, have been found

to be crucial for temporal association memory, and have been shown to maintain persis-

tent  activity up to several  minutes,  during the delay period of working memory tasks,

possibly accounting for the temporal association signal [Tahvildari et  al,  2007; Suh et

al, 2011]. The persistence of firing of EC III cells was found to be an inherent property

of the neurons [Hasselmo et al, 2010]. Layer V cells were found to share this property.

Layer III cells were also found to be more excitable and have a higher mean firing rate

than cells in other layers [Quilichini et al, 2010].

Grid field expression in the EC is correlated with place cell activity in the hippocam-

pus,  and  is  suggested  to  form a  spatial  basis  for  contextual  representation  [Gustafson

and Daw, 2011]. Layer II stellate cells provide the main input to the DG and CA3, and

express only grid fields [McNaughton et al, 2006]. The offset, spacing, and orientation

of grid fields in EC layer II is independent of the size or shape of the environment, and

all grid offsets (phases) are equally represented within a small region of EC [Hafting et

al,  2005].  The  spacing  and  orientation  of  neighbouring  grid  cells  is  almost  identical,

but their grids are offset relative to each other in an apparently random manner. Cells

in layers III and V express grid fields, head direction cells and the conjunction of grid

fields with head direction cells, which are also sensitive to speed. 
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express only grid fields [McNaughton et al, 2006]. The offset, spacing, and orientation

of grid fields in EC layer II is independent of the size or shape of the environment, and

all grid offsets (phases) are equally represented within a small region of EC [Hafting et

al,  2005].  The  spacing  and  orientation  of  neighbouring  grid  cells  is  almost  identical,

but their grids are offset relative to each other in an apparently random manner. Cells

in layers III and V express grid fields, head direction cells and the conjunction of grid

fields with head direction cells, which are also sensitive to speed. 

Global  remapping  of  place  fields  in  the  hippocampus  corresponds  to  grid  reallign-

ment in the MEC, while rate remapping in the place fields does not correspond to rate

remapping in the grid fields [Fyhn et al, 2007]. Ensembles of grid cells remain coactive

during global remapping in hippocampal area CA3, and the alignment of grid fields is

unaltered during rate remapping in CA3. To place the characteristics of grid cells in the

context  of  the  proposed  function  of  the  hippocampus,  it  would  appear  that  the  active

ensemble of grid cells represents the spatial basis for the current conceptual chart. Rate

remapping in the hippocampus would then correspond to transformations on that chart,

while global remapping represents a transition between charts, and possibly the forma-

tion of new charts.  

Dentate gyrus

Many pieces of behavioral evidence correlate the dentate gyrus (DG) with learning.

Some of those behavioral results are briefly summarized here before the computational

role of the DG is discussed. The dentate gyrus seems to be most active during the early

training  period  of  tasks  requiring  spatial  and  temporal  memory,  as  compared  to  CA1

and CA3 [Poirier et  al,  2008],  and there is  evidence that  spatial  representations in the

DG  form  immediately  in  new  environments  [Hill,  1978;  Wilson  and  McNaughton,

1993;  de  Almeida,  et  al,  2009].  The  DG  appears  to  be  required  when  similarity

between  place-object  association  is  maximal,  but  not  when  place-object  association

similarities  are  low  [Lee  and  Solivan,  2010].  Similarly,  lesions  of  the  DG  impair  the

detection  of  metrical,  but  not  topological  alterations  to  locations  of  objects  [Kesner,

2007].  Transgenic  mice  with  deleted  NR1  subunit  of  the  NMDA  receptor  show

impaired  memory  performance  in  a  partial-cue,  but  not  a  full-cue  environment

[Bischofberger et  al,  2006,  citing Nakazawa et  al,  2002].  Finally,  loss of  inhibition in

aging DG/CA regions, leading to over-excitability, has been tied to “behavioral discrim-

ination  deficits”,  specifically,  a  reduced  sensitivity  to  differences  between  similar

objects [Yassa and Stark, 2011]. 
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Many pieces of behavioral evidence correlate the dentate gyrus (DG) with learning.

Some of those behavioral results are briefly summarized here before the computational

role of the DG is discussed. The dentate gyrus seems to be most active during the early

training  period  of  tasks  requiring  spatial  and  temporal  memory,  as  compared  to  CA1

and CA3 [Poirier et  al,  2008],  and there is  evidence that  spatial  representations in the

DG  form  immediately  in  new  environments  [Hill,  1978;  Wilson  and  McNaughton,

1993;  de  Almeida,  et  al,  2009].  The  DG  appears  to  be  required  when  similarity

between  place-object  association  is  maximal,  but  not  when  place-object  association

similarities  are  low  [Lee  and  Solivan,  2010].  Similarly,  lesions  of  the  DG  impair  the

detection  of  metrical,  but  not  topological  alterations  to  locations  of  objects  [Kesner,

2007].  Transgenic  mice  with  deleted  NR1  subunit  of  the  NMDA  receptor  show

impaired  memory  performance  in  a  partial-cue,  but  not  a  full-cue  environment

[Bischofberger et  al,  2006,  citing Nakazawa et  al,  2002].  Finally,  loss of  inhibition in

aging DG/CA regions, leading to over-excitability, has been tied to “behavioral discrim-

ination  deficits”,  specifically,  a  reduced  sensitivity  to  differences  between  similar

objects [Yassa and Stark, 2011]. 

The  progressive  convergence  of  pathways  from  the  neocortex  to  the  hippocampus

suggests that the compression from neocortex to hippocampus allows regionally dense,

but  globally  sparse  coding  to  flourish  in  the  neocortex  [Kaiser  and  Varier,  2011;

Manns and Eichenbaum, 2006; McClelland and Goddard, 1996]. Dense codes have the

advantage of being generalizable and fault tolerant (due to redundancy), but the output

is complex (i.e., not linearly separable) [Foldiak, 2002]. The hippocampus, on the other

hand,  expresses  an  exceptionally  sparse  (almost  local)  encoding  scheme,  as  exempli-

fied by place cells [Ahmed and Mehta, 2009]. During navigational tasks, only a small

percentage of the activity in the EC generates activity in the hippocampus [Coulter and

Carlson, 2007]. Specifically, only about 2% of the principal granule cells in the DG are

active during navigation [Chawla et al, 2005]. The sparsity of coding in the hippocam-

pus indicates that the hippocampus translates the dense representation in the EC into a

sparse  code  that  facilitates  the  rapid  formation  of  “multidimensional  memory  items”

[Ascady and Kali, 2007]. The dentate gyrus is uniquely adapted to perform this sensi-

tive translation [ibid]. 
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Manns and Eichenbaum, 2006; McClelland and Goddard, 1996]. Dense codes have the
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is complex (i.e., not linearly separable) [Foldiak, 2002]. The hippocampus, on the other

hand,  expresses  an  exceptionally  sparse  (almost  local)  encoding  scheme,  as  exempli-

fied by place cells [Ahmed and Mehta, 2009]. During navigational tasks, only a small

percentage of the activity in the EC generates activity in the hippocampus [Coulter and

Carlson, 2007]. Specifically, only about 2% of the principal granule cells in the DG are

active during navigation [Chawla et al, 2005]. The sparsity of coding in the hippocam-

pus indicates that the hippocampus translates the dense representation in the EC into a

sparse  code  that  facilitates  the  rapid  formation  of  “multidimensional  memory  items”

[Ascady and Kali, 2007]. The dentate gyrus is uniquely adapted to perform this sensi-

tive translation [ibid]. 

Despite the sparseness of DG activity, there are about four times as many DG princi-

pal granule cells as ECII stellate cells [Wilson et al,  2006]. The divergence of the EC

projections to the DG implies dimensional expansion, a technique often used in statisti-

cal  data  analysis  to  preprocess  data  for  non-linear  classification  [Vapnik,  1999].

Inhibitory interneurons in the DG are thought to operate competitively with the granule

cells  to  remove  redundancy  from  the  inputs,  producing  the  sparse,  orthogonalized,

representation,  as  characterized  by  the  emergence  of  place  cells  [Kesner,  2007].  The

competitive mechanism in the DG has been shown to potentially operate through a self-

organizing  process  [Rolls  et  al,  2006],  and  the  DG  has  also  been  compared  to  the

support vector machine algorithm [Baker, 2003]. The DG is one of only two regions in

the  brain  known to  generate  new cells  well  into  adulthood  [Kesner,  2007;  Aimone  et

al,  2011; Zhao et al,  2008; Deng et al,  2010], which might suggest a flexible learning

process akin to the growing self-organizing map (GSOM) [Alahakoon et  al,  2000],  or

the growing cell structure (GCS) [Fritzke, 1994].   
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projections to the DG implies dimensional expansion, a technique often used in statisti-

cal  data  analysis  to  preprocess  data  for  non-linear  classification  [Vapnik,  1999].

Inhibitory interneurons in the DG are thought to operate competitively with the granule

cells  to  remove  redundancy  from  the  inputs,  producing  the  sparse,  orthogonalized,

representation,  as  characterized  by  the  emergence  of  place  cells  [Kesner,  2007].  The

competitive mechanism in the DG has been shown to potentially operate through a self-

organizing  process  [Rolls  et  al,  2006],  and  the  DG  has  also  been  compared  to  the

support vector machine algorithm [Baker, 2003]. The DG is one of only two regions in

the  brain  known to  generate  new cells  well  into  adulthood  [Kesner,  2007;  Aimone  et

al,  2011; Zhao et al,  2008; Deng et al,  2010], which might suggest a flexible learning

process akin to the growing self-organizing map (GSOM) [Alahakoon et  al,  2000],  or

the growing cell structure (GCS) [Fritzke, 1994].   

Pattern  separation  is  preserved  at  the  input  to  the  CA3  due  to  the  low  degree  of

connectivity between the DG and CA3 (about 0.005%), carried on the so-called mossy

fiber  (MF)  axons.  The  low  degree  of  connectivity  is  balanced  by  the  strength  of  the

mossy fiber synapses. Although a large majority (�95%) of MF synapses terminate on

inhibitory  interneurons  in  the  CA3,  the  minority  of  MF  synapses  that  terminate  on

excitatory cells have multiple active zones and sodium channel densities more character-

istic  of  axons,  rendering  the  synapses  exceptionally  reliable  [Bischofberger  et  al,

2006].  Mossy  fibers  synapses  also  terminate  proximally  onto  the  apical  dendrites  of

CA3  pyramidal  cells,  providing  unusually  strong  excitatory  coupling  [Acsady  and

Kali, 2007]. Furthermore, MF synapses establish a narrow and precisely timed window

within which perforant path (PP) inputs from ECII can contribute to the depolarization

of the CA3 pyramidal cells [Urban et al, 2001; Bischofberger et al, 2006]. The tempo-

ral precision of the MF bouton has been compared to that of the calyx of Held, which

is  known  to  play  a  key  role  in  temporal  processing  in  the  auditory  brainstem

[Bischofberger et al, 2006]. 

The temporal windowing function of the DG signal has been explained by the differ-

ence in the synaptic transmission between mossy-fiber boutons and filopodial synapses

that  branch  off  of  the  mossy  fiber  boutons  and  synapse  onto  DG inhibitory  interneu-

rons. The MF synapses exhibit a very large facilitation (up to 600% going from 0.05Hz

to  the  1Hz  range),  while  the  filopodial  synapses  show  a  much  smaller  facilitation

(about 200%). Granule cell activity switches the DG-CA3 influence from inhibitory to

excitatory  as  a  function  of  firing  frequency  [Bischofberger  et  al,  2006;  Coulter  et  al,

2011].  High  frequency granule  cell  bursting  shifts  the  balance  between monosynaptic

excitation  (DG  granule  cell  to  CA3  pyramidal  cell)  and  disynaptic  inhibition  (DG

granule cell to DG interneuron to CA3 pyramidal cell) towards excitation. Through this

dynamic competition between excitation and inhibition, only the granule cells with the

strongest  activity  convey  excitation  to  the  CA3.  DG  granule  cells  are  also  gated  by

their  own intrinsic inexcitability,  via  lack of  regenerative calcium conductances and a

very hyperpolarized resting state [Coulter et al, 2011].  
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that  branch  off  of  the  mossy  fiber  boutons  and  synapse  onto  DG inhibitory  interneu-

rons. The MF synapses exhibit a very large facilitation (up to 600% going from 0.05Hz

to  the  1Hz  range),  while  the  filopodial  synapses  show  a  much  smaller  facilitation

(about 200%). Granule cell activity switches the DG-CA3 influence from inhibitory to

excitatory  as  a  function  of  firing  frequency  [Bischofberger  et  al,  2006;  Coulter  et  al,

2011].  High  frequency granule  cell  bursting  shifts  the  balance  between monosynaptic

excitation  (DG  granule  cell  to  CA3  pyramidal  cell)  and  disynaptic  inhibition  (DG

granule cell to DG interneuron to CA3 pyramidal cell) towards excitation. Through this

dynamic competition between excitation and inhibition, only the granule cells with the

strongest  activity  convey  excitation  to  the  CA3.  DG  granule  cells  are  also  gated  by

their  own intrinsic inexcitability,  via  lack of  regenerative calcium conductances and a

very hyperpolarized resting state [Coulter et al, 2011].  

Gating  of  EC  activity  by  the  DG  seems  to  perform  a  protective  function  for  the

highly excitable and plastic CA3 region. However, the gating might have more than a

protective  function.  The  temporal  precision  and  nonlinearity  of  the  mossy-fibre  (MF)

windowing  of  the  CA3  pyramidal  cells  are  indicative  of  a  “teacher”  function

[Bischofberger et al, 2006; de Almeida et al, 2009]. Dendritic switching by means of a

gating process could instantiate a context-switching process [Jeffery, 2011], and might

suggest  a  relation  to  the  information  bottleneck  theory  of  learning,  as  proposed  in

[Buesing and Maass, 2010].  Is it  possible that coincidental activity of the MF and the

PP could establish the conditions for a manifold-learning process in the CA3 by enforc-

ing a topologically consistent dimensional reduction of the EC inputs? 

To summarize this brief review of the DG, it appears that the spatio-temporal sensi-

tivity  of  the  DG  facilitates  the  translation  of  densely  coded  signals  in  the  EC  to  the

sparse  code  observed  in  the  hippocampus.  The  sparse  output  of  the  DG,  projecting

directly  and  solely  to  the  CA3,  disproportionately  influences  a  small  subset  of  CA3

principal cells. How then does the CA3 respond upon receiving the DG signal?
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To summarize this brief review of the DG, it appears that the spatio-temporal sensi-

tivity  of  the  DG  facilitates  the  translation  of  densely  coded  signals  in  the  EC  to  the

sparse  code  observed  in  the  hippocampus.  The  sparse  output  of  the  DG,  projecting

directly  and  solely  to  the  CA3,  disproportionately  influences  a  small  subset  of  CA3

principal cells. How then does the CA3 respond upon receiving the DG signal?

CA3

The Cornu Ammonis  (CA) region is  divided into  three  subregions:  CA1,  CA2 and

CA3. The subregions are distinguished by the characteristics and composition of their

neuronal populations, as well as the targets of their axons and sources of input to their

dendrites  [Amaral  and  Lavenex,  2007].  All  CA  subregions  receive  input  from  the

entorhinal  cortex,  via  EC layers  II  or  III,  but  not  all  CA subregions  receive  the  same

complement of EC inputs [ibid]. CA3 receives cortical inputs mainly from ECII, while

CA1 receives mainly ECIII  projections.  However,  the majority of  synapses onto CA3

pyramidal  dendrites  originate  from  CA3  pyramidal  axons,  in  the  form  of  recurrent

connections.  A  degree  of  recurrent  connectivity  of  2-4% implies  that  any  given  CA3

pyramidal  cell  can  influence  any  other  CA3  pyramidal  cell  within  as  few  as  three

recurrences [Rolls and Treves, 1998]. 

Epileptic seizures in the medial temporal lobe appear to originate in the CA3, due to

the massive recurrence [Coulter et al,  2011]. The CA region is also particularly sensi-

tive  to  ischemia,  and  it  has  been  shown  that  CA1  cells  can  be  spared  from  transient

forebrain ischemia if the connection from CA3 is severed [Onodera et al, 1986]. How-

ever,  the  traits  that  make  the  CA3 region  prone  to  seizure  and  ischemia  are  probably

also  important  for  the  information  processing  role  that  the  hippocampus  plays.  For

example,  the  bursting  behavior  of  CA3  cells  [Xu  and  Clancy,  2008;  Chevaleyre  and

Siegelbaum, 2010] may facilitate information transfer, even though potentially risking

the induction of seizure due to the excitatory positive feedback. 
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the massive recurrence [Coulter et al,  2011]. The CA region is also particularly sensi-

tive  to  ischemia,  and  it  has  been  shown  that  CA1  cells  can  be  spared  from  transient

forebrain ischemia if the connection from CA3 is severed [Onodera et al, 1986]. How-

ever,  the  traits  that  make  the  CA3 region  prone  to  seizure  and  ischemia  are  probably

also  important  for  the  information  processing  role  that  the  hippocampus  plays.  For

example,  the  bursting  behavior  of  CA3  cells  [Xu  and  Clancy,  2008;  Chevaleyre  and

Siegelbaum, 2010] may facilitate information transfer, even though potentially risking

the induction of seizure due to the excitatory positive feedback. 

