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The effect of channel deepening on tides and storm
surge: A case study of Wilmington, NC
R. Familkhalili1 and S. A. Talke1

1Department of Civil and Environmental Engineering, Portland State University, Portland, Oregon, USA

Abstract In this study we investigate the hypothesis that increasing channel depth in estuaries can
amplify both tides and storm surge by developing an idealized numerical model representing the 1888,
1975, and 2015 bathymetric conditions of the Cape Fear River Estuary, NC. Archival tide gauge data recovered
from the U.S. National Archives indicates that mean tidal range in Wilmington has doubled to 1.55m since
the 1880s, with amuch smaller increase of 0.07m observed near the ocean boundary. These tidal changes are
reproduced by simulating channel depths of 7m (1888 condition) and 15.5m (modern condition). Similarly,
model sensitivity studies using idealized, parametric tropical cyclones suggest that the storm surge in the
worst-case, CAT-5 event may have increased from 3.8 ± 0.25m to 5.6 ± 0.6m since the nineteenth century.
The amplification in both tides and storm surge is influenced by reduced hydraulic drag caused by greater
mean depths.

1. Introduction

Hurricane storm surges, the long-period wave generated by tropical cyclones, have historically produced
many devastating floods along the U.S. East Coast [Ludlam, 1963]. As sea level increases due to climate
change and other factors, the same storm surge produces larger extreme water levels (relative to a fixed
datum), exacerbating this flood hazard [e.g., Kemp and Horton, 2013]. There is some concern that climate
change may be increasing the frequency of storms and/or the magnitude of storm surge independently of
sea level rise [e.g., Holland and Webster, 2007; Grinsted et al., 2012; Lin et al., 2012], though gaps in the histor-
ical record complicate interpretation of secular trends [e.g., Landsea et al., 2010]. Recent studies also suggest
that local changes to bathymetry may produce changes in storm surgemagnitudes over decadal and century
time scales [Talke et al., 2014; Orton et al., 2015]. Similarly, changes to wetland areas are known to influence
flood hazard [e.g.,Wamsley et al., 2010]. Since much of the densely populated Atlantic coastline lies less than
3m above mean sea level [Climate Change Science Program Synthesis and Assessment Product 4-7, 2008],
assessing and explaining long-term changes to storm surge is vitally important.

In this study we test the hypothesis that bathymetric changes, in particular the increased depth and width
caused by dredging and channel modification, can cause long-term changes to the magnitudes of storm
surge and storm tides (the sum of the meteorological surge and the astronomical tide) within harbors and
estuaries. Further, since both storm surge and astronomical tides are “long waves” (long wavelength com-
pared to water depth), we hypothesize that both will be similarly affected by altered bathymetry. If correct,
this implies that regions with secular shifts in tidal amplitudes [see, e.g.,Woodworth, 2010] may also be loca-
tions with altered storm surge characteristics. Hence, the opportunity exists to investigate secular changes in
storm surge using the tools, methods, and results of tidal analysis.

Though the effects of storm characteristics (e.g., wind velocity) and surge/tide interactions have been inves-
tigated by numerical models [e.g., Peng et al., 2004; Shen et al., 2006], the effect of decadal and secular
changes in bathymetry has received much less attention [Orton et al., 2015]. By contrast, the dependency
of tides on depth, cross-sectional area, convergence, and other bathymetric properties have long been inves-
tigated using idealized models [e.g., Friedrichs and Aubrey, 1994; Jay, 1991; Lanzoni and Seminara, 1998;
Prandle, 2003]. These studies show that tidal amplitudes decrease upriver when frictional effects dominate
over the funneling effect caused by decreasing width; by contrast, strong width convergence can produce
increasing amplitude when friction is relatively weak. Significantly, the frictional damping in the linearized
tidal equations is proportional to bottom roughness but inversely proportional to water depth [Friedrichs
and Aubrey, 1994]. Therefore, over long time scales, depth changes to estuaries can significantly alter the
balance of inertial effects, friction, and convergence, leading to altered tidal amplitudes. When combined
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with resonance effects, reduced friction has been observed to increase tidal range by more than 3m at the
landward end of some estuaries [Chernetsky et al., 2010; Talke and Jay, 2013].

