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Abstract  

 
 

The effect of global warming on methane (CH4) and nitrous oxide (N2O) emissions 

from agriculture was investigated and simulated from a soil warming experiment. 

Experiments were designed and installed in a temperature controlled greenhouse.  The 

relationships between elevated temperatures and CH4 and N2O emissions were 

determined and calculated as the Q10s of production, emission and oxidation. A study of 

the populations of methanogens and methanotrophs at a range of soil temperatures was 

performed based on soil molecular DNA analysis.  

 

This study showed that global warming would increase CH4 emissions from rice 

agriculture and that the resultant emissions will be potentially large enough to cause 

changes in the present atmospheric concentrations. This research also showed that this 

increase was most evident for soil temperatures below 30oC, above which emissions 

decreased with increasing temperature. The seasonal  average Q10s of CH4 emission, 

production, oxidation, methanogen and methanotroph populations were found to be 1.7, 

2.6 and 2.2, 2.6 and 3.8, respectively, over a temperature of 20-32 oC. Considering that 

the processes of CH4 production and emission are similar to those in natural wetlands, 

which is the largest source of atmospheric CH4, the contribution of this feedback is 

likely to cause a significant increase to the present CH4 atmospheric budget if the 

current global warming trend persists over the next century.  

 



 ii

The Q10s of N2O emissions and production were 0.5-3.3 and 0.4-2.9, respectively. The 

low Q10 values found for N2O suggest that although global warming will have a direct 

impact on the production and emission rates. Nevertheless, the magnitude of the impact 

of global on both CH4 and N2O emissions from agriculture is likely to vary from one 

region to another due to the spatial variations in agricultural soil temperatures and the 

likely changes in the global regional distribution of water resources (water tables, 

rainfall patterns), water management practices and the responses of terrestrial CH4 and 

N2O sources such as natural wetlands and plants. 
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Chapter 1 

Background Information 

1.1  Introduction 

One of the major environmental threats our planet faces today is the potential for rapid 

global warming. Determining the potential causes of global climate change has been a 

long term process that has involved work from scientists around the globe. From more 

than three decades of scientific studies, questions have been raised about the magnitude 

of the projected global warming, its environmental impacts, and the role of feedbacks 

between greenhouse gases and elevated global temperatures over the next century.  

 

It is noteworthy that the combined global warming contribution from these non-CO2 

greenhouse gases is quite substantial. For example, among non-CO2 greenhouse gases, 

methane (CH4) has the highest radiative forcing, contributing about 3.3 GtCO2-eq/yr 

(IPCC, 2007d). At its present atmospheric concentration of 1775 ppb, which is about 

three times its pre-industrial level (Rasmussen and Khalil, 1981; Khalil et al., 1989), it 

has an estimated radiative forcing (RF) of +0.48 ± 0.05 Wm–2 (IPCC, 2007b), nearly 

one third the contribution of CO2 (Fig 1.1).  

 

The predominant source of CH4 is microbial activities in anaerobic environments such 

as gastrointestinal tracts of ruminants, rice paddies, landfills and natural wetlands 

(Khalil and Shearer, 1993a; Khalil and Shearer, 1993b; Bodelier et al., 2000).  
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Fig. 1.1: The combined radiative forcing estimates of CH4 and N2O is about 40 % that of CO2.  

 

While anthropogenic sources account for about 70 % of global annual total CH4 

emissions (Allen et al., 2003; IPCC, 2007a), about 40-60 % of this contribution comes 

from agriculture (Zou et al., 2004; Minami, 1997; Whiting and Chanton, 1993). On a 

global scale rice fields contribute an estimated 14 % total global CH4 emission (Fig. 

1.2). 
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Fig. 1.2: Estimates of CH4 from rice paddies as a percentage of the global annual total. Data from Miller 

(2004). 

 

The source of CH4 production substrates is decaying organic material by 

microorganisms. One group of these microorganisms (methanogens) produces CH4 by 

utilizing acetate or through CO2 reduction, while the other group (methanotrophs) 

oxidizes some of the CH4. The production and oxidation of CH4 are exclusively 

anaerobic and aerobic processes, respectively. The CH4 that is not oxidized is 

transported by physical processes such as diffusion, ebullition and ventilation. 

Ventilation through the aerenchyma is the major transport process rice paddies, while 

the other transport processes are predominantly active during the first two weeks before 

crop establishment after transplanting. 
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Fig. 1.3: Three major mechanisms involved in CH4 emission from rice paddies are production, oxidation 

and transport. Modified diagram adapted from Neue and Roger (1993). 

 

Another important greenhouse gas, N2O, is about 300 times more effective in global 

warming than CO2 per molecule (Minami 1997). At its current level of about 319 ppbv 

(Beerling et al. 2007), which represents an increase of 18 % from its pre-industrial level 

of about 270 ± 7 ppbv (Forster et al. 2007), N2O has a GWP of 2.8 Gt CO2- eq/yr 

(Smith et al. 2007), and is mainly produced from agricultural soils (Fig.1.4). 
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Fig. 1.4: Estimates of N2O emissions from agriculture as a percentage of total anthropogenic emissions. 

Data from EDGAR, 1995.  

 

Ranked according to contribution to global warming so far, CH4 and N2O are 

considered second and third respectively after CO2.  

 

While it is clear from field and laboratory studies that higher soil temperatures affect 

CH4 and N2O emissions (Tab. 1.1), quantitative answers as to how global warming will 

affect these emissions are presently not well known. Considering that rice paddies are 

similar to wetlands, with a gross contribution of about 40-50 % of the global source, the 

contribution of this feedback to global warming is likely to be quite substantial. 

Undoubtedly, this feedback between global warming and these greenhouse gases will be 

Total = 11.5 Tg 
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an important component of the future climate change. While the atmospheric 

concentration of gases is critically dependent upon the long-term sensitivity of these 

emissions to global warming, the lack of precise information about this sensitivity 

means that climate models may underestimate climate change over the next century. 

Thus, there is need to distinguish the different processes that lead to CH4 and N2O 

emissions, their temperature dependency, and their response to global climate change. 

The ability to adequately address these issues is the key to understand these feedbacks, 

explain the observed trends, know what to manage and what to include in the strategy to 

control the future concentrations of these greenhouse gases. 

 

Previous greenhouse results indicated increases of CH4 and N2O fluxes from flooded 

rice tubs in response to increased soil temperatures (Sithole, 2009). From these early 

experiments, more questions emerged, and the need for further investigations was 

highlighted: (I) how will an increase in soil temperature affect the production, oxidation 

and transport of these gases, and subsequently the Q10 of the net emissions? (II) What is 

the linkage between the Q10 of plant-mediated transport and the Q10s of production and 

oxidation? The need to develop the theory and relationships between these Q10s was 

stressed in order to understand the complexity of the response of these processes to any 

change in temperature.  

 

The IPCC projections have indicated that global temperature may rise by between 1.4 

and 6 oC by 2100 (depending on the scenario). Because of large variations in data 

reported from different studies, one of the thorny issues is to unify these results and use 
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the data to project future emissions. It is important to note that this feedback should be 

incorporated into climate model to improve the predictability of future CH4 and N2O 

emissions from rice paddies and similar ecosystems such as natural wetlands. For this 

purpose, it is necessary to quantify this feedback in order to understand whether global 

warming will promote any preferential enhancement of either sources or sinks. 

 

1.2 Q10 of CH4 and N2O 

Already, several studies have shown that that CH4 and N2O fluxes increase with 

increasing soil temperature (Table 1.1). The large variation in the reported Q10 values is 

clear testimony that temperature plays an important but poorly understood role in 

regulating these greenhouse gas emissions. Either non-biological processes may be 

influencing this response (Grant and Pattey, 2008) or the large Q10 values could reflect 

the anomalous temperature behavior of microbial processes or their interactions in the 

underlying processes (Segers, 1998). For example, simultaneous changes in temperature 

and substrate availability (Whiting and Chanton, 1993) or changes in substrate 

availability coincident with temperature increase are being mistaken for a temperature 

response. 
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Table 1.1: Reported Q10 values.  

Q10 values Process Method  Temperature 
(oC) 

Source 

1.27 - 2.25 CH4 oxidation Incubation: drained 
peatland soil 

5.5 - 15 Crill et al., 1994 

3.0 - 3.3 Net CH4 
emission 

Static closed chambers: 
individual plants 

5.0 - 30 MacDonald et al., 1998 

1.1   
1.5 

CH4 oxidation Incubation: slurried peat 
samples 

4.0 - 13.5 
13.5 - 30 

Hulzen et al., 1999 

1.3 - 28 CH4 production Incubation: slurried peat 
samples 

- Segers, 1998 

1.2 - 2.0 CH4 oxidation Incubation: peat soil from 
fertilized & unfertilized 
plots 

- Crill et al., 1991 

1.7 - 4.7 
 

CH4 production Incubation: anaerobic soil 
from Northern Canadian 
wetlands 

10 - 20 Valentine, 1994 

3.1 - 8.7 CH4 production Soil slurries measured 
using flux chambers. 

2 - 24 Priemé, 1994 

1.5 - 2.3 CH4 net 
emissions from 
rice fields 

Static closed chambers: 
individual plants. 

20 - 42 Khalil et al., 1998d 

<1 – 6 
>1- 5 

CH4 emissions 
from flooded 
soils 

Incubation flooded soil 
samples 

15 – 25 
25 - 35 

Rath et al., 2002 

16 CH4 emissions 
from flooded 
soils 

Incubated paddy soil cores 20 - 25 Tsutsuki and 
Ponnamperuma, 1987 

6 N2O emission  Automated flux chamber 
measurements from potato 
field soils. 
 

10 - 30 Flessa et al., 2002 

50 
8.9 
 
3.7 
2.3 

N2O emission Incubated soil cores 
fertilized with ammonium 
nitrate.  
 
Incubated grassland soil 
cores 

5 - 50 
12 - 18 

 
5 - 50 
12 - 18 

Dobbie and Smith 2001 

2.2-7.7 
 
1.1-3.6 

CH4  
 
N2O 

Emission from rice 
ecosystems in the 
greenhouse 

19 -23 Sithole, 2009 

 

1.3 Research Objectives  

Because of the complexity and gaps in the understanding of temperature dynamics of 

the processes involved in the formation and emission of these gases, the magnitude of 
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this feedback in the real earth system remain highly uncertain. From previous 

experiments, preliminary simplified experiments to measure Q10 of CH4 and N2O were 

carried out. From this scoping study, Q10s for CH4 and N2O were found be 2-6 and >1-7, 

respectively (Sithole, 2009). These results, although general, were informative and a 

compelling proof of concept. While increasing soil temperatures will increase emissions 

from rice agriculture, it is also important to note that other processes such as oxidation 

and transport may respond in similar manner, and these add the complexity to the 

present Q10 experiments and theory. Because there was so much variation in the Q10s, a 

more detailed look at the processes from a mechanistic approach is therefore needed to 

understand the factors that caused this variation. Only then can a global estimate be 

made because the Q10 will not be the same for all places and under all conditions. It is 

important that these processes be isolated and their response to temperature be 

investigated since the final Q10 strongly depends on the Q10s of the three processes 

above. For example, high Q10 values may be due to simultaneous changes in 

temperature and other environmental factors such as moisture content or substrate 

availability and/or changes in substrate availability coincident with temperature increase 

being mistaken for a temperature response.  

 

The interaction between the different processes may result in widely different Q10s of 

the fluxes from one place to another. This is analogous to the fact that CH4 emissions 

are measured to vary from 1-2 mg/m2/hr for seasonal averages to 50 mg/m2/hr under 

normal field conditions. This is because of the interaction between the basic processes 

of production, oxidation and transport.  
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Just as it is not possible to extrapolate fluxes found in one set of greenhouse 

experiments to the world, the Q10s cannot be extrapolated either. Instead the factors that 

control the Q10 are needed for extrapolation and upscaling. In the quest for answers to 

these questions, the feedbacks between global warming and two non-CO2 greenhouse 

gases, CH4 and N2O, emitted from rice agriculture were simulated and investigated in 

this research. To achieve these objectives, this research was aimed at designing and 

developing methods to quantify the effect of temperature on CH4 emission, production 

and oxidation from a mechanistic approach. The same experiments were used to 

investigate behavior of N2O emissions and production under different temperature 

treatments under greenhouse conditions. 

 

1.4 Scope and General Outline  

In this work, the Q10s were determined from a mechanistic point of view. Experiments 

were designed, constructed and tested as outlined in Chapter 2. The Q10s of emission, 

oxidation and production were measured and results presented and discussed in 

Chapters 3, 4, and 5, respectively. Production rates were determined from standard 

incubation techniques, and oxidation fractions were determined from non-invasive 

natural stable carbon isotopic compositions. Concentrations of dissolved CH4 in pore 

water were investigated and results are presented in Chapter 6. Considering that CH4 is 

produced and oxidized in the rhizosphere by methanogens and methanotrophs, 

respectively, DNA and qPCR experiments were designed and performed to determine 
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the number of mcrA and pmoA copies in the rhizosphere. The mcrA and pmoA genes 

were the functional gene markers used to detect CH4-producing Archea (methanogens) 

and CH4-oxidizing bacteria (methanotrophs), respectively. The data are presented in 

Chapter 7. Experiments and results of N2O emissions and production are presented in 

Chapter 8. A general summary of the key issues, the new discoveries, and the future 

research direction are presented in Chapter 9. 
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Chapter 2 

Experimental Design, Construction and Validation 

2.0 Summary 

A controlled soil heating system for simulating global warming and its impact on 

greenhouse gas emissions from rice agriculture was developed and validated. The 

system consisted of 16 soil tubs whose temperatures were controlled by four water bath 

heating systems that were set-up in the research greenhouse at Portland State University, 

Oregon. This greenhouse environment was equipped with humidifiers, fans, automatic 

vents, HID fluorescent halide lamps and temperature control system. The system 

reported here supported studies of the Q10 of CH4 flux, production and oxidation, and 

concentrations in pore water and microbial populations under four different elevated 

soil temperature regimes. Flux and production studies of N2O were also studied under 

the same conditions.  

 

Four different temperature treatments, with a 4 oC differential between them, were 

achieved through the use of four digital temperature control units. In order to achieve 

the correct environmental field conditions, the Wadsworth environmentally-controlled 

greenhouse ambient temperature was kept low by constraining it to between 18 and 24 

oC whilst the daily “sunset” was maintained at 10:30 pm throughout the sampling 

period to match field conditions. Each of the four temperature treatments was thermally 

insulated to maximize the energy use of the system, and comprised a heating tank and 

the water bath container that housed four locally constructed tubs. To achieve the 
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required temperature range, the digital Immersion Circulator/Heater temperature set 

points were maintained at 20, 26, 32, and 39 oC, and the measured soil temperatures 

were 20, 24, 28 and 32 oC, respectively. These set points were maintained throughout 

the data acquisition period, with the exception of the two-week period between seasons 

during which the system maintenances were performed, a demonstration of the superior 

control of temperature as desired in these experiments. Highest heat losses occurred in 

the treatments that had the highest set point temperatures relative to ambient, where the 

set-point temperature was 39 oC, but the recorded soil temperature was 32 oC. 

 

Tubs for holding soil and plants were constructed of PVC, flux chambers were 

constructed from Plexiglas sheets, and production glass containers were Erlenmeyer 

flasks with necks extended by 20cm. The tubs were tested for water leaks, and flux 

chambers and production containers were tested gas leaks before deployment. A 

statistical test (5 % significance level) to determine gas leakage on these glass 

containers indicated that the slopes of the regressions between the concentration and 

time were not significantly different from zero, a confirmation of the robustness of the 

production experiment apparatus over a 40-minute period for which CH4 and N2O 

production studies were performed on each treatment on a weekly basis. 

 

2.1 Introduction  

In previous experiments a heating pad at the base of the tub was used.  Although these 

experiments produced a response of higher emissions with increasing temperatures, 
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there were a number of drawbacks. Most important were the fact that it was difficult to 

maintain constant temperatures and the heating of the soil was not uniform with 

warmest temperatures at the bottom while under natural conditions, warmer 

temperatures are expected at the top. Nevertheless, the experiments, although not 

precise, yielded a very important result that greenhouse gas emissions from agriculture, 

particularly, CH4 indeed increased with elevated soil temperature. Equipped with these 

ideas, a robust system was designed and constructed to address problems outlined above, 

and ensure the correct quantification of effect of temperature on mechanisms that lead 

to the emissions of CH4 and N2O from rice agriculture. 

 

2.2 Soil Heating System 

Several water bath heating methods have been in use for several decades (Heninger and 

White, 1974; Borges and Chaney, 1989). Examples include the use of antifreeze to 

regulate temperatures or submerged pots in the heated water bath (Turner and Jarvis, 

1975). In this research, the latter method was considered, but based on original ideas 

that were developed in this research. Temperatures of -2 oC, +2 oC, (mid-double CO2 

result) and +5 oC (IPCC scenario for 2100) relative to global average temperature were 

considered in the design of the water bath set-up. Expecting that beyond a certain 

critical temperature, flux would start dropping, a slightly higher temperature above the 

base (+10 oC) was chosen in order to catch the downturn point.  
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The system was designed and constructed such that the relationship between soil 

temperature and the rates of processes that lead to CH4 and N2O emissions (namely: 

production, transport and consumption) could be quantified. 

 

The designed temperature control system for soil heating experiments comprised four 

water heating systems and 16 tubs. The tubs were constructed using hardened PVC 

materials were mounted into the water bath heating systems as shown in Fig. 2.1. Each 

of the heating system consisted of two tanks: (I) a heating tank fitted with an Immersion 

Heater (IMH), and (II) a water bath container fitted with a water pump and four tubs. 

Inside the heating tank, the water was circulated through a spiral-shaped pipe connected 

to heating rods. To protect the Immersion Heaters (CIRC, 7306, IMM, 120/60, 

PolyScience Inc.) when the level of water fell below the recommended manufacturer’s 

level, water was separately heated in the heating tank and channeled back into the water 

bath containing the tubs through gravity.  

 

To preserve heat, the water was recycled by pumping back from the water bath to 

heating tank through RTP. The water flow rate was adjusted by setting the water pump 

flow rate to 15 liters/minute and through the pressure control valves to prevent overflow, 

and consequently unnecessary heat loss. To reduce heat loss, the tanks were insulated 

using a 10 cm thickness Fiberglass-R30 material and wrapped in Du Pont Tyvek Home 

Wrap. The top and base of WB covered with Thermasheath 3 Insulation (Fig. 2.2). Each 

WB comprised four tubs: one bare tub and three rice planted tubs. For each of four 

temperature treatments, the three rice planted tubs and one unplanted one each 
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contained temperature probes made in our laboratory using thermocouples positioned at 

the center of each tub. Seedlings were grown in potting soil and transplanted into the 

tubs after three weeks. The planting density and amount of fertilizer was similar to that 

applied under field conditions in China. This set-up allowed comparisons to be made 

between emissions from planted tubs and those from the unplanted tubs (control), and 

also within the same temperature treatment.  

 

Fig. 2.2: Water bath and heating tanks were thermally insulated using fiberglass material. The top of 

water bath containers covered with Thermasheath 3 Insulation material to reduce heat loss. 

 

Different temperatures were set to each of the four water heating systems by setting 

different set temperatures on immersion heaters as shown in Fig. 2.3.  

Thermasheath 3 Insulation
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Fig. 2.3: Set-up with digital Immersion heater/circulator (enlarged) connected to the heating reservoir, 

showing the main components of the heating system: heater, circulator and a temperature sensor 

(PolyScience Inc). The immersion heaters had inbuilt circulators and thermostats that would help to 

control the water temperatures. The circulation speed was set to 15 liters/minute and temperatures were 

set at either, 20, 26, 30 or 39 oC. Flow valves were installed onto the water circulation system of each of 

the four heating systems to control the flow rate and allow mixing of warm water inside the water bath 

tanks. 

