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i	  
ABSTRACT 

 

The lateral "corners" where Kamb and Whillans Ice Streams (KIS and WIS) 

discharge into the Ross Ice Shelf share common geometries and ice mechanical settings. 

At both corners of the now-stagnant KIS outlet, shear margins of apparently different 

ages confine regions with a relatively flat, smooth surface expression. These features are 

called the “Duckfoot” on the northern, right-lateral side and the “Goosefoot” on the 

other. It has been suggested, on evidence found in ice internal layers, that the flat ice 

terrains on KIS were afloat in the recent past, at a time when the ice stream grounding 

line was upstream of its present location. The overdeepening in the bed just upstream of 

the KIS grounding line supports this view of the past geometry. 

The right-lateral margin at the outlet of the currently active WIS, the location of 

Subglacial Lake Englehardt (SLE), appears to have many similarities with the right 

lateral margin of KIS, though with a less developed looking inboard margin. This paper 

presents a mechanical analysis using surface and bed topography and velocity datasets 

comparing the Duckfoot flat ice terrain with the terrain around Subglacial Lake 

Englehardt.  At both locations mechanical thinning along shear margins and lows in the 

bed topography redirects basal water routing towards the features.  Here, I consider the 

history of these features and their role in ice stream variability by comparison of the 

relict and modern features and via numerical modeling of ice shelf grounding and 

ungrounding in response to variations in ice flow.   

We propose two scenarios for the development of flat ice terrains/subglacial 

lakes at the outlets of ice streams. In the first, development of a lake in the hydraulic 



	  

	  

ii	  
potential low along a shear margin forces a margin jump as shearing develops along 

the inboard shore of the margin lake. This thesis presents evidence for an inboard 

(relative to the main outboard shear margin) zone of shear along the inboard shoreline 

of SLE, suggesting that subglacial lakes along shear margins are capable of facilitating 

shear margin jumps.  In the second, grounding line advance around a relative low in the 

bed, creating adjacent margins along the lakeshores, forms a remnant lake. Discerning 

which of these scenarios is appropriate at the KIS outlet has implications for 

understanding the history of the ice stream grounding line.  

An ice flow model is used to place these local conditions in a regional context 

by studying the effect of internal perturbations, such as ice rise stagnation or inward 

margin jumps, on grounding line position.  Bathymetry is important in determining ice 

stream flow in the ways that might not be otherwise realized in 1-D flow model studies.  

In the numerical modeling experiments, grounding line advance across the KIS outlet is 

mediated by the overdeepening in the bed and proceeds not in the direction of ice flow 

but transverse to flow.  This finding adds complexity to both a flowline view of 

grounding line migration and the theory that grounding lines are unstable in the 

presence of inward sloping bed topography. 
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Chapter 1 

INTRODUCTION 

 

1.1 Background 

 
Understanding the physical processes underlying systems considered vulnerable to 

rapid change is critical to preparing for the effects of global warming.  Ice sheets comprise 

one of those systems. Today, the polar ice contribution to sea level rise is positive and 

growing (Cazenave and Llovel, 2010). This trend has two components: changes in melting 

and changes in the rate at which ice flows from the ice sheets to the ocean. Here I focus on 

the second. 

Ice streams are channels of fast moving ice that can be tens of kilometers in width 

and hundreds of kilometers long.  Gravity drives internal deformation of the ice and 

conditions at the base of the ice stream regulate melting, which in turn generates water that 

lubricates the ice/bed interface enhancing flow.  In general, an ice stream transports ice mass 

from an interior catchment down to a grounding zone where the stream goes afloat and 

becomes an ice shelf (Fig. 1.1).  Ice shelves flow through coastal embayments toward the 

open ocean where the ice eventually calves and form icebergs.  Basal melting below the ice 

shelf is highest near the grounding line (Carter and Fricker, 2012) and is partly controlled by 

the discharge of fresh water across the grounding line and under the ice shelf cavity (Motyka 

et al., 2011). 
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Figure 1.1.  Schematic showing ice stream and ice shelf system.  The grounding zone represents the 
transition from grounded to floating ice.  Blue arrows designate regions dominated by longitudinal 
stresses, while red arrows designate regions dominated by shear stresses. 
 
 
 The interior of the West Antarctic Ice Sheet (WAIS) feeds four large ice streams that 

transport ice to the Ross Ice Shelf along the Siple and Gould coast. At present, the mass 

balance for this catchment of WAIS is slightly positive because Kamb Ice Stream (KIS) is 

stagnant and Whillans Ice Stream (WIS) is slowing down (Joughin et al., 2005) (Fig. 1.2).  

However, WAIS has the potential for rapid and significant grounding line change due to the 

marine character and fast-flowing ice streams (Alley and Whillans, 1991). Projecting future 

behavior of the system requires adequate knowledge of all the processes underlying its 

behavior, as well as the time and spatial scales on which they change. 

The ice streams have persisted since at least the Last Glacial Maximum (LGM) when 

the grounding line retreated from the continental shelf edge (Shipp et al., 1999).  Seismically 

imaged grounding zone sedimentary wedges on the Ross Sea bed are evidence that retreat of 
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the grounding line to its present-day location preceded in an episodic series of regressions.  

In addition, deformed ice-internal stratigraphy suggests that the KIS grounding line was well 

upstream of its present day location within the last few hundred years (Catania et al., 2006).  

The conclusion drawn from these observations is that the general retreat of the WAIS 

grounding line in the Ross Sea sector since the LGM is transient in nature with local 

regressions and readvances punctuating stable stands (Hulbe and Fahnestock, 2007). 

 
Figure 1.2. Composite MODIS image of study area and with geographic place names.  Contours 
represent ice surface elevation (contour interval = 50 m).  Linear artifacts are edges of individual 
images in the stacked composite. 
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Sreaklines emanating from KIS and WIS into the Ross Ice Shelf reveal each ice 

stream’s unique flow history.  WIS stagnated approximately 850 years ago (Hulbe and 

Fahnestock, 2007) and then reactivated 400 years later.  KIS stagnated about 150 years ago 

and is currently quiescent along most of its length. Two flat ice terrains (areas of moderately 

smooth surface relief) at the downstream end of KIS, the Goosefoot along the left lateral 

margin and the Duckfoot along the right, lie between the most recently active part of the 

stream and inter-stream ridges.  Ice-penetrating radar measurements of internal layering at 

the downstream margin of KIS suggests a grounding line position ~100 km inland of its 

present position after the time of WIS stagnation (Catania et al., 2006).  Ice downstream of 

the old grounding line must have been afloat at this time although some areas may have been 

lightly grounded as part of a broad ice plain.  The KIS grounding line must have advanced to 

its present location after WIS reactivation and before KIS stagnation.  The Duckfoot margin 

is interpreted to have migrated rapidly inward (toward the center of the ice stream) tens of 

kilometers during the advance of the KIS grounding line. The ages of the margins together 

with relatively undistorted internal layers have been used together to suggest a margin 

migration rate on the order of 500 m a-1 (Catania, 2004). Today, the Duckfoot is bounded by 

two relic shear margins and its relatively smooth surface slopes away from the trunk of the 

ice stream and toward the older, outboard margin. Following grounding line advance and 

creation of the Duckfoot, the ice stream ceased its rapid flow. 

 Grounding line advance and retreat are tied to variability in the volume of ice 

discharged through ice streams feeding the Ross Ice Shelf.  In general terms, a greater 

volume of ice discharge results in grounding line advance.   However, ice discharge and 

grounding line position are further modified by cross-ice stream communication across the 
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large downstream ice plain (where basal traction is slightly above zero) in the form of 

thickness transients propagating between ice streams and the resulting transients in local 

hydraulic gradient. 

 

1.2 Thesis Goals and Contributions 

 This thesis addresses two specific goals.  The first is to examine the role of ice 

mechanics and basal water routing in the stagnation of KIS at least 150 years ago.  The 

current quiescence of KIS is an expression of century scale variability in discharge rates of 

ice streams in the Ross Sea sector of West Antarctica (Hulbe and Fahnestock, 2007, Catania 

et al., 2006, Retzlaff and Bentley, 1993).  Because rapid ice flow depends on water at the 

ice/bed interface, the stagnation of KIS is most likely related to changes in basal water 

distribution (Anandakrishnan and Alley, 1997).  Parizek et al., 2003, discuss the effects of 

local variability within the hydrologic system on promoting either basal freeze-on or 

lubrication at the ice/bed interface.  While overall energy balance and ice/till interactions 

related to ice stream stagnation have been explored in idealized settings (Tulaczyk et al., 

2000, Bougamont et al., 2003 and Christoffersen and Tulaczyk, 2003), the sequence of 

events associated with stagnation have not often been examined in a specific geographic and 

glaciological context.   

A mechanical analysis of the modern WIS outlet allows for characterization of the 

interaction between spatial patterns in ice thickness, surface slope and water distribution.  

Conclusions from the modern system may be used to analyze the configuration of the KIS 

outlet in terms of its past mechanics.	  	  In particular, a mechanical and hydrological 

comparison may be made between the inactive Duckfoot region and, at the northern edge of 
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the WIS ice plain, Subglacial Lake Englehardt, suggesting that the Duckfoot may have been 

a subglacial lake in the past and contributed to ice stream stagnation. 

 The second goal is to investigate multi-decadal scale changes in grounding line 

position and ice stream discharge.  Some combination of internally-driven perturbations, 

such as ice stream discharge variability and thickness gradients linked to grounding events at 

the downstream end of KIS and WIS (for example, grounding at Crary Ice Rise and 

Steershead), led to the grounding line advance at the mouth of KIS ~100 years ago (Catania 

et al., 2006).  Previous work on grounding line migration (Conway et al., 1999) has focused 

on longer time scales than those considered here.  An ice shelf and stream model adapted 

from Hulbe and Fahnestock (2007) is used, not to recreate past events, but to investigate the 

effects of various perturbations in their actual geographic context.  In particular, thickness 

transients communicating laterally across the broad ice plain between KIS and WIS lead to 

large variability in ice stream discharge and grounding line position. 
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Chapter 2 

ICE MECHANICS AND FLOW DYNAMICS OF SIPLE COAST ICE STREAMS, 

WEST ANTARCTICA 

 

2.1 Lateral Shear Margins  

Ice streams flow by basal slip over a well-lubricated bed of unconsolidated sediments 

(Kamb, 2001).  Studinger et al., 2001, found that the onsets and lateral margins of WAIS ice 

streams coincide with the limit of marine subglacial sediments.  Low yield strengths at the 

bed shift much of the resistance to the gravitational driving stress to the lateral boundaries of 

the ice stream.  The lateral boundaries, or shear margins, are thus characterized by high 

strain rates.  Ice speeds are largest near the center of an ice stream and go to nearly zero at 

the margin. 

High strain rates at the margins produce mechanical thinning of the ice. Relatively 

thinner ice generates a hydraulic gradient that tends to drive water toward the margin, 

leading to the formation of subglacial lakes along the margins and perhaps also altering ice 

stream flow along the margins. The position of a lateral margin may shift as thermodynamic 

conditions at the margin dictate (Harrison et al., 1998). 

Unlike the rigidly constrained lateral boundaries in fjords and outlet glaciers, the 

shear margins of ice streams may migrate over time.  In the past, the effects of strain 

softening and heating have been considered (Raymond, 1996), as well as jumps in 

conjunction with grounding line position (Catania et al., 2006).  Here, two additional 

possibilities are considered.  First, the formation of subglacial lakes can facilitate migration.  

Subglacial lakes reduce basal traction locally above the lake and focus shear along the lateral 

shorelines.  When a subglacial lake develops along an ice stream shear margin, the opening 
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of two shoreline shear margins may facilitate a margin “jump” to one of the shorelines 

depending on whether local dynamics promote widening or thickening of the ice stream.   

Ice thickness transients caused by ice volume discharge variability may also lead to shear 

margin migration via grounding and ungrounding events at the downstream end of ice 

streams and particularly in areas that are part of the broad ice plain. 

 

2.2 Bed Topography 

The bed topography across the Gould, Siple and Shiraze Coasts’ ice streams, 

particularly near the grounding zone, comprises the physical backdrop for the ice system.  

Thus, regional and local topographic features affect the interplay of dynamic processes 

within the system.   

The Siple coast ice streams flow along shallow troughs in the bedrock that act to 

focus subglacial meltwater and marine sediment, both of which facilitiate fast ice flow (Shipp 

et al., 1999).  Bordering the troughs are inter-stream ridges represented by local highs in the 

bed topography.  These ridges confine the ice streams and follow the trend of the Trans-

Antarctic Mountains to the south toward their terminus at the continental shelf (Shipp et al., 

1999) and are part of the larger basin and range structural fabric within the West Antarctic 

Rift System (Behrendt, 1999).  

Smaller-scale (in terms of height and spatial extent) bed topography along the coast 

plays a significant role in determining where ice is likely to ground and, in turn, where 

thickness transients are likely to occur and propagate.  Transients in the thickness field may 

be generated by variations in the mass flux from upstream, changes in basal melt rate or 

basal traction or changes in the geometry of the ice shelf among other factors. Persistent 



	   9	  
basal freeze-on occurs due to conductive cooling where water pools against sufficiently 

steep topography (Bell et al., 2011). Thickness transients propagating away from such a 

feature will likely lead to further grounding and further affect ice stream flow.   