Globally, tides in most estuaries and harbors show evidence of secular trends [Woodworth, 2010]. On the U.S.
East Coast, Wilmington (NC) has experienced an anomalously large increase in tidal constituents and tidal
range since at least 1935 [Woodworth, 2010]. Over the past 150 years, multiple projects in the Cape Fear
River Estuary (CFRE) have approximately doubled the depth of the shipping channel between the ocean
and Wilmington (at ~ Rkm 47) [e.g., USACE COE, 1873, 1915; Welch and Parker, 1979; Olsen, 2012].
Combined with its documented vulnerability to flooding from tropical cyclones (TCs) [Xia et al., 2008], the
CFRE is an ideal location to test the hypothesis that depth changes can produce large alterations to both
tides and storm surge. Moreover, because the CFRE approximates a funnel-shaped estuary between Rkm
12 and 50, idealized tidal theory [Jay, 1991; Friedrichs and Aubrey, 1994] can be used to interpret
secular changes.

In this contribution we recover and use archival tide and bathymetric data from as early as 1888 to investigate
how CFRE tidal dynamics are affected by channel depth and width changes. Because much of the estuary
approximates a funnel-shaped geometry, an idealized modeling approach to understand first-order system
physics and sensitivities is justified (see supporting information). In turn, a parametric model of hurricane
wind and pressure forcing is applied to the idealized bathymetry to determine how broadband long waves
react to secular changes in depth. Results suggest a simple but profound lesson: locations in which tide
waves have been amplified are also vulnerable to increases in storm surge and flood risk, to a degree that
is related to changed tidal dynamics.

2. Methods
2.1. Study Domain

The Cape Fear River (NC) is a 322 km river with a watershed of 23,581 km2 and a discharge that varies
between ~10 and 3800m3/s, with an average annual flow of ~270m3/s. Two tributaries, the Black River
and the Northeast Cape Fear River, combined with the main stem at Rkm 70 and 47 (Figure 1). Tides propa-
gate about 100 km upstream from the estuary mouth (Rkm 0) [Giese et al., 1985]. Like many river estuaries on
the East Coast and worldwide (e.g., the Delaware) [see Lanzoni and Seminara, 1998], the CFRE is approxi-
mately funnel shaped over a large part of its domain.

Figure 1. Cape Fear River Estuary (USGS, The National Map, http://www.nationalatlas.gov) and tide gage locations at
Wilmington (NOAA Station ID: 8658120) and Southport (NOAA Station ID: 8659084).

Geophysical Research Letters 10.1002/2016GL069494
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Wilmington, a significant port, is located at approximately Rkm 47 (Figure 1). In the midnineteenth century,
the controlling depth at the bar (Rkm 0) and in the estuary varied between 3 and 5m relative to mean low
water (MLW) [USACE COE, 1873]. Initial efforts to control flow began in the 1820s, but large-scale diking
and jetty construction only began around 1870, with significant dredging beginning in 1881 [USACE COE,
1915]. Continued work increased the channel depth to 9.1m by 1932, 11.6m by 1971, and 13.5m by 2001,
relative to MLW [Welch and Parker, 1979; Olsen, 2012]. The inlet width and channel width were widened to
~120 and 90m in 1913, from ~80m in the 1880s [Welch and Parker, 1979]. The modern (2015) shipping
channel is maintained at a depth of 15.5m relative to MSL (14.8m relative to MLW) and a width of 180m.

Significant tropical cyclones have also impacted the region near the CFRE over the past 100 years. The most
intense, Hurricane Hazel (1954) and Hurricane Fran (1996), made landfall as CAT-4 and CAT-3 hurricanes,
respectively, producing 0.96m and 1.7m surge at Wilmington. Other significant surge events include an
unnamed 1944 event (0.72m surge), an unnamed 1945 event (0.66m), Hurricane Floyd (1999; 1.14m),
Hurricane Charley (2004; 1.39m), and Hurricane Hanna (2008; 1.47m). Qualitatively, these hurricane storm
surge magnitudes were larger post-1990 than pre-1960; however, because major hurricanes are relatively
infrequent and have different tracks, widths, and propagation speeds, random chance may explain this
observation. Hence, to test the hypothesis that increasing channel depths have amplified storm surge and
storm tides, a numerical modeling approach is needed.