The distinctive firing properties of CA3 cell populations support the fast acquisition

(one-trial  learning)  of  detailed  memories,  by  maintaining  a  “locally  continuous,  glob-

ally  orthogonal”  representation  that  facilitates  the  rapid  integration  of  novel  sensory

inputs into a previously learned framework [Rolls, 2007; Leutgeb and Leutgeb, 2007].

The  CA3  has  been  found  to  begin  encoding  place  field  sequences  immediately  upon

encountering novel configurations of familiar environmental landmarks [Kneirim et al,

2006].  This  property  may  help  explain  behavioral  findings  showing  that  memory

formation is more rapid if an existing and related mental schema or experience already

exists [Tse et al, 2007; Wang and Morris, 2010; Bahar et al, 2011; van Kesteren et al,

2012].  

In cooperation with the CA1, the CA3 has been shown to play a role in the sequen-

tial  processing  (temporal  pattern  separation/completion)  of  information  [Jerman,  et  al

2006;  Vago  et  al,  2007].  The  CA3  and  CA1  were  both  found  to  be  required  for  the

recall of multiple places in a sequential maze-running trial, but pharmaceutical lesions

of the perforant path projection to CA1 impaired between-day learning (i.e.,  retrieval)

[Vago  et  al,  2007],  while  CA3  lesions  impaired  within-day  learning  (encoding)

[Jerman, et al  2006]. The CA3 has also been found to support arbitrary paired-associ-

ate  learning  [Kesner  et  al,  2008].  The  idea  is  that  the  CA3 holds  an  item in  memory

until  another  item comes  along,  at  which  time  the  second  item is  associated  with  the

first  by  means  of  “temporally  asymmetric  synaptic  associativity”  (i.e.,  spike-timing

dependent plasticity) [Rolls and Kesner, 2006].
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tial  processing  (temporal  pattern  separation/completion)  of  information  [Jerman,  et  al

2006;  Vago  et  al,  2007].  The  CA3  and  CA1  were  both  found  to  be  required  for  the

recall of multiple places in a sequential maze-running trial, but pharmaceutical lesions

of the perforant path projection to CA1 impaired between-day learning (i.e.,  retrieval)

[Vago  et  al,  2007],  while  CA3  lesions  impaired  within-day  learning  (encoding)

[Jerman, et al  2006]. The CA3 has also been found to support arbitrary paired-associ-

ate  learning  [Kesner  et  al,  2008].  The  idea  is  that  the  CA3 holds  an  item in  memory

until  another  item comes  along,  at  which  time  the  second  item is  associated  with  the

first  by  means  of  “temporally  asymmetric  synaptic  associativity”  (i.e.,  spike-timing

dependent plasticity) [Rolls and Kesner, 2006].

The excitatory recurrence in the CA3 has prompted comparison to recurrent neural

networks  of  two  main  types.  The  first  comparison  is  to  the  recurrent  autoassociative

network,  originally  suggested  by  David  Marr  [Marr,  1971],  and  epitomized  by  the

Hopfield  network  [Hopfield,  1982].  The  second  CA3 comparison  is  to  the  “attractor-

map”  network,  inspired  by  the  asymptotic  behavior  of  recurrent  neural  networks

[Colgin et al, 2010; Jeffery, 2011]. In both comparisons, the recurrent network displays

attractor  dynamics.  However,  in  the  autoassociative  network,  the  modifiable  synapses

of the recurrent collaterals establish stable attractors representing input features, while

in the attractor-map network, modification of the input synapses alters the dynamics of

pre-existing attractors.  The attractor-map network need not  have stable  attractors,  and

may even benefit from a degree of instability [Legenstein and Maass, 2007].

The  anatomy  of  the  CA3  supports  the  idea  that  it  functions  as  an  autoassociative

network  [Rolls  and  Treves,  1998].  Behavioral  evidence  has  also  emerged  supporting

the CA3 as an autoassociative network: NMDA receptors in area CA3 are required for

place  field  stability  and  in  order  to  remember  the  location  of  a  goal  when  presented

with an incomplete set of cues, implying that plasticity in CA3 synapses is required to

retrieve a complete map from a partial set of cues [Nakazawa et al, 2002]. Input from

the DG is thought to trigger an autoassociative recurrence in the CA3 that reconstructs

a meaningful sequence of events that (temporally) contextualizes the state of the ECII,

and applies that generalization to the CA1 [Tsukada and Fukushima, 2010]. CA3 cells

have been found to more closely follow one set of cues than do CA1 cells,  indicating

more  constraint  to  a  single  map  and  tighter  binding  to  upstream  coordinate  systems

[Eichenbaum et al. 1999]. Studies of aging animals also indicate a potential pathology

in  this  system,  since  older  animals  show  a  tendency  to  use  previously  learned,  but

unrelated maps when switching between environments [Leutgeb and Leutgeb, 2007].
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network  [Rolls  and  Treves,  1998].  Behavioral  evidence  has  also  emerged  supporting

the CA3 as an autoassociative network: NMDA receptors in area CA3 are required for

place  field  stability  and  in  order  to  remember  the  location  of  a  goal  when  presented

with an incomplete set of cues, implying that plasticity in CA3 synapses is required to

retrieve a complete map from a partial set of cues [Nakazawa et al, 2002]. Input from

the DG is thought to trigger an autoassociative recurrence in the CA3 that reconstructs

a meaningful sequence of events that (temporally) contextualizes the state of the ECII,

and applies that generalization to the CA1 [Tsukada and Fukushima, 2010]. CA3 cells

have been found to more closely follow one set of cues than do CA1 cells,  indicating

more  constraint  to  a  single  map  and  tighter  binding  to  upstream  coordinate  systems

[Eichenbaum et al. 1999]. Studies of aging animals also indicate a potential pathology

in  this  system,  since  older  animals  show  a  tendency  to  use  previously  learned,  but

unrelated maps when switching between environments [Leutgeb and Leutgeb, 2007].

Data  from  individually  recorded  CA3  neurons  indicates  that  the  network  enters

different,  and  possibly  unique,  tonic  states  modulated  by  input  stimuli  [Vinogradova,

2001; Wiebe and Staubli,  1999]. In the Wiebe and Staubli study, rats were habituated

to a “complex” task, but still had to make a decision involving both spatial and olfac-

tory  information in  a  delayed match-to-sample  task.  Some CA3 cells  were  found that

discriminated between one or more of the parameters of the task, including odor, loca-

tion,  and  performance.  The  recorded  ISIs  displayed  a  range  of  mostly  non-Poisson

distributions,  including  many  that  were  distinctly  multi-modal.  Precisely  correlated

activity  between  cells  was  reported  as  modest,  but  loosely  correlated  behavior  was

found  to  be  common  [Frerking  et  al,  2005].  Non-random  interactions  between  cells,

lasting as long as 10 seconds, accounted for about 10% of the spike patterns. Interest-

ingly,  the  spike  patterns  that  could  not  be  explained  by  random  sampling  were  more

likely to have been produced by cells that responded to environmental stimuli [ibid]. 
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On the  other  hand,  evidence  from cultured  hippocampal  slices  indicates  a  minimal

influence of stimulation on the modulation of CA3 network states [Sasaki et al, 2007].

Metastable states in the CA3 were observed that showed resistance to perturbation by

inputs from the DG, unless the inputs were “sufficiently strong” [ibid]. The CA3 dynam-

ics  were  stable  for  tens  of  seconds,  transitioned  abruptly  to  new  states,  and  rarely

revisited previous states. These data suggest that the recurrent CA3 network inherently

supports  attractor  dynamics,  and  that  the  influence  of  the  inputs  is  less  predicitive  of

the network dynamics than is the current state of the network. A caveat with this result

is  that  it  was  obtained  from cultured  tissue,  so  the  state  of  the  network  may  not  bear

exact  resemblance  to  the  in  vivo  network.  Cultured  slices  do,  however,  retain  more

recurrent connections in the CA3 circuit than do acute slices [ibid].

Inherent metastability seems to be a characteristic of in vivo CA3 dynamics as well,

though. For instance, CA3 place field activity tends to remain fairly consistent while an

aspect  of  environmental  context  is  slowly  varied,  until  the  variation  more  closely

resembles  another  context,  at  which  point  the  activity  pattern  shifts  in  an  abrupt  but

coordinated  remapping  of  place  fields  [Wills  et  al,  2005;  Bischofberger  et  al,  2006].

This  behavior  was  observed  by  training  rats  to  recognize  square  and  circular  rooms,

and  then  observing  CA3  activity  while  the  shape  of  the  square  room  was  gradually

altered  in  discrete  steps  to  resemble  the  circular  room.  An  earlier  review  also  con-

cluded  that  the  CA3  responds  nonlinearly  to  variations  in  contextual  similarity

[Guzowski et al, 2004].
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An  exhaustive  review  of  place  cell  behavior  in  response  to  morphed  enclosures

concluded that external inputs are secondarily associated with groups of neurons active

at  a  given  location  [Colgin  et  al,  2010].  Experiments  performed by  Colgin  et  al  were

consistent  with  this  conclusion  (and  also  with  [Leutgeb  et  al,  2005]),  indicating  that,

“...  although external features and events may affect the relative firing rates of the set

of hippocampal neurons belonging to a particular coordinate representation, they typi-

cally scarcely affect the membership of the set. In contrast, changes in spatial location

produce changes in the active set if the differences are sufficiently large” [Colgin et al,

2010]. These findings suggested to the authors that the autoassociative interpretation of

the  CA3  was  unlikely,  and  that  the  region  more  probably  served  to  create  “phase

sequences”  of  place  codes  that  could  “encode  the  coordinates  of  a  route  as  a  vector

field amenable to flexible route selection” [ibid]. 

CA1

CA1  place  cells  have  been  found  to  be  more  responsive  to  similarities  between

tasks, while the opposite (greater responsiveness to differences) was seen in CA3 place

cells  [Bahar  et  al,  2011].  In  comparison to  CA3 cell  ensembles,  which were found to

be distinct for separate rooms, regardless of the similarity between rooms, the overlap

between CA1 cell ensembles increased as a function of similarity of room [Leutgeb et

al,  2004].  CA1 cells  also  show a  lesser  degree  of  coherence  with  “disconcordant  cue

manipulations” than do CA3 cells, a behavior that may result from the lack of recurrent

connections  [Leutgeb  and  Leutgeb,  2007].  Diversity  of  response  may  be  one  of  the

defining characteristic of CA1 neuronal activity. 
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connections  [Leutgeb  and  Leutgeb,  2007].  Diversity  of  response  may  be  one  of  the

defining characteristic of CA1 neuronal activity. 

Place cells in the CA1 are also responsive to sensory features that are not uniquely

related to spatial processing [Leutgeb and Leutgeb, 2007]. Such conjunctive place cells

in CA1 are natural candidates for the identification of points, and their trajectories, on

the  object/space  charts  that  encode  episodic  memories  [Komorowski  et  al,  2009].

However, the translation to ECV is meaningful only if it corresponds to the appropriate

chart. The identity of the chart must then be determined by the pattern of activity in the

superficial layers of the EC, as transformed by the CA2 or DG/CA3. It  must be men-

tioned, though, that the EC projections to CA2 pass through and synapse on the subicu-

lum.  EC layers  II  and  III  both  innervate  the  CA2,  which  is  able  to  activate  the  CA1,

which  in  turn  projects  to  the  subiculum.  Outputs  from  the  CA1  and  the  subiculum

converge on ECV. EC layer III might set up a rough expectation of object placement in

the  subiculum,  which  gets  refined  by  CA2/CA1,  transformed  again  in  the  subiculum,

and  finally  combined  with  direct  output  from  CA1,  in  ECV.  The  topography  of  the

projections to and from the EC, that run through the CA1 and subiculum, is preserved

and reciprocated [Tamamaki and Nojyo, 1995].  It  is  possible then,  that  the subiculum

supports  the  selection  of  the  appropriate  chart  in  ECV.  This  explanation  would  have

the  benefit  of  including  the  influence  of  subcortical  modulation  directly  in  the  chart

selection process.  

Coincidental input timing is also implicated in the activity of the CA1 region, since

the  temporally-specific  arrival  of  inputs  along  the  Schaffer  collateral  (SC)  gates  the

inputs from the temporoammonic (TA) pathway from the EC at a specific phase rela-

tionship  with  respect  to  the  theta-frequency  network  oscillation  [Coulter  et  al,  2011].

Since the SC inputs are more proximal on the CA1 pyramidal dendrites, and thus more

depolarizing than the TA inputs, which are limited to the apical tuft and rarely depolar-

ize the soma on their own, the activity in the CA3 establishes the conditions by which

the CA1 is sensitive to inputs from the EC. 

137

Printed by Mathematica for Students



Coincidental input timing is also implicated in the activity of the CA1 region, since

the  temporally-specific  arrival  of  inputs  along  the  Schaffer  collateral  (SC)  gates  the

inputs from the temporoammonic (TA) pathway from the EC at a specific phase rela-

tionship  with  respect  to  the  theta-frequency  network  oscillation  [Coulter  et  al,  2011].

Since the SC inputs are more proximal on the CA1 pyramidal dendrites, and thus more

depolarizing than the TA inputs, which are limited to the apical tuft and rarely depolar-

ize the soma on their own, the activity in the CA3 establishes the conditions by which

the CA1 is sensitive to inputs from the EC. 

The  CA1  and  subiculum  also  send  projections  directly  to  the  medial  prefrontal

cortex  (mPFC),  and receive  indirect  excitatory  projections  from the  mPFC by way of

the  nucleus  reunions  (in  the  thalamus)  [Vertes,  2007].  The  indirect  inputs  from  the

mPFC  are  proposed  to  activate  the  CA1  independently  of  either  the  CA3  or  the  EC

[Bahar et al,  2011]. This pathway of activition was invoked to explain results indicat-

ing CA1 activity in the “absence” of CA3 place cell activity during a novel task [ibid].

Although  there  were  fewer  CA3  cells  expressing  place  fields  (about  half  as  many  as

during  the  habituated  tasks),  there  were  more  that  did  not  display  place  fields,  and

although these other cells have to be assumed to have been silent during the trials, the

data didn’t indicate that the CA3 was completely devoid of activity as was suggested in

the  conclusions.  Nevertheless,  the  CA1  is  known  to  operate  in  the  absence  of  CA3

input. The gating properties of the CA1 dendrites make it unlikely that the TA pathway

is responsible for CA1 activity in the absence of CA3 inputs. However, until recently,

the CA2 region has rarely been brought into the discussion, and since the CA2 region

can  excite  the  CA1,  and  it  receives  inputs  from  ECII  and  III,  it  remains  a  possible

driver of CA1 activity not mentioned in [Bahar et al, 2011].
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the  conclusions.  Nevertheless,  the  CA1  is  known  to  operate  in  the  absence  of  CA3

input. The gating properties of the CA1 dendrites make it unlikely that the TA pathway

is responsible for CA1 activity in the absence of CA3 inputs. However, until recently,

the CA2 region has rarely been brought into the discussion, and since the CA2 region

can  excite  the  CA1,  and  it  receives  inputs  from  ECII  and  III,  it  remains  a  possible

driver of CA1 activity not mentioned in [Bahar et al, 2011].

CA2

The CA2 field receives strong, direct inputs from both ECII and ECIII, implicating

the  CA2  region  in  coordinating  activity  between  the  trisynaptic  and  monosynaptic

hippocampal  pathways  [Jones  and  McHough,  2011].  There  is  evidence  that  the  CA2

forms  a  disynatpic  pathway  with  CA1,  but  does  not  form  a  quadrisynaptic  pathway

with CA3 and CA1 [Chevaleyre and Siegelbaum, 2010]. As in the CA3 and CA1, the

perforant path (PP) projects onto the distal dendrites of CA2 pyramidal neurons. How-

ever,  unlike  regions  CA3  and  CA1,  which  can  only  be  indirectly  activated  by  PP

inputs, CA2 can be activated directly by PP inputs [Bartesaghi and Gessi, 2004]. CA3

Schaffer  collateral  (SC)  projections  pass  through  and  synapse  onto  CA2,  but  have  an

inhibitory influence. CA2 pyramidal cells do not express spines on the proximal apical

dendrite  (unlike  the  CA1  and  CA3  pyramidal  cells)  -  possibly  explaining  the  weaker

influence  of  the  proximal  inputs  [Amaral  and  Lavanex,  2007].  In  addition,  CA2 den-

drites  have  fewer  branches  in  stratum  radiatum,  compared  with  CA1  dendrites

[Chevaleyre and Siegelbaum, 2010]. Region CA2 sends axons to both basal and apical

CA1 dendrites, and excites region CA1 via  strong unitary connections. CA2 pyramidal

cells  are  also  reported  to  display  excitatory  recurrent  connectivity  [Amaral  and

Lavanex, 2007], but this feature isn’t often mentioned in the more recent literature. 