An ice plain is a transitional area between an ice stream and the floating ice shelf 

(Bindschadler, 2005).  A broad ice plain is situated at the downstream end of KIS and WIS 

where the basal traction is only slightly above zero and the ice surface elevation is relatively 

flat (Hulbe and Fahnestock, 2007).  The ice plain facilitates communication of thickness 

gradients from one side of an ice stream to the other and also between ice streams, for 

example between KIS and WIS across the Goosefoot.  The relatively flat bed topography 

within the ice plain allows for small variations in ice thickness and surface slope to have a 

large effect in determining basal water routing.  Both these factors play a large role in 

determining ice stream dynamics on moderately short time scales. 

Crary Ice Rise (CIR) and the Steershead (SH) (Fig. 1.2) are topographic highs 

downstream of the present day grounding line overlying relatively shallow features on the 

ocean floor.  The ice rises are contiguous with the inter-stream ridges, Siple Dome (SD) and 

Englehardt Ridge (ER), which define the lateral margins of KIS and WIS farther upstream 

(Fig. 1.2).  At these high points, floating ice in the ice shelf is more likely to ground and 

remain stuck due, in part, to the temperature gradient of newly grounded ice.  When ice 

grounds, the temperature gradient changes quickly between the thermally equilibrated 

floating ice – ice that is fixed at the freezing point of the ocean water – and grounded ice 

atop the topographic high.  The basal temperature for grounded ice is determined by the rate 

of heat conduction from the underlying rock to the surface (Bindschadler et al., 1990). CIR 

and SH are significant obstacles to ice flow, which makes them important geographic focal 
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points for the generation of ice thickness gradients that propagate upstream and further 

affect flow dynamics and grounding zone position. 

Upstream of the ice plain, the downstream end of KIS is characterized by a large 

overdeepening (~50 m) roughly oriented with its long axis in the direction of ice flow (~150 

km along flow and ~75 km across flow).  The overdeepening favors a grounding line 

position well upstream of its present day location.  The present day grounding line position 

requires ice advance across the overdeepening. Today, the KIS grounding line lies stagnant 

along the reverse slope that forms the downstream boundary of the overdeepening (Fig. 2.2). 

 
Figure 2.1. Location (A-A’) of flow line transect in figure 2.2. Modern grounding line is outlined in 
black. 
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Figure 2.2.  Flow line longitudinal transect (refer to figure 2.1 for location).  Green line represents 
ice surface, blue line is ice bed and pink line is bed topography. 
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length scales similar to the ice thickness (Gudmundsson and Raymond, 2008). In contrast, 
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interfaces) (Cuffey and Peterson, 2011). Smooth and low slope surfaces indicate a very 

weak substrate, that is, a contiguous water body such as a subglacial lake or the ocean. 

Moderate relief due to reduced basal traction characterizes the surface expression of 

subglacial lakes.  Fricker and Scambos (2009) documented an active subglacial hydrologic 

system below the downstream end of WIS and Mercer Ice Stream (MIS).  In their analysis 

they identified nine subglacial lakes and showed that some were linked.  The surface 

expression of subglacial Lake Englehardt (SLE), one of the largest in the study, is typical of 

others across the WIS ice plain.  The ice above the SLE is in hydrostatic equilibrium and the 

surface is profile across the lake is remarkably flat.  Ice above SLE is relatively thin (~800 m) 

(Shabtaie and Bentley, 1988) which minimizes the effects of ice-plate flexure at the edges of 

the flat ice terrain (Fricker and Scambos, 2009). 

The surface elevation profiles of subglacial lakes identified by Fricker and Scambos 

(2009) share similar characteristics to the two flat ice terrains at the downstream end of KIS, 

the Goosefoot along the left lateral margin and the Duckfoot along the right.  The flat ice 

terrains separate the ice stream from the inter-stream ridges.  Surface slopes (10-4) and 

velocities (<0.3 m a-1) are small on the flat ice terrains (Jacobel et al., 2000) and surface relief 

is intermediate between the relatively rough ice stream and the very smooth inter-stream 

ridge morphology.  The surface shape of these terrains tells us that the ice was floating and 

internal ice stratigraphy suggests that they stagnated at some time before the main trunk of 

KIS stagnated (Catania et al., 2006).   

Differences in ice surface textures help to define ice mechanical boundaries.  Several 

ice mechanical settings exist at the downstream ends of the Siple and Gould Coast ice 

streams, particularly at the grounding zone of KIS and WIS where very smooth surface 
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textures in the nearly stagnant interstream ridges coarsen towards the main trunk of the 

ice streams where ice is moving quicker and differences in basal traction propagate to the ice 

surface. 

 

2.4 Mechanical Analysis Across the KIS and WIS Ice Plain 

While surface texture analysis provides an overview of ice mechanics across regions, 

the present work requires more detailed analysis at specific locations. That objective is 

addressed using high-resolution surface elevation, bed elevation, and velocity data sets. 

Project collaborator Mark Fahnestock produced the high-resolution digital elevation model 

used here. The DEM features an optimized elevation field from MODIS slope field and 

ICESat laser tracks.   Fahnestock generated the optimal surface using a combination of a 

detailed local topography derived using a machine vision technique: shapelet (related to 

wavlelet) characterization of a surface by fitting shapelet derivatives to the slope field, with a 

longer-wavelength regional topography generated from fitting ICESat elevation points. The 

result of the dataset is a detailed view of the grounding zones (125 m postings, independent 

at a horizontal distance of about 250 m, with a few-meter vertical accuracy) for ice streams 

flowing into the Ross ice shelf.  The benefits of using this high-resolution dataset are 

twofold.  The dataset allows for detection of small variations in surface elevation across the 

grounding zone where transitions are gradual and also for a physical analysis of topographic 

features related to past flow events.  I also used bed topography from BEDMAP1_plus 

dataset (Pritchard, British Antarctic Survey) and velocity datasets for the grounding zone 

region from Joughin et al., 2005 and Rignot et al., 2011. 

A series of transects runs across KIS and WIS, including the ice plain at their 
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downstream end (Fig. 2.3). The ice mechanical settings in different locations are 

compared using surface elevation, bed elevation, surface speed, and effective strain rate.  

Strain rates are calculated as velocity gradients (Cuffey and Peterson, 2011).  The effective 

strain rate, a measure of the total deformation experienced by the ice, is given by, 

      

€ 

˙ ε = 1
2
∂ui
∂x j

+
∂u j

∂xi

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ,                                                  (1) 

where ui is the velocity field in the material.   

High strain rates are found along the strike-oriented transects highlight shear margins 

where ice velocities change rapidly between flowing and non-moving ice (Fig. 2.4).  Thinning 

at lateral margins is associated with higher effective strain rates accompanying shear margins 

are a result of either strain heating and local melting (Jacobson and Raymond, 1998) or 

recrystallization and crevasse formation (Thorsteinsson et al., 2003).  After a shear margin is 

well established, ice within the shear zone undergoes intense shearing and its speed is greatly 

reduced. 
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Figure 2.3. Composite MODIS image of Siple and Gould coasts overlain by surface elevation 
contours. Strike-oriented transect locations are noted. Shaded areas represent different ice regions 
shown in transects (Fig. 2.4). Inset shows IceSAT + MODIS composite surface elevation. 
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Figure 2.4.  Across-flow transects with the direction of ice flow toward the viewer showing effective 
strain rates (a-1), velocity (m a-1) and ice surface elevation and thickness (m).  Color shading 
represents geographic regions.  Orange represents the Duckfoot, green represents KIS, light blue 
represents the Goosefoot, pink represents SLE and dark blue represents WIS.  Velocity data from 
Joughin, 2005, and enhanced surface elevation created using a combination of ICEsat altimetry and 
shapelet analysis using MODIS. 
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characterized by zones of surface thinning. 

With increasing distance downstream on WIS, the cross-stream speed profile 

changes from the strongly U-shaped profile (transects A, B, C) typical of ice streams to a 

more gradually changing profile. The change reflects the broadening of the stream (transects 

D and E) and the loss of strong lateral margins and their associated shearing. Speed also 

varies with ice thickness, and this is seen at the confluence of WIS and MIS, where the bed is 

relatively deep and the ice is relatively thick.  Ice speeds are generally lower along the 

northern margin near SLE and leeward of ER (transect E).  Patterns of effective strain rates 

parallel the distribution of velocity gradients across the ice plain, also, notably, become more 

diffuse downstream, especially along the northern margin near SLE.  A sharp change in ice 

speed is observed further upstream along the ice margin suture zone between WIS and MIS 

(transects A, B and C) but less so downstream (transects D and E).  However, effective 

strain rates remain consistently high along the margin suture zone where mechanical 

thinning is also active. 

Transects A and B cross the elevated topography of ER, while transects C, D and E 

traverse the Goosefoot flat ice terrain between KIS and WIS.  The Goosefoot is stagnant 

and is characterized relatively shallow bed (~30 m) along the relic southern KIS shear 

margin and a sunken surface topography, perhaps indicating, along with internal syncline 

stratigaphy (Catania et al., 2006), that the region experienced a quick transition from floating 

to grounded ice.   

While the morphologies of the Duckfoot and Goosefoot are generally similar, some 

differences emerge upon careful inspection. At the Duckfoot, the thinnest ice is at the 

boundary of the flat ice terrain, along the relict shear margins.  At the Goosefoot, the 
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thinnest ice is in the middle of the feature. This may indicate differences in mechanical 

histories of the two features.  

The overdeepening (~150 meters deeper than the up and downstream highs) in the 

bed upstream of the present KIS grounding line presents a challenge with respect to 

grounding line position. Its upstream extent aligns well with the past KIS grounding line 

position proposed by (Catania et al., 2006). This makes sense on theoretical grounds, as 

grounding lines tend to be unstable on reverse slopes and over relatively deep reaches of the 

bed (Schoof, 2007 and Weertman, 1974).  The modern grounding line, however, rests part 

way along a reverse slope, rather than on either of the adjacent relative highs in the bed. This 

may represent the effects of processes other than those captured by flowline models of the 

relationship among bed elevation, ice flow, and grounding line position.  Assuming the 

Catania et al., 2006 chronology is correct, then the KIS grounding line appears to have been 

advancing downstream at the time of its arrest. 

Today KIS is stagnant, but the surface topography captures the imprint of past ice 

mechanics.  The main trunk of KIS is bounded by relict shear margins that appear as reverse 

slopes toward the adjacent interstream ridges, either SD or ER.  Overall, the surface 

elevation across the main trunk of KIS dips to the south (~0.5 m km-1, refer to Fig. 2.4). The 

slope may reflect processes associated with KIS stagnation, for example, if the southern 

portion of the ice stream remained active longer than the northern side.  A small tongue of 

grounded ice extends into the Ross Sea at the downstream end of KIS adjacent to the 

Goosefoot where the surface elevation continues to decrease (transect D and E).   

Surface elevation profiles across the Duckfoot are distinguished by the two relict 

shear margins that define the boundaries of the flat ice terrain (Catania et al., 2006).  These 
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are zones where, in the past, effective strain rates were relatively large, as is the case today 

along the shear margins at the downstream end of WIS. 

Changes in ice thickness and surface slope related to the formation of shear margins 

near the marine margin may cause changes in basal water routing that may in turn yield 

variations in ice flow. The hydraulic potential, Φ, is 

    

€ 

Φ = ρig Zsurface − Zbed( ) + ρwgZbed ,                                    (2) 

where ρI and ρw are ice and water density, Zsurface and Zbed is the ice surface and bed elevation 

and g is the acceleration due to gravity.  Meltwater production has both kinetic (melt water 

from basal friction) and potential (basal water routing) components and is quantified 

according to energy balance at the interface between ice and the underlying materials and 

perhaps processes within the underlying materials.  Along shear margins, a combination of 

the surface shape and the bed elevation produce a low in the hydraulic gradient that directs 

water away from the main trunk of the ice stream and toward the margin.  Higher effective 

strain rates focus mechanical thinning along the ice margin, resulting in a surface gradient 

toward the margin.  Local variability in meltwater flow pattern has implications in 

determining areas of basal freeze-on (Parizek et al., 2003).  In this scenario, meltwater flow 

toward and along the shear margin would promote basal freezing toward the main trunk of 

the WIS. 

Subglacial Lake Englehardt (SLE) is a right lateral margin feature at the downstream 

end of WIS and adjacent to ER and the Goosefoot.  The subglacial lake extent as defined by 

Fricker and Scambos (2009) shares its northern shoreline with the northern WIS shear 

margin and resides within a flat ice terrain. 
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Chapter 3 

ICE MECHANICS AND SUBGLACIAL LAKES AT ICE STREAM OUTLET 

MARGINS: COMPARISON OF DUCKFOOT AND ENGLEHARDT LAKE 

FEATURES, WEST ANTARCTICA 

 

3.1 Introduction 

Grounding line position is variable on a range of time scales. At the shorter end of 

the spectrum, both vertical and horizontal motion of grounded ice has been observed to 

vary with ocean tide height (Bindschadler et al., 2003). Where the bed has a relatively 

uniform elevation over a large region, as at the WIS ice plain, ephemeral grounding and 

ungrounding can be a pervasive feature. Over time scales of years and longer, grounding line 

position must be related to the mass balance of the system as a whole, but mediated by local 

and regional-scale (a few km to a few 100 km) processes.  Conway et al., 1999, discuss 

characteristics of grounding line retreat across the Ross Sea Embayment since the early to 

mid Holocene glacial maximum.  Transience in the grounding zone associated with bed 

shape and basal water are of particular interest here. 