2.2. Data Sources

Hourly tide data used to validate the idealized tidal model were obtained from the National Oceanographic
and Atmospheric Administration (NOAA) for Southport, NC (1976–1988 and 2006–2008) and Wilmington,
NC (1935–2015). Nineteenth and early twentieth century hourly tabulations were photographed at the U.S.
National Archives [see Talke and Jay, 2013] and digitized, including hourly data from Wilmington
(1887–1888, 1890–1891, 1908–1912) and Southport (1923–1924). Further, hourly records from Southport
(1933–1954) were recovered from the National Centers for Environmental Information (https://www.ncdc.
noaa.gov/EdadsV2) and digitized. Harmonic constituents obtained from 12 short-term gauges are also used
[Welch and Parker, 1979].

River discharge measurements by the United States Geological Survey (USGS) confirm that flood events
generally do not coincide with hurricane storm surge. Since river discharge is generally small during hurri-
cane events, we assume—to first order—that the system is well mixed [see Becker et al., 2010] and that non-
linear interactions between the river and storm tide are negligible. A barotropic modeling approach is
therefore justified.

To estimate an idealized CFRE bathymetry, 23 cross-sectional profiles of depth were digitized in 2 km incre-
ments from an 1888 topographical map published by the U.S. Coast and Geodetic Survey, and a smooth,
idealized bathymetry was fit to the cross sections (Figures 1 to 3; supporting information). A digital elevation
model (DEM) of Cape Fear from 1975 was obtained from NOAA, and the 2015 channel depth was estimated
from Olsen [2012]. Modeled depth and width changes are presented in the supporting information;
compared to historical conditions, the modern cross-sectional area is 0–20% larger than historically, but
the width is 0–20% smaller (see supporting information).

2.3. Hydrodynamic Model

A depth-averaged Delft3D numerical model [Booij et al., 1999] was configured with idealized depth andwidth
variations that approximate the natural system in a least square sense (see supporting information). The
along-channel variation in width is modeled as a Gaussian curve, which allows for an initial expansion in
width between Rkm 0 and 12 and an exponential decrease between Rkm 12 and 50. The channel cross
section is modeled as a Gaussian curve (Figure 2c) and is constrained to approximate the cross-sectional area
as a function of river kilometer (see supporting information), allowing for both channel and shallow subtidal
areas. The width convergence length scale (i.e., the length over which the width decreases by a factor of e)
between Rkm 12 and 50 is 17 km and 20 km, respectively, for the historic (1888) and modern (1975 and
2015) models (see supporting information, Figure S3). Channel depths of 7m, 13.25m, and 15.5m relative
to mean sea level are applied for the 1888, 1975, and 2015 conditions, respectively. To allow damping of
the tidal wave, the river is modeled with a constant width of 120m and a constant depth of 4m (for 1888)
and 5m (for 1975 and 2015) for 150 km upstream of Rkm 50.

Geophysical Research Letters 10.1002/2016GL069494
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Continental shelf topography is approximated from modern bathymetric measurements [Olsen, 2012] and
slopes linearly downward from the coast to a depth of 550m at 200 km offshore. Following observations
on maps, the channel at the estuary mouth is extended 1.2, 4, and 5 km onto the shelf for the 1888, 1975,
and 2015 conditions, respectively. Coastal geometry has been simplified to a straight coastline, and the estu-
ary orientation has been made perpendicular to the coast. The length and width of the continental shelf
model are 200 km and 400 km, respectively, which was found through sensitivity studies to be adequate

Figure 3. (a) Measured and modeled M2 amplitude at Wilmington and Southport over time and (b) variation of modeled
M2 in the idealized “1975” estuary, compared against measurements. Zero is at the river entrance, and positive direction is
landward to the left of the graph.