 

2.3 Temperature Measurements 

Two CR3000 microloggers (Campbell Scientific Inc.) were connected to Type T-

Thermocouples (DigKey Inc.) inserted into the soil (at 10cm depth) in each of the tubs 

(Fig. 2.4 & 2.5). The microloggers were set to read, calculate and record soil 

temperature data every 5 seconds and average it over 5- and 30 minutes. 
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Fig. 2.5: Microloggers connected to the thermocouples and covered (inside a reflective cover) to protect 

them against adverse greenhouse conditions such as wetting and direct heating. The microloggers were 

programmed to measure temperatures every 5 and 30 minute intervals. To determine CH4 and N2O 

concentrations, pore water samplers (Khalil et al., 2008) were embedded into the soil in both planted and 

unplanted tubs. 

 

2.4 Water Bath Temperature Stability 

To determine the robustness of the system stability after installation, different 

parameters were monitored and evaluated for stability of the heat control system during 

the first two-week period and monthly thereafter. The temperature sampling interval 

was maintained at 5 minute intervals to capture any temperature disturbance during the 

10-minute interval between flux measurements. Within each of the treatments, the soil 

temperatures were uniform across tubs, such that measurements from a single tub in 

Temperature probe 

Porewater tube 
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each set-up could provide a reliable estimate of the average soil temperature in each 

treatment. Analysis of temperature data during the first week showed that it took about 

one week for all the soil temperatures to reach thermal equilibrium with the water bath 

temperature. Thereafter, a time series analysis of the data revealed minimal changes in 

soil temperatures to changes in the ambient temperature (Fig. 2.6).  

 

 

Fig. 2.6: Results of test for soil temperature stability over the first two weeks after installation of the 

experimental set-up. The data showed a steady state temperature differential of ~4 oC as desired. The box 

plots indicate the 1st and 3rd quartiles. 

 

2.5 Tub and Flux Chamber Design 

The tubs were constructed from (1/8 inch thickness) polyvinyl chloride (PVC) panels to 

allow four tubs to fit into each of the 50 gallon water bath containers. The gutters were 
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made from hollow rectangular PVC pipes and welded onto the tubs by using tuck-

welding followed by a PVC welding machine, and eventually tested for leakage. The 

gutters were designed to fit the flux chambers and be flooded when the chambers were 

attached. This would create an air-tight seal between the chamber and the tub. 

 

Flux chambers were constructed using Plexiglas and Blind Stop Vinyl materials. 

Fittings were achieved through the use of hot glue and brass screws. Fans were fitted to 

the top to homogenize the air inside the flux chamber. 

 

 

Fig. 2.7: Acrylic flux chambers fitted with 12VDC fans to homogenize the air inside the flux during 

sampling, and a septum through which the gas samples were drawn (design based on Khalil et al., 1991). 

The edges were joined together using a hot glue gun. Thin PVC strips were glued from the bottom of the 

chamber to strengthen the chamber and prevent any gas leakage during sampling. A rubber septum was 

installed at the top of each flux chamber and was used to draw gas samples for CH4 and N2O flux 

measurements. 
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Fig. 2.8: A schematic representation of the components of production experimental set-up. The glass jars 

were made from modified Erlenmeyer flasks (necks extended by 20 cm). Inside the jars were 5 mL 

cylinders (cut from 30 ml plastic syringes) held by a very thin and in extensible string. Air-tight inlet and 

outlet valves, and insulated thermocouple temperature probes were fitted onto the stoppers and glued 

using a hot glue gun. 

 

2.6 Leakage Tests 

Before the set-up in Fig 2.7 was deployed into the greenhouse, the system was tested for 

CH4 leakage. After a known dose of 1 % CH4 was injected into each of the 10 jars, the 

valve was immediately closed and five air samples were collected at 10-minute intervals. 

The collected gas samples were measured for both CH4 and N2O by a gas 

chromatography with FID (flame ionization detector) and ECD (electron capture 
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detector). From the slope, b, regression of concentration and time, t statistic was 

calculated.  

 

Table 2.1: The t-statistic values and slope (ppm/minute) of regression between measured concentrations 

for: (a) CH4, and (b) N2O. Ho was rejected for tα = 0.025 ≤ -3.184 and tα = 0.025 ≥ +3.184 for n = 5 (two-tailed 

test). 

 (a) CH4   (b) N2O 

Set-

up b  YXS  2

1
( )

n

i
i

X X
=

−∑
 

valuet   b  YXS  2

1
( )

n

i
i

X X
=

−∑
 

valuet  

1 -0.056 8.673 228.804 -0.098  -0.0002 0.01000 0.000342 -0.00038 

2 -0.111 4.686 78.109 -0.209  3.23E-05 0.00329 3.34E-05 5.69E-05 

3 -0.059 4.849 73.997 -0.104  -6.8E-05 0.00235 2.11E-05 -0.00013 

4 0.112 7.760 193.102 0.199  0.000301 0.00525 0.000174 0.000756 

5 -0.008 2.877 24.881 -0.013  5.47E-05 0.00241 2.04E-05 0.000103 

6 0.019 1.044 3.647 0.035  -1.3E-05 0.00438 5.77E-05 -2.3E-05 

7 0.264 2.071 82.520 1.157  0.00026 0.00155 7.46E-05 0.00145 

8 -0.005 3.115 29.133 -0.009  0.00037 0.00183 0.000149 0.00249 

 

The test showed that the slope in the linear regression between concentration and time 

was not significantly different from zero, and that the set-ups could hold the gas for up 

to 40 minutes as desired for in these experiments. As a result, 40 minutes were chosen 

as the maximum time during which production samples were taken. None of the set-ups 

failed the hypothesis test, and thus from this set eight of the set-ups were selected 

randomly, and installed directly into the water bath that contained the tubs. 
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2.7 Conclusion  

In this study, a system that could simulate soil temperature conditions under global 

warming conditions was successfully designed and tested, and could be adjusted to any 

desired temperature. The reliability and validity of the system was demonstrated over a 

period greater than twelve months without any breakdown. The system successfully 

replicated the desired soil temperature increases, but with very low diurnal variations. 

Such constant temperature in the whole soil profile may not be common in the real 

world of global warming. Nevertheless, compared to pilot attempts to develop a similar 

system based on heating pads, the set-up reported in this research enabled better control 

of soil temperature as desired, and was therefore used in the mechanistic studies of the 

effects of temperature on CH4 and N2O emissions from rice microcosms, as illustrated 

in the subsequent chapters. A typical system may also be used in the study of the 

feedback between global warming and greenhouse gas emissions from wetlands. 
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Chapter 3 

Temperature Limits and Dynamics of Methane Fluxes from Rice Agriculture 

 

3.0 Summary 

Most studies have shown that soil temperature is positively correlated to CH4 emissions, 

and this was confirmed using controlled greenhouse experiments in this research. The 

magnitude of the positive feedback is potentially large enough to affect the future 

atmospheric CH4 concentrations. Above 28 oC, fluxes decreased with increasing 

temperature. This observation raises the question whether the Arrhenius model is right 

even below this temperature since the emissions are not from only biological processes. 

Nevertheless, the magnitude of the impact of projected global warming on CH4 

emissions from rice agriculture will vary regionally and latitudinally, given that the soil 

temperature for flooded rice varies from about 15 °C in northern latitudes to about 

40 °C in equatorial wetlands. Because of the similarity of flooded rice paddies to natural 

wetlands, the overall projected change due to this feedback is likely to cause a 

significant change to atmospheric CH4 concentrations in future. 

 

3.1 Introduction  

The current global CH4 emission rate from natural and agricultural sources is about 40-

50 % of the total CH4 emissions (Whiting and Chanton 1993). Irrigated rice agriculture 

contributes an estimated 10-15 % of the total global CH4 emission, and was probably 

contributed more in the past than now (Khalil and Shearer, 1993b). Among other factors, 
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temperature has been found to have a great effect on the rate of CH4 emissions from the 

root zone to the atmosphere. Several studies have indicated that methane fluxes increase 

when the temperature was elevated (Holzapfel-Pschorn and Seiler, 1986; Parasher et al. 

1993; Khalil et al., 1998c). The reported results vary from a marked influence of soil 

temperature on the methane flux with doubling of emission rates at a temperature 

increase of 20-25 °C (Holzapfel-Pschorn and Seiler, 1986) to diurnal change in fluxes 

correlated with temperature from field experiments (Khalil et al., 1998a,b,c; Schütz et 

al., 1989; Neue and Roger, 1994; Wang et al., 1997; Wang et al., 1999; Seiler et al., 

1984; Schütz et al., 1990; Satpathy et al., 1997; Sass and Fisher, 1994). Under field 

temperature conditions, CH4 fluxes increased with morning rising soil temperature, 

reached a maximum during early afternoon, and decreased rapidly during nighttime. 

The cause of this observation still remains a puzzle, and a subject of debate. While there 

is a general agreement in all studies that temperature plays a significant role, (I) the 

processes that are triggered by the change in temperature, resulting in the observed 

changes in CH4 fluxes in heating experiments, and (II) the magnitude of this feedback, 

are not yet known.  

 

The relationship between soil temperature and CH4 fluxes has been quantified using the 

Arrhenius equation (Schütz et al., 1990; Wang et al., 1997, 1999:  

( )exp EF A RT= − ,  

Where F = flux, A = Arrhenius constant, E = Activation energy (in kJ/mole), and R is 

the universal gas constant (8.31 Jmol-1K-1).  
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The use of this model has also been extended to global climate models, with Q10 values 

between 1.5 and 2.5 being chosen for use in these models (Gedney et al., 2004). The 

relationship assumes that CH4 emissions from rice agriculture will continue to increase 

exponentially with increasing soil temperature. While this assumption could be valid 

within the reported temperature ranges, various field and greenhouse experimental data 

do not support this assumption for temperatures above 30 oC. A close examination of 

results presented by Khalil et al. (1998a) and Parasher et al. (1993) indeed show that the 

tipping point lies between 28 and 35 oC (Fig. 3.1). 

 

 

Fig. 3.1: (a) Rice field fluxes from Tu Zu China (reported in Khalil et al., 1998a), and (b) New Delhi, 

India (Parasher et al., 1993). Parashar et al. (1993) reported a distinct increase in CH4 emission from rice 

plots with increase in soil temperature from 26 to 34.5 oC and a decrease in the rate of emission above the 

temperature under controlled soil temperature. Similar results can be observed in results reported by 

Khalil et al. (1991). All data indicate a sharp decline in CH4 fluxes after reaching an optimum value or 

peak, an indication that the Arrhenius model will not consistently hold for temperature above 30 oC. 
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Similar results were observed in the previous greenhouse experiments (Sithole, 2009) 

and in plots of CH4 flux versus temperature shown in Pangala et al. (2010). Because of 

the large variation in Q10 values reported from various studies, the major challenge is 

the unification of these results. This limits the accuracy of model estimates of future 

global CH4 emissions under a warmer world. To improve the quantification of this 

temperature feedback and model output, knowledge of the representative Q10 value is 

required. 

 

3.2 Aim and Objectives 

In this experiment the aim was to design and run experiments that would be used to 

quantify the relationship between temperature and CH4 fluxes and to determine how 

CH4 fluxes will be affected by global warming. 

 

3.3 Materials and Methods 

Intensive experiments were conducted for two different rice growing seasons. To 

simulate climatic conditions under which the rice is grown, factors such as day length, 

day and night temperatures were controlled to match field environmental conditions in 

China. Since the planting density will determine the amount of fluxes, the plant density 

was maintained by multiplying the surface area of each tub to the field plant density.  
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3.3.1  Sample Collection 

Gas samples were sequentially collected from Plexiglas flux chambers that were placed 

on top of planted and unplanted (control) tubs over 10-minute intervals (Fig. 3.1).  This 

method has been used extensively in previous studies, and few problems associated 

with this method have been identified. To minimize these problems, (I) the length of 

time the chamber is placed on the rice, (II) the area and height of the chamber, (III) the 

frequency of measurements,  and (IV) number of spatial replicates have to be 

considered (Khalil et al., 1998c). To avoid feedbacks and saturation effects on CH4 

concentration in the flux chambers (Khalil et al., 1998c), the exposure time was 

constantly maintained at 30 minutes, and the sampling frequency was about three to 

four days.  It has been observed that a very low sampling frequency would increase the 

uncertainty of the seasonal flux (Khalil et al., 1998c; Khali and Butenhoff, 2008). 
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Fig. 3.2:  Flux samples were collected from air-tight flux chambers in 10 minute intervals. Details of the 

construction of these chambers are presented in Chapter 2. 

3.3.2 Data Analysis 

The collected samples were analyzed with gas chromatograph (GC), equipped with a 

CH4 flame ionization detector (FID) and an electron capture detector (ECD) as shown 

in Fig 3.3. About 5 mL of the gas sample was injected though the septum into four 

sampling columns of the GC, with nitrogen as the carrier gas. The net CH4 fluxes F [in 

µg m
-2 

h
-1

] were determined from linear regression of the observed concentrations with 
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sampling time. For the purpose of quality assurance, any slope not close to zero and the 

coefficient of determination ( 2 0.90r ≥ ) were checked for non-linearity (Khalil et al., 

1998c). 

 

The calculated net fluxes were corrected for tub headspace following the gradient 

technique (Khalil et al., 1998c): 

( )w chamber correction

surface o

M V V CF
A N t

ργ
⎡ ⎤+ Δ

= ⎢ ⎥
Δ⎢ ⎥⎣ ⎦

 

 

Where chamberV , correctionV and γ
 
are volume of chamber, volume correction of tub 

headspace, and a factor equal to 5 1 1 16.0 10 minmg gh ppbv− − − −× , respectively. surfaceA
 
is 

the water surface area in the bucket. 

 

Considering the flux, F to be a function of T and using the linear regression model: 

 T +  = ln(F) αβ from which α was determined for the 90 % confidence limits. The daily 

Q10 was calculated as Q10(t) = e 10 α(t) . Where t is the time (DAT) when the sample was 

taken.  The seasonal average Q10 was then calculated as: 

 

( ) ( )

( )∫

∫ ×
=

season

season

tF

tFtQ
Q

10

10
 

Here F(t) is the base flux– that is the flux at the lowest temperature.  
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The uncertainty was calculated as ( ) minQ- (max)Q 1010 based on the 90 % confidence 

limits of the calculated Q10s for each day of the data. 

 

3.4 Results and Discussion 

3.4.1 Seasonal Flux Variations 

Large temporal variations in CH4 fluxes were observed. In planted tubs under different 

temperature treatments, CH4 fluxes increased from zero at the start of the growing 

period, reaching maxima of between 20 and 60 mg/m2/hr during mid-season, and falling 

back to almost zero at the end of the season (Fig. 3.4). This work is consistent with the 

findings of Khalil et al. (2008c) in which values as high as 60 mg/m2/hr were observed 

under field conditions. The observed peak has been shown in previous studies, and has 

been attributed in part to the increase in root exudation, root and leaf surface area which 

would increase the efficiency of CH4 transport from the soil to the atmosphere. The 

other factor is an increase in dissolved CH4 pore water concentration. 

 

This study also indicated that CH4 fluxes were positively correlated with soil 

temperature at 10 cm depth, and that temperature was major driving factor in the 

increase of CH4 fluxes, consistent with reports from other studies (Schütz et al., 1989). 

CH4 fluxes differed greatly between different temperature treatments. Lowest CH4 

fluxes were observed at the lowest temperature set-up (20 oC), whist the values were 

consistently high at higher temperatures throughout both seasons (Fig. 3.3).  
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This observation is not new; various studies have reported lower CH4 fluxes to be 

associated with lower temperatures (Jiang et al., 2006). Several explanations have been 

given to account for the observed increase of flux with temperature. It is thought that the 

temperature around the roots greatly affects the CH4 transport process in rice plants, and 

that the diffusion coefficient of dissolved CH4 in pore water increases with increasing 

temperature. A factor of 1.5 times higher has been observed at 30 oC than that at 15 oC 

(Hosono and Nouchi, 1997). 

 

In summer season, at 32 oC, CH4 emission rates consistently increased at an accelerating 

rate at the beginning of the season, reaching a maximum during the mid-season, but 

falling below the emission rate at 28 oC. Similar results have been reported in other 

studies (Khalil et al., 1998; Parasher et al., 1993). CH4 emission rates as well as soil 

temperatures showed a significant seasonal pattern. Between 10 and 50 DAT, CH4 

emissions increased by a factor of 2 for every 4 degree increase in soil temperature. 

Similarly, CH4 emissions increases with successive increases in temperature between 5 

and 20 oC were reported (Gauci et al., 2004) and between 20 and 28 oC. Such data has 

been found to fit the Arrhenius model from which apparent activation energies were 

calculated from correlations. The observation of this strong correlation has led to the 

general application of the model, irrespective of the temperature domain (Aselmann and 

Crutzen, 1990; Wang et al., 1997; Schutz et al., 1990). 
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However, these results show that for temperatures above 28 oC, fluxes declined. Early 

studies by Acharya (1935) reported by Neue and Roger (1994) found the optimum 

temperature to be 30-35 °C. Wang et al. (1997) found that raising soil temperature to 

about 30 °C sharply increased CH4 emission rates, but not at 40 °C. They proposed that 

the low rate at 40 °C was because much of the CH4 had already been emitted when the 

soil temperature was raised. However, these results and those presented in their paper, are 

all an indication of the breakdown between the Arrhenius projected (continuous flux 

increase with temperature increase) and experimental results. From these experiments, 

and analysis of results published in literature cited herein, it was observed that the 

Arrhenius equation generally fits best when the temperature is below the optimum, and 

above this point the relationship breaks down. First, it is important to note that these 

temperatures may not all be the same, at different soil temperatures.  A correct model 

may be some other functional form that will be consistent with results of falling flux after 

a critical temperature. 

 

3.4.2 Q10 of CH4 Fluxes 

The Q10 values were as high 34 at the start of the season and as low as 2 at the end of the 

growing season. The variation between temperature treatments was much higher during 

crop establishment (0-40 DAT) than the mid- to late season period (Fig. 3.5). The 

seasonally averaged Q10s for Seasons 1 and 2 were found to be 2 and 1.7. These Q10 

values are similar to those found during the flowering stages, periods during which large 

fluxes were recorded. 
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While the Q10 may be high during the early period, the flux is very low so the overall 

effect of the high Q10 for the total seasonal emissions is not much. These seasonally 

averaged Q10 values are slightly lower than those in previous studies: 4.3, 3.1 and 2.9 

(Khalil et al., 1998b), 4.9 (Yao and Chen, 1994b), and 3.5-4.0 (Sass et al., 1991). For 

example, Segers (1998) found an average Q10 of 4.1 from incubation experiments in 

which temperature was the single varying factor. Within these experiments, values as 

high as ~28 (Segers, 1998; Yao and Chen, 1994a), and 71 (Yao and Chen, 1994b) were 

recorded. Similarly, in three occasions, such values were recorded during the first three 

weeks after flooding and transplanting. An analysis of these Q10 values showed that very 

high uncertainties were common in the first three weeks after the start of the growing 

season (Fig. 3.5). 

 

 

Fig. 3.5: Uncertainties in the Q10 of CH4 fluxes during the growing season. 
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 Segers (1998) proposed that the observed high Q10 values are a result of the effect of 

temperature increases on the rate of electron acceptor reduction, which lowers electron 

acceptor concentrations which have an additional positive effect on CH4 production. 

However, it is noteworthy that during the first three week period, very low fluxes were 

measured (Fig. 3.6). Such highly variable values, including the low base fluxes, will 

result in large and highly variable calculated Q10 values. Hence these values are not a true 

reflection of the response between CH4 fluxes from rice ecosystems. These high Q10 

values could be representative of other processes such as ebullition, an artifact of 

experimental sampling procedures and calculations, or a composite of various unknown 

factors. 

 

 

Fig. 3.6: Q10 of CH4 fluxes during the growing season, showing high values of Q10 for low flux values. 