The corners of the KIS outlet are defined by conspicuously smooth and low-slope 

"flat ice terrains" (Catania et al., 2006). These features are often identified by informal names, 

the Duckfoot (DF), at the northern, right-lateral corner, and the Goosefoot (GF), coined by 

Ted Scambos (Jacobel et al., 2000).  Two relict shear margins bounding the DF flat ice 

terrain were identified by the presence of near-surface diffractors and distorted, 

discontinuous deep layers in the ice stratigraphy (Catania et al., 2006).  Additionally, the relict 

shear margins are coincident with broad topographic troughs (Catania et al., 2005 and 2006). 

Catania et al, 2006, used snow accumulation rates of 0.049 m a-1 and 0.058 m a-1 to estimate 

stagnation ages of ~340 years and ~150 years, for the outboard and inboard margins, 
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respectively (Fig. 3.6).  Stratigraphic continuity across the DF led Catania to conclude that 

the switch from active shearing along the outboard margin to the inboard margin must have 

happened quickly, perhaps synchronously with the stagnation of the outboard margin. 

One explanation for the formation flat ice terrains and the related ice internal 

stratigraphy is that the terrains were floating in the past (Catania and Hulbe, 2012).  This 

would surely have been the case if the KIS grounding line was ~100 km upstream of its 

present location with the last few hundred years.  Details of grounding line advance from 

that postulated upstream position are not recorded in an obvious way in the ice. The 

advance may have been uniform across the width of the stream or, more likely, may have 

followed the contour of the sea floor in some way.  For example, the grounding line may 

have become a "shoreline" along a subglacial lake underneath the DF, where the bed is 

locally relatively deep.  Mechanical thinning along the then-active margins could have 

focused water to the lake, in turn creating a mechanism by which a margin position switch 

could occur.  The formation of the lake may also have played a role in ice stream stagnation. 

  

3.2 SLE as a Modern Analogue for Duckfoot Flat Ice Terrain 

A modern mechanical analogue for the now stagnant DF margin may exist at the 

downstream end of WIS.  The northern margin of WIS, adjacent to Englehardt Ridge (ER), 

is characterized by a 50 km long region of relatively thin ice (~600 – 800 m) bounded by 

surface crevasses. The ice surface between these boundaries is relatively smooth, 

intermediate between the rougher ice stream surface and smoother interstream ridge, and 

thus similar in appearance to the DF.  Fricker and Scambos (2009), described this area as 



	   26	  
Subglacial Lake Englehardt (SLE), a location where water is stored and periodically 

discharges below the Ross Ice Shelf (RIS).   

Both the northern and southern boundaries of SLE are characterized by crevasses 

and differences in crevasse patterns at the two lakeshores can be used to investigate the 

origin and evolution of the lake.  SLE is bounded to the north by the WIS shear margin.  

Effective strain rates are large along the relatively narrow northern margin, which is thus 

characterized by mechanical thinning (Fig. 3.1) and pervasive crevassing (Fig. 3.2).  The 

southern boundary of SLE is identifiable in the change from relatively smooth surface over 

the lake to relatively rougher in the ice stream.  A faint—but detectable—set of arcuate 

crevasses are observed along this shoreline of the lake (Fig. 3.4). The faintness and relatively 

uncomplicated geometries of the fractures (mature shear margins are "chaotic" with many 

cross-cutting relationships) along the southern lakeshore suggest that this feature is young. 

Nevertheless, the arrangement is otherwise identical to the situation at the DF.  It may thus 

be hypothesized that SLE and the DF have similar origins and relationships to ice stream 

flow. 

 

3.3 Ice Mechanics and Basal Water Routing 

Both water availability and water routing at the ice/bed interface are important to ice 

stream flow.  Because changes in surface slope affect the hydraulic gradients that direct basal 

water flow, such changes may play a role in discharge cycles and stagnation events. Thus, it 

might be expected that decadal to century scale grounding and ungrounding associated with 

ice stream stagnation and reactivation lead to variations in basal water routing.  Ice 
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dynamics-driven changes in basal water could in turn lead to further variations in ice 

stream flow. 

Due to the relative uniformity of ice thickness across an ice stream, especially along 

the ice plain at the outlet of a large ice stream, small changes in ice surface morphology may 

lead to relatively large rerouting of underlying basal water.  High effective strain rates at the 

margins produce mechanical thinning of the ice that in turn affects local thickness and 

surface elevation gradients and, in turn, local basal water routing (Fig. 3.1). The four spatially 

largest subglacial lakes documented by Fricker and Scambos (2009) and Carter and Fricker 

(2012) are located along shear margins or, in the case of Lake 7, a shear margin suture zone 

now advecting from the confluence of WIS and Mercer ice streams (Fig. 3.1).  The shear 

margins bounding WIS are heavily crevassed with widths of a few kilometers and effective 

strain rates of ~ 0.01-0.14 a-1 (Fig. 3.1). 
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Figure 3.1.  MOA image showing Whillans Ice Plain and the locations of subglacial lakes (Ficker and 
Scambos, 2009).  Colored contours are calculated effective strain rates (contour interval = 0.015 a-1).  
Shear margins are characterized as narrow bands of high effective strain rates separating the active ice 
stream with adjacent ice ridges. White contours indicate hydropotential (contour interval = 200 kPa).  
Grounding line is shown as a black line. 
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and Duckfoot Flat Ice Terrains 
 

A map of hydraulic potential for WIS shows that basal water routing (down the 

potential gradient) is, in part, guided by local thinning along the shear margins where it may 
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effective strain rates become more diffuse as the ice stream widens across the ice plain.  

Here effective strain rates are on the order of 0.01 – 0.02  a-1 (Fig. 3.7).   

 
Figure 3.2.  MOA image (Scambos et al, 2007) showing the right lateral flat ice terrain at the 
downstream end of WIS.  Curved blue line is the SLE boundary as defined by Fricker and Scambos, 
2009.  Surface expression and shear margin pattern is annotated.  Ice flow direction is shown in the 
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upper right hand corner. (5 m) (Polar Geospatial Data Center).  White boxes represent areal 
extent of high-resolution imagery (5 m from Polar Geospatial Data Center) used in figures 3.3 and 
3.4. 
 
 
 

 
Figure 3.3.  High-resolution image showing outboard shear zone surface morphology (Polar 
Geospatial Data Center).  a) en echelon arcuate crevasses, b) Englehardt Ridge terrain and c) chaotic 
crevasse zone. 
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Figure 3.4.  High-resolution image showing SLE inboard shoreline surface morphology (Polar 
Geospatial Data Center).  a) en echelon arcuate crevasses, b) chaotic crevasse zone and c) main trunk 
of WIS. 
 

 
High-resolution imagery of SLE and the surrounding flat ice region distinguishes 

several zones of distinctive surface morphology (following the example of Merry and 

Whillans, 1993) (Fig. 3.3 and 3.4).  The highest effective strain rates along the outboard shear 

margin are coincident with a narrow band of en echelon hook-shaped surface crevasses 

marking the transition between flowing ice in the flat ice terrain and slow moving ice on ER 

(Fig. 3.3).  As ice in the stream moves past ER, simple shear rotates the inboard ends of the 

crevasses into hooks that are concave down the ice stream.  Inboard of the en echelon 
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crevasses is a wide chaotic crevassed zone.  Here, further shearing and opening of new 

crevasses creates a large zone of complex crevassing (Merry and Whillans, 1993).  Upstream 

of SLE, the main trunk of WIS borders the chaotic crevassed zone on its inboard side.   

However, inboard of SLE, a second narrow zone of en echelon hook-shaped crevasses 

emerges over the lakeshore, forming a second fractured (that is, shearing) margin in the 

stream (Fig. 3.4). 

Buried crevasses in the DF region display a similar arrangement (Fig. 3.5).  At the 

DF, a band of outboard near-surface crevasses tracks the boundary between the SD and fast 

flowing ice, most likely reflecting a zone of high paleo effective strain rates along the relic 

shear margin.  Inboard, a second zone of near surface crevasses marks the boundary 

between the shear margin and the main trunk of KIS.  The arrangement may be read as a 

map of past effective strain rates and ice flow.  The similarity to the present-day SLE is clear. 

 
Figure 3.5.  MOA image showing Duckfoot flat ice terrain.  M1 represent oldest outboard relic 
shear margin (350 a) and M2 is younger inboard relic shear margin (150 a). 

!

 
  

 
 

 

 
3.7. Surface elevation map of the Subglacial Englehardt Lake region overlain by effective 

strain rate contours (contour interval = .004 a-1).  Note: Velocity data used to calculate effective strain 

rates does not cover a small area at the bottom of the image. 
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3.5 Subglacial Lake Englehardt and Basal Water Routing 

SLE is an outlet through which subglacial meltwater leaves the ice stream system.  

Fricker and Scambos (2009) concluded that the elevation anomalies reported from repeat-

track laser altimetry were the result of water discharge events.  This lake is thus clearly the 

involved in water routing.  Carter et al., 2012, calculated estimated volume fluxes for the area 

and reported input values of ~ 110 m3 s-1 and outputs of ~ 60 m3 s-1 during drainage events.  

This may be a persistent feature, however the relatively recent development of fractures on 

the inboard lakeshore suggests instead that it is a relatively new feature.  If so, it may be 

involved in the recent slowdown of the downstream end of WIS (Joughin et al, 2002 and 

2005). 
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Figure 3.6. MOA image showing flat ice region around SLE.  Colored contours are calculated 
effective strain rates (contour interval = 0.004 a-1). White contours indicate hydropotential (contour 
interval = 50 kPa).  Outline of SLE is shown as a blue line. 
 
 

Today the downstream reach of WIS is decelerating at an average of 5.7 m a-2 with 

the largest rates farthest downstream on the ice plain (Joughin et al., 2002 and 2005).  The 

slowing started in at least 1974, the time of the earliest surface measurements (Bindschadler 

et al., 2005 and Joughin et al., 2005).  Because SLE diverts water away from the center of the 
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ice stream and, in turn, increases basal traction, the subglacial lake may contribute to the 

deceleration. 

 

3.6 Summary of Comparison of Subglacial Lake Englehardt and Duckfoot Features 
and Consequences for Ice Stream Flow 
 

SLE may be an analogue for the DF margin prior to KIS stagnation 150 years ago.  

In general, changes in surface slope associated with ungrounding and regrounding across the 

ice plain downstream of the ice stream outlet or associated jumps in lateral margin location 

could redirect basal water flow and lead to the formation of margin lakes where basal water 

is stored and episodically released at the grounding line.  It may be that for the DF, like 

present day SLE, the combination of a topographic low in the bed and mechanical thinning 

at the ice stream margin produced a low in the hydraulic potential that diverted water 

producing such a lake. 

 The setting of the DF at the right lateral outlet of KIS is remarkably similar to the 

setting of the SLE region at the outlet of WIS (table 3.1).  As on SLE, the DF is 

characterized by a slope break that must be the result of high effective strain rates and 

localized thinning along the former shear margin.   The slope is oriented toward the lateral 

margin and, in turn, directs basal water toward that margin. 
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TABLE 3.1 COMPARISON BETWEEN DUCKFOOT AND SLE FEATURES 

Parameter Duckfoot Subglacial Lake Englhardt 
   
Geometery in 
context of ice 
stream 

Right lateral downstream feature 
with outboard shear margin 
bordering Siple Dome. 

Right lateral downstream feature 
with outboard margin bordering 
Englehardt Ridge 

   
Surface 
expression 

Flat ice terrain: low relief curved 
lineation features oriented sub-
parallel to the ice flow direction. 
Slope break towards relic lateral 
margin. 

Flat ice terrain: low relief curved 
lineation features oriented sub-
parallel to the ice flow direction. 
Slope break towards relic lateral 
margin. 

   
Inboard and 
outboard shear 

Bounded by two relic margins 
determined by analysis of 
internal layering and near surface             
(≤ 100 m) crevasses (Catania et 
al., 2006). 

High-resolution imagery reveals 
outboard shear zone featuring en 
echelon, hook shaped crevasses 
bordering a more disaggregated 
and chaotic crevassed zone. A 
second inboard shear zone is 
congruent with the southern 
(inboard) shoreline of SLE and 
features a second set of en 
echelon surface crevasses. 

 
 

The similarities between the DF and SLE derived from their shared mechanical and 

geomorphological context suggests that the two areas are similar features within the greater 

ice stream system.  It follows that the DF was a likely setting for a subglacial lake prior to 

KIS stagnation.  If the DF was a subglacial lake in the past, the development of the lake may 

have played a role in the sudden margin jump there, facilitating the jump as lake 

development caused formation of the inboard shear margin.  After the margin jumped 

inward, mechanical thinning, apparent in the modern surface slope and hydraulic gradient, 

began along its new inbound trace.  We speculate that a similar sequence of events may be 

unfolding at the outlet of WIS. 
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 If in the past the DF was a subglacial lake, it is likely that the DF would have 

played a role in controlling the basal water regime at the downstream end of KIS.  Today, 

SLE diverts water away from the main trunk of WIS and thus may be contributing to the 

deceleration of the ice stream.   Similarly, the DF would have diverted water to its location 

along the lateral margin and, in turn, also contributed to the stagnation of KIS. Thus, one 

interpretation of the relict features is that, based on similarities in inboard and outboard 

shear and surface expression between the DF and SLE, the DF is a likely location for a past 

subglacial lake that served to divert water away from the main trunk of KIS and help lead to 

its ultimate stagnation. 
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Chapter 4 

MODEL SIMULATIONS OF THE EFFECT OF PERTURBATIONS ON 

GROUNDING ZONE DYNAMICS AT THE DOWNSTREAM END OF KAMB 

AND WHILLANS ICE STREAMS, WEST ANTARCTICA 

 

4.1 Introduction 

 Fahnestock et al (2000) used stacked AVHRR images to create a more detailed view 

of flow features in the Ross Ice Shelf (RIS) than had been previously recongnized.  These 

features indicated that the flow of the shelf had not been steady over time and those authors 

concluded that such variability must be related to discharge from the West Antarctic Ice 

Sheet (WAIS).  Hulbe and Fahnestock (2004 and 2007) used higher resolution composite 

Moderate Resolution Imaging Spectroradiometer (MODIS) images of the RIS and numerical 

models to infer the timing and magnitude of the past events.  Together, these works 

extended the record of flow variability in West Antarctica back about 1000 years and 

demonstrated that WAIS ice streams experienced stagnation and reactivation events on 

century time scales.  These findings suggest that the grounding zone may experience far 

more frequent regression and transgression events than previously understood.  These 

findings are supported by the marine record (Anderson et al., 2002) and also borehole 

observations (Vogel et al., 2005). 

