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Abstract 

Cavity ringdown spectroscopy (CRDS) makes use of light retention in an optical 

cavity to enhance the sensitivity to absorption or extinction of light from a sample inside 

the cavity. When light entering the cavity is stopped, the output is an exponential decay 

with a decay constant that can be used to determine the quantity of the analyte if the 

extinction or absorption coefficient is known. The precision of the CRDS is dependent on 

the rate at which the system it acquires and processes ringdowns, assuming randomly 

distributed errors. We have demonstrated a CRDS system with a ringdown acquisition 

rate of 1.5 kHz, extendable to a maximum of 3.5 kHz, using new techniques that 

significantly changed the way in which the ringdowns are both initiated and processed. 

On the initiation side, we combined a custom high-resolution laser controller with a linear 

optical feedback configuration and a novel optical technique for initiating a ringdown. 

Our optical injection “unlock” method switches the laser off-resonance, while allowing 

the laser to immediately return to resonance, after terminating the unlock, to allow for 

another ringdown (on the same cavity resonance mode). This part of the system had a 

demonstrated ringdown initiation rate of 3.5 kHz. To take advantage of this rate, we 

developed an optimized cost-effective FGPA-based data acquisition and processing 

system for CRDS, capable of determining decay constants at a maximum rate of 4.4 kHz, 

by modifying a commercial ADC-FPGA evaluation board and programming it to apply a 

discrete Fourier transform-based algorithm for determining decay constants. The entire 

system shows promise with a demonstrated ability to determine gas concentrations for 

H2O with a measured concentration accuracy of ±3.3%. The system achieved an 
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absorption coefficient precision of 0.1% (95% confidence interval). It also exhibited a 

linear response for varying H2O concentrations, a 2.2% variation (1σ) for repeated 

measurements at the same H2O concentration, and a corresponding precision of 0.6% 

(standard error of the mean). The absorption coefficient limit of detection was determined 

to be 1.6 x 10-8 cm-1 (root mean square of the baseline residual). Proposed modifications 

to our prototype system offer the promise of more substantial gains in both precision and 

limit of detection. The system components developed here for faster ringdown acquisition 

and processing have broader applications for CRDS in atmospheric science and other 

fields that need fast response systems operating at high-precision. 
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Chapter 1 Introduction 

1.1 Cavity Ringdown Spectroscopy 

Cavity ringdown spectroscopy (CRDS) is one of several cavity-enhanced 

absorption techniques that make use of the multiple reflections of light inside a high-

finesse optical cavity to increase the interaction of the light with gases inside the cavity. 

In our continuous-wave implementation of the method, when the frequency of the laser 

matches a mode of the cavity, the light intensity inside the cavity (and therefore at the 

output photodiode at the end of the cavity) increases. At a pre-selected threshold level, a 

feedback circuit shuts off the light going to the cavity, and this initiates the decay 

(ringdown) of the signal from within the cavity. The output signal S(t)—the small 

fraction transmitted by the output mirror—is proportional to the intensity within the 

cavity, and is therefore given by an exponential. CRDS uses the exponential decay of 

light intensity emitted from a high finesse resonant cavity to measure the concentration of 

gases within the cavity, which absorb at that specific frequency. To relate the output to 

the absorption inside, we can define the output signal: 

  (1) 

where S0 is the level of the detected signal at time t = 0, and β is the decay constant (1/τ, 

where τ is the ring-down time). β can be decomposed into β = βsample + β0, where βsample 

(1/τsample) is the contribution from the absorption strength of the sample, and β0 (1/τ0) is 

the background absorption of the light due to mirror losses, background gases, etc. In 

( ) teStS β−= 0
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theory, β0 is constant and can be obtained by measuring a ring-down without the sample 

of interest in the cavity. Subtracting out β0 leaves βsample from which we determine the 

sample concentration using the Beer-Lambert Law (see Section 6.3). If we consider only 

the transverse electromagnetic wave mode (known as TEM00) of the cavity, the frequency 

spacing is given by the usual standing wave requirement that the cavity length be an 

integer multiple of half the wavelength, so that the frequency spacing between cavity 

modes is .  Therefore it is possible to scan the laser frequency, determine 

decay constants at successive longitudinal modes, and obtain an absorption spectrum. 

Concentrations can then be obtained by matching measured absorption peaks to a 

database such as HITRAN1 (see Section 6.3), or to a higher degree of accuracy in 

calibration using reference gases of known concentration. 

 

Figure 1 Cavity ringdown traces for a baseline (blue) and with an absorbing sample (green). The faster 
decay is caused by the absorption, which increases the time constant from that of an empty cavity. The 
change in the time constant is then related to the concentration of the absorbing molecules in the cavity. 
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There are several historical reviews of CRDS, including a particularly applicable 

one by Paldus and Kachanov2. The CRDS began as a way to measure the properties of 

the high-reflectivity dielectric mirror coatings developed in the 1980’s, with typical loss 

values of parts-per-million (ppm), and was originally known as cavity ringdown 

reflectometry. Those first credited with using it for measuring gas-phase absorption 

spectra, and for designating it as CRDS, were O’Keefe and Deacon, who measured 

forbidden (very weak) oxygen transition bands3. Their original system used a pulsed laser 

CRDS (P-CRDS), but the quest for better sensitivities led to increased interest in the 

development of continuous wave (CW) CRDS (CW-CRDS), which use CW lasers with 

much narrower linewidths and finer wavelength/frequency resolution. 

CRDS, and other cavity-enhanced techniques such as cavity enhanced absorption 

spectroscopy (CEAS)4, and integrated cavity output spectroscopy (ICOS)5 offered orders 

of magnitude increase in sensitivity of traditional absorption spectroscopy, including 

multi-pass-cell absorption spectroscopy6–8. As a result, it found its place in a number of 

applications needing high frequency resolution and absorption (and extinction) 

sensitivity.  In addition to high precision gas measurements9,10, it has been used for the 

measurement of ethane in human breath11, chemical dynamics such as radical 

formation12,13, photolysis14,15, and flame analysis16. 

Commercial CRDS systems became available in the 2000’s, with Tiger Optics, 

LLC., (based on technology developed at Princeton by Kevin Lehmann) and Picarro, Inc. 

(based on technology developed at Stanford by Barbara Paldus and co-workers). Tiger 

Optics has a wide range of products for measuring gas-phase concentrations of carbon 

dioxide (CO2), water (H2O), methane (CH4), and many others down to the parts-per-
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billion (ppb) and in some cases parts-per-trillion (ppt) level. The Picarro instruments are 

capable of measuring a similar, but slightly smaller, range of gases at similar detection 

limits. Picarro, Inc., also now offers instruments that measure the isotopic composition 

(see Section 1.3) of H2O, CH4, CO2, and nitrous oxide (N2O). Picarro achieves their 

precision using a 3-mirror “ring” cavity, precision control of pressure and temperature 

and a patented wavemeter enabling the system to lock the laser to the desired frequency. 

(Thus, they only need to measure the peak absorptions of the isotopologues, rather than 

an entire spectrum). Tiger Optics’ systems are 2-mirror linear cavities, and use automatic 

laser tuning either with or without a reference cell (depending on the model) to ensure the 

laser is centered on the peak absorption. They appear to use a similar technique of only 

measuring the absorption peak and a baseline to determine gas concentration. 

1.2 Applications to atmospheric science 

As a sensitive absorption spectroscopy technique, CRDS has applications in 

atmospheric science typical of other spectrometers. Many of these applications deal with 

the measurement of concentrations of greenhouse gases, pollutants, and aerosols. Typical 

measurements include concentration studies of CH4
17, CO2

18 and H2O19, as well as 

nitrogen dioxide (NO2)20 and nitrate (NO3)21. Several studies have used CRDS to 

measure not absorption but extinction to measure aerosols22–24. More recent applications 

are measuring greenhouse gas fluxes using CRDS25. 

Another of the more recent applications of CRDS is the study of the isotopic 

composition of greenhouse gases26–29, which can provide a better understanding of the 

processes that produce (sources), consume (sinks), and/or transport greenhouse gases30–32. 
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While the precision of CRDS is not yet equal to that of the more common IRMS 

system33,34, the portability and speed of CRDS spectrometers make them better suited to 

in-situ measurements of isotope ratios29,35,36. Furthermore, CRDS systems can be 

significantly less expensive than IRMS systems, but are less flexible in their ability to 

measure isotope ratios of different gases. 

1.3 Review of our previous work 

Our previous work focused on this last application, specifically measuring the 

carbon isotope ratio of CH4 using a cavity ringdown spectrometer. Measuring the isotopic 

composition of CH4 in the environment is of value because each source and each sink 

imparts a characteristic isotopic “fingerprint” to emitted or consumed CH4. This isotopic 

analysis of atmospheric CH4 requires determining the ratios of the concentrations of the 

CH4 isotopologues (e.g., 12CH4, 13CH4, and CH3D) to a high degree of accuracy and 

precision. This analysis provides insight into CH4 sources and sinks, as well as their 

relative impacts on atmospheric concentrations.  

Measurements of the isotopic composition are expressed in terms of isotope ratios 

using the δ-notation, in which isotopic ratios (rare isotope/most abundant isotope) are 

expressed relative to an internationally recognized standard reference ratio. For 13C/12C 

and D/H we have the following: 
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(3) 

Where 
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13C[ ] 12C[ ]( )
sample

 and 
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13C[ ] 12C[ ]( )
standard

 are the ratio of the concentrations of 

13C to 12C for the sample and standard, respectively; and 

€ 

D[ ] H[ ]( )sample  and 

€ 

D[ ] H[ ]( )standard  are the ratio of concentrations of D to H for the sample and standard, 

respectively. The factor of 1000 indicates that values are given in “per mil” (‰) the 

adopted notation for reporting isotope ratios (δ values). The standard for δ13C is Vienna 

Peedee Belemnite (VPDB) which has a defined 13C/12C ratio of 0.0112372; the standard 

for δD is Vienna Surface Mean Ocean Water (VSMOW) which has a defined D/H ratio 

of 0.0001557437,38. 

Our previous work focused on this last application, specifically measuring the 

isotope ratio of CH4 demonstrated the measurement of δ13C-CH4 using a CRD 

spectrometer with a near-IR tunable diode laser. Figure 2 shows a diagram of our 

instrument. For a full description of our analytical system, see Bostrom30. Briefly, the 

beam from a tunable diode laser (New Focus, Model 8324, 1280-1340 nm) passed 

through an acousto-optic modulator, to enable shutting off the laser input when recording 

the ringdown event, to an optical cavity. The flow cell is enclosed by a blown pyrex 

cylinder and sealed by adjustable mirror mounts, producing an 87 cm optical cavity, with 

TEM00 longitudinal modes spaced roughly 172 MHz apart. One of the cavity mirrors was 

mounted on a piezo-electric transducer stage, which was modulated at approximately 15 

Hz to aid in the mode matching of the laser and cavity. Relative frequency measurements 

(used to linearize the frequency axis) were made using the transmission of a low-finesse 
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etalon (whose output is approximately sinusoidal) by matching the data to a theoretical 

curve. CH4 was enriched dynamically through mass flow controllers on prepared samples 

of 12CH4 and 13CH4 with concentrations of approximately 2000 ppm and 40 ppm, 

respectively. Ringdowns were sampled on a PC using a high-speed (50 MSPS) data 

acquisition card (Gage, CS8012), and Labview code to determine the absorbance. Post-

processing to determine concentration based on the absorbance spectra was performed 

using Matlab code. 

 

Figure 2 CRDS system used in previous work. A tunable diode laser’s beam was sent into a high-finesse 
cavity. Once sufficient intensity was built up inside the cavity (a proportional signal is detected by Detector 
#1), an AOM interrupted the beam and started the ringdown event. A low-finesse etalon was used to 
measure relative frequency, since the tuning of the laser was non-linear. 
 

 

Isotopic ratio measurements only require a stable relative measurement of the 

concentrations of the isotopologues, but CRDS allows us to obtain δ13C, δD, and CH4 

concentration with the same instrument. Our initial studies focused on δ13C over δD due 
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to larger absorption signals resulting from a higher abundance of 13C relative to D. A 

complete absorption spectrum is shown in Figure 3. We used a Lorentzian line-shape fit 

to both the background peaks (which were subtracted from the desired peak) and the 

13CH4 peak (See Section 6.3). This process was repeated for a background and several 

dynamically enriched CH4 samples. A plot of the expected (based on the concentration of 

our prepared samples and their flow rates), and the measured δ13C (using the total 

absorption of the 13CH4 peak) is shown in Figure 4. 

 

Figure 3 A typical scan showing Lorentzian line fit with background subtraction for the 13CH4 peak (Peak 
A). Green circles: Measured CRD spectra; Black, dashed: Background for 13CH4 peak; Red dash: 
Lorentzian fit to 13CH4 peak (Peak A) with background subtracted; Blue: combination of Lorentzian fit and 
background. Peak C is an H2O line which made a significant contribution to the background of the 12CH4 
peak (Peak B). 
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Figure 4 δ13C enrichment results for 14 October 09, along with a linear best-fit. The best-fit line has a slope 
of 2.0, and an R2 = 0.996. 

 

We were able to successfully measure the isotope ratio of artificially enriched 

CH4, with an estimated precision of 4-5‰. While our results showed high linearity (R2 = 

0.996), the 12CH4 peak exhibited significant variations (it was expected to remain 

constant), and therefore we were unable to use it as a measure for 12CH4 concentration to 

a high degree of precision. It also greatly affected our 13C/12C determination. The reason 

was most likely a result of temperature variations in the cavity over the course of the 

experiment and the influence of a varying H2O peak (Peak C) due to a small leak that was 

later discovered (and subsequently repaired) in the gas inlet system.  

 Given the results from the prototype system, we determined that our focus needed 

to shift to significantly improving the precision and acquisition speed of the CRDS 

system in general, before we could make further gains in isotope ratio measurements. The 

system was 4 orders of magnitude from our target precision of 0.5‰ at ambient CH4 
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concentrations (~2 ppm). As a result, it was apparent that incremental changes to the 

system would not be sufficient, but rather a major redesign of the setup was required. We 

therefore revisited the current research on CRDS sytem design for guidance. 

1.4 Current State of the Science for High-Precision/High-Speed CRDS   

There has been continued effort by the CRDS community to improve the 

performance of CRDS systems, since increasing levels of precision could lead to the 

application of CRDS to a larger set of problems (e.g., high precision concentration 

measurements, isotope ratio measurements, and flux measurements). Often, the 

sensitivity of absorption spectroscopy is specified in terms of the minimum detectable 

absorption coefficient. The absorption coefficient is the fractional absorption per unit 

length, typically given in units of cm-1. For comparison between systems, most authors 

measure the residuals to the nonlinear fit of absorption coefficient, and use the average 

root-mean-square (rms) of the residuals at the baseline as their sensitivity. The sensitivity 

of CRDS systems generally depends on the number of ringdowns averaged to make the 

measurement, the mechanical stability of the optical cavity, and the stability of the 

coupling of the laser to the cavity. 

Here we highlight work that made improvements to CRDS systems in terms of 

acquisition speed or precision, or both. In 1997, Romanini et.al.39, achieved a 200-Hz 

ringdown acquisition rate by using a linear fit to the logarithm of the data signal, and 

achieved a sensitivity of 1x10-9 cm-1. In 1998, Paldus et.al.40, used optical feedback (see 

Section 3.1) for enhanced laser-cavity coupling and collected data at 256 Hz. They 

argued that this was limited by the data acquisition hardware, but claimed their maximum 
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ringdown initiation rate was 50 kHz. Notably they averaged the ringdowns prior to 

determining the time constant, which is not the same, or as accurate, as averaging the 

time constants. They quoted a sensitivity of 5 x 10-9 cm-1. Chen et. al.29 reported a 

sensitivity of 1.9 x10-12 cm-1 using 100 cycles of 50 averages with an effective ringdown 

acquisition rate of 12 Hz (30 Hz + 50 ms/ringdown in processing time). Their system 

used a PZT to match the cavity mode to the laser frequency, using a low frequency 

oscillation for searching and high-frequency dither for acquisition. Motto-Ros et.al.41 

achieved a 0.6 cm-1 spectrum covering 90 cavity modes in only 140 ms, and obtained a 

50-point average of each mode in 7 seconds (this is an effective ringdown acquisition rate 

of 640 Hz). Their system also used optical feedback to improve laser-cavity coupling. 