The  CA2  displays  different  LTP  properties  than  the  adjacent  areas  CA1  and  CA3

[Frerking,  personal  communication].  CA3-to-CA2  connections  fail  to  undergo  LTP

using typical protocols [Simons et al, 2009]. However, the distal synapses upon which

ECII  and  ECIII  inputs  converge  undergo robust  LTP (which is  pathway specific,  i.e.,

ECII or ECIII inputs can independently or cooperatively induce LTP) [Chevaleyre and

Siegelbaum, 2010].  
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The  CA2  displays  different  LTP  properties  than  the  adjacent  areas  CA1  and  CA3

[Frerking,  personal  communication].  CA3-to-CA2  connections  fail  to  undergo  LTP

using typical protocols [Simons et al, 2009]. However, the distal synapses upon which

ECII  and  ECIII  inputs  converge  undergo robust  LTP (which is  pathway specific,  i.e.,

ECII or ECIII inputs can independently or cooperatively induce LTP) [Chevaleyre and

Siegelbaum, 2010].  

The emerging picture is that region CA2 is involved in modulating the timing of the

inputs from ECII and ECIII to the hippocampus, thereby coordinating the conjunction

of different aspects of episodic experience [Jones and McHugh, 2011]. Mice that lack

the vasopressin V1b receptor, which is highly expressed in CA2, show selective impair-

ment  in  temporal  event  memory  [DeVito  et  al,  2009b].  Lesions  along  the  CA3/CA2

border  also  impair  hippocampal  operant  conditioning  (i.e.,  learning  complex  relation-

ships  between  multiple  stimuli  that  have  varying  degrees  of  association  with  a  given

response) [Samuel et al, 1997]. Along with the DG, region CA2 is the only hippocam-

pal structure targeted by the supramammillary nucleus, a structure involved in control-

ling the frequency of theta activity [Chevaleyre and Siegelbaum, 2010] (see discussion

of oscillatory activity in section 4.1.6).   

Alterations  in  the  balance of  excitation and inhibition in  region CA2 are  known to

correlate  with  some  cognitive  pathologies.  For  example,  a  reduction  in  interneuron

expression  in  region  CA2,  leading  to  increased  excitability  in  the  region,  has  been

correlated with schizophrenia and manic depression [Benes et al, 1998]. In addition, an

overexcited CA2 has been linked to the spread of epileptic acitivity in the hippocampus

[Williamson and Spencer, 1994]. However, region CA2 has been reported to show less

vulnerability  to  neurotoxicity  caused  by  sustained  activation  of  excitatory  amino  acid

receptors than the CA1 or CA3, making the CA2 region resistant  to epileptic  damage

[Bartesaghi  and  Gessi,  2004].  Likewise,  region  CA2  is  more  resitant  to  damage

induced by Alzheimers, hypoxia and head trauma.    
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overexcited CA2 has been linked to the spread of epileptic acitivity in the hippocampus

[Williamson and Spencer, 1994]. However, region CA2 has been reported to show less

vulnerability  to  neurotoxicity  caused  by  sustained  activation  of  excitatory  amino  acid

receptors than the CA1 or CA3, making the CA2 region resistant  to epileptic  damage

[Bartesaghi  and  Gessi,  2004].  Likewise,  region  CA2  is  more  resitant  to  damage

induced by Alzheimers, hypoxia and head trauma.    

Subiculum

The  subiculum combines  laminar  and  columnar  microcircuits,  forming  a  transition

zone  between  neocortex  (EC)  and  archicortex  (hippocampus),  where  the  lamination

provides  dense  interconnectivity  between  the  columns.  The  subiculum  is  also  highly

connected to a wide range of subcortical areas, suggesting that the subiculum is respon-

sible  for  conveying  modulatory  infomation  to  and  from  the  hippocampus  [O'Mara,

2006]. These connections place the subiculum in a position to monitor the hippocampal

inputs and outputs and relay the results back to the EC. Multiple place cells from CA1

converge  upon  single  subiculum  cells  [Amaral  and  Lavenex,  2007],  and  CA1  and

entorhinal projections synapse topographically and in-register in the molecular layer of

the  subiculum (onto pyramidal  cell  dendrites).  CA1 projections  synapse deeply in  the

molecular  layer  (proximal  on  the  pyramidal  dendrites),  and  entorhinal  projections

synapse superficially. 

Whereas  hippocampal  place  fields  specialize  to  environmental  details,  subicular

place fields generalize details, can expand and contract to different sized environments,

and  often  display  directional  information  in  conjunction  with  place-related  patterns

[Sharp, 2006; O’Mara, 2006]. To quote O'Mara, “... subicular units tend to fire through-

out  the  environment  and  show  multiple  peaks  of  activity;  in  general,  subicular  place

fields appear to be of lower resolution and comprise much larger areas of comparable

environments  than  those  of  area  CA1”  [O’Mara,  2006].  The  finding  that  subicular

representations  can  expand  or  shrink  while  retaining  their  topographical  specificity

may indicate a more topological than metrical role for the subiculum. 
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Whereas  hippocampal  place  fields  specialize  to  environmental  details,  subicular

place fields generalize details, can expand and contract to different sized environments,

and  often  display  directional  information  in  conjunction  with  place-related  patterns

[Sharp, 2006; O’Mara, 2006]. To quote O'Mara, “... subicular units tend to fire through-

out  the  environment  and  show  multiple  peaks  of  activity;  in  general,  subicular  place

fields appear to be of lower resolution and comprise much larger areas of comparable

environments  than  those  of  area  CA1”  [O’Mara,  2006].  The  finding  that  subicular

representations  can  expand  or  shrink  while  retaining  their  topographical  specificity

may indicate a more topological than metrical role for the subiculum. 

The broad and general receptive fields of place cells in the subiculum might encode

enough  information  about  the  environment  to  enable  novelty  detection  and  rudimen-

tary  navigation.  The  subiculum may  play  a  role  in  translating  the  cortical  representa-

tion,  which  resembles  general  basis  functions,  to  the  hippocampal  representation,

which displays specificity. Perhaps the representation in the subiculum is akin to a set

of basis functions that  represent topological aspects of environments,  such as borders,

corners, intersections and the like.  

Subcortical regions

The  hippocampus  is  under  subcortical  modulatory  influence,  and  also  influences

several  subcortical  systems.  Subcortical  inputs  to  the  hippocampus  include  the  septal

nucleus  and  diagonal  band,  the  contralateral  hippocampus,  as  well  as  the  amygdala,

brainstem,  hypothalamus  and  thalamus  [Brown  and  Zador,  1990].  The  septal  inputs

enter  through the fimbria,  dorsal  fornix,  supracallosal  striae and the amygdaloid com-

plex.  The  contralateral  hippocampal  inputs  enter  through the  fornix.  Brainstem inputs

include  a  noradrenergic  input  from the  locus  coeruleus,  a  serotonergic  input  from the

raphe  nuclei  and  a  dopaminergic  input  from  the  ventral  tegmental  area.  There  is  a

hypothalamic input from the mamillary bodies through the fimbria and a ventral route

to the DG, CA2 and CA3. Also the anterior thalamic nucleus projects to the subiculum. 
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several  subcortical  systems.  Subcortical  inputs  to  the  hippocampus  include  the  septal

nucleus  and  diagonal  band,  the  contralateral  hippocampus,  as  well  as  the  amygdala,

brainstem,  hypothalamus  and  thalamus  [Brown  and  Zador,  1990].  The  septal  inputs

enter  through the fimbria,  dorsal  fornix,  supracallosal  striae and the amygdaloid com-

plex.  The  contralateral  hippocampal  inputs  enter  through the  fornix.  Brainstem inputs

include  a  noradrenergic  input  from the  locus  coeruleus,  a  serotonergic  input  from the

raphe  nuclei  and  a  dopaminergic  input  from  the  ventral  tegmental  area.  There  is  a

hypothalamic input from the mamillary bodies through the fimbria and a ventral route

to the DG, CA2 and CA3. Also the anterior thalamic nucleus projects to the subiculum. 

There are two major outputs  of  the hippocampus,  one from the subiculum, and the

other  from  the  hippocampus  proper  [Martin,  2012].  The  outputs  from  the  subiculum

collect in the fornix and project to mammillary bodies of the hypothalamus, completing

a processing loop, part of the Papez circuit, which is involved in the cortical control of

emotion.  Outputs  from  the  CA1  also  project  directly  to  the  septal  nuclei  and  to  the

entorhinal cortex, both directly, and indirectly through the subiculum.

4.1.6 Coordinated activity

Activity  in  the  hippocampus  and  elsewhere  in  the  brain  is  observed  to  be  coordi-

nated by the synchronous firing of neurons expressed by the local field potential (LFP)

(although  most  spiking  in  the  hippocampus  happens  in  the  absence  of  coordinated

oscillatory  activity  [Frerking,  personal  communication]).  In  the  hippocampus,  LFP

behavior  is  categorized  into  three  main  frequency  ranges:  theta,  gamma,  and  sharp

waves [O’Keefe, 2007]. The categories of oscillatory LFP activity are defined by their

passbands. Theta occurs between about 4-12Hz, gamma between about 20-140Hz, and

sharp waves around 140-200Hz. 

Theta  band  activity  is  observed  in  all  hippocampal  and  associated  regions,  but  is

most  pronounced in  area  CA1 [Ang et  al,  2005].  Hippocampal  theta  activity  is  corre-

lated  with  neocortical  and  subcortical  theta  activity,  so  is  proposed  to  be  the  rate  at

which experience is discretized and synchronized with other brain regions [Colgin and

Moser,  2010;  Hyman  et  al,  2011],  and  may  represent  a  timing  signal  to  which

sequences of events are bound [Lisman et al, 2005; Mizuseki et al, 2009]. Theta-entrain-

ment of mPFC cells has been found to be predictive of the outcome of working mem-

ory  task  trials,  accounting  for  the  firing  rate  of  the  mPFC  cells,  implying  that  more

information  is  carried  on  the  theta  code  during  working  memory  tasks  than  can  be

accounted for by a simple rate code [Hyman et al, 2011].  
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most  pronounced in  area  CA1 [Ang et  al,  2005].  Hippocampal  theta  activity  is  corre-

lated  with  neocortical  and  subcortical  theta  activity,  so  is  proposed  to  be  the  rate  at

which experience is discretized and synchronized with other brain regions [Colgin and

Moser,  2010;  Hyman  et  al,  2011],  and  may  represent  a  timing  signal  to  which

sequences of events are bound [Lisman et al, 2005; Mizuseki et al, 2009]. Theta-entrain-

ment of mPFC cells has been found to be predictive of the outcome of working mem-

ory  task  trials,  accounting  for  the  firing  rate  of  the  mPFC  cells,  implying  that  more

information  is  carried  on  the  theta  code  during  working  memory  tasks  than  can  be

accounted for by a simple rate code [Hyman et al, 2011].  

The  behavioral  actions  of  exploration  and  learning  co-occur  with  theta  activity.

Specifically, the hippocampal operations of encoding and retrieval are suspected to be

correlated with the phase of the theta cycle [Hasselmo et al,  2002; Kunec et  al,  2005;

Villarreal  et  al,  2007].  In  favor  of  this  hypothesis,  the  preferred  phase  of  firing,  with

respect to the theta LFP, shows a decrease in CA1 (but not in subiculum) that is corre-

lated with the degree of sensory novelty, indicating that novel and familiar signals are

separated  as  a  function  of  theta  phase  [Lever  et  al,  2010].  Additionally,  it  has  been

found  that  states  in  the  CA3  can  switch,  i.e.,  completely  remap,  within  a  theta  cycle

[Jezek et al, 2011].  

Persistently  firing  EC  layer  III  cells  have  been  found  to  have  “pronounced  fre-

quency  specificity”,  which,  across  the  population  of  cells,  spans  the  theta  range

[Erchova  et  al,  2004].  However,  layer  III  frequency  specificity  is  limited  to  about

10Hz, or around the upper limit of theta, and the cells are inhibited by higher frequency

inputs. Layer II cells are sensitive to inputs greater than 5Hz, or about the lower limit

of  theta.  Thus,  there  is  an  overlapping  region  of  sensitivity  in  EC  layers  II  and  III,

approximately in the theta band, but layer II also responds to higher frequency stimula-

tion. 
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[Erchova  et  al,  2004].  However,  layer  III  frequency  specificity  is  limited  to  about

10Hz, or around the upper limit of theta, and the cells are inhibited by higher frequency

inputs. Layer II cells are sensitive to inputs greater than 5Hz, or about the lower limit

of  theta.  Thus,  there  is  an  overlapping  region  of  sensitivity  in  EC  layers  II  and  III,

approximately in the theta band, but layer II also responds to higher frequency stimula-

tion. 

Gamma band activity is superimposed upon the theta cycle, and has been correlated

with episodes that are later recalled [Sederberg, et al, 2003; Montgomery and Buzsaki,

2007].  Theta  and  gamma  synchrony  between  prefrontal  cortex  and  hippocampus  are

both  observed,  possibly  during  different  behavioral  conditions  [Benchenane  et  al,

2011].  Phase-amplitude  cross-frequency  coupling  between  theta  and  gamma  oscilla-

tions  (the  modulation  of  gamma by theta  waves)  has  been associated with  the  forma-

tion  of  item-context  associations  [Tort  et  al,  2009],  and  variations  in  the  character  of

theta-modulated  gamma  between  encoding  and  retrieval  are  reported  (see  Figs.  4.2  -

4.4)  [Jones  and  McHugh,  2011].  Gamma-frequency  inhibition  in  the  CA3  has  been

suggested to prevent persistent attractor states, for which, as of 2007, there was appar-

ently  no  experimental  evidence  [de  Almeida  et  al,  2007;  Levy  et  al,  2005]  (although

see  [Lisman,  1999,  citing  Vinogradova,  1984;  Hampson  et  al,  1993;  Colombo  and

Gross, 1994]). 

Hippocampal  gamma  oscillations  are  further  observed  to  cluster  into  two  distinct

regimes:  slow  gamma  (about  20-40Hz)  and  fast  gamma  (about  60-140Hz),  that  are

generated  independently  in  the  CA3  and  EC,  respectively  [Colgin  and  Moser,  2010].

Fast and slow gamma waves are generated intrinsically in the subiculum, where inde-

pendent gamma phase modulation of cells is thought to allow selective participation in

neural synchrony [Jackson et al, 2011]. 
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Figure  4.2.  Jones  and  McHugh’s  proposed  hippocampal  encoding  model.  Figure
credit: [Jones and McHugh, 2011] 

Figure 4.3. Jones and McHugh’s proposed hippocampal consolidation model. Figure
credit: [Jones and McHugh, 2011] 
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Figure 4.4. Jones and McHugh’s proposed hippocampal recall model. Figure credit:
[Jones and McHugh, 2011] 

Place  fields  are  represented  at  the  gamma  frequency,  and  as  an  animal  moves

through space, place cell activity precesses across the theta wave [O’Neill et al, 2010].

In the CA1, place field activity has been estimated to occur at frequencies greater than

50Hz in about half  of the spikes [Harris et  al,  2001; Harvey et  al,  2009].  Theta phase

precession has also been interpreted as a cued prediction of the sequence of upcoming

positions [Lisman and Redish, 2009]. Theta phase precession has been observed in the

DG, CA, and superficial EC [Yamaguchi et al, 2007]. Although grid cells in EC layer

III don’t display theta phase precession, grid cells in EC III preferentially fire on only

one half of the theta wave [Quilichini et al, 2010; Jones and McHugh, 2011].  

Sharp wave ripples  are  brief  bursts  of  coordinated principal  cell  activity  that  origi-

nate  in  the  CA3  [Csicsvari  et  al,  2000].  Sharp  wave  ripple  (SPW-R)  activity  occurs

during  slow-wave  sleep  and  periods  of  inactivity,  and  has  been  associated  with

increased  hippocampal-cortical  communication  [Csicsvari  et  al,  2000;  Davidson et  al,

2009].  The level of spiking synchrony is  about tenfold more during SPW-R than dur-

ing  theta  activity  [Gasparini  and  Magee,  2006].  During  SPW-R  activity,  subcortical

neuromodulator activity is reduced, causing disinhibition in the spread of activity in the

CA3 collateral system [Hasselmo et al,  1995], and EC layers II and III are “relatively

silent”  [Chrobak  and  Buzsaki,  1994].  SPW-Rs  are  believed  to  be  an  intrinsic  HPC

network  pattern  that  is  present  when  the  cortical  and  subcortical  influences  are

reduced, since lesions of the EC increase the incidence of sharp waves and fast gamma

frequency, while decreasing the amplitude of theta waves [Bragin et al, 1995].
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silent”  [Chrobak  and  Buzsaki,  1994].  SPW-Rs  are  believed  to  be  an  intrinsic  HPC

network  pattern  that  is  present  when  the  cortical  and  subcortical  influences  are

reduced, since lesions of the EC increase the incidence of sharp waves and fast gamma

frequency, while decreasing the amplitude of theta waves [Bragin et al, 1995].