 

Because of the large uncertainties, it is very difficult to insure that the observed change of 

flux is due only to temperature change.  It is quite possible that some of the high Q10s 
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occur because of other factors. Considering that the Q10 values calculated here are 

potentially a product of the Q10s of methanogenic and methanotrophic activities, CH4 

production and oxidation (Khalil et al., 1998b), the Q10 values of these mechanistic 

processes will be determined and presented in the subsequent chapters.  

 

3.5   Conclusion 

CH4 fluxes and Q10 values were found to be highly variable and dependent on the season. 

If these results are generally true for flooded rice ecosystems, the implication is that the 

net Q10 of CH4 fluxes is base temperature-dependent (high for low base temperature and 

low for high base temperature) and changes with season. The other reason is that the Q10 

varies by season because the underlying processes vary during the season. Considering 

that rice is grown in different regions and under a wide range of temperature regimes 

(15 °C in northern latitudes to 40 °C in equatorial region), the net Q10 of CH4 fluxes 

cannot be represented by a single value when used in global upscaling. 
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Chapter 4 

Dynamics of CH4 Concentration in Pore Water under Elevated Soil Temperature 

 

4.0 Summary  

Concentrations of dissolved CH4 in rice ecosystems were monitored to determine the 

effect of global warming on the concentration profiles and distributions to further 

elucidate the dynamics of how CH4 is emitted to the atmosphere. The concentrations of 

CH4 in pore water from four different temperature treatments at four different soil depths 

within the rice tubs were measured over two seasons using standard techniques. Our 

results suggested that CH4 concentration is highly dependent on soil temperature, but 

only for a limited period during the rice growing season. In all the four temperature 

treatments, concentration values ranged from 1360 µg/L at the start of season to 7,290 

µg/L at the end of the season, with  highest and lowest mean concentrations of 3,373 

µg/L (24oC) and 4,362 µg/L (at 28 oC), respectively. The highest concentration values 

were found between 10cm and 15cm. The concentrations at different depths were 

significantly correlated to fluxes from 11 to 60 DAT. During this period, the dependence 

of pore water CH4 concentrations on temperature was more distinct than in any other part 

of the season. When CH4 fluxes were compared to pore water concentrations for > 60 

DAT, the fluxes flattened out around 30 mg/m2/hr despite increases in pore water 

concentrations. From this observation, we inferred that CH4 transport capacity of the 

plant was the predominant limiting factor for fluxes during this plant growth phase. 
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4.1 Introduction 

The CH4 produced from anaerobic decomposition of soil organic matter (Conrad 1989; 

Conrad, 1993; Rothfuss and Conrad, 1993) is oxidized in the floodwater and some is 

emitted to the atmosphere, while the remainder is trapped in soil-water solution as 

dissolved methane (Alberto et al., 2000). Dissolved CH4 is the primary source of CH4 

emissions from rice agriculture into the atmosphere (Aselman and Crutzen, 1989; 

Rothfuss and Conrad, 1993; Alberto et al., 2000). Dissolved CH4 in pore water is an 

important intermediate of CH4 emissions in rice paddies. The longer the residence time of 

CH4 in the soil, the more likely they will be oxidized by methane-oxidizing bacteria 

(Alberto et al., 2000) and thus, reduce CH4 emission to the atmosphere. 

 

Despite countless measurements of CH4 emissions over the past four decades, few studies 

have focused on the effect of temperature on CH4 pore water concentrations. In the 

majority of the studies, less than 10 % of the reported results have been devoted to CH4 

pore water concentration, and hence the likely effect of global temperature increase is 

poorly understood at present. 

 

In rice paddies, CH4 release into the atmosphere depends on the production, consumption 

and transport from anoxic zones (Conrad 1989; Wilson et al., 1989; Schultz et al. 1989; 

Conrad 1993; Alberto et al., 2000; Schultz et al., 1989; Sass et al., 1990; Yagi and 

Minami 1991; Khalil et al., 1991). Differences in pore water CH4 concentrations have 

been reported from field experiments performed during winter and summer seasons 

(Borken et al., 1999). In a similar way, other studies have shown diel variations vertical 
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profiles, with increased CH4 concentrations following sunrise, reaching maxima around 

9:00 AM within the 5–15 and 25 cm depths, and at 12:00 PM for 30–35 cm depths (Ding 

et al., 2004). The results indicated that temperature is an important factor for CH4 

concentration in pore water, among other environmental factor. However, due to 

heterogeneity of various factors between the seasons, it is important to perform the 

experiments under carefully controlled conditions in order to understand these factors, 

and hence develop the means towards reducing CH4 emissions from rice paddies.  

 

Increases in soil temperatures due to global warming may cause significant changes to 

the rates of fundamental processes that produce CH4 in rice paddies. To understand these 

impacts, it is important to make an assessment of the CH4 pool in rice paddies.  

 

4.2 Aim and Objectives 

The present experimental study was designed to: (I) quantify the effect of temperature, 

(II) determine the seasonal characteristics of dissolved CH4 in rice paddies, and (III) to 

evaluate CH4 concentrations in rice paddy soil. The objective was to understand how an 

increase in temperature would affect the CH4 pool from which CH4 is released into the 

atmosphere. 
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4.3 Materials and Methods 

4.3.1 Introduction 

Pore water CH4 concentrations were determined by sampling pore water at four different 

depths during the winter and summer seasons of 2010. The samples were collected 

through plastic sampling tubes that were installed in the soil-filled tubs as shown in Fig. 

4.1.  

 

Fig. 4.1: Schematic diagram of pore water samplers (Khalil et al., 2008) inside the tubs. The samplers were 

inserted at 5, 10, 15 and 20 cm soil depths in each of the tubs. The cylinders were covered with gauze 

fabric to allow water movement between their interior and the surroundings. 

 

Rice seedlings were immediately transplanted after fertilization and flooding. Samples 

were taken three days following transplanting rice and every week thereafter, and 

analyzed for dissolved CH4. 
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4.3.2 Sampling Method 

Before taking samples, about 10 mL of pore water was flushed out of each sampler to 

remove trapped air and impurities in the plastic tube lining. After some 30 minutes, 15 

mL of pore water was drawn-out from each tube using the syringe. Every time a sample 

was drawn, the valve on the tubing was closed immediately after disconnecting the 

syringe from the tube.  

 

 

Fig. 4.2: Pictures of pore water tubes embedded into flooded soils inside tubs containing temperature 

probes. The tubes were fitted with valves to which the syringes were hooked during sampling. 

 

Trapped air bubbles inside the syringe were immediately removed by slightly tapping and 

flushing out some of the pore water with the syringe nozzle facing upwards leaving 

Porewater 
Tubes 
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exactly 10 mL of the sample pore water.  Maintaining the syringe in that position, the 

valve was closed to prevent any contamination due to exposure to ambient air. 

Immediately after collection, the 10 mL samples were taken to the laboratory and the 

temperature of the 10 mL samples were brought to room temperature. 

 

4.3.3 Sample Analysis and Measurements 

Samples were returned to the laboratory and analyzed the following day. For analysis, to 

each 10 ml sample, 20 mL of 99.9 % N2 was added (Khalil et al., 1998). The gas-

solution-mixture was shaken vigorously for 5 min to drive dissolved CH4 from pore 

water into the headspace (Ding et al., 2004).  

 

The headspace gas was collected and analyzed for CH4 using an FID and ECD equipped 

GC. Concentrations of the dissolved CH4 in headspace were determined as outlined in Lu 

et al. (2000): 

[ ] [ ] ( ) [ ]
16

⎡ ⎤× + −
= ×⎢ ⎥
⎢ ⎥⎣ ⎦

X

h s hh a
dissolved

s

X V PV X V
X

V
ρ  

 

Where [ ]h
X and [ ]a

X are the headspace and the ambient air concentrations ( )-1in molLμ ; 

hV  and sV  are the headspace volume and soil solution volume (mL), respectively. P  is 

the partition coefficient (0.03 mL air mL-1 water at laboratory temperature), 
X

ρ  is the 

density of the gas, respectively. 
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4.4 Results and Discussion 

4.4.1 Profiles of dissolved CH4 in the rhizosphere 

Results indicated that from 0 to 15 cm, there was a general increase in the concentration 

of dissolved CH4, with slight differences between different temperature treatments (Fig. 

4.3). Similarly, Rothfuss and Conrad (1993) reported CH4 concentrations that increased 

with depth, reaching a maximum in 5 – 13 cm soil layer. Studies under both field and 

greenhouse conditions have shown similar vertical distributions in CH4 concentrations 

(Gross et al., 1993; Sebacher et al., 1985; Liblik et al., 1997) and profiles of 

methanogenesis in the submerged paddy soil (Schültz et al., 1989). In all four treatments 

in this study, highest concentration values occurred between 5 and 15 cm, except in the 

24 and 28oC where the highest values occurred at 20 cm. Using a photoacoustic 

technique, the same results were observed in a paddy field (Rothfuss et al., 1996). In 

other studies on an Italian rice field, from vertical profiles of the respiratory index, 

Rothfuss and Conrad (1993) found that acetate was more degraded by methanogenesis in 

5 - 11 cm soil depth compared to other soil layers, an indication that this layer is 

generally the zone for CH4 production (Lu et al., 2000). 

 

Comparing different temperature treatments, highest concentration values occurred in the 

32 oC tubs. The profiles showed that over the whole season, the average dissolved CH4 in 

the pore water was generally higher in the 10-20 cm zone than in the 5-10 cm layer, 

consistent with what has been reported in other studies (Wilson et al., 1989; Schultz et al., 

1989). It is important to note that the 5-10 cm zone contains more oxygen and higher 

populations of CH4 oxidizing-bacteria than other layers. Thus, as the season progressed, 
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the number of CH4 oxidizing bacteria would also respond, depending on the supply of 

methanogenic substrates (Schutz et al., 1990) and temperature. In the 32 oC temperature 

set-up, CH4 concentrations were much higher in the 10-15cm layer. This dependence on 

temperature could also be due to stimulation of bacterial population growth (Holzapfel-

Pschorn et al., 1985; Dunfield et al., 1993) or enzyme synthesis that results in the 

production of CH4 (Schutz et al., 1990), or a combination of both. High seasonal 

fluctuations were also common in the near-surface zone (0-5 cm). 

 

Fig. 4.3: Temperature effect on the seasonal average CH4 concentration vertical profiles in the soil water in 

for planted tubs. In all four different temperature treatments, the average values are close to each other, 

with highest values at 20 cm depth. 

 

The variations could be due to changes in surface water temperatures and supply of 

organic materials (Wilson et al., 1989). Typically, such fluctuations have been attributed 
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to the high variations in the supply of organic materials (such as leaf litter) than in the 

levels below. 

 

The high concentrations at the bottom could also be due to transport processes.  At the 

bottom there is no flux, while all the flux is at the top.  So even if there is no production 

at the bottom the concentration would be high. Throughout the seasons, the average 

dissolved CH4 concentrations in all treatments were lowest at 5 cm depth, followed by 

that at the 20 cm depth, except in one particular case in which the highest occurred at 20 

cm (Fig. 4.3). However, when only the 0-60 DAT was considered, the average CH4 

concentrations of the 32 oC treatment at 10-15 cm depth were about three times higher 

than that at 20 oC (Fig. 4.4). This indicates that the rate of accumulation of CH4 was 

highly temperature dependent during the start of the season. In one study in which light 

treatments were used, the same effect was observed, with vertical profiles showing higher 

concentration in light- than dark-incubated treatment (Rothfuss et al., 1996). The 

observation was attributed to differences in the response of photosynthetic rates of algae 

to light. However, temperature measurements in these treatments were not reported or 

inferred. From these results (planted and un-planted tubs), it was inferred that 

temperature is the major factor that influenced the observed rate of increase of CH4 in 

pore water. On the other hand, the concentration within this zone was about 1.5-2.0 times 

higher than in the other two zones, indicating that production in flooded soil generally 

occurred between 10 and 15 cm depth. As the season progressed, the parabolic profile got 

distorted, as the profile shifted towards the linear case, in which the highest concentration 

occurred at 20 cm and the lowest at 5 cm. This shift can also be noted in field pore water 
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CH4 concentration profiles reported by Rothfuss and Conrad (1993). This transition could 

be due to CH4 accumulation under limited transport and oxidation processes.  

 

In all treatments, differences of CH4 pore water concentration profiles were also apparent 

between planted and unplanted tubs during the period 0-30 DAT, and diminished 

thereafter. Similar shifts were noted for CH4 concentration profile results between DAT 

21 and 40 reported in Landu (1994). At >60 DAT, highest concentrations occurred in 

unplanted treatments similar to observations in Gross et al. (1993).  

 

Fig. 4.4: Vertical pore water CH4 concentrations profiles for 0-60 DAT, indicating layering in different 

temperature treatments. In each treatment, highest values occur between 10 and 15 cm. Differences in the 

profiles shows that temperature is an important factor during this phase of the season.   
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These higher values in planted tubs during this part of season could be due to additional 

CH4 produced from roots exudates (Schutz et al., 1990), root/rhizome distributions 

(Gross et al., 1993), while the low values after mid-season could be due to the effect of 

transport mechanisms from the soil to the atmosphere and O2 transport into the root zone 

through plants (Schutz et al., 1990; Lindau, 1994; Lu et al., 1999; Lu et al., 2000). 

 

In bare tubs (not shown), no distinct parabolic profiles were observed. Seasonally, the 

concentrations of CH4 in the unplanted tubs were more variable over time than those in 

planted tubs, particularly in the 5 cm zone. However, just as in planted tubs, the 

minimum values were consistently found with the 5 cm zone, with highest values at 20 

cm. It was also found that the pore water CH4 concentrations in the planted tubs were 

slightly lower than those in control tubs, except within the production zone. It was 

inferred that the production of CH4 and its accumulation was more governed by 

availability and population size of both CH4 producing bacteria and readily 

decomposable organic material (Davidson and Janssens, 2006; Bridgham et al., 1995; 

Inubushi et al., 2002; Khalil et al. 1998; Dunfield et al., 1993; Sass et al., 1991), root 

exudates, and changes in the effectiveness of plant roots as conduits for both O2 into the 

soil and CH4 into the atmosphere (Gross et al., 1993).  

 

4.4.2  Temporal Variations 

Results showed that in all treatments, dissolved CH4 concentrations were lowest at the 

time of transplanting and increased as the season progressed. The low values at the start 

of the growing season have been attributed to elevated soil redox potential and 
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adjustment of microorganisms to flooded soil conditions (Lindau, 1994). During the first 

two months after transplanting, pore water CH4 concentrations were highly dependent on 

temperature - the higher the temperature, the higher the concentration during the 0-60 

DAT. The differences in the seasonal temperature response of rate of accumulation of 

CH4 in pore water could be due to the increases in methanogen populations (and their 

metabolic rates), methanogenic substrates (Wilson et al., 1989; Lu et al., 2000), and self-

limiting processes such as transport and oxidation. However, over the season, there was 

no significant difference between CH4 concentrations in the pore water across the four 

temperature treatments. Temporally, the concentrations at different layers showed very 

distinct weekly variations. Typical variability has been reported in various studies (Gross 

et al., 1993; Liblik et al., 1997). CH4 concentrations generally increased from the onset to 

mid-season stage, and thereafter, the concentrations decreased gradually till the season 

ended. Similar trends were observed at all layers and different temperature set-ups. The 

decline in CH4 concentrations in both planted and unplanted tubs towards the end of the 

season has been attributed to the decrease in the pool of decomposable dissolved organic 

material (Kimura et al., 1993; Lu et al., 2000) and population of CH4 consuming bacteria 

in the soil (Dunfield et al., 1993).  Despite the variations in the mean seasonal 

concentrations at different layers, the trends were similar for 10-20 cm soil layers and 

temperatures. However, there were variations across different temperature treatments in 

the 0-5 cm soil horizons.  

 

Seasonally, the differences in the mean concentrations were statistically the same 

between concentrations in 20 and 24 oC temperature zones. Significant differences were 
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however, noted between low temperature treatments and concentrations in the 32 oC tubs. 

These observations suggest that the optimum temperature for production is somewhere 

close to this temperature.  

 

Contrary to studies by other researches, there was a significant relationship between CH4 

concentration and soil temperature at all depths during the first half of the season, with 

stratification between different layers. In general, the correlations between CH4 

concentration and soil temperature at different depths were weak. Seasonal patterns of 

CH4 fluxes closely followed the same dynamics of CH4 concentrations between 0 and 60 

DAT.  
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In control (bare) tubs, similar trends, but higher concentrations (~11,000 µg/L) were 

observed than in rice planted tubs (Fig. 4.5). In a similar fashion, the effect of 

temperature was apparent. The 32 oC tubs had the highest CH4 concentrations, while the 

20 oC had the lowest values in the 0-73 DAT period. Beyond this period, there was no 

discernable indication of temperature dependence.  

 

 

Fig. 4.6: Average concentration of CH4 is higher at 32 oC at the start and lower at the end than at other 

temperatures. Concentrations were low at 20 oC throughout the season. 
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Fig. 4.8: Trends of pore water CH4 concentrations across different temperatures. Concentration of CH4 at 

32 oC is higher till mid-season, but lower than that at 28 oC thereafter. This is consistent with flux 

observations, in which fluxes have been found to be higher at for 32 oC at the start of season, but quickly 

diminished after mid-season, with concentration at 28 oC becoming higher beyond this point. 

 

Consistently, higher pore water CH4 concentrations were associated with higher 

temperatures (Fig. 4.7). This was an indication that the temperature effect on the 

relationship between pore water CH4 concentration and fluxes seem to exist between 0 

and 60 DAT. In one observation (5cm, 32 oC), average pore water CH4 concentration was 

much higher in all than other in other treatments (Fig. 4.7, Fig. 4.8).  
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Emission rates from rice fields are correlated to CH4 concentration in the pore water 

during the first half of the season. Between 1 and DAT 60, pore water CH4 

concentration (Fig. 4.9) was the limiting factor in CH4 fluxes (Fig. 4.10). This limiting 

point could be an indication that fluxes remain almost constant even though CH4 pool 

increased in the pore water. 
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Fig. 4.11: CH4 fluxes reaches maximum (25-40 mg/m2/hr) at 60 DAT (while the pore water 

concentrations increased from 60 µg/L to 1000 µg/L), and then level off despite continuous increase in 

CH4 pore water concentration. 

 

However, the rate of growth was almost constant till mid-season, an indication that 

increasing temperatures beyond the 28 oC would not result in continuous increase in the 
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rates of pore water CH4 concentration accumulation. This implies that although the 

process that produces CH4 is temperature-dependent, this process is limited by other 

factors. One possible factor may be that as the growing season progresses, the O2 from 

the roots oxidizes the Fe(III) around the root system, resulting in the formation and 

accumulation of Fe(III) oxide precipitates around the roots thereby reducing the root 

surface area over which the CH4 can diffuse into the root system.  

 

4.5 Conclusion 

Pore water CH4 concentrations were successfully monitored at different soil 

temperatures. It was noted that temperature is a limiting and an important factor during 

the first two months after transplanting. During this period, temperature affected the rate 

of growth of both fluxes and pore water concentrations. As a result, fluxes also 

increased with increased dissolved CH4 in the floodwater. The results also suggest that 

once the CH4 pool in the root zone reaches a value of about 1000 µg/L, fluxes will 

depend on the capacity of the rice plants to transport CH4 to the atmosphere. On the 

other hand, these results also indicate that the CH4 transport rate in rice plants is a self-

limiting process, even though it depends on the plant and root development and 

temperature among other environmental factors.  
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Chapter 5 

Temperature Dependence of Methane Production 

5.0 Summary 

The effect of temperature on CH4 production in rice paddies was investigated using 

standard incubation techniques. Experiments were performed on four different soil 

water bath-controlled temperature treatments (20, 24, 28, and 32 oC) under continuously 

flooded conditions. Soil temperatures were continuously measured during the growing 

season using thermocouples and microloggers. Results showed that after two weeks 

following flooding, the rate of CH4 production was highly dependent on soil 

temperature over the season. The calculated seasonal Q10 of CH4 production varied 

from 2.1 (lower limit) to 3.3 (upper limit), with an average value of 2.6 (90 % 

confidence level). No seasonal dependence of Q10 value was observed in all treatments. 