 The boundary conditions for an ice stream are the most important factors in 

determining discharge variability and, in turn, grounding line migration.  Grounding zones 

differ from grounding lines in that they feature a broad ice plain of lightly grounded ice. As 

noted in previous chapters, bed topography below ice streams is an important factor in 

determining ice thickness.  Ice thickness and surface slope control basal water routing and, in 
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turn, ice stream speed.  Resistance forces at the base of the ice stream that combine to 

make basal drag (Cuffey and Peterson, 2011) may be modified by basal freeze and 

subsequent strengthening of subglacial till (Bougamont et al., 2003) and the presence of 

sticky spots, or subglacial areas of high basal traction (Sergienko and Hulbe, 2011).  Ice 

stream outlet geometry is important in determining discharge and grounding zone variability.  

For instance, lateral margin position switches, and subsequent narrowing of the ice stream 

trunk, at the downstream end of an ice stream may lead to changes in ice stream discharge 

(Catania et al., 2006).  Furthermore, at high points in the bed, such as at Crary Ice Rise (CIR) 

and Steershead (SH), can lead to thickness gradients that further modify outlet width 

upstream at ice stream outlets. 

 This chapter presents output from a numerical model of the RIS and the 

downstream reaches of its tributary ice streams, configured to represent possible past states 

of the system.  The goal is to investigate the timescales and grounding and ungrounding 

events associated with various perturbations, such as changes in basal traction, rather than to 

recreate past discharge history as informed by the ice shelf record.  Ice mechanics controlling 

grounding events across the ice plain at the Kamb Ice Stream (KIS) and Whillans Ice Stream 

(WIS) outlets are diagnostic to understanding century scale grounding zone dynamics and 

variability.  In particular, Hulbe and Fahnestock (2007) noted that communication between 

ice streams across the ice plain via thickness gradients may be instrumental in controlling 

grounding events and, in turn, grounding line position and discharge cycle variability.  

Accompanying changes in surface slope, and basal water routing, may also alter ice stream 

dynamics. 
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4.2 Ice Stream and Shelf Model 

 The finite element model used here is described in detail in Hulbe and Fahnestock 

(2007) and Hulbe and MacAyeal (1999).  The model solves vertically integrated conservation 

equations for mass and momentum in a horizontal (x,y) plane. The simplification in the 

vertical (z, positive upward) reflects the very small basal traction at the ice base in both the 

ice shelf and the ice streams. 

 

4.2.1 Balance Equations 

 Change in ice sheet thickness over time described by a mass continuity equation, 
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∂h
∂t

= ˙ a + ˙ b −∇⋅ uh( ) ,    (1) 

where h represents thickness, t represents time, 

€ 

˙ a  is ice accumulation at the upper surface 

specified as a boundary condition, 

€ 

˙ b 	  is ice accumulation at the lower surface and

€ 

u is the 

horizontal velocity and a vector quantity.  The product,

€ 

uh is a vector-valued mass flux 

integrated over the ice thickness, in which 

€ 

u  is derived from the solution to the stress 

balance equations. 

 Stress balance in the floating ice shelf, where basal shear stress is nearly zero, is 

between gravitational driving stress due to surface slope and ice thickness and horizontal 

normal stresses and shear due to bay walls and ice rises (such as Crary Ice Rise). This is 

expressed, 
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where

€ 

ρ  is ice density and

€ 

g  is the acceleration due to gravity.  The ice shelf surface elevation,

€ 

zs, is determined by flotation, 
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where w represents water.  Finally, 
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ve  is the effective viscosity of the ice, 

€ 

ve =
B

2 ∂u
∂x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

+
∂v
∂y
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+
1
4
∂u
∂y

+
∂v
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+
∂u
∂x
∂v
∂y

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

n−1
n

,  (4) 

where 

€ 

B is a temperature dependent rate constant which varies in a simple way with the 

surface temperature (see Hulbe and Fahnestock, 2007).  The first term in equations (2) 

represents longitudinal strain rates.  The second term describes horizontal shear-strain rates 

and the third term is the pressure gradient due to gravity. 

 For the ice streams, where basal shear stresses are small but not zero, a traction term 

uβ,  is used to represent the effect of subglacial till on the flow of the overlying ice, 
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This formulation follows MacAyeal (1989).  MacAyeal assumed linear viscous deformation 

in the till, a situation likely not the case, but because uβ is a tunable parameter only known 

by inversion of surface measurements (Sergienko et al., 2008 ) it is not necessary to think of 

the till in this way.  The requirement that basal traction be in some way related to the speed 

associated with ice deformation is reasonable. 
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 The position of the “grounding line” is determined according to floatation.  When 

the bedrock surface elevation, 

€ 

zr , is equal to or greater than the ice bed elevation, the ice is 

grounded, 

€ 

zr ≥ zsl −
ρ
ρw

h ,     (6) 

where 

€ 

zsl  is the sea surface elevation.  At all other locations ice is floating. Where ice 

thickness is great enough to overcome floatation, the ice is classifed as grounded and 

equation (5) is solved. Where this is not the case, ice is classified as floating and equation (2) 

is solved. As will be seen later, the floatation condition yields, in some locations, complicated 

grounding line geometries.  Flux and surface slope continuity are imposed across 

grounded/floating boundaries. 

 

4.2.2 Boundary Conditions 

 Boundary conditions are needed to solve the balance equations described above.  

Kinematic boundary conditions describe interactions at the edges of the model domain.  Ice 

inflow boundaries define ice volume flux entering the ice stream system and are taken from 

MacAyeal and Thomas (1986) and Shabtaie and Bentley (1987) (Fig. 4.1).  An outflow 

condition is defined at the seaward edge of the ice shelf, which simply transmits across the 

calving boundary.  Additionally, flux conditions are required at the upper and lower surfaces 

to represent surface and basal accumulation. The surface accumulation rate is from Vaughan 

et al. (1999) and the basal accumulation rate is zero. 

 Some flow resistance must be applied under the ice stream to account for interaction 

between the ice and underlying sediment.  In the model domain, the basal friction parameter, 

β, is used to simulate basal resistance.  MacAyeal (1995) and Sergienko et al. (2007) 
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calculated a mean value of 1.8 × 109 Pa s m-1 for basal friction along MacAyeal Ice Stream, 

however, it is known that basal friction varies throughout the length of an ice stream and is 

highest near the onset and lowest near the grounding zone (Alley and Whillans, 1991). The 

experiments here use an initial background basal friction parameter, βo, of 0.01 × 109 Pa s m-

1. 

 

 
Figure 4.1. Map showing locations of flux gates (pink) for the FEM domain.  Kamb (KIS), Whillans 
(WIS), Mercer (MIS), Bindschadler (BIS) and MacAyeal Ice Stream (MacIS) flux gates are annotated.  
Additional flux comes from the Trans Antarctic Mountains (TAM). 
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Figure 4.2. Map showing FEM mesh.  Locations of Steershead (SH), Crary Ice Rise (CIR), 
Goosefoot (GF) and Duckfoot (DF) are noted. 
 
 
 
4.3 Model Experiments 

 Each model experiment reported here begins from steady state ice thickness and 

speed for fixed boundary fluxes, flow law rate factor, and basal traction parameter β.  Steady 

state is defined as a change in h of ≤ 1×10-4 % a-1 at nodes within the model domain.  From 

that state (Fig. 4.3), the model continues to step forward in time as a set of perturbations are 

applied via ice stream fluxes and basal traction.  Timing is reported here as “years after the 

start of perturbation experiments” which means that year 0 initiates when the numerical 

model has reached steady state (1400 years into the model run). 
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Figure 4.3. Steady-state fields within the model domain.  Clockwise from top left: Shaded regions 
represent grounded nodes in FEM domain and filled contours represent bed elevation where contour 
interval is 25 m; ice surface elevation (m); ice speed (m a-1); and ice thickness (m).  Locations of 
present day CIR and SH are noted for spatial context. 
 
 
 
 The experiments are not focused on recreating past events (see Hulbe and 

Fahnestock, 2007), but instead are intended to study how individual boundary condition 

changes and combinations of changes propagate through the ice stream outlet and ice plain 

region. Perturbations propagate via changes in ice velocity, velocity gradients, and thickness. 

Thickness changes may in turn drive grounding, ungrounding, and grounding line migration. 
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By proceeding in this way, we hope to better understand the processes and feedbacks that 

result in a particular grounding line configuration at a particular time, including the spatial 

and temporal scales involved.  It is important to clarify that the interest here is internal 

variability, not external forcing, of the system. The experiments are evaluated in the context 

of the present-day KIS and WIS grounding zone, for which the most information is 

available. 

 Grounded ice in the model domain exists over the two ice rises in the Ross Ice Shelf, 

CIR and SH, at the time of steady-state initialization in all of the experiments.  Hulbe and 

Fahnestock (2004) note that this is due to the high bed elevation at these sites.  At this time, 

the KIS grounding line is upstream of the large overdeepening at the downstream end of the 

ice stream.  The WIS grounding line is also upstream of its present location. 

 Perturbations during a model experiment involve changing boundary conditions.  

These include changes in ice stream discharge and also basal traction below nodes in the 

model domain with grounded ice, as summarized in Table 4.1.   

TABLE 4.1 TIMING AND TYPE OF CHANGING BOUNDARY CONDITIONS IN 
NUMERICAL MODELING EXPERIMENTS 

Event 

Years after start of 
perturbation 
experiment Magnitude 

   
1: WIS start and stop   
   
WIS stops 250 u  = 0 
WIS reactivates  650 u  = 550 
   
2: CIR stagnates   
   
CIR stagnates 100 u  = 0 
   
3: Increased basal traction (β)  
   
Background β 100 to 200 βo to 0.1 x 108 
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4: CIR and SH stagnate + β increase  
   
CIR stagnates 100 u  = 0 
SH stagnates 200 u  = 0 
Background β 100 to 200 βo to 0.1 x 108 
   
5: CIR, SH and GF stagnate + β increase  
   
CIR stagnates 100 u  = 0 
SH stagnates 200 u  = 0 
Background β 100 to 200 βo to 0.1 x 108 
GF stagnates 300 u  = 0 
   
6: CIR and GF stagnate + β increase  
   
CIR stagnates 100 u  = 0 
Background β 100 to 200 βo to 0.1 x 108 
GF stagnates 300 u  = 0 
   
7: CIR, SH, GF and DF stagnate + β increase  
   
CIR stagnates 100 u  = 0 
SH stagnates 200 u  = 0 
Background β 100 to 200 βo to 0.1 x 108 
GF stagnates 300 u  = 0 
DF stagnates 500 u  = 0 
   
8: CIR, GF stagnate + inner DF β increase + β increase 
   
CIR stagnates 100 u  = 0 
GF stagnates 300 u  = 0 
Background β 100 to 200 βo to 0.1 x 108 
inner DF β increase 500 to 550 0.1 x 108 to 1.0 x 108 
   
9: CIR, GF stagnate + SH β increase at stuck nodes + β increase 
   
CIR stagnates 100 u  = 0 
GF stuck 200 u  = 0 
Background β 100 to 200 βo to 0.1 x 108 
SH β increase 100 to 200 βo to 1.0 x 108 
βo = 0.01 x 108   
β is Pa m s-1; Boundary speeds are in m YR-1 
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4.3.1 Perturbation Effects 

 The various internally-driven perturbations outlined in Table 4.1 are forced by 

changing ice stream flux, increasing basal traction across the ice plain either as a fractional 

change on grounded ice or stagnation of grounded ice.  Each type of perturbation initiates in 

a different sequence of events involving ice mechanics that, in turn, affects flow across other 

areas of the ice stream. 

 Perturbations involving changes in ice stream flux result in changes to longitudinal 

stresses near the downstream outlet that.  The relationship between ice thickness and 

horizontal strain rates is expressed,  
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For example, when the volume flux through a particular boundary decreases, thinning 

ensues and ice that has been grounded may go afloat. Continued thinning in the downstream 

direction  flattens the longitudinal profile, and in turn reduces the surface slope, gravitational 

driving stress, and velocity of the ice. Changing ice velocity in turn modifies regional strain 

rates and may in some places lead to relative thickening, even while flux into the ice shelf is 

declining. 

 Fractional changes to basal traction in some experiments are forced at grounded 

nodes in the FEM domain.  Increased basal traction decreases ice velocity that, in turn, 

thickens ice.  As ice thickens, ice speed increases until, at some point in time, a new steady-

state is found within the system. 