SPW-Rs  are  regarded  as  signals  that  are  appropriate  for  studying  the  CA3-to-CA1

connectivity [Csicsvari et al, 2000]. The cells observed firing during sharp wave activ-

ity  are  the  same  cells  observed  previously  firing  in  theta  during  the  encoding  of

episodes, with a preserved forward or reverse order of firing [Foster and Wilson, 2006;

Gupta et al, 2010]. Therefore, it is possible that SPW-Rs represent the replay of attrac-

tors in the CA3 unconstrained by theta and gamma modulation. 

SPW-R  activity  is  thought  to  be  associated  with  the  consolidation  of  memories

[Eschenko et  al,  2008].  Historically,  the  protocol  for  LTP-induction in  the  hippocam-

pus has consisted of a one second application of a high frequency (e.g., 100Hz) signal

[Lawrence  et  al,  2009].  This  protocol  is  not  physiologically  representative,  and  does

not  work well  with  frequencies  less  than 50Hz [Behrens,  et  al,  2005].  However,  LTP

can be readily induced in the in-vitro and in-vivo hippocampus using a “theta” protocol

consisting of 30-40 msec 100Hz bursts repeated for 5 seconds at a rate of 5Hz [Staubli

and Lynch, 1987; Nguyen and Kandel, 1997]. The in-vitro range of CA1 sensitivity to

LTP using the theta-protocol spans the whole theta range, is maximal around 2Hz, and

extends  down  to  0.05Hz,  thereby  including  rates  at  which  sharp  wave  bursts  repeat

during slow wave sleep [Grover et al, 2009]. 
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can be readily induced in the in-vitro and in-vivo hippocampus using a “theta” protocol

consisting of 30-40 msec 100Hz bursts repeated for 5 seconds at a rate of 5Hz [Staubli

and Lynch, 1987; Nguyen and Kandel, 1997]. The in-vitro range of CA1 sensitivity to

LTP using the theta-protocol spans the whole theta range, is maximal around 2Hz, and

extends  down  to  0.05Hz,  thereby  including  rates  at  which  sharp  wave  bursts  repeat

during slow wave sleep [Grover et al, 2009]. 

4.1.7 Novelty detection 

Novelty  detection  is  a  fundamental  property  of  adaptive  behavior  [Kumaran  and

Maguire, 2007]. The detection of novelty has been variously attributed to region CA1

[Karlsson  and  Frank,  2008],  CA3  [Villarreal  et  al,  2007;  Vinogradova,  2001],  the

entorhinal  cortex  [Lorincz  and  Buzsaki,  2001],  all  the  hippocampal  regions

(particularly the subiculum) [McNaughton, 2006], subcortical regions (reticular system

via the medial septum [Vinogradova, 2001]), and the parahippocampal cortex [Howard

et al, 2011]. It is safe to say that there may be more than one system involved in nov-

elty  detection.  Likewise,  novelty  also  has  multiple  facets.  The  hippocampus  seems

responsive to associative and contextual novelty [Kumaran and Maguire, 2007]. Asso-

ciative novelty is defined by the occurance of familiar items in new spatial or temporal

arrangements.  Contextual  novelty  consists  of  an  event  or  stimulus  that  is  unexpected

given the context. These two novelty types are constrasted by stimulus novelty, which

is defined as an item never experienced before [ibid].

In  general,  novelty  detection  involves  the  comparison  between an  expected  and  an

observed  signal,  thus  requiring  access  to  the  input  and  output  signals  of  a  modeling

region. If the observed and expected signals are the input and output from the DG and

CA regions, then this constraint limits the location to somewhere between EC layers II

and V, potentially including the subiculum. At least one computational model suggests

that novelty is detected by comparing the activity between EC layer II and layer V, the

latter of which is influenced by hippocampal processing [Lorincz and Buzsaki, 2001].
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observed  signal,  thus  requiring  access  to  the  input  and  output  signals  of  a  modeling

region. If the observed and expected signals are the input and output from the DG and

CA regions, then this constraint limits the location to somewhere between EC layers II

and V, potentially including the subiculum. At least one computational model suggests

that novelty is detected by comparing the activity between EC layer II and layer V, the

latter of which is influenced by hippocampal processing [Lorincz and Buzsaki, 2001].

Deep layer EC neurons have been found to fire more rarely than the superficial layer

EC  neurons  during  initial  exposure  to  a  novel  environment,  becoming  more  active

during periods of rest [Burgalossi et al,  2011]. The deep layers also seem to be selec-

tively activated by sharp wave activity, which is suspected to be correlated with mem-

ory  consolidation  [Chrobak  and  Buzsaki,  1994;  Chrobak  et  al,  2000].  These  results

would indicate at least two things: first, that EC deep layer learning is indeed hippocam-

pus-dependent,  and  second,  that  EC  deep  layers  are  involved  in  novelty-awareness,

potentially  through  an  inverse  dependence  on  activity.  If  the  deep  layers  of  the  EC

maintain the current set of navigational charts (the atlas), then a lack of activity might

indicate  a  mismatch  between  the  patterns  of  inputs  to  the  superficial  layers,  and  the

expected tranformation from the CA1 and subiculum. 

Further  evidence  that  the  EC  plays  a  role  in  novelty  detection  comes  from  lesion

studies.  Hippocampectomized  animals  display  “insatiable  curiosity”,  by  showing

defective habituation to reaction to novelty,  indicating the importance of hippocampal

outputs for the identification of novelty [Vinogradova, 2001].  Removing the choliner-

gic  inputs  to  the  EC  selectively  impairs  non-match-to-sample  performance  for  novel

but  not  familiar  odors  [McGaughy  et  al,  2005].  Also,  direct  electrical  stimulation

applied to the EC, but not the hippocampus, has been found to improve spatial memory

performance  in  humans  when  the  stimulation  is  applied  during  the  learning  phase,

presumably when the novelty signal is largest [Suthana et al, 2012].    
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but  not  familiar  odors  [McGaughy  et  al,  2005].  Also,  direct  electrical  stimulation

applied to the EC, but not the hippocampus, has been found to improve spatial memory

performance  in  humans  when  the  stimulation  is  applied  during  the  learning  phase,

presumably when the novelty signal is largest [Suthana et al, 2012].    

Bax  gene  knockout  mice,  in  which  DG  cells  do  not  develop  normally,  show  an

impaired  ability  to  locate  targets  when  dead-reckoning  and  visual  information  are

incongruent [Lee (CCJ) et al, 2009]. In this study, the EC-CA3 connection was appar-

ently unimpaired. The implication of this study is that the DG is required for the associa-

tion  of  internal  maps  with  external  object  location.  The  study  also  suggests  that  the

hippocampus establishes a training signal for the cortical processing between layers II

and V of the EC. If so, the hippocampus would have to be able to establish a faithful

model  of  the  world  at  the  level  of  abstraction  in  the  EC,  which  would  align  with  the

Lorincz-Buzsaki model.

Other  computational  models  of  the  hippocampus  [Hasselmo and  McLelland,  1999;

Rolls,  1996,  1989]  suggest  that  the  CA3  is  involved  in  encoding  and  retrieval,  while

the  CA1  is  involved  in  match/mismatch  detection  operating  on  the  temporoammonic

and Schaffer collateral inputs. In these models, a mismatch between inputs excites the

medial septum, raising acetycholine (ACh) levels in the CA3, attenuating the recurrent

collaterals,  and  establishing  an  encoding  phase.  A  match  between  inputs  does  not

activate the medial septum, consequently allowing recurrent activity to dominate in the

CA3, setting up retrieval. According to Hasselmo's model, scopolamine (a cholinergic

antagonist) should, by inhibiting ACh, selectively impair encoding, whereas physostig-

mine  (an  acetylcholinesterase  inhibitor)  should,  by  inhibiting  the  breakdown  of  ACh,

selectively  impair  retrieval.  [Rogers  and  Kesner,  2004]  tested  Hasselmo's  cholinergic

modulation model of encoding and retrieval using a task that was sensitive to hippocam-

pal disruption. Scopolamine was found to disrupt encoding but not retrieval. Physostig-

mine  was  found  to  disrupt  retrieval  but  not  encoding.  The  results  suggested  that

increased  ACh  levels  are  necessary  for  encoding  new spatial  contexts,  and  decreased

ACh levels are necessary for retrieving previously learned spatial contexts.
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selectively  impair  retrieval.  [Rogers  and  Kesner,  2004]  tested  Hasselmo's  cholinergic

modulation model of encoding and retrieval using a task that was sensitive to hippocam-

pal disruption. Scopolamine was found to disrupt encoding but not retrieval. Physostig-

mine  was  found  to  disrupt  retrieval  but  not  encoding.  The  results  suggested  that

increased  ACh  levels  are  necessary  for  encoding  new spatial  contexts,  and  decreased

ACh levels are necessary for retrieving previously learned spatial contexts.

The  EC  has  also  been  shown  to  generate  oscillations  thought  to  be  important  in

setting  up  theta  modulation  in  the  hippocampus  [Dickson  et  al,  2000].  The  EC could

establish theta from the septum to the hippocampus, increasing ACh and activating the

DG-CA3  pathway,  thus  facilitating  encoding.  During  retrieval,  the  EC  could  activate

the PP to the CA3 directly, resulting in little ACh increase. According to [Rogers and

Kesner, 2004], Egorov's 2002 paper [Egorov et al, 2002] shows that the EC can sustain

activity over a time delay, also implicating EC layer V as the potential match/mismatch

mechanism.  This  picture  aligns  with  the  [Rolls,  1996]  model  suggesting  that  the  DG

mossy fiber inputs onto CA3 are responsible for encoding, and that direct PP inputs are

responsible for retrieval. 

Rogers and Kesner’s 2004 results support both the Hasselmo and the Buzsaki mod-

els,  but  cannot  distinguish  between  them.  However,  when  combined  with  data  from

[Lee and Kesner, 2004] and [Rogers and Kesner, 2003], the findings support the Lor-

incz-Buzsaki model. [Lee (I) et al, 2005] found that CA1 lesions had at most a modest

effect  on  novelty  detection  of  recently  familiarized  (within  three  minutes)  objects  in

new  locations,  which  would  also  argue  against  Hasselmo’s  model  since  the  CA1  is

therein  responsible  for  the  match/mismatch  operation.  [Lee  (I),  et  al,  2005]  found

instead  that  the  DG  and  CA3  significantly  influenced  novelty  detection  beyond  the

level observed in the CA1 lesioned animals. Hasselmo responded to the [Lee (I) et al,

2005]  results  by  considering  the  role  of  retrieval  played  by  CA3 in  novelty  detection

[Hasselmo,  2005].  Since  the  test  for  novelty  detection  used  by  Lee  (I)  et  al  required

retrieval  from  a  set  of  partial  cues,  it  would  be  expected  that  the  CA3  would  be

required for detection of novelty [ibid]. 
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therein  responsible  for  the  match/mismatch  operation.  [Lee  (I),  et  al,  2005]  found

instead  that  the  DG  and  CA3  significantly  influenced  novelty  detection  beyond  the

level observed in the CA1 lesioned animals. Hasselmo responded to the [Lee (I) et al,

2005]  results  by  considering  the  role  of  retrieval  played  by  CA3 in  novelty  detection

[Hasselmo,  2005].  Since  the  test  for  novelty  detection  used  by  Lee  (I)  et  al  required

retrieval  from  a  set  of  partial  cues,  it  would  be  expected  that  the  CA3  would  be

required for detection of novelty [ibid]. 

Hasselmo’s response addressed the role of the DG and CA3. However, the fact that

lesioning the CA1 had a  lesser  effect  on novelty detection is  puzzling,  since the CA1

provides hippocampal output to the cortex, specifically EC, layer V. One explanation is

the  CA1  lesions  in  the  study  were  incomplete  [Hasselmo,  2005].  Another  is  that  the

subiculum also takes part in novelty detection [McNaughton, 2006]. It is also possible

that there is a novelty detection process that occurs subcortically [Li et al,  2003], per-

haps  in  conjunction  with  the  parahippocampal  region  [Furtak  et  al,  2007],  and  is

involved  with  the  hippocampus  through  the  CA3,  since  the  CA3  also  has  subcortical

connections.  The  CA1  may  also  be  more  involved  in  detecting  novelty  under  condi-

tions  in  which  recollection  of  “older”  memories  is  involved  [Lee  (I)  et  al,  2005].

Finally, the Lee (I) et al study, like most studies, could not isolate the CA2, which was

affected by lesions of both the CA3 and CA1 [ibid]. 
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4.1.8 Contextual processing

The contextually motivated acquisition and consolidation of information may be one

of  the  hallmarks  of  hippocampal  operation  [Smith  and  Mizumori,  2006;  Vann  and

Albasser,  2011].  The explicit  idea of  contextual  sensitivity in  the hippocampus seems

to have originated in 1974 [Hirsch, 1974], and has been defended as a means of coping

with  “predictable  ambiguity”  [Morris,  2007].  Morris  described  experimental  evidence

for the contextual theory of hippocampal function, although he conceded that many of

the experiments were vague or  even confusing when it  came to the definition of  con-

text. In setting the stage for his discussion of the experimental paradigms of contextual

theory, Morris was careful to state that some aspects of contextual encoding, modula-

tion and recall are hippocampus-dependent, while others are not. 

The  original  experimental  paradigms  supporting  the  contextual  theory  involve  fear

conditioning,  in  particular,  “context-freezing”.  In  these  experiments,  a  context  (a  box

with a conductive grid floor), is associated with a mild electrical shock, the response to

which  is  sustained  immobility,  or  “freezing”  of  the  animal  test  subject.  After  this

response is  learned,  the animal  is  removed from the context  for  a  period of  time,  and

then  returned  to  the  context.  If  the  hippocampus  of  the  animal  has  been  immediately

lesioned,  little  of  the  conditioned  response  is  observed.  Furthermore,  the  freezing

response increases with the time between conditioning and lesioning.  In all  cases,  the

fear response can be extinguished with repeated exposure to the context in the absence

of the fear stimulus, over a period of weeks. [Rudy et al, 2002] also found that an intact

hippocampus  was  necessary  for  the  association  of  independent  features  (i.e.,  the  con-

text) with an aversive stimulus, and [Kim and Fanselow, 1992] found that the hippocam-

pus mediates “contextual conditioning”, which is conditioning paired to the context of

the  stimulus,  so  that  the  response  is  present  in  the  absence  of  the  stimulus,  but  the

presence of the context. 
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which  is  sustained  immobility,  or  “freezing”  of  the  animal  test  subject.  After  this
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response increases with the time between conditioning and lesioning.  In all  cases,  the

fear response can be extinguished with repeated exposure to the context in the absence

of the fear stimulus, over a period of weeks. [Rudy et al, 2002] also found that an intact

hippocampus  was  necessary  for  the  association  of  independent  features  (i.e.,  the  con-

text) with an aversive stimulus, and [Kim and Fanselow, 1992] found that the hippocam-

pus mediates “contextual conditioning”, which is conditioning paired to the context of

the  stimulus,  so  that  the  response  is  present  in  the  absence  of  the  stimulus,  but  the

presence of the context. 

A thread from a slightly older hippocampal theory, known as the declarative theory,

concerns  a  potential  model  of  long  term  consolidation  [Morris,  2007].  In  this  theory,

the  hippocampus  indexes  (or  points  to)  locales  in  the  cortex  and  “cautiously”  inter-

leaves new information into existing encodings. Could this process be facilitated, both

in terms of efficiency and continuity, by a topological association of indices formed in

the hippocampus? This suggestion is not too different from what has been proposed in

the  spatial  domain  [Samsonovich  and  McNaughton,  1997].  Samsonovich  showed,

through  simulations,  that  an  animal's  position  in  space  could  be  mapped  as  quasi-

continuous  fixed  point  attractors  on  multiple  2-D manifolds.  Nor  is  the  suggestion  of

topological association of indices vastly different from Hasselmo’s alternative explana-

tion for the role of the DG/CA3 as “encoding the relationship between objects depen-

dent  on  the  relative  times  or  locations  at  which  they  were  encountered,  providing  a

mechanism for relational memory” [Hasselmo, 2005].

Perhaps  topological  properties,  such  as  nearness  and  homotopy,  transfer  to  the

neocortex as well, carrying with them the topological associations of space and context

in episodic memory traces at the highest level of abstraction. In an extension of the fear

conditioning experiments, it was found that if there are three contexts, X, Y, and Z, of

which,  X  and  Y  contain  common  elements,  and  Z  is  quite  different,  that  the  condi-

tioned fear response will be observed in X and Y, but not Z, if the response was condi-

tioned in context  Y [Rudy and O’Reilly,  1999].  This result  may indicate the presence

of  a  mental  construct  that  confers  an  analog  to  topological  nearness  upon  contextual

fear conditioning. 
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conditioning experiments, it was found that if there are three contexts, X, Y, and Z, of

which,  X  and  Y  contain  common  elements,  and  Z  is  quite  different,  that  the  condi-

tioned fear response will be observed in X and Y, but not Z, if the response was condi-

tioned in context  Y [Rudy and O’Reilly,  1999].  This result  may indicate the presence

of  a  mental  construct  that  confers  an  analog  to  topological  nearness  upon  contextual

fear conditioning. 