If this observed effect of temperature is representative of all rice paddies, and possibly 

wetlands, then global warming is likely to enhance the production of CH4, and 

consequently emissions if oxidation does not increase by the same factor. Considering 

that the processes involved in the production of CH4 in rice ecosystems is similar to that 

in natural wetlands, the atmospheric CH4 contribution due to global warming feedback 

is likely to change the current total biotic CH4 contribution. 

 

5.1 Introduction 

The most fundamental process in the emission of CH4 from rice agriculture is the 

production process. However, the rate of CH4 emissions from these ecosystems is a 
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composite of production, transport and oxidation processes. In rice paddies, CH4 is 

produced as a terminal step of the anaerobic breakdown of organic matter (Schütz et al., 

1989) by a group of microorganisms called Archaea (Yao and Conrad, 1999; Mitra et 

al., 2002). This process is driven by a complex food chain of various anaerobic bacteria 

de-polymerizing and fermenting organic matter (Schütz et al., 1989), resulting in the 

production of volatile acids and eventually CH4. These methanogenic bacteria utilize 

substrates such as H2/CO2, formate, methanol, methylamines, acetate for growth and 

CH4 production (Conrad 1989; Schütz et al., 1989) under free oxygen and at redox 

potentials of less than -150 mV and optimal pH of 6-8. Thus methanogenesis depends 

on substrate availability such as amounts of easily degradable organic matter, reducible 

Fe(III) and sulfate (Watanabe, 1984), and many other environmental factors such as 

temperature (Tsutsuki and Ponnamperuma 1987). The most important factors that 

control CH4 production are soil type, rice variety, temperature, soil redox potential, 

water management and organic carbon or nitrogen (Conrad, 2002). This organic matter 

is derived from root exudation, sloughed-off root cells and decay of roots (Conrad, 

2002). The production and oxidation of CH4 in flooded rice soils are controlled by 

many soil, plant, and microbial factors. CH4 production rates of soils are significantly 

and linearly correlated with soil organic matter content (Wang et al., 1999). The extent 

and duration for which CH4 production is suppressed mainly depends on the ratio of 

available organic matter to reducible ferric iron (Yao et al., 1999; Watanabe and 

Kimura, 1999). Rice plants affect CH4 in the root zone by providing methanogenic 

substrates through root exudates, decaying root tissues, and by respectively transporting 

O2 and CH4 into and out of the root zone through their aerenchyma. 
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Methanogens produce CH4 from either acetate or H2/CO2 (Conrad, 1989, 1999). Acetate, 

H2, and CO2 are byproducts of the microbial degradation of organic matter under anoxic 

conditions. Acetate can either be derived from root exudation or from fermentation 

(Aulakh et al., 2001). 
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Fig. 5.1: Effect of temperature on the percentage contribution of acetate and H2/CO2 to methanogenesis in 

anoxic rice soil. The data shows that as temperature was continuously increased above 35 oC, CH4 

production contribution from H2/CO2 became predominant, while that from acetate diminished. Data 

extracted from Conrad (2002).  

 

CH4 production is also inhibited by NO2
-, NO and N2O that accumulate during the 

reduction of nitrate produced from applied chemical fertilizers. Yao et al. (1999) also 

found that maximum CH4 production rate was related to both the soil oxidizing and 
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reducing capacities. CH4 production is also affected by certain microbial populations 

that produce methanogenic substrates (Conrad, 2002). Exposure to O2 also inhibits the 

population growth of methanogens, and hence limits CH4 production. Among 

environmental factors, temperature has been identified to be very important to the 

production of CH4 in flooded soils. The reported Q10 values for methane production 

vary from 1.3 to 28 (van Hulzen at al., 1999; Segers, 1998).  An increase in soil 

temperature increases the rate of organic matter decomposition by microorganisms in 

the soil, and lowers the redox potential (Tsutsuki and Ponnamperuma, 1987), resulting 

in increased rate of CH4 production.  

 

The increase in CH4 production with soil temperature means the projected global 

warming could enhance CH4 production (Rath et al., 2002). Because of the uncertainties 

in the documented temperature response of CH4 production, an understanding of the 

temperature feedback mechanisms remains poorly understood (Wang et al., 1999). 

Because of this uncertainty, most model studies have assumed Q10 values of around 2 to 

6 (van Hulzen, 1999; Xu et al., 2007; Huang et al., 1998; Huang et al., 2002; Yu et al., 

in press). Understanding the temperature - CH4 production link is essential to accurately 

project future CH4 emissions from rice paddies and possibly wetlands. 

 

5.2 Aim and Objectives 

The aim was to study the effect of temperature on CH4 production, comparing 

production rates from both planted and unplanted microcosms under different 
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temperature treatments. The objective of this research was to determine the Q10 of CH4 

production under carefully controlled environmental conditions. 

 

5.3 Material and Methods 

We determined the rate of CH4 production at different temperatures (20, 24, 28, 32 oC) 

using incubation experiments. The soil samples were extracted from both planted and 

unplanted tubs using sterilized plastic soil corers. The freshly extracted samples were 

quickly transferred into sterile whirl packs and homogenized before being put into 

specially designed Erlenmeyer flasks fitted with an airtight seals. The glass jars were 

equipped with insulated thermocouples and vent pipes with air tight valves. 

 

These containers were immersed in the same water baths that were used to heat both the 

planted and unplanted tubs (Fig. 5.2). The jars were purged with 99.9 % N2 before and 

immediately after placing a sample inside these containers. The first sample was 

immediately taken, and subsequently every 10 minutes thereafter. A total of four 

samples were collected in the experiments. 

 

Each time, before a sample was withdrawn, the headspace gas inside the jar was 

homogenized thoroughly using a syringe and plunger. From each temperature treatment, 

two-10 mL vials of the headspace gas were collected from two jars, and taken to the 

laboratory analyzed for CH4 on chromatograph equipped with FID. 
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Fig. 5.2: Picture of production jars mounted onto the water bath system. The jars are fitted with valves 

and thermocouples connected to microloggers (not shown in picture). Temperature was continuously 

monitored and recorded every 5 minutes during the growing season. The glass jars were purged with N2 

several times before each sample was collected. 

 

The production rates for each of the temperatures were calculated as the slope of the 

plots of concentration versus time. The temperature coefficients of methane production 

were calculated from mean production rates at four temperature treatments.  
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5.4 Results and Discussion 

5.4.1 Production Rates  

Consistent with results from other studies (Cicerone and Shetter, 1981; Cicerone et al., 

1983; Sass et al., 1991; Neue, 1993; Khalil et al., 2008), CH4 production rates generally 

increased with time (DAT) over the growing season. The values were almost zero, two 

weeks after transplanting then increased on the third week. This delay in the production 

of CH4 is thought to be a characteristic of the soil redox potential, pH, substrate 

availability, and temperature. For example the production of CH4 have been found to 

commence hours after flooding in alkaline and calcareous soils, two to three weeks in 

neutral soils, and five or more weeks in acidic soils (Neue, 1993). The rates continued 

to increase (with highest rate occurring in highest temperature treatments), reaching a 

maximum between 96 and 100 DAT (Fig. 5.3). The general increase with DAT 

observed in all temperature treatments could be caused by several factors that include: 

population growth of bacteria and Archea following flooding, decay of residual plant 

material (organic substrate availability) and the growth of plant roots. Roots are thought 

to both positively and negatively contribute to CH4 production: root oxygen transport 

suppresses CH4 production, whereas root decay and root exudation promote CH4 

production (Sass et al., 1991; Segers, 1998). 
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Fig. 5.3: CH4 production rates, showing increases after 2 weeks following flooding. The highest 

production rates were associated with highest temperature after 17 days following transplanting (DAT).  

 

The highest increase in CH4 production occurred in the set-up with the highest 

temperature (32 oC). In a similar manner, the 32 oC temperature treatment had the 

highest production rate. The explanation for this observation is that immediately after 

flooding, increasing temperature enhances the reduction of Fe3+ and SO4 
- ions (van 

Hulzen et al., 1999) so that the beginning of CH4 production critically depends on 

temperature (Conrad, 2002). The lowest temperature (20 oC) had the lowest production 

rate. Results are similar to studies by Aulakh et al. (2001) in which the presence of rice 

plants lowered the CH4 concentrations in rice tubs, but had no net effect on the CH4 

production rates. Chin et al. (1999) observed that decreasing the incubation temperature 

of rice soil from 30 to 15 oC resulted in a decrease in the CH4 production. Similarly, 
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Wang et al. (1999) found that CH4 production rates that started to increase in the second 

or third week after flooding, reaching a maximum in the third and fourth week after 

flooding. It has been found that at temperatures higher than 30 oC, CH4 is 

predominantly produced from H2/CO2, while acetate is no longer consumed and 

accumulated (Fey et al., 2001). Temperature also significantly affects the pathway of 

carbon flow since some microbial processes are more sensitive to temperature than 

others (Conrad, 2002). 

 

When compared with CH4 fluxes and pore water concentration trends, the flux, 

followed by pore water concentration trends, declined earlier than the production rates, 

with fluxes declining much earlier than the production rates, consistent with field 

experimental results reported in other studies (Khalil et al., 2008; Schütz et al., 1989). 

Temperature affects the growth of microbial populations, producing a non-linear 

response of CH4 production to temperature. In addition, the availability and increased 

abundance of substrates strongly enhances the temperature response (Dunfield et al., 

1993). The applicability of Arrhenius kinetics may be limited under conditions of 

changing substrate availability. 

 

5.4.2 Temperature Dependence of CH4 Production  

The Q10 of CH4 production did not change with increasing DAT, varying from <1 and 

8.5 (Fig. 5.4).  
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Fig. 5.4: (a) Average CH4 production rates as a function of temperature, and (b) Q10s of CH4 production 

based on the incubation technique. 
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In other studies, Q10 values of CH4 production varied from 1.5 to 3.6 (van Hulzen et al., 

1999), and 1.1 to 5.5 (Rath et al., 2002). The seasonally averaged Q10 of production was 

found to be 2.6, with an upper and a lower limit of 2.1 and 3.3, respectively (90 % 

confidence level). At low temperatures, electron acceptors and methanogenic biomass 

activity limit methane production for a longer time leading to low methane production 

at low temperatures. Bacteria can use a limited number of substrates, of which acetate 

and hydrogen are considered the most important ones (Segers, 1998). Temperature also 

affects the diversity of methanogens in the soil. For example, Methanosarcinaceae,  

which utilize both H2/CO2 and acetate as the precursor to produce methane, have been 

found to be more dominant at higher temperature than  Methanosaetaceae which only 

utilize acetate as the precursor for methane.  

 

5.4.3 Estimation of CH4 Oxidation rates 

By considering the differences between seasonal production rates and fluxes, the 

seasonal fraction of CH4 oxidized was determined based on the mass-balance approach.  

Values of oxidation rates varied increased from 50 mg/m2/hr to about 230 mg/m2/hr, 

following a temperature increase of 20 - 32 oC. Within the same range, the fraction of 

CH4 oxidized increased from about 73 to 87 % (Fig. 5.5). The values are consistent with 

oxidation rates reported in Schütz et al. (1989). From this data, the calculated seasonal 

Q10 of oxidation varied between 2.8 (lower limit) to 4.5 (upper limit) with a seasonal 

average of 3.5 (90 % confidence limit). 
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Fig. 5.5: CH4 oxidation rates and fractions plotted against temperature (T, oC). 

 

5.4.4 Estimation of Q10 of Transport 

Based on the Q10s production, flux and oxidation, the Q10 of transport was calculated 

using the following approach:  

( ) ( ) ( )
( )oxidationQ
transportQ

productionQfluxQ
10

10
1010

×=  

The Q10 of transport varied from 1.0 (lower limit) to 7.0 (upper limit), with a seasonally 

averaged value of 2.4. 

 

5.5 Conclusion 

The effect of temperature on CH4 production under continuously flooded rice 

ecosystems was successfully determined in this research. The rate of CH4 production 

was strongly dependent on soil temperature, with a seasonally averaged Q10 value of 2.6. 
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The seasonally averaged Q10 of oxidation and transport were 3.5 and 2.4. The variations, 

as well as the values found in this research, were less than those reported in literature 

cited herein, in which values of up to 28 have been presented. Within the range of 

temperature considered in this research, elevating soil temperature enhances CH4 

production in continuously flooded rice ecosystems, and possibly wetlands.  
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Chapter 6 

Quantifying Temperature Effect on Methane Oxidation in Rice Ecosystems using Stable 

Carbon and Hydrogen Isotope Ratios 

 

6.0  Summary 

The sensitivity of rhizospheric CH4 oxidation to elevated soil temperatures was 

determined using naturally occurring stable hydrogen and carbon isotopic abundances 

in water bath temperature-regulated rice microcosms described earlier. CH4 fluxes, 

below- and aboveground carbon (δ13C) and hydrogen (δD) isotopic composition of CH4 

was measured using continuous-flow gas chromatography isotope ratio mass 

spectrometry in Dr. Andrew Rice’s laboratory at Portland State University. The 

belowground pore water samples were collected from each treatment weekly and CH4 

was extracted into N2 headspace. Isotopic measurements showed that the mean above-

ground δ13C values ranged between -60.4 and -53.0 ‰, with an average of -56.7 ‰ 

relative to V-PDB, while δD values ranged between -341.9 and -273.3 ‰ relative to V-

SMOW. The ranges for the below-ground isotopic composition were -52.6 to -45.6 ‰ 

and -348.3 to -246.1 ‰ for δ13C and δD, respectively. CH4 flux ranged from near zero 

to 30-60 mg/m2/hr in mid-season corresponding to a rise in pore water CH4 to 8-12 

mg/L. These results were integrated and interpreted using an empirically-driven 

concentration and isotope model to understand CH4 dynamics and to examine the effect 

of temperature on mechanisms that control CH4 emissions. The Q10 of methane 

oxidation was found to be 1-2 and 1.4-2.4 from the δ13C and δD values, respectively. 

This study showed that temperature plays a less important role in CH4 oxidation in rice 
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paddies compared with production (reported in Chapters 3 and 5) where the average 

Q10s were 4.6 and 3.1, respectively. Thus the change in the CH4 oxidation efficiency 

due to elevated soil temperature would not be enough to offset the effect of temperature 

on CH4 production and emissions, thereby increasing the likelihood of increased CH4 

emissions from rice agriculture under future global warming. 

 

6.1 Introduction 

Rice paddies represent a sizable anthropogenic source of CH4 emissions into the 

atmosphere. Rhizospheric oxidation is a major sink of CH4 in rice ecosystems. Without 

this process, CH4 emissions from rice agriculture would be perhaps an order of 

magnitude higher than the present rates. Yet the impact of global warming on CH4 

oxidation, and on the global CH4 atmospheric budget remains poorly understood. 

Globally, CH4 oxidation is a sink for CH4 and is important in reducing the CH4 

emissions into the atmosphere (Hanson and Hanson, 1996; Born et al., 1990). Two 

principal mechanisms involved are: (1) reactions in the atmosphere, and (2) microbial 

CH4 oxidation by bacteria in soils. The net flux from rice and wetland ecosystems is a 

residue of the production and microbial oxidation process. Microbial oxidation of the 

CH4 produced in the soil is a large fraction of the soil methane pool. As these microbial 

processes change, the net flux into the atmosphere from these ecosystems will also 

change. Thus soil microbial CH4 oxidation is considered a key determinant of the rate 

of change of atmospheric CH4 concentration (Wang and Ineson, 2003).  
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It is estimated that up to 90 % of the CH4 produced in flooded rice paddies is oxidized 

microbially adjacent to the zone of production before reaching the atmosphere (Schütz 

et al., 1989). Two main aerobic areas contribute to CH4 oxidation (Wang et al., 1997): 

(I) the oxidized soil surface layer and, (II) the root rhizosphere. The process is mediated 

by an unidentified community of aerobic methanotrophic bacteria (Conrad, 1996). 

These aerobic methanotrophs, part of a large group of microorganisms called 

methylotrophs, reside in the rhizosphere where they use O2 from the atmosphere that 

diffuses into the soil or the root zone through plants to oxidize CH4. An aerobic surface 

layer develops around the plant roots. The thickness of this layer is determined by the 

net consumption and transport rates of O2 supply through plants aerenchyma and 

intercellular gas space system (Chanton et al., 1992, Nouchi et al., 1990) by diffusion or 

by mass flow from atmosphere into the root zone. Thus the rate of O2 supply to the 

rhizosphere is a decisive factor in the magnitude of CH4 emission. Hence, rhizospheric 

CH4 oxidation is an important internal sink for CH4 produced in the flooded soils, 

consuming up to 90 % of CH4 production. The presence of O2 in the rhizosphere limits 

CH4 production and enhances oxidation (Wang et al., 1997). This supply of O2 to the 

rhizosphere enhances the activity of aerobic methanogens leading to higher CH4 

oxidation efficiency. Thus, under these conditions, both plant-mediated CH4 emission 

and the percentage of CH4 oxidized increase. It is thought that approximately 580 Tg y-1 

of CH4 is produced in flooded rice paddies, but only about 60-100 Tg y-1 escapes into 

the atmosphere (Hanson and Hanson, 1996). With projected global warming, persistent 

shifts in soil temperature could significantly alter the atmospheric CH4 budget. 
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6.1.1 Other Factors Affecting CH4 Oxidation in Flooded Soils 

The elements influencing CH4 oxidation in flooded soils depend on factors that affect 

methanotrophic activities such as O2, temperature, CH4 availability and the mode of 

CH4 transport from the production zone to the atmosphere. It is estimated that the 

optimum temperature for CH4 oxidation ranges between 25 and 30 oC (Whalen and 

Reeburgh, 1996). In the same studies, CH4 oxidation has been found to be correlated to 

temperatures.  

 

The nutritional status of a plant affects its isotopic discrimination, such that well-

nourished plants exhibit more positive δ13C values by 1-2 ‰ than plants with nitrogen 

(N) or potassium deficiency (O’Leary, 1981). The kinetics of CH4 oxidation in soils is 

complex and its dependence on soil N status remain an area of debate (Reay and 

Nedwell, 2004). The availability and quantity of nitrogen compounds have been found 

to have an effect on the oxidation of CH4. Several studies have demonstrated that 

elevated soil N, particularly in the form of NH4
+, may reduce CH4 oxidation rates. In 

particular, increased inhibition of CH4 oxidation by NO3
- has been observed at low CH4 

concentrations (Reay and Nedwell, 2004). 

 

Another factor that influences oxidation is the limited supply of gaseous substrates to 

aerobic methanotrophs. For example, the distribution of aerobic methanotrophs depends 

on the flow of CH4 from the production (anaerobic) zone and the transport of O2 from 

the atmosphere into the soil (Hanson and Hanson, 1996). In planted flooded soils, O2 is 

transported into the root zone via the plants. Another important factor may be the 
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consumption of O2 by other microorganisms before it used by aerobic methanotrophs, 

particularly in soils with high degradable carbon content. The interactive effects of 

these regulators are uncertain under different environmental conditions.  