Figure 2. (a) Idealized model bathymetry, (b) the plan view of TC tracks on the continental shelf, which move from right to
left (c) idealized channel cross-section at the mouth, and (d) the plan view of the first 60 km of estuary grid. The ocean/
estuary boundary is at Rkm 0. Wind forcing is only included on the continental shelf (section 2.4).

Geophysical Research Letters 10.1002/2016GL069494
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for simulating storm surge; doubling the domain size resulted in a less than 1% change in storm surge results.
As shown below, the good agreement between measured and modeled tidal constituents validates the idea-
lized approach. A total of 62 grids in the lateral direction and 273 in the along-channel direction are used in
the estuary and 113 and 140 along the continental shelf.

The hydrodynamic model is forced at the seaward boundary by M2, S2, N2 (semidiurnal), and K1, O1, and P1
(diurnal) tidal constituents derived from the Oregon State University Tidal Inversion Software package [Egbert
and Erofeeva, 2002]. River forcing at the landward end was set to 268m3/s, representing average conditions.
Overland flooding and the effects of short-period waves (swell) are not considered.

2.4. Metrological Forcing

At least two approaches are typically used to model and analyze storm surge, defined here as the difference
between the measured water level and predicted tide. Fully resolved, 2-D or 3-D hydrodynamic models with
realistic meteorological forcing and coastal bathymetry are useful for understanding the effects of individual
events on specific landscape features [e.g., Orton et al., 2012; Colle, 2003]. On the other hand, idealized, para-
metric hurricanes with simplified wind and pressure fields are often used to develop sensitivity studies that
investigate nonlinear interactions or the effects of changing meteorological and hydrodynamic variables
[e.g., Shen and Gong, 2009]. Idealized models require less computational time and reduce complexity, simpli-
fying analysis and interpretation of physical processes. This enables an ensemble-based approach, in which a
large parameter space is tested to help assess hazard probability [e.g., Rumpf et al., 2009]. For these reasons,
we apply an idealized approach.

The parametric model of Holland [1980] was used to estimate the meteorological forcing during a tropical
cyclone:

P ¼ Pc þ Pn � Pcð Þ exp �A=rB
� �

(1)

V ′
w ¼ AB Pn � Pcð Þ exp �A=rB

� �
= ρrB
� �� �

1
�
2 (2)

where ρ is the air density, Pc is the hurricane central pressure (see supporting information Table S1), Pn is the
ambient pressure, A and B are scaling parameters, P is the atmospheric pressure at radius r, and V′w is the wind
velocity. The parameter A is defined by A= (Rmax)

B,where Rmax represents the distance from the storm center
to the location of maximum wind and B is a constant with values between 1 and 2.5 [Holland, 1980].
Following Hsu and Yan [1998], we apply an Rmax of 34, 34, 34, 46, 51, 48, and 47 km to represent a tropical
depression (TD), tropical storm (TS), and hurricane categories 1–5, (Saffir-Simpson hurricane scale), respec-
tively. The maximum wind speed and the center pressure ranged from 11.75m/s and 998mbar (TD) to
78.8m/s and 910mbar (CAT-5); see supporting information Table S1. The parameter B is defined to be 2.25.

To allow sufficient time for storm surge to develop and to test the worst-case scenario, we apply a storm track
that moves perpendicularly to the coast with a translation speed of 18 km/h, representing a slow moving
hurricane that injects more momentum into the water and can result in a higher storm tide [Mei et al.,
2012]. The wind drag coefficient is modeled using the Yelland and Taylor [1996] equation for U10 and is
capped at 0.003 for wind speeds larger than 30m/s [see Powell et al., 2003 and Donelan et al., 2004].
Because the actual CFRE is at an oblique angle to the coast (Figure 1), actual storm tracks with a perpendicular
approach will veer away from the estuary centerline; moreover, hurricane magnitudes decrease upon
landfall. For both of these reasons, we assume that the estuary-generated portion of storm surge for a per-
pendicularly oriented storm is negligible compared to the coastal component and apply TC forcing only over
the continental shelf. This simplification means that we are essentially testing how an externally forced storm
surge behaves in the estuary, rather than a continually forced long wave. The consequences of this assump-
tion are investigated using sensitivity studies and discussed later.