Since their design swept through each mode successively, their system’s sensitivity was 

limited by the number of samples at each mode they could capture before mechanical 

instabilities offset any improvement by added decay constant averaging. Their system 

achieved a sensitivity of 5 x 10-10 cm-1. Crosson et. al.35 used a commercial instrument 

from Picarro, Inc., with a specified ringdown acquisition rate of 100 Hz, an estimated 

sensitivity of 1.6 × 10−10 cm−1 and a 1-Hz concentration acquisition rate. One of the 

highest ringdown acquisition rates was achieved by Orr and He42. The first version of 

their system43 used optical heterodyne detection (OHD) to achieve a maximum ringdown 

acquisition rate of 500 Hz and achieved a sensitivity of  3.0 x 10-9 cm-1, with 0.6 seconds 

per spectral data acquisition point. They subsequently followed up with a faster system42 

and achieved a 5-kHz ringdown acquisition rate by averaging the logarithmic 

demodulation of the OHD ringdown using analog circuitry. Their sensitivity for this 

system was 8 x 10-10 cm-1. Long, et.al.44 used OHD combined with electronic feedback 
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for laser-cavity locking to obtain a sensitivity of 4 x 10-10 cm-1. Butler et.al.23 achieved a 

ringdown acquisition rate of 1.5 kHz using an optical feedback system to measure 

aerosols rather than perform concentration measurements, so no comparison in sensitivity 

was stated, or could be determined. 

1.5  Problem/Motivation 

The previous system described in Section 1.3 lacked the precision sensitivity 

necessary to perform isotope ratio measurements on CH4 at ambient concentrations. 

Significant improvements needed to be made in order to achieve that objective, which 

shifted the focus of the current work to develop novel techniques to improve the 

performance of CRDS systems in general. First, since the standard error of the mean 

should decrease as 

€ 

N , a significant factor affecting the precision of the system is the 

speed at which ringdown data can be collected in a CRDS system and converted into 

absorption45,39 Second, reducing the overall time required to obtain a concentration 

measurement can improve overall system performance by reducing the impact of long-

term drift in temperature, pressure, and other environmental factors. It could also enable 

the system to be applied to measurements that exhibit more rapidly changing 

concentrations, such as flux measurements. Finally, these improvements should reduce 

the overall cost of the system to enable CRDS to become more ubiquitous, by further 

expanding their potential applications. Therefore, the major focus of this work was to 

find cost-effective methods to improve the speed at which ringdowns can be collected 

and evaluated in CRDS. This required an investment in and re-examination of the 

fundamental optics and electronics of CRDS systems. To that end, we have developed 
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novel techniques that make significant gains in acquisition speed while simultaneously 

providing significant cost-savings over conventional methods. 
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Chapter 2 System design and approach 

In our previous work, the precision of the instrument was constrained by several 

factors, the most significant of which was the speed of acquisition. The system collected 

ringdowns at a rate of approximately 10 Hz. This limitation was a result of 2 major 

factors: (1) the time it took for the laser output frequency to overlap with the cavity 

resonance mode, and (2) the speed at which the digitized signal was collected and 

processed on the computer. The time to acquire a spectrum with reasonable precision was 

30-40 minutes. Secondary consequences of this were lower numbers of ringdowns 

available to average at each frequency, thermal variations in the cavity which 

significantly altered the relative absorption of the different peaks, and an inability of the 

system to detect short timescale concentration changes. The intent of my research was 

then to seek significant improvements in the CRDS system’s decay time acquisition 

speed, as well as reducing the cost and complexity by employing more readily available 

components into the system. 

The first change involved replacing the tunable diode laser (>$20k) with a low-

cost optical-communication-grade distributed feedback laser (~$25 diode laser + ~$500 

for mount, temperature controller, and current controller). The laser stability and 

linewidth of these lasers are significantly worse than the external-cavity tunable diode 

laser, but by making use of optical feedback from the cavity mirrors, it was possible to 

not only improve the stability and linewidth of the new laser, but also to keep the laser 

locked to the cavity for longer periods of time, allowing significant increases in the rate at 
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which we acquired ringdowns. Precision computer control of the laser frequency was 

accomplished using an inexpensive ($50) digital-to-analog converter (DAC) evaluation 

board. 

The second improvement eliminated the acousto-optic modulator used to switch 

off the injection of light into the cavity (which initiates the ringdown). The acousto-optic 

modulator was another costly device (~$3-5k), required precise alignment to work 

effectively, and interfered with optical feedback techniques used to keep the laser on-

resonance with the cavity. The AOM was replaced with a novel system that used optical 

injection of a secondary pulsed laser (~$25 for the diode laser +$300 for mount and 

temperature controller) into the probe laser to shift it off-resonance and initiate the 

ringdown46. This technique avoids the thermal effects resulting from modulating the 

primary laser’s current directly41, and allows the laser to come back into resonance at the 

same cavity mode for rapid acquisition of multiple ringdowns. 

The third improvement was to replace the PC-based data acquisition system 

(~$6k) with a high-speed analog-to-digital converter (ADC) coupled with a field 

programmable gate array (FPGA) and a microcontroller (total cost <$900) to process the 

ringdown in near-real time using a discrete Fourier transform (DFT) algorithm, which 

increased the acquisition and processing rate of ringdowns by 2 orders of magnitude at a 

significantly reduced cost. The details of each of these modifications, as well as the 

overall system design, are discussed in the Chapters 3-5, while Chapter 6 discusses the 

overall performance of the new system. 

The design of this second-generation prototype spectrometer is shown in Figure 5. 

The layout is similar to our original design shown in Figure 2 of Section 1.3. Major 



16 

changes (followed by the sections in which they are discussed) are: the main laser and 

control circuitry (Chapter 3), the acousto-optic modulator was removed and replaced with 

a pulsed laser for optical injection unlocking (Chapter 4), and the ADC and FPGA data 

acquisition electronics replaced the data acquisition card (Chapter 5). Additional 

polarization optics were also installed, and the etalon was replaced with an OHD system 

for analyzing the main laser frequency (details in Appendix B). 

 

 
Figure 5 Overall system block diagram. Major components are discussed in the following sections. The 
main laser is injected into the high-finesse cavity. A pulsed laser induces a frequency shift on the laser once 
triggered. The cavity output is measured with a photodetector, with the output voltage processed using an 
ADC-FPGA system. A desktop computer with LabView code controls the entire system. The OHD 
frequency analyzer system and the digital oscilloscope are ancillary diagnostic tools, not necessary for 
spectroscopy.  
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Chapter 3 Cavity-Laser Locking 

One of the advances that has contributed to higher precision in CRDS instruments 

is the use of feedback to stabilize the laser frequency on a mode of the cavity23,39–41. This 

enables the build-up of energy in the cavity to occur more efficiently (and therefore more 

rapidly), allows for faster acquisition of ringdowns, and reduces error in determining the 

laser frequency by using the equally spaced cavity mode frequencies as a scale. This 

feedback can be either electronic, typically using the Pound-Drever-Hall method47, or 

optical48,49. In the case of optical feedback, it has the added benefit of narrowing the 

linewidth of the laser. Since the laser becomes more stable and the linewidth narrows, the 

use of optical feedback reduces the specification requirements on the laser, allowing for 

the use of inexpensive diode lasers in CRDS systems (lasers chosen in the near-IR are 

typically for optical communication applications). Since we implemented a form of 

optical feedback in our design, the theory is briefly discussed in the next section. 

3.1 Coherent Optical Feedback Theory 

Optical feedback involves injecting externally filtered, or simply reflected, laser 

output back into the lasing medium. This positive feedback, depending especially on the 

relative intensity of the reflected energy coupled back into the laser, can cause laser 

frequency stabilization (at low feedback intensities) or induce chaotic behavior (at high 

feedback levels). Entire books have been written on the study of optical feedback and its 

effects50,51. Conventional optical feedback, the result of the reflection from a single 
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external mirror, is described mathematically by the Lang-Kobayashi equations52, which 

are composed of the rate equations for the emitted (complex) electric field and carrier-

density, with an additional term accounting for the time-delayed electric field due to the 

reflection from an external mirror: 

 

 
 

(4) 

 

 
(5) 

 

where E(t) is the amplitude of the emitted electric field, Ω(t) is the phase of the electric 

field, n is the carrier density, ωN and G are the carrier density dependent laser diode 

resonant frequency and gain, respectively, Γ0 is the optical loss in the diode cavity, κ is 

the feedback strength, τ is the round trip delay of the feedback signal, J is the current 

density, e is the fundamental electric charge, d is the length of the lasing medium and τs is 

the spontaneous emission lifetime52. 

If the feedback is from something other than the reflection of an external mirror, 

then the feedback term in the Lang-Kobayashi equations is simply modified51: 
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where F(t) is the feedback electric field resulting from the transfer function of the 

external device.  

Various optical feedback techniques, each with different forms of the feedback 

term F(t), are used in the design of stable, tunable, narrow linewidth diode lasers: 

Extended cavity diode lasers (ECDL) lasers use a single external mirror instead of the 

laser’s output facet and are described by equations (4) and (5); Distributed Feedback 

(DFB) lasers use a diffraction grating which is part of the laser cavity to provide 

feedback; and the Littman-Metcalf configuration uses an external diffraction grating and 

mirror to reflect a high order fringe back into the laser to provide the feedback with high 

resolution wavelength selection obtained by changing the angle of the mirror53. These last 

two types are forms of filtered optical feedback, described by equations (6a) and (6b). 

 The method most applicable to CRDS is to use filtered optical feedback from the 

external high-finesse resonant cavity to provide very narrow bandpass filtering of the 

laser output. Initial studies on this technique were conducted by Dahmani, et. al.49 and 

Laurent, et.al.48 using off-axis confocal resonant cavities, and they showed that under 

certain conditions, the laser would “lock” to cavity resonance modes, significantly 

narrowing the linewidth of the laser and stabilizing the frequency to the cavity resonance 

mode. 

For an external high-finesse cavity, the response function is a Lorentzian function 

and in the time domain has the form:  
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where Λ is the half-width half-maximum of the filter, and ωc is the center of the filter. 

The feedback term becomes the convolution of the input and the response51: 

 

While the output of the cavity is narrowly filtered around the cavity mode, there is 

a strong reflection off the first cavity mirror back towards the laser (~99% of incident 

power for high-finesse cavity mirrors) that is not filtered by the cavity. To avoid feedback 

effects from this light, as in the case of Dahmani, et.al.49 and Laurent, et.al.48, the input 

beam was injected slightly off-axis, directing this strong reflection away from the laser 

while still allowing light exiting the cavity to follow the path back to the laser. This 

results in slightly divergent spots at the other end of a two-mirror cavity, which 

significantly reduces the cavity finesse (and thus ringdown time). 

Since the optical feedback described above is provided by a high-finesse cavity, it 

was then applied to cavity-based spectroscopies (e.g., CRDS and ICOS). However, a 

disadvantage to the off-axis confocal design mentioned above48,49 is that the finesse of the 

cavity is highly degraded due to the off-axis injection, making it undesirable for CRDS 

since high cavity finesse implies smaller background decay constants β0 (corresponding 

to longer decay times and better base sensitivity in spectroscopy). To take advantage of 

the optical feedback, while maintaining the high finesse of the cavity, and still diverting 

the direct reflection from the first cavity mirror, this locking effect was later revised for 

CRDS using a 3-mirror V-cavity by Morville et.al.54. An alternate setup which removed 
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the strong feedback from a direct reflection by inserting a glass plate inserted inside the 

cavity at the Brewster angle was demonstrated by the same group41. A small amount of 

power is injected into the cavity off of the plate, and only the significant buildup in 

intracavity intensity when the frequency matched a cavity mode provided a significant 

amount of feedback to the laser, but this still significantly lowered the finesse of this 

system. For our configuration, we implemented a simpler linear 2-mirror cavity design, 

which is described in Section 3.2. 

Examination of the effect of optical feedback is typically accomplished by 

analyzing the laser output frequency. The relationship between the free-running laser 

frequency and the frequency with feedback is taken from Laurent et.al.48:  
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where ωfree is the laser free-running frequency, ω is the laser-frequency with feedback, Fc 

is the finesse of the cavity, Fd is the finesse of the diode laser, α is the linewidth 

enhancement factor for the laser, Lp, and Ld, are the cavity length and laser-cavity 

distance, respectively, r is the reflectivity of the cavity mirrors, c is the speed of light, and 

θ =tan-1(α), and β is the proportion of the laser power received as optical feedback 

(which, for stabilization is typically a constant in the range  10-3 to 10-6, and the value of 

K is then typically ~109 to 1012). When the distance between the laser and the cavity is a 
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multiple of the cavity length, the feedback will stabilize the laser to the cavity mode 

frequency. Taking the simple case when Lp = Ld, the equation simplifies to:  
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To estimate the performance for our setup, we used Fc = 10,000, and estimated 

the following: β = 1 x 10-5, Fd = 3, α = 4, η = 3.5, and ld = 1 mm, which gives K ≈ 1 x 

1011, and a plot relating ωfree and ω is shown in Figure 6. The shallow slope around ωres 

indicates the locking effect of the feedback, as the free-running laser would normally 

deviate far from the center of the cavity mode, while the coupled output frequency is 

orders of magnitude lower54. Once the locking range is exceeded, there is a jump in the 

coupled frequency and if the frequency continues to increase, it will approach (and then 

lock to) the next cavity mode. In the figure, the estimated locking range of our optical 

feedback is 8 MHz, and the slope is 120 rad/rad. 
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Figure 6 Effect of optical feedback on laser output. The dashed line shows the laser output frequency if 
there were no optical feedback (i.e., it is a 1:1 line). The solid line shows the output frequency in the 
presence of feedback, and the shallow slope around 0 (which represents a mode of the cavity) indicates the 
frequency locking—the laser output does not move far from resonance. In this case, the locking range 
would be ±8.0 MHz (the extremes of ωfree) and the slope is 120 rad/rad. 
 

A drawback of coherent optical feedback is that the locking performance is highly 

dependent on the phase of the feedback signal when it reaches the lasing medium because 

the emitted and feedback electric fields add coherently. Therefore the laser-cavity 

distance must be kept stable, and if sweeping over many cavity modes to obtain a 

spectrum, the phase change must be compensated for by actively adjusting this distance 

to optimize the feedback level at the laser for each mode54.  

Coherent optical feedback techniques enable fast data acquisition since neither the 

cavity nor the laser needs to be dithered to achieve an overlap of the laser and the cavity 
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(buildup and ringdown). Although they did not use CRDS, Morville et.al. reported 

sweeping 200 modes in 100 ms with active phase control enabled, to obtain a gas-phase 

H2O spectra54. Similarly Motto-Ros et. al. used CRDS and were able to sweep 90 cavity 

modes in 140 ms, and obtain a 50 point average of each mode in 7 seconds41. 

3.2 Linear Optical Feedback Setup 

In our current system, we implemented a simplified approach to laser-cavity 

locking. Since the requirement for cavity locking using coherent feedback is that the ratio 

of laser-cavity distance to cavity length be an integer, rather than using a V-cavity or off-

axis injection, we chose to use linear cavity feedback design (see Figure 5). In this 

configuration, both the direct reflection from the first cavity mirror and the output from 

the cavity contributed to the feedback entering the laser medium. (Note that the cavity 

output—the ringdown signal—propagates in both directions along the cavity axis, 

although only the direction toward the photodiode is used to measure the ringdown.) By 

adjusting the distance from the laser to the cavity to be approximately equal to that of the 

cavity length, laser-cavity interaction was enhanced at the mode of either, since they 

approximately overlapped. Moreover the laser-cavity path is not a high-finesse path, so 

its broad linewidth enabled sufficient overlap that the laser stabilized to the cavity mode 

even when the two distances are not exactly the same. 

To demonstrate the effect of cavity locking in our system, we measured the 

linewidth of the laser while it was injecting light into the cavity, using the OHD 

frequency analysis system described in Appendix B. This system was capable of 

measuring the main laser’s frequency relative to a stable reference laser (in this case it is 
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the New Focus ECDL used in our previous setup described in Section 1.3). The main 

drawback was that the difference between the two lasers’ frequencies must be within the 

bandwidth of the photodetector—for the Thorlabs PDA255, the bandwidth is 65 MHz. 

This required tuning of the ECDL until it was close enough to the main laser. 

In Figure 7, the OHD frequency spectrum of the main laser is shown for two 

cases. In the first (in blue), the system was in the typical configuration with the cavity 

fully aligned for spectroscopic measurements, so both the cavity and the laser-cavity path 

are providing feedback to the laser. The second (in red) was with the second CRDS 

cavity mirror misaligned. This means there was no feedback from the cavity itself, only 

direct reflection from the first mirror, and feedback due only to the laser-cavity path. As 

the figure shows, there was a significant linewidth narrowing when the cavity was 

aligned, meaning that the optical feedback was having an effect on the main laser.  