 Stagnation of a grounded ice area creates a new obstacle for ice flow.  In our 

experiments this takes the form of a creation of an ice rise either at CIR or SH.  Introduction 
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of an obstacle at a particular location changes the velocity gradient along flow to a more 

negative value upstream and a more positive value downstream.  That is, compression is 

introduced upstream and extension downstream of the obstacle.  Compression upstream 

generates thickening and locally steepens transverse slopes.  These mechanical effects in turn 

direct flow around the obstacle.  Over time, the thickness signal may propagate upstream as 

ice continues to impinge on the upstream side of the obstacle.  This transient may, in turn, 

affect grounding and thus basal traction, further modifying ice flow in the region. 

 All of the simple feedback scenarios described here take place in a three dimensional 

context. Both the shape of the sea floor and the geometries of interstream ridges will 

modulate how a particular boundary condition change propagates through a region. 

 

4.4 Experiments 

 The first experiments outlined here test how simple perturbations interact with the 

ice stream – ice shelf system.  As each experiment is completed, patterns of grounded ice 

and changes in ice thickness and velocity are noted in order to interpret how the grounding 

zone across the KIS and WIS ice plain evolves. 

 

4.4.1 WIS Stagnation and Reactivation 

 Streaklines in the RIS show that WIS stagnated and then reactivated several hundred 

years later (Hulbe and Fahnestock, 2007).  The effect of outlet stagnation is examined in this 

experiment. Starting from a steady state in which the model WIS ice plain looks much like 

the present-day ice plain, ice rapidly thins and goes afloat across the ice plain after WIS shuts 

off (250 a).  Fifty years after WIS stagnation (300 a), most of the ice plain has gone afloat 
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(Fig. 4.5) and ice shelf speed downstream of the WIS outlet decreases due to thinning.  

WIS stagnation results in a reorganization of grounded ice at the downstream end of KIS 

(Fig. 4.6).  Ice thins directly upstream of CIR and along the northern shear margin near the 

DF, but ice thickens and grounds immediately south of the DF towards the middle of the 

KIS ice plain. 

 The spatial pattern of thickening and thinning shows one way in which altered flux 

on one ice stream can affect flow mechanics on an adjacent ice stream.  Along flow and 

across flow transects (Fig. 4.7) show that surface slopes change from dominantly toward the 

ice front (Fig. 4.8) to incorporate important transverse surface gradients (Fig. 4.9).  Through 

time, the flattening of the along flow surface profile facilitates lateral spreading (Fig. 4.9). 

 Where ice goes afloat across the WIS ice plain on decadal or shorter time-scales after 

ice stream stagnation, ice regrounds on multi-decadal time-scales when WIS reactivates.  

WIS reactivation is characterized by grounding line advance across the WIS ice plain but not 

past pre-stagnation location.  WIS reactivation is not accompanied by grounding line 

advance at the KIS outlet. That is, the system is tending back toward the initial, pre-

perturbation steady state. This result offers some reassurance that the model correctly 

reproduces grounding line geometry for different specific mass balance states. 
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Figure 4.4. dH/dt across the KIS ice plain for experiment 1 (table 4.1). 

 

 
Figure 4.5. Experiment 1: WIS stop and start (table 4.1).  Rows of panels represent model output 
from individual time steps.  First column panels show shaded regions representing grounded nodes 
in the FEM domain.  Contours are elevation with an interval of 25 m.  Second column panels are rate 
of thickness change, dH/dt (m a-1).  Third column panels are rate of ice speed change, dU/dt (m a-1).  
Panels showing rates of change share same the scale to the far right. 
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Figure 4.6. Experiment 1: WIS stop and start (table 4.1).  Rows of panels represent model output 
from individual time steps.  First column panels show shaded regions representing grounded nodes 
in the FEM domain.  Contours are elevation with an interval of 25 m.  Second column panels are rate 
of thickness change, dH/dt (m a-1).  Third column panels are rate of ice speed change, dU/dt (m a-1).  
Panels showing rates of change share the same scale to the far right. 
 

 
Figure 4.7. Transect locations along flow (A-A’) and across flow (B-B’) and bed topography for 
experiment 1 (table 4.1).  Black arrows approximate ice flow azimuth when WIS is off and do not 
represent magnitude. 
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Figure 4.8. Along flow surface elevation profile.  Red: surface elevation at 250 a; Blue: 355 a; Green 
455 a; Yellow: 555 a. 

 
Figure 4.9. Across flow surface elevation profile.  Red: surface elevation at 250 a; Blue: 355 a; Green 
455 a; Yellow: 555 a. 
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4.4.2 CIR Stagnation 

 In this experiment, grounded ice at the site of the present-day CIR is forced to 

stagnate at 100 a.  Evidence from streaklines in the RIS suggest that CIR became stuck 

~1000 years ago.  Before CIR stagnates, the area upstream of the ice rise is dominated by 

transverse compression between the outlet flows from KIS and WIS (Fig. 4.10).  When CIR 

stagnates and becomes an obstacle to flow, longitudinal strain rates increase due to 

compression and ice thickens (Fig. 4.11).  

 
Figure 4.10. Principal strain rate components (blue is compression and red is extension) and ice 
surface elevation (m); 90 a into experiment 2: before CIR stagnation. 
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Figure 4.11. Principal strain rate components (blue is compression and red is extension) and ice 
surface elevation (m); 150 a into experiment 2: after CIR stagnation. 
 

When CIR gets stuck, ice around it thickens and steepens, which generates the faster 

flow required to keep moving ice through the region despite the obstacle.  The decreased 

rate of downstream stretching results – and thicker ice – results in newly grounded ice 

upstream of CIR, following the general outline of the bathymetry toward ER.  Thickening 

directly upstream of CIR also generates a flatter across flow surface profile for the KIS 

outlet that diminishes, relatively, the rate of lateral spreading.  Minor thickening and 

grounding occurs at the bathymetric highs along the left lateral margin and the DF (Fig. 

4.13). 
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Figure 4.12. dH/dt across the KIS ice plain for experiment 2 (table 4.1). 
 

 
Figure 4.13. Experiment 2: CIR stagnates (table 4.1).  Rows of panels represent model output from 
individual time steps.  First column panels show shaded regions representing grounded nodes in the 
FEM domain.  Contours are elevation with an interval of 25 m.  Second column panels are rate of 
thickness change, dH/dt (m a-1).  Third column panels are rate of ice speed change, dU/dt (m a-1).  
Panels showing rates of change share the same scale to the far right. 
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4.4.3 Increased Basal Traction 

In this experiment, basal traction is increased from 0.01× 109 Pa s m-1 to 0.1 × 109 Pa 

s m-1 over a period of 100 years. The change is applied uniformly to the β field but has an 

affect only where ice in the model domain is grounded.  Ice at grounded nodes slows and 

also thickens.  Locally, surface slopes dip outward towards floating ice so that the greatest 

rates of thickening are in areas of floating ice adjacent to grounded zones.  One-hundred and 

fifty years after the basal traction increase is completed in the experiment, the greatest 

thickening occurs in the trough along the Trans Antarctic Mountains to the south of Mercer 

Ice Stream. 

 Changing basal traction creates transients that in some locations change sign as time 

progresses. An increase in basal traction initially leads to an increase in ice thickness due to a 

decrease in ice velocity over nodes in the model domain with grounded ice.  However, in 

turn, thicker ice causes an increase in ice velocity and over time a new steady state is found.  

New grounding associated with increased basal traction on already grounded ice occurs over 

century time scales, and follows the bathymetry.  At the KIS outlet, ice grounds around the 

topographic overdeepening and, in turn, the overdeepening thickens but remains afloat.  The 

result is a grounding line advance around what becomes, in effect, a subglacial lake.   

 One hundred years after the beginning of the perturbation, ice downstream of WIS 

(in the ice shelf) speeds up while ice in the KIS outlet slows.  This signature can be thought 

of as an ice mass “redistribution” where ice across the developed WIS ice plain has 

sufficiently thickened so that ice also speeds up across the outlet and into the ice shelf (Fig. 

4.15).  Surface slopes are highest across the WIS ice plain and dip outward toward the ice 

shelf that, at this time, includes the KIS outlet.  In contrast, the KIS ice plain is slowly 
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developing—or grounding—as the initial effects of increased basal traction are still being 

felt: ice velocity is decreasing and, thus, thickening. 

 On longer time scales (100s of years), ice mass is stored across the expanded WIS ice 

plain and not distributed off the plain as fast, either downstream or across in the KIS outlet.  

By 400 a into the perturbation experiment, the change in volume flux across the grounding 

zone is negative (Fig. 4.16). 

 

 

 
Figure 4.14. Transect location along flow for WIS ice plain (A-A’) and bed topography for 
experiment 3 (table 4.1).  Black arrows approximate ice flow azimuth when WIS is off and do not 
represent magnitude. 
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Figure 4.15. Along flow surface elevation profile.  Red: surface elevation 200 a; Blue: 300 a; Green: 
400 a; Yellow: 500 a; Magenta: 600 a; and Black: 700 a. 
 

 
Figure 4.16. Change in volume flux map. Lines are bearing of velocity change and magnitude (blue is 
slowing ice) and rate of ice thickness change (m a-1) (400 a into experiment 3: increased basal 
traction). 
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Figure 4.17. Experiment 3: Increased basal traction (table 4.1).  Rows of panels represent model 
output from individual time steps.  First column panels show shaded regions representing grounded 
nodes in the FEM domain.  Contours are elevation with an interval of 25 m.  Second column panels 
are rate of thickness change, dH/dt (m a-1).  Third column panels are rate of ice speed change, dU/dt 
(m a-1).  Panels showing rates of change share the same scale to the far right. 
 

4.4.4 CIR and SH Stagnation with Beta Increase 

 In this experiment, ice is forced to stagnate at CIR and SH 100 and 200 years into 

the perturbation experiments, respectively.  In addition, basal traction is increased from 

0.01× 109 Pa s m-1 to 0.1 × 109 Pa s m-1 over the intervening 100 years.  In this simple way we 

represent one possible till response to a changed boundary condition (for example, due to 

freezing of basal water). 

Locally high bed topography beneath CIR and SH has an important effect on 

grounding line location because it is relatively easy for ice to run aground at these locations 

and when it does, regional ice flow must adjust to the new obstacle to downstream transport.   
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Stagnation of ice over CIR and SH (100 and 200 years into the model, respectively) force 

local thickening and steepening.  Longitudinal compression increases upstream of CIR and 

further upstream longitudinal extension is reduced (Fig. 4.18).  This mechanical context 

results in a negative change in volume flux between CIR and ER (Fig. 4.19).  Local 

thickening, in turn, propagates upstream and causes floating ice to run aground.  Rates of 

thickening are highest (~0.8 m a-1) across the southern portion of the KIS outlet, adjacent to 

the GF and newly grounded ice upstream of CIR (Fig. 4.24).  This zone of thickening is at 

the confluence of KIS and WIS and thus can be seen as “communicating” flow change 

information between the two outlets (Fig. 4.19). 

 
Figure 4.18. Principal strain rate components (blue is compressive and red is extensive) and rate of 
ice thickness change (m a-1); 195 a into experiment 3: CIR and SH stagnation and increased basal 
traction. 
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Figure 4.19. Change in volume flux map. Lines are bearing of velocity change and magnitude (blue is 
slowing ice) and rate of ice thickness change (m a-1) (195 a into experiment 4: CIR and SH stagnation 
and increased basal traction). 
 
 
 The KIS grounding line advances in a complicated pattern around the topographic 

overdeeping at the ice stream outlet.  Grounded ice advances laterally where the bed 

topography is highest (along the margins of the ice stream outlet), particularly along the 

southern boundary (adjacent to ER) where the GF becomes completely grounded and 

connects with the former upstream KIS grounding line.  After 290 a, the GF is completely 

grounded (Fig. 4.20) and longitudinal compression dominates upstream of the terrain (Fig. 

4.21).  When the GF runs aground, volume flux changes propagate upstream from the GF 

on short timescales (~10 years) into the main trunk of KIS, including the topographic 

overdeepening (Fig. 4.22).  Surface gradients steepen from the marginally grounded ice 

terrains towards the overdeepening where thickening rates are the greatest (Fig. 4.22). 
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Figure 4.20. Shaded regions represent grounded nodes in the FEM domain (290 a into experiment 
4: CIR and SH stagnation and increased basal traction). 
 

 
Figure 4.21. Principal strain rate components (blue is compressive and red is extensive) and ice 
surface elevation (m); 290 a into experiment 4 (table 4.1). 
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Figure 4.22. Change in volume flux map. Lines are bearing of velocity change and magnitude (blue 
is slowing ice) and rate of ice thickness change (m a-1); 290 a into experiment 4 (table 4.1). 
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most of the ice in the overdeepening region is grounded, though only lightly. The thickness 

in excess of buoyancy is <10 m at 350 a. Notably, ice along the northern portion of the DF 

(where the bed is the deepest) remains afloat and is surrounded by grounded ice (Fig. 4.25). 

Here, the ice thickness is 50 to 60 meters in excess of the floatation thickness (Fig. 4.26). 
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Figure 4.23. dH/dt across the KIS ice plain for experiment 4 (table 4.1). 
 