2.5. Model Calibration and Validation

The idealized model was calibrated by adjusting the Chezy bed friction coefficient until the modeled progres-
sion of the dominant M2 tide over a 40d runmatched observations from 1976 (Figure 3b). A Chezy coefficient
of 23 and 65 was applied for the estuary and the continental shelf, respectively, and yielded an RMS error of
0.013m. The relatively large bed friction (small Chezy coefficient) within the estuary likely compensates for
unmodeled roughness features such as marsh vegetation and/or variations in bathymetry. The spatially
constant bed friction coefficients were then applied, unchanged, to the 1888 and 2015 models. Harmonic

Geophysical Research Letters 10.1002/2016GL069494
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analysis [e.g., Leffler and Jay, 2009] shows that the modeled constituents for the 1888, 1975, and 2015 condi-
tions compare favorably with tide records in Wilmington and Southport (Figure 3a). Therefore, despite sim-
plifications, our idealized model reproduces the observed secular trends in the CFRE and is capturing the
first-order behavior of long waves in the real system.

2.6. Sensitivity Studies

To investigate changing conditions, a total of 546 model runs were carried out on the calibrated model
domain, representing three time periods (1888, 1975, and 2015), seven storm intensities (from TD to CAT-
5), two storm tracks, and 13 tidal phases (3 × 7× 2× 13= 546). Two types of storm tracks are modeled for each
storm intensity: wind aligned, in which the maximum wind speed coincides with and travels along the estu-
ary center axis, and pressure aligned, in which the eye of the hurricane coincides with and travels along the
estuary center axis (Figure 2b). Further, each track/intensity/year combination is run an additional 13 times,
with the timing of the storm spaced in 1 h increments over the tidal cycle. In this way the effects of depth
changes (e.g., high or low tide) and current direction (either opposed or collinear with wind-induced currents)
are assessed. The parametric storms were applied during mean tidal conditions (halfway between spring and
neap). Storm surge was estimated from the modeled storm tide by subtracting out the tide from the
calibration runs.

3. Results and Discussion

Analysis of archival data indicates that the M2 amplitude in Wilmington has nearly doubled over the past cen-
tury, from ~0.35m in the late nineteenth/early twentieth century to ~0.65m today (Figure 3a). Over a similar
period, the M2 amplitude near the coast (Southport) has increased only slightly. Similarly, tidal range in
Wilmington has doubled to 1.55m since the 1880s, with a much smaller increase of 0.07m observed in
Southport since the 1920s (see Figure S5). Clearly, the divergence in observed tidal amplification in these
locations suggests that changes to the estuary physics, rather than the ocean, explains most of the secular
changes at Wilmington. In fact, the observed changes in tides are reproduced by changing only the depth
and width of the modeled channel (Figure 2c). Further sensitivity studies suggest that depth changes are pri-
marily responsible. When only depth is changed between the 1888 and 1975 models, the greater diurnal tide
range (GDR) increases from 0.86 to 1.57m. When width changes are also included (default condition; see sup-
porting information Figure S3), GDR increased an additional 0.11m, to 1.68m. These results suggest that the
majority of the observed tidal (long-wave) changes are produced by depth changes, rather than width varia-
bility caused by dredging or shoreline changes.

