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Abstract

In today’s nanoscale era, scaling down to even smaller feature sizes poses a signif-

icant challenge in the device fabrication, the circuit, and the system design and

integration. On the other hand, nanoscale technology has also led to novel ma-

terials and devices with unique properties. The memristor is one such emergent

nanoscale device that exhibits non-linear current-voltage characteristics and has an

inherent memory property, i.e., its current state depends on the past. Both the non-

linear and the memory property of memristors have the potential to enable solving

spatial and temporal pattern recognition tasks in radically different ways from tra-

ditional binary transistor-based technology. The goal of this thesis is to explore the

use of memristors in a novel computing paradigm called “Reservoir Computing”

(RC). RC is a new paradigm that belongs to the class of artificial recurrent neu-

ral networks (RNN). However, it architecturally differs from the traditional RNN

techniques in that the pre-processor (i.e., the reservoir) is made up of random

recurrently connected non-linear elements. Learning is only implemented at the

readout (i.e., the output) layer, which reduces the learning complexity significantly.

To the best of our knowledge, memristors have never been used as reservoir compo-

nents. We use pattern recognition and classification tasks as benchmark problems.

Real world applications associated with these tasks include process control, speech

recognition, and signal processing. We have built a software framework, RCspice

(Reservoir Computing Simulation Program with Integrated Circuit Emphasis), for

this purpose. The framework allows to create random memristor networks, to

simulate and evaluate them in Ngspice, and to train the readout layer by means

of Genetic Algorithms (GA). We have explored reservoir-related parameters, such

as the network connectivity and the reservoir size along with the GA parameters.
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Our results show that we are able to efficiently and robustly classify time-series

patterns using memristor-based dynamical reservoirs. This presents an important

step towards computing with memristor-based nanoscale systems.
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1

Overview

1.1 Introduction and Motivation

Ongoing technology scaling not only results in increased silicon and system com-

plexity but also in nanoscale devices with interesting new properties. The current

International Technology Roadmap for Semiconductors (ITRS) [8], highlights ad-

vancements in non-silicon nanoelectronic devices, which include carbon nanotube

field-effect transistors (FETs), graphine nanoribbion FETs, nanowires and mole-

cular electronics. In the area of memory devices, the research is focused on Fer-

roelectric FET memories (capacitance based), spin torque, nanomechanical and

nanoionic, and redox reaction based memories (resistance based) [8].

The fabrication and circuit design of these nanoscale devices is a challenge as

it is increasingly difficult to control their exact orientation and assembly. De-

signing complex circuit topologies using these nanodevices or materials requires a

major shift from conventional design techniques and fabrication methods to new

techniques. The semiconductor industry is considering exploring alternative ways

of computing, for example by implementing stochastic computing techniques [8]

and using self-assembly processes instead of top-down lithography [9]. A hybrid ar-

chitecture approach that uses conventional silicon with non-conventional nanoscale

storage devices, and application-based reconfigurable nanoelectronic circuits is dis-

cussed in [10, 11]. An adaptive programming technique of randomly assembled

computer (RAC) built from diodes as a computational element is explored in [12].
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Liquid State Machines (LSMs) and Echo State Network (ESN) are biologically-

inspired computation architectures, which are explored in [13,14].

Applications for nanoscale devices range from signal processing, low power

reconfigurable logic to non-volatile logic [8]. Another application consists in im-

plementing dense circuit architectures that can mimic a certain brain functionality.

This particular application is possible due to a novel nanodevice, which is func-

tionally equivalent to a ‘synapse’ [15].

1.2 Challenges

Although complementary metal-oxide-semiconductor (CMOS) technology has well-

established design and fabrication techniques, it is also facing challenges with

device reliability, lifetime and an ongoing increase in non-recurring engineering

(NRE) fabrication cost as a result of technology scaling [8,10]. Nanoelectronic, as

an emerging technology naturally comes with a set of challenges due to the lack

of well-established design and fabrication methodologies. The challenges can be

summarized as follows:

1. At nanoscale, it is less likely that every device fabricated will have the exact

predefined tolerance and precision. Hence, one of the challenges lies in de-

veloping low-cost and tolerance-driven fabrication techniques, which can be

applied to a wide range of nanoscale devices.

2. Designing circuit topologies and architectures to tolerate high variation due

to device fabrication techniques [10].

3. Defining new computing techniques that will help to harness the novel device

characteristics.
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4. Defining accurate device characteristic models which allow multi-level simu-

lation and abstraction [8].

5. Integration complexity in nanoelectronic results due to hierarchical and hy-

brid architecture approach. Thus, defining a suitable interconnect technology

compatible across platforms is a challenge [8].

6. Keeping power consumption to a minimum and employing effective heat

dissipation techniques.
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1.3 Research Questions

Based on the challenges outlined in Section 1.2, we formulated the following re-

search questions:

1. Using self-assembly as one of the nanoscale fabrication techniques, researchers

have demonstrated the fabrication of two terminal nanodevices [10]. These

individual self-assembled devices can be assembled to form a random net-

work topology. If we are given such a random self-assembled network of two

terminal nanodevices, how can we extract meaningful computation from such

a network?

2. Which computational architecture should be implemented to explore the

computational capability of emerging nanodevices?

3. Which application areas can benefit from a random network of nanodevices?

1.4 Our Approach in a Nutshell

To design optimal circuits, well-established evolutionary computing techniques

have been used in areas ranging from analog filter circuit design [6] to evolving

memristor-based circuits [16]. In recent years, a novel computing technique called

Reservoir Computing (RC) [14] has been explored for real time computation with

dynamical systems. This approach uses randomly generated networks as the com-

pute core. The uniqueness of this approach is that the compute core, i.e., the

network, does not have to be trained for specific tasks. Rather, the network dy-

namics are interpreted by a simple output layer. This approach allows performing

computations with circuits that do not require a well-defined topology and also

enables spatial computing [13,14].
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My contributions in this thesis are as following:

1. We proposed that memristors can be used as a dynamical element in reservoir

computing (RC).

2. We experimentally showed that a memristor-based reservoir can be used to

perform non-trivial tasks, such as pattern recognition.

3. We developed RCspice, a Matlab-based framework to implement memristor

based reservoir computing (see Chapter 3 and 4 for details).

4. We use Ngspice [17] simulator to simulate memristor-based reservoirs.

5. We optimized the reservoir performance by exploring reservoir parameters

(see Chapter 7.1 for details).

6. We performed experiments to evaluate the proposed memristor-based reser-

voir with different network sizes (see Chapter 7.1 for details).

7. We performed various pattern recognition experiments with different inputs

signals, such as triangular-square, frequency modulated, and amplitude mod-

ulated signals. Our experiments showed that the memristor reservoir is able

to distinguish between signal variation in the input (see Section 7.2, 7.4

and 7.5 for details).

8. We performed an associative memory experiment that demonstrated learning

behavior related to specific input events (see Section 7.6 for details).

9. We published a paper titled “Evolving nanoscale associative memories with

memristors” at the IEEE NANO 2011 conference [16].
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1.5 Thesis Organization

In this thesis we implement RC architecture for exploring the computation abilities

of random memristor networks. The thesis organization is as follows:

We start with the introduction, Chapter 2.2 gives background information on

the reservoir computing (RC) by establishing its links to Artificial Neural Networks

(ANNs). The literature review under Section 2.3 gives a brief introduction to the

RC architecture. Section 2.4 gives an overview of our choice of a novel nanoscale

device, the memristor, and states its properties that makes it an ideal candidate

for RC.

Chapter 3 describes our Matlab-based Reservoir Computing Simulation Pro-

gram with Integrated Circuit Emphasis (RCspice) simulation framework. The

framework’s sub-modules are described in the Chapter 4. In the Chapter 5 we

describe the reservoir evaluation using Ngspice and the genetic algorithms.

Chapter 7 explains the experiments. Section 7.1 shows the parameter explo-

ration relating to the memristor reservoir and the genetic algorithms. Sections 7.2,

7.4 and 7.5 explain the experiments conducted for the pattern recognition experi-

ment. Section 7.6 and 7.7 covers the associative memory experiment and the logic

computation experiment respectively. The final Chapter 8 concludes the thesis

and discusses future work.
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2

Background

2.1 Non-classical Computing Paradigms

2.2 Artificial Neural Networks

The field of neurocomputing is inspired from the very idea of our brain’s ability

to process information. The fundamental computing units of our nervous system

are neurons and the synapses are the channels via which they communicate to

other neurons. Our brain is a dynamic computational core, i.e., it is not wired for

a specific task but in fact, reusing, rearranging and modifying the given existing

brain structure gives rise to varied computational ability [18, 19].

The area of Artificial Neural Networks (ANNs), or simply neural networks, is

inspired from our brain’s computational ability. ANNs mimic biological neural

networks that are capable of performing numerous computational tasks. There

exist various mathematical models that approximate the behavior of the basic

biological computing unit (i.e., the neuron). In ANN’s terminology, each math-

ematical modeled neuron is called a ‘unit’ [20]. One of the first artificial neuron

model proposed by McCulloch-Pitts is a simple two-state neuron model [21]. More

realistic integrate-and-fire models, also called spiking neuron models, are designed

to describe and predict biological processes (a more detailed description of these

models can be found in [18,19]).

A single ‘unit’ can transform an incoming signal into an output signal, but

solving computational tasks requires arranging the units in a particular network
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topology. Neural circuits in our brain are recurrently connected and the informa-

tion processing is typically of temporal nature (i.e., the outcome due to a particular

stimuli is its integration over a time period) [22]. Thus, in ANNs, the units are

arranged to form networks, such as the feedforward and recurrent neural networks

(RNNs). In the feedforward network, the flow of information takes place only in

one direction (i.e., connections are directed only from the input to the output). In

RNNs, the network topology forms feedback connections. An important charac-

teristic of RNNs is that due to the feedback associated with the network topology,

they develop internal temporal dynamics (i.e., memory).