 

6.1.2 Quantifying CH4 oxidation 

Several approaches have been used to quantify CH4 oxidation in the rhizosphere: (I) 

mass balance calculations based on known concentration of CH4 (Reeburgh, 1976; 

Rudd and Taylor, 1980; Powelson et al., 2007; Khalil et al., 2008), (II) soil core 

incubations (Rudd and Taylor 1980), (III) inhibitors such as methyl fluoride (Popp et al., 

2000), (IV) inhibition of methanotrophy by using N2, and (V) measurement of 13C-

isotopic signatures of the produced CH4 and CO2 (Rudd and Taylor, 1980; Chanton et 

al., 2008a; Powelson et al., 2007; Venkiteswaran and Schiff, 2005; Groot et al., 2003; 

Conrad et al., 2002; Gerard and Chanton, 1993; Epp and Chanton, 1993). The mass-

balance method requires CH4 and CO2 emission and production measurements. The rate 

of CH4 oxidation per unit area is then calculated as a difference between production and 

emission.  Because of the difficulty in accurately quantifying diffusion coefficients, the 

mass balance technique is associated with uncertainties (Chanton et al., 2009). Physical 

characteristics of an environment are not preserved in incubation experiments. For 

example the incubation technique is affected by contamination during sampling, 

distortion of the physical structure of the soil samples, changes in microbial 

communities and the changes of environmental conditions in the laboratory such as 

temperature.  
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Of all the methods above, isotopic analysis of soil CH4 is a direct and non-invasive 

technique used to monitor the CH4 cycle processes at a finer scale than is possible by 

measurement of surface CH4 emissions only (Whiticar et al., 1986). The technique has 

found extensive use in the assessment of biogeochemical processes such as CH4 

production and oxidation in landfills, terrestrial and marine environments (Nakagawa et 

al., 2002). The method is based on determining the proportion (fraction) of CH4 

oxidized from the differences between stable and non-destructive hydrogen and carbon 

isotopic ratios. The technique is widely used to quantify CH4 oxidation in rice paddies, 

temperate soils and natural wetlands because of its advantages over techniques 

mentioned above: (I) it has a relatively sensitive, which makes it a robust approach for 

in-situ measurements (Chanton et al., 2008b; Boerjesson et al., 2007; Bodelier et al., 

2000), and (II) is non-invasive, leaving the rhizosphere intact compared to incubation or 

inhibition techniques.  

 

Typically, natural biogenic CH4 has a carbon isotopic composition below -75 ‰ (Tab. 

6.1), but due to oxidation, CH4 may exhibit 13C enriched values of -30 to -50 ‰. These 

methanotrophic bacteria preferentially consume 12CH4 and discriminate against the 

heavier 13CH4 (Chanton and Liptay, 2000; De Visscher et al., 2004; Happell et al., 

1994; Whiticar 1999) leaving residual CH4 enriched in 13CH4 (O’Leary et al., 1988; 

Reeburgh et al., 1993). The resultant effect is a change in the isotope composition when 

CH4 is oxidized, thereby altering the isotope ratio. Because of this property, CH4 
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oxidation is estimated by the degree of change between the δ13C content of CH4 emitted 

relative to the δ13C of CH4 in the anoxic zone.  
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The fractionation due to microbial oxidation is affected by different processes such as 

transport, temperature (Chanton and Liptay, 2000), methanotrophic activity and CH4 

availability (Templeton et al., 2006), and enzymatic reactions or a mixture of all. 

 

6.1.4 Quantification of CH4 Oxidation 

The carbon isotopic composition is expressed in the standard δ  notation in per mil. 

(Gonfiantini et al., 1995):  

( )13 ‰ 1 1000⎡ ⎤⎛ ⎞= − ×⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
sample

standard

RC Rδ  

Where Rsample is the carbon-13 abundance ratio given by 13CH4/12CH4 ratio of the 

sample.  

 

Since absolute values of 13C/12C are difficult to obtain, the values are reported relative 

to Vienna Peedee Belemnite (VPDB) (O’Leary, 1981; Gonfiantini et al., 1995). Rstandard 

is the 13CH4/12CH4 ratio for V-PDB. Negative δ13C values indicate that depletion of the 

13C isotope is taking place relative to the carbonate standard. In a similar way, just 

recently, the use of hydrogen isotopes (δD) has been used in trying to understand the 

biogeochemistry of individual CH4 sources (Wahlen, 1994; Quay et al., 1999; Rice et al. 

2009; Tyler et al., 1997). The hydrogen isotopic composition, δD, is calculated in the 

same way using the D/H ratio for standard mean (0.0001558) for Rstandard (Gonfiantini et 

al., 1995). The percentage fraction of oxidized CH4 (oxidation efficiency) is determined 

as a function of isotopic belowground CH4 (δi), emitted CH4 (δf), and the kinetic isotope 

effect (KIE) during oxidation (α):  
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( 1)( 1000)
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δ − δ

=
α − δ +

 

Where δi is the δ13C (or δD) value in the anoxic zone, δf is the δ13C (or δD) value of 

emitted CH4, α is the fractionation factor, α for microbial oxidation and αtrans is the 

fractionation factor associated with gas transport. The extent of bacterial oxidation is 

estimated by α, which is the difference between the production and the residual CH4. 

Typical values of α associated with δ13C and δD values are presented in Table 6.2.  
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Typically, values of αox have been found to be dependent on both temperature (Coleman 

et al. 1981; King et al., 1989 ) and CH4 concentrations, with values lying in the range 

1.022 to 1.050 for temperatures between 15oC and 26oC (Cabral et al., 2010; Tyler et al., 

1997; Reeburgh et., 1997). Various models have been developed that relate αox and soil 

temperature (Fig. 6.1).  

 

 

Fig. 6.1: Typical models proposed for the variation of αox with temperature. There is generally an 

agreement between the slopes, but with significantly different intercepts.  

 

6.1.5 Isotope Fractionation by Transport 

Three main modes of CH4 transport from flooded rice paddies (Schutz et al., 1991) 

associated with 13C isotopic fractionations (Chanton, 2004) are: diffusion, ebullition and 
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plant-mediated transport. The relative importance of these three pathways depends on 

organic loading, changes in temperature and plant density. For example, in bare plots 

(controls), isotope fractionation of CH4 during transport is mostly due to molecular 

diffusion in the gas phase and equilibrium partitioning between gas and water. Bubble 

ebullition across the air-water interface and bulk flow are thought to contribute little or 

no isotopic fractionation (Chanton, 2004). In rice planted tubs, CH4 transport is 

predominantly a combination of convective bulk flow (in daylight) and molecular 

diffusion (at night). The presence of plants also affects the stable isotope distribution of 

CH4 in both fluxes and pore water through plant-mediated transport mechanisms and 

aerobic oxidation associated with the roots (Schutz et al., 1989; Chanton and Dacey, 

1991). For example, diffusion through plant aerenchyma results in significantly greater 

rates of transport for 12CH4 relative to 13CH4 resulting in the enrichment of 13CH4 in 

plant aerenchyma and in the rhizosphere (Chanton, 2004). 

 

While during the day, pressurized through-flow (active transport) is the main mode of 

gas transport, with little isotopic fractionation of CH4 (Chanton, 2004), the main 

transport mechanism at night is diffusion (passive transport), which result in mass-

dependent fractionation of emitted CH4 (Chanton and Whiting, 1996). The presence of 

diffusion results in the release of depleted CH4 in fluxes than in pore water (Chaser et 

al., 2000). Fractionation in rice plants differs significantly from day to night as 

molecular diffusion is more important during night time. 
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In comparison to bare flooded soils, emissions from flooded soils planted with rice 

generally release about 9 times more CH4, resulting in a reduction of CH4 partial 

pressures within the flooded soil, thereby causing a reduction in dissolved CH4 pore 

water concentrations and CH4 bubbles (Chanton, 2004). The result is a dominant plant-

mediated transport in rice planted tubs and bubble ebullition and diffusion in non-rice 

planted tubs.  

 

6.2 Aim and Objectives 

The major aim of this research was to determine how CH4 oxidation in rice ecosystems 

will be affected by elevated soil temperatures under global warming. Three objectives 

were set: (1) determine stable hydrogen and isotopic compositions of CH4 under 

different soil temperatures; (II) characterize seasonal patterns of CH4 oxidation, and 

(III) use δ13C and δD to calculate fraction and Q10 of CH4 oxidation in rice ecosystems. 

 

6.3 Materials and Methods 

6.3.1 Site Characteristics  

The study was performed in a climate-controlled greenhouse experiment as previously 

stated in Chapter 2. The rice plots were continuously flooded immediately after the rice 

seedlings were transplanted. These conditions were consistently maintained throughout 

the sampling period to maintain uniformity in environmental conditions. The fraction of 

oxidation was determined using in-situ stable isotope tracing technique (Chanton et al., 
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1997; Tyler et al., 1997). The method makes use of naturally occurring carbon isotope 

ratios (13C/12C) between above- and below-ground was used in this research.  

 

6.3.2 Sampling Techniques 

Three types of samples were collected throughout the season. Gas samples for flux 

measurements were collected from the rice tubs using static chambers as outlined in 

Chapter 3. Each time the samples above were collected, two 60 mL samples were 

withdrawn after 30 minutes using syringes for isotopic analysis. The 60 mL headspace 

gas samples were stored in pre-evacuated 30mL glass vials with non-reactive CH4 

stoppers (Bellco Co. USA) and stored at laboratory temperature for analysis. 

 

Water samples were collected on a weekly basis using plastic peepers that were 

connected to small perforated cylinders placed at approximately 5, 10, 15 and 20 cm 

below the soil surface. The cylinders were placed between the rice rows or in the 

unplanted tubs (controls). Before pore water sample was collection, about 10 mL were 

flushed out of the peepers, and left for about 30 minutes to equilibrate. About 20 mL of 

pore water were withdrawn using syringes and taken to the laboratory for analysis. The 

headspace gas after mixing with 99.9 % N2 was dried and stored into evacuated 20 mL 

glass vials. 
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6.3.3 Isotopic Measurements 

The hydrogen and carbon isotope ratios in the samples were determined using 

continuous-flow gas chromatography isotope ratio mass spectrometry. For pore water 

samples where CH4 concentrations were high, extracted samples were injected onto a 

Pava Plot on column via a 6-point valve with a 100 µl sample loop. Above-ground flux 

samples were enriched prior to analysis by trapping CH4 at -125 ± 5 oC for several 

minutes. The resulting sample was then focused on a loop of the analytical column 

immersed in liquid nitrogen. Following the procedure described in Rice et al. (2001; 

2010), the sample was warmed and released onto the separation column for analysis. In 

all analyses, elutes from the GC column, CH4 was converted to either CO2 (for δ13C) or 

H2 (for δD) in a high temperature furnace. Following high temperature conversion, 

samples were introduced into a Thermo Scientific Delta V isotope ratio mass 

spectrometer in a viscous flow of helium. Isotope ratios were determined by integrating 

peaks of mass /charge: 44.45 (for δ13C) or 2.3 (for δD).  The isotope ratios were 

determined with reference to the standards V-PDB (for δ13C) and V-SMOW (for δD).  

 

To calculate the fraction of CH4 oxidized, the background isotopic composition was 

accounted for when calculating the isotope ratios (δE) for CH4 emissions: 

F F I I
E

F I

c c
c c
δ − δ

δ =
−

 

Where δI and CI are the δ13C or δD and concentration for the initial gas sample and δF 

and CF 
refer to the δ13C or δD and concentration for the final sample. 
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6.3.4 Determination of Fraction of CH4 Oxidized 

From isotopic studies of flux samples from vegetated wetlands, emitted CH4 has been 

found to be 5-15 ‰ more depleted in δ13C than in unplanted samples (O’Leary et al., 

1988; O’Leary, 1981). Tyler et al. (1997) and Craig noted in O’Leary (1981) found that 

CH4 was depleted by -12 ‰ for rice plants. With this value, the above-ground isotopic 

composition was adjusted for transport fractionation in order to get the below-ground 

values. Following the protocol in Tyler et al. (1997), the fractional oxidation was 

calculated as a function of isotopic below-ground CH4 emitted CH4 and α values from 

Snover and Quay (2000).  

 

6.4 Results and Discussion 

6.4.1 Carbon Isotopic Composition 

Large temporal variations in CH4 fluxes, δ13C and δD were observed during the middle 

of the growing season, in resemblance to those reported in Tyler et al. (1997). The mean 

above-ground δ13C values were between -60.4 and -53.0 ‰, with an average of -56.7 ‰ 

relative to V-PDB. These compare well to reported mean values of between -66 and -50 

‰ from temperate rice paddies (Marik et al., 2002; Bergamaschi, 1997). Consistent 

with results from Indian rice paddies (Rao et al., 2008), the emitted CH4 at the start of 

the growing season was relatively enriched in 13C, then depleted during the middle part 

of the season, and finally enriched again towards the end of growing season (Fig. 6.2). 

These seasonal changes are thought to be due to changes in fractionation associated 
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with CH4 production, oxidation and transport (Rao et al., 2008) due to plant roots 

growth and decay. 

 

Fig. 6.2: Seasonal variation of δ13C of CH4 emitted from rice planted tubs (solid lines) and unplanted tubs 

(broken lines) for different temperature treatments. In all treatments, the samples from planted tubs were 

more depleted during the middle part of the growing season than at the start. That feature was not evident 

in unplanted (control), except in one particular treatment (20 oC) in which the trend was similar to those 

in planted tubs. 

 

The isotopic composition of pore water CH4 at 10 cm depth ranged from -52.6 to -45.6 

‰. Seasonal trends were similar in planted and unplanted tubs, with no distinct 

differences between different temperature treatments (Fig. 6.3). 
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Fig. 6.3: Seasonal variation of δ13C of CH4 in pore water from planted tubs (solid lines) and unplanted 

tubs (broken lines) for different temperature treatments. 

 

Aboveground δD values ranged between -341.9 and -273.3 ‰ (mean -317.0 ‰), while 

the belowground isotopic compositions were -348.3 to -246.1 ‰ (mean -308.3 ‰) for 

δD, respectively. Large temporal variability is observed in both isotope tracers and is 

not well correlated with emitted isotopic composition. The variation is comparable to 

aboveground isotopic composition of between -352 and -311‰ V-SMOW (mean -335.7 

± 10 ‰) as reported in other studies (Bergamaschi, 1997). Three factors are responsible 

for these variations: (I) changes in the CH4 formation pathway, (II) changes in isotopic 

composition of methanogenic precursors, and (III) isotopic fractionation due to CH4 

oxidation. 
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Similar trend toward depleted δD as DAT increased was observed. For example, the 

isotopic composition of emitted CH4 in planted tubs ranged from -64 ‰ to -47 ‰ δ13C 

versus V-PDB and -354 ‰ to -146 ‰ δD versus V-SMOW with a trend towards more 

depleted values as the season progressed. 

 

 

Fig. 6.4: Time series of δD of CH4 showing hydrogen isotopic composition in rice planted tubs (solid 

lines) and unplanted (control) tubs (broken lines) for different temperature treatments. Generally, the 

value are enriched at the start, and then depleted till the end of sampling period. 
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The isotopic composition of pore water CH4 at 10 cm depth ranged from –380 to –153 

‰ δD (Fig. 6.5). Large temporal variability was observed in both isotope tracers and 

was not well correlated with emitted isotopic composition.  

 

 

Fig. 6.5: Time series of pore water δD of CH4 showing hydrogen isotopic composition in rice planted 

tubs (solid lines) and unplanted (control) tubs (broken lines) for different temperature treatments.  

 

By considering the results of classification of bacteria based on δ13C-CH4 and δD-CH4 

information (Fig. 6.6), the range of results also indicate that the main methanogenic 

pathway of CH4 formation in this study was predominantly aceticlastic methanogenesis 

(acetate fermentation), which, respectively, is associated with isotopic composition of -
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65 to -50 ‰ V-PDB (Grossman, 2002; Whitcar, 1999) and -400 to -250 ‰ (V-SMOW) 

for δ13C and δD (Bergamaschi, 1997).  

 

Fig. 6.6: Classification of bacterial and thermogenic natural gas by the combination of δ13C-CH4 and δD-

CH4 information (Adapted from Whitcar 1999). Compared with δ13C-CH4 and δD-CH4 found in this 

research, results showed that the predominant source of CH4 was acetate (red circle), and not through CO2 

reduction. 

 

The other methanogenic pathway for CH4 formation (CO2 reduction) is generally more 

depleted in δ13C (-110 to -60 ‰ V-PDB) and more enriched in δD (-200 to -110 ‰ V-

SMOW) (Bergamaschi, 1997; Whitcar, 1999), and thus, was not the major pathway in 

this study.  
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Emitted values from planted tubs were substantially depleted in δ13C (~6 ‰) and δD 

(~30 ‰) relative to unplanted (control) tubs, a difference which is understood to result 

from isotopic fractionation during diffusive (and potentially effusive) transport from the 

anaerobic zone through the rice plant. Seasonal mean values of δ13C were higher at 

higher temperatures (-59.0 ‰, -58.6 ‰, -58.0 ‰, -57.0 ‰, 20-32 °C) and δD was lower 

at higher temperatures (-272 ‰, -296 ‰, -311‰, -331‰). This effect is not yet well 

understood. 

 

6.4.2 Relationships between δ13C and δD in Emitted and Dissolved CH4 

Very high positive regression coefficients (r2 = 0.760 to 0.957) were found between 

δ13C and δD in temperature treatments 20-28 oC. At 32 oC, the regression coefficient 

and slope were very low (r2 = 0.199; slope = 0.2039). In these three treatments, the 

regression curves, the slopes were around 14 (Fig. 6.6).  Consistently, Coleman et al. 

(1981) found change in the δD value of CH4 (which has been partially oxidized by 

bacteria) is 8-14 times greater than the change in the δ13C value. 
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Fig. 6.7: Effect of temperature on the relationship between isotopic composition, δ13C and δD values in 

the air samples from planted tubs.  

 

In general, all regression coefficients were positive, but were higher in lower 

temperature treatments. Similarly, positive correlations between δ13C and δD (r = 0.51) 

were found from rice fields experiments in China (Bergamaschi, 1997). The results 

indicate that no major partitioning between methanogenic pathways in the formation of 

CH4 occurred during the growing season (Sugimoto and Wada, cited in Bergamaschi, 

1997). Instead, only one pathway (acetate fermentation) was predominant throughout 

the season (region circled in red). Differences were found between slopes under the 20 - 

28 oC temperature treatments and that at 32 oC, but could not be explained using the 

results in this research. 
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In contrary, no distinct relationship was found between δ13C and δD values in pore 

water from planted tubs (Fig. 6.8), and the regression coefficients were very low (r2 = 

0.017 - 0.268), but positive. 

 

Fig. 6.8: Temperature effect on the relationship between isotopic composition, δ13C and δD values in pore 

water from planted tubs. 

 

Coleman et al. (1981) found positive linear relationships between the fraction of CH4 

oxidized and carbon and hydrogen isotopes, but with different regression coefficients. 

However, the fractions of CH4 oxidized from δ13C and δD were not similar in pore 

water.  They concluded that the fractionations of the two isotopes decreased with 

temperature, and their responses were different under same temperature conditions. 
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These results were the first to pinpoint the importance of temperature in CH4 

fractionation.  

6.4.4 Fraction of CH4 Oxidized 

The range of the fraction of CH4 oxidized from δ13C values was 46 to 87 % in planted 

tubs. In the controls, the percentage was low, ranging from 26 to 48 %. Higher 

percentage values found in planted tubs are consistent with the present knowledge of 

CH4 oxidation in flooded rice soils. It is thought that plants, via roots provide aerobic 

conditions which promote CH4 oxidation, since methanotrophs require oxygen to utilize 

CH4 as their metabolic source of energy.  

 

Fig. 6.9: Fraction of CH4 oxidized as determined from δD and δ13C values for planted tubs. 
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From δD values, the ranges in different temperature treatments were quite variable. The 

highest mean CH4 oxidation fraction was 60 % (range: 55-65 %) occurred in the 20 oC 

tubs. Among different temperature treatments, the means generally decreased towards 

higher temperatures.  

 

There were some discrepancies between the estimates of δ13C and δD-calculated 

oxidation fractions. To date, there is little information in literature about the dual use of 

these isotopes as tracers in CH4 oxidation experiments. However, the dual approach 

provides some means of understanding the uncertainty of these estimates. The reason 

for the variation in the two estimates could be a result of the differences in the 

temperature response of the αoxs for δ13C and δD. However, from δ13C-calculated 

oxidation fractions, the optimum soil temperature for CH4 oxidation was found to be 

28 °C, consistent with values of between 25 °C and 30 °C reported in Chanton and 

Liptay (2000). The Q10 calculated from the fraction of CH4 oxidized were 1-2 and 1.4-

2.4 using δ13C and δD values, respectively. 