Idealized TC runs also suggest that a deeper systemwill produce a greater storm tide and storm surge, for the
same meteorological forcing (Figure 4). For the “wind-aligned” scenario with 1888 depth, storm surge at
Wilmington (Rkm 47) is modeled to be 0.7 ± 0.15m and 3.8 ± 0.25m for a CAT-1 and CAT-5, respectively
(Figure 4c), with the observed variability around the mean caused by different timing relative to tidal phase.
By contrast, the deeper 2015 scenario produces storm surges of 1.2 ± 0.45m and 5.6 ± 0.6m for a CAT-1 and
CAT-5, respectively (Figure 4c). Similarly, the modeled CAT-5 storm tide in 2015 is 1.65 ± 0.25m and 0.95
± 0.18m larger than the 1888 simulations in the wind-aligned and pressure-aligned scenarios, respectively
(Figures 4a and 4b). Overall, modeled storm surge and storm tide heights at Wilmington increased between
the 1888 and 2015 models for all modeled TCs, such that there is almost no overlap in the range of modeled
heights. A less drastic change is modeled between the 1975 and 2015 scenarios, likely due to a smaller pro-
portional increase in depth. For reference, the National Weather Service considers a storm tide of 2.04m
(6.7 feet) to be the threshold for moderate flooding in Wilmington (horizontal dashed line in Figures 4a
and 4b). Hence, modeling results suggest that the number of storms that can cause significant surge and
flooding has likely increased over time. Measurements at Wilmington qualitatively support this conclusion;
the largest five storm surges on record all occurred since 1980 (Figures 4c and 4d).

Between the ocean and Wilmington, the spatial progression in surge amplitude closely follows the pattern of
the M2 tide (Figure 3b). In the 1888 simulations, storm surge (like tides) decreased by nearly a factor of 2
between Rkm 0 and Rkm 50, whereas in the 2015 simulation amplitudes are nearly the same (see Figure S7
in the supporting information). Sensitivity studies show that river flow has a minor, though important, effect
on surge amplitudes at Wilmington. For example, increasing river flow to 1000m3/s decreases the CAT-1 storm

Geophysical Research Letters 10.1002/2016GL069494
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surge from 1.12m to 1.04m in the 1975 simulation (not shown). However, since flow events stemming from
TCs typically occur, many days after the storm surge, such elevated flow conditions are unlikely.

Several factors drive increased storm tides in the modern simulations. First, increases in mean high water
have resulted in a larger possible storm tide, independent of meteorological forcing. This effect is especially
prominent for low-energy storms like tropical depressions, in which the increase in the peak water level from
0.55 to 1.05m between the 1888 and 2015 scenarios is almost entirely driven by larger tides (Figures 4a and
4b). A large tide range also contributes to the greater variability (spread) in storm tide heights observed in
modern model runs.

We also posit that both tides and storm tides have increased because channel deepening reduces the
hydraulic resistance to incoming long waves [e.g., Chernetsky et al., 2010]. In analytical models of tide propa-
gation, the friction term in the momentum equation is linearized to be proportional to Cd/H, where Cd is the
linearized drag coefficient and H is the depth [e.g., Jay, 1991; Friedrichs and Aubrey, 1994]. Hence, doubling
depth over the past century has a similar dynamic effect on a tide wave as halving friction. Decreasing shore-
line width between levees, as modeled here, will also amplify tides [Jay, 1991]. Since the estuary is strongly
convergent upstream of Rkm 12, an incoming wave is characterized by a balance between smaller cross sec-
tions (tending to amplify) and bed friction (tending to damp). Increased depth alters this balance and helps
explain why both tides and storm tides have amplified over time. Scaling of momentum terms in model
results also indicates that inertial effects (du/dt) are important and have become more prominent over time.

Figure 4. (a–d) Modeled storm tide and storm surge at Wilmington (Rkm 47) produced by seven different TC strengths,
varying from TD to CAT-5. The vertical dashed lines indicate barometric pressure and peak wind speeds of the modeled
TC on the continental shelf domain. The fill areas around the mean shows the range of results obtained from 13 hourly
spaced tidal phases. Red, magenta, and green circles show measured TCs from 1980–present, 1950–1980, and pre–1950,
respectively, and include (1) Hurricane Hanna (2008), (2) Hurricane Barry (2007), (3) Hurricane Ernesto (2006), (4) Hurricane
Charley (2004), (5) Hurricane Kyle (2002), (6) Hurricane Floyd (1999), (7) Hurricane Bonnie (1998), (8) Hurricane Bertha (1996),
(9) Hurricane Fran (1996), (10) Hurricane Diana (1984), (11) Hurricane Dennis (1981), (12) unnamed (1972), (13) Hurricane
Abby (1968), (14) unnamed (1961), (15) Hurricane Hazel (1954), (16) unnamed (1946), (17) unnamed (1945), (18) unnamed
(1944), and (19) unnamed (1910). Vertical scales are different between wind and pressure-aligned graphs. The horizontal
magenta dashed lines in Figures 4a and 4b represent the National Weather Service threshold for moderate flooding in
Wilmington of 2.04m.