The context discerning multifunction network 

To be useful, an abstracted indexing system must maintain some measure of similar-

ity to the thing it indexes. Related items should maintain a metrical similarity between

the space of  the  explicit  and the  space of  the  abstract  (which,  in  the  brain,  would not

necessarily  imply  topographical  organization).  Contextualizing  abstracted  or  hidden

variables with metrical, or at least topological consistency, has been proposed as a way

to efficiently optimize control policies in rapidly changing processes [Lendaris, 2009],

and  as  a  way  of  solving  reinforcement-learning  problems  in  non-stationary  environ-

ments [da Silva et al, 2006].  

Research in  artificial  neural  networks  has  yielded  an  architecture  that  can  discover

the meta-level correlational rules that govern the output of a non-stationary dynamical

system  [Lapedes  and  Farber,  1986;  Prokhorov  et  al,  2002;  Santiago,  2004].  The  net-

work architecture, dubbed the “context discerning multifunction network” (CDMN) by

Santiago, has a master/slave organization, where the master and slave networks receive

the  same inputs,  but  the  master  network  abstracts  the  input  to  a  sparse  representation

that  biases  the  operation  of  the  slave  network  towards  a  specific  region  of  operation.

This arrangement of networks extends the capability of the neural network from approx-

imating functions to approximating functionals (a functional is technically a map from

a vector space into its underlying scalar field, or intuitively, a function of a function -

i.e., the topological space is a function space) [Back and Chen, 2002; Santiago, 2004].

In essence, the master network learns the functionality of the slave. In the time-depen-

dent  CDMN,  the  master  circuit  is  instantiated  by  a  recurrent  neural  network  (RNN)

that  learns  a  family  of  fixed  point  attractors  from  the  training  set,  and  subsequently

biases  a  subset  of  the  nodes  in  the  slave  circuit.  In  the  CDMN,  the  slave  circuit  is  a

feedforward muti-layer perceptron (MLP).  

156

Printed by Mathematica for Students



Research in  artificial  neural  networks  has  yielded  an  architecture  that  can  discover

the meta-level correlational rules that govern the output of a non-stationary dynamical

system  [Lapedes  and  Farber,  1986;  Prokhorov  et  al,  2002;  Santiago,  2004].  The  net-

work architecture, dubbed the “context discerning multifunction network” (CDMN) by

Santiago, has a master/slave organization, where the master and slave networks receive

the  same inputs,  but  the  master  network  abstracts  the  input  to  a  sparse  representation

that  biases  the  operation  of  the  slave  network  towards  a  specific  region  of  operation.

This arrangement of networks extends the capability of the neural network from approx-

imating functions to approximating functionals (a functional is technically a map from

a vector space into its underlying scalar field, or intuitively, a function of a function -

i.e., the topological space is a function space) [Back and Chen, 2002; Santiago, 2004].

In essence, the master network learns the functionality of the slave. In the time-depen-

dent  CDMN,  the  master  circuit  is  instantiated  by  a  recurrent  neural  network  (RNN)

that  learns  a  family  of  fixed  point  attractors  from  the  training  set,  and  subsequently

biases  a  subset  of  the  nodes  in  the  slave  circuit.  In  the  CDMN,  the  slave  circuit  is  a

feedforward muti-layer perceptron (MLP).  

The hippocampus appears to share some architectural similarities to the CDMN. In

particular,  there  appears  to  be  a  separation of  biasing,  or  context-level,  and  output,  or

action-level,  networks  that  receive  similar  inputs  [Hirsch,  1974].  The  ECII�DG/CA3

circuit  has  been  suggested  to  operate  specifically  as  a  temporal  contextual  processing

circuit  [Hasselmo  and  Eichenbaum,  2005].  Hasselmo  and  Eichenbaum’s  proposed

functional  diagram of  the  hippocampus is  shown in  Fig.  4.5,  and can be compared to

the CDMN architecture, as shown in Fig. 4.6. In the ECII�DG/CA3 circuit, it appears

that the DG either biases or triggers the CA3 [Doboli et al, 2000], perhaps in the same

way that the RNN biases the MLP in the CDMN. 
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Figure  4.5.  Hasselmo  and  Eichenbaum's  proposed  functional  organization  of  the
hippocampus  and  EC  [Hasselmo  and  Eichenbaum,  2005].  The  circuit  in  panel  B
bears architectural and functional similarity with the context discerning multifunction
network  shown  in  Fig.  4.6  [Santiago,  2004].  Figure  credit:  [Hasselmo  and  Eichen-

baum, 2005]

Figure  4.6.  Architecture  of  the  context  discerning  multifunction  network  [Santiago,
2004].  Note  that  the  multi-function  approximation  stage  sends  a  signal  back  to  the
context  discernment network.  Axons have been found that  project  from CA3 to DG

[Scharfman, 2007]. Figure credit: [Santiago, 2004]

The  pattern  of  context/action  network  differentiation  also  seems  to  appear  in  the

ECII/ECIII�CA3/CA1  and  ECII/ECIII�CA2/CA1  circuits.  Even  though  the  inputs

from ECII and ECIII are not identical, the information is correlated since the layers are

adjacent  and  heavily  interconnected.  Regardless,  the  context-action  relationship  also

appears  to  exist,  with  the  outputs  from either  the  CA3 or  CA2 biasing  the  CA1 neu-

rons, thereby affecting the depolarizing potential of  ECIII inputs. 
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appears  to  exist,  with  the  outputs  from either  the  CA3 or  CA2 biasing  the  CA1 neu-

rons, thereby affecting the depolarizing potential of  ECIII inputs. 

The novelty of the CDMN paradigm is that the network learns to dynamically recog-

nize distinct but related families of input-output mappings with fixed weights, after the

training  period  [Santiago,  2004].  The  biasing  from  the  master  network  mirrors  the

topological  consistency  in  the  family  of  input-output  functions,  and  allows  interpola-

tion to functions not explicitly included during training. The CDMN has been shown to

be  effective  in  simple  low-dimensional  problems  [ibid].  However,  the  operational

requirements  of  the  hippocampus  are  high-dimensional  and  more  involved.  For  one

thing, the training and recall phases of operation are ongoing in the hippocampus, and

appear to be interleaved at the theta rate [Kunec et al, 2005]. For another, the temporal

relationship between events in a sequence of occurrences (including actions, and poten-

tially decision points) is encoded in the hippocampus, whereas in the CDMN it is not.

Also,  the  hippocampus  is  able  to  learn  completely  new  families  of  input-ouput  func-

tions,  presumably  without  losing  the  previous  mappings,  and  is  able  to  learn  from  a

single presentation. The question that remains in order to draw a parallel between these

two architectures is whether the hippocampal subregions and their interactions, as well

as interaction with other limbic and cortical regions, allow for the operational elabora-

tions beyond the CDMN without utilizing a fundamentally different network strategy.  

4.2 What does this have to do with STP at the Schaffer collateral?

To  summarize  the  main  conclusion  from  the  previous  sections  in  this  chapter:  the

hippocampal system organizes experiences into a relational framework that utilizes and

maintains  topological  characteristics  of  the  cortical  representation  of  experience.  The

hippocampus is required in order to integrate the ongoing representation of experience

into  a  continuous  stream  that  can  be  mentally  revisited  [Lorincz  and  Szirtes,  2009;

Wikenheiser and Redish, 2012]. If the organization of experience according to contex-

tual  relationships  requires  a  means  of  recognition,  then  the  hippocampal  formation

must be able to reconstruct arbitrary aspects of prior experiences from an arbitrary set

of  stimuli  [Szirtes  et  al,  2004;  Duncan  et  al,  2012;  Meyer,  2012].  Additionally,  the

hippocampus  seems  necessary  to  imagine  alternative  outcomes  of  experience

[Buckner, 2010; Gupta et al, 2010]. 
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must be able to reconstruct arbitrary aspects of prior experiences from an arbitrary set

of  stimuli  [Szirtes  et  al,  2004;  Duncan  et  al,  2012;  Meyer,  2012].  Additionally,  the

hippocampus  seems  necessary  to  imagine  alternative  outcomes  of  experience

[Buckner, 2010; Gupta et al, 2010]. 

System  identification  is  the  process  that  circumscribes  the  construction  and  recon-

struction functions proposed for the hippocampus [Lorincz and Szirtes, 2009; Berger et

al,  2010;  Buckner,  2010].  System identification  involves  the  development  of  a  model

that can simulate arbitrary aspects of a dynamic process in order to predict the results

of  variations  made  to  the  inputs  of  the  process  [Ljung,  1987].  In  the  case  of  the  hip-

pocampus,  the  modeled  process  corresponds  to  the  ongoing  sequence  of  abstracted

multi-modal  stimuli  that  represent  generic  observations  of  cause  and  effect  in  the

allocentric  reference  frame  [Lisman  and  Otmakova,  2001;  Treves,  2004;  Lorincz  and

Szirtes,  2009;  Lisman  and  Redish,  2009;  Muezzinoglu  et  al,  2010].  The  predictive

performance  of  hippocampal  system  identification  has  implications  for  cognition

[Berger  et  al,  2010;  Addis  et  al,  2010;  Meyer,  2012]  and  mental  health  [Green  et  al,

2005; Siekmeier et al, 2007; Behrendt, 2010; Bast, 2011].
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One of the challenges that the hippocampal system must deal with in order to accu-

rately  model  experience,  is  filtering  the  dense  inputs  from  the  entorhinal  cortex

[Coulter  et  al,  2011].  The  hippocampus  is  proposed  here  to  divide  this  filtering  chal-

lenge in two computational stages that can be identified with connectionist paradigms.

First, the dentate gyrus (DG) transforms the dense cortical code into a sparse representa-

tion  through  a  dimensional  expansion  analogous  to  a  “self-organizing  map”  (SOM)

[Kohonen, 1993] (more specifically,  a “growing” SOM, or GSOM [Mole and Araujo,

2010],  or  potentially  a  similar  construct  called  a  “growing  cell  structure”  (GCS)

[Fritzke,  1994]).  The  function  of  the  DG is  often  identified  with  “pattern  separation”

[Myers and Scharfman, 2010; Yassa and Stark,  2011],  although it  has been suggested

to  correspond  better  with  “memory  resolution”  when  neurogenesis  is  taken  into

account  [Aimone  et  al,  2011].  Next,  the  sparse  representation  in  the  DG  triggers  an

associative signature embodied by a dynamic trajectory through the recurrent network

of the CA3 [Behrendt, 2010]. The function of the CA3 is often identified with “pattern

completion” [Myers and Scharfman, 2010].

Although the activity of the CA3 has been strongly implicated in associative process-

ing [Kesner et al, 2008; Nakashiba et al, 2008; Ramamoorthi et al, 2011], as of yet, no

perfect  analogy  to  a  computational  paradigm for  the  CA3 exists  [Colgin  et  al,  2010].

The evidence does not, it would seem, exclude a type of recurrent network known as a

“liquid  state  machine”  (LSM) [Maass,  2010].  The  LSM network  is  composed  of  ran-

domly connected excitatory and inhibitory computational  units  (spiking neurons),  and

is championed for its ability to simulate arbitrary dynamics without necessarily adjust-

ing  synaptic  weights  [ibid].  Instead,  for  an  LSM,  learning  consists  of  discovering  the

appropriate  weighted  combination  of  its  output  neurons  (usually  a  linear  combination

thereof)  [ibid].  The  conditions  that  have  been proposed to  be  required for  an  LSM to

operate,  namely,  a  sparse  set  of  inputs  and  an  output  network  that  can  interpret  the

dynamic state of the LSM [ibid], are present in the hippocampus: the DG provides the

sparse inputs, and the CA1 interprets the outputs of the CA3. 

161

Printed by Mathematica for Students
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ing [Kesner et al, 2008; Nakashiba et al, 2008; Ramamoorthi et al, 2011], as of yet, no

perfect  analogy  to  a  computational  paradigm for  the  CA3 exists  [Colgin  et  al,  2010].

The evidence does not, it would seem, exclude a type of recurrent network known as a

“liquid  state  machine”  (LSM) [Maass,  2010].  The  LSM network  is  composed  of  ran-

domly connected excitatory and inhibitory computational  units  (spiking neurons),  and

is championed for its ability to simulate arbitrary dynamics without necessarily adjust-

ing  synaptic  weights  [ibid].  Instead,  for  an  LSM,  learning  consists  of  discovering  the

appropriate  weighted  combination  of  its  output  neurons  (usually  a  linear  combination

thereof)  [ibid].  The  conditions  that  have  been proposed to  be  required for  an  LSM to

operate,  namely,  a  sparse  set  of  inputs  and  an  output  network  that  can  interpret  the

dynamic state of the LSM [ibid], are present in the hippocampus: the DG provides the

sparse inputs, and the CA1 interprets the outputs of the CA3. 

The  hippocampus  is  proposed  here  to  translate  neural  spike  codes  between  the

hippocampal  and cortical  representations in  the  EC,  resulting in  an enhanced associa-

tive  flexibility  of  the  compressed  cortical  signal.  This  translation  could  represent  the

brain’s solution to the “stability-plasticity dilemma”, that is, the trade-off in representa-

tional  specificity  inherent  in  balancing  the  ability  to  form  new  associations  with  the

ability  to  recall  previously  encoded  associations  [Abraham  and  Robins,  2005;  Gross-

berg, 2009]. According to the present proposal of the hippocampal function, the medial

temporal  lobe  has  solved  the  stability-plasticity  dilemma  by  dividing  the  stable  and

flexible  representational  systems  into  separate  regions  (the  EC  and  the  hippocampus,

respectively) [Manns and Eichenbaum, 2006]. 

The  enhanced  plasticity  of  the  hippocampus  renders  it  sensitive  to  over-excitation.

However,  gating  mechanisms  limit  the  amount  of  activity  reaching  the  most  plastic

regions of the hippocampus (the CA3 and the CA1) [Ang et al, 2005; Ang et al, 2006;

Coulter  et  al,  2011;  Jones  and  McHough,  2011].  Hippocampal  gating  mechanisms

filter the persistent EC activity in two ways [Ang et al, 2005; Ito and Schuman, 2012].

The first mechanism, corresponding to the action of the dentate gyrus, is a winner-take-

all  discriminatory  operation  that  directly  compresses  the  dense  cortical  code  from the

EC into a sparse representation in the higher-dimensional space of the DG [de Almeida

et al, 2009]. The second gating mechanism indirectly affects the influence of the corti-

cal inputs to the distal dendrites of the pyramidal cells in the CA regions by varying the

phase relationship of frequency-modulated inputs that converge from different regions

[Urban et al, 2001; Buzsaki and Draguhn, 2004; Ang et al, 2005; Coulter et al, 2011]. 

162

Printed by Mathematica for Students



The  enhanced  plasticity  of  the  hippocampus  renders  it  sensitive  to  over-excitation.

However,  gating  mechanisms  limit  the  amount  of  activity  reaching  the  most  plastic

regions of the hippocampus (the CA3 and the CA1) [Ang et al, 2005; Ang et al, 2006;

Coulter  et  al,  2011;  Jones  and  McHough,  2011].  Hippocampal  gating  mechanisms

filter the persistent EC activity in two ways [Ang et al, 2005; Ito and Schuman, 2012].

The first mechanism, corresponding to the action of the dentate gyrus, is a winner-take-

all  discriminatory  operation  that  directly  compresses  the  dense  cortical  code  from the

EC into a sparse representation in the higher-dimensional space of the DG [de Almeida

et al, 2009]. The second gating mechanism indirectly affects the influence of the corti-

cal inputs to the distal dendrites of the pyramidal cells in the CA regions by varying the

phase relationship of frequency-modulated inputs that converge from different regions

[Urban et al, 2001; Buzsaki and Draguhn, 2004; Ang et al, 2005; Coulter et al, 2011]. 