 
Figure 4.24. Experiment 4: CIR and SH stagnation and increased basal traction (table 4.1).  Rows of 
panels represent model output from individual time steps.  First column panels show shaded regions 
representing grounded nodes in the FEM domain.  Contours are elevation with an interval of 25 m.  
Second column panels are rate of thickness change, dH/dt (m a-1).  Third column panels are rate of 
ice speed change, dU/dt (m a-1).  Panels showing rates of change share the same scale to the far right. 
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Figure 4.25. Experiment 4: CIR and SH stagnation and increased basal traction (table 4.1).  Rows of 
panels represent model output from individual time steps.  First column panels show shaded regions 
representing grounded nodes in the FEM domain.  Contours are elevation with an interval of 25 m.  
Second column panels are rate of thickness change, dH/dt (m a-1).  Third column panels are rate of 
ice speed change, dU/dt (m a-1).  Panels showing rates of change share the same scale to the far right. 
 
 

 
Figure 4.26. Height above buoyancy (m) for experiment 4 at 350 a. 
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4.4.5 Interesting Things  

 The main outflow from KIS passes it by and ER diverts WIS flow away from here, 

this region is sensitive to different types perturbations. Indeed, it experiences some of the 

greatest thickening rates, (0.6-0.8 m a-1) ~50 years after CIR gets stuck and the basal traction 

parameter increase is initiated.  The contrasts among responses to different forcings will help 

determine what events took place in the past.  

 

4.5 The Role of the GF in Grounding Zone Dynamics 

  In the experiments described above, thickness transients propagating upstream from 

the stagnated CIR and laterally from the WIS ice plain cause the GF and the surrounding 

area to frequently ground and remain grounded (Fig. 4.11b).  Grounding of the GF leads to 

further transient effects across the KIS ice plain. Grounded and stagnant ice at the GF both 

narrows the ice stream outlet and flattens the transverse surface elevation profile and, in 

turn, thickens the main trunk of KIS and promoting further grounding. Having produced 

grounding in the GF region via stagnation of CIR and SH, we next examine the effect of 

stagnating the grounded GF ice.  Again, the rationale is that basal freezing associated with 

grounding of previously floating ice, may act against fast sliding (Bindschadler et al., 1990). 

 

 

 

4.5.1 CIR, SH and GF Stagnation and Beta Increase 

 Only in extreme cases do our perturbations to ice rises and basal traction generate a 

KIS grounding line seaward of the overdeepening between ER and SD. This contrast to the 
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present day situation (and to the suggestion that the grounding line was located upstream 

of the overdeepening within the last several hundred years as suggested by Catania et al., 

2006) motivates additional experiments. It is also worth noting that when we do produce 

grounding line advance, the sense of motion is transverse, from south toward the north, not 

along the axis of the ice stream. We are thus interested in perturbations that might yield 

thickening in the trunk of KIS sufficient to cause the grounding line to advance downstream 

across the overdeepening.  In this experiment, CIR is forced to stagnate at 100 a, SH at 200 a 

and the GF at 300 a.  Additionally, basal traction increases from 0.01× 109 Pa s m-1 to 0.1 × 

109 Pa s m-1 over a period of 100 years (from 100 a to 200 a). 

 Due to thickness transients propagating upstream from stagnant CIR and SH and 

increased basal traction across the ice plain, by 250 a into the model experiment ice thickens 

sufficiently for ice to run aground across bathymetric highs at the downstream end of KIS. 

The greatest rates of thickening (0.6-0.8 m a-1) at the KIS ice plain occur around the GF and 

similar rates are found in the adjacent floating ice region above the topographic 

overdeepening.  The GF stagnates at 300 a in order to investigate its effect on grounding in 

the KIS outlet.  This scenario is most likely predicated on basal freezing related to the 

temperature gradient in the formerly floating ice and would depend in part on whether the 

subglacial water was fresh or salty.  Smaller thickening rates (0.3-0.4 m a-1) occur along the 

outboard edge of the DF at the northern KIS margin.  Finally, grounded ice connects the 

downstream bathymetric high between the DF and GF (Fig. 4.28).    

After the GF becomes stuck, grounded ice, following the general contours of the 

bed topography, spreads laterally across the KIS outlet toward the northern or right-lateral 

KIS margin.  Ice grounds rapidly after GF stagnation (~0.4% a-1 by area). Ice directly 
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downstream from the GF thins (-0.2 m a-1) (Fig. 4.29), but remains grounded.  By 400 a 

much of the mouth of KIS features grounded ice.  Small pockets of floating ice remain 

across the topographic overdeepening and the northern margin of the DF remains afloat 

(Fig. 4.30). 

 

 

 

 

 

 

 

 

 

 
Figure 4.27. dH/dt across the KIS ice plain for experiment 5 (table 4.1). 
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Figure 4.28. Experiment 5: CIR + SH and GF stagnation and increased basal traction (table 4.1).  
Rows of panels represent model output from individual time steps.  First column panels show 
shaded regions representing grounded nodes in the FEM domain.  Contours are elevation with an 
interval of 25 m.  Second column panels are rate of thickness change, dH/dt (m a-1).  Third column 
panels are rate of ice speed change, dU/dt (m a-1).  Panels showing rates of change share the same 
scale to the far right. 
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Figure 4.29. Experiment 5: CIR + SH and GF stagnation and increased basal traction (table 4.1).  
Rows of panels represent model output from individual time steps.  First column panels show 
shaded regions representing grounded nodes in the FEM domain.  Contours are elevation with an 
interval of 25 m.  Second column panels are rate of thickness change, dH/dt (m a-1).  Third column 
panels are rate of ice speed change, dU/dt (m a-1).  Panels showing rates of change share the same 
scale to the far right. 
 
 
 

 
Figure 4.30. Height above buoyancy for experiment 5 at 350 a. 
 

 

80

60

40

20

0

-20

-40

-60

-80

-100

m



	   72	  
4.5.2 CIR and GF Stagnation and Beta Increase 

 The relative importance of SH to KIS grounding line position is examined by 

reducing its effect in a model in which CIR and GF stagnate. SH is not forced to ground 

while CIR stagnates 100 a and GF stagnates 200 a into the perturbation experiment.  Basal 

traction increases from 0.01× 109 Pa s m-1 to 0.1 × 109 Pa s m-1 over a period of 100 years 

(from 100 a to 200 a). 

In effect, we ask if transients resulting from changes on WIS are sufficient to drive 

grounding in the KIS overdeepening or if transients associated with SH stagnation are also 

required. We note that according to the crevasse record (Fahnestock et al., 2000), SH 

stagnation is a relatively recent event, similar in age to the recent shear margin reorganization 

in the downstream reach of KIS. The GF is upstream of CIR on the right lateral side and the 

DF is upstream of SH on the left lateral side. Specifically, it is important to understand the 

degree to which ice grounding around SH is a cause or an effect of the perturbations in 

order to understand the mechanical evolution of the KIS outlet. 

Compared to previous experiments that include SH stagnation, the pattern of 

grounded ice across the KIS outlet is fundamentally different when SH is not forced to 

stagnate.  At 300 a, much of the southern KIS margin shows similar transients to previous 

experiments: large thickening rates and grounded ice dominates the area around the GF and 

the ice plain stretching towards CIR (Fig. 4.34).  However, without contemporaneous SH 

stagnation, thickness transients are nearly zero between the DF and SH and across the 

northern KIS margin.  Additionally, less ice grounds across the bathymetric high situated at 

the downstream end of KIS compared to previous experiments. 
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When SH does not stagnate, the left lateral side of the KIS outlet does not 

experience a thickness transient.  At 300 a when the GF stagnates, the KIS outlet narrows 

and because of the new geometry, ice thickens in the main trunk.  However, without a stuck 

SH (and the accompanying thickness transient and grounded ice expanding upstream) there 

is proportionally less longitudinal compression and the KIS trunk increases speed towards 

the ice front (Fig. 4.35).  After GF stagnation (300 a), as ice speeds increase, longitudinal 

extension increases across the KIS outlet and ice thins (Fig. 3.32).  At the same time, ice 

immediately downstream of the stagnant GF thins as the amount of ice advecting 

downstream of the feature is reduced (Fig. 4.35).  By 400 a, much of the ice that had 

previously been grounded in the main KIS trunk has gone afloat, including the area around 

SH and the bathymetric high spanning laterally across the KIS outlet (Fig. 4.35). 

 
Figure 4.31: Principal strain rate components (blue is compressive and red is extensive) and ice 
surface elevation (m); 105 a into experiment 6 (table 4.1). 
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Figure 4.32: Principal strain rate components (blue is compressive and red is extensive) and ice 
surface elevation (m); 330 a into experiment 6 (table 4.1). 
 
 
 

 
Figure 4.33. dH/dt across the KIS ice plain for experiment 6 (table 4.1). 
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Figure 4.34. Experiment 6: CIR + GF stagnation and increased basal traction (table 4.1).  Rows of 
panels represent model output from individual time steps.  First column panels show shaded regions 
representing grounded nodes in the FEM domain.  Contours are elevation with an interval of 25 m.  
Second column panels are rate of thickness change, dH/dt (m a-1).  Third column panels are rate of 
ice speed change, dU/dt (m a-1).  Panels showing rates of change share the same scale to the far right. 
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Figure 4.35. Experiment 6: CIR + GF stagnation and increased basal traction (table 4.1).  Rows of 
panels represent model output from individual time steps.  First column panels show shaded regions 
representing grounded nodes in the FEM domain.  Contours are elevation with an interval of 25 m.  
Second column panels are rate of thickness change, dH/dt (m a-1).  Third column panels are rate of 
ice speed change, dU/dt (m a-1).  Panels showing rates of change share the same scale to the far right. 
 

 

4.5.3 CIR, SH, GF and DF Stagnation and Beta Increase 

Here, all of the thickening mechanisms are employed during an individual model 

experiment.  In this experiment, in addition to CIR, SH and GF stagnating, the DF stagnates 

at 500 a.  At the time of DF stagnation much of the ice plain is lightly grounded (Fig. 4.38).  

Calculated height above buoyancy values are only ~ 0-20 m for much of the ice plain (Fig. 

4.36).   

When the DF stagnates, the left lateral shear margin migrates inward and the ice 

stream outlet narrows.  Due to this reorientation of the outlet geometry, the pattern of strain 

rates across the KIS outlet changes.  As the outlet passes the SD and ER and widens, the 
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overall transition from longitudinal compression to extension remains, however after DF 

stagnation the zone of extension is shifted inboard toward the center of KIS, paralleling 

margin migration.  At 500 a, when the outlet narrows, ice across the outlet thickens and in 

turn, surface slopes steepen toward the grounding zone, and ice speed increases across the 

grounding zone and into the ice shelf (Fig. 4.38).  Longitudinal extension increases, 

especially along the northern margin on the lee side of the DF. 

 
Figure 4.36. Height above buoyancy for experiment 7 at 380 a. 
 

 
Figure 4.37. Height above buoyancy for experiment 7 at 420 a. 
 
 
 
 
 
 

80

60

40

20

0

-20

-40

-60

-80

-100

m

80

60

40

20

0

-20

-40

-60

-80

-100

m



	   78	  
 
 
 
 
 
 
 
 

 
Figure 4.38. Experiment 7: CIR + SH + GF + DF stagnation and increased basal traction (table 
4.1).  Rows of panels represent model output from individual time steps.  First column panels show 
shaded regions representing grounded nodes in the FEM domain.  Contours are elevation with an 
interval of 25 m.  Second column panels are rate of thickness change, dH/dt (m a-1).  Third column 
panels are rate of ice speed change, dU/dt (m a-1).  Panels showing rates of change share the same 
scale to the far right. 
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Figure 4.39. Experiment 7: CIR + SH + GF + DF stagnation and increased basal traction (table 
4.1).  Rows of panels represent model output from individual time steps.  First column panels show 
shaded regions representing grounded nodes in the FEM domain.  Contours are elevation with an 
interval of 25 m.  Second column panels are rate of thickness change, dH/dt (m a-1).  Third column 
panels are rate of ice speed change, dU/dt (m a-1).  Panels showing rates of change share the same 
scale to the far right. 
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inner DF than the portion of the DF closer towards SD.  Where the bathymetry is 

highest, the inner DF is grounded during steady state. 

By 250 a the WIS ice plain has expanded and adjacent ice is slowing and thickening.  

The thickening signal propagates at an advective time scale with ice flow across the 

grounding zone and into the ice shelf.  As ice across the ice plain thickens, less ice mass 

advects across the grounding zone and the ice shelf thins (Fig. 4.40).  When the GF 

stagnates, additional ice thins in the floating KIS outlet (Fig. 4.41).  The development of a 

grounded WIS ice plain and GF stagnation limits the amount of ice flowing into the ice shelf 

and, in particular, towards the KIS outlet.  Without SH stagnation, there is not enough ice 

grounded on the DF side of the outlet to induce slowing and thickening ice and, as a result, 

additional grounded ice. One conclusion that might be drawn from this result is that 

grounding line advance on KIS did not originate with a "margin jump" on the SD side of the 

outlet.  This result is explored in greater depth in the next experiment. 
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Figure 4.40. Experiment 8: CIR + SH + GF stagnation + DFin stuck and increased basal traction 
(table 4.1).  Rows of panels represent model output from individual time steps.  First column panels 
show shaded regions representing grounded nodes in the FEM domain.  Contours are elevation with 
an interval of 25 m.  Second column panels are rate of thickness change, dH/dt (m a-1).  Third 
column panels are rate of ice speed change, dU/dt (m a-1).  Panels showing rates of change share the 
same scale to the far right. 
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Figure 4.41. Experiment 8: CIR + SH + GF stagnation + DFin stuck and increased basal traction 
(table 4.1).  Rows of panels represent model output from individual time steps.  First column panels 
show shaded regions representing grounded nodes in the FEM domain.  Contours are elevation with 
an interval of 25 m.  Second column panels are rate of thickness change, dH/dt (m a-1).  Third 
column panels are rate of ice speed change, dU/dt (m a-1).  Panels showing rates of change share the 
same scale to the far right. 
 