To confirm that the main laser was locked to the cavity mode, we looked at the 

cavity output in the time domain, and noted that the output level built up to a significant 

voltage and stayed high. Figure 8 shows the output voltage of the cavity photodetector 

with optical feedback for the laser. The dropouts were triggered by our pulse circuit (see 

Chapter 4) and the envelope of the output voltage demonstrates the stability of the laser. 

Without locking, cavity buildup would last less than 100 µs, and there would be a 

significant time before cavity buildup restarted. 
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Figure 7 Effect of laser-cavity interaction. Linewidth of the main laser is shown with the cavity aligned 
(blue) and then when the cavity output mirror is mis-aligned (red). The main laser linewidth is significantly 
narrowed when the cavity output is included in the feedback. A 10-point moving average is shown on the 
misaligned cavity to better represent the peak. 

 

 
Figure 8 Extended Laser-Cavity interaction with induced ringdowns. The long-term increase (and then 
decrease) in peak voltage demonstrates that the laser frequency remained close to the cavity mode for 
extended periods of time (10 ms in this diagram). The drop outs were ringdowns induced by the pulsed 
laser, as described in Section 2.4. Without locking the build-up would only exist for on the order of 100 µs.  
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The cavity locking enabled light build-ups (and subsequent ringdowns) to occur at 

a significantly higher rate of up to 3.5 kHz, compared to the 10-Hz rate achieved with the 

cavity length dithering method employed previously. The ringdown portion of the cycle 

was limited by the length of time data was collected for each event, so it would be 

possible for the optical part of the system to have a higher ringdown acquisition rate if the 

decay constant were larger, but obviously would degrade the sensitivity of the 

spectroscopic measurement. Further discussion of the optical limitations to the ringdown 

rate are discussed in Section 4.4. 

3.3 Laser Frequency Control 

Having implemented a method to lock the laser to a cavity mode, it was then 

necessary to adjust the laser frequency from one mode to the next, in order to measure the 

absorption as a function of frequency (or more typically, wavenumber in units of cm-1) to 

obtain a spectrum for analysis. For our distributed feedback DFB diode laser, the 

frequency could be varied in two ways. First, adjusting the operating temperature of the 

laser coarsely tuned the frequency; and, for this laser we empirically determined the 

wavenumber as a function of temperature using the OHD technique (See Appendix B). 

The results for 3 trials are shown in Figure 9, and we determined that the wavenumber 

changed by -0.55 cm-1/°C (or +0.093 nm/°C), which is the average of the three linear fits 

shown.  
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Figure 9 Plot of data taken for wavelength vs. Temperature for the Main Laser. Three datasets were taken 
on three different days. The average slope for these three days is -0.55 cm-1/°C. 
 

High-resolution spectroscopy requires scanning across absorption peaks with 

linewidths on the order of 0.1 cm-1 or less, so that finer tuning of the laser wavenumber is 

required, and this tuning was accomplished by adjusting the laser current. Again, using 

the OHD technique (See Appendix B), it was determined that the wavenumber changed 

at a rate of 0.035 cm-1/mA (1.06 GHz/mA). Unfortunately, the laser current also 

determines the power, with a typical slope efficiency of 0.5 mW/mA, so a 1 cm-1 change 

corresponded to a 14 mW change in laser output power. 

The laser current was adjusted through an applied voltage input (-5 to 5 V) on the 

laser controller (Model ITC102, Thorlabs, Inc., Newton, New Jersey) at a conversion rate 
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of 40 mA/V. The laser controller’s current control input has an impedance of 10 kΩ. This 

translates to 1.4 cm-1/V (or 42.4 MHz/mV). Achieving 1 MHz resolution (more than 

sufficient if the locking range is expected to be 8 MHz) for frequency control requires 

~24µV resolution in the applied voltage. Therefore a computer-controlled high-precision 

DAC voltage supply was necessary. We chose an inexpensive evaluation board ($49) 

with a 20-bit DAC (DAC1220EVM, Texas Instruments, Dallas, Texas) that provided a 

single-ended 0 - 5V output range, with a minimum resolution of 5µV55. Since noise in the 

output voltage causes frequency fluctuations at the laser, a low-ripple, low-noise linear 

power supply was used for the evaluation board so that the EMI found in typical 

switching power supplies would not pose an issue. To further eliminate power supply or 

digital noise on the DAC output, an RC low-pass filter (cutoff frequency of 23 Hz) and a 

voltage divider were added to the output of the evaluation board, as shown in Figure 10.  

 

 
Figure 10 Circuit Diagram for DAC 1220 output for filtering and attenuating the signal. The buffered 
output of the DAC1220 evaluation board was passed through a RC low-pass filter and a voltage divider. 
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With this circuit, a DAC output of 0-3 V corresponded to an input voltage range of 

0-0.667 V, a current range of 15 mA, and a wavenumber range of 0.525 cm-1 (16 GHz). 

Using this relationship between the DAC output voltage and the laser current, combined 

with the data collected for laser wavenumber as a function of current, we obtained a 

function relating the laser wavenumber to the DAC output voltage. A plot, including the 

curve fit, is shown in Figure 11, and the curve fit enabled determination of the absorption 

spectrum using the set voltage of the DAC and the best-fit curve equation. This function 

was updated (see Section 6.3) when we compared our obtained spectra with the 

theoretical spectra at that pressure. 

 

Figure 11 Main Laser Wavenumber as a function of current-control applied voltage. The quadratic fit 
parameters are shown, along with the 95% confidence interval for those values. An improved fit for this is 
given in Section 6.3, based on comparison with a published spectrum. 
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 The DAC1220 was controlled using the 3-wire Serial Peripheral Interface (SPI) 

standard55, which required an additional interface between the evaluation board and the 

computer for control. An Arduino Uno microcontroller (Arduino, SA., Turin, Italy), with 

a built-in SPI interface that communicates with a computer via USB, was programmed to 

take a command from the computer and output the proper 16-bit command code and the 

20-bit binary value (as two additional 16-bit integers) to the DAC1220 evaluation board. 

The code for the Arduino Uno that controlled the DAC1220 is provided in Appendix E.  
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Chapter 4 Optical Frequency Unlocking1 

Cavity Ring-down Spectroscopy (CRDS) is a sensitive optical extinction technique 

that uses the exponential decay of light energy from a high-finesse optical cavity to 

determine the total losses in the cavity. In order to initiate the decay of light out of the 

cavity, the injection of light into the cavity must be stopped on short timescales (usually 

<1 µs). Typically this is accomplished by interrupting the laser with an external optical 

switch, such as an acousto-optic modulator or electro-optic modulator17,39,56. These 

devices are costly ($2000-$7000), especially in the near-IR range. Additionally, the 

acousto-optic modulator introduces a Doppler frequency shift, and can interfere with 

optical feedback techniques used to lock the laser to the cavity54. Electro-optic 

modulators use electrically controlled polarization switching which does not shift 

frequency, and therefore is a common choice for pulsing the laser57. The requirement for 

switching hundreds to thousands of volts over times of 10-100 ns complicates the design 

of these devices. A mechanical method of shifting the cavity off-resonance by mounting 

one of the cavity mirrors on a piezoelectric transducer and applying a voltage was 

demonstrated by Hahn, et.al.58, but this method could be problematic for systems that 

employ optical feedback to lock the laser to the cavity since the cavity length is 

continuously changing. Another technique to modulate the laser intensity is to simply 

                                                

1 Most of this chapter is taken from a paper published in Optics Letters entitled “Optical Frequency 
Unlocking for Cavity Ringdown Spectroscopy”46, and is reproduced here with permission from the OSA.  
The paper can be found at the following URL on the OSA website: 
http://dx.doi.org/10.1364/OL.39.004227. Systematic or multiple reproduction or distribution to multiple 
locations via electronic or other means is prohibited and is subject to penalties under law. 
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pulse the laser drive current41; but, with this technique the laser driver bandwidth limits 

the time the laser can be kept off, and the current modulation induces thermal frequency 

shifts. These issues increase the complexity in the fitting algorithm, the current pulsing 

timing, and the frequency shifting circuit. Using opto-electronic locking to the cavity, 

such as the Pound-Drever-Hall method47, requires additional circuit complexity to turn 

off the electronic locking during the ringdown, and then re-lock the laser to the cavity58–

60. 

In this chapter we present a novel technique to move the ring-down laser off 

resonance in less than a microsecond, while not interfering with cavity locking, by 

injecting a second, pulsed diode laser into the main laser. This method does not change 

the current of the locked laser, allowing it to return to cavity resonance immediately after 

the disrupting pulse is over. It is also inexpensive and requires only a diode laser, a beam 

splitter, and a simple pulsing circuit. We first present the method and experimental setup 

used to demonstrate the technique. Second, we analyze the dependence of the frequency 

shift on both main laser power and wavelength difference between the pulse laser and 

main laser. Finally, we demonstrate cavity ringdown using this technique.  

4.1 Optical Injection 

A diode laser is susceptible to the introduction of external electromagnetic fields, 

resulting in a continuum of effects, from chaotic frequency instabilities to frequency 

stabilization. These effects have been studied fairly extensively51. The delayed reinjection 

of light produced by a laser and spectrally filtered by a cavity has been used to lock the 

diode laser to the cavity for optical feedback cavity-enhanced spectroscopy48. The effect 
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of optical injection on a diode laser was included in a review article by Tarjwik and 

Lenstra61. The typical application of optical injection is to stabilize and lock a slave laser 

to a master laser, by influencing the refractive index and the electric field inside the slave 

laser’s medium. The change in refractive index directly causes a shift in the lasing 

frequency (since the frequency is determined by the speed of light in the medium and the 

cavity length). The locking of the slave laser requires that the master and slave laser be 

close (typically within a few GHz). However, the refractive index changes (which in turn 

alter the resonance frequency of the laser cavity) occur over a much wider range, as long 

as the energy of the photon induces changes in carrier density. The effect of changes in 

carrier density on the laser materials has been studied by others: see Figure 3 in Bennett 

et.al.62, equation 4 in Kowalsky and Ebeling 63, and Ishida et.al.64 It is this effect that we 

exploit to shift the frequency in this work. 

4.2 System Configuration 

The experimental setup is shown in Figure 12. A distributed feedback laser 

(Mitsubishi, ML725B11F, with an approximate wavelength of 1308 nm) to be used for 

spectroscopy (as the main ring-down laser) is directed into a near-confocal high-finesse 

optical cavity comprised of two plano-concave mirrors (Newport, #10CV00SR.60F, 

Reflectivity > 99.97%, yielding a cavity finesse of >10000). A 92%/8% beamsplitter 

directs a small fraction of a pulsed Fabry-Perot laser (Mitsubishi, ML725B8F, with an 

approximate wavelength of 1309 nm) into the main laser, while allowing a large fraction 

of the main laser to pass to the cavity. A second beamsplitter samples the main laser and 

sends it into an OHD frequency analyzer (see Appendix B). This analyzer uses a stable 
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tunable diode laser (New Focus, Model 6324, with a linewidth of 300 kHz in a 50 ms 

integration time, and a drift of <5 MHz over 1 s) as a reference that mixes with a laser 

under test on the photodetector (Thorlabs, Model PDA255). The mixing produces a beat 

frequency that indicates the frequency of the laser under test relative to the reference 

laser. The photodetector signal output is connected to a digital oscilloscope (Tektronix 

Model TDS-3052) to collect the voltage versus time for frequency analysis using Fast 

Fourier Transform (FFT). As long as the beat frequency is within the bandwidth of the 

photodetector (approximately 100 MHz), this accurately measures the frequency shift 

induced by the pulsed laser. The OHD system is only used for experimental 

characterization and would not be part of an eventual implementation of this technique. 

When the main laser is unlocked from the cavity, a second photodetector (New Focus, 

Model 1811) at the output of the cavity allows measurement of the exponential decay of 

the cavity energy (the ringdown) using the digital oscilloscope triggered by the pulsing 

circuitry. 
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Figure 12 Diagram of the system. The main laser is injected into the optical cavity for the ring-down 
measurement. A pulsed laser is aligned to inject light back into the main laser. A simple pulsing/triggering 
circuit is used to activate the pulsed laser. A tunable diode laser and a secondary detector are used to detect 
frequency shifts in the main laser using OHD for initial characterization (dash-boxed region is not a 
permanent part of the system). A digital oscilloscope measures the cavity output and optical heterodyne 
signals. The faraday rotator and polarizer control optical feedback to the main laser to enable locking to the 
cavity. The quarter-wave plate reduces coherent reflections from the pulsed laser. 

 

The pulsed laser is controlled by a simple multivibrator (timing) circuit based on 

the standard 555 IC65,66. The circuit can be configured as either astable (continuously 

pulses the laser) or monostable (an external TTL signal triggers a single laser pulse). For 

testing and measurement of the frequency shift, we configured the circuit in astable 

mode. For cavity ring-down measurements, the circuit was configured in monostable 

mode, triggered by a threshold circuit when the cavity output photodetector exceeded a 

preset voltage. A circuit diagram is shown in Figure 13. Two resistors and a capacitor set 
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the nominal 90 µs pulse width (the length of time the main laser was moved off 

resonance to observe the ring-down decay).  The output voltage from the 555 typically 

was between 3.5 V and 3.75 V, which drove the pulsed laser at an estimated power of 2.5 

mW (barely above the lasing threshold current of 5 mA). Alignment and wavelength 

measurements required higher power, so the laser power was increased to approximately 

17 mW (at a drive current of 35 mA).   

 

 

Figure 13 Circuit diagram for pulsed laser. The circuit is an astable multivibrator circuit using a 555 timer 
IC. Pulse width and duty cycle (in monostable mode) are controlled by adjusting Ra and Rb. The values in 
the diagram correspond to 90 µs. 

 

FFT analysis of a typical OHD signal (Figure 14) showed the main laser’s peak 

frequency shifted approximately 20 MHz, and returned to the original frequency after the 

pulse. Time domain analysis showed that this frequency shift occurred within 200-500 ns. 
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Figure 14 Frequency shift from optical injection unlocking. Three datasets are shown. The FFT of the OHD 
signal of the laser before (dashed), during (solid black), and after (solid gray). The peak signal before and 
after overlap, when the pulsed laser is on, the frequency is shifted 20 MHz.  
 

4.3 Frequency Shift Performance (Frequency Domain) 

Measuring a spectrum would require tuning the frequency of the main ring-down 

laser, presumably without changing the pulsed laser’s output, resulting in changes to the 

frequency difference between the lasers. To examine the frequency shift of the main laser 

as a function of the frequency difference between the main and pulsed laser, we tuned the 

main laser over a 1-nm range by varying its operating temperature between 

approximately 15°C and 27°C. The main laser current was fixed at 10.1 mA, about twice 

the threshold current. Figure 15 shows the results: a variation in frequency shift between 

20 and 100 MHz when the pulsed laser is >0.1 nm from the main laser. When the pulsed 

laser is <0.1nm from the main laser, injection-locking effects dominate, rather than 

changes in refractive index, and the frequency shift was only about 5 MHz. Notably the 

peak frequency shift occurs when the lasers differ by 0.4 nm (70 GHz). The explanation 
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for this may be related to the peak refractive index changes described in Van Tartwijk et. 

al.67 and Bennett et.al.62  

 

Figure 15 Induced frequency shift as a function of the wavelength difference between the Main Laser and 
the Pulse Laser. In the main figure, the Main Laser wavelength is adjusted by changing its temperature. The 
average of 3 different measurements taken at each wavelength is shown, with error bars indicating the max 
and min. Inset: The frequency shift as a function of Main Laser current, with laser temperature fixed. The 
range covers approximately 34 GHz (0.2 nm). Again, average is shown for 3 different measurements at 
each current level, error bars indicate max and min. 

 

For high-resolution spectroscopy, frequency tuning of the main laser is best 

accomplished by changing the drive current. For the main laser, the frequency change 

with current was 1.06 GHz/mA. In the inset of Figure 15, we show the main laser 

frequency shift as a function of drive current. The main laser was initially tuned to 

1308.27 nm; the pulsed laser had a measured wavelength of 1309.45 nm. The 32-mA 

current range in the inset of Figure 15 represents a frequency range of approximately 34 
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GHz. The average shift induced by the pulsed laser was 30 MHz (range 15-40 MHz). For 

a high-finesse cavity used for cavity ring-down experiments, with a several kHz 

linewidth, this is sufficient to shift the laser off resonance without shifting to another 

cavity mode (172 MHz free spectral range for an 87 cm cavity). The 30-MHz shift for an 

index of refraction of 3.5 corresponds to a change in refractive index of 5x10-7. Using the 

results from Manning et.al.68 the injected power to main laser power ratio is on the order 

of 10-5. This is reasonable given optical losses along the pulsed laser path, and 

uncertainty in the spot size of the pulse beam on the main laser facet.  