In  light  of  the  functional  and anatomical  organization of  the  gating/biasing circuits

in the hippocampus, along with the observation of hippocampal phase-coding [Lisman,

2005],  Schaffer  collateral  synaptic  dynamics could affect  the associative properties  of

hippocampal  computations through transient  alterations to the amplitude and phase of

the  CA1  firing  probability.  Theoretical  and  modeling  studies  indicate  that  recurrent

neural  networks  may  utilize  dynamic  transients  for  discrimination  and  identification

[Buckley and Nowotny, 2011; Curto et al, 2012; Rabinovich and Varano, 2011]. Since

the  Schaffer  collateral  systematically  depolarizes  a  subset  of  the  CA1  dendrites  that

receive inputs from the ECIII [Ang et al, 2005], a contextual network selection process

could operate transiently by utilizing the interaction between short-term synaptic plastic-

ity and the dynamic state of depolarization of the CA1 dendrites [Speed and Dobrunz,

2009;  Volman et  al,  2009].  Task-dependent  transient  increases  in  oscillatory synchro-

nization  along  with  frequency-selective  increases  in  oscillatory  coherence  are  experi-

mentally supported mechanisms that are consistent with an oscillatory gating hypothe-

sis [Akam and Kullmann, 2010]. Finally, the interaction of synaptic dynamics with the

oscillatory  modulation  of  the  depolarization  potential  of  excitatory  neurons  may  con-

tribute to phase precession [Thurley et al, 2008], which might affect the magnitude and

sign of STDP [Masquelier et al,  2009; Bush et al,  2010], in turn affecting the state of

STP [Markram and Tsodyks, 1996; Liebold and Bendels,  2009; Carvalho and Buono-

mano, 2011].
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receive inputs from the ECIII [Ang et al, 2005], a contextual network selection process

could operate transiently by utilizing the interaction between short-term synaptic plastic-

ity and the dynamic state of depolarization of the CA1 dendrites [Speed and Dobrunz,

2009;  Volman et  al,  2009].  Task-dependent  transient  increases  in  oscillatory synchro-

nization  along  with  frequency-selective  increases  in  oscillatory  coherence  are  experi-

mentally supported mechanisms that are consistent with an oscillatory gating hypothe-

sis [Akam and Kullmann, 2010]. Finally, the interaction of synaptic dynamics with the

oscillatory  modulation  of  the  depolarization  potential  of  excitatory  neurons  may  con-

tribute to phase precession [Thurley et al, 2008], which might affect the magnitude and

sign of STDP [Masquelier et al,  2009; Bush et al,  2010], in turn affecting the state of

STP [Markram and Tsodyks, 1996; Liebold and Bendels,  2009; Carvalho and Buono-

mano, 2011].

In  the  conceptualization  of  the  hippocampal  circuit  proposed  here  (Fig.  4.7),  the

CA1 interprets the dense cortical representation of the spatio-temporal signals from the

EC by coordinating predictions from the CA3 and/or CA2 with observations from the

EC.  The  means  by  which  the  hippocampus  isolates  the  expected  from  the  observed

signals  appears  to  involve  the  relative  timing of  the  inputs  to  CA1 from CA3 (and/or

CA2)  and  EC  with  respect  to  the  theta-band  modulation  of  the  local  field  potential

(LFP)  [Cutsuridis  and  Wennekers,  2009;  Mizuseki  et  al,  2009;  Jones  and  McHough,

2011; Hyman et al, 2011]. The wealth of data pointing to a correlation between cogni-

tion  and  timing  in  the  hippocampus  [Tort  et  al,  2009;  Uhlhaas  and  Singer,  2010;

Benchenane  et  al,  2011;  Holderith  et  al,  2011]  indicates  the  sensitivity  of  the  opera-

tions involved in interpreting the densely-encoded EC activity. 
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Figure  4.7.  Diagram of  a  proposal  for  interpreting  hippocampal  processing.  LSM  =
“Liquid  State  Machine”.  R.O.  =  “Read-Out”.  GSOM  =  ‘Growing  Self-Organizing

Machine”.

To indulge in evolutionary speculation: the dual role of the hippocampus in spatial

awareness and the formation of episodic memories [Vann and Albassar, 2011; Stella et

al,  2011]  might  suggest  the possibility  that  contextualized episodic memory organiza-

tion  is  an  adaptive  functionality  co-opted  from  the  spatial  perception  machinery

[Whishaw  and  Wallace,  2003;  Behrendt,  2010].  The  constraint  of  topological  consis-

tency  between  the  levels  of  cortical  representation  that  are  required  for  spatial  cogni-

tion may have provided the selection pressure to drive the formation of the hippocam-

pal-neocortical episodic memory system, while the neocortex diversified and expanded

[Manns and Eichenbaum, 2006]. Indeed, the neocortex displays great diversity among

mammals,  while the parahippocampal system remains largely conserved [Eichenbaum

and Lipton, 2008]. The speculative proposal that episodic memory organization has its

origins in spatial awareness and processing might also gain support from philosophical

arguments  concerning  embodied  cognition  [Johnson,  2006;  Rabinovich  and  Varano,

2011]. Regardless of whether the function of contextualized episodic memory organiza-

tion represents a repurposing of the spatial cognition system, the fact that the hippocam-

pus interprets a compressed representation of cortical activity enables operations on the

compressed  cortical  representation  (at  the  level  of  the  EC)  to  be  meaningfully  trans-

formed  back  to  the  sparse  and  more  permanent  representation  in  the  less-connected

lobes of the cerebral cortex. 
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2011]. Regardless of whether the function of contextualized episodic memory organiza-

tion represents a repurposing of the spatial cognition system, the fact that the hippocam-

pus interprets a compressed representation of cortical activity enables operations on the

compressed  cortical  representation  (at  the  level  of  the  EC)  to  be  meaningfully  trans-

formed  back  to  the  sparse  and  more  permanent  representation  in  the  less-connected

lobes of the cerebral cortex. 

The  lack  of  topological  connections  over  the  total  space  of  the  neocortex  is

(probably)  a  consequence  of  space  limitations  resulting  in  the  impossibility  of  com-

plete  neuronal  interconnectivity  [Klyachko  and  Stevens,  2003;  Raj  and  Chen,  2011],

thus  requiring  topology-preserving  mappings  (morphisms)  from  the  neocortex  to  the

entorhinal  cortex  in  order  to  coherently  bind  multimodal  representations  (cognitive

percepts)  from  the  sensory  and  associational  cortices  at  the  level  of  the  EC  and  hip-

pocampus [Dabaghian et al, 2011; Derdikman et al, 2009; Gustafson and Daw, 2011],

and  the  cortex  in  general  [Fiori,  2008].  The  projections  from  neocortex  to  entorhinal

cortex may evolve through a series of compositions,

(4.1)E � Fe�Fp�Fn�N���,
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where  N  represents  the  activity  at  the  neocortex,  E  represents  the  lower  dimensional

activity at the entorhinal cortex, and the middle function represents the parahippocam-

pal  transformation.  At  each level  multiple  output  sets  converge on the  next  level.  For

instance,  Fn  consists  of  six  primary  regions,  each  of  which  has  multiple  subregions

[Burwell, 2001]. The output from each subregion can be represented by the activity on

one  set  of  neurons  (the  principal  neurons),  although  each  subregional  set  comprises

potentially more than one set of neurons if the interneurons are included. Each process-

ing stage could be represented by the complete set of regional output sets. For instance,

Fn � �Fn,1, Fn,2, ..., Fn,q�,  for  q  regions.  The  functions  describing  the  output  of  each

regional set of neurons could be written in terms of their component activities:

(4.2)Fn,i ��
j�1

m �n,i, j�Wpost,n,i, j �pre,n,i, j�t�� Η�,
where  Wpost  is  the  l�k  postsynaptic  weight  matrix,  and  �pre  is  the  l�k  presynaptic

weight function, and k is the largest number of synapses on any of the l neurons in the

ith  member  of  the  set  of  q  regions.  The  function  �  accounts  for  all  electrochemical

activity on the neuron,  including receptor kinetics,  dendritic  integration and ion chan-

nel currents. The output of � is an l�1 vector representing the spiking state of the neu-

rons in the ith set. The array Η is a guassian process representing the stochasticity of the

individual  synapses.  The  sum  is  over  all  m  sets  of  input  neurons  to  Fn,i,  including

interneurons, modulatory inputs, recurrent inputs, and afferent inputs. Wpost  and �pre

are multiplied element-wise. The presynaptic weights are evaluated at time t: 
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(4.3)�pre,n,i, j�t� � �pre,n,i, j��pre,n,i, j�t� Τn,i, j�, �n,i, j�t�, Τn,i, j�,
where Τ are the times since the last spike arrivals at all l�k synapses on set i, � is the l�

k array of binary-valued inputs, and �pre is the function that relates the previous values

of  presynaptic  release  probabilities,  �pre,n,i, j�t� Τn,i, j�,  to  the  current  values.  The

functions  �  and  �pre  have  additional  parameters,  not  explicitly  listed,  some  of  which

may be functions of the states of other variables, but most of which can be considered

constant. The values in Wpost are governed by rules that depend on the temporal differ-

ence  between  input  and  output  spikes,  and  on  the  state  and  timing  of  modulatory

inputs. 

The  reciprocation  of  anatomical  connections  through  the  cortical  hierarchy

[Lavenex  and  Amaral,  2000;  Agster  and  Burwell,  2009]  allows  forward  and  inverse

morphisms  between  regions,  so  that  the  composition  of  functions  in  Eqn.(4.1)  might

also  be  regarded  as  a  progressive  embedding  of  manifolds,  not  unlike  the  manifold

learning formulation introduced by [Kramer, 1991]. In this conception, the task of the

hippocampus is to learn the topological connections on the lowest dimension submani-

fold,  such  that  an  atlas  of  charts  can  be  made  which  preserves  the  topology  of  the

connections  in  the  total  space  of  the  neocortex.  The  hippocampus  also  provides  a

dynamical  extension  to  the  operations  that  can  be  performed  on  the  low-dimension

manifolds [Derdikman and Moser, 2010]. 

If  the  CA1 Schaffer  collateral  (SC) inputs  could be linearized,  then the  stability  of

the  SC  synaptic  outputs  could  be  determined  from  the  eigenvalues  of  its  presynaptic

weight  matrix  [Curto  et  al,  2012].  The  dynamic  behavior  of  the  presynaptic  weight

matrix might be regarded then,  as a mechanism to briefly destabilize the CA1 region,

which, if already near a bifurcation, could either momentarily separate trajectories [Siri

et al, 2008], or push the network into a new attractor state [Cortes et al, 2006] (not to

imply  that  the  feedforward  CA1  is  capable  of  self-sustaining  dynamics,  as  it  lacks

recurrence,  but  that  the  CA1’s  response  to  input  patterns  from  the  CA3  could  differ

based on the state of the SC synapses during the presentation of the inputs). The synap-

tic  depression  that  follows  facilitation  in  the  gamma  range  could  serve  to  keep  the

circuit  from  remaining  destabilized,  while  the  frequency  dependence  of  the  dynamic

weight changes might filter the regimes during which destabilization is operant. Tran-

sient  destabilization  may  also  fit  into  the  framework  of  Stable  Heteroclinic  Orbits

(SHO) proposed by Rabinovich and others [Rabinovich et al, 2008; Muezzinoglu et al,

2010]: synaptic dynamics might affect the stability of any given saddle-node in a SHO.
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4.3 Conclusion 

A  hypothesis  about  the  function  of  STP  at  the  Schaffer  collateral  was  developed.

Based on the observation that  STP provides a narrow band of gain centered around the

slow delta rate, the hypothesis states that STP provides a targeted emphasis of the ISIs

upon which signals are transmitted to the CA1 from the CA3 during recall. The gain is

hypothesized to  temporarily  destabilize  the  balance  of  excitation and inhibition  in  the

CA1,  enabling  a  nonlinear  response  within  the  communication  band.  The  hypothesis

originally  postulated that  an  STP-enabled response nonlinearity  would increase  signal

specificity in CA1. However, given the complexity of the relationship between gamma

and  theta  in  the  CA1-CA3  regions  [Atallah  and  Scanziani,  2009],  it  is  possible  that

STP  plays  a  role  in  the  transfer  of  information  between  CA  subregions,  including

signalling, triggering, or even accelerating a transition from fast to slow gamma activ-

ity [Colgin and Moser, 2010]. Furthermore, since fast and slow gamma are thought to

correlate  respectively  with  encoding  and  retrieval,  the  coordination  of  systems  that

operate on signals carried on these bands may be involved in perceptual processes, as

perhaps indicated by interactions between activity on CA1 dendrites in stratum lacuno-

sum-moleculare  (distal:  from  the  temporoammonic  pathway)  and  stratum  radiatum

(more proximal: from the Schaffer collateral) [Takahashi and Magee, 2009; Ang et al,

2005].  Hence,  upsetting  the  coordination  of  gamma-encoded  signals  may  disturb  cer-

tain  cognitive  processes  that  rely  upon  the  separation  of  encoding  and  retrieval  for

proper  functioning.  Examples  of  the  types  of  cognitive  pathologies  that  may  involve

disruption  of  gamma  encoding  include  schizophrenia  [Uhlhaas  and  Singer,  2010],

autism [Deng et al, 2011] and possibly Alzheimer’s [Villette et al, 2010].       
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autism [Deng et al, 2011] and possibly Alzheimer’s [Villette et al, 2010].       

The  molecular  specificity  of  the  DSCI  model  of  STP  could  enable  imbalances  of

exocytotic proteins to be mapped to synaptic activity. These maps could be used either

to  predict  or  to  verify  experimental  results.  For  example,  [Xu  et  al,  2012]  found  that

syt1-specific  knockdown in  the  hippocampus affected the  precision of  contextual  fear

conditioning.  This  type  of  result  could  have  far-reaching  implications.  For  instance,

since  the  effect  of  syt1  knockdown  is  essentially  that  of  a  high-pass  filter,  this  result

suggests not only the importance of bursting in the hippocampus [Buzsaki, 2012], but

also the possibility that syt2 could operate in the place of syt1. For instance, the failure

of syt1-mediated inhibition of dendritic calcium influx can lead to stronger bursting in

pyramidal cells [ibid]. In the hippocampus, bursting behavior (defined as three or more

spikes within 8ms [Ranck, 1973]) is much more common than in the EC or the mPFC

[Fujisawa  et  al,  2008;  Mizuseki  et  al,  2009].  If  the  DSCI  model  is  found  to  reliably

predict  results  like  this,  then  the  model  may  confidently  be  used  as  a  component  of

larger models that simulate hippocampal information processing. 
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A  P  P  E  N  D  I  X    A

DSCI model equations

Terms 

Table A.1. DSCI model parameters. Color code: Blue � calcium processes. Green � vesicle pools 
and refilling. Pink � vesicle release (exocytosis) processes.

Parameter Description�Ca2��res,0 Initial residual calcium concentration
�Ca,Μ Peak nanodomain calcium concentration
�Ca,int Residual calcium update, intermediate component
�Ca,slow Residual calcium update, slow component
ΤCa,int Calcium decay time constant, intermediate component
ΤCa,slow Calcium decay time constant, slow component
nrest Number of vesicles at rest
Φn Fraction of total vesicles in willing pool
Τfast Willing pool reloading rate time constant
Τslow Reluctant pool reloading rate time constant
Τk,refill Willing pool accelerated reloading decay time constant
Amprefill,fast Willing pool accelerated reloading amplitude
Kdrefill,fast Willing pool accelerated reloading dissociation constant
ΦCa,Μ Fraction of nanodomain calcium concentration at reluctant vesicles
psyt1,SNARE,min,willing Min probability of syt1 binding to SNARE at willing vesicles
psyt1,SNARE,min,reluctant Min probability of syt1 binding to SNARE at reluctant vesicles
psyt7,SNARE,min Min probability of syt7 binding to SNARE at all vesicles
psyt1,SNARE,max,willing Max probability of syt1 binding to SNARE at willing vesicles
psyt1,SNARE,max,reluctant Max probability of syt1 binding to SNARE at reluctant vesicles
psyt7,SNARE,max Max probability of syt7 binding to SNARE at all vesicles
KdCa,syt1,SNARE Calcium concentration at half�max syt1�to�SNARE binding
KdCa,syt7,SNARE Calcium concentration at half�max syt7�to�SNARE binding
KdCa,syt1,trigger Calcium concentration at half�max syt1�triggered fusion
KdCa,syt7,trigger Calcium concentration at half�max syt7�triggered fusion
Esyt1 Syt1 energetic contribution to membrane fusion
Esyt7 Syt7 energetic contribution to membrane fusion
Efusion Energetic barrier to membrane fusion
NSNARE Number of SNAREs associated with each vesicle
nCa,syt1,trigger Cooperativity of syt1�triggered fusion in calcium
nCa,syt7,trigger Cooperativity of syt7�triggered fusion in calcium
nCa,syt1,SNARE Cooperativity of syt1�to�SNARE binding in calcium
nCa,syt7,SNARE Cooperativity of syt7�to�SNARE binding in calcium
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Equations 

Mean resting vesicle pool populations (willing and reluctant).

(A.1)nrest,willing � nrest Φn � nwilling,0

(A.2)nrest,reluctant � nrest�1 � Φn� � nreluctant,0

Calcium dynamics (M is the number of spikes in the input spike train).