ANNs can solve tasks ranging from basic logical operations, such as AND,

OR and XOR to more complex tasks, such as associative computation, pattern

recognition and content addressable memory [18,19,21].

2.3 Reservoir Computing

Recently, two new computing paradigms were introduced: Liquid State Machines

(LSMs) [23] by Wolfgang Maass and the Echo State Network (ESN) [14] by Herbert

Jaeger. Both models represent a new class of computing models inspired by RNNs.

The overarching term for these paradigms is Reservoir Computing (RC) [14,23,24].

The major difference between these two architectures is the mathematical mod-

eling of the basic computing ‘unit’ (i.e., neuron). In LSMs, the ‘unit’ is modeled as

a spiking integrate-and-fire neuron while the ESN architecture implements ‘unit’

as sigmoid (i.e., as tanh transfer function). The spiking neuron model closely

resembles the spiking nature of biological neurons and thus retains the essen-

tial neuron-behavior. Hence, LSM applications are mainly focused to provide
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a biologically-plausible architecture for generic cortical microcircuits computa-

tions [24, 25]. While tanh being a non-linear function, ESN finds applications

in a number of engineering tasks [14, 24]. Although both these architectures find

their applications in different research areas, an important attribute is that the

computation is performed on a large non-linear dynamic recurrent network. These

dynamical networks need not be strictly RNNs, but any medium which contains

dynamical properties can be used for implementing LSMs and ESNs. Section 2.3.3

gives an overview of the various dynamical mediums used as reservoirs. The fol-

lowing Sections (2.3.1 and 2.3.2) will give a brief overview of the LSM and ESN

architectures respectively.

2.3.1 Liquid State Machines

Liquid State Machines (LSMs) are a novel computational framework recently in-

troduced in [23]. The computing core is a recurrent neural network (RNN). The

computing core is referred to as the ‘liquid’; the term liquid is a symbolic repre-

sentation of the RNN’s dynamic nature. In the ‘liquid’, each computing ‘unit’ is

defined as a mathematical model of spiking integrate-and-fire neuron. These neu-

ron models closely resemble functioning of the biological neurons. Thus, the LSM

framework is capable of performing real-time computations on time-varying inputs.

Its applications are mainly focused in the area of neural microcircuits [13,23]. The

LSM’s architecture can be divided into three distinct sections namely; (i) the pre-

processor unit called as the ‘liquid’, (ii) the liquid’s state space (i.e., memory), and

(iii) the processing layer called the ‘readout layer’.

A diagrammatic representation of the LSM framework is shown in Figure 2.1.

The striking feature of the LSM’s architecture is that the ‘liquid’ itself does not
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have to be trained for particular tasks, but only the readout layer is trained to

extract the time-varying information from the liquid. Maass experimentally shows

that the readout layer can be trained to perform a temporal pattern recognition

task [23].

Figure 2.1: Architecture of a Liquid State Machine. The input u(.)(1), is a time
varying input applied to the liquid LM(2). The internal liquid states at time(t) are
represented by xM(t)(3). These states are transformed by a readout layer fM(4)
to produce output y(t)(5) [23].

2.3.2 Echo State Network

Echo State Network (ESN) is a recently introduced architecture based on recurrent

neural networks (RNN) [14]. The ESN is architecturally similar to LSM and can

similarly be divided into three distinct sections; (i) the pre-processor unit called

the ‘reservoir’, (ii) the internal state space (i.e., memory) of the reservoir and, (iii)

the output layer or the ‘readout’ layer. Each computing ‘unit’ in the ‘reservoir’

is defined as mathematical model of tanh function. Similar to LSMs, the readout

10



layer is trained for a given task. The architecture of the Echo State Network is

similar to LSM as represented in Figure 2.1.

2.3.3 Types of Reservoirs

After a brief introduction to the LSM and the ESN architectures (see Section 2.3.1

and 2.3.2 for details), two questions that remain to be answered are:

1. What makes a good dynamical reservoir?

2. What tasks can be solved by a liquid or reservoir?

This section answers the above questions by summarizing recently published

articles that use unique dynamical reservoirs or liquids (i.e., compute cores) for

implementing LSMs or ESNs. Fernando et al. in [2] literally used water as a

‘liquid’. Water as dynamical medium is a natural agent, which incorporates in-

formation over time without the use of any mathematical model required to store

information over time. Figure 2.2 shows water as a unique pre-processor. Here,

the water is placed in a glass tank, which is simulated using an electric motor.

This motor action causes ripples in the water, which are read using the optical

setup and are transformed by the output layer to solve tasks, such as XOR and

the speech recognition [2]. In contrast to water as a liquid, one of the recent publi-

cation [26] implements a hard-liquid, i.e., a general purpose mixed-mode artificial

neural network as a Application Specific Integrated Circuit (ASIC) is configured

as a liquid. In [27], Jones et al. implement a LSM using a model of the Gene

Regulation Network (GRN) of Escherichia Coli as a ‘liquid’. Photonic reservoir

computing is implemented by configuring a network of coupled Semiconductor Op-

tical Amplifiers (SOA) as a ‘reservoir’ in [28]. One recently published article [29]

implements optoelectronic reservoir computing.
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Figure 2.2: In [2], Fernando et al. used water as a pre-processor (‘liquid’) for LSM
implementation. (Source: [3])

From the recent flurry of publications in the area of reservoir computing, the

platforms that can be used as reservoir or liquid range from ANN, optoelectronic,

optics, real water to VLSI [2,14,26–30]. Reservoir computing is capable of solving

non-trivial tasks like speech recognition and robot control [30].

As seen from the above applications, reservoir computing is a powerful compu-

tational tool for performing complex real time computations on continuous input

streams. Their performance measure is based on two properties, separation and

approximation. If LSM or ESN, have different internal states for two different

input sequences then the liquid or the reservoir is said to have the separation prop-

erty. The distance between different states is generally measured using eucidian

distance [23] or using hamming distance [20]. This property determines how well

can a liquid classify between inputs with different input history. An approximation

property is the measure of the readout capability to produce a desired output from

the given liquid states [14,23].
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2.4 Memristor

This section presents a brief overview of the nanoscale memristor device, which we

use as a building block in this thesis. Memristor, short for memory resistor [31], is

a passive two-terminal circuit element which was theoretically postulated in 1971

by Professor Leon Chua. He also demonstrated memristive behavior using active

circuits in his seminal paper on memristors [31].

The theory of the electrical circuits deals with three fundamental circuit ele-

ments namely resistor (R), capacitor (C) and inductor (L) which are defined using

relationships between the four fundamental variables, namely current (i), voltage

(v), charge (q) and magnetic flux (φ). We all are familiar with the relationship

between these four variables: (i) the charge is defined by the time integral of the

current (ii) the flux is defined by the time integral of the voltage (iii) R is defined

by v/i (iv) C is defined by q/v (v) L is defined by v = L (di/dt). From the sym-

metry point of view, Chua in [31] put forward the missing relationship between

(q) and (φ) as shown in Equation 2.1. The relation between the four fundamental

variables is shown in Figure 2.3.

In 2008, the first physical device with a memristive property was realized by

HP [15]. This device is a 40nm cube of titanium dioxide (TiO2) sandwiched be-

tween platinum conducting plates. An external voltage is applied across these two

conducting plates. The device structure is composed of two layers, the upper half of

the device is a TiO2 layer, which is devoid of 0.5 percentage of its oxygen vacancies

(TiO2−x). These mobile vacancies makes the region more conductive representing

Ron and the lower half has a perfect 2:1 oxygen to titanium ratio making it a

perfect insulator representing Roff . Thus, the device varies its internal resistance

based on the doping vacancy distribution [15]. A representation of HP’s memristor
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Figure 2.3: Four fundamental variables, charge, flux, voltage and current defining
the circuit elements resistance, memristance, inductor and capacitor. The mem-
ristor is equivalent to the resistor when the rate of change of flux φ with respect
to charge q is constant. (Source: [4]).

is shown in Figure 2.4.

RON ROFF

Device Width (D)

W D-W

doped un-doped

Voltage (V)

Figure 2.4: Representation of the TiO2 memristor device. The doped region repre-
sents low resistance Ron and the un-doped region represents high resistance Roff .
(Source: redrawn from [4].)

HP’s memristor belongs to a broader class of nonlinear dynamical systems

called memristive system [32] that follows a more generalized definition where the

memristor voltage is dependent on the variation in the doped region (w) at a given

point in time(t) (see Equation 2.2), as opposed to the more specific definition

based on flux and charge relation as defined by Chua (see Equation 2.1), in which

14



memristance M is a function of q. For HP’s memristance definition, w is the

physical quantity responsible for change in the internal state of the device. The

memory property of the memristor is due to the charge that has passed through it

defined by its effective resistance M(q) [15]. Similar to resistance, memristance is

measured in ohms (Ω).

dφ = Mdq ⇔ v = M(q)i (2.1)

v(t) = R(w)i (2.2)

Strukov et al. in [4] demonstrated the current-voltage I−V hysteretic behavior.

This is shown in Figure 2.5. Sinusoidal voltage Vsin(ω0t) across the memristor

device causes nonlinear change in the current. The change in the applied voltage

across the device causes the boundary between the Ron and Roff regions to change,

which is due to the charged dopant drift [4], thus changing the device conductivity.

The memristor characteristics are frequency dependent, as shown in Figure 2.5.