 

6.5 Conclusion  

This research clearly showed that temperature is an important factor in CH4 oxidation in 

rice ecosystems. However, further empirical observations are needed to refine methods 

used in determining the transport fractionation. The calculated Q10 values were less than 

average CH4 fluxes and production. Such a scenario would promote increase in CH4 
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production and emissions, resulting in a rising atmospheric CH4 composition under 

global warming.  
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Chapter 7 

Response of mcrA and pmoA Gene Copies and Methane Fluxes  

to Soil Temperature Changes in Rice Microcosms 

7.0 Summary 

The feedback of global warming on methane emissions from rice agriculture was 

investigated by examining the link between populations of microbial consortia and 

elevated soil temperatures within the rhizosphere. Vertical soil profile samples were 

collected from temperature-controlled rice microcosms. The four water baths, set at 

different temperatures, each contained four tubs, with one control and three replicates. 

The soil samples were immediately frozen and stored at -80 oC, and were pulverized 

before DNA extraction. The concentration of the methyl coenzyme M reductase (mcrA) 

and particulate methane monooxygenase (pmoA) genes was determined by qPCR. All 

qPCR reactions were performed in double 25 μl reactions using the QuantiTect SYBR 

Green PCR kit. Quantitation of total mcrA gene copies was performed with primers 

described in Luton et al. (2002) at a final concentration of 0.6 μM (Wilson et al., 2010). 

An FID-equipped Gas Chromatography was used to measure the methane concentration 

in air samples collected from Plexiglas flux chambers as previously described. Our 

results showed that methanogens (mcrA) and methanotrophs (pmoA) were preferentially 

located to certain regions of the soil profile under different soil temperatures. mcrA 

copies were positively correlated to temperature, whereas  no significant response of 

pmoA copies to temperature was observed. The implication of our results is that higher 

global temperatures will increase methanogen populations, but not as much for 
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methanotrophs, and hence increase CH4 fluxes from rice agriculture. This result 

supports our work with isotopes described in the previous chapter. 

 

7.1 Introduction  

In rice fields, CH4 is produced by three different pathways: carbon dioxide reduction, 

the methylotrophic pathway, and the acetate splitting pathway. The net CH4 fluxes are 

controlled by the balance between microbial production and consumption of CH4, and 

by physical processes such as diffusion, ebullition and ventilation. In anoxic freshwater 

environments, CH4 production is accomplished by a complex microbial community 

consisting of hydrolytic, syntrophic, homoacetogenic, and methanogenic 

microorganisms that degrade organic matter under anaerobic conditions (Chin et al., 

1999). Temperature is an important factor that controls the rate of CH4 production, and 

methanogenesis pathway (Peng et al., 2008). In incubation experiments of rice field 

soils, studies have shown temperature has an effect on the structure and diversity of 

methanogenic Archaea. Chin et al. (1999) found that members of Methanosarcinaceae 

were predominant at 30°C, whereas at 15°C, the diversity of methanogenic Archaea was 

larger, comprising members of Methanosaetaceae. Conrad (1999) found that 

hydrogenotrophic and acetoclastic methanogenesis accounted for about 33 % and 67 % 

of total CH4 production at 30 °C, respectively. The relative abundances in acetate-

dependent Methanosaetaceae at low and high temperatures are believed to be regulated 

by the dependence of acetate on temperature (Peng et al., 2008, Chin et al., 1999). 

Acetate and H2 or CO2 are the predominant substrates of methanogenic archaea, with 



 

 104

the contribution from acetate being estimated at between 65 and 80% of CH4 production 

(Chin et al., 1999). Methanosaeta and Methanosarcina are the only two genera of 

methanogens capable of breaking down acetate into methane and carbon dioxide . 

 

Some of the CH4 produced via methanogenesis is consumed and oxidized to CO2 by 

aerobic methanotrophs (Hanson and Hanson, 1996; Ritchie et al., 1997; Roslev, 1997; 

Auman, 2000) and the fraction of CH4 that is not oxidized by methanotrophs escapes 

from anaerobic environments to the atmosphere. Methanotrophs play a very significant 

role in maintaining the global CH4 budget, and in moderating the impact of global 

warming on CH4 production from anoxic soils. Methanotrophs are a unique group of 

methylotrophic bacteria (Ritchie et al., 1997) that utilize a variety of different one-

carbon compounds such as methane, methanol, methylated amines, halomethanes, and 

methylated compounds containing sulfur as sole sources of carbon and energy (Hanson 

and Hanson, 1996). Two major phylogenetic groups of methanotrophs have been 

identified and are distinguished by their pathways for assimilation: Type I 

methanotrophs, which are Gammaproteobacteria, and Type II methanotrophs, which 

are Alphaproteobacteria (Hanson and Hanson, 1996). Type I methanotrophs assimilate 

formaldehyde, produced from the oxidation of methane (via methanol) using the 

ribulose monophosphate pathway. Type II methanotrophs use the serine pathway for 

formaldehyde assimilation. The pathway conversion efficiencies of Type I and Type II 

methanotrophs are estimated to be about 65 to 80 % and 40 to 60 %, respectively 

(Auman, 2000).  
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Given the complex response of both methanogen and methanotroph communities to 

various environmental factors, and the IPCC temperature projections of between +1.8 

oC (B1 “optimistic” scenario) and +4 oC (A1FI “business as usual” scenario) by 2100 

(IPCC, 2007c), it is important to understand how increasing temperatures may affect the 

balance between CH4 production and consumption, and hence, the change in CH4 

emissions. In this work, we used the methyl coenzyme M reductase (mcrA) and 

particulate methane monooxygenase (pmoA) genes as proxies for methanogen and 

methanotroph populations within the rice rhizosphere, respectively. The mcrA gene 

codes for a subunit of the protein complex that catalyzes the final step of 

methanogenesis in all methanogenic Archaea by reducing coenzyme M binding methyl 

group to methane (Watanabe et al., 2009), while the pmoA is the α-subunit of the 

particulate methane monooxygenase (Kolb et al., 2003). We also present a quantitative 

analysis of the relationships between mcrA and pmoA abundance ratios at different soil 

horizons and soil temperatures and CH4 fluxes. 

 

7.2 Aims and Objectives 

In this chapter, methods used to detect and quantify methanogens and methanotrophs 

are presented. Objectively, the experiments were aimed at: (I) Quantifying changes in 

their populations in response to changes in temperature over the growing season; (II) 

Determine the location of methanogens and methylotrophs within the depth profile of 

the root zone; (III) and to investigate the possible link between the diurnal variation in 

fluxes and bacterial activity, and their response to changes in soil temperature. 
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7.3 Materials and Methods 

Four different temperature treatments, each comprising one unplanted (control) tub and 

three tubs planted with Oryza sativa L. 'M-103' (- a medium-grain, early maturing semi-

dwarf rice cultivar), were heated using a water bath system whose temperature was 

maintained as described in Chapter 2. 

 

7.3.1 Preparation and Collection of Soil Samples 

Soil samples were collected every two weeks from rice tubs using 3/4" x 12" Butyrate 

Plastic Liners (Forestry Supplies Inc., USA). Because these liners could not be 

autoclaved, they were first cleaned thoroughly by soaking them in Alconox for about 24 

hours and washed three times using de-ionized water, rinsed with 95 % ethanol, and 

wrapped in aluminum foil before they were put in a 60 oC drying oven for 12 hours. 

With sterile gloves, these corers were manually driven into the rice tubs to extract the 

soil vertical profile sample within the root zone. The duplicate plastic liner-filled 

samples drawn from each set-up were cut into four equal columns, put into sterile 

Whirl-packs (VWR International, LLC, USA), and immediately frozen at -80 oC. 
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Fig.7.1: Schematic of the replicates (Rice planted tubs) and tubs from which the soil samples for 

population studies will be taken (rice-planted sampling tubs), and controls for each set of experiment 

(unplanted/Control tubs). 

 

7.3.2 Soil Microbial DNA Extraction, Quantitation and Purity 

Prior to DNA extraction, individual soil samples were homogenized using sterile 

mortars and pestles. DNA was extracted from approximately 1.4 g (wet weight) of soil 

using the UltraCleanTM Soil DNA Kit (Mo Bio Labs, Inc., USA) following the 

manufacturer’s instructions. The DNA yield was determined using a UV/Vis NanoDrop 

ND-1000-V3.7 Spectrophotometer (Thermo Fisher Scientific Inc., USA). DNA 

absorbance was measured at 230 nm, 260 nm and 280 nm. The absorbance ratios at 

230/260 nm and 260/280 nm were calculated by the NanoDrop ND-1000 software. 
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7.3.3 qPCR Detection of Methanogens and Methanotrophs 

All qPCR reactions were performed in duplicate 25 μl reactions using the QuantiTect 

SYBR Green PCR kit (Qiagen, Valencia, California) run on MJ Mini Opticon Real-

Time PCR System (BioRad, Hercules, California). Melting curves were performed at 

the end of each reaction to ensure product integrity. Quantitation of total mcrA gene 

copies was performed with mcrAf and mcrAr primers (Luton et al., 2002) at a final 

concentration of 0.6 μM, following the method of  Wilson et al., (2010). The thermal 

protocol was as follows: 95 oC for 15 min, 40 cycles of 94 oC for 30s, 56 oC for 30 s, 72 

oC for 1 min, followed by a single cycle of 82 oC for 10 s. Plasmids containing the mcrA 

gene were used as quantitation standards as previously described (Wilson et al., 2010). 

In a similar fashion, quantitation of pmoA genes was carried using primers A189f 

(Holmes et al., 1995) and mb661r (Costello and Lidstrom, 1999). The thermal protocol 

was as follows: 95 oC for 15 min, 45 cycles of 94 oC for 30 s, 56 oC for 30 s, 72 oC for 1 

min, followed by a single cycle of 84 oC for 10 s. The protocol (reaction) temperatures 

and cycling for mcrA analysis were as shown in Fig. 7.2.  
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Fig. 7.2: Protocol for the qPCR thermal profile set-up for mcrA gene quantitation were as follows: 95 oC 

for 15 min, 40 cycles of 94 oC for 30s, 56 oC for 30s, 72 oC for 1 min, followed by a single cycle of 82 oC 

for 10s. 

 

Genomic DNA of Methylococcus capsulatus str. Bath (ATCC 33009D) was used to 

generate standard curves for quantitation. qPCR assays of the mcrA and pmoA genes 

with linear calibration standard curves with regression coefficients ˃0.990 were 

considered. Both mcrA and pmoA gene concentrations were normalized to dry weight of 

soil.  

 

7.3 Statistical Analysis 

One-way analysis of covariance (ANACOVA) was used to test the null hypothesis (Ho) 

that there was no difference between the coefficients of regressions between pmoA and 
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mcrA copies, based on a 5 % level of significance. A t-statistic was computed as the 

difference between the two slopes divided by the standard error of the difference 

between the slopes, with (N1+N2-4) degrees of freedom, where N1 and N2 were the 

number of points on each regression equation. Ho was rejected for any p ˂ 0.05. 

 

7.5 Results and Discussion 

7.5.1 DNA Purity and Yield.  

To check if the extracted DNA samples contained any qPCR amplifiable quantities, 

absorbance ratios at 260nm/230nm (DNA/humic acids) and 260 nm/280 nm 

(DNA/protein) were measured on a UV/Vis NanoDrop ND-1000-V3.7 

Spectrophotometer. Medians of the absorbance ratios at 260 nm/230 nm and 260 

nm/280 nm ranged from 0.4-0.6 and 1.75-1.95, respectively.  
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Fig. 7.3: Ratios of 260/230 (e.g. >2) and 260/280 (e.g. >1.7) are indicative of pure DNA, while the low 

ratios are indicative of humic acid and protein contamination, respectively. 

 

The results indicated that DNA was contaminated with more humic acid-like 

compounds than proteins, and that the level of humic acids in the DNA increased during 

the course of the experiment (Fig. 7.3). 
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Fig. 7.4: Total DNA yields ranged from of 10 to 45 μg of DNA per μl. Data showed no notable 

differences across different temperature treatments. 

 

The level of humic acid contamination slightly increased during the season. The low 

ratio at 260 nm/230 nm was an indication that proteins, possibly from bugs in the rice 

stalks, were the major contaminants of our DNA assays. The total yield ranged from 10 

to 45 ng μL-1g-1(dry soil), with highest values in 5-15 cm soil depth (Fig. 7.5).  
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Fig. 7.5: Average values of DNA concentration at different soil horizons at different soil temperature 

treatment. 

 

Generally, no notable significant change was observed between set-ups at different 

temperatures, with the mean remaining almost constant at 22 ± 4 μL-1g-1(dry soil). 

 

7.5.2 Abundance of mcrA Genes  

The detection limit of 102 of mcrA copies per assay was achieved.  The mcrA gene 

abundance ranged from 5×105 to 3×106 copies g-1 of dry soil (Fig. 7.6). The same order 

of magnitude has been reported in literature (Bodelier and Frenzel, 1999; Bosse and 

Frenzel, 1997; Gilbert and Frenzel, 1995; Joulian et al., 1997). Orders of magnitude as 

low as 104 copies g-1 (dry soil) were also reported in soils from Japanese rice fields 
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(Eusufzai et al., 2010), while higher values of the order of between 105 and 107 copies 

g-1 (dry soil) were also found in soils from 15 paddy fields (five different soil types) in 

north-east China (Wang et al., 2010).  

 

Fig. 7.6: Average values of mcrA copies at different soil horizons at different soil temperature treatment. 

Highest mcrA copies were found at 28 and 32 oC. 

 

Considering the variation in the orders of magnitude of mcrA copies from incubation 

and field studies of soils from rice ecosystems, results in this study fell within the 

median range, and may be considered to be an estimate of the average abundance of 

mcrA copies in most rice paddies.  
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A temperature increase from 20 to 32 oC resulted in a five-fold increase in mcrA copies 

in the 5-10 and 10-15 cm soil zone. Similar results have been observed in root and straw 

amended rice soil core incubation studies (Peng et al., 2008). Within this zone, the mcrA 

copies were low at the start of the season, approaching an almost steady-state between 

54 and 146 days after transplanting (DAT). The results are consistent with observations 

from Chin et al. (1999) in which a similar trend was observed from rice fields. 

 

7.5.3 Abundance of pmoA Genes 

The abundance of pmoA genes ranged from 5×104 to 4×105 copies g-1 of dry soil (Fig. 

7.7). In general, our results were comparable to those found in other flooded rice field 

soils in which orders of magnitude were 104 - 106 copies g-1 of dry soil (Kolb et al., 

2003; Bosse and Frenzel, 1997). 

 

Values of methanotroph populations of orders of magnitude as high as 107 copies/g (dry 

soil) have also been found in the top 0-2cm soil cores from straw and straw-burned rice 

paddies under desaturated soil conditions and early period following flooding/planting 

(Macalady et al., 2002). Macalady et al. (2002) found that methanotroph growth was 

highest close to the soil-water interface (0-2cm soil layer) but lower in bulk soil without 

rice roots (<106 copies/g dry soil) in the zones below the top layer. 
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Fig. 7.7: Average values of pmoA copies at different soil horizons at different soil temperature treatment. 

Highest pmoA copies were found at 28 and 32 oC. 

 

The differences could be a result of the differences in the soil carbon content and 

texture. Another explanation for these differences is possibly the effect of differences in 

gas conductance (O2 supply into the rhisophere) in different rice cultivars. A higher 

number of pmoA copies was found in the aerobic top soil horizon (0-5 cm), an 

indication that methanotrophy is an aerobic process (Fig. 7.8). 
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Fig. 7.8: Methanogen and methanotroph populations at different soil horizons at different soil temperature 

treatments.  

 

Across different temperature treatments, the highest number of pmoA copies occurred at 

highest temperature (Fig. 7.9). Across different temperatures, no significant change in 

pmoA abundance was observed at other soil horizons, except at 32oC. This observation 

may reflect the difference in the response of different methanotrophic bacteria to 

elevated temperatures. For example, a change in the methanotrophic community 

composition in rice field soil at different temperatures has been reported (Chin et al., 

1999; Mohanty et al., 2007; Peng et al., 2008). 

 

7.5.4 Relative Abundance between mcrA and pmoA Genes 

The relatively low number of pmoA to mcrA copies suggested that CH4 oxidation rate 

was generally lower than production rate given the high CH4 pore water concentration 

levels that were found in our experiments. Because of fast transport, oxidation in paddy 
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fields can be as low as around 30 % of production (Bodelier et al., 2000). If 

this percentage roughly translates to the relative numbers of pmoA and mcrA copies in 

rice fields, then results in this research in which the oxidation rates were between 20 

and 60 % (in Chapter 6) are consistent with those from other studies. In addition, 

increasing the temperature, increases organic degradation and increases substrate for 

CH4 production and in the process, depletes O2 and creates anaerobic conditions. The 

other reason for the low number of pmoA copies is that the soils were amended with 

chemical fertilizers, which have been found to inhibit CH4 oxidation and decrease 

carbon conversion efficiency (Roslev et al., 1996). 
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For all temperature treatments, the lowest number of mcrA copies was located in the top 

soil layer (0-5 cm), while pmoA copies was mostly abundant in the 0-5 cm oxygenated 

soil horizon in all set-ups, but remained fairly constant in the 5-10, 10-15 and 15-20 cm 

horizons. Ratios between pmoA and mcrA copies were consistently higher at 28 oC than 

at other temperatures (Fig. 7.9). In particular, the highest ratios occurred in the 5-10, 10-

15 and 15-20 cm soil cores. Within the CH4 production zone (5-10 and 10-15 cm), well-

defined stratification of mcrA to pmoA ratios was observed. This, according to our 

knowledge, is the first time these results have been obtained. 

 

7.5.5 Regression between pmoA, mcrA Copies and Temperature  

To gain insight into the dependence of pmoA on mcrA copies and indirectly measure 

oxidation and methanogenesis potential and temperature, linear regression curves were 

plotted for different temperatures and horizons (Fig. 7.10). Regression coefficients 

between pmoA and mcrA copies ranged from 0.00-0.92, with highly significant values 

in the 5-10 and 10-15 cm soil horizons, and almost zero elsewhere. To check the 

dependence of methanotrophs on the population of methanogens, regression coefficients 

between the two were plotted against soil depth (graphs not shown), and the highest 

values were found around 5-10 and 10-15 cm horizons, an indication that methanotroph 

populations are governed by the availability of substrates from methanogens. Thus, the 

greater the growth of methanogen population, the more CH4 is produced, which in turn 

stimulates the growth of methanotrophs which depend on the CH4 from methanogenesis 

as their substrates.  
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Freitag et al. (2010) found regression coefficients between 0.51 and 0.91 from only two 

soil layers of 0-10 and 10-20 cm from a blanket peat bog. While the observed trends 

reported by Freitag et al. (2010) are similar to our findings, they found consistently high 

values in the homogeneous samples from only two soil layers. Homogenization of the 

samples in the two horizons may have concealed more information about the actual 

profile of the regression coefficients within the 0-20cm soil depth.  

 

Consistent with our results, Joulian et al. (1997) found methanotrophs to be positively 

correlated with methanogens within the main CH4 production zone. Their results 

showed that the correlation was strong for acetotrophs and methylotrophs and weak for 

hydrogenotrophs and concluded that the second group depended on substrates produced 

by the first group. In our results (Table 7.1), the high regression coefficients in the main 

CH4 production zone show that methanogens control methanotroph substrate 

availability, and hence, partly determine the abundance of methanotrophs. 