4.4 Ringdown Performance (Time-Domain) 

A critical aspect of this approach is that the frequency shift from optical injection 

of the pulsed laser is sufficient to shift the laser off-resonance, such that an exponential 

decay is observed. To estimate the extinction ratio (the ratio of the laser power entering 

the cavity when shifted off-resonance to the power when on-resonance), we estimated a 

<1-MHz linewidth of the main laser using the OHD system. Assuming a Lorentzian 

shape, this results in a minimum extinction ratio of 30 dB for a 20-MHz shift, and 45 dB 

for a 100-MHz shift. Figure 16 shows a typical ring-down triggered after a buildup of 

energy in the cavity, and then induced by the pulsed laser. The single exponential curve 

fit is also shown. An additional requirement for CRDS is that the laser-cavity interaction 

be broken with sufficient rapidity (here 200-500ns) so that a single decay is observed, as 

demonstrated here by the residuals of the fit (see inset). In subsequent experiments we 

measured the individual time constants for 17 ring-downs and obtained an average of 

12.11 ± 0.38 µs (1σ) (3.25% relative standard deviation). Due to the limitations of our 
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current data acquisition system, each ring-down was taken approximately 30 seconds 

apart, suggesting that the variation in time constants are a result of thermal-induced 

drifting of the cavity length.  

 

Figure 16 A single ring-down event induced by the pulsed laser frequency shifting the main laser captured 
on an 8-bit digital oscilloscope (dots). To reduce quantization error, the data was resampled at a rate of 1:5. 
The exponential fit using a Levenberg-Marquardt algorithm is shown (solid line), as well as the residual to 
the fit (inset). 

 

Finally, we tested the ability of the technique to repeatedly return the main laser 

to the resonance frequency of the cavity. We configured the pulsed laser circuit as an 

astable circuit, producing ring-downs at regular intervals and achieved ring-down decays 

at a rate of 3.5 kHz. Oscilloscope data collected for two consecutive ringdowns is shown 

in Figure 17. The dashed line indicates the trigger pulse for the pulsed laser. This again 

demonstrates that the pulsing technique does not adversely affect the main laser 

frequency, which returns to its initial frequency as soon as the pulsed laser shuts off, 
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allowing energy buildup inside the cavity. Further, applied to CRDS, the high data 

acquisition rates can dramatically improve sampling statistics and precision of 

measurement (e.g., theoretical improvement of a factor of ~60 over a 1 Hz acquisition 

rate). 

 

 

Figure 17 Using the frequency shift for ringdowns. Two consecutive ringdowns are shown, indicating that 
the main laser locks back to the cavity after the pulse laser is turned off. The dashed line is the digital pulse 
sent to the laser. 
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Chapter 5 FPGA Processing System2 

5.1 Decay Constant Processing 

Cavity ringdown spectroscopy offers improved sensitivity over other absorption 

techniques45,2, but significant data processing is typically required to determine the decay 

constant. Since sensitivity can be improved by averaging many measurements, the speed 

at which data can be processed can limit the performance of CRDS systems. Several 

algorithms exist for decay constant determination, such as the traditional, but 

computationally intensive, Levenberg-Marquardt non-linear fit. Alternative algorithms 

such as corrected successive integration (CSI), the linear regression of the sum (LRS), 

and Discrete Fourier Transform (DFT) algorithms69,70 are more efficient, typically orders 

of magnitude faster than the non-linear fitting.  

With fast algorithms, the data-throughput bottleneck becomes getting the signal 

from the digitizer to the processor. Some applications have avoided the conversion stage 

altogether by using an analog method of determining the decay constant71. Others slow 

down the transfer by determining the decay constant of an average of many ringdowns, 

rather than averaging decay constants of many individual ringdowns. However, if the 

latter has an assumed normal distribution, then the former would have a lognormal 

distribution, with a mean that depends on both the average β and its standard 

                                                

2Most of this chapter is taken from a manuscript entitled “The discrete Fourier transform algorithm for 
determining decay constants-implementation using a field programmable gate array,” which has been 
accepted for publication in Review of Scientific Instruments (RSI) and has been reproduced with 
permission from RSI. 
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deviation72,73, introducing additional error that can be avoided if individual ringdowns 

could be processed in real-time. Furthermore, the precision becomes limited by the 

number of bits of the high-speed data acquisition system, and averaging ringdowns has 

been shown to enhance low-frequency noise on the ringdown signal, requiring additional 

processing40. Finally, processing individual ringdowns enables removal of outliers that 

can significantly affect the averaged ringdowns74. 

Improvements in speed, and therefore sensitivity, can be obtained by “moving” 

the processing stage closer to the analog-to-digital converter (ADC) stage. High-speed 

Field-Programmable Gate Arrays (FPGA) provide the possibility of putting a customized, 

highly efficient processor module immediately after the ADC59 for faster processing of 

decay constants. Few practitioners of CRDS have applied this approach despite the fact 

that the ADC and FPGA integrated circuits (IC) can be relatively inexpensive; 

presumably because of a perception that building the proper support circuitry around 

them can be time-intensive and require a high level of skill in circuit design. Purchasing 

commercial high-speed data acquisition modules with (or even without) onboard FPGAs 

can be costly (several thousand dollars). In this work, we pursued a middle ground 

between designing our own data acquisition and processing (DAP) system from the 

ground up and buying a commercially available system. Adapting commercially available 

hardware designed for high-speed communication applications to make it compatible 

with the exponentially decaying signals encountered in CRDS provides a cost-effective 

solution for high-speed DAP to acquire decay constants, which we demonstrate at rates 

up to 4.4 kHz. 
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The central components of our system are commercially available evaluation 

boards from Analog Devices, Inc. (Norwood, MA) designed for the evaluation of their 

high-speed ADC IC. Additional components used to interface with these boards, as well 

as the modifications we made to the evaluation boards are discussed in the following 

sections. To our knowledge, there is only one report of using an FPGA for processing 

CRDS data59, in which an Altera FPGA evaluation board with an ADC daughter card is 

used to compute the decay constant. In that work they used a modification of the discrete 

sum/frequency component algorithm, and used a lookup table to determine the time 

constant from the ratio of two frequency components. Their system was implemented on 

the FPGA, and they demonstrated its performance at 20 Hz. In addition to a different 

FPGA and ADC evaluation boards, our approach is different in two fundamental ways: 

(1) we implement the DFT algorithm described by Everest and Atkinson70 using an FFT 

core to determine the decay constant without use of a lookup table and (2) we have 

modified the input path to the ADC to pass low frequencies, avoiding the signal 

distortion caused by the transformer seen in the ringdowns of Spence et. al., which may 

have contributed to that system’s lack of agreement with the spectrophotometer data59. 

5.2 The FFT algorithm 

The DFT algorithm for determining CRDS decay constants has been described 

previously20,70. The basis of the algorithm comes from the Fourier Transform of an 

exponential decay function with decay constant β, given by (for t > 0):  

  (11) 

The complex Fourier transform is found to be75:  
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(12) 

Here, ω is the angular frequency (rad/s), and the transform has been broken into its real 

and imaginary parts. Taking the ratio of the real and imaginary parts gives a simple 

expression for the decay constant: 

 

 

(13) 

Thus the decay constant for an exponential decay can be found using any 

frequency component of the Fourier transform. The first non-zero frequency component 

is typically chosen to maximize the signal-to-noise ratio (SNR), since the real and 

imaginary parts have their maximum at ω=0, and ω=β/2π, respectively, and drop to 10% 

of their peak value in less than ω=5β/2π and ω=20β/2π, respectively. This means that for 

a 10µs decay time (β = 105 s-1), the SNR for each part is an order of magnitude lower at 

80kHz, and 320 kHz, respectively. Note that low frequency distortion of the signal can 

have a significant impact on the time constant (and therefore the analyte concentration) 

determined by this method. 

In practice, a Discrete Fourier Transform (or an FFT) is applied to digitized data, 

which results in a small error when using the simple relationship in Equation (13), but 

can be corrected by using the ratio in a slightly more complicated equation70: 

 

 

(14) 
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where k is the frequency index, N is the total number of time series samples, Δt is the 

sampling interval (10 ns for a 100MHz ADC clock), and the frequency f (in Hz) for any k 

is given by f = k/(NΔt). In this work, in order to conserve FPGA resources and increase 

the processing speed, we only computed the ratio of the real and imaginary parts on the 

FPGA. This ratio can then be used in either Equation (13) or (14) to calculate the time 

constant on the computer. For this work we used Equation (13), resulting in less than a 

0.1% difference from Equation (14), when using the first frequency component (k=1).  

5.3 Hardware configuration 

A block diagram of the data acquisition system is shown in Figure 18. The signal 

from the photodetector that measures the decay of the light from the cavity enters a 

circuit that level-shifts and attenuates the signal to levels appropriate for the ADC. The 

signal is then passed to an AD9255 Evaluation Board (AD9255-105EBZ, Analog 

Devices, Inc.) containing a 14-bit pipelined, switched-capacitor ADC that can run at 

sampling rates up to 125 MSPS. The AD9255 evaluation board is designed with a high-

speed interface to FPGA-based buffered memory boards (Analog Devices, Inc.). We 

chose the HSC-EVALCZ, using a Virtex-4 FPGA (Xilinx, Inc. San Jose, CA) that can 

read up to 16 bits from the upstream evaluation board (of which our ADC supplies only 

the upper 14 bits). The ADC continuously supplies data to the FPGA (i.e., it is not 

triggered to start the ADC process) with a synchronous clock to signal the FPGA to read 

in the data. The FPGA board is triggered by a digital signal from the same threshold 

circuit that induces the ringdown event; in our system, it triggers a pulsed diode laser to 

shift the main laser off-resonance from the cavity46. After acquiring data for a fixed time 
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period (corresponding to ~5 1/e times for the ringdown decay) the FPGA performs a 

discrete FFT on the ringdown data and divides the first real and imaginary components 

(i.e., Eq. 13). The FPGA then sends the 16 most significant bits of the result through a 

digital level converter to an Arduino Due microcontroller (Arduino, SA., Turin, Italy) for 

further processing. The Arduino Due stores the values in memory and then transmits 

them via USB to the computer. 

 

Figure 18 Block Diagram of DAQ system, whose main components are the AD9255 ADC evaluation board 
and the co-requisite HSC-EVALC board containing the FPGA. The blocks in gray are the additional 
circuits or evaluation board modifications discussed in the text. 

 

The required modifications to the ADC and FPGA evaluation boards are 

discussed in Sections 5.4 and 5.5, respectively, with circuit details deferred to Section 

5.9. The description of the digital level shifter is included in Section 5.4. The analog 

scaling and offset circuit is described in Section 5.6 (with circuit details also in Section 

5.9).  
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5.4 AD9255 evaluation board modifications 

Most high-speed ADCs require differential inputs (paired signals with equal 

magnitude and opposite sign). Typically photo-detectors used for CRDS are single-ended 

outputs (i.e., referenced to ground). Therefore, in order to make best use of the ADC, a 

differential signal must be generated from this single-ended signal. The majority of high-

speed ADC/FPGA applications are related to communications or signal processing of 

sinusoidal waves at MHz frequencies and above. We found that as a consequence the 

evaluation boards are designed for AC-coupled, high frequency input signals where the 

key features of a ringdown signal are a relatively low frequency decay followed by a DC 

level between excitations. The evaluation board’s standard input path includes conversion 

of a single-ended signal to a differential signal using a radio frequency (RF) transformer 

that is designed to work with alternating signals that, as stated in the AD9255 data sheet, 

“can saturate at frequencies below a few megahertz.”76 The effect of this is attenuation of 

low frequencies, or high-pass filtering, and our initial attempts to use the standard input 

path resulted in ringdown signal distortion similar to that reported by Spence et.al.59 

Fortunately, the evaluation board contained a secondary input path to the AD9255 with 

an operational amplifier (ADL5562, Analog Devices, Inc.) capable of converting DC-

coupled, low frequency, single-ended signals to the requisite differential signals. 

Unfortunately, the majority of the alternate input path is unpopulated, and the 

components that were installed assumed an AC-coupled signal. The modifications needed 

to make this path functional for ringdown signals are detailed in the 5.9.1, and follow the 

recommendations given in the data sheets for the AD925576 and the ADL556277. 
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5.5 FPGA evaluation board configuration 

In our design the AD9255 continuously digitizes the input signal, regardless of 

whether a ringdown has been initiated, and it is the FPGA that is triggered to start storing 

the digitized data and begin the FFT processing. A threshold-triggering circuit enables 

both the laser unlocking46 (to initiate the ringdown) and the FPGA data processing. For 

the FPGA, a solid-state switch and a 1.5-V input created from a simple voltage divider 

was used since 5-V TTL levels used for the other parts of our system are incompatible 

with the 1.8-V logic on the FPGA evaluation board. The FPGA evaluation board has an 

18-pin 0.1”x0.1” header designated as debug pins which allows access to FPGA inputs. 

In this case the trigger signal is connected to debug pin 14 (maps to FPGA pin AB7) 

which is registered as a digital input buffer in the FPGA logic. 

 The FPGA evaluation board outputs the 16 most significant bits of the ratio of 

the real and imaginary parts of the first component of the FFT as described in Section 

5.7.1. Although the FPGA evaluation board has an onboard USB transceiver for 

communication with a host computer, a significant number of gates are needed to 

communicate with the transceiver. Because we opted for a number of quality 

control/debugging capability in this version of the system those gates were not available, 

we chose to use an Arduino Due microcontroller as an interface between the FPGA and 

the computer. The bottom side of the FPGA board has soldering pads for 3 90-pin 

0.05”x0.05” dual-line headers, designed to connect to a Digital Signal Processing 

daughterboard. Several of these pads are routed to FPGA pins so we used these to 

transmit the 16-bit representation of the calculated ratio off the FPGA evaluation board. 

Additional pins are available on the evaluation board, so it is possible to expand the 
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output by another 8 bits to increase the precision of the ratio, if this approach is adopted. 

Alternatively, some of the debugging capabilities could be sacrificed to allow for direct 

connection to a computer via the USB.  

The FPGA board uses 1.8V digital logic while the Arduino Due uses 3.3V digital 

logic, so we used two 8-Channel Bi-Directional Digital Level Converters (Adafruit 

Industries, New York, NY) to provide the Arduino Due with the proper digital levels. 

These are small daughter boards designed to be mounted in a larger module, so we set 

them up external to the FPGA board, as shown in Figure 18. The Arduino and the FPGA 

evaluation board each supply power for their respective side of the level converter, while 

the ground is tied to the Arduino. Details of the mapping of the 16 bits of the FPGA 

output through to the Arduino digital input buffers are given in Table 1 of Section 5.9.3. 

5.6 Analog offset and scaling circuit 

Common mode voltage incompatibility required additional circuitry to avoid 

distortion of the output signal. Specifically, for “best distortion performance” in DC 

applications, the input common mode voltage—the average of the positive (non-

inverting) and negative (inverting) inputs—should be in the range 1.0V - 2.3V77. The 

ringdown is a DC-coupled, ground-referenced signal; and, for our system, the maximum 

voltages were in the range 0.2V - 1.0V, making the common mode voltage significantly 

below the recommended range. In addition, as shown in Figure 21 of Section 5.9.1, the 

output common mode of the ADL5562 amplifier is set to the AD9255 input common 

mode voltage of 0.9V, making it also below the recommended range of 1.25V - 1.85V77. 

Due to these mismatches in input and output common mode voltages, the ringdown 
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signal measured by the ADC exhibited distortion, as seen in the ringdown in Figure 

19(a). The distortion, most likely attributed to phase reversal78 of the larger voltages at 

the beginning of the ringdown, makes a significant portion of the decay signal unusable. 

To more properly condition the signal, we first used a simple potentiometer-based 

voltage divider to reduce the amplitude of our ringdowns to be within the undistorted 

range (approximately 70 mV or less). We then increased the undistorted range using a 

subtraction circuit79 to add a negative offset to the signal, matching it to the input signal 

range of the ADL5562 amplifier. The offset and scaling circuit is described in more detail 

in Section 5.9.1, and can be adjusted to maximize the signal levels and minimize the 

distortion. A ringdown taken using the circuit is shown in Figure 19(b), and comparison 

with Figure 19(a) shows the improvement in amplification and digitization fidelity. The 

resulting ringdown is undistorted, improving the fit (the residual is shown in the inset of 

each figure), increasing the signal-to-noise ratio (since points with larger voltage are 

available), and increasing the total number of data points used in the fit. 