As the frequency is increased from ω0 to 10ω0, the hysteresis characteristics is no

longer valid and the device operates in a linear regime.

This passive two-terminal nanoscale device with a nonlinear characteristics can

be integrated with the current CMOS technology. Thus, memristors find applica-

tions in the area of non-volatile memory [4], programmable logic arrays [32], analog

computation and specific scientific research is concentrated on using memristors to

mimic synapses for cognitive computing [15]. Pershin et al. [7] have demonstrated

associative memory behavior using a simple neural network with memristors as

synapse.
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Figure 2.5: Memristor’s hysteretic I−V characteristic. (Source: [4]). (top) Nonlin-
ear change in the current with respect to the applied voltage Vsin(ω0t). (middle)
The change in the internal state is measured as the ration of the doped width w to
total device width D. (bottom) Frequency dependent hysterysis I −V curve. The
memristor is a frequency-dependent device, it can be seen that as the frequency
changes from ω0 to 10ω0, it shows linear characteristics.

In this thesis we explore the memristor’s nonlinear characteristics for differ-

ent applications using a reservoir computing approach. For this purpose we use

memristor Simulation Program with Integrated Circuit Emphasis (SPICE) model,

which is described in Section 2.4.1.

2.4.1 Modeling Memristor using SPICE

To go beyond the theoretical concepts of the memristive systems, one requires

a simulation model that can well approximate the physical characteristics of the

memristor device. Rák et al. and Biolek et al. in [5, 33] have recently published

16



Simulation Program with Integrated Circuit Emphasis (SPICE) memristor models.

Although both authors follow the published mathematical equations from [4], the

memristor model defined in [5] takes into account the simulation stability allowing

an average SPICE engine to handle multiple sub-circuit definitions [5]. Hence, in

our thesis we use the Ngspice compatible memristor model defined by Rák and

Cserey [5].

This SPICE memristor model has memristance range from 10 Ω to 1 KΩ, with

the initial state being the conducting state, i.e., memristance of 10 Ω. To observe

the model’s current-voltage I − V characteristics, we applied an input sinusoid

of 300Hz with an amplitude of 0.5V, similar to that in [5]. Figure 2.6, shows

the obtained simulated results. The (bottom) plot shows the non-linear current

characteristics and (top) shows the change in the memristance. The device mem-

ristance increases non-linearly with the positive going input voltage and reaches

its maximum (1 KΩ), i.e., non-conducting state. To switch back to the conducting

state (minimum resistance), an input of the opposite polarity is required. During

the switching event the memristor model stays in saturation, this is due to the

effect of the high electrical fields in the thin-film of the memristor [5]. Figure 2.7

shows the hysteresis I − V characteristics.
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Figure 2.6: Simulation of the memristor SPICE model [5] with a sinusoid of 300Hz
and 0.5V amplitude. (top) Change in the memristance with respect to the applied
input. Memristance increases for a positive going input and decrease for a negative
going input. (bottom) Nonlinear change in the current with respect to the applied
sinusoid input.

Figure 2.7: Memristor’s hysteretic I−V characteristic for applied sinusoid of 300Hz
and 0.5V amplitude.
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3

Simulation Framework

To implement the memristor-based reservoir computing architecture that will be

presented in Chapter 4, we need a simulation framework that will allow us to gen-

erate memristor reservoirs and interpret their results. Since there is no commercial

or open source software available for this purpose, we have developed a Matlab-

based simulation framework called the Reservoir Computing Simulation Program

with Integrated Circuit Emphasis (RCspice) for this purpose. The framework con-

sists of 9, 000 lines of the code. Figure 3.1 shows the framework overview. The

implementation details are described in the following Section 3.1.

The framework implementation is divided into the following three parts:

1. Base Framework : The base structure of the framework is implemented in

Matlab [34].

2. Simulation Engine (SE): Ngspice [17] is used as a simulation engine for the

transient analysis of the reservoir.

3. Evolutionary Engine (EE): Genetic Algorithms (GAs) are used to train the

output layer of the reservoir. We use a Matlab-based GA toolbox [1].
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Figure 3.1: RCspice Framework overview.

3.1 Main Modules of the Framework

The core of our RCspice framework implementation is to define functions for an

input layer, memristor reservoir and a readout layer and training algorithm (see

Section 4 for details). main LSM is the RCspice framework’s main execution

script. The details are as follows:

main LSM: Responsible for setting directory and file paths, initializing the frame-

work attributes and defining the user interface. Requires the user to input

the required reservoir (network) size N .

- setup LSM : Function adds path for the working, evolutionary engine

and simulation engine directory.
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- funcInit LSM : Initializes framework attributes (see the main LSM struc-

ture definition).

- funcGenerate LSM : Creates a random network of N nodes. This func-

tion creates an adjacency matrix defining network connectivity and a

component matrix defining the components in the network.

- funcSetAttribute LSM : Set network attributes (see the main LSM struc-

ture definition).

- funcGenerateNetlist LSM : Generates a network netlist.

- funcOutputLayer LSM : Defines the interface between the simulation

and evolutionary engine.

funcGenerate LSM Generates a reservoir (network) of memristors (see Section

4.2 for implementation details).

- genIndividualGraph LSM : A high level function that initializes variables

for the functions listed below.

- funcNet LSM : Gets the pre-defined network configuration structure which

defines the network components used and the template adjacency ma-

trix size.

- templateAdj LSM : Creates an empty N×N adjacency matrix, which will

represent the network connectivity.

- cell : Cell is a Matlab construct [34]. This function takes network size

N as an input argument and creates an empty N×N cell matrix. This

matrix stores the component values for the network defined using the

adjacency matrix.
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- addEdge LSM : Adds a random edge to the empty network adjacency

matrix created using the function templateAdj LSM and assigns a com-

ponent name and a value to the edge. In our implementation, a mem-

ristor is assigned as a edge component and the value is the SPICE

subcircuit definition.

- isBiconnectGraph LSM : Checks if the network is bi-connected using

Theorem 4.1.

funcGenerateNetlist LSM: Defines subfunctions for the simulation engine (see

Section 5.1 for implementation details)

- selTaskFile: Defines an experiment to be performed. Requires a user

input to choose an experiment number from the given list of experi-

ments.

- createNGspiceFile LSM : This function takes the input arguments as

an adjacency and component matrix to creates a Ngspice compatible

network netlist.

- perl : This function is an interface to the Ngspice simulator (simulation

engine). It invokes a perl script, which performs an transient analysis

on the network netlist.

- graphviz LSM : Creates a graph representing structural network infor-

mation. This function takes the input argument as an adjacency matrix

representing network connectivity and invokes Graphviz, a graph visual-

ization software [35]. All the networks used in this thesis are presented

in Section 6.
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funcOutputLayer LSM: Defines subfunctions for the interface between the sim-

ulation and the evolutionary engine.

- load : Loads the network transient data generated by the simulation

engine (Ngspice simulator).

- interpolateData: Performs interpolation on the network transient data.

- mainGA: Evolutionary engine’s main function.

mainGA: Defines subfunctions for the evolutionary engine (see Section 5.2 for

implementation details).

- InitGA: Defines a GA structure which initializes the genetic algorithm

parameters (an example GA structure is shown in the structure list for

mainGA).

- createParameterLog : Creates a log file for the genetic algorithm param-

eters using the pre-defined GA structure.

- createChrom: Creates an initial (parent) population by using the crtbase

function defined in [1].

- decode Chrom: Decodes the initial population to real strings using the

bs2rv function defined in [1].

- objlsm1 : Calculates the actual output for a given population.

- Fitness : Evaluates the actual output against the target output for the

entire population using Equation 5.2. This measures the raw perfor-

mance (objective values) of the individuals in a population.

- ranking : Ranks individuals according to their objective values [1].
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- select : Performs selection of individuals from a population to create a

new (offspring) population [1].

- recombin: Recombination operator used to create population diversity.

- mut : This operator mutates each individual of the current population

with a given probability defined in the GA structure [1].

- reins : This operator inserts offspring into the current population, re-

placing parents with offspring and returning the resulting population [1].

We use a fitness-based reinsertion.

- createFitnessLog : Creates a log of the best, worst and the average indi-

vidual in the population for the number of generation count defined in

the GA structure.

- createPlotFile: Creates a readout output data log for the best individual

in the population for number of generation count defined in the GA

structure.

Plot: Functions are used to plot the fitness and the readout layer output.

- plotFitness : Plots the fitness data logged by the createFitnessLog func-

tion.

- plotOutput : Plots the readout output data logged by the createPlotFile

function.

Structures, variables defined for main LSM: Structures are defined for the

network and the readout layer configuration settings.

- LSM NETWORK : This structure stores network id, number of network

components and number of network nodes.
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- LSM READOUT CONFIG : This structure stores information for the

readout layer, i.e., number of readout taps, connection type and the

probability of connecting network nodes to the readout layer.

- LSM DATA: This structure stores information for the reservoirs tran-

sient analysis. This includes, readout data points, target data points,

time and length of data.

- LSM READOUT CONFIG : This structure stores information for the

various activation functions for the readout layer.

- READOUT TAP : A variable that defines number of output points in

the readout layer.
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4

Memristor-based Reservoir Computing Architecture

In our thesis we propose to implement memristor-based reservoir computing. This

novel approach to design, train and analyze dynamical networks will help us to

explore the dynamical property of the memristor. A block diagram of our approach

is shown in Figure 4.1. The three main modules are; (I) input layer, (II) memristor

reservoir and, (III) readout layer. The genetic Algorithm (GA) block represented

by module (IV) is used to train the readout layer. The following subsections

(4.1, 4.2.1, 4.3 and 4.4) describe the implementation details.