 

A statistical test (5 % level of significance) of the difference between the regression 

coefficients (Tab. 7.1) using ANACOVA indicated that the slopes between pmoA and 

mcrA copies were not significantly different from each other in the 0-5 cm and 15-20 

cm. Across different temperature treatments, the null hypothesis was rejected within the 

5-10 cm soil horizon, meaning, that the regression coefficients were statistically 

different (p < 0.05) for different temperatures and those in other soil layers. 
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Table 7.1. Regression of pmoA (copies g–1 dry soil) to mcrA (copies g–1 dry soil).  

 

7.5.6 Relationships between CH4 Fluxes and mcrA and pmoA Copies 

CH4 fluxes increased with increasing abundance of mcrA copies (Fig. 7.11). The 

observed trends between CH4 fluxes and mcrA copies were strikingly similar to those 

observed between CH4 fluxes and mcrA gene transcript abundances reported in 

literature (Freitag et al., 2010; Freitag and Prosser, 2009).  

Temp. 
oC 

Regression 

0-5 cm depth 5-10 cm depth 10-15 cm depth 15-20 cm depth 

20  y = 0.1142x + 6.7884 

r2 = 0.2645 

y = 0.1082x + 6.2003 

r2 = 0.7159 

y = 0.657x + 0.5344 

r2 =0.5847 

y = 0.6338x + 0.5795 

r2 =0.5787 

24  y = 0.6984x + 1.462 

r2 = 0.3573 

y = 0.6298x + 1.0053 

r2 = 0.6544 

y = 0.9524x - 2.5185 

r2 =0.7647 

y = 0.3679x + 2.6794 

r2 =0.3165 

28  y = 0.0005x + 8.6413 

r2 = 8E-08 

y = 0.484x + 2.8714 

r2 = 0.5097 

y = 0.9142x - 2.096 

r2 =0.8268 

y = 0.5019x + 1.6428 

r2 =0.2716 

32 y = 0.1803x + 7.0367 

r2 = 0.1623 

y = 0.8161x - 0.257 

r2 = 0.8447 

y = 0.5079x + 2.8262 

r2 =0.2229 

y = 0.3336x + 4.314 

r2 =0.056 
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Fig. 7.11: CH4 fluxes vs mcrA a copies at 5-10 cm depth 

 

From soil sample results, the highest regression coefficient was found at 28 °C (R2 = 

0.850), consistent with results from incubation experiments of temperate peat soil 

slurries by Freitag and Prosser (2009), in which the highest CH4 production rates and 

mean mRNA transcript/gene abundance ratios occurred between 25 and 30 °C (R2 = 

0.790).  

 

No well-defined relationship was observed between pmoA copies at any level and CH4 

fluxes and soil temperature (Fig. 7.12). Both regression coefficients and slopes were 

generally low indicating that there is no direct link between methanotroph population 

and CH4 fluxes. Only in one particular case (0-5 cm, 20 oC) was the regression 
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coefficient significant. In other studies, (Freitag et al., 2010), regression coefficients 

ranged between 0.21-0.45 (n = 4-5). 

 

Fig. 7.12: CH4 fluxes vs pmoA copies at 5-10 cm depth 

 

7.5.7 Q10 of Methanogens and Methanotrophs 

In general the population of methanogens was found to be higher but less responsive to 

soil temperature change than methanotrophs (Fig. 7.13). The Q10 of methanogens and 

methantrophs were calculated based on the populations: 

( )
( )

Δ

⎥
⎦

⎤
⎢
⎣

⎡ Δ+
=

10

10
o

o

TP
TPQ  

Where P(T0) is the population at the base temperature, T = 20 oC and P(T + ∆) is the 

population at any temperature. 
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 The Q10 of methanogens generally decreased from the top soil horizon to the bottom, 

while those for methanotrophs slightly increased with soil depth. 

 

Fig. 7.13: (a) Dependence of methanogen and methanotroph populations on soil temperature. (b) Q10 of 

methanogen and methanotrophs for different soil horizons. 

 

The calculated Q10s values of methanogens were respectively 1.5 and 4.6 for the lower 

and upper limit, with a seasonal average of 2.6 (90 % confidence level). For 

methanotrophs, the Q10s were between 2.3 and 6.4, with a seasonal average of 3.8. 

Within the 10 -15 cm, the values were closer to each other.  

 

During the season, the Q10s were generally higher during mid-season, and lower 

elsewhere. The highest change in values for Q10 values of methanogens were recorded 

in the top soil horizon (0 - 5 cm), while for methanotrophs the change occurred in the 15 

- 20 cm soil layer (7.14). 
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Fig. 7.14: Variation of Q10 values of methanogens and methanotrophs during the season for different 

temperature treatments and soil depth. 

 

7.6 Conclusion 

This study showed no significant response of pmoA to temperature, while mcrA 

populations were positively correlated to temperature. Below the 0-5 cm horizon, the 

mcrA copies were more abundant than pmoA. High populations of mcrA were weakly 

correlated to pmoA population in the 5-15 cm horizon, showing that the relationship 

between these populations may be more complex than just a linear approximation. The 

general increase in CH4 fluxes with elevated temperature could stimulate heterotrophs 

that deplete O2 and create better conditions for increased CH4 production, but are not 

conducive for pmoA. If these results constitute a representative sample of the response 

of methanogens and methanotrophs to temperature in all rice field soils, then global 
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warming is expected to stimulate CH4 fluxes, and hence increase the global atmospheric 

CH4 budget from rice agriculture and possibly wetlands. 
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Chapter 8 

Nitrous Oxide Emissions from Rice Agriculture under Elevated Soil Temperatures 

 

8.0 Summary 

One of the unknowns in predicting the future concentrations of N2O is how the biogenic 

emissions may change with increasing temperatures.  Here results of N2O emissions 

from soil warming experiments to determine the Q10 of fluxes and production from rice 

ecosystems under different soil temperature treatments are reported. Experiments were 

conducted between spring of 2009 and summer of 2010. Fluxes were measured using 

static Plexiglas flux chamber in the same manner as for methane. The variations and 

comparisons of pore water N2O concentrations at four different soil depths are also 

reported here. N2O fluxes were characterized by high temporal variations, ranging from 

values as high as 1800 µg-N/m2/hr during the first two weeks following flooding to 

almost zero and occasionally negative thereafter. Weak correlations were found 

between N2O fluxes and temperature, with Q10 values ranging from 0.5 to 3.3. High 

production rates coincided with periods of fertilization, with highest rate occurring at 

the onset of the growing season. The Q10 values of production varied between 0.4 and 3. 

These results indicate the existence of a positive feedback between soil temperature and 

N2O emissions from paddy soils. The implication of these results will be an increase in 

N2O emissions from rice paddies under global warming. However, on a global scale, in 

addition to the direct effect of soil temperature, the pattern and distribution of future 

N2O emissions from rice paddies (and possibly similar ecosystems) will also be 
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determined by how much global warming will affect the pattern and distribution of 

water tables, since the dominant processes leading to N2O production also depend on 

soil moisture content. 

 

8.1 Introduction  

Of the estimated 20 Tg-N2O annual global N2O emissions (Smith, 1997; Smith et al., 

1998), about 2 - 3 Tg/yr originates from cultivated soils. Emission rates in agricultural 

systems are related to the quantities of N used as fertilizers and, where relevant, to 

recent land use change (Smith, 1997). The constantly increasing atmospheric 

concentration, as well as the disparities in reports on the effect of temperature on N2O 

emissions from rice agriculture underscores the urgent need to better understand the 

likely feedback between global warming and these emissions. Per molecule basis, N2O 

is 310 times more potent as a greenhouse gas than CO2. Because of its contribution to 

global warming, and participation in stratospheric ozone destruction, N2O has been 

studied extensively over the past three decades. Application of N-fertilizer has been 

identified as a major source of N2O in agricultural soils (Towprayoon et al. 2005; Yang 

et al., 2003; Stehfest and Bouwman, 2006), contributing about 58 % of total 

anthropogenic emissions (Smith et al., 2007). 

 

 



 

 131

 

Fig. 8.1: Dominant processes involved in the formation of N2O in soils: (I) Nitrification (oxidation of 

ammonium to nitrite and nitrate, or a biologically induced increase in the oxidation state of nitrogen and 

occurs under aerobic conditions) and (II) Denitrification (biological reduction of nitrate, NO3
 - or nitrite, 

NO2
-, to nitrogen oxides or molecular nitrogen under anaerobic conditions). Adapted from Reddy (1982). 

 

In the soil, N2O can be formed by various processes depending on the amount of 

different forms of nitrogen, moisture level, soil temperature, and concentration of O2, 
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ammonium and nitrate among other factors. Microbial de-nitrification and nitrification 

are the key dominant processes of N2O within the natural N cycle (Smith, 1997; 

Bremner, 1997; Smith et al., 1998; Flessa et al., 2002; Towprayoon et al., 2005). Fine 

details about other minor sources of N2O were clearly outlined in Bremner (1997).  

 

It is thought that denitrification can be either a source or a sink for N2O, which can 

either result in the formation of N2O (as an intermediate byproduct), or consumption of 

N2O, depending on environmental conditions such as O2 levels, N levels, pH, and 

temperature (Smith, 1997). Under continuously flooded conditions, such as considered 

in this research most of the N2O is produced by de-nitrification. 

 

Attempts to quantify the direct effect of elevated soil temperature on N2O emissions 

through soil warming studies have not produced a clear conclusion. In some studies, 

weak and negative correlations between N2O fluxes and soil temperatures were reported, 

while in other studies, positive strong correlations were found. Large temporal 

variations of flux rates is one key source of error in determining the Q10 of  N2O fluxes 

from cultivated soils (Flessa et al. 2002). Khamp et al. (1998) suggested that elevating 

temperatures leads to both positive and negative effects controlling N2O emissions, and 

the overall effect results in small changes in N2O release. It is evident that the effect of 

soil temperature on N2O is complex, and requires further studies to get a full 

understanding of this feedback. Results from various studies indicate that the overall 

effect of temperature on N2O emissions is generally positive, and that this rate of 

increase would be steeper when denitrification is more dominant than nitrification 
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(Smith, 1997). Two reasons are thought to be responsible for this observation, (I) 

increased soil respiration, which increases the anaerobic volume in which denitrification 

takes place, and (II) increased denitrification rate per unit anaerobic volume due to 

direct effect of temperature increase (Smith, 1997). Here the sensitivity of N2O to soil 

temperature was investigated under carefully controlled soil warming experiments in 

order to quantify this positive feedback based on the IPCC global warming projections. 

 

8.2 Aim and Objectives 

The aim of this study was to determine whether global warming would result in 

increased N2O emissions from rice paddies into the atmosphere. The objective of this 

research was to determine the Q10s of N2O production and fluxes under controlled 

greenhouse experiments in continuously flooded rice microcosms. 

 

8.3 Materials and Methods 

From the same experimental set-ups and samples to determine the effect of temperature 

on CH4 (outlined in the preceding chapters), N2O emissions and production rates were 

also determined from experiments described in Chapter 2. N2O fluxes and its pore water 

concentrations were measured every three days and weekly, respectively. The collected 

samples were analyzed with a GC, equipped with an electron capture detector (ECD). 

N2O fluxes were calculated using a linear regression of the observed concentrations 

with sampling time. Production rates and N2O pore water concentrations were 
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determined using the approach outlined in Chapter 3 for determining CH4 production 

rates and pore water concentrations, respectively. 

 

8.4 Results and Discussion 

8.4.1 N2O Fluxes 

With the exception of the increase after N-fertilization, N2O fluxes were generally low 

for all temperature treatments. The high N2O fluxes that were observed coincided with 

periods of N-fertilization, and diminished to almost zero afterwards. Similar results 

have been reported in many experiments (Yang et al., 2003; Ghosh et al., 2003; Lai, 

2000). In particular, Gosh et al. (2003) found two sharp peaks in N2O emissions just 

after fertilizer application, one at 2-5 DAT which gradually decreased and a new high 

during 15-33 DAT. Thereafter, the emissions were zero till 105 DAT for all the 

treatments. In contrast to higher second N2O peaks than the first from their results, our 

second peaks were consistently lower than the first in all the treatments. The differences 

in the size of peaks reported in the former studies and those reported herein, could be 

due to dry spells reported in their results.  

 

Under continuously flooded conditions, the N2O emission into atmosphere is 

suppressed by the pressure of standing water and therefore most of the N2O produced 

gets denitrified to N2 within the soil, whilst under drier conditions, nitrification 

produces most of the N2O. If the soil is flooded again, denitrifying bacteria will act on 

the nitrate released by nitrification to produce more N2O (Ghosh et al., 2003).  
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(a) Planted tubs
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(b) Unplanted tubs
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Fig. 8.2: N2O emissions from both (a) planted and (b) unplanted tubs. Higher fluxes occurred in 

unplanted than in planted tubs, and the peaks coincide with episodes of fertilization. Elsewhere, the fluxes 

were nearly close to zero or slight negative. The impact of temperature was more apparent in unplanted 

tubs than in planted ones. 
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High temporal and spatial variability in N2O fluxes was observed both within and 

between treatments. Two weeks after DAT, fluxes were low and highly variable, with 

negative N2O fluxes occurring on many occasions. The observation was reported in 

various studies (McHale et al., 1998; Bremer, 1996). N2O fluxes were two times higher 

in unplanted than in planted tubs. 

 

A comparison of N2O emissions from planted and unplanted tubs indicated that higher 

fluxes were consistently found in unplanted than planted tubs. In particular, highest 

peaks of N2O fluxes were associated with the 28 oC treatment, whilst in unplanted tubs, 

the highest fluxes occurred in the 32 oC treatment. Two possibilities could account for 

these differences, either the N-fertilizer in the planted tubs was quickly used up by the 

plants at 32 oC, or the diffusion was very high at 32 oC in unplanted tubs. Either way, 

the presence of plants seemed to have played a part in the observed differences. 

 

8.4.2 Effect of Soil Temperature on Fluxes 

Within the 20-32 oC temperature range considered in our research, the effect of 

temperature was only evident a short period after N-fertilizer application. From other 

studies the results have been mixed-up. For example, McHale et al. (1998) did not find 

any significant relationship between N2O and soil temperature. Because of the low 

emission rates when no N-fertilizer was applied, it would seem as though temperature 

did not have an effect on N2O emissions. To observe the real effect of temperature, only 

the time averaged N2O flux during the peaks were considered (Fig. 8.3). 



 
 

 
Fig. 8.3: Effect of soil temperature on N2O fluxes during (a) Winter and (b) Summer. 

 

Barnard et al. (2005) found that soil warming did not have large direct effects on 

N2O emissions in the field. 
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Fig. 8.3: Effect of soil temperature on fluxes as indicated by Q10 values. No discrepancy was observed 

between the data from (a) Winter and (b) Summer. 

 



 

 139

A further test on the effect of temperature was done by calculating the Q10 of the 

N2O fluxes. The Q10 values for fluxes from both seasons ranged between 0.5 and 3.3. 

The very high values are thought to be associated with de-nitrification (Smith, 1997). 

Q10 values of between 0.4 and 9.4 were found in other studies (Koponena, 2006; 

Flessa et al., 2002).  Slightly higher values (up to 15) on the upper limit of the Q10 

were found by Smith et al. (1998). 

 

8.4.3 Effect of Temperature onN2O Production Rates 

High production rates coincided with periods of fertilization. The production rate 

was high at the start of the season and almost zero elsewhere. Distribution was 

similar to that for N2O fluxes. Q10 values varied between 0.2 and 1.8 (Fig. 8.4). 

These results are comparable to those from other studies. In particular, Q10s ranging 

between 0.9 and 3.4 have been measured for N2O production from forest soils 

(Castaldi, 2000). The highest Q10s for N2O the have been associated with 

denitrification activity, such that a temperature rise enhances the activity of 

denitrifiers and increases the volume of the anaerobic soil fraction, where 

denitrification occurs (Smith, 1997). 
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Fig. 8.4: The Q10s of N2O were fairly lower than those from fluxes. The values are independent of 

DAT, and varied from 0.1 to 1.8. Noteworthy were values below 1, indicative of decreasing 

production rates with elevated temperature. 

 

Considering that our experiments were performed under continuously flooded 

conditions, denitrification was the major source of N2O. From similar studies, on the 

effect of temperature on denitrification rate from nine soils (15 to 45 oC), the Q10 was 

approximately 2 (Stanford et al., 1975). 

 

8.4.3 Pore Water Concentrations 

Highest concentration of N2O occurred at lowest temperature (20 oC), and lowest 

concentration at 32 oC. Increasing soil temperature reduces the pore water N2O 
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concentration in the rhizosphere. Within all treatments, unplanted (control) tubs had 

the highest N2O pore water concentrations.  
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The differences in N2O concentrations could be due to a combination of fast transport 

and plant nitrogen uptake in planted tubs resulting in the depletion of nitrogen 

compounds that could be used for N2O formation. Pore water concentrations were lower 

in higher soil temperature treatments than lower ones. For example, in both seasons, the 

N2O concentration at 20 oC was almost 15 times higher than that at 32 oC. 

 

8.5 Conclusion 

The direct effects of temperature on N2O emissions and production were successfully 

quantified. Spikes of N2O emissions coincided with period of nitrogen fertilizer 

application. Both N2O emission and production rates were dependent on soil 

temperature, with higher Q10 values for fluxes than production. This may be the reason 

why very high N2O fluxes occurred just after flooding, and diminishing to zero 

elsewhere. The Q10 values found in our research, which are consistent with results from 

previous experiments and other studies, indicate that global warming will have a direct 

positive feedback on N2O production and emission rates in flooded rice paddies. 

Nevertheless, the quantity and distribution of future N2O emissions will depend on 

other indirect effects of global warming, such as the regional distribution of soil water 

content (water tables), and precipitation patterns. 
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Chapter 9 

Summary and General Conclusion  

 

This dissertation analyzed the potential impact of global warming on CH4 and N2O 

emission from agriculture. A two-year experimental set-up was carried out in the PSU 

Research Greenhouse, Portland State University, to determine the effect of global 

warming on CH4 and N2O emissions from rice agriculture. Throughout the sampling 

period, the rice microcosms were continuously flooded and heated using water baths, 

and only chemical fertilizer was used. This study fully captured the interdependences 

between temperature and production, oxidation and emissions. The study required the 

design and development of experiments from which simultaneous measurements of the 

Q10s of CH4 and N2O would be determined. Six experiments were designed and 

conducted to determine effect of elevated soil temperature on CH4 emission, production 

and oxidation. The research also involved determining the temperature sensitivity of 

N2O, with special focus placed on production, emission and pore water concentrations. 

The research includes a study of the populations of methanogens and methanotrophs 

under different temperatures. 

 

This study showed that temperature is an important factor for CH4 emissions from 

agriculture, and that global warming will result in increased emissions. The magnitude 

of this feedback is potentially large enough to offset the present atmospheric CH4 

concentrations. However, this increase was most evident for soil temperatures blow 30 

oC. Beyond this temperature, fluxes decreased with increasing temperature. Within the 
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root zone, CH4 concentration was only highly dependent on soil temperature during the 

start of the growing season, with highest concentration in the 10-15 cm soil horizon. 

Plants CH4 transport capacity was the predominant limiting factor for fluxes during 

entire plant growth phase. The rate of CH4 production was highly dependent on both 

soil temperature and time. The seasonally averaged Q10 of CH4 emission, production 

and oxidation were 2.0, 2.6 and 3.5, respectively. The population of methanotrophs was 

more sensitive to changes in soil temperature than methanogens, with seasonally 

averaged Q10 values of 3.8 compared to 2.6 for methanogenesis. The implication of 

these results is that global warming is likely to promote CH4 oxidation, and hence 

reduce the rate of increase of emissions from rice agriculture. Higher Q10 values were 

also observed during the early part of the season than elsewhere. During this period of 

the season, rice plants were not well established, and ebullition was the only major CH4 

transport from the flooded rice tubs into the atmosphere. Since the ebullition is the 

major transport in wetlands, and that the processes of CH4 formation and emission are 

similar those in natural wetlands, which are the largest contributors to atmospheric 

methane concentration, this positive temperature feedback is likely to contribute a 

significant additional CH4 increase to the present atmospheric budget if the current 

global warming trend persists over the next century. Nevertheless, the magnitude of this 

impact will vary from one region to another due to the spatial variations in temperatures 

from one region to the other.  