(A.3)
�

� t
�Ca2��res,int �t� � � �Ca2��res,int �t�

ΤCa,int
� �Ca,int ∆�t � ti�, � i � �1, …, M�

(A.4)
�

� t
�Ca2��res,slow �t� � � �Ca2��res,int �t�

ΤCa,slow
� �Ca,slow ∆�t � ti�, � i � �1, …, M�

(A.5)�Ca2��res �t� � �Ca2��res,0 � �Ca2��res,int �t� � �Ca2��res,slow �t�
(A.6)�Ca2��Μ,i � �Ca2��res �ti� � �Ca,Μ

Vesicle pool refilling.

(A.7)nwilling�ti� � nwilling�ti�1� � nrefill,willing�ti�, � i � �1, …, M�
(A.8)nreluctant�ti� � nreluctant�ti�1� � nrefill,reluctant�ti�, � i � �1, …, M�
(A.9)nrefill,willing�ti� �min�nrest,willing � nwilling�ti�, nrest,willing Ηwilling�ti��

(A.10)nrefill,reluctant�ti� �min�nrest,reluctant � nreluctant�ti�, nrest,reluctant Ηreluctant�ti��
(A.11)

�Ηreluctant�t�
� t

�
1 � Ηreluctant�t�
Τslow

, Ηreluctant�0� � 0

(A.12)Ηwilling�t� � krefill,fast�t� Η�willing�t� � Ηreluctant�t�
krefill,fast�t� � 1

(A.13)
�Η�willing�t�
� t

�
1 � Η�willing�t�
Τfast

(A.14)krefill,fast�t� �Amprefill,fast k
��t� �Ca2��res �t��Ca2��res �t� �Kdrefill,fast
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(A.15)
� k
��t�
� t

� �
k
� �t�
Τk,refill

Exocytosis.

(A.16)Prelease�ti� � 1 � �1 � Pves,willing�ti��nwilling�ti� �1 � Pves,reluctant�ti��nreluctant�ti�
(A.17)Pves,willing,i �

��Ediff,willing,i

1 � ��Ediff,willing,i

(A.18)Pves,reluctant,i �
��Ediff,reluctant,i

1 � ��Ediff,reluctant,i

(A.19)Ediff,willing,i � ESNARE,willing,i � Efusion

(A.20)Ediff,reluctant,i � ESNARE,reluctant,i � Efusion

(A.21)ESNARE,willing,i � Esyt1 N
�

syt1,willing,i � Esyt7 N
�

syt7,willing,i

(A.22)ESNARE,reluctant,i � Esyt1 N
�

syt1,reluctant,i � Esyt7 N
�

syt7,reluctant,i

(A.23)N
�

syt1,willing,i � Nsyt1,willing�ti��syt1,willing,i

(A.24)N
�

syt7,willing,i � Nsyt7,willing�ti��syt7,willing,i

(A.25)N
�

syt1,reluctant,i � Nsyt1,reluctant�ti��syt1,reluctant,i

(A.26)N
�

syt7,reluctant,i � Nsyt7,reluctant�ti��syt7,reluctant,i

(A.27)�syt1,willing,i �
�Ca2��Μ,inCa,syt1,trigger

KdCa,syt1,trigger
nCa,syt1,trigger � �Ca2��Μ,inCa,syt1,trigger

(A.28)�syt7,willing,i �
�Ca2��Μ,inCa,syt7,trigger

KdCa,syt7,trigger
nCa,syt7,trigger � �Ca2��Μ,inCa,syt7,trigger

(A.29)�syt1,reluctant,i �
ΦCa,Μ�Ca2��Μ,inCa,syt1,trigger

KdCa,syt1,trigger
nCa,syt1,trigger � ΦCa,Μ�Ca2��Μ,inCa,syt1,trigger
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(A.30)�syt7,reluctant,i �
ΦCa,Μ�Ca2��Μ,inCa,syt7,trigger

KdCa,syt7,trigger
nCa,syt7,trigger � ΦCa,Μ�Ca2��Μ,inCa,syt7,trigger

(A.31)Nsyt1,willing�ti� � NSNARE p� syt1,SNARE,willing�ti�
(A.32)Nsyt7,willing�ti� � NSNARE p� syt7,SNARE,willing�ti�
(A.33)Nsyt1,reluctant�ti� � NSNARE p� syt1,SNARE,reluctant�ti�
(A.34)Nsyt7,reluctant�ti� � NSNARE p� syt7,SNARE,reluctant�ti�
(A.35)p� syt1,SNARE,willing�ti� � psyt1,SNARE,willing�ti� � pcomp,willing�ti� � psyt1,comp,willing�ti�
(A.36)p� syt7,SNARE,willing�ti� � psyt7,SNARE,willing�ti� � pcomp,willing�ti� � psyt7,comp,willing�ti�
(A.37)p� syt1,SNARE,reluctant�ti� � psyt1,SNARE,reluctant�ti� � pcomp,reluctant�ti� � psyt1,comp,reluctant�ti�
(A.38)p� syt7,SNARE,reluctant�ti� � psyt7,SNARE,reluctant�ti� � pcomp,reluctant�ti� � psyt7,comp,reluctant�ti�
(A.39)psyt1,comp,willing�ti� � pcomp,willing�ti�

psyt7,SNARE�ti�
psyt1,SNARE,willing�ti� � 1

(A.40)psyt7,comp,willing�ti� � pcomp,willing�ti� � psyt1,comp,willing�ti�
(A.41)psyt1,comp,reluctant�ti� � pcomp,reluctant�ti�

psyt7,SNARE�ti�
psyt1,SNARE,reluctant�ti� � 1

(A.42)psyt7,comp,reluctant�ti� � pcomp,reluctant�ti� � psyt7,comp,reluctant�ti�
(A.43)pcomp,willing�ti� � psyt1,SNARE,willing�ti� psyt7,SNARE�ti�
(A.44)pcomp,reluctant�ti� � psyt1,SNARE,reluctant�ti� psyt7,SNARE�ti�
(A.45)

�

� t
psyt1,SNARE,willing�t� �

�psyt1,SNARE,max,willing � psyt1,SNARE,min,willing�
NSNARE

�

� t
Syt1CaSNAREwilling�t�
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(A.46)

�

� t
psyt1,SNARE,reluctant�t� �

1

NSNARE
�psyt1,SNARE,max,reluctant � psyt1,SNARE,min,reluctant� �

� t
Syt1CaSNAREreluctant�t�

(A.47)
�

� t
psyt7,SNARE�t� � �psyt7,SNARE,max � psyt7,SNARE,min�

NSNARE

�

� t
Syt7CaSNARE�t�

(A.48)

�

� t
Syt1CaSNAREwilling�t� �

k
��

on,syt1�Ca2��res
nCa,syt1,SNARE �t� � �k��on,syt1�Ca2��res

nCa,syt1,SNARE � koff,syt1� Syt1CaSNAREwilling�t�
(A.49)

�

� t
Syt1CaSNAREreuctant�t� �

k
��

on,syt1�Ca2��res
nCa,syt1,SNARE �t� � �k��on,syt1�Ca2��res

nCa,syt1,SNARE � koff,syt1� Syt1CaSNAREreluctant�t�
(A.50)

�

� t
Syt7CaSNARE�t� �

k
��

on,syt7�Ca2��res
nCa,syt7,SNARE �t� � �k��on,syt7�Ca2��res

nCa,syt7,SNARE � koff,syt7� Syt7CaSNARE�t�
(A.51)k

��
on,syt1 � k

�
on,syt1 NSNARE

(A.52)k
�

on,syt1 � kon,syt1�Syt1�
The code to run the DSCI model was implemented in Matlab. 
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A  P  P  E  N  D  I  X    B

The Hill equation

Cooperative  dose-response  curves  can  be  approximated  by  the  Hill  equation,  which  describes  the

fraction of macromolecules saturated by a ligand as a function of ligand concentration at equilibrium. KA

is the ligand concentration producing half occupation, and is related to the dissociation constant, Kd,  by,

Kd �KA
n, where n is the cooperativity, interpreted as the number of ligands needed for full binding. 

The kinetics of a chemical or molecular reaction process in which two compounds, A  and B,  react to

form a third compund, C, is written as,  

(B.1)A � B
koff

kon AB

where kon and koff  are the forward and reverse reaction rate constants. In a biomolecular reaction, B could

be a protein, and A, a ligand. The expression is shorthand for the equations,

(B.2)
� �B�
� t
� �kon�A��B� � koff�B�

(B.3)
� �A�
� t
� �kon�A��B� � koff�A�

(B.4)
� �AB�
� t

� kon�A��B� � koff�AB�
The  reaction  is  in  quilibrium  when  the  formation  =  kon�A��B�,  and  the  breakdown  =  koff�AB�,  (i.e,  the

forward and reverse rates) are the same (the Law of Mass Action):

(B.5)
� �AB�
� t

� kon�A��B� � koff�AB� � 0

(B.6)�A��B� kon � �AB� koff

The dissociation constant, KD, is defined as the ratio of the forward and reverse rate constants, and is

equivalent to the inverse of the association constant, KA:
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The dissociation constant, KD, is defined as the ratio of the forward and reverse rate constants, and is

equivalent to the inverse of the association constant, KA:

(B.7)KD �
1

KA
�

kon

koff
�
�A��B��AB�

The fractional saturation, or occupancy, Y, is the fraction of protein bound to ligand, 

(B.8)Y �
�AB��A� � �AB�

(B.9)Y �
Keq�B�

1 �Keq�B�
(B.10)Y �

�B�
KD � �B�

(B.11)Y �
�A�

KD � �A�
If  there  are  multiple  reactions  between a  ligand,  A,  and  a  protein,  B0,  having  identical  binding  sites,

then the intermediate states, A Bj, for  j=0,...,n-1, can be written as,

(B.12)

A � B0
koff,0

kon,0
AB0 � B1

A � B1
koff,1

kon,1
AB1 � B2

…

A � Bn�1
koff,n�1

kon,n�1
ABn�1 � Bn

which are equivalent to the coupled equations,
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(B.13)

� �B1�
� t

� kon,0�A��B0� � koff,0�AB0�
� �B2�
� t

� kon,1�A��B1� � koff,1�AB1�
�

� �Bn�
� t

� kon,n�1�A��Bn�1� � koff,n�1�ABn�1�
The dissociation constants are defined for j=1,...,n as,

(B.14)KD, j �
kon, j�1

koff, j�1
�
�A��Bj�1��Bj� �

1

KA, j

It  may  be  difficult  to  measure  �Bj�.  A  more  convenient  quantity  is  the  average  number,  r,  of  ligand

molecules bound to the protein: 

(B.15)r �
�B1� � 2�B2� �… � n�Bn��B0� � �B1� �…�Bn�

When the expressions for KA, j are substituted in, Adair's equation results:

(B.16)r �
KA,1�A� � 2 KA,1 KA,2�A�2 �… � n KA,1 KA,2 … KA,n�A�n
1 �KA,1�A� �KA,1 KA,2�A�2 �… �KA,1 KA,2 … KA,n�A�n

Or, defining intrinsic association constants, KA, j �
�n� j�1�

j Kj, 

(B.17)

r � �n K1�A� � n K1 K2�A�2 �… � n K1 K2 … Kn�A�n��
1 � n K1�A� � n

�n � 1�
2

K1 K2�A�2 �… � n
�n � 1�

2

�n � 2�
3
�

1

n
K1 K2 … Kn�A�n

(B.18)r �
n K1�A� � n K1 K2�A�2 �… � n K1 K2 … Kn�A�n

1 � n K1�A� � n �n�1�
2 K1 K2�A�2 �… �K1 K2 … Kn�A�n

(B.19)Y �
r

n
�

K1�A� � K1 K2�A�2 �… �K1 K2 … Kn�A�n
1 � n K1�A� � n �n�1�

2 K1 K2�A�2 �… �K1 K2 … Kn�A�n
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For highly cooperative binding (with n identical interacting binding sites where intermediate states can

be neglected because kon, j�1� kon, j),

(B.20)A � n B
koff

kon C

From the law of mass action, the rate is defined as, �
�t

A � �kon Bn A,  so the corresponding rate equa-

tion for C is:

(B.21)
� �C�
� t
� kon�A��B�n � koff�C�

(B.22)KD �
kon

koff
�
�A��B�n�C�

(B.23)Y �
�B�n

KD � �B�n
(B.24)Y �

�A�n
KD � �A�n
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A  P  P  E  N  D  I  X    C

Optimization procedure

The optimization problem is defined by: 

(C.1)min� f �t, Α��
Α��k

: f �t, Α� � 1

M
�
j�1

M 1
Nj
�
i�1

Nj �G� �ti, Α� �G�ti��2
1
2

where  G  is  the  data  (normalized  gain),  G
�

 is  the  model,  Α  is  the  vector  of  model  parameters,  Nj  is  the

number of points in the jth  data set, and M is the number of data sets included in the minimization prob-

lem. Five of the eight ordered trains and one of the two complex trains were included in the fitting set. Six

of the 32 model parameters were fixed, resulting in a k � 26 dimensional search space. The ratio of data

points to parameters was 12.2. The parameters were box-constrained to physiologically reasonable values,

and optionally scaled by the sensitivity of the cost function to the individual parameters around the initial

point. The parameters and their constraints are listed in Table 2.3. 

In  addition  to  the  error  defined  in  Eqn.(C.1),  several  of  the  parameters  were  given  a  crude  form  of

regularization in which a linearly increasing error was added if the parameters exceeded a connected set

within  their  bounded  domain.  Also,  certain  data  points  were  weighted,  including  the  PPF  points  in  the

ordered trains, the depressed points in the ordered trains, and the two extreme points of the dynamic range

in  all  data  sets.  These  selected  data  points  were  given  weight  values  between  5  and  45.  Finally,  certain

physiologically  motivated  constraints  were  established  for  some  parameters.  For  instance,  the  initial

calcium-dependent  probabilities  of  syt-SNARE  binding  were  constrained  to  be  less  than  the  maximal

calcium-saturated probabilities. 

Sequential  quadratic  programming  (SQP)  was  initially  used  to  solve  the  optimization  problem.  The

Matlab function, fmincon, was used to implement the optimization routine. Gradients were approximated

numerically by forward difference. The quadratic programming subproblems were solved using the active

set method. The function fmincon was modified to allow for vectorization where possible, resulting in at

least  a  5x  speedup.  Also,  the  DSCI  model  function  evaluations  made  use  of  graphics  processing  units

(GPUs) through the Accelereyes Jacket interface. The performance of the GPUs exceeded the CPUs when

at least 15,000 DSCI models were simultaneously evaluated, but memory resources limited the number of

model evaluations to about 200,000. At the upper limit of function evaluations, the GPUs provided about

a 4x speedup over CPU performance. GPUs were used to evaluate the DSCI model with a large batch of

randomly sampled parameters.  From this  set,  the  best  1,000 parameter  vectors  were  applied  to  the  opti-

mization problem.  
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Sequential  quadratic  programming  (SQP)  was  initially  used  to  solve  the  optimization  problem.  The

Matlab function, fmincon, was used to implement the optimization routine. Gradients were approximated

numerically by forward difference. The quadratic programming subproblems were solved using the active

set method. The function fmincon was modified to allow for vectorization where possible, resulting in at

least  a  5x  speedup.  Also,  the  DSCI  model  function  evaluations  made  use  of  graphics  processing  units

(GPUs) through the Accelereyes Jacket interface. The performance of the GPUs exceeded the CPUs when

at least 15,000 DSCI models were simultaneously evaluated, but memory resources limited the number of

model evaluations to about 200,000. At the upper limit of function evaluations, the GPUs provided about

a 4x speedup over CPU performance. GPUs were used to evaluate the DSCI model with a large batch of

randomly sampled parameters.  From this  set,  the  best  1,000 parameter  vectors  were  applied  to  the  opti-

mization problem.  

To identify local minima, the resulting parameter vectors were hierarchically clustered using the Ward

linkage method.  Prior to clustering,  parameters were normalized and sorted according to the ratio of the

standard deviation to the kurtosis in their distributions. This statistic estimated the tendency of the parame-

ters  to  cluster,  allowing  the  parameters  that  did  not  vary  to  be  excluded  from  the  clustering  routine,

thereby improving the clustering results. Local minima were identified based on a threshold value in the

difference between the distances between the clusters. The cross-correlogram of the clustered parameters

was used to visualize the minima.

The  identification  of  local  minima  in  the  parameter  space  allowed  parameters  to  be  automatically

selected  for  initializing  subsequent  rounds  of  optimization.  Local  minima  could  be  thoroughly  explored

through multiple iterations of this process, and occasionally new minima discovered. However, given the

tendency  of  the  SQP  algorithm  to  find  local  minima,  as  well  as  the  relative  innefficiency  of  the  SQP

algorithm (explainable mostly by the extra processes required to calculate numerical  gradients),  the vast

parameter space was still under-explored. The performance of the SQP algorithm on the problem was not

explainable by non-differentiability of the error surface. 
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To  improve  the  search  efficiency,  the  derivative-free  Nelder-Mead  method  of  optimization  was

employed.  The  Nelder-Mead  method  was  prone  to  early  convergence  (presumably  to  non-stationary

points),  but  with  restarting,  the  Nelder-Mead  algorithm  operated  about  10  times  more  efficiently  than

SQP.  However,  despite  the  improvement  in  efficiency,  the  Nelder-Mead method,  like  the  SWP method,

did not take full advantage of the GPUs (because of the relatively small number of models that could be

run  for  any  appreciable  number  of  iterations),  so  in  an  effort  to  increase  the  use  of  the  GPUs,  another

direct, derivative-free search strategy was developed.