ACTUAL OUTPUT

VIN

TRAINING ALGORITHM

READOUT LAYERMEMRISTOR RESERVOIRINPUT LAYER

(I) (II) (III)

(IV)

WEIGHT TRAINING

TARGET 

GA

Network node I/O node Memristor [M] Weights [W]

Figure 4.1: Architecture overview of memristor-based reservoir computing. (I)
The input layer, (II) memristor reservoir and (III) readout layer. GAs are used for
training the weights of the readout layer.
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4.1 Input Layer

The input layer is used to distribute the inputs to the reservoir. The input defi-

nition depends on a particular task to be solved and the type of reservoir. In one

of the examples mentioned in Section 2.3.3, where the reservoir is taken to be real

water, the inputs to such a system are defined to be electrical motors that create

a wave pattern on the surface of the water. In our implementation of memristor-

based reservoirs, we define reservoir inputs as an independent voltage source which

can generate sine, pulsed, square, and piecewise linear pwl waves or a combination

thereof.

4.2 Memristor Reservoir

4.2.1 Graph Based Approach for Representing Memristor Reservoirs

In our framework, the reservoir is implemented as a network of memristors, which

we will henceforth call memristor-reservoir. Memristor being a two terminal pas-

sive element, a network of memristors represent an electrical circuit. We define a

memristor-reservoir as an undirected bi-connected multigraph [6]. Defining electri-

cal circuits as graph allows us to discover structural properties like, connectivity

and complexity of a circuit.

A graph G(V,E) is defined as a set of vertices or nodes (V ) and edges (E).

A multigraph is a graph with multiple (i.e., parallel) edges. A bi-connected graph

is sometimes referred as a 2-connected graph. A bi-connected graph is defined as a

connected graph with no articulation point, i.e., the graph will remain connected

even if a node is removed.
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An example of an undirected bi-connected multigraph representing a memristor-

reservoir is shown in Figure 4.2a. In this pictorial representation, the circle i
represents a graph node and an edge ( ) is represented by the line between two

nodes.

Figure 4.2a shows a graph representation of the corresponding memristor reser-

voir in Figure 4.2b. Here, graph nodes represent memristor terminals and edges

represent memristor elements (M). For example, n1 is an input node (Vin) and

n0 is a ground (Gnd) node. An edge between these two nodes represents a volt-

age source (Vin). Similarly, an edge between n1 and n3 represents a memristor

element.

n1 
VIN

n2

n4

n3

n0
GND

Node (N) Edge

(a) 5-node graph.

Vin
RL

n1

n2

n0

n3
n4

M

Vin

M M

M M

(b) 5-node memristor
network.

Figure 4.2: A 5-node undirected bi-connected graph and its equivalent memristor
network.

4.2.2 Adjacency Matrix Representation

A graph can be represented as a matrix. An incident or adjacency matrix is

commonly used for graph representation [18]. In our implementation, we represent

the memristor-reservoir by using an adjacency matrix.
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An adjacency matrix is a square matrix in which each row and column repre-

sents a graph node. In general, an N -node reservoir can be represented by a N×N

adjacency matrix. Here, we consider the graph example shown in Section 4.2.2.

Figure 4.3a represents a 5-node graph (i.e., N{0, 1, 2, 3 and 4}). Its equivalent

memristor network and adjacency matrix representation are shown in Figure 4.3b

and Figure 4.4 respectively. In an adjacency matrix presence of an edge between

two nodes is represented by 1. For example, in Figure 4.2a, an edge between n1

and n2 is represented by a 1 on the second row and first column (i.e., Adjrow,col

= Adj2,1 = 1). A graph with parallel edges is represented by a number greater

than one. In our representation, we do not allow self-loop, which means that the

diagonal is 0.

4.2.3 Template Structure for Memristor Reservoir

After defining the adjacency matrix, we define a fixed template structure as shown

in [6], which defines input and output reservoir nodes. Figure 4.5 represents the

template structure with an input node V in and an output node V out, terminated

with a 1KΩ load resistance RL. The equivalent adjacency matrix representing

this template circuit is shown in Figure 4.6 and its equivalent memristor-reservoir

template circuit representation is shown in Figure 4.5. This template adjacency

matrix defination is used to generate the memristor-reservoir. Further details are

described in Section 4.2.4.
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n1 
VIN

n2

n4

n3

n0
GND

Node (N) Edge

(a) 5-node graph.

Vin
RL

n1

n2

n0

n3
n4

M

Vin

M M

M M

(b) 5-node memristor
network.

Figure 4.3: A 5-node undirected bi-connected graph and its equivalent memristor
network.

Adj =


0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
1 0 2 1 0


Figure 4.4: A 5×5 adjacency matrix representation of the 5-node graph shown in
Figure 4.3a.

4.2.4 Generating a Memristor Reservoir

In this section we describe the generation of a random memristor network topol-

ogy by using the template adjacency matrix (see Section 4.2.3). The reservoir

representation has two key components as follows:

1. An adjacency matrix (Adj) representing both the memristor-reservoir con-

nectivity and size.

2. A component matrix (E) based on the adjacency matrix.

30



GENERATED
 RESERVOIR

Vin
RL

n1 nN

n0

Figure 4.5: Template circuit for generating the memristor-reservoir. (Source:
adapted from [6])

Template Adj =

 0 0 0
V in 0 0
Rl 0 0


Figure 4.6: A 3×3 template adjacency matrix representation.

For example, Figure 4.7c and Figure 4.7d represents an adjacency matrix and

its corresponding component matrix. Here, Adj32 = 1 corresponds to E32 = M .

We represent component matrix using components V in, Rl and M .

Figure 4.7 shows an example on how to generate a 5-node memristor reservoir.

The steps are as follows:

1. We use a pre-defined template adjacency matrix as shown in Figure 4.7a (see

Section 4.2.3 for details).

2. The user defines the number of nodes N (e.g., N = 2) to be inserted in the

3×3 template adjacency matrix. For N=2, an empty adjacency matrix of

size (3+N)×(3+N) i.e., 5×5 is created using the 3×3 template adjacency

matrix (see Figure 4.7a and 4.7b).

3. Using the 5×5 empty adjacency matrix, we add an edge between two ran-

domly chosen nodes. For example, if random nodes 2 and 1 are chosen, the
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skeleton adjacency matrix then becomes (Adj21 = 1).

4. After addition of an edge graph’s bi-connectivity is checked by using the-

orem 4.1 [6, 36]. Bi-connectivity theorem is applied to ensure a close loop

network formation.

5. We add random edges until the adjacency matrix represents a bi-connected

graph. Figure 4.7c shows the an adjacency matrix representation of a bi-

connected graph, which defines reservoir connectivity.

6. Circuit representation is shown in Figure 4.7f, for N = 2, the memristor

count MC is 5.

An equivalent component matrix is represented in Figure 4.7d. Figure 4.7f,

shows an equivalent memristor reservoir defined using adjacency and component

matrix. Formation of the memristor reservoir is shown in Figure 4.8. Algorithm 1

summarizes the above steps.

Algorithm 1 Generating a random memristor network

1: Generate a template adjacency matrix T
2: Define number of network nodes N to be inserted
3: Create an empty network adjacency matrix A
4: check for bi-connectivity using Theorem 4.1
5: while not bi-connected do
6: randomly addEdge to matrix A
7: end while

Theorem: bi-connected multigraph [36]

32



A degree sequence of ‘p’ nodes d1,2,..p for graph G has a bi-connected realization,

if and only if Π is graphical.

Π = (d1, d2, ...dp)with(d1 ≥ d2 ≥ ...dp)

dp ≥ 2
p∑

i=1

di ≥ 2(p− 2 + d1) (4.1)
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0         0      0

1         0      0

1         0      0

0        0     0     0       0

1        0     0     0       0

0        0       0      0    0

0        0       0      0    0

1        0       0      0    0

0         0       0       0    0

Vin      0       0       0     0

0         M      0       0     0

0         M      0       0     0

Rl        0     [M,M]  M    0

(a)

(b)

(d)

0       0       0      0       0

1       0       0      0       0

0       1       0      0       0

0       1       0      0       0

1       0       2      1       0

(c)

Vin
RL

n1

n2

n0

n3
n4

M

Vin

M M

M M

(f)(e)

Node (N)
           Edge 
(memristor element)

n1 
VIN

n2

n4

n3

n0
GND

Figure 4.7: Steps for generating a memristor reservoir by using an adjacency ma-
trix. (a) A 3×3 template adjacency matrix T . (b) The template adjacency matrix
expanded to add N user defined nodes. Here, (N = 2) creating a 5×5 adjacency
matrix. (c) Using procedure in step (3), random edges are added between the
row and columns of the adjacency matrix representing memristor element. (d) An
equivalent component matrix define components used. (e) Graph representation
of the adjacency matrix in sub-figure (e). (f) Fully connected memristor reservoir
with component values.
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Vin
RL

1 4

0

(a)

Vin
RL

n1 n4

n0

n3

n2

(b)

Vin RL

n1 n4

n0

n3

n2

M

M

M

(c) (d)

Vin
RL

n1

n2

n0

n3
n4

M

Vin

M M

M M

M

M

Figure 4.8: A diagramatic representation of 5-node memristor reservoir. (a) Tem-
plate structure with input voltage source V in and output load resistance RL.
(b) Graph representation of the template structure. Nodes nodes n3 and n2 are
inserted, N is 2. (c) Random edges are added between nodes. (d) Circuit repre-
sentation of the generated random reservoir with edges representing memristor M .
Figure 4.7c shows the adjacency matrix and Figure 4.7e shows graph representa-
tion for this example. (f) Circuit representation, for N = 2, number of memristor
count MC is 5. (Source: adapted from [6])
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4.3 Readout Layer

In Section 2.4 we have seen the non-linear and memory characteristic of the memris-

tor. This implies that the internal states are stored as a change in the memristance

value. This state change occurs with respect to the magnitude and polarity of the

applied voltage as a function of time. Due to its internal state change, the voltage

at a time t+ 1 depends on the voltage at the previous time t.