Geophysical Research Letters 10.1002/2016GL069494
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Unlike some estuaries such as the Ems [Chernetsky et al., 2010], traditional quarter wave resonance does not
appear to play a role here since the deep channel is only 50 km long, smaller than the quarter wave wave-
length. However, sensitivity studies suggest that wave celerity and M2 phase change at the transition from
the shipping channel (15.5m depth) to the river channel (5m) upstream of Wilmington, suggesting that
some wave reflection is occurring that may contribute to the modeled water levels.

Compared to historical events, the modeled storm surge from wind-aligned conditions often exceeds
observedmagnitudes at Wilmington (Figure 4c), particularly for larger storms. Since no historical storm tracks
are exactly wind aligned, and storms often lose power near the shore, this result is not unexpected (see
supporting information). On the other hand, some measured events exceed the pressure-aligned model
experiments (Figure 4d), which show that the order of magnitude of simulation results (Figure 4) is plausible.
The overall consistency with actual tide and storm tide measurements demonstrates that the model experi-
ments likely capture the correct historical trend. The wind-aligned scenario can be interpreted as the
worst-case scenario: though most historical storms approach the CFRE at some angle and have made landfall
elsewhere, a perpendicular approach is not implausible (as hurricane Sandy showed in NJ). When meteoro-
logical forcing in the estuary is included, sensitivity studies suggest that overall storm tide magnitudes
increase and that the differences between the 1888 and 2015 scenarios decrease by as much as 0.35m in
a CAT-5 event (not shown). Therefore, preliminary results suggest that the local, estuary contribution to surge
has decreased over time (due to increasing depth) but not enough to compensate for the amplification in the
externally forced wave.

The idealized modeling results support the hypothesis that significant change has occurred in both tides and
storm tides due to channel deepening. To fully assess changed magnitudes and flood risk, a fully realized
numerical model is required that includes more complex bathymetry, variable friction linked to bed types,
more realistic storm forcing, different propagation speeds, wetlands and other intertidal areas, overland flow
and flooding effects, and periodic estuary stratification. In particular, large-scale overland flooding (the levee-
break scenario) may reduce the predicted storm surge heights in the extreme scenarios and hence the mod-
eled change over time. Bathymetric changes due to sea level rise and erosion/sedimentation processes,
though small compared to historical channel deepening, may also have affected tides and storm surge. An
ensemble of storm tracks and storm characteristics should be modeled to fully understand how the worst-
case scenario has changed over time. Nonetheless, results validate the hypothesis that direct anthropogenic
interventions are the primary cause of both changed tidal and storm surge dynamics in the CFRE. Since we
did not consider the natural, pre-1850 condition of a 3–5m deep estuary, historical changes may be more
extreme than suggested. For all these reasons, further investigation with realistic bathymetry is warranted
to constrain the change in flood hazard in Wilmington (NC).

4. Conclusions

In this study we develop an idealized numerical model to investigate how changing channel depths affect
tides and storm surge in the CFRE. Model results suggest that tide propagation into the system has been
strongly affected by increases in channel depth from 7m to 15.5m over the last 130 years, leading to a dou-
bling of tidal range in Wilmington. The anthropogenically altered bathymetry also increases the modeled
storm surge: the same tropical cyclone making landfall today will produce significantly larger water levels
than in the nineteenth century. Since many harbors worldwide have been deepened since the nineteenth
century, and because many locations worldwide exhibit substantial trends in tidal properties [Woodworth,
2010;Mawdsley et al., 2015], it is probable that a secular change in storm surge risk has also occurred in other
estuaries, to an extent related to tide changes. In the future, local depth changes due to accelerating sea level
rise [Church et al., 2013] and additional development may further alter storm surge characteristics and
flood hazard.
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