In the new search strategy, dubbed here the shell-search method, parameters were randomly selected at

a fixed radius from the initial  point,  as defined by some fraction of the bounded domain. If,  in the sam-

pling of this shell around the initial point, a value lower than the initial point was found, a line search was

performed in the direction of the lowest value, while respecting the parameter bounds. The next iteration

was centered on the new point, with a slightly smaller shell radius (the radius was decreased by a small,

fixed fraction).  If  a  lower  point  was not  found,  the  shell  radius  was increased by a  small  fixed fraction,

and the search repeated until either a lower point was found, or some maximum radius limit achieved. If,

after a fixed number of iterations, no change in the current lowest error value was recorded, the shell was

reset  to  the  initial  radius,  and  the  process  repeated,  until  some  stopping  criteria  was  met  (for  instance,

number of iterations or negligable change in error).      

Finally, to insure that local minima were achieved, a direct search method was applied in one of two

strategies. In one case, each of the model parameters was first varied by a fixed fraction of it’s bounded

domain, and the parameter that generated the largest decrease in the error was adjusted to the new value.

In the other  case,  each parameter was simply varied in turn,  so that  the parameters were cycled through

sequentially.  When  no  further  improvements  were  made  at  the  current  parameter  variation  step,  the

fraction of parameter variation was decreased by a determined amount. Again, the process was terminated

when some stopping criteria was met.       
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Finally, to insure that local minima were achieved, a direct search method was applied in one of two

strategies. In one case, each of the model parameters was first varied by a fixed fraction of it’s bounded

domain, and the parameter that generated the largest decrease in the error was adjusted to the new value.

In the other  case,  each parameter was simply varied in turn,  so that  the parameters were cycled through

sequentially.  When  no  further  improvements  were  made  at  the  current  parameter  variation  step,  the

fraction of parameter variation was decreased by a determined amount. Again, the process was terminated

when some stopping criteria was met.       

The mean performance of the optimization methods are compared in Fig.C.1 (n � 4). In the figures, an

equivalent  evaluation  time  is  compared.  This  way,  the  efficiency  of  the  methods  can  be  compared.  The

initial point and the variation around the initial point were controlled in these tests, but the starting points

were randomly selected at the start of each test. Each of the four comparisons started with 100 randomly

initialized  points.  The  Nelder-Mead  method,  while  the  most  efficient,  did  not  always  reach  the  lowest

error. The surprising result of this comparison is that one of the direct search methods outperformed the

SQP method on this problem.

Figure C.1. Comparison of five search methods. The mean of four trials of each method are shown
for an equivalent time. Shown are  means of the searches from each of the four trials that finished
with the lowest value. (QP = quadratic programming, NM = Nelder-Mead, SS = shell search, ZZ =

zig-zag, DS = direct search). All optimization was performed in Matlab.
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A  P  P  E  N  D  I  X    D

CA1 pyramidal cell model

The Pinsky-Rinzel CA3 model

The CA1 pyramidal cell used in the simulations is based on a CA3 pyramidal model published in 1994

[Pinsky  and  Rinzel,  1994].  The  Pinsky-Rinzel  model  is  a  two-compartment  reduction  of  a  previously

developed  19-compartment  model  [Traub  et  al,  1991].  One  of  the  compartments  in  the  Pinsky-Rinzel

model describes the soma of the cell,  and the other compartment describes the dendrites.  Both compart-

ments are assumed to have a spherical shape. 

The model is presented below as published by Pinsky and Rinzel, however, the model was modified to

simulate CA1 pyramidal  cell  behavior.  CA1 pyramidal  cells  display more regular  spiking behavior  (less

bursting) than CA3 pyramidal cells, due to a reduced calcium conductance in the dendrite. The modifica-

tions also include an additional leak conductance with a potassium reversal potential,  and an adjustment

of the coupling parameters between the compartments. 

The somatic compartment voltage of the CA3 model is defined by,

(D.1)CM
�Vs

� t
� �Ileak�Vs� � INa�Vs, h� � IK�DR�Vs, n� � gc

p
�Vd � Vs� � Is

p

The  parameters  p  and  gc,  are  a  coupling  constants  between  the  two  compartments.  The  individual

currents are described by,

(D.2)Ileak�Vs� � gleak�Vs � Vleak�
(D.3)INa�Vs, h� � gNa m�2 �Vs� h�Vs � VNa�
(D.4)IK�DR�Vs, n� � gK�DR n�Vs � VK�,

where,
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(D.5)
�h

� t
�

h��Vs� � h

Τh�Vs�
(D.6)

�n

� t
�

n��Vs� � n

Τn�Vs� ,

with,

(D.7)m��Vs� � Αm�Vs�
Αm�Vs� � Βm�Vs�

(D.8)h��Vs� � Αh�Vs�
Αh�Vs� � Βh�Vs�

(D.9)Τh�Vs� � 1

Αh�Vs� � Βh�Vs�
(D.10)n��Vs� � Αn�Vs�

Αn�Vs� � Βn�Vs�
(D.11)Τn�Vs� � 1

Αn�Vs� � Βn�Vs� ,
and,

(D.12)Αm�Vs� � 0.32 �13.1 � Vs�
�

13.1�Vs

4 � 1

(D.13)Βm�Vs� � 0.28 �Vs � 40.1�
�

40.1�Vs

5 � 1

(D.14)Αh�Vs� � 0.128 �
17�Vs

18

(D.15)Βh�Vs� � 4

1 � �
40�Vs

5

(D.16)Αn�Vs� � 0.016 �35.1 � Vs�
�

35.1�Vs

5 � 1

(D.17)Βn�Vs� � 0.25 �0.5�0.025 Vs.

The dendritic compartment voltage of the CA3 model is defined by,
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(D.18)

CM
�Vd

� t
�

�Ileak�Vd� � ICa�Vd, s� � IK�AHP�Vd, q� � IK�C�Vd, Ca, c� � Isyn

1 � p
�

gc

1 � p
�Vs � Vd� � Id

1 � p
,

where the currents are described by,

(D.19)Ileak�Vd� � gleak�Vd � Vleak�
(D.20)ICa�Vd, s� � gCa s2�Vd � VCa�
(D.21)IK�AHP�Vd, q� � gK�AHP q�Vd � VK�
(D.22)IK�C�Vd, Ca, c� � gK�C c Χ�Ca� �Vd � VK�,

with,

(D.23)
� s

� t
�

s��Vd� � s

Τs�Vd�
(D.24)

�q

� t
�

q��Vd� � q

Τq�Vd�
(D.25)

� c

� t
�

c��Vd� � c

Τc�Vd�
(D.26)

�Ca

� t
� �0.13 ICa � 0.075 Ca,

and,

(D.27)Αs�Vd� � 1.6

1 � ��0.072 �Vd�65�
(D.28)Βs�Vd� � 0.02 �Vd � 51.1�

�
Vd�51.1

5 � 1

(D.29)Αq�Ca� �min�0.00002 Ca, 0.01�
(D.30)Βq � 0.001

(D.31)Αc�Vd� � � Vd�10
11 � �

Vd�6.5
27

18.975
, for Vd � 50,
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(D.32)Αc�Vd� � 2 �
6.5�Vd

27 , for Vd � 50

(D.33)Βc�Vd� � 2 �
6.5�Vd

27 � Αc, for Vd � 50

(D.34)Βc�Vd� � 0, for Vd � 50

(D.35)Χ�Ca� �min
Ca

250
, 1 .

The synaptic currents are described by,

(D.36)Isyn � IAMPA � INMDA,

where,

(D.37)IAMPA�Vd, Vsyn� � gAMPA Wi�t� �Vd � Vsyn�,
with,

(D.38)
�Wi

� t
��

j�1

N

��Vs, j � 20� � Wi

2
,

and,

(D.39)INMDA�Vd, Vsyn� � gNMDA Si�t� �Vd � Vsyn�
1 � 0.28 ��0.062 �Vd�60� ,

with,

(D.40)
�Si

� t
��

j�1

N

��Vs, j � 10� � Si

150
.

In these expressions, �� � � is the Heaviside function, and N is the total number of cells synapsing onto the

ithcell. 

Parameter values published in [Pinsky and Rinzel, 1994]

Maximal conductances � mS
cm2 �:

gleak � 0.1, gNa � 30, gK�DR � 15, gCa � 10, gK�AHP � 0.8, gK�C � 15.

Reversal potentials (mV):
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Vleak � 0, VNa � 120, VK � �15, VCa � 140, Vsyn � 60.

Coupling parameters:

gc � 2.1
mS

cm2
, p � 0.5.

The membrane capacitance, CM , was set to 3 ΜF
cm2 , and the total membrane area was set to one (which is

why  it  doesn’t  appear  in  the  equations  above).  The  bursting  behavior  was  illustrated  in  [Pinsky  and

Rinzel, 1994] with an applied somatic current, Is, of 0.75 ΜA
cm2 , and with an applied dendritic curent, Id, of

zero.  The  synaptic  conductances,  gAMPA  and  gNMDA,  were  both  set  to  0  mS
cm2 .  The  published  bursting

behavior is shown in Fig. D.1. The published spiking behavior for 1.5 seconds is shown in Fig. D.2.

Figure  D.1.  Published  behavior  of  Pinsky-Rinzel  CA3  pyramidal  cell  spike.  Vs:  somatic  potential,
Vd : dendritic potential, Ca: calcium concentration. Figure credit: [Pinsky and Rinzel, 1994]
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Figure  D.2.  Published  behavior  of  Pinsky-Rinzel  CA3  pyramidal  cell  for  1.5  seconds  with  same
parameters and inputs as shown in Fig. D.1. Figure credit: [Pinsky and Rinzel, 1994]

Parameter values used to recover CA3 behavior

To  match  the  published  behavior  of  the  Pinsky-Rinzel  CA3  model,  a  potassium  leak  current  was

introduced,  gK,leak � 0.005 mS
cm2 ,  with  VK,leak � �15 mV,  and  the  coupling  parameters  were  adjusted  to,

gc � 1.625 mS
cm2 , and p = 0.325. The other parameters were unchanged. The model was integrated implicitly

using the Crank-Nicolson method with a constant time step of 0.05ms. The linear system solved at each

time  step  using  the  method  described  in  (Gaussian  elimination)  [Dayan  and  Abbott,  2001].  The  model

behavior is shown in Figs. D.3 and D.4.

Figure  D.3.  Behavior  of  modified  Pinsky-Rinzel  CA3  pyramidal  cell  for  1.5  seconds.  Compare  to
Fig. D.2.
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Figure  D.4.  Behavior  of  modified  Pinsky-Rinzel  CA3  pyramidal  cell  spike.  Compare  to  Fig.  D.1.
Calcium is displayed on a different scale.

Simulating CA1 behavior

To obtain CA1 pyramidal cell behavior, the maximum calcium conductance, gCa, was reduced from 10

to  3.5  mS
cm2 .  This  reduces  the  prolonged  depolarizing  effect  of  the  slow  calcium  channel  kinetics.  The

model  behavior  is  compared  to  another  CA1  model  that  was  also  based  upon  the  Pinsky-Rinzel  CA3

model [Ferguson, KA and Campbell, SA (unpublished), “A two-compartment model of a CA1 pyramidal

neuron”].  The  Ferguson  and  Campbell  model  added  an  inward  calcium  current,  an  outward  potassium

after-hyperpolarization current, and an outward calcium-activated potassium current to the soma compart-

ment. For validation, a somatic current of 1.25 ΜA
cm2  was applied. The Ferguson and Campbell response to

the injected somatic current is shown in Fig. D.5. The behavior of the CA1 model used in this dissertation

in response to the injected current is shown in Fig. D.6. 

223

Printed by Mathematica for Students



Figure D.5. Behavior of Ferguson and Campbell CA1 model in response to injected current of 1.25
ΜA

cm2  applied to the soma. Compare to Fig. D.6. Figure credit: [Ferguson and Campbell] 

Figure D.6. Behavior of the CA1 model used in this dissertation in response to injected current of
1.25 ΜA

cm2  applied to the soma. 

In the simulations involving synaptic inputs,  both of the applied currents,  Is  and Id,  were set  to zero,

and the synaptic conductances, gAMPA and gNMDA, were both set to 0.0015 mS
cm2 . 
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In the simulations involving synaptic inputs,  both of the applied currents,  Is  and Id,  were set  to zero,

and the synaptic conductances, gAMPA and gNMDA, were both set to 0.0015 mS
cm2 . 

Numerical integration

The CA1 model was integrated numerically using the Crank-Nicolson scheme with a fixed time step

of  0.05ms.  The  Crank-Nicolson  scheme  is  a  semi-implicit  numerical  integration  method  that  uses  a

central-difference  approximation  to  the  time  derivative  at  time  t � ti �
1
2 � t.  For  an  ordinary  differential

equation with n unknowns in the vector Φ, 

(D.41)
�Φ�t�
� t
� f �Φ�t�, t�,

the Crank-Nicolson method approximates the solution to Φ at time ti�1 by,

(D.42)Φ�ti�1� � Φ�ti� � 1

2
�t� f �Φ�ti�, ti� � f �Φ�ti�1��, ti�1�.

The method is implicit because the solution, Φ�ti�1� appears on both sides of the equation.

The Crank-Nicolson scheme exhibits numerical stability and has error of ���t�3,  but is  computation-

ally intensive because a system of algebraic equations must be solved at each time step. The literature on

compartmental modeling of neural systems refers to an efficient method of solving Eqn. (D.42)  [Dayan

and Abbott, 2001]. 

The code to numerically integrate the CA1 model was implemented in Matlab. 

Stochastic background current 

The  stochastic  background  current  fluctuation  defined  by  Destexhe  et  al,  consists  of  excitatory  and

inhibitory conductances, ge�t� and gi�t�,
(D.43)Isyn � ge�t� �V � Ee� � gi�t� �V � Ei�,

where the conductances are defined by a stochastic process [Uhlenbeck and Ornstein, 1930],
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(D.44)
�ge�t�
� t
� �

1

Τe
�ge�t� � ge0� � De Χ1�t�

(D.45)
�gi�t�
� t
� �

1

Τi
�gi�t� � gi0� � Di Χ2�t�,

where  the  Τ  are  time  constants,  ge0  and  gi0  are  average  conductances,  De  and  Diare  noise  diffusion

coefficients, and the Χ are Gaussian white noise with zero mean and unit standard deviation. The numeri-

cal scheme for these equations is [Gillespie, 1996]:

(D.46)ge�t � �t� � ge0 � �ge�t� � ge0� ���t�Τe � Ae N1�0, 1�
(D.47)gi�t � �t� � gi0 � �gi�t� � gi0� ���t�Τi � Ai N2�0, 1�,

where N1�0, 1� and N2�0, 1� are normal random numbers, and Ae and Ai are amplitudes given by,

(D.48)Ae �
De Τe

2
�1 � �� 2�t

Τe �
(D.49)Ai �

Di Τi

2
�1 � �� 2�t

Τi � .

Values for the parameters were taken directly from the pubished vaues [Destexhe et al, 2001].
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Figure  D.7.  Example  of  CA1  model  spiking  behavior  in  the  presence  of  stochastic  background
current.  Input  consists  of  75 trains sampled at  5Hz mean frequency from Frerking empirical  CA3

ISI distribution [Frerking et al, 2005]. 

Input/output characterization 

The  mean  input/output  spike  rate  curves  for  the  CA1  model  are  shown  in  Fig.  D.8.  These  curves

establish  the  range  of  expected  output  spike  rates.  The  input  current  was  adjusted  by  increasing  the

number  of  input  trains,  and  the  tests  were  performed  in  the  presence  of  stochastic  background  current

fluctuations. Inputs having 25, 50, 75, and 100 constant-rate trains from 1 Hz to 15 Hz were applied, and

from these tests, it was determined that 75 inputs provided the best dynamic range between 1 Hz and 10

Hz. Figure D.9 shows the confidence intervals on the distributions of the output rates for 10 trials of the

75-input test.
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Figure D.8. CA1 pyramidal cell model input/output rate functions. (A): 25 input spike trains. (B): 50
input  spike  trains.  (C):  75  input  spike  trains.  (D):  100  input  spike  trains.  Stochastic  background

current added. No correlation, jitter, or modulation of input trains was applied. 
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Figure D.9. CA1 pyramidal cell model input/output rate function with 75 input spike trains (n � 10).
Stochastic  background  current  added.  No  correlation,  jitter,  or  modulation  of  input  trains.  Signifi-

cance shown above plot points (� � 0.01 � p � 0.05, � � � 0.001 � p � 0.01, � � � � p � 0.001).
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