The readout layer y(t) is implemented as a simple function f that maps the

memristor reservoir states x(t) for nodes N , with weights W and bias B. Equa-

tion 4.2 defines the mathematical expression of the readout layer. Here, Wi, xi

and B represent weight, state and the bias for node i in an N -node reservoir. The

linear function of the readout layer is used because of the non-temporal nature [20],

which makes learning simple. To achieve an average state activity at a particular

point in time, an activation function f(.) is implemented. Generally, an activation

function f(.) can be tanh, sigmoid, step or sign function [20]. The final output

obtained from the readout is yresponse(t).

y(t) =
N∑
i=1

f(xi(t)×Wi +B) =
N∑
i=1

f(Vi(t)×Wi +B)

yresponse(t) = f(y(t)) (4.2)

4.4 Training Algorithm

Sections 4.1, 4.2 and, 4.3 describe the three main modules of the RCspice frame-

work, i.e., input layer, reservoir and the readout layer. As a next step, the readout

layer needs to be trained to extract meaningful computation from the reservoir.
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The core computational capability of the reservoir computing (RC) architecture

lies in its high-dimensional state space formed due to its non-linear and dynamical

elements. Hence, the readout layer maps reservoir states x(t) to ytarget(t) as a

linear combination of the reservoir states x(t) at time t as defined in Equation 4.2.

The output layer is trained for the reservoir nodes, weight and the bias values that

give optimum results. We use Genetic Algorithms (GAs) [1] for the weight, bias

and node training. Implementation details for the GA are described in Section 5.2.
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5

Evaluation Methodology

5.1 Reservoir Evaluation using Ngspice

After generating a N -node reservoir using the steps described in Section 4.2.4,

we perform transient analysis using Ngspice. Transient analysis is performed by

transforming the adjacency matrix of the reservoir into an NGspice netlist. The

netlist defines a list of components (in our case memristors, voltage source and

load resistance) and the nodes (or nets) that connect them together. Figure 5.1

shows an example on how to generate a netlist. The steps are as follows:

1. Create an adjacency matrix for the reservoir connectivity using Algorithm 1.

An example adjacency matrix is shown in Figure 5.1a. Due to symmetry

property of the adjacency matrix, the lower triangular matrix is used to

define the netlist.

2. Create a component matrix defining the reservoir components as shown in

Figure 5.1b.

3. The adjacency matrix, which describes the reservoir connectivity and the

component matrix, which describes the reservoir components is passed onto

a Matlab function in the base framework that creates a netlist compatible

with Ngspice [17]. Figure 5.1c shows an example netlist.

4. Figure 5.1d shows the memristor circuit corresponding to the extracted netlist.
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*MAIN CIRCUIT 
VIN 1 0 PULSE(1 1 2NS 2NS 50NS 100NS)
X0 1 2 memristor 
X1 1 3 memristor 
X2 2 4 memristor 
X3 2 4 memristor 
X4 4 3 memristor 
RL 4 0 1KOHM 

(b)(a)

Vin
RL

n1

n2

n0

n3
n4

M

Vin

M M

M M

(d)(c)

0    0     0      0     0
Vin 0     0      0     0
0    M    0      0     0
0    M    0      0     0
Rl   0   [M,M] M    0

0  0  0  0  0
1  0  0  0  0
0  1  0  0  0
0  1  0  0  0
1  0  2  1  0

Figure 5.1: An example of the netlist formation. (a) Adjacency matrix represent-
ing the reservoir connectivity. (b) Component matrix defining the components
used. (c) Ngspice netlist extracted from the component matrix. (d) Reservoir
representation of the extracted netlist.

After creating the netlist, the next step is to simulate it using Ngspice [17].

The netlist is passed onto the simulation engine (see Figure 3.1) for transient

analysis. Since the reservoir represents a dynamical electrical network, each node

has time-varying voltage levels V1, V2, ...VN , which are evaluated in the readout

layer. Section 5.2, describes the readout layer training using the genetic algorithm.

5.2 Readout Training using Genetic Algorithms

The time varying node voltages extracted during transient analysis (see Section 5.1),

represent memristor states as a function of network connectivity and time varying

input signal. The readout layer y(t) is implemented as a simple function that maps

these instantaneous memristor network states x(t) with corresponding weights and
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bias values using Equation 4.2. Reservoir nodes along with corresponding weights

and bias values that contribute towards the final output are determined during

training, which is done using Genetic Algorithm (GA). An example for evaluating

the input response for the maximum generational count is shown in Figure 5.2.

Algorithm 2 outlines the pseudo-code for the GA implementation. The fol-

lowing subsections provide details about the implementation of the steps outlined

in Algorithm 2.

Algorithm 2 Genetic algorithm for readout training

1: gen = 0
2: Initialize population
3: Evaluate initial population using objective function
4: while gen ≤ MAXGEN do
5: Calculate fitness values for the entire population
6: Select individuals for breeding
7: Recombine individuals (crossover)
8: Mutate individuals
9: Evaluate offspring using objective function
10: Reinsert offspring into population
11: gen++
12: end while
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5.2.1 Population Representation and Initialization

Genetic algorithms (GAs) operates on a number of potential solutions. A set

of potential solutions is termed a population and each potential solution in the

population is represented as a chromosome [1]. We represent a potential solution

(i.e., chromosome) as a set of three variables, i.e., reservoir node n represents the

node at the voltage Vn, which corresponds to the memristor state xn(t) for that

node, the corresponding weight Wn at node n and a bias B. The bias value is only

mapped for the entire reservoir and not for individual reservoir nodes.

The variables in the chromosome can be encoded solely as binary-strings or

integers or floating point numbers or in any combination thereof. In our case,

the reservoir node is encoded as an integer value while the weight and bias are

encoded as 8-bit binary strings. The number of bits used to encode determine

the precision level of the variables. For a N -node reservoir, n1, n2, ...nN represents

individual reservoir nodes and W1,W2, ...WN , are its corresponding weight. Thus,

to represents variables as binary and integer strings, createChrome function defined

in the base framework is invoked.

The mapping of an individual node and its corresponding weight onto a node-

weight chromosome NW is shown in Table 5.1. An example to encode n2 (i.e.,

node 2) from a N -node reservoir, its corresponding weight and bias value is shown

in Table 5.1.

The population is defined as a matrix of size (Nind × Lind) as shown in Fig-

ure 5.3. Here, the number of individuals Nind in the population is represented

by number of matrix rows and Lind is the length of an individual, represented by

number of matrix columns.

The node, weight and bias variables are encoded onto a chromosome as strings
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Variables Node (n) Weight (W) Bias (B)
Encoding Integer Binary Binary
Encoding length 1 8-bit 8-bit
Chromosome example 2 10101111 11101011
Total length 9 8

NW chromosome B chromosome

Table 5.1: An example of encoding node, weight and bias variables into a chromo-
some.

of 0s and 1s. These variables need to be decoded to be passed onto the readout

layer, which is described as a linear combination of these three variables (see Equa-

tion 4.2). This equation is evaluated to find the reservoir output y(t). The next

Section 5.2.2 describes decoding of these variables.

Population =


NW1,1 NW1,2 . . . NW1,N B
NW2,1 NW2,2 . . . NW2,N B
NW3,1 NW3,2 . . . NW3,N B

...
NWNind,1 NWNind,2 ... NWNind,N B


IND1,Lind

IND2,Lind

...
INDNind,Lind

Figure 5.3: Population matrix of size Nind × Lind. The number of rows corre-
sponds to the number of individuals, the number of columns from (1 to N − 1)
represents the node-weight chromosome, and the N th column is the bias chromo-
some.

5.2.2 Decoding the Chromosomes

The node, weight and bias variable are mapped onto a chromosome as strings of

0s and 1s. These variables take a random values from a predefined variable range

defined in Table 5.2. To convert binary strings to decoded values is done using

decodeChrome function defined in base framework. An example of encoded and
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decoded variables is shown in Table 5.3.

An example of the representing population encoded in strings of binary and

integer values is shown in Figure 5.4. Here, population is defined for a 5-node

reservoir and Nind is taken to be 50. The length of each individual Lind depends

on the number of reservoir nodes, length of NW and bias chromosome. The total

length of an individual Lind for a 5-node reservoir is 53 (see Equation 5.1). The

decoded population matrix representing variables as integers and real numbers is

shown in Figure 5.5.

Lind = [(reservoirsizeN × lengthofNWchromosome) + lengthofBchromosome]

(5.1)

Variables Node (n) Weight (W) Bias (B)
Type Integer Real Real
Range [1 to No. of reservoir nodes (N)] [0 to 5] [-2.5 to 2.5]

Table 5.2: Decoded chromosome range and type definition.

Variables Node (n) Weight (W) Bias (B)
Encoded chromosome 5 10100110 11010101
Decoded chromosome 5 3.843 1.0
Total length 9 8

NW chromosome B chromosome

Table 5.3: An example of decoded chromosome representing decoded values for
variables node, weight and bias.
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Population =


001111000 201100011 . . . 501001101 00101010
311111011 111001001 . . . 400010101 10101001
410101101 201010000 . . . 201100000 00111101

...
100111001 511101101 . . . 210110000 11010101


IND1,53

IND2,53

...
IND50,53

Figure 5.4: An example of an encoded population matrix for a 5-node reservoir.
First [1 to N − 1] columns represents the NW chromosome. In each 9-bit NW
chromosome, the 1st-bit is node n and bit [2 to 8] represents weight W . The N th

column represents the 8-bit bias B.