4.5.5 Investigating variations in basal traction at SH 

This experiment investigates the role of SH in generating grounding across the KIS 

outlet. Like the DF, SH is a feature on the right lateral margin of the outlet but unlike the 

DF, it rests atop a relative high on the sea floor.	  The crevasse record downstream of SH 

suggests that the ice rise stagnated relatively recently and around the time of margin 

reorganization near the DF, 150 years ago (Fahnestock, 2000).  The previous experiment 

leads us to question the ability of an inward “margin jump” on the DF side of the ice stream 

outlet to generate grounding across the overdeepening.  The SH is an interesting feature 

because it is situated adjacent and immediately downstream of the sill spanning the 
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downstream reach of the KIS outlet.  Previous experiments show that grounding across 

the KIS outlet is, at least partially, predicated on thickness transients originating at the ice 

rise and taking advantage of the elevated topography across the sill.   

In this experiment basal traction increases at grounded nodes at SH from 0.1 × 108 to 

1.0 × 108 between 100 and 200 a.  By 250 a, the WIS ice plain is fully developed due to 

thickness transients arising from a combination of increasing basal traction and CIR 

stagnation.  At the same time, ice that had grounded upstream of SH due to thickness 

transients originating at the ice rise quickly goes afloat.  As in the previous experiment, ice 

across the KIS outlet remains afloat as the WIS ice plain develops. 

Without a greater contribution of ice from the WIS ice plain advecting south of CIR 

after that area thickens, the ice shelf thins across the KIS outlet.  Additionally, without full 

stagnation of SH, thickening along the right-lateral margin of the downstream end of KIS is 

not large enough to take advantage of the sill oriented across flow.  Less grounding here 

limits longitudinal compression upstream and, in turn, allows ice to remain afloat.  Further 

work might involve adjusting basal traction values to allow more ice to flow into the KIS 

outlet from the WIS ice plain during these experiments.  It may be that basal traction across 

the WIS ice plain was small enough in the past to promote increased flow around the GF 

around the time of SH stagnation. 
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Figure 4.42. Experiment 9: CIR + GF stagnation + SH β increase at stuck nodes and increased 
basal traction (table 4.1).  Rows of panels represent model output from individual time steps.  First 
column panels show shaded regions representing grounded nodes in the FEM domain.  Contours are 
elevation with an interval of 25 m.  Second column panels are rate of thickness change, dH/dt (m a-

1).  Third column panels are rate of ice speed change, dU/dt (m a-1).  Panels showing rates of change 
share the same scale to the far right. 
 

 

4.6 Discussion 

 The numerical modeling experiments suggest that the effects of an internally-driven 

perturbation initiated at one location may be transmitted quickly across the low-slope ice 

plain and, in turn, affect the grounding zone of an adjacent ice stream.  This has implications 

for grounding line position at the downstream end of KIS and WIS.  Of particular interest is 

how certain perturbations, or combinations of perturbations, yield grounding line advance 

across the KIS outlet. 
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4.6.1 Thickness Transients 

Transients in the thickness field may be generated by variations in the mass flux 

from upstream, changes in surface or basal accumulation rates, basal melt rate, basal traction 

and changes in the geometry of the ice shelf.  The internally-driven perturbations considered 

here are forced by increasing basal traction across the ice plain either as a fractional change 

on grounded ice, grounding of floating ice, or stagnation of grounded ice.  The record of 

past ice flow inferred from streaklines in the RIS suggests that the ice rises became stuck 

within the last 1000 years, but before KIS stagnation 150 years ago (Fahnestock et al., 2000 

and Bindschadler, 1993).  Once initiated, thickness transients propagate away from the area 

where they are generated and the coupled thickening and grounding feedback leads to 

grounding line advance across affected parts of the ice plain. 

Thickness transients, and in turn waves of grounding ice, advance rapidly across the 

ice plain.  Ice grounds on decadal to century time scales, but generally ice goes afloat on 

shorter times scales than grounding events because when ice first grounds it is only just 

above the floatation threshold – "lightly grounded" – and thus vulnerable to switching if a 

process to drive thinning is applied.  In the experiments outlined above, the height above 

buoyancy for newly (<50 years) grounded nodes in the KIS ice plain is less than ~10 m.  For 

example, when WIS shuts down, ice across the WIS ice plain quickly goes afloat within ~50 

years after the perturbation, but large portions of the ice plain remain afloat ~250 years after 

WIS reactivates.   

In the numerical modeling experiments, grounding line advance, while not uniform 

across ice stream outlet – especially in the case of KIS – proceeds rapidly (~50 km per 

century).  Hulbe and Fahnestock (2007) note that while this is much faster than the one 
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measured contemporary retreat rate of 30 m a-1 (Thomas et al., 1988), the rate found in 

the numerical model simulations here is embraced by the suggestion in Thomas et al. that 

due to the low relief ice plain, the rate of retreat could be up to 20 times higher than the 

observed rate. 

Thickness transients across the ice plain are thus clearly involved in the phasing of 

discharge cycles and also grounding line migration.  For example, transients originating at 

CIR and SH, cause ice to ground across the KIS outlet.  Furthermore, local changes to 

surface slopes accompanying thickness transients lead to a redistribution of potential 

gradients directing basal water flow and may, in turn, further modify basal traction. 

 

4.6.1.1 Thickness transients associated with changes in ice stream flux 
 
 When ice flux through the outlet of one ice stream decreases, surface gradients 

change across the downstream ice plain where bed topography does not vary a great deal.  

When one ice stream stagnates, the longitudinal surface profile on an adjacent ice stream 

flattens due to increasing longitudinal extension at the downstream end.  Surface slopes are 

directly related to mass flux conservation.  If less ice is transport though the wide outlet 

region at the downstream end of WIS, smaller surface slopes are required than when you 

have more mass to transport.  When longitudinal surface gradients lessen, transverse terms 

become more important. 

 In experiment 1, when WIS stagnates, ice in between the KIS and WIS outlets 

thickens.  This area includes the modern day GF flat ice terrain.  This is an “interflow” area 

on the lee side of ER, in the sense that faster flowing ice passes it by on the sides.  When 

both KIS and WIS outlets are discharging fast, before the start of perturbations, surface 
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elevation between the two outlet flow zones is ~10-20 m less than within the outlet flows.  

When WIS shuts off, transverse surface gradients cause thickening in this particular 

interflow region, in part because bathymetry is relatively high here.  It is likely that interflow 

regions, or those on the lee sides of inter stream ridges, are prone to having relatively thin ice 

thicknesses and the flat surface gradients and are thus sinks for basal water distribution. 

 

4.6.1.2 Thickness transients associated with increases in basal traction 

 In the numerical modeling experiments the parameter controlling basal traction is 

increased over a time span of a hundred years either across the entire ice plain or, in 

addition, at local areas that have high topography, such as SH, or terrains that have stagnated 

in the past before KIS shut down, such as the DF.  Basal traction, or basal drag, is the 

resistive stress due to friction at the bed that, in addition to friction at the ice stream margins 

and tension or compression up-and-down flow equal the driving stress.   

When basal traction is increased, grounded locations become "obstacles" of some 

magnitude, with varying spatial extent.  On short time scales (years), ice thickens at these 

locations where the sliding speed is lowered.  Initially, ice at the location of the changed 

basal traction thickens, which in turn leads to upstream thickening as ice is inhibited along its 

downstream path and downstream thinning as less ice moves across the site of the 

obstruction and to those downstream locations. This rearrangement is temporary, however, 

because the changing thickness is accompanied by changes to surface slope and velocity.  

The coupled thickness and velocity adjustment to a change in basal traction plays out 

on a century time scale. When ice in one region slows, the resulting decrease in local 

stretching causes ice thickness to increase, and in turn local surface slopes increase. Thicker 
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and steeper ice flows relatively faster, leading to increased stretching and thinning. 

Through these coupled changes, the ice thickness and velocity come to some new steady 

state configuration in accord with the changed basal traction. Where relatively thicker ice 

results, its advection toward the grounding line may yield grounding line advance.  

 Both regional geometry and the pattern of ice flow mediate the effect that changes 

in one location may have in others. Across-flow transmission of a perturbation is most likely 

along contours of equal bed elevation but often where a transverse signal is present, along-

flow effects are larger.  For example, changing basal traction on the WIS ice plain modifies 

thickness and grounding on the GF but grounding (and stagnation) in the GF region has a 

limited effect on ice in the main trunk of the adjacent ice stream.  By the time the WIS ice 

plain reaches its approximate modern extent by 300 a into the perturbation experiments, 

lateral distribution of ice from the WIS ice plain into the KIS outlet is limited.  When SH 

does not stagnate, in experiments 5, 8 and 9, ice across the KIS outlet remains afloat.  In 

each of these experiments, without along-flow compression from stagnant and grounded ice 

around SH, when the GF stagnates and the KIS outlet narrows, ice speeds up and by 

increased longitudinal extension, thins and goes afloat.  It may be that the topography at the 

downstream end of the outlet – particularly the topographic high spanning its width – 

enhances longitudinal extension near the grounding line.  

 

4.6.1.3 Thickness transients associated with ice rises and obstructions to flow 

 The formation of an ice rise in the floating ice shelf creates an obstruction to ice 

flow.  Upstream of the ice rise longitudinal compression acts as a resistance to flow, whereas 

extension occurs exists downstream of the obstruction.  MacAyeal et al. (1987) estimated 



	   89	  
that the resistance generated by CIR accounts for about half the “back-pressure” force on 

WIS and Mercer Ice Stream.  In order to transmit the same ice mass downstream as before 

the formation of the ice rise, ice around the obstruction thickens and the downstream 

surface gradient increases.   

The longitudinal compression created by the ice rise has further mechanical effects 

upstream.  Ice thickens immediately upstream of the ice rise and this causes further 

reduction in longitudinal extension upstream.  In experiment 2, when CIR stagnates, ice 

grounds upstream of the ice rise and connects with grounded ice in the WIS ice plain and 

the GF.  This is the same as the modern configuration of the WIS grounding line. 

 

4.6.2 Bed Topography and Grounding Zone Dynamics 

 The grounding line advances across the KIS outlet in a complicated manner.  The 

distribution of thickness transients propagating upstream or across the ice plain is modified 

and, to a great extent, controlled by the location of high points in the bed (Fig. 4.44).  In 

experiments that yield grounding line advance, after ice grounds marginally across high 

points in the bed, the pattern of grounding zone advance across the overdeepening is 

transverse across the KIS outlet and not along the ice stream flowline.  In this respect, the 

effect of bed topography leads to some unexpected results from the numerical modeling 

experiments. 

 Thickness transients propagating upstream from, for example, CIR and SH are 

associated with a change in volume flux in the direction of the thickness transient (Fig. 4.43).  

Because the bed modifies where thickness transients occur, it is also responsible for 

modifying volume flux changes. 
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 Certain areas at the KIS outlet are predisposed to ground based on their bed 

topography.  The lateral margins, and in particular, the inner DF and the GF, where the bed 

topography is high, often act as “corridors” where thickness transients can be transmitted 

across the ice plain.  A sill, or a bathymetric high, connecting the two ice stream corners near 

the DF on the right-lateral side and the GF on the other, marks the downstream edge of the 

overdeepening.  Ice grounds across the length of the sill only when SH grounds – although it 

also grounds on a longer time scale (at ~550 a) during experiment 3 when basal traction is 

increased without any additional perturbations.  SH represents the main mechanism to 

decrease downstream stretching across the right lateral side of the KIS outlet.  When SH 

does not ground, ice in the outlet speeds up and thins, particularly over the sill, before going 

afloat. 

 The overdeepening eventually fills in to become lightly grounded ice across a newly 

formed KIS ice plain. Small areas of floating ice remain over topographic depressions. That 

is, residual lakes are formed. If lakes formed in this way under the GF, DF, or elsewhere, the 

water within them may be brackish.	  	  In general, ice remains afloat longer along the northern 

edge of KIS.  This is due, in part, to the topographic depression on the inboard side of the 

DF and, additionally, early in the perturbation experiments (within the first hundred years) 

rates of positive thickness change are larger along the southern margin of KIS (near the GF) 

in comparison to rates across the northern half of the ice stream.  This is due to large 

thickness gradients propagating to the GF from CIR and the WIS ice plain, as well as the 

layout of the bed topography. 

 



	   91	  

 
Figure 4.43. Schematic showing the evolution of grounded ice (red) across the KIS ice plain and 
northern WIS ice plain when CIR and SH shut down and background values for basal traction (β) 
increase (from 0.01× 109 Pa s m-1 to 0.1 × 109 Pa s m-1).  Extent of grounded ice is taken to be  ~750 
years ago (after both CIR and SH became stuck). Letters label the upstream “steady-state” KIS 
grounding line position (A), the inner DF (B), SH (C), the bathymetric high across the KIS outlet 
(D), CIR (E), the northern WIS ice plain (F), the GF and surrounding terrain (G) and the 
overdeepening in the bed topography (H).  Arrows represent general trend of thickness transients 
and, in turn, grounded ice propagating across the KIS outlet. 
 