 

Figure 19 Comparison of FPGA captured ringdown with and without the ADC front end circuit. (a) The 
gray line shows the photodetector output (triggered at 440 mV) passed directly to ADC evaluation board, 
which exhibits distortion due to the low common mode voltage set by the AD9255 amplifier. (b) This 
shows a signal at the same trigger level passed through the scaling and offset circuit, which eliminates the 
phase reversal distortion. The front end expands the range of valid data in both voltage and in the number 
of points available for determining the decay constant. Exponential curve fits (black lines) are shown in 
both (a) and (b) to highlight the distortion, and the residual to the fit is shown in the inset. 
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5.7 Software configuration 

This section discusses the software components used for processing and control of 

both the FPGA and the Arduino Due, and the code for them are provided in Appendix C 

and D, respectively. 

5.7.1 FPGA coding description 

In order to program the FPGA we used the Xilinx ISE® Design Suite, an 

integrated development suite for coding, pin assignments, debugging, and loading the 

FPGA with design. Its use enabled access to the Xilinx LogiCORE™ IP Fast Fourier 

Transform core80 and the LogiCORE™ IP Divider Generator core81. Since the evaluation 

board had all of the FPGA input/output pins routed, we were constrained by its initial 

design as to which pins we could use for processing and output. The FPGA code timing 

was set to the 100 MHz synchronous clock onboard the ADC evaluation board. After the 

external trigger input buffer is set high (see Section 5.5), the code includes a delay from 

the rising edge of the trigger before starting the data processing. This delay is configured 

to avoid any transients in the laser switching that may be present in the ringdown signal. 

In our configuration, an acceptable delay was 1.6 µs. The ADC samples are then loaded 

directly into the FFT core, and processing begins as soon as the last sample of the 

ringdown is taken. The FFT core was configured for an 8192-point 16-bit integer 

transform. At 100 MHz, the 8192 samples captures 81.92 µs of ringdown signal—a 

collection time long enough to ensure optimal performance of the DFT algorithm (4-5 

time constants)70. To provide maximum transform fidelity the algorithm was configured 

as unscaled, meaning that the number of bits at the output expands to 28 bits (due to the 



54 

multiplications involved) and the least significant bits are not dropped as the information 

progresses through the algorithm. 

Upon completion of the FFT, a DONE flag and a DATA VALID flag are set high, 

and on each clock cycle the real and imaginary parts of each frequency component in the 

transform are output in order. Once the desired component is output (k = 1 in this work), 

the values are latched, and the integer division core is enabled. The division core was 

configured as a 28-bit by 28-bit division, with the result having a 28-bit integer part and a 

14-bit fractional part. The division core required 32 clock cycles to complete, after which 

the integer and fractional part are latched at FPGA output pins. Given that typical decay 

constants are on the order of 105, we find that the ratio generated should be on the order 

of 1 (see Equation (13)), meaning that most of the 28 bits of the integer part will be zero. 

We chose to keep 3 bits of the integer part, and 13 bits of the fractional part, providing a 

maximum time constant of 6.1x105 s-1 with a resolution of approximately 9 s-1 (0.01% for 

β =105 s-1). For our CRDS instrument this is equivalent to a maximum absorption of 

0.016 (a maximum absorption coefficient of 1.9 x 10-4 cm-1), and an absorption 

sensitivity of 2.6x10-8 (or a minimum absorption coefficient of 3x10-10 cm-1) which, 

based on the results in Chapter 6, impacts neither the peak absorption nor the sensitivity 

of the rest of the system. Once the division core completes, the FFT core is reset, and the 

FPGA is ready to capture the next ringdown. The ratio result is latched at the output until 

it is reset by the next processed ringdown, so that the result can be read at a slower rate. 

The total processing time on the FPGA was measured to be 145 µs. Combining that with 

the ringdown time of 81.92 µs, the FPGA should be able to process ringdowns at a 

maximum rate of 4.4 kHz.  
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5.7.2 Arduino Due storage and post-processing 

The Arduino Due is an open-source microcontroller with a 32-bit processor, an 84 

MHz clock, 54 digital input/output pins, and a USB interface for programming and 

communication with a computer. We used 16 of the digital input buffers, mapped to the 

output bits of the FPGA division calculation (See Table 1 of the Section 5.9.3) and 

conditioned as described in Section 5.7.1. The Arduino reads digital input as a 16-bit 

unsigned integer and stores it in memory in approximately 22 µs. This is less than the 

time to load and process the next ringdown and thus does not form a bottleneck in the 

processing. The memory limitations on the Arduino restrict the number of stored 16-bit 

values to approximately 150. The Arduino storage and transmit functions are controlled 

by commands from the computer via USB. One command initiates the storage of ratio 

values from the FPGA, and a second command stops the storage, and transmits all stored 

values to the computer (as a series of strings). For this work, we were interested in 

recording each individual decay constant, but it would be straightforward to have the 

Arduino Due compute the average, and only pass that to the computer. The 16-bit 

unsigned integer value, βraw, becomes the ratio required in Equations (13) and (14) by 

dividing by 213 to move the decimal place, and then converting to the decay constant β 

(in s-1) by multiplying by ω1 = 2π/(NΔt). In our system β = 2πβraw/(81.92×10-6×213), 

which simplifies to β = 9.3626βraw.  

5.8 Performance of FPGA Processing 

The FPGA processing was incorporated into a CRDS system described in Chapter 

4 and Bostrom et.al.46. The cavity was 85 cm long with a finesse in excess of 10,000. A 
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computer running LabView stepped the main laser current, shifting the laser frequency 

by 1.06GHz/mA to the predicted cavity mode and then used a dithering algorithm to find 

the cavity modes. The LabView code is described in Section 6.1. An absorption spectrum 

of humid air, at a cell pressure of 500 torr and temperature of 22° C, was obtained by 

collecting up to 150 samples per frequency point/collection time as shown in Figure 20. 

The two peaks shown are absorption peaks of H2O in the near infrared, with the largest 

centered near 7640.8 cm-1.1 A Voigt line-shape function was fitted to the two Figure 20 

peaks, and the residual is shown. The median relative standard deviation for the fit of the 

data points was 1.9% (mean RSD was 3.1%). In our system the instability of the laser-

cavity locking resulted in different data collection rates at different cavity 

modes/frequency positions, but the median number of samples per mode was 150 (mean 

= 115), meaning that the overall system collected decay constants at a rate of at least 1.5 

kHz. This is within a factor of 3 of the maximum capability of the FPGA, although the 

number of samples collected at each collection time/frequency point was limited to 150 

by the Arduino memory. 
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Figure 20 Near infrared spectrum of H2O obtained using decay constants calculated on the FPGA. The 
average of the samples taken at each wavenumber are shown as dots, with error bars indicating ± one 
standard deviation for that point. Voigt lineshapes were applied to each of the two peaks, and the solid line 
indicates the fit, while the residuals are shown above the spectrum. 

 

In total the method presents an optimized cost-effective data acquisition system 

for CRDS that is capable of determining time constants at a maximum rate of 4.4 kHz by 

modifying a commercial ADC-FPGA evaluation board, and programming it to apply the 

DFT algorithm for determining decay constants. We have provided the details of the 

modifications with generally available hardware, so that the system could be incorporated 

into existing CRDS instruments to enable faster data collection and processing.  

In this initial version, significant FPGA resources were used for debugging and 

evaluating/documenting performance, and so only one FFT component was used for the 

decay constant. Future implementations would need fewer resources for debugging, 
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which could then be used for improvements to the system. Straightforward modification 

of the FPGA code to use the average of ratios for the first 5 components would improve 

the precision, which is designated as the DFT-5 algorithm in Everest and Atkinson70. 

Averaging, pipelining of the FFT core to increase the processing rate, and communication 

via the on-board USB transceiver could also be implemented with additional FPGA 

resources. 

 

5.9 Technical Details: Hardware Modification 

5.9.1 ADC evaluation board modifications 

A circuit diagram highlighting the ADC board modifications is shown in Figure 

21. The rectangles indicate resistors and capacitors that were already included on the 

board. All others were added based on recommended values for frequencies between 0 

and 100 MHz76 and assume a source impedance of 50 Ω77. The names for specific 

resistors, capacitors, inductors, and jumpers in the following discussion follow the 

identifications provided in the User’s Guide for the ADC evaluation board82. The 

resistors and capacitors installed are surface mount devices (SMD), size 0402 (1 mm x 

0.5 mm), and the soldering and rework was done using a hot air rework station. The 

following pre-installed capacitors were removed: C2, C4, C12, C14, C71, C96, and 0 Ω 

resistors were installed at the following capacitor locations: C12, C14, C49, C50, C51. 

Capacitor C15 was replaced with an 18 pF capacitor. Resistors R3, R8, R22, and R23 

were replaced with 15 Ω resistors. R15 and R16 were removed, and R13 was replaced 

with a 26 Ω resistor. R54 (0 Ω), R20 and R21 (1kΩ) were installed, and locations R18, 
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R19, L8, and L9 were shorted. The 33 Ω resistors in Figure 21 were installed at locations 

L5 and L6. The board is factory-configured for an external clock input, but comes with 

circuitry for an onboard clock. We installed a compatible 100-MHz clock (OCA3H-C3A-

100.000M, Ascend Frequency Devices, Lake Oswego, OR), replaced C70 with a 0 Ω 

resistor, and removed R25, following the instructions in the user’s guide82. 

 

Figure 21 Circuit Diagram of the amplifier input path to the ADC. The rectangles around the labels indicate 
components that were already on the circuit board, and were not modified. The other resistors and the 18 
pF capacitors need to be installed on the board. 

 

On the evaluation board, the solder jumpers (JP1, JP4, JP8) are shorted to connect 

the common mode voltage output of the AD9255 to the common mode input of the 

ADL5562, and the midpoint of its output. JP6 and JP7 were shorted to connect the 

ADL5562 to the AD9255 input path. Additional header pin jumper settings on the ADC 

board are as follows: P19 left open enables the ADL5562; P5 (SENSE) 1→2, sets ADC 

voltage reference to 0.5 V; installing P6 enables the onboard clock; P4 2→3 enables duty 

cycle stabilizer (DCS); P4 5→6 enables two’s complement; P14 open enables Low 

Voltage CMOS digital output signals to the HSC-EVALC board; P13 open disables 

dithering. 
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5.9.2 Analog offset and scaling circuit 

The circuit used to scale and provide an offset to the photodetector output (to 

eliminate the signal distortion due to the common mode voltage phase reversal) is shown 

in Figure 22. We used a simple subtraction circuit79, based  on a LF356N operational 

amplifier. A potentiometer between +5V and ground creates a voltage divider allowing us 

to vary the subtracted DC voltage. The scaling is accomplished with another voltage 

divider, which outputs a fraction of the offset photodetector signal to the ADC evaluation 

board. The potentiometers are adjusted to ensure the ADC input is in the proper range to 

maximize fidelity of conversion while preventing signal distortion. 

 

Figure 22 Diagram of the analog offset and scaling diagram to the AD9255 Evaluation Board. An 
adjustable offset is subtracted from the output of the photodetector, and the result is scaled using a voltage 
divider so that the ringdown is within the voltage limits of the ADC. The resistors in the offset and scaling 
dashed rectangles are made using the center tap of a 5 kΩ and 200 Ω variable resistor, respectively. 

 

5.9.3 FPGA board modifications and pin mapping 

To transmit the result computed by the FPGA, we used one of three solder pads 

designed for connecting a Digital Signal Processing (DSP) daughterboard through 90-pin 

0.05”x0.05” dual-line headers. We soldered a 28-position header (FTSH-114-01-L-DV, 
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Samtec, Inc., New Albany, IN) to pins 3 through 32 of the P1 pad82. A cable assembly 

(SFSD-15-28-H-10.00-SR, Samtec, Inc.) with a corresponding 30-position socket on one 

end and bare wires on the other was then used to connect the FPGA output pins to the 

0.1”x0.1” headers on the Digital Level Shifter (See Figure 18). Table 1 maps the data 

lines corresponding to the bits of the FPGA ratio calculation to the pins of the FPGA 

board and the Arduino microcontroller. These mappings correspond to our code written 

for the FPGA and Arduino. 

TABLE 1 Arduino Due to FPGA Translation. The names in Columns 2-5 correspond to those given in the 
Evaluation board User’s Guide82. The Arduino Due GPIO pins correspond to the labeling on its circuit 
board.  

Re/Im 
Output Bit 

Eval Board 
SchematicName 

FPGA Pin Eval Board 
Header Pin 
(P1) 

Level 
Shifter 
Pin 

Arduino 
Due 
GPIO Pin 

0 (LSB) DSP_A0 AF15 5 A-A0 2 
1 DSP_A2 AF14 7 A-A1 3 
2 DSP_A4 Y8 9 A-A2 4 
3 DSP_A6 AA13 11 A-A3 5 
4 DSP_A8 AA12 13 A-A4 6 
5 DSP_A10 AB14 15 A-A5 7 
6 DSP_A12 AA10 17 A-A6 8 
7 DSP_A14 AB12 19 A-A7 9 
8 DSP_A1 AD15 6 B-A0 10 
9 DSP_A3 AE15 8 B-A1 11 
10 DSP_A5 Y7 10 B-A2 12 
11 DSP_A7 AA9 12 B-A3 13 
12 DSP_A9 AA14 14 B-A4 22 
13 DSP_A11 AC14 16 B-A5 24 
14 DSP_A13 AD14 18 B-A6 26 
15 DSP_A15 AC13 20 B-A7 28 
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Chapter 6 Results of System 

The motivation of this work was the development of a cavity ringdown system 

with high precision while using novel techniques to significantly reduce the cost of the 

system. Such a system would be well suited to in-situ gas measurement applications, 

where air sampling becomes impractical. The ability to quickly acquire spectra with high 

precision makes it more practical in experiments where the gas concentration changes 

quickly, such as flux measurements, and kinetic isotope effect reactions.  

There are a number of advantages inherent in the approach used in this work. 

Since uncertainty in the mean decreases with the number of measurements, precision (for 

the same time interval) is improved with faster collection. We have demonstrated an 

acquisition rate of 1.5 kHz, a dramatic improvement of most spectroscopic techniques 

employed in atmospheric science and among the fastest. Another advantage of our design 

is that it determines the decay constant of in individual ringdown in near real-time, 

allowing a larger number of decay constants to be averaged at the same mode. This is 

superior to averaging ringdowns in that the signal-to-noise ratio is not limited by the 

quantization of the acquisition system. Our system’s ability to acquire ringdowns at kHz 

rates is also an advantage over swept-cavity-mode methods since drifting of cavity mode 

frequencies due to temperature, pressure, and mechanical oscillations limits the number 

of averages they can use to improve their precision. Finally, high-speed acquisition 

improves signal to noise ratio and so sensitivity is enhanced in this approach. 
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Having assembled and tested the components of the system described in Chapter 

5, we were then ready to evaluate the performance of the entire system in terms of its 

ability to measure absorption coefficients and gas concentrations. In this chapter, we look 

at the overall performance of the CRDS system composed of the component modules 

described in Chapter 2. Before we discuss the results of the system, we first describe the 

operation and control of the overall system. Then, the acquisition rate, accuracy, 

precision, limit of detection (sensitivity), repeatability, and linearity are presented in the 

following sections. 

6.1 System operation and control 

Once the system components were assembled, in order to obtain an absorption 

spectrum, the main laser current control and communication with the FPGA acquisition 

system required software integration. A desktop computer using a custom LabView 

program controlled the overall system. The user interface, displaying actual data, is 

shown in Appendix F. This section provides a brief description of this code. The basic 

process flow was:  

(1) The laser was set to the desired initial current using the DAC1220, and the 

“Initiate Collection Signal” was sent to the Arduino Due connected to the 

FPGA (See Section 5.7) 

(2) After a specified delay (~10 ms), the code checked for any recorded ringdown 

time constants processed by the FPGA by sending the “Stop and Transmit 

Signal” to the Arduino Due. 
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(3)  

(a) If the number of time constants was above a specified threshold, then it 

waited a specified longer period (~100 ms) to fill up the Arduino memory. 

If the number was not sufficient (indicating the laser is likely not staying 

on the cavity resonance mode), the program moves to step (3b). 

(b) If there are insufficient recorded time constants at the laser current, the 

program began to dither the applied voltage until it obtains sufficient 

ringdowns to go to step (3a). The dither was a sinusoidal oscillation 

around the current voltage setting, with exponentially increasing 

amplitude. The number of oscillations, number of points, and maximum 

amplitude of the dither was controlled by the user. If the specified number 

of points had been reached without sufficient time constants collected, the 

dither timed out, and went to Step (5). 

(4) The program read the time constants, and calculated the mean, standard 

deviation, and the number of ringdowns at each point, and plotted each of 

them on a graph in real-time. The array of raw time constants at that particular 

frequency were saved in a text file for additional post-processing. 