Population =


[1 1.5686] [2 1.2941] . . . [5 2.3137] [-1.500]
[3 3.3921] [1 2.7843] . . . [4 4.9019] [1.539]
[4 3.9411] [2 1.8823] . . . [2 1.2549] [-1.696]

...
[1 2.4313] [5 3.5686] . . . [2 4.3725] [1.0]


IND1

IND2

...
IND50

Figure 5.5: An example decoded population matrix for a 5-node reservoir. The
first [1 to N − 1] columns represents NW chromosome. From the 9-bit NW
chromosome, the 1st-bit decoded as an integer representing reservoir node n and
binary bits from [2 to 8] represents the node weight W , which is decoded to be a
real value. The N th column represents 8-bit bias B decoded to be a real value.

5.2.3 Fitness Function

The objective or raw fitness function is used to provide a measure of how indi-

viduals IND in a given population perform for a given problem. An individual’s

performance is measured against a given target function. This is evaluated using

the function defined in Equation 5.2, called the squared error function. Here, Ai

is the actual value of the readout layer, Ti is the required target value, and Nind

is the population size. Ai is calculated by using the decoded values of weight (W ),

bias (B) and reservoir size (N) (see Section 5.2.2) and passing it to Equation 4.2.

The error value obtained using Equation 5.2 is the raw fitness of an individual.
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The raw fitness values are calculated for the entire population and are passed

on to the ranking function [1]. It uses a non-linear ranking scheme and ranks

on the scale from 0 to 2. The fitness values are based on an individual’s raw

fitness value with respect to the the entire population. For the fitness assignment,

we implement a minimization strategy, i.e., an individual with minimum error is

assigned highest fitness (scale=2) and the one with maximum error is given the

lowest fitness (scale=0). Table 5.4 shows an example of non-linear ranking scheme.

A(i) =
N∑
i=1

f(xi(t)×Wi +B) =
N∑
i=1

f(Vi(t)×Wi +B)

Fitness (Error) =
Nind∑
j=1

(Aj − Tj)2 (5.2)

Raw fitness (Error) Rank [0 to 2]
1 (Min Error) 2.00 (Highest rank)

2 1.66
3 1.38
4 1.15

5 (Max Error) 0.95 (Lowest rank)

Table 5.4: An example of non-linear ranking scheme used for evaluating raw fitness
values.

5.2.4 Population Selection and Diversity

As a next step, after determining the fitness of each individual in the original pop-

ulation, the selection function [1] selects individuals for reproduction on the basis

of their level of fitness. The selected individuals are typically fraction of the orig-

inal population. In the GA, the basic operator for producing new individuals are
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mutation and crossover. We implement a multi-point crossover and the mutation

rate is set to 0.05.

5.2.5 Population Reinsertion and Termination

In the selection phase of the genetic algorithm, since only a fraction of the orig-

inal population is selected than the size of the original population the selected

individuals (i.e., offsprings) have to be reinserted into the old population. We im-

plement a fitness-based reinsertion scheme with a reinsertion rate of 80%. In this

scheme the least fit individuals in the original population are replaced by the frac-

tion of selected individuals. This selection and reinsertion procedure allows only

the fittest individuals to propagate through the generational loop. An example of

the reinsertion scheme is shown in Tabel 5.5 [1]. Reinsertion ensures population

diversity.

This procedure continues for every generational loop until the termination con-

dition is satisfied. In our implementation, we choose to terminate the GA when a

specified generational count MAXGEN is reached (see Algorithm 2).
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Original Fitness 1
Population

1 21
2 22
3 23
4 24
5 25
6 26
7 27
8 28

Selected Fitness 2
Population

11 31
12 32
13 33
14 34
15 35
16 36

New New
Population Fitness

1 21
2 22
3 23
15 35
14 34
13 33
12 32
11 31

Table 5.5: An example of fitness-based reinsertion scheme in which offspring replace
the least fit parents with 80% of reinsertion rate. Here, the number of individuals
for the original population is 8 and the selected population is 6. For the reinsertion
rate of 80%, a total of 5 individuals from the selected population replace the least fit
individuals in the original population. The new fitness values are copied according
to the inserted selected population [1].
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6

Memristor Reservoirs

This section presents the different memristor reservoirs used for our experiments.

Each reservoir is created using the steps described in Section 4.2. Each reservoir

can have a different Memristor Count (MC) even though the number of nodes is

defined to be N . This is because during formation of the reservoir, we define the

number of parallel edges allowed between two nodes (see Section 3.1). Table 6.1

summerizes the reservoirs used in our experiments and their associated memristor

count.

6.1 6-Node Reservoirs

1-Vin 0-Gnd
3

6

8

2 5

7

4

Figure 6.1: 6-node reservoir 1. The red node represents the input node (VIN)
and the blue node is the ground node (GND). The dotted and solid lines represent
memristors.
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Reservoir Size N Memristor Count MC Figure Reference
6 21 Fig. 6.1

19 Fig. 6.2
14 Fig. 6.3
13 Fig. 6.4
14 Fig. 6.5

10 30 Fig. 6.6
25 Fig. 6.7
40 Fig. 6.8
25 Fig. 6.9
33 Fig. 6.10

15 36 Fig. 6.11
39 Fig. 6.12
35 Fig. 6.13
35 Fig. 6.14
66 Fig. 6.15

30 76 Fig. 6.16
110 Fig. 6.17
73 Fig. 6.18
81 Fig. 6.19
101 Fig. 6.20

40 93 Fig. 6.21
143 Fig. 6.22
156 Fig. 6.23
176 Fig. 6.24
139 Fig. 6.25

Table 6.1: Reservoir size and the memristor count (MC).
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1-Vin

3

4

5

7

8

0-Gnd

2

6

Figure 6.2: 6-node reservoir 2. The red node represents the input node (VIN)
and the blue node is the ground node (GND). The dotted and solid lines represent
memristors.
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0-Gnd
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6

Figure 6.3: 6-node reservoir 3. The red node represents the input node (VIN)
and the blue node is the ground node (GND). The dotted and solid lines represent
memristors.
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1-Vin
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0-Gnd 2

5

4

3

Figure 6.4: 6-node reservoir 4. The red node represents the input node (VIN)
and the blue node is the ground node (GND). The dotted and solid lines represent
memristors.

1-Vin

7

0-Gnd

2
3

5

6

8

4

Figure 6.5: 6-node reservoir 5. The red node represents the input node (VIN)
and the blue node is the ground node (GND). The dotted and solid lines represent
memristors.
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6.2 10-Node Reservoirs

1-Vin 0-Gnd

2

3

6

7

8

11

12

5 10

4

9

Figure 6.6: 10-node reservoir 1. The red node represents the input node (VIN)
and the blue node is the ground node (GND). The dotted and solid lines represent
memristors.
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Figure 6.7: 10-node reservoir 2. The red node represents two inputs (VIN1 and
VIN2) and the blue node is the ground node (GND). The dotted and solid lines
represent memristors.
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1-Vin 2
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11
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Figure 6.8: 10-node reservoir 3. The red node represents the input node (VIN)
and the blue node is the ground node (GND). The dotted and solid lines represent
memristors.
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Figure 6.9: 10-node reservoir 4. The red node represents the input node (VIN)
and the blue node is the ground node (GND). The dotted and solid lines represent
memristors.
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Figure 6.10: 10-node reservoir 5. The red node represents the input node (VIN)
and the blue node is the ground node (GND). The dotted and solid lines represent
memristors.
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6.3 15-Node Reservoirs

1-Vin
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2

10

4
16

13

Figure 6.11: 15-node reservoir 1. The red node represents the input node (VIN)
and the blue node is the ground node (GND). The dotted and solid lines represent
memristors.
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1-Vin2
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0-Gnd
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13

2

10

Figure 6.13: 15-node reservoir 3. The red node represents two the input signals
(VIN1 and VIN2) and the blue node is the ground node (GND). The dotted and
solid lines represent memristors.
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Figure 6.14: 15-node reservoir 4. The red node represents the inputs (VIN)
and the blue node is the ground node (GND). The dotted and solid lines represent
memristors.
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Figure 6.15: 15-node reservoir 5. The red node represents the input node (VIN)
and the blue node is the ground node (GND). The dotted and solid lines represent
memristors.
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6.4 30-Node Reservoirs
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Figure 6.16: 30-node reservoir 1. The red node represents the input node (VIN)
and the blue node is the ground node (GND). The dotted and solid lines represent
memristors.
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Figure 6.17: 30-node reservoir 2. The red node represents the input node (VIN)
and the blue node is the ground node (GND). The dotted and solid lines represent
memristors.
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Figure 6.18: 30-node reservoir 3. The red node represents the input node (VIN)
and the blue node is the ground node (GND). The dotted and solid lines represent
memristors.
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Figure 6.19: 30-node reservoir 4. The red node represents the input node (VIN)
and the blue node is the ground node (GND). The dotted and solid lines represent
memristors.
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Figure 6.20: 30-node reservoir 5. The red node represents the input node (VIN)
and the blue node is the ground node (GND). The dotted and solid lines represent
memristors.
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6.5 40-Node Reservoirs
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Figure 6.21: 40-node reservoir 1. The red node represents the input node (VIN)
and the blue node is the ground node (GND). The dotted and solid lines represent
memristors.