 
Figure 4.44. Bed topography (m) (BEDMAP1_plus, BAS) beneath the area annotated in the above 
figure.  Geographic locations (A through G) described above are also shown. 
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4.6.3 The Role of the GF in KIS Grounding Zone Dynamics 

The way in which grounding in the GF affects flow in the main trunk of the ice 

stream depends in part on events elsewhere in the region and these, in turn, depend on the 

geographic setting.  The GF is situated along the left lateral downstream KIS margin, 

whereby stagnation of the flat-ice terrain results in a reorganization of the ice stream 

geometry.   The spatial layout of the bed topography here, when combined with the small 

variations in ice thickness across the ice plain connecting the downstream portions of KIS 

and WIS, encourages a lateral connection between the two adjacent ice streams via thickness 

transients traveling, preferentially, along routes defined by the bed. 

Grounded and stagnant ice at the GF narrows the KIS outlet, thickening the main 

trunk of the ice stream and, in turn, leading to further grounding.  The magnitude of the 

effect depends on what is happening at the opposite margin of the ice stream.  Thickness 

transients originating at SH ground ice along the northern margin and, in turn, allow for the 

effects of GF stagnation to be felt in the middle of the ice stream and across the 

overdeepening. 

Surface morphology and ice stratigraphy across the GF confirms that the region 

grounded quickly within the last few hundred years.  A prominent surface lineation separates 

the GF flat-ice terrain from ER.  Catania (2004) asserted that this lineation was not likely a 

relict ice stream margin because it wraps around ER, and thus also away from the paleo ice 

flow direction and also because deep layers within the ice stratigraphy are intact, thus 

suggesting that strain rates were smaller than present-day values along lateral shear margins.  

Instead, she argues, that the lineation is a past grounding line (Catania, 2004).  Downwarped 

internal layers over the narrow region below the lineation suggest that this was the site of 
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localized basal melting caused by large tidal currents in areas with small water column 

thickness (along the grounding line in a sub-ice shelf cavity) (MacAyeal, 1985). Our analysis 

supports this view in that in the absence of stagnant ice on CIR, the mechanical setting of 

the area favors relatively thin ice and thus flotation.  The pattern of grounding across the GF 

in the numerical modeling experiments investigated here suggests that the grounding line 

moved through the area before the GF stagnated.  It is likely that the observed distribution 

of basal crevasses across the modern GF flat-ice terrain reflects this movement of the 

grounding line. 

The embayment along the northern shore of the SD is a likely modern analogue for a 

floating GF at the time before KIS stagnation (Fig. 4.45).  The embayment shares a 

mechanical setting with the GF in that both features reside on the leeside of an interstream 

ridge.  The Siple Ice Stream (SIS) is situated immediately to the north of the SD and ice 

speeds in the ice stream are less than 50 m yr-1.  To the north and adjacent to SIS is 

Bindschadler Ice Stream (BIS) which shows greater surface texture variation and ice speeds 

up to ~400 m yr-1. The embayment is part of the RIS and its shoreline is defined by deep 

bathymetry below the ice shelf abutting the elevated topography of the SD.   

Ice flowing through the SIS and adjacent BIS goes afloat in the RIS and creates a 5-

10 km wide strip of heavily crevassed ice that separates the fast moving BIS ice from more 

slowly moving ice.  Large effective strain rates define the shear zone, ranging from 0.2 a-1 

near the grounding line to 0.05 a-1 farther from the coast.   

Inboard of this shear zone is a second – and more faint – shear zone lightly defining 

the shoreline separating the SD from the RIS.  Surface crevasses are observed along this 

floating boundary.  Upstream, they are older fractures advecting into the shelf from the 
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grounded left-lateral shear margin of BIS but as the ice approaches the shore of SD and 

the relatively large shear stresses there, a new episode of propagation yields a narrow band 

arcuate crevasses.  The remainder of the shoreline shows a much fainter shearing imprint 

because ice in the inner embayment is slow moving and flowing from the nearly stagnant 

SIS.  Thus, this portion of the shoreline shows greatly reduced surface crevassing, but it is 

likely that the region also exhibits buried crevasses due to local melting along the shoreline 

grounding zone. 

 
Figure 4.45. Calculated effective strain rates (a-1) for the northern SD embayment overlaying MOA 
image. 
 
  
 
4.6.4 The Duckfoot as a remnant lake 
 

Grounding line migration from a previous location upstream at KIS to its present-

day location requires advance across the overdeepening in the bed between ER and SD.  The 

forward slope on the upstream side of the overdeepening is a theoretically expected location 

for a stable grounding line and indeed, it is easy to generate this configuration in models that 
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represent the region with fast-flowing ice streams and non-stagnant CIR and SH. Forcing 

the grounding line to advance seaward from that location is more challenging. This is 

because the bed is very deep and the outlet is wide enough that there is little to slow the rate 

of downstream thinning once ice has gone afloat over the deep region. 

When grounding line advance does occur, it is not in the direction of ice flow but 

transverse to flow. This outcome makes the case for thinking about grounding line "stability" 

as determined by more than the bed slope in the along-flow direction. For example, when 

grounding line advance does occur, it proceeds first marginally around the overdeepening 

and then laterally from south to north and not along the axis of the ice stream.  In 

experiments in which the GF stagnates, ice spreads laterally across the KIS outlet relatively 

quickly—on the scale of tens of years.  However, transverse advance across the outlet is only 

accommodated when accompanied by stagnation of the right-lateral (or northern) ice rise – 

SH – situated, geographically, opposite of where transverse grounding line advance initiates 

at the left-lateral corner of KIS. 

 

 
Figure 4.46. Schematic showing sequence leading to formation of a remnant lake around the 
Duckfoot during lateral grounding line advance. 
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hypothesis where during a glacial advance across an outlet, the ice shelf grounds on a 

proglacial sill and, in turn, traps subglacial water below the remnant floating ice immediately 

upstream of the sill.  In this scenario, subsequent ice shelf freeze-on to the sill and a new 

reversal of the ice-air surface slope over the sill leads to ice thickening upstream.  The 

experiments discussed here confirm such a scenario.  Rather than a shear margin created as 

the ice stream outlet narrowed, this boundary may instead have be a former grounding line 

location (Fig. 4.46). In the DF remnant lake scenario, a grounding line advancing from south 

to north across the ice stream until it encounters the relative low in the bed beneath the DF. 

The arrival of the grounding line creates a wedge-shaped lake with the old, outer margin and 

the new grounding line as its shores. As ice stream ice continues to flow downstream past 

the lake, a shear margin develops where the paleogrounding line is pinned along the 

relatively shallow inboard shore.  In the numerical modeling experiments where grounding 

line advance proceeds seaward of the present-day grounding line location, a remnant lake is 

formed at the relative low in the bed at the outer DF, creating adjacent margins along the 

lake shores.  The inboard margin uses the topographic high at the inner DF as an 

underpinning point.  The bathymetry at the outer DF is ~ 50 m lower than the relatively 

shallow inner DF.   

In this scenario, the dating of relic margins bounding the DF represents the timing 

and evolution of the remnant lake.  Before the formation of the lake, the outboard DF 

margin is the grounding line between the floating ice shelf and SD.  Lateral shear along the 

outboard margin decreases after the formation of the new inboard margin. Shearing along 

that margin continues until ice stream stagnation.  The inboard grounding line remains active 

until ice stream stagnation.   
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Chapter 5 
SYNTHESIS 

 
 
 The work presented in this paper focuses on processes near the downstream end of 

Kamb and Whillans Ice Streams that lead to changes in ice stream boundaries and ice stream 

flux.  The downstream setting of these ice streams, encompassing the broad ice plain and 

grounding zone, is complicated.  Bathymetry is important in determining ice stream flow in 

ways that may not be obvious.  Our results suggest that a simple flowline view of grounding 

line migration is misleading and that transverse slopes are an important control on migration 

pattern.  Additionally, bathymetric depressions support the formation of subglacial lakes that 

adjust basal water routing below an ice stream.  The observations and numerical modeling 

experiments investigated in this paper create a clearer view of how grounding line and lateral 

margin position respond to these features and other internal perturbations.  A new view of 

grounding zone behavior contributes to greater understanding West Antarctic Ice Sheet 

mass balance.  In this section I present the main conclusions from the work outlined in 

previous chapters. 

 

5.1 Ice Mechanics 

 The data presented in chapter 2 uses surface and bed topography and velocity 

datasets to perform a mechanical analysis of the downstream reaches of KIS and WIS. Ice 

speeds are highest in the main trunk of an active ice stream and ice speeds change quickly 

from fast moving to slow moving along the lateral margins.  Lateral shear margins separate 
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the ice stream from adjacent terrains.  High effective strain rates along the shear margins 

lead to mechanical thinning of the ice over a narrow zone (~10-20 km). 

 The majority of subglacial lakes at the downstream end of WIS are located along 

shear margins.  One such lake, Subglacial Lake Englehardt (SLE), is part of a flat-ice terrain 

along the left lateral margin of WIS.  The local hydraulic potential gradient is oriented 

towards the flat ice terrain and away from the main trunk of WIS.  The hydraulic potential 

gradient also changes from high to low along the shear margin between upstream and 

downstream locations.  This suggests that subglacial meltwater production that originates at 

upstream locations and is, in turn, diverted towards the shear margin, moves downstream 

along the shear margin and collects in large lows in the hydraulic potential gradient, such as 

SLE. 

 

5.2 Characterization of Flat-Ice Terrains and Subglacial Lakes at the Outlets of 
Kamb Ice Stream and Whillans Ice Stream 
 
 The mechanical setting of SLE and the surrounding flat-ice terrain are revealed by 

analysis using a high-resolution DEM and ice surface images from the Polar Geospatial Data 

Center.  The flat ice profile across the terrain is evidence that the lake area is in hydrostatic 

equilibrium.  The highest effective strain rates (0.01-0.04 a-1) across the flat-ice terrain are 

concentrated along the outboard shear margin, defining the northern most WIS boundary.  

This zone features en echelon arcuate crevasses and delineates the outboard shoreline of 

SLE.  The analysis in chapter 3 presents evidence for a separate set of en echelon arcuate 

crevasses along the inboard shoreline of SLE.  This area represents a second zone of 

shearing where basal traction increases outside of the subglacial lake terrain. 
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 Based on their shared mechanical and geomorphological settings, SLE is a 

possible modern analogue for the stagnant Duckfoot (DF) flat-ice terrain.  Both right lateral 

downstream terrains have inboard and outboard zones of shear (the DF features relict 

buried near surface crevasses) bounding a low relief flat-ice topography.  It follows that the 

DF is a likely location for a subglacial lake in the time before KIS stagnation.  The work in 

chapters 2 and 3 explores the hypothesis that the formation of a subglacial lake along a shear 

margin sets the stage for a margin jump by creating a band of elevated shear stress along the 

inboard shore. 

If the DF was the site of a shear-margin type subglacial lake prior to KIS shut down, 

its function may have been similar to the function of the contemporary SLE.  Today, SLE 

collects and episodically discharges subglacial meltwater water.  If the faintness of surface 

crevasses over the inboard lakeshore are accepted as evidence of a relatively recent origin for 

the lake, then it is not unreasonable to suggest a relationship between the development of 

that lake and other ongoing changes across the WIS ice plain region.  Such relationships may 

also have existed for a DF margin lake. 

 

5.3 Grounding Zone Dynamics 

 Weertman (1974) hypothesized that grounding line retreat would continue unstably 

in the presence of an inward sloping bed topography.  Subsequent work (Schoof, 2007 and 

Nowicki and Wingham, 2008) has clarified but supported that general conclusion.  The work 

outlined here adds complexity to this theory and leads to several interesting conclusions 

regarding grounding line migration at ice stream outlets.  In the model experiments discussed 

in chapter 4, when grounding line advance does occur across the KIS outlet, it is mediated 
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by the overdeepening in the bed and proceeds not in the direction of ice flow but 

transverse to flow. 

 The perturbations result in a variety of short-term (century or less) fluctuations in ice 

stream speed, flow-direction, ice thickness and, in turn, grounding line position.  Cross 

communication between ice streams, in this case between KIS and WIS, is facilitated by 

thickness transients that lead to negative changes in volume flux upstream of where the 

perturbations originated.  When SH does not stagnate, longitudinal compression along the 

right-lateral side of the KIS is absent, yielding little grounding line advance.  Bathymetry 

modifies the simple mechanical processes resulting from the set of perturbations so that as 

ice thickens and runs aground, it does so preferentially at high points in the bed topography.   

 In the numerical model experiments that yield grounding line advance, grounding 

spreads laterally from south to north across the KIS outlet and the outer DF remains 

floating as a remnant subglacial lake.  This suggests a second framework in which to view 

this flat ice terrain, one in which the margin lake is not a product of ice mechanics (as was 

suggested in section 5.2) but is instead a product of a geometrically complicated grounding 

line advance. What remains the same is the effect of the new shoreline on ice mechanics and 

an arrangement—post grounding and lake formation—that facilitates a jump from an older, 

outer shear margin to a younger, inner margin. The unmistakable result in our models, that 

the grounding line advances not down the trunk of the ice stream but from the south, favors 

this interpretation. 

 In our pursuit of a role for the DF in KIS grounding line advance from a supposed 

past upstream location, we have instead come to make the following assertions. Subglacial 

Lake Engelhardt is a young (decades to centuries) feature and may be facilitating a margin 
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jump on WIS as that ice stream's ice plain adjusts to changing subglacial traction. We 

suggest (without evidence) that as an exit path for subglacial water, SLE may play a part in 

the basal traction variation. The DF is evidence of grounding line advance from the south, 

across the mouth of KIS. That advance, in turn, was predicated on the stagnation of CIR, 

which promoted grounding in the GF region, and stagnation of SH. In all, the full three 

dimensional context is essential for correct representation of grounding line migration. 
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