(5) After collecting the ringdowns, or if the dither timed out, the program stepped 

the voltage to the next expected cavity mode. Since the cavity modes were 

equally spaced by approximately 172 MHz, The shift in applied voltage, also 

controlled by the user, was set to ±0.031 V. 
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(6) After setting the new voltage, the program returned to step (2), to search for a 

ringdown at the new voltage. This loop was repeated until the stop voltage 

was reached. 

(7) Once the stop voltage was reached, the plotted data was saved to a 

timestamped file for post-processing.  

The entire program could be run repeatedly unattended, once it had been 

configured. The main program allowed the user to specify the start and stop voltage of 

the laser’s applied voltage to set the frequency range for the desired spectrum. The user 

also set the steps per volt (which set the precision) for the applied voltage. These settings 

controlled the DAC1220 DAC discussed in Section 3.3, and a LabView program module 

translated the users value to the required SPI command structure.  

 The trigger threshold level was also controlled by the user, since the output power 

of the cavity is proportional to the laser power. Laser power increases linearly with 

current, so we allowed the trigger level to vary linearly with the applied voltage, with the 

slope and intercept set by the user. The settings were adjusted to balance the ringdown 

acquisition rate and the laser-cavity locking. With too low of a trigger, and the output 

level was met before the laser was on resonance with the cavity, and with too high of a 

setting, the threshold was not always met when the laser was locked to the cavity.  

6.2 Acquisition rate 

 In our system, the combination of the cavity locking and the pulsed-laser 

unlocking, brought the laser back into lock with the cavity immediately after the pulse. 

The rate at which ringdowns occurred was limited by the time constant of the decay and 
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the duration of the collection time—in the current system this limit was 3.5 kHz. Our 

FFT-FPGA acquisition rate was limited by the processing time of the FPGA, which had a 

maximum rate of 4.4 kHz. However, the limiting factor in our prototype design was the 

memory storage in the Arduino Due, and in the current configuration set our operational 

limit at 1.5 kHz. The acquisition of an entire spectra using the LabView code described in 

Section 6.1 took approximately 1-2 minutes, a time that depended mainly on the speed 

that successive cavity modes were located.  

6.3 Comparison with theoretical absorption spectra 

In order to determine the accuracy of our system, we converted our decay 

constant to an absorption coefficient. The conversion from the time constant, β, to the 

fractional absorption is 

€ 

A = βL /c , where L is the cavity length, and c is the speed of 

light. From the fit parameters we obtain a value that is proportional to the concentration. 

Following the HITRAN documentation83: 

 

 

(15) 

 

 

(16) 

where Ae,pk is the peak absorption for the specified peak, ν0 is the wavenumber of the 

peak center, Ae(ν) is the absorption at wavenumber ν, γ is the linewidth (half-width at 

half-maximum, in cm-1), and f(ν, ν0) is the normalized Lorentz lineshape in cm-1. 

Equation (15) is used in a nonlinear fit routine to find the parameters that 

minimize the root-mean-square error (RMSE). Because of potential errors in our 
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frequency scale, we calculate the error in both the frequency and the absorbance axes, 

as30: 

 

€ 

RMSE =
1
N

1
σA
2 Ae,i − ʹ′ A e,i( )2 +

1
σν
2 ν e,i − ʹ′ ν e,i( )2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

i=1

N

∑  
(17) 

 

where the data for the peak are the i=1..N points (ve,i, Ae,i), A´e,i and v´e,i are the estimated 

absorption of the Lorentizian function, that are closest to each of the datapoints.v´e,I, and 

σA
2 and σv

2 are the variances of the absorbance and the frequency, respectively, which 

normalize the error for each dimension. The fit parameters are the peak height (Ae,pk), the 

half-width at half-maximum linewidth (γ), and the center frequency (ν0). The spectral line 

intensity, S (cm-1/(molec/cm2)), scaled by the concentration, C (molec/cm3), and the path 

length, L (cm), is equal to the integral of the Lorentzian, so that:  

 

 Therefore, it is possible to determine the concentration using the spectral line 

intensities from the HITRAN database, once the peak height and linewidth are 

determined. However, since the Lorentzian linewidth parameter, γ, depends on the 

pressure and temperature, if they are constant then the peak height is proportional to the 

concentration.  

 In practice, an absorption spectrum is presented as plot of absorption coefficient 

as a function of wavenumber. The absorption coefficient, α, is related to the absorption 

   (18) 
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by α = A/L, and so we scaled the above results be the length of the cavity. A typical 

dataset and the corresponding Lorentzian fit is shown in Figure 23, where the data has 

been fit as described above, and the frequency scale has been determined using the 

quadratic fit to the applied voltage, as described in Chapter 3. The coefficients are 

modified slightly from the best fit discussed in 3.3 to provide the best fit to the theoretical 

Lorentzian.  The final fit parameters are within the confidence interval of the best. The 

theoretical absorption coefficient spectrum was obtained using spectral line intensities, 

wavenumbers, and linewidths from the HITRAN database1, which are then translated to 

absorption coefficients based on the cell pressure, temperature, and known gas 

concentration. The peaks shown are H2O in ambient lab whole air samples at a measured 

pressure of 500 torr, a temperature of 22 °C, and an H2O concentration of 13.0 parts-per-

thousand, as measured using a LI-840 non-dispersive infrared (NDIR) CO2/H2O analyzer 

(LI-COR, Inc., see Section 6.5). The larger and smaller peak are centered at 7640.764 cm-

1 and 7640.565 cm-1, respectively1. These H2O peaks (which are part of the 2ν1 and 

ν1+2ν2 vibrational overtone bands, respectively) were modeled following the procedure 

outlined in the Rothman et.al.83 The data matches well for both confirming that these are 

the peaks measured by the CRDS, and that the CRDS is functioning properly. The error 

between the peak heights for the Lorentzian fit to the data (2.58 x 10-6 cm-1) and the 

theoretical peak height (2.67 x 10-6 cm-1) is 9 x 10-8 cm-1. Using this peak height to 

estimate the concentration, the CRDS-measured H2O concentration would be 12.5 parts-

per-thousand, which is a 3.3% error. Since the LI-840 has a specified accuracy of 1.5%, 

this suggests a comparable accuracy for the CRDS system. Calibration of H2O 
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concentration using a dewpoint generator would improve accuracy of measurements 

made using this system. 

 

Figure 23 Plot of the v CRDS output (black dots), the Lorentzian fit (gray line), and the expected spectrum 
using the HITRAN database (blue line). To get the CRDS output wavenumber, the output voltage was 
scaled by following: ν(V) = -0.009V2 -0.127V + 7640.887, where these coefficients are well within the 
error limits of the ν(V) curve fit in Section 2.3. The residuals from the Lorentzian fit (gray line) are shown 
in the inset. 

 

It can be seen in Figure 23 that ringdowns were not recorded for certain modes, so 

there are gaps in the data points across the spectrum. This was most likely a result of 

issues with the optical feedback scheme, so that the laser never successfully locked onto 
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that cavity mode. Small differences between the laser-cavity distance and the cavity 

length may be the cause. This is discussed further in Section 6.7. 

6.4 Precision and Limit of Detection  

To consider the performance of the system, we look first at the precision. The 

most base-level precision we can evaluate is the precision of a single absorption 

coefficient measurement, α, which is the fractional absorption loss per unit length, in 

units of cm-1. These are the typical statistics generated during the measurements at a 

single cavity mode and frequency over a 100 ms. We base our precision on the 95% 

confidence interval, which indicates the range around the measured α within which the 

true value will be 95% of the time. If 

€ 

α  is the average, then the range is given by 

€ 

α −δα,95,  α +δα ,95( )  where 

€ 

δα ,95 , is what we call our precision, and is proportional to the 

standard error of the mean (

€ 

σα N )73: 

 

Here 

€ 

σα  is the standard deviation associated with 

€ 

α , and N is the number of decay 

constants in the average, and for a normal distribution, 95% of the samples will be within 

±1.96 standard deviations. In our system, looking at the average precision for a typical 

spectra, we had an average standard deviation of 7 x 10-8 cm-1, yielding an average 

€ 

δα ,95  

= 1.2 x 10-9 cm-1. If we restrict ourselves to the baseline, in which the standard deviation 

is lower, 

€ 

δα ,95  becomes 9 x 10-10 cm-1. The precision at the peak is slightly larger, with 

 

€ 

δα ,95 =1.96* σα

N
  (19) 
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€ 

δα ,95  = 3.27 x 10-9 cm-1, and is related to the larger variation in each measurement 

(average standard deviation of 1.2 x 10-7 cm-1). These measures are of the system’s 

current optimal performance. 

 

 

Figure 24 H2O spectra including the Lorentzian fit and the residual. We can estimate precision 

€ 

δα,95 , by 
multiplying the standard error by 1.96. 

 

We can also look at the statistics of multiple absorption measurements taken 

consecutively at the same frequency, to provide more information about the precision of 

the system over longer periods (~ 1 min). We collected a series of data at a constant laser 

current/frequency—i.e., the laser’s applied voltage was constant while the system was 

run. Therefore the data was collected in 100 ms groups, after a ringdown was collected, 

as described in the code description. Figure 25 shows the average absorption coefficients 

for each block, with error bars indicating the one standard deviation. Note that typical 

variation between blocks is on the order of the standard deviation of the data points. 
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Figure 26 shows a histogram of the 5682 ringdowns with a nearly Gaussian distribution, 

but a slight skew towards lower absorption. If we look at the precision of these 

measurements as a whole, we get 

€ 

δα,95  = 1.6 x 10-8 cm-1, which is an order of magnitude 

larger than that of the baseline in Figure 24 and the average precision of the individual 

measurements of 2.2 x 10-8 cm-1. This suggests that over minute timescales, the variation 

of the absorption coefficient varies, and the negative skew can be attributed to the fact 

that a linear fit showed that over the entire sample set their was a net drift towards lower 

absorption of -7 x 10-8 cm-1. 

 

 

Figure 25 Repeated measurements of absorption coefficient at a constant laser current. The program 
collected data repeatedly in 100 ms blocks. The graph shows the average for each 100 ms period, with the 
error bars indicating the 95% confidence interval. The dashed line shows the overall average absorption 
coefficient for the 64 periods. 
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Figure 26 Histogram of the 5682 absorption measurements taken at a constant laser current. Also shown is 
a fit for a Gaussian distribution. Statistics indicate that in this case, the relative standard deviation is 4.5%, 
and the precision is 1.6 x 10-8 cm-1.  

 

To address this issue, we looked at a plot of the Allan Variance84 for the data set, 

which looks at the average two-point variance (σ2) between two non-adjacent data points, 

with increasing spacing between the points It provides an indication of both the stability 

of the system and the optimal number of averages to use for a measurement (to minimize 

the uncertainty). The Allan Variance plot for the dataset is shown in Figure 27, and the 

Allan Variance decreases up to ~N=100 but increases after about 200 samples, 

suggesting longer timescale drift in the decay constant. Since these measurements were 

taken in 100 ms blocks, with a time lag in between, it also suggests that there is 

significant variation between averaged data points.  The minimum Allan Variance of 2 x 

10-12 (cm-1)2 at N=200, has a corresponding 

€ 

δα ,95  of 4.2 x 10-10 cm-1, consistent with our 

baseline precision determined above. 
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Figure 27 Allan Variance of repeatability data, which suggests that the sensitivity of the overall system is 
best when the number of averages is 200-300 data points, or approximately 300 ms. This could be a result 
of the maximum number of averages stored being 150, such that over time the variation increases. 
 

Despite a reasonable precision of 3.3 x 10-9 cm-1 for an individual data point, our 

system appears to exhibit instabilities in repeated measurements that significantly reduce 

the overall precision by an order of magnitude when considered across multiple points. 

We would therefore expect that this would affect concentration measurements based on a 

Lorentzian fit of multiple points and in numerous repeated scans.  

 We next considered the sensitivity, or minimum detectable absorption level 

(MDAL), by looking at the average standard deviation of the residuals of the baseline, 

similar to that done by Motto-Ros41, and others mentioned in Section 1.4. Figure 28 

shows another typical spectrum, where in this case we have restricted our view to the 

smaller H2O peak. The Lorentzian fit to the data is also shown. We approximated our 
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baseline to be to the left of the smaller peak (lower in wavenumber), and the residuals for 

the fit are shown in the inset, with an rms value of 2.1 x 10-8 cm-1. This result is 

consistent with our expectation based on the variation of multiple measurements to be 1.6 

x 10-8 cm-1. 

 

Figure 28 Estimating the limit of detection of the system. Using the standard deviation of the residuals at 
the baseline (shown in the inset). In this case, we chose the region to the left of the smaller peak (enclosed 
in the blue box) to represent the baseline. 

 

Also of note is the fact that at the larger peak, the mean standard deviation is 

noticeably larger than the baseline (as in Figure 23 and Figure 24), and we might expect 

this to have an impact on the residuals. It can also be seen that the data does not follow 
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the Lorenztian line fit as closely as it does on the lower peak or at the baseline. In fact the 

average rms of the residuals at the peak is 9 x 10-8 cm-1.  

6.5 Concentration measurement repeatability and linearity 

 Now, having looked at the precision and detection limits based on a single and 

multiple data points, we then examined the precision of the system in its ability to 

measure gas concentration, specifically H2O. Since the peak height is proportional to the 

concentration, to determine our system’s response, we simply looked at the peak height 

for the largest peak of the Lorentzian fit to our data (like those shown in Figure 23 and 

Figure 24). To study this, we needed an independent measure of H2O concentrations. 

Using our vacuum system we drew in lab air into the CRDS, while simultaneously 

drawing air into an LI-840 CO2/H2O gas analyzer (LI-COR, Inc., Lincoln, Nebraska). 

The LI-840 is an NDIR gas analyzer, which uses a 14-cm cavity for single-pass 

broadband infrared absorption measurement, in the 4000 nm infrared region. For ambient 

H2O, it has a range of 0-80 parts-per-thousand, an accuracy of 1.5%, and an RMS noise 

of 0.07 parts-per-thousand. In our setup, it was configured for 20-second signal 

averaging, and recorded the H2O concentration every 2 minutes. Prior to the 

measurements used here, it was zeroed using a Hydro-Purge II moisture trap (W. R. 

Grace & Co., Columbia, Maryland). The LI-840 H2O instrument was calibrated 

previously using a LI-COR (Model LI-610) dew point generator (with an accuracy of 

±0.2%) 

 With this configuration, we compared the response of our system to the H2O 

concentration as measured on the LI-840. Figure 29 shows repeated peak height 



77 

measurements at a nearly constant H2O concentration (9.5 ± 0.2 parts-per-thousand, as 

measured by the LI-840). The average absorption measured by the CRDS system was 

2.89 x 10-6 cm-1 (N = 50), with a relative standard deviation of 2.2%. This is consistent 

with the variation in the LI-840 measurements, and the corresponding LI-840 data 

exhibited a small negative slope, also consistent with the CRDS measurements. The 

precision for the overall peak absorption coefficient was ±1.8 x 10-8 cm-1 (0.6% relative 

precision) 

 

Figure 29 Repeatability of the Lorentzian fit peak height (which is proportional to the concentration). The 
data shows 50 trials at a nearly constant H2O concentration. The statistics show an average absorption of 
2.9 x 10-6 cm-1 (shown as the dashed line) and standard deviation of 6.4 x 10-8 cm-1, yielding a relative 
standard deviation of 2.2%. The error bars indicate the RMSE of the Lorentzian fit for each data 
concentration measurement. 

 

Finally, we are interested in the linearity of the system, by looking at its response 

to a varying H2O concentration. We set up a system so that both the LI-840 and our 

CRDS system were sampling the same air, and ran them both continuously overnight. We 

were fortunate in that the ambient H2O concentration changed by almost 50%, from 12 

3.5x10-6

3.0

2.5

2.0

1.5

1.0

Ab
so

rp
tio

n 
Co

ef
fic

ie
nt

 (
cm

-1
)

403020100
Sample Number



78 

parts-per-thousand to 7 parts-per-thousand in a 5-hour period. We then compared the 

peak absorption coefficient of the Lorentzian fit for the CRDS system to the H2O 

concentration reported by the LI-840. A plot showing that comparison is shown in Figure 

30. While there was significant variation around the linear fit, the relative standard error 

in the slope was 0.2%, and the residuals (shown in the inset of Figure 30), had an rms 

value of 9.4 x 10-8 cm-1, which is approximately a 4% relative variation. 

 

 

Figure 30 Correlation of CRDS system with LI-840 NDIR measurements. During this trial the LI-840 
sampled the same air as the CRDS cavity. A linear fit (red line) between the two shows the CRDS responds 
to changes in H2O concentration linearly. The data was taken over approximately a 5 hour period. 