68



1-Vin 0-Gnd

6

14

31

35

3

28

34

42

2

7

9

15

24

41

4

10

20

33

12

13

22

27

16

18

32

36

40

5

8

19

29

11

26

38

17

21

30

37

39

25

23

Figure 6.22: 40-node reservoir 2. The red node represents the input node (VIN)
and the blue node is the ground node (GND). The dotted and solid lines represent
memristors.
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Figure 6.23: 40-node reservoir 3. The red node represents the input node (VIN)
and the blue node is the ground node (GND). The dotted and solid lines represent
memristors.

70



1-Vin

0-Gnd

7

13

14

28

30

35

36

37

5

11

39

42

4

3

8

9

20

12

15

18

23

27

31

6

10

22

24

40

19

21

33

16

2

34

17

32

25

26

38

41

29

Figure 6.24: 40-node reservoir 4. The red node represents the input node (VIN)
and the blue node is the ground node (GND). The dotted and solid lines represent
memristors.

71



1-Vin 0-Gnd

5

18

28

30

33

3

13

23

42

10

11

14

2734

6

16

25

39

41

20

22

4

7

15

36

40

2

12

35

17

37

29

24

38

19

26

31

32

8

21

9

Figure 6.25: 40-node reservoir 5. The red node represents the input node (VIN)
and the blue node is the ground node (GND). The dotted and solid lines represent
memristors.
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7

Experiments and Results

This section presents an overview of the experiments performed.

In our first experimens (see Section 7.1), we focus on exploring the reservoir

size as well as the genetic algorithm parameters. Reservoir size is chosen as one

of the parameters because we would like to address the dynamic property of the

memristors for different reservoir topologies. The second set of parameters belong

to the genetic algorithm. These parameters play an important role to find the best

solution in the large search space. The aim of our first experiment in Section 7.1

is to find the combined parameter set that gives optimal results.

Our first real experiment is a pattern recognition experiment for a triangular-

square wave input pattern. Vandoorne et al. in [28] demonstrated the potential

of photonic reservoir computing using a triangular-square benchmark task. We

also performed an experiment on the variation in the input amplitude for different

reservoir sizes for this task (see Section 7.3).

To explore the memristor’s state change property (memristance), which de-

pends on the change in the input amplitude and frequency, we simulate the reser-

voirs with realistic inputs, which include, amplitude and frequency-modulated sig-

nals. A pattern recognition experiment is performed for these signals (see Sections

7.4 and 7.5)

As a next experiment, we explore the memristor’s unique memory property.

Pershin et al. [7] experimentally demonstrated an associative memory behavior.

We use the same experimental setup as a benchmark to demonstrate the associative
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memory behavior with reservoir computing (see Section 7.6).

Memristors not only find applications as a memory element, but they have also

been capable of performing logical operations [37]. We demonstrate the basic

logical operations, i.e., AND, OR and XOR (see Section 7.7).

7.1 Experiment 1: Reservoir and GA Parameter Exploration

In our first experiment, we explore parameters related to the memristor reser-

voir (i.e., reservoir size) N and the genetic algorithm (GA) (i.e., population size,

mutation rate and reinsertion rate).

Vandoorne et al. in [28] demonstrate photonic reservoir computing using the

non-trivial triangular-square signal as a pattern recognition benchmark task. We

use the same triangular-square signal as a benchmark task for this experiment. The

triangular-square pattern used in this experiment is shown in Figure 7.1 (top). The

bottom shows the expected readout response, which should converge to logic (-1)

for the triangular wave and logic (+1) for the square wave signal.

Fitness (i.e., error) value and simulation time (i.e., the number of generations

required to converge) are defined as a measure for a reservoir’s performance. We

implement fitness minimization scheme in our RCspice framework, i.e., minimum

the fitness value better the reservoir’s performance (see Section 5.2.3). The error

is calculated as the difference between the readout and the pre-defined target value

using the squared error function described in Equation (5.2). We use 6, 10, 15, 30

and 40 node reservoirs in this experiment. The reservoir figure reference is listed

in the Table 7.1.

The initial genetic algorithm setting involved the changing the reinsertion rate.

It is a scalar that defines the rate of reinsertion of offspring per subpopulation in
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the range [0, 1]. The initial reinsertion rate of 0.5 yielded in higher fitness values

compared to other values. We varied this parameter to be a 0.8, our simulation

results showed convergence towards minimum fitness. For the next parameter,

population sizes of 100 and 50. The convergence results for both the population

sizes did not vary due to the fitness evaluation using mean squared error function.

We found that number of generations required to converge for the population size

of 100 for 40-node and 30-node reservoirs was much longer due to larger search

space. We have therefore chosen a population size of 50.

Next, we change the mutation rate. Table 7.1 summarizes the fitness obtained

for different reservoir sizes. The 3D plot in Figure 7.2 shows the average fitness

evaluated over 5 simulations. Here, the x-axis shows the mutation rate, the y-

axis denotes the reservoir size N and the z-axis shows the average fitness (error).

Figure 7.3 shows the fitness averaged over 5 simulations as a function of number

of generations (i.e., simulation time) obtained for all reservoirs sizes.

Discussion: From the set of reservoirs used in this experiment, we observed that

the higher node reservoirs, i.e., 30-node and 40-node reservoirs showed the maxi-

mum average fitness values and the number of generations required for convergence

is greater than 7, 500. The smaller reservoirs i.e., 6-node, 10-node and 15-node

reservoirs converge in less than 3, 000 generations. The higher fitness values can

be attributed to the genetic algorithm search space, which is a function of reservoir

size, weight, and bias values as well as reservoir topology. For the GA parameter

set, a population size of 50 was found to be optimal, as it allowed for faster com-

putation time with respect to the fitness calculation across all reservoir sizes in

comparison with the population size of 100. Figure 7.2 shows that the mutation
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rates different from 0.05 do not result in minimum fitness values. Thus, consid-

ering the reservoir and GA parameters that contribute towards the final output,

we conclude that the reservoir sizes 6, 10 and 15 gave the optimum results, i.e.,

minimum fitness values and generational count with the GA parameter set consists

of a population size of 50, a mutation rate of 0.05, a crossover rate of 0.07 and a

reinsertion rate of 0.8.
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Figure 7.2: Fitness averaged over 5 simulations for the task shown in Figure 7.1.
The y-axis shows the reservoir size N , the x-axis shows the mutation rate, and
the z-axis shows the average fitness. Fitness plotted for population size of 50.
The minimum fitness values are observed for the mutation rate of 0.05 across all
reservoirs and the reservoirs of sizes 6, 10 and 15 showed minimum fitness.
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Figure 7.3: Best average fitness for population size 50, mutation rate 0.05 and
reinsertion rate 0.8. Small size reservoirs with 6, 10 and 15 nodes, converge at a
faster rate towards a minimum fitness value. The 30-node and 40-node reservoirs
take more generation, i.e., simulation time to converge.
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Reservoir Mutation Figure Average
Size N Rate Reference Fitness

6 0.01 808.80
0.05 Fig. 6.1 772.79
0.15 755.99
0.2 752.80

10 0.01 892.00
0.05 Fig. 6.6 847.20
0.15 776.80
0.2 752.80

15 0.01 836.80
0.05 Fig. 6.12 989.80
0.15 776.80
0.2 788.80

30 0.01 1255.40
0.05 Fig. 6.17 964.50
0.15 1078.10
0.2 1348.80

40 0.01 1575.36
0.05 Fig. 6.21 1142.08
0.15 1841.92
0.2 1448.80

Table 7.1: Reservoir fitness averaged over 5 simulations for population size 50,
reinsertion rate of 0.08.
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7.2 Experiment 2: Pattern Recognition for Triangular-Square Signal

In Section 7.1 we explored the optimum parameters for the triangular-square input

pattern [28]. Henceforth, we will use the optimal set of the genetic algorithm

parameters (i.e., crossover rate = 0.07, mutation rate = 0.05 and a population

size = 50) for all the experiments. Figure 7.1 (top) shows the input used for this

experiment, which is a triangular-square signal with a voltage swing of (±0.6V )

and (bottom) shows the required target response. The expected readout response

should converge to logic (-1) for a triangular wave and logic (+1) for a square wave.

The input signal is defined using a piecewise linear (PWL) source defined in the

Ngspice voltage source library [17].

We performed simulations using the RCspice framework with reservoir sizes of

6, 10, 15, 30 and 40. The aim of this experiment is to optimize the readout to

minimize the error between the target and the readout response. Equation 5.2 is

used to calculate the squared error (i.e., fitness). Table 7.2 lists the reservoirs used

in this experiment, their corresponding fitness and memristor count.

Triangular-Square Patten Recognition Experiment
Reservoir Memristor Reservoir Figure Output Figure Fitness

Size N Count MC Reference Reference
40 93 Fig. 6.21 Fig. 7.5 (subplot A) 868.79
30 110 Fig. 6.17 Fig. 7.5 (subplot B) 760.79
15 39 Fig. 6.12 Fig. 7.5 (subplot C) 766.79
10 30 Fig. 6.6 Fig. 7.5 (subplot D) 766.80
6 21 Fig. 6.1 Fig. 7.5 (subplot E) 766.79

Table 7.2: Simulation results obtained for the triangular-square signal with ampli-
tude of (±0.6V ).

Figure 7.5 shows the response for all the reservoirs used in this experiment.

A representation of the readout for a 15-node reservoir used in this experiment
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Figure 7.4: Fitness as a function of reservoir size. Higher node reservoirs require
more generations to converge towards minimum fitness.

is shown in Figure 7.6. Here, the readout function Out maps the reservoir states

x(t) for the nodes, with weights and bias values. The final response Y is obtained

using a sign activation function, whose response is (−1) for a negative signal and

(+1) for a positive signal.