 

Weak regression coefficients were found between N2O fluxes and soil temperature and 

low Q10 values varying from 0.5 to 3.3 were observed. High N2O production rates were 
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only evident during the period following fertilization. During other sampling periods, 

fluxes were mostly negative and the pore water concentration of N2O was almost zero. 

Hence, N2O emissions were mainly controlled by the availability of suitable substrates 

such as nitrogen compounds. The results also indicated that under global warming, the 

direct impact of temperature is not likely to be the major driver of N2O emission 

increase from continuously flooded rice paddies in future. However, since moisture 

content is known to be one of the major factors that regulate N2O emissions from 

agricultural soils, the pattern and distribution of these emissions will mostly depend on 

how much global warming will change the factors that affect the regional patterns and 

distributions of soil wetness. Such factors include water resources (rain, water tables) 

and water management practices. 

 

While the current research has dealt with the impact of elevated soil temperatures on 

CH4 and N2O, future studies are required to determine the Q10 of transport and the 

transport time of both CH4 and N2O, possibly by using isotopic experiments. Since on 

many occasions negative N2O fluxes were observed during sampling, additional 

research is required to quantify how global warming will affect the uptake of N2O in 

agricultural soils. Integrating the results of temperature sensitivities for CH4 and N2O 

for natural wetlands and rice soils into a global model to determine the likely impacts of 

global warming is also an area for further research, but may require determining the Q10 

factors for other ecosystems such as natural wetlands. The use of these models could 

improve the accuracy of the estimates of these emissions under a changing climate. 
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Such a process will require putting into consideration additional input factors such as 

future rainfall patterns and distribution of surface water resources.  
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Appendix A 

Seasonal average temperature data 

Table A.1: Average soil temperature data measured for different treatments. 

Date WB1 (oC) WB2  (oC) WB3  (oC) WB4  (oC) 

10/30/2009 21.1 23.8 23.8 24.9 

11/4/2009 21.2 23.4 28.0 32.1 

11/5/2009 22.0 23.5 24.9 26.7 

11/8/2009 20.7 23.9 27.4 32.5 

11/12/2009 20.2 25.9 27.5 32.4 

11/14/2009 20.3 24.8 27.9 31.8 

11/18/2009 19.9 24.4 27.1 32.5 

11/25/2009 20.2 24.5 27.4 33.0 

11/30/2009 20.2 23.8 27.9 32.9 

12/3/2009 19.6 23.4 28.0 32.2 

12/3/2009 19.6 23.4 27.6 31.7 

12/10/2009 19.4 24.2 25.7 28.8 

12/26/2009 20.2 23.6 27.8 32.7 

1/6/2010 20.0 23.5 26.9 30.9 

1/13/2010 20.3 23.6 27.9 31.8 

1/16/2010 20.4 23.6 28.0 30.9 

1/20/2010 20.6 23.6 27.9 29.0 

1/23/2010 20.2 23.4 27.9 32.4 

1/27/2010 20.3 23.5 27.9 32.0 

2/1/2010 20.2 23.4 27.9 31.8 

2/3/2010 20.4 23.5 28.0 31.7 

2/14/2010 19.5 20.6 26.6 32.0 

2/14/2010 20.5 23.6 26.6 32.0 

2/21/2010 20.4 22.9 27.7 32.0 

3/10/2010 20.6 23.0 27.6 31.9 

3/16/2010 20.4 22.9 27.6 31.3 

3/24/2010 20.6 22.8 27.4 31.6 

3/29/2010 21.2 23.1 27.9 32.1 

3/31/2010 20.8 23.3 28.0 31.9 

4/2/2010 20.2 23.0 27.9 32.5 

4/7/2010 20.3 23.1 28.1 32.1 
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Appendix B 

Average CH4 and N2O Flux Data 

 

Table B.1: Average of average CH4 fluxes (mg/m²/hr)from planted tubs from season 1 

Date WB2 WB1 WB3 WB4 
10/25/2009 0.2 0.1 0.1 0.2 
10/31/2009 0.3 0.2 0.7 1.6 
11/5/2009 0.9 0.4 3.8 14.9 
11/8/2009 1.5 0.4 5.4 13.6 
11/12/2009 2.0 0.6 5.4 10.5 
11/14/2009 2.4 0.6 6.1 15.7 
11/25/2009 2.9 0.6 5.2 15.6 
11/30/2009 2.6 0.6 7.4 12.1 
12/3/2009 4.3 0.9 10.9 12.4 
12/10/2009 8.8 1.4 14.5 27.8 
12/16/2009 14.5 3.5 22.3 15.4 
1/6/2010 22.9 10.0 28.9 19.1 
1/11/2010 14.9 10.3 29.7 21.1 
1/13/2010 24.7 11.5 27.9 18.4 
1/16/2010 14.0 12.9 25.7 21.1 
1/20/2010 14.0 11.4 27.7 29.3 
1/23/2010 12.9 14.3 24.0 17.9 
1/27/2010 15.7 12.1 25.9 19.5 
2/1/2010 31.7 12.0 39.0 20.7 
2/3/2010 19.3 12.5 34.7 19.9 
2/10/2010 18.9 12.3 22.7 21.4 
2/17/2010 13.5 12.6 15.4 24.7 
2/21/2010 16.6 12.5 19.4 18.1 
3/10/2010 22.7 14.3 46.3 27.6 
3/16/2010 26.3 17.1 33.0 26.4 
3/24/2010 29.8 17.0 34.4 24.2 
3/29/2010 35.0 17.1 36.5 22.0 
3/31/2010 29.4 20.7 32.0 23.5 
4/2/2010 22.5 14.5 27.8 18.0 
4/4/2010 21.0 11.5 30.8 17.1 
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Table B. 2: Average of average CH4 fluxes (mg/m²/hr) from planted tubs from season 2 

Date WB2 WB1 WB3 WB4 

4/24/2010 0.2 0.1 1.0 1.0 

4/26/2010 0.4 0.1 1.7 3.7 

5/1/2010 1.3 0.6 4.8 14.7 

5/3/2010 1.5 0.8 6.3 24.3 

5/10/2010 4.8 2.3 13.1 26.8 

5/18/2010 9.9 5.8 24.3 29.3 

6/2/2010 13.7 7.1 23.4 25.3 

6/9/2010 12.8 8.3 22.1 27.0 

6/17/2010 19.5 17.8 30.4 34.4 

6/21/2010 25.1 21.6 33.8 39.7 

6/24/2010 25.5 25.4 37.6 56.5 

6/28/2010 31.2 28.9 44.8 53.7 

6/30/2010 37.5 27.5 42.3 38.7 

7/5/2010 30.7 26.9 36.6 43.4 

7/6/2010 25.1 32.0 28.8 51.5 

7/12/2010 37.4 37.0 40.2 51.1 

7/19/2010 33.4 38.0 39.7 37.7 

7/23/2010 34.6 35.8 33.3 34.2 

7/28/2010 35.7 36.6 31.9 33.9 

8/2/2010 19.5 29.4 37.0 25.1 

8/9/2010 31.8 32.9 24.5 19.7 

8/11/2010 17.9 17.4 36.8 16.6 
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Table B.3: Average of average N2O fluxes (µg/m²/hr) from planted tubs from season 1. 

Date WB2 WB1 WB3 WB4 
10/25/2009 62.5 47.3 -45.6 361.8 
10/31/2009 509.2 302.8 683.5 881.5 
11/5/2009 288.7 530.6 1167.3 600.6 
11/8/2009 151.8 110.0 246.2 41.9 
11/12/2009 21.0 61.2 53.7 35.0 
11/14/2009 -1.5 21.5 20.4 14.8 
11/25/2009 -9.7 218.9 40.0 -23.7 
11/30/2009 -9.9 9.0 -6.2 30.5 
12/3/2009 8.6 22.7 34.3 31.1 
12/10/2009 11.6 31.6 46.8 25.2 
12/16/2009 -0.3 19.4 -11.7 7.4 
1/6/2010 25.7 30.7 16.3 -5.4 
1/11/2010 17.6 22.6 31.1 54.3 
1/13/2010 71.3 12.6 22.0 20.6 
1/16/2010 11.8 -2.3 13.9 17.7 
1/20/2010 -2.7 1.0 8.6 19.8 
1/23/2010 -29.4 - - 20.9 
1/27/2010 -9.8 -15.0 -2.5 4.9 
2/1/2010 3.0 3.4 26.5 54.1 
2/3/2010 -8.1 23.0 28.3 -14.7 
2/10/2010 4.6 1.0 -2.2 6.0 
2/17/2010 -0.4 -4.7 24.0 92.3 
2/21/2010 4.9 16.2 23.9 14.2 
3/10/2010 21.0 12.5 -2.6 -10.9 
3/16/2010 0.8 -1.0 11.8 20.1 
3/24/2010 7.1 10.9 39.6 41.2 
3/29/2010 20.0 36.4 -18.7 -25.6 
3/31/2010 4.9 25.6 16.1 15.0 
4/2/2010 -10.3 -12.9 -18.3 12.1 
4/4/2010 18.6 11.8 12.8 14.7 
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Table B.4: Average of average N2O fluxes (µg/m²/hr) from planted tubs from season 2. 

 

 

 

 

Date WB2 WB1 WB3 WB4 

4/24/2010 822.5 146.4 702.4 - 

4/26/2010 604.1 118.7 442.4 267.9 

5/1/2010 53.8 38.7 82.8 38.3 

5/3/2010 23.4 33.9 33.2 1.6 

5/10/2010 21.1 19.0 9.4 40.1 

5/18/2010 21.1 8.6 11.5 15.6 

6/2/2010 12.6 -1.4 -11.7 15.2 

6/9/2010 28.1 12.8 31.2 22.5 

6/17/2010 15.3 -21.5 97.9 46.4 

6/21/2010 5.7 8.3 1.9 34.9 

6/24/2010 -6.6 8.3 27.1 34.9 

6/28/2010 -6.6 -14.4 4.6 -27.3 

6/30/2010 19.7 -3.4 1.9 8.2 

7/5/2010 -24.2 -36.5 -1.8 17.2 

7/6/2010 3.0 -15.1 -13.5 -6.4 

7/12/2010 -2.9 15.8 23.2 7.1 

7/19/2010 -37.9 -72.7 44.6 56.4 

7/23/2010 11.1 -40.3 4.6 20.7 

7/28/2010 8.4 -1.3 4.6 21.5 

8/2/2010 -18.8 -20.4 -12.4 -6.5 

8/9/2010 -27.1 -10.8 11.4 1.5 

8/11/2010 -3.6 8.2 22.2 3.5 

8/16/2010 41.6 3.4 -13.2 14.6 
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Appendix C 

Average CH4 and N2O Production Data 

 

Table C.1: Average CH4 production data (mg/m2/hr)  

Date WB1 WB2 WB3 WB4 

5/1/2010 51.3 23.3 84.4 6.8 
5/4/2010 40.7 29.9 74.9 3.7 
5/11/2010 108.9 100.1 162.3 506.7 
6/15/2010 419.2 338.3 604.2 1592.9 
6/25/2010 289.3 198.3 996.1 1269.5 
7/2/2010 435.2 357.3 874.3 895.4 
7/13/2010 694.0 186.0 727.2 2244.9 
7/21/2010 1100.5 909.3 1567.4 1248.2 
7/26/2010 763.6 715.5 2504.8 1350.3 
7/29/2010 1787.8 1523.2 1349.2 2904.2 
8/4/2010 * * 2323.2 1869.0 
 

Table C.2: Average N2O production data (µg/m2/hr) 

Date WB1 WB2 WB3 WB4 

5/1/2010 18.02 10.10 8.98 18.67 
5/4/2010 103.21 55.55 8.09 10.19 
5/11/2010 21.60 8.96 7.74 5.73 
6/15/2010 6.44 6.66 8.78 6.29 
6/25/2010 8.32 9.01 7.25 5.99 
7/2/2010 10.48 6.20 7.75 25.51 
7/13/2010 8.17 9.97 7.41 9.04 
7/21/2010 6.85 7.09 8.16 8.40 
7/26/2010 8.10 7.26 6.60 8.31 
7/29/2010 8.26 8.37 9.66 7.78 
8/4/2010 10.62 7.58 6.99 9.56 
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Appendix D 

Pore Water CH4 and N2O concentrations 

Table D.1: Average CH4 pore water concentration (μg/L) data 

Date WB2 WB1 WB3 WB4 

4/28/2010 72.6 41.7 141.7 804.8 

5/4/2010 103.0 51.4 284.0 1609.2 

5/18/2010 447.9 288.7 676.5 2198.3 

6/2/2010 973.0 564.7 1399.4 1787.6 

6/14/2010 2325.6 2160.1 4014.7 4754.3 

6/18/2010 1835.1 2317.3 3175.0 3454.5 

6/22/2010 2750.5 2633.3 3284.0 3922.9 

6/29/2010 1359.9 2142.1 2984.7 2521.2 

7/13/2010 3372.9 4081.1 5236.2 4328.5 

7/19/2010 4617.6 5111.3 6135.3 6557.1 

7/22/2010 5581.2 6525.4 7615.7 8899.0 

7/26/2010 5971.7 6376.7 9580.7 9651.0 

7/29/2010 7766.8 8318.9 7287.2 8256.2 

8/3/2010 6193.9 6953.8 7554.1 7703.9 

8/11/2010 7084.1 7111.3 9191.9 5197.3 

8/18/2010 4911.1 3813.0 6254.4 4790.1 

8/20/2010 5836.7 4041.4 4361.5 2259.0 

Average 3372.9 3813.0 4361.5 4328.5 

STDEV 2568.7 2703.9 3034.1 2737.5 
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Table D.2: Average N2O pore water concentration (μg/L) data 

Date WB2 WB1 WB3 WB4 

4/28/2010 438.7 1465.1 319.6 40.0 

5/4/2010 255.6 1090.3 93.8 3.3 

5/18/2010 6.4 209.0 0.8 0.7 

6/2/2010 1.3 2.2 1.4 1.1 

6/14/2010 0.6 0.7 0.6 0.6 

6/18/2010 1.0 1.1 0.8 0.9 

6/22/2010 0.3 0.7 0.3 0.4 

6/29/2010 0.3 0.7 0.6 0.5 

7/13/2010 1.4 1.3 1.1 1.2 

7/19/2010 0.6 0.6 0.5 0.5 

7/22/2010 0.6 0.9 1.0 0.9 

7/26/2010 1.2 1.3 1.4 1.4 

7/29/2010 1.0 1.1 1.1 1.0 

8/3/2010 0.9 0.9 0.8 0.7 

8/11/2010 0.9 1.4 0.9 0.9 

8/18/2010 0.5 0.5 0.6 0.5 

8/20/2010 0.8 1.7 0.8 1.1 
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Appendix E 

Average CH4 Isotope Measurements 

Table E.1: Seasonal average δ13C measured in flux samples from planted tubs (per mil) 

DAT WB1 WB2 WB3 WB4 

9 -47.465 -49.485 -52.982 -56.905 
16 -50.987 -52.835 -55.381 -52.000 
23 -55.590 -57.749 -55.987 -55.135 
31 -59.073 -58.926 -56.992 -56.202 
46 -62.289 -62.428 -61.377 -60.006 
53 -63.570 -60.029 -59.355 -59.241 
65 -61.659 -61.619 -60.869 -59.711 
72 -63.702 -61.240 -60.337 -56.632 
80 -62.989 -60.977 -59.948 -57.507 
86 -62.280 -60.751 -57.658 -56.285 

   
 
 
Table E.2: Seasonal average δ13C measurements in flux samples from unplanted tubs 

Date WB1 WB2 WB3 WB4 

9 -46.083 -49.63 -48.859 -53.771 
16 -47.403 -49.127 -50.481 -48.616 
23 -50.355 -52.921 -47.705 -48.018 
31 -51.650 -51.988 -49.618 -52.018 
46 -54.595 -50.692 -52.962 -54.290 
53 -50.587 -55.407 -53.963 -55.472 
65 -63.796 -55.677 -52.366 -51.454 
72 -54.858 -53.932 -54.273  * 
80 -49.272 -57.281 -56.295 -55.826 
86 -46.083 -56.437 -56.334 -57.060 
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Table E.3: Seasonal average δD values from flux samples (per mil) 

δD in fluxes from planted tubs δD in fluxes from unplanted tubs 

WB1 WB2 WB3 WB4 WB1 WB2 WB3 WB4 
-146.046 -166.382 -209.546 -287.525 -151.878 -174.952 -172.768 -277.643 

-147.235 -212.793 -280.145 -306.022 -87.427 -172.137 -218.847 -322.953 

-234.46 -268.766 -304.434 -337.628 -143.203 -284.005 -186.047 -308.278 

-287.884 -312.999 -284.767 -342.698 -199.287 -304.213 -260.519 -344.032 

-309.998 -320.447 -333.797 -342.777 -251.886 -264.365 -282.675 -338.05 

-317.715 -341.855 -340.58 -339.573 -311.462 -341.453 -330.48 -347.87 

-329.468 -334.977 -342.555 -347.007 -229.64 -343.223 -273.266 -248.686 

-350.217 -347.207 -351.853 -327.494 -350.081 -290.649 -311.98 -336.047 

-340.916 -350.789 -349.817 -339.8 -324.291 -309.332 -326.923 -340.26 

-331.616 -354.371 -347.782 -352.106 -298.5 -328.014 -341.866 -344.473 

 

Table E.4: Seasonal average δ13C values from pore water samples (per mil)

Average δ13C values in pore water  
from planted tubs 

Average δ13C values in pore water from 
unplanted tubs 

WB1 WB2 WB3 WB4 WB1 WB2 WB3 WB4 
-36.392 -41.110 -35.319 -49.114 -27.11 -44.455 -50.815 -56.367 

-51.316 -52.760 -55.491 -45.118 -55.18 -55.848 -53.738 -46.481 

-51.974 -51.694 -41.605 -44.779 -46.22 -51.940 -45.958 -47.207 

-50.427 -35.569 -47.980 -48.529 -52.57 -50.942 -47.145 -51.413 

-54.740 -51.377 -48.297 -50.250 -54.08 -52.595 -52.576 -52.313 

-55.080 -51.097 -52.191 -52.206 -53.72 -54.089 -54.406 -48.528 

-52.004 -47.997 -49.765 -47.882 -52.18 -52.733 -52.992 -53.229 

-44.280 -17.157 -42.422 -39.603 -42.98 -43.289 -49.154 -46.342 

-45.652 -33.528 -43.343 -47.520 -45.83 -50.229 -50.069 -48.156 

-51.983 -50.577 -51.660 -52.072 -56.53 -56.845 -55.899 -55.579 
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Table E.5: Seasonal average δD values from pore water measurements (per mil)

δD Averages in pore water 
 from planted tubs 

δD averages in pore water  
from unplanted tubs 

WB1 WB2 WB3 WB4 WB1 WB2 WB3 WB4 

 *  *    * -254.92  *   *  -164.5 -240.8 

  * -250.695 -330.13 -305.918  *  -277.35 -300.7 -371.17 

-218.503 -248.073 -300.608 -331.81  *  -248.154 -295.6 -312.57 

-261.415 -273.68 -271.195 -298.53 -256.03   * -358.7 -340.065 

-356.315 -367.688 -261.105 -331.518 -360.645 -348.105 -317.9 -321.955 

-358.198 -361.465 -365.31 -367.35 -348.73 -330.675   *  *  

-222.476 -201.412 -162.474 -152.959 -215.853 -202.823 -162.2 -175.161 

-297.353 -203.298 -306.89 -284.405 -208.8 -231.513 -357.0 -317.475 

-298.335 -242.815 -310.218 -323.145 -298.175 -311.925 -315.4 -322.775 

-367.288 -380.133 -337.405 -359.38 -321.757 -377.605 -358.8 -350.72 
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