 

To determine whether the residuals to the linear fit are distributed normally, we 

used the Q-Q plot in Figure 31, which plots the normalized residuals versus a Gaussian 
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distribution. The closer the points follow the 1:1 line, the closer the distribution is to 

Gaussian. Since the residuals exhibit a near normal variation (except for several outliers 

at the low end), we can see that the CRDS system’s response to H2O concentration was 

linear over this range. To be more rigorous, we also applied the Kolmogorov-Smirnoff 

test for normality, and found that it is linear within a 95% confidence interval (D=0.08 < 

D95%=0.23). 

 

 
Figure 31 Q-Q plot of residuals for the line fit. The residuals were normalized and plotted against a 
Gaussian probability distribution (circles). The solid line is a 1:1 line, and deviations of the residuals from 
this line indicate non-normal distribution. Significantly on the low end there are several outliers that deviate 
significantly from a Gaussian distribution. 
 

6.6 Comparison with previous works 

The laser-cavity locking combined with the optical injection unlocking enabled us 

to achieve ringdown rates of 3.5 kHz, for ringdowns with a time constant of 12 µs. We 
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ringdowns to at a rate of 4.4 kHz, with a current operational limit of 1.5 kHz transfer rate 

to the computer. 

Comparing these rates to the previous work described in Chapter 1, we see that it 

exceeds the rate of our previous system, and has the fastest demonstrated ringdown 

processing rate. It should be reiterated that our rate included individual processing of 

each ringdown. As mentioned in 1.4, many systems either off-load time-series data for 

later decay constant determination, or average multiple ringdowns before determining the 

decay constant. For example, Orr and He42 averaged ringdowns prior to processing and 

demonstrated the highest acquisition rate of 5 kHz. Spence et.al.59 claimed their 

processing system could operate at 1 MHz, but it was only demonstrated at a rate of 20 

Hz. Motto-Ros et. al.41, also demonstrated an effective ringdown capture rate of 640 Hz. 

The advantage of our design is that we are able to average significantly more 

ringdowns per mode before mechanical instabilities introduce significant error, whereas 

they were limited to 50 averages per mode because their system is designed to sweep 

across all modes, collecting 1 ringdown per mode, per sweep. 

The precision, limit of detection, and variation in the individual decay constants 

(and subsequent absorption coefficient) of the system was worse than many of the other 

systems reviewed in Section 1.4. Our demonstrated MDAL of 1.6 x 10-8 cm-1 is 1-2 

orders of magnitude worse than typical systems reviewed. Because of the high 

acquisition rate, our precision for absorption coefficient at a single mode is respectable, at 

3 x 10-9 cm-1. As described in Berden et.al.,85 the theoretical minimum detectable 

absorption coefficient is based on the reflectivity of the cavity mirrors, and the accuracy 

of the ringdown time constant. Based on this our theoretical minimum detectable level is 
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1− R( )δα,95 αL( )−1, or 4.2 x 10-9 cm-1—an order of magnitude lower than our measured 

detection limit.  

6.7 System improvements  

Despite the 2 order of magnitude increase in ringdown acquisition rate resulting 

from our novel advances in laser switching and ringdown data processing, the overall 

CRDS system still lacks precision. The most likely cause is the performance of the linear 

optical feedback design, resulting from the interaction between the laser-cavity path 

resonance and the cavity resonance. This also caused some missed resonance modes of 

the cavity and difficulty in laser locking. It is also suspected for causing a variation in the 

cavity output that did not vary linearly with laser current, which made finding an optimal 

trigger level for the system problematic. Finally, optical feedback performance may also 

be responsible for reduced numbers of ringdowns as the absorption of the analyte 

increased in some spectra. Further evidence is the variation of decay constants being on 

the order of 1%, which is significantly larger than that measured on other systems that 

use laser-cavity locking2,41. 

While it is expected that maintaining the linear optical feedback design and 

optimizing the laser-cavity distance to better match the cavity length could reduce these 

effects and improve the stability, converting the cavity to a V-cavity design like that of 

Morville et.al.54, could dramatically improve the laser-cavity locking, and in so doing 

dramatically improve the precision of the system. Furthermore, it likely that due to the 

non-Gaussian beamshape of the laser that during the frequency sweep additional cavity 

modes are being excited (causing energy to be built up at a non-TEM00 mode. If the 
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buildup is sufficient to trigger the pulsed laser, then the background decay constant could 

differ enough to affect the precision. Therefore, including additional optics to improve 

beam quality may also have an impact on the precision of the system. 

Additional improvements could be made in the FPGA acquisition system by (1) 

expanding the number of bits recorded to improve the resolution and dynamic range of 

the system, (2) adding the ability to average several components of the FFT on the FPGA 

to reduce the variation of individual decay constant estimates70, (3) use the FPGA to 

average the collected time constants, so that the ringdown acquisition rate is no longer 

limited by the memory on the Arduino Due,  since only the average decay constant would 

need to be sent to the computer. This would also aid in improving the precision as more 

decay constants could be averaged, and (4) use the USB interface on the FPGA to store 

and transmit the values to the computer, avoiding the Arduino Due altogether. These last 

two would also enable a more compact acquisition and control system, as it would further 

reduce the computational power required on the computer. It would also increase data 

acquisition rates close to the theoretical maximum of 3.5 kHz. One possibility is to use an 

inexpensive single-board computer like the Raspberry Pi, which easily interfaces with 

Arduino microcontrollers, and provides a user interface. 

Once the optical stability has been improved, addressing mechanical factors can 

make improvements in the precision of CRDS systems. Tight control of the cavity 

temperature and pressure are important for the repeatability of gas concentration 

measurements because they both affect shape of the spectral lines. The precision and 

repeatability of the Picarro, Inc. CRDS systems, for example, was achieved by 

maintaining small tolerances on the cavity pressure and temperature. This ensures the 
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lineshape remains the same, allowing them to determine gas concentrations by only 

measuring the peak height and a baseline35. 

Finally, the methods developed here are applicable to any wavelength. The line 

intensities of both H2O and CH4 are significantly lower in the 1309 nm region of the near 

IR because the absorption are due to third overtones, and the lines measured here had line 

intensities on the order of 10-24 (cm-2 molecules-1) cm-1. Having now demonstrated the 

techniques in the near-IR, shifting to other regions would significantly increase the 

sensitivity of the design to gas concentrations. Indeed, staying in the near-IR and shifting 

near 1650 nm to a second overtone of CH4 would increase the line intensities by 3 orders 

of magnitude17. Converting the system to this range would, however, require new lasers, 

detectors, cavity mirrors, and polarization optics. 
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Chapter 7   Conclusion 

We have demonstrated a CRDS system with a ringdown acquisition rate of 1.5 

kHz, with a maximum capability of 3.5 kHz, using new techniques that significantly 

change the way in which the ringdowns are initiated and processed. We implemented a 

linear optical feedback scheme allowing the laser to stay on-resonance with the cavity for 

up to hundreds of milliseconds rather than tenths of a millisecond. We combined this 

with a novel optical technique for switching the laser off-resonance so that a ringdown 

could be initiated, but brought the laser back to resonance to allow for another ringdown 

on the same mode. This allowed us to generate ringdowns on a single cavity mode at a 

maximum rate of 3.5 kHz. Another significant modification was the development of an 

FGPA-based data acquisition and processing system which determines the time constant 

at a maximum rate of 4.4 kHz, but the current implementation was limited to 1.5 kHz by 

the Arduino Due that stored and transmitted the time constants to the computer. 

The entire system showed promise as we demonstrated the ability to determine 

gas concentrations using H2O, and the system measured the concentration with an 

accuracy of 3.3%. Our system achieved an absorption coefficient precision of 0.1% (95% 

confidence interval). It also exhibited a linear response for varying H2O concentrations, 

and a 2.2% variation (1σ) for repeated measurements at the same H2O concentration, a 

corresponding precision of 0.6%, and a limit of detection of 1.6 x 10-8 cm-1. 
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Appendix A: FFT algorithm for decay constant calculation 

An efficient method for determining the exponential decay constant in sampled 

data was implemented in CRDS by Mazurenka et.al.20 The method was adopted from 

Kirchner et.al.86 (for more information see also Ikeda et.al.87, and Wang et.al.88) The 

method is based on the result that for a continuous exponentially decaying function, β /ω 

is given by: 

 

€ 

β
ω

= −
Re X ω( )( )
Im X ω( )( )

 (20) 

where X(ω) is the discrete Fourier transform of the time series data, which is assumed to 

be a decaying exponential (i.e., 

€ 

x t( ) = Ae−βt + B) with decay constant β. Thus given any 

ωi and X(ωi), β can be obtained. This Appendix presents the proof of equation (20), and 

looks at the effect of noise on the estimation of β. This is similar to that given in Everest 

and Atkinson70 The Discrete Fourier Transformation (DFT) of a discrete function x(n) 

with period N is given by89: 

 

€ 

X k( ) = x n( )e
− j

2π
N

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ nk

n=0

N −1

∑  

 k= 0, 1,…N-1 

(21) 

and x(n) can be obtained using the Inverse DFT of X(k): 

 

€ 

x n( ) =
1
N

X k( )e
j
2π
N

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ nk

k=0

N −1

∑  (22) 
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If x(n) is the sampled data time series of the general exponentially decaying 

function, x(t) = x(t) = A + B, using a sampling time ts, (sampling frequency fs = 1/ts) 

then 

€ 

x n( ) = Aexp −βtsn( ) + B . Then, using eq. (21), the DFT becomes: 
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X k( ) = Ae−βts n + B( )e
− j 2π

N
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ nk

n=0

N −1

∑

= A e
− j

2π
N

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ k+βts

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ n

n=0

N −1

∑ + B e
− j 2π

N
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ nk

n=0

N −1

∑
 (23) 

Evaluating the sums: 
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So that we have 
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 (24) 

For the first sum, and for the second sum,  
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So, the DFT becomes: 
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Or 
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Multiplying the numerator and denominator by conjugate of denominator: 
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And simplifying: 
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Taking Re{X(k}/Im{X(k)} for k>0: 
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For k/N <<1 (k<<N), 
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Defining the decay time constant τ=1/β, as long as τ >>ts (i.e., decay lasts much longer 

than a single sample time, then: 
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So that, once X(k) is calculated, we can choose k=1, which gives (since T = Nts) 
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And, since ω1=2π/T, this is the same as equation (20). 

The error in the assumption that τ >>ts can be easily calculated using equation 

(30). In fact, we can calculate β exactly by solving equation (30) for β. 
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 (34) 

where is the estimate of the decay constant, and 

€ 

ˆ τ =1 ˆ β  is the estimated time constant. 

For example, if is 12 µs, and ts=0.01 µs, 

€ 

ts ˆ τ = 0.00083, and the error is ≈ 0.04 %. 
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Appendix B: Optical heterodyne detection 

The method of optical heterodyne detection (OHD) is similar to the demodulation 

of radio frequencies using a mixer (a nonlinear device such as a diode that produces an 

output containing a term with the product of two oscillating input signals)72. OHD, on the 

other hand, is based on the fact that the response of a photodiode is proportional to the 

intensity (which is proportional to the electric field squared) of the light hitting the 

detector, and not the electric field90. So if light from two different sources is incident on 

the photodetector simultaneously, the photodetector response (the output voltage) is: 

 

€ 

V t( ) = γ E1 t( ) + E2 t( )
2

= γ ε1 sin ω1t( ) +ε 2 sin ω 2t + Δφ( )
2  (35) 

 Where γ is a proportionality constant, and 

€ 

E1 t( ) = ε1 sin ω1t( ) and 

€ 

E2 t( ) = ε2 sin ω 2t + Δφ( )  are the electric field from Source 1 and Source 2, respectively, 

which oscillate at their respective optical frequencies. The sources have a phase 

difference of Δφ, and constant frequencies of ω1 and ω2, and amplitudes of ε1 and ε2, 

respectively. Completing the square we have:  

 

€ 

V t( ) = γ ε1
2 sin2 ω1t( ) +ε 2

2 sin2 ω 2t + Δφ( ) +ε1ε 2 sin ω1t( )sin ω 2t + Δφ( )[ ]
= γ ε1

2 sin2 ω1t( ) +ε 2
2 sin2 ω 2t + Δφ( )[ ] +γε1ε 2 sin ω1t( )sin ω 2t + Δφ( )

 (36) 
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We can see that the first two terms are just the intensities of the two sources, and 

we can use the properties of trigonometric identities to replace the last term with the 

difference of two cosine functions72 to simplify: 

 

€ 

V t( ) = γ ε1
2 sin2 ω1t( ) +ε 2

2 sin2 ω 2t + Δφ( ) +ε1ε 2 sin ω1t( )sin ω 2t + Δφ( )[ ]
= γ E1

2
+ E2

2( ) − γ2ε1ε 2 cos ω1t +ω 2t + Δφ( ) +

γ
2
ε1ε 2 cos ω1t −ω 2t − Δφ( )

= γ E1
2

+ E2
2( ) − γ2ε1ε 2 cos ω1 +ω 2( )t + Δφ( ) +

γ
2
ε1ε 2 cos ω1 −ω 2( )t − Δφ( )

 (37) 

This leaves us with two oscillating intensities, one at the sum of the oscillation 

frequencies of the two sources, and the other at the difference of the oscillation 

frequencies.  

   Photodetectors typically have bandwidths of up to several GHz, and, since 

for infra-red wavelengths and below, the oscillation frequency is above 1015 Hz, so the 

first two terms result in a constant (DC component) that is their time average, (ε1/2 + 

ε2/2). The frequency (ω1 + ω2) term in Equation (37) is also well above the photodetector 

bandwidth, and is filtered out, leaving the only time-varying detector response at the 

frequency (ω1-ω2). If this frequency difference is less than the bandwidth of the detector, 

then the output voltage will oscillate at that frequency, which can be measured with a 

spectrum analyzer or an oscilloscope. 

The application of OHD typically uses a reference laser, which is typically highly 

stable, low noise, and has a narrow linewidth, to precisely measure the wavelength or 
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frequency of a laser-under-test. By tuning the reference laser to be close to the laser under 

test, OHD measures how far away the laser-under-test is from the reference, and by 

looking at the frequency spectrum of the photodetector output, the linewidth of the laser-

under-test can be determined, assuming it is significantly wider than the reference laser. 

Another advantage of OHD is that, as seen in equation (37), the amplitude of this 

oscillation is the product of the amplitude’s of the reference and test lasers, so that small 

test laser intensities are amplified by the reference laser, and can result in a higher signal-

to-noise ratio of the output voltage. 

In our system OHD was used for three applications. The first was to determine the 

main laser’s wavelength (frequency) as the main laser’s temperature can current were 

varied (as described in Section 3.3). The tunable diode laser (New Focus, Model 6324) 

was used as the reference laser, and it was adjusted until an oscillating signal was 

observed on the oscilloscope, indicating that the two lasers were close in frequency. 

The second application of OHD was for measuring the frequency shift induced by 

the pulse laser for the optical frequency unlocking, and to verify that the main laser 

returned to its orginal frequency after the pulse. Both of these measurements are 

described in Section Chapter 4. OHD was also used to initially determine the wavelength 

(frequency) of the pulse laser so that the difference in wavelength between the two could 

be measured. 

The third application was to measure the effect of the optical feedback on the 

linewidth of the main laser with and without optical feedback, and to show that the 

linewidth narrowed with our optical feedback configuration. 
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Appendix C: FPGA Code 

The following is the code used to program the FPGA used for data processing, as 

described in Section Chapter 5. In order to program the FPGA, the Xilinx ISE® Design 

Suite, Xilinx LogiCORE™ IP Fast Fourier Transform core80 and the LogiCORE™ IP 

Divider Generator core81 are required. 