Figure 7.4 plots the fitness as a function of the number of generations required

to converge for 6, 10, 15, 30 and 40 node reservoirs. It shows that the 40 and

30 node reservoirs requires more than 10, 001 generations to converge towards the

minimum fitness.

Discussion: As seen from Figure 7.4 as the reservoir size increases, so does the

number of generations required to converge. This is because the higher node reser-

voirs, i.e., 30-node and 40-node present a large search space for genetic algorithms

to find the optimum weights, nodes and bias combination for minimizing the fit-

ness.
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The average power consumption for a memristor-reservoir is a function of size

and therefore the number of memristors MC (i.e., cost). A memristor is a passive

device, if its memristance does not change for a time-varying input, the memris-

tor simply acts as a constant resistive element, which will consume power. The

memristor count associated with the 6-node, 10-node and 15-node reservoirs is

lower and hence, it is more likely that under varying input signals, most of the

memristors will change their internal state (memristance) and hence, the average

power consumed will be lower. A comparison of the average power consumed as

a function of the topology remain to be investigated and are beyond the scope of

this thesis.
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Figure 7.6: A representation of the readout Out, which maps the 15-node reservoir
states x(t) for nodes 1, 9, 11, 13, 16 and 15 with weights w represented for each node.
A single bias of (-2.5) is used towards the final output Y . sign activation is used
in this example. The raw readout response Out and the final readout response Y
is shown in Figure 7.7.
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7.3 Experiment 2a: Input Variation for Triangular-Square Pattern

This section describes the experimental setup and the results obtained by intro-

ducing amplitude variations for the triangular-square input pattern recognition

benchmark task described in Section 7.1. The input amplitude for the square-

triangular pattern was varied in range of 0.2V , 0.4V , 0.5V , 0.6V , 0.7V , 0.8V and

1V for the reservoirs used in Section 7.2. Table 7.3 shows the fitness comparison

for the input amplitude variation for different reservoir sizes. For this experiment

we trained the readout layer for all the reservoirs from Section 7.2 for an initial

input of ±0.6V .

Amplitude (V) Fitness for Reservoir Size N
40 30 15 10 6

0.2 1136.8 1136.8 1136.8 1136.8 1136.8
0.4 1020.8 936.8 1136.8 1136.8 1136.8
0.5 1064.8 1136.8 1136.8 1136.8 1136.8
0.6 868.79 760.79 766.79 766.80 766.79
0.7 1016.8 850.871 1028.8 1024.8 1024.8
0.8 1204.8 1212.80 1204.80 1144.8 1144.8
1 1268.8 1439.2 1419.2 1144.8 1311.2

Table 7.3: Simulation results obtained for the triangular-square input pattern as
a function of amplitude variation and reservoir sizes.

Discussion: The fitness values for the initial setting of±0.6V is observed as the dip

point in Figure 7.8. The lower signal amplitude range, i.e., 0.2V , 0.4V , and 0.5V do

not cause significant change in the memristor’s (i.e., reservoir’s) internal state due

to the memristor property (see Section 2.4.1). Hence, the readout response, which

is a function of the internal reservoir states, do not show significant variation. This

is observed across all the reservoirs. By varying the signal in a higher amplitude

range, i.e., 0.7V , 0.8V , and 1V the internal reservoir states show a higher state
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Figure 7.8: Fitness plot for triangular-square input pattern as a function of am-
plitude variation. The reservoir was trained for 0.6V amplitude.

change and hence the readout response varies significantly. This results in a fitness

variation, which is seen in Figure 7.8. We conclude that signal variation causes

changes in the reservoir states that are unique with respect to the change in the

amplitude. This amplitude variation is reflected as a change in the fitness values.
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7.4 Experiment 3: Pattern Recognition for Frequency Modulated Sig-

nal

To explore the memristor’s dynamic characteristics that are dependent on variation

in amplitude and frequency, we simulate memristor-reservoirs with more realistic

input signals that are frequency modulated. We set the input amplitude to 0.5V

with 300Hz carrier frequency, 100Hz low frequency signal with modulation index

of MI = 5 and MI = 4. Modulation index relates to the variations in the carrier

frequency. MI = 5 corresponds to the frequency variation in the input signal with

constant signal amplitude and MI = 4 corresponds to the frequency variation in

the input signal with the change in the signal amplitude. The input used is a

Single Frequency Frequency Modulated (SFFM) source from the Ngspice voltage

source library [17]. The expected readout response should converge to logic (0) for

low frequency and logic (+1) for high frequency signal.

As discussed in Section 7.2 the higher node networks have higher simulation

time and also have a higher memristor count associated with them. Hence, we

choose to perform simulations on 6, 10, 15 and 30 node reservoirs. Table 7.4

summarizes the simulation results for input signals with varying modulation index.

Figure 7.9 and Figure 7.10, shows the response for input signal with MI = 5

and MI = 4 respectively. From Figure 7.9 it is observed that for MI = 5 the

30-node reservoir does not show convergence towards the expected target response

with respect to the same node reservoir simulated for MI = 4 input.

This can be attributed to signal representation of the low frequency signal with

respect to the high frequency signal and the reservoir topology. For the input with

MI = 5, both the low and high frequency signal have the same amplitude range.

For MI = 5, the modulating signal is varied from the range of 100Hz to 500Hz.
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Frequency Modulated Input Pattern Recognition Experiment

Modulation Reservoir Memristor Reservoir Output Fitness
Index Size N Count MC Figure Figure

Reference Reference

MI = 5 30 76 Fig. 6.16 Fig. 7.9 (subplot A) 623.12
15 35 Fig. 6.13 Fig. 7.9 (subplot B) 604.94
10 40 Fig. 6.8 Fig. 7.9 (subplot C) 411.49
6 19 Fig. 6.2 Fig. 7.9 (subplot D) 411.36

MI = 4 30 76 Fig. 6.16 Fig. 7.10 (subplot A) 94.31
15 36 Fig. 6.11 Fig. 7.10 (subplot B) 94.47
10 40 Fig. 6.8 Fig. 7.10 (subplot C) 94.36
6 19 Fig. 6.2 Fig. 7.10 (subplot D) 94.26

Table 7.4: Fitness results obtained for SFFM input signal with MI = 5 and
MI = 4.

For the 500Hz signal, the characteristics are more in the linear regime [5]. Also,

as seen from the memristance property (see Section 2.4), for the high frequency

and amplitude signals, the memristor show very less variation in its internal state.

This is reflected in the signals not being distinguishable. In the case of reservoirs

with lower memristor count i.e., 6, 10 and 15 node reservoirs, the signals are

distinguished with sharp spikes for the high frequency signal and no spikes for

low frequency signal, indicating a distinction between the the two signals. This is

because the memristance effect is not completely canceled due to smaller topology

and a lower memristor count. For MI = 4, the modulating signal varies from

100Hz to 400Hz. Memristors show change in the internal state for the 400Hz

signal for the lower amplitude range. This is reflected in the converged results as

seen in Figure 7.10.

Discussion: Comparing the reservoir performance for the input with MI = 5

with MI = 4, we observe that for signals with MI = 5, all the reservoirs except

the 30-node reservoir are able to distinguish between the two signals. For the

89



MI = 4 input, all the reservoirs are able to robustly classify the two signals.

Thus, we conclude that signal variation and topology plays an important role in

differentiating the signals.
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7.5 Experiment 4: Pattern Recognition for Amplitude Modulated Sig-

nal

In one of the recent publication, Wey and Benderli [38] demonstrated amplitude

modulation circuit architecture for a titanium dioxide TiO2 memristor. Thus, we

decided to explore the variation in memristance for an amplitude modulated signal

using the reservoir computing architecture. In this experiment, the amplitude of

the input signal is set to 0.5V with 100Hz carrier signal frequency and 500Hz

modulating frequency. The target output is defined to represent logic (1) for high

amplitude and logic (0) for low amplitude signal. The input used is a Amplitude

Modulated (AM) source from the Ngspice voltage source library [17]. The expected

readout response should converge to logic (0) for low amplitude and logic (+1) for

high amplitude signal.

Reservoirs used in this experiment and their corresponding fitness values are

summarized in Table 7.5. The simulated output response for all the reservoirs is

shown in Figure 7.11.

Amplitude Modulated Pattern Recognition Experiment
Reservoir Memristor Reservoir Figure Output Figure Fitness

Size N Count MC Reference Reference
30 76 Fig. 6.16 Fig. 7.11 (subplot A) 512.58
15 36 Fig. 6.11 Fig. 7.11 (subplot B) 496.44
10 40 Fig. 6.8 Fig. 7.11 (subplot C) 496.56
6 19 Fig. 6.2 Fig. 7.11 (subplot D) 480.39

Table 7.5: Simulation results obtained for amplitude modulated signal.
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Discussion: In this experiment, the readout uses the step activation function,

which response is 0 for a negative signal and +1 for a positive signal. For exam-

ple, for the low amplitude signal, the average reservoir activity is negative giving

a zero response after the step activation as seen in Figure 7.11. It can be ob-

served that all the reservoirs are able to distinguish the high amplitude signal as

a positive spike and low signal as no spike. For amplitude modulated signals, the

memristance change is a result of the variation in the signal amplitude. We have

demonstrated that memristor-based reservoir computing can be used to distinguish

amplitude variation in a signal. This experiment shows an important application

for representing digital data (0 or 1) as variation in the signal amplitude.
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7.6 Experiment 5: Associative Memory

In this experiment we demonstrate ability of a memristor reservoir to solve the

task of associating two different input signals. An associative memory is defined

as the ability to associate different memories to specific events [7].

Pershin et al. in [7], experimentally demonstrated associative memory behavior

based on