`timescale 1ns / 1ps 
 
module fp_fft_core_top( 
 
 input [13:0] data_p, //positive diff input from ADC board 
 input clock_p, 
 input CLK_100, //100 MHz clock input from FPGA board clock (for loops) 
 input trigger, //external trigger applied to a debug pin 14 or SMA input 
  
 output [5:0] debug_pin, 
 output [13:0] outputRe_out, //Real part of FFT output 
 //output [13:0] outputIm, //Imaginary part of FFT output 
 output rfd_out, //send to UPLOAD 
 //output [12 : 0] xn_index, 
 output busy_out, //send to CAPTURE 
 //output edone, 
 output done_out, //send to LED2 
 output dv_out, 
 output [15:0] beta_out 
 //output [12 : 0] xk_index 
);  

 
 localparam STATE1     = 4'h0; 
 localparam STATE2    = 4'h1; 
 localparam STATE3    = 4'h2; 
 localparam K_INDEX    = 13'd1; //Index for calculating time constant (Re/Im) 
 localparam DIV_LATENCY  = 8'd80; //latency for division core (14 bit with 14 bit frac = 32); 
 localparam TRIG_DELAY        = 32'd160; //approximately 50 microseconds to ringdown 
 localparam N_POINTS   = 32'd8192; //Number of data points 
 localparam TRIG_WIDTH   = TRIG_DELAY + N_POINTS + 32'd100; //width of trigger to load data 
  
 //wires 
 wire clock_i; //input clock, taken from diff data clock from ADC eval board 
 wire [13:0] data_i;  //output from diff buffer (see IBUFDS) 
 wire rfd; 
 wire busy; 
 wire done; 
 wire dv; 
 wire ce; 
  
 
 //registers    
 //FFT registers 
 reg start;   
 reg unload = 1'b1; 
 reg fwd_inv = 1'b1; 
 reg fwd_inv_we = 1'b0; 
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 reg [13 : 0] scale_sch = 14'b0110_1010_1010_11; //for 8192, 14 values for stage scaling (setting all to 1) 
 reg scale_sch_we = 1'b0; 
 reg [3:0] state; 
 reg core_reset = 1'b0; 
 reg RESET = 1'b1; 
 reg [5:0] debug_pin_reg; 
 reg rfd_reg; 
 reg busy_reg; 
 reg done_reg; 
 reg dv_reg; 
 reg busy_dv_reg = 1'b0; 
 reg dv_div_reg = 1'b0; 
 reg signed [27:0] outputRe_reg; 
 reg signed [27:0] outputIm_reg; 
 reg [15:0] beta_reg; 
 reg [7:0] div_counter = 8'b0; 
 reg [31:0] trig_counter = 32'd0; 
 reg trigger_delayed = 1'b0; 
 reg istrigcounting = 1'b0; 
 reg trig_reg = 1'b0; 
 reg [12:0] xk_index_reg; 
 reg index_test_reg; 
 reg [15:0] data_reg; 
  
 //Re/Im registers 
 reg signed [27:0] FFTRe; // 
 reg signed [27:0] FFTIm; // 
 reg div_enable_reg = 1'b0; // 
 reg div_wait_reg = 1'b0; 
 reg [31:0] beta_simplek_reg; // 
 reg [27:0] ratio_result_reg; 
 reg [13:0] ratio_frac_result_reg; 
  
 //fft wires 
 wire signed [27:0] outputRe; 
 wire signed [27:0] outputIm;  
 wire [12 : 0] xn_index; 
 wire [12 : 0] xk_index; 
 wire edone; 
 
 //Re/Im division wires for output 
 wire [27:0] ratio_result; 
 wire [27:0] ratio_result_abs = ~(ratio_result-28'b1); 
 wire [13:0] ratio_frac_result; 
 wire [13:0] ratio_frac_result_abs = ~(ratio_frac_result-14'b1); 
 wire rfd_ratio; 
 wire div_wait; 
 wire div_enable; 
 wire index_test; 
  
 //assign output wires 
  assign debug_pin = debug_pin_reg; 
  assign done_out = done_reg; 
  assign rfd_out = rfd_reg; 
  assign busy_out = busy_reg; 
  assign dv_out = dv_reg; 
  assign clock_i = clock_p; 
  assign data_i = data_p; 
  assign outputRe_out = outputRe_reg[27:14]; 
  assign beta_out[15:13] = ratio_result_reg[2:0]; //take 3 LSB bits of integer 
  assign beta_out[12:0] = ratio_frac_result_reg[12:0]; //'14th bit is 0 for abs 
  assign div_wait = div_wait_reg; 
  assign div_enable = div_enable_reg; 

//enable fft when triggered, or while data is valid 
  assign ce = trigger_delayed|busy_dv_reg|dv_div_reg|div_wait;  
  assign index_test = index_test_reg; 
 //end assignments 
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//execution code 
 always @ (posedge clock_i) 
  begin 
   if (busy) 
    begin 
     busy_dv_reg <= 1'b1; 
    end 
   else 
    if (dv) 
     begin  
      busy_dv_reg <= 1'b0; 
     end 
    else 
     busy_dv_reg <= busy_dv_reg; 
      
   if (done) 
    begin 
     dv_div_reg <= 1'b1; 
    end 
   else 
    if (div_wait_reg) 
     begin  
      dv_div_reg <= 1'b0; 
     end 
    else 
     dv_div_reg <= dv_div_reg; 
      
    
   RESET <= !ce; 
   fwd_inv <= 1'b1;     
   start <= 1'b1; 
   unload <= 1'b1; 
   debug_pin_reg[0] <= ratio_result_reg[3]; 
   debug_pin_reg[1] <= ratio_result_reg[4]; 
   debug_pin_reg[2] <= ratio_result_reg[5]; 
   debug_pin_reg[3] <= ratio_result_reg[6]; 
   debug_pin_reg[4] <= ratio_result_reg[7]; 
   debug_pin_reg[5] <= ratio_result_reg[8]; 
      
   done_reg <=done; 
   rfd_reg <=rfd; 
   busy_reg <= busy; 
   dv_reg <=dv; 
   outputRe_reg <= outputRe; 
   outputIm_reg <= outputIm; 
   data_reg <=data_p; 
    
   if(RESET == 1'b1) 
    begin 
     core_reset <= 1'b1; 
     start <= 1'b0; 
     state <= STATE1; 
     RESET <= 1'b0; 
    end 
   else 
    begin 
     case (state)  
      STATE1 : 
       begin 
        core_reset <= 1'b1; 
        state <= STATE2; 
       end 
      STATE2 : 
       begin 
        core_reset <= 1'b0; 
        scale_sch_we <= 1'b1; 
        fwd_inv_we <= 1'b1;  
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        state <= STATE3; 
       end 
      STATE3 : 
       begin 
        fwd_inv_we <= 1'b0; 
        scale_sch_we <= 1'b0; 
        start <= 1'b1;      
       end 
      default : state <= STATE1; 
     endcase 
    end  
  end 
   
 //Calculate Re/Im   
 always @ (posedge clock_i) 
  begin 
   if (div_wait_reg) 
    begin 
     if (div_counter == DIV_LATENCY) //latency is  
      begin 
       ratio_result_reg <= ratio_result_abs; //send result to register 
       ratio_frac_result_reg <= ratio_frac_result_abs; //semd fracton result to register 
       div_wait_reg <= 1'b0; //reset div_wait flag 
       div_counter <= 0; 
       div_enable_reg <= 1'b0; 
      end 
     else 
      begin 
       div_counter <= div_counter + 1; //increment counter to keep waiting 
       //div_enable_reg = 1'b1; 
      end 
    end  
 
   if (dv) //if fft done, then calc time constant for k = K_INDEX (usually K_INDEX = 1) 
    begin 
     div_enable_reg <= 1'b1; 
     if (xk_index == K_INDEX) 
      begin 
       div_wait_reg <= 1'b1; //start wait timer if correct index  
       FFTIm <= outputIm; 
       FFTRe <= outputRe;       
      end  
    end 
   else 
    begin 
     div_enable_reg <= 1'b0; 
    end 
  end 
   
//Triggering Delay counter 
always @ (posedge clock_i) 
 begin 
  if (trigger&!(ce|istrigcounting)) 
   trig_reg = 1'b1; 
  else 
   trig_reg = 1'b0; 
   
  //if external trigger input is high, then start counting for delay 
  if (trig_reg|istrigcounting) 
   trig_counter = trig_counter+1; 
 
  //set flag to indicate externally triggered 
  if (trig_counter>0) 
   istrigcounting=1'b1; 
  else 
   istrigcounting=1'b0; 
  //if counter reaches delay time, then set software trigger to set fft CE 
  if (trig_counter > TRIG_DELAY) 
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   begin 
    trigger_delayed = 1'b1; 
   end 
  //keep software trigger high until after data is loaded so CE stays hi  
  if (trig_counter>TRIG_WIDTH) 
   begin 
    trigger_delayed = 1'b0; 
    trig_counter = 1'b0; 
    istrigcounting = 1'b0; 
    trig_reg = 1'b0; 
   end 
 end 
 
//unscaled FFT Core 
unscaled_fft crds_fft_core( 
  .clk(clock_p), // input clk 
  .ce(ce), // input ce 
  .sclr(core_reset), // input sclr 
  .start(start), // input start 
  .unload(unload), // input unload 
  .xn_re(data_i), // input [13 : 0] xn_re 
  .xn_im(14'b0), // input [13 : 0] xn_im 
  .fwd_inv(fwd_inv), // input fwd_inv 
  .fwd_inv_we(fwd_inv_we), // input fwd_inv_we 
  .rfd(rfd), // output rfd 
  .xn_index(xn_index), // output [12 : 0] xn_index 
  .busy(busy), // output busy 
  .edone(edone), // output edone 
  .done(done), // output done 
  .dv(dv), // output dv 
  .xk_index(xk_index), // output [12 : 0] xk_index 
  .xk_re(outputRe), // output [27 : 0] xk_re 
  .xk_im(outputIm) // output [27 : 0] xk_im 
); 
   
//integer division core 
div_28by28_frac14_radix2 div_Re_by_Im ( 
 .clk(clock_p), // input clk 
 .ce(div_enable), // input ce 
 .rfd(div_rfd), // output rfd 
 .dividend(FFTRe), // input [27 : 0] dividend 
 .divisor(FFTIm), // input [27 : 0] divisor 
 .quotient(ratio_result), // output [27 : 0] quotient 
 .fractional(ratio_frac_result) // output [13 : 0] fractional 
); 
 
  
endmodule //top 
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Appendix D: Arduino Due Code for FPGA 

//#include "arduino2.h" 
// datapins on the Arduino board, specified in Bit order LSB->MSB 
int dataPin[] = {2,3,4,5,6,7,8,9,10,11,12,13,22,24,26,28,30,32,34,36,38,40,42,44}; 
unsigned int beta0 = 0; 
unsigned int beta0_old = 0; 
float betaActual_microsec; 
int i; 
boolean currentBitD; 
unsigned long t0; 
unsigned long deltaT_read; 
unsigned long deltaT_calc; 
 
boolean startCollect = 0; 
const unsigned int maxCount = 150; 
word betaRaw[150]; 
unsigned int betaCount = 0; 
 
// the setup routine runs once when you press reset: 
void setup() { 
  // initialize serial communication at 38400 bits per second: 
  Serial.begin(115200); 
  // set all the pins to an input: 
  for (i=0; i<=15; i++){ 
    pinMode(dataPin[i], INPUT); 
  } 
} 
 
// the loop routine runs over and over again forever: 
void loop() { 
  // read the input pins: 
  t0 = micros(); 
  if ((startCollect)&&(betaCount<maxCount)) { 
    for (i=0;i<=15;i++){ 
      bitWrite(beta0,i,digitalRead(dataPin[i])); 
      } 
    deltaT_read = micros()-t0; 
    betaActual_microsec = float(beta0)/0.1068070743; //beta = 2*pi/81.92e-6*2^-13*beta) 
    deltaT_calc = micros()-t0; 
    // print out the state of the button: 
    if (beta0 != beta0_old) { 
      betaCount++; 
      betaRaw[betaCount-1] = beta0; 
      beta0_old = beta0; 
    } 
  } 
  else { 
     if((betaCount>0)&&(!startCollect)) { 
       for (i=0;i<=betaCount;i++) { 
         Serial.print(betaRaw[i],DEC); 
         Serial.print(','); 
       } 
       Serial.println(); 
       betaCount = 0; 
     } 
  } 
} 
 
void serialEvent() { 
  byte command; 
  char charCommand; 
    if (Serial.available() >0) { 
      command = Serial.read(); 
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      charCommand = (char)command; 
      switch(charCommand) { 
       case '1': 
         startCollect = true; 
         break; 
       case '2': 
         startCollect = false; 
         break; 
      } 
    } 
  } 
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Appendix E: Arduino Code for DAC1220 

What follows is the code used to program the Aduino Uno (R3) to control the laser 

current via the DAC1220 digital-to-analog converter, as described in Section 3.3. 

/* 
  * CS - to digital pin 10  (SS pin) 
  * SDI - to digital pin 11 (MOSI pin) 
  * CLK - to digital pin 13 (SCK pin) 
*/ 
 
// inslude the SPI library: 
#include <SPI.h> 
 
boolean doneWriting = false; 
byte dacResponse = (byte)0; 
// set pin 10 as the slave select for the digital pot: 
const int slaveSelectPin = 10; 
const int channel = 1; 
 
void setup() { 
  // set the slaveSelectPin as an output: 
  pinMode(slaveSelectPin, OUTPUT);  
  // initialize SPI: 
  Serial.begin(115200); 
  SPI.begin(); 
  delay(1000); 
  delay(200); 
  SPI.setBitOrder(MSBFIRST); 
  SPI.setClockDivider(SPI_CLOCK_DIV128); 
  SPI.setDataMode(SPI_MODE1); 
  delay(200); 
  byte test1 = dacCommandWrite(); 
  delay(5000); 
  byte test2 = dacCommandWriteCal(); 
  delay(10000); 
} 
 
void loop() { 
   if (doneWriting) { 
     Serial.println("OK"); 
     doneWriting = false; 
     Serial.flush(); 
   } 
  } 
 
void serialEvent() { 
  // take the SS pin low to select the chip: 
  delay(1); 
  char byteArray[] = {0,0,0,0}; 
  if (Serial.available() >0) { 
    Serial.readBytes(byteArray,4); 
  } 
  digitalWrite(slaveSelectPin,LOW); 
  //send in the command via SPI: 
  byte command = B01000000; 
  byte data3 = (byte)byteArray[1]; 
  byte data2 = (byte)byteArray[2]; 
  byte data1 = (byte)byteArray[3]; 
  dacResponse = SPI.transfer(command); 
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  SPI.transfer(data3); 
  SPI.transfer(data2); 
  SPI.transfer(data1); 
  // take the SS pin high to de-select the chip: 
  digitalWrite(slaveSelectPin,HIGH); 
  doneWriting = true; 
  Serial.print(data3,HEX); 
  Serial.print(data2,HEX); 
  Serial.print(data1,HEX); 
} 
 
byte dacOutputWrite(unsigned long value_unshifted) { 
  // take the SS pin low to select the chip: 
  digitalWrite(slaveSelectPin,LOW); 
  //send in the command via SPI: 
  byte command = B01000000; 
  unsigned long value = value_unshifted<<4ul; 
  unsigned long data3_long = 0xfful&(value>>16ul); 
  unsigned long data2_long = 0xfful&(value>>8ul); 
  unsigned long data1_long = 0xfful&(value); 
  word data3_word = (word)data3_long; 
  word data2_word = (word)data2_long; 
  word data1_word = (word)data1_long; 
  byte data3 = lowByte(data3_word); 
  byte data2 = lowByte(data2_word); 
  byte data1 = lowByte(data1_word); 
  byte test1 = SPI.transfer(command); 
  SPI.transfer(data3); 
  SPI.transfer(data2); 
  SPI.transfer(data1); 
  // take the SS pin high to de-select the chip: 
  digitalWrite(slaveSelectPin,HIGH); 
  return test1;  
} 
 
byte dacCommandWrite() { 
  // take the SS pin low to select the chip: 
  digitalWrite(slaveSelectPin,LOW); 
  delay(100); 
  // send in the command via SPI: 
  byte command = B00100100; 
  byte cmr2 = B00101000; 
  byte cmr1 = B11100000; 
  int test1 = SPI.transfer(command); 
  Serial.println(test1); 
  SPI.transfer(cmr2); 
  SPI.transfer(cmr1); 
  // take the SS pin high to de-select the chip: 
  delay(100); 
  digitalWrite(slaveSelectPin,HIGH); 
  return test1; 
} 
 
byte dacCommandWriteCal() { 
  // take the SS pin low to select the chip: 
  digitalWrite(slaveSelectPin,LOW); 
  delay(100); 
  //  send in the command via SPI: 
  byte command = B00100101; 
  byte cmr2 = B00101000; 
  byte cmr1 = B11100001; 
  byte test1 = SPI.transfer(command); 
  Serial.println(test1); 
  SPI.transfer(cmr1); 
  // take the SS pin high to de-select the chip: 
  delay(100); 
  digitalWrite(slaveSelectPin,HIGH); 
  return test1; 
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} 
 
byte dacCMR2Read() { 
  // take the SS pin low to select the chip: 
  digitalWrite(slaveSelectPin,LOW); 
  //  send in the command via SPI: 
  byte command = B10000101; 
byte test1 = SPI.transfer(command); 
  Serial.println(test1); 
delay(100); 
  digitalWrite(slaveSelectPin,HIGH); 
  return test1; 
} 



107 

Appendix F: LabView Front End 

 The image shown is the user interface for the LabView code which controls the 

CRDS system, as described in Section 6.1. 

 

Figure F-1. User interface for the LabView code which controls the CRDS system and collects the data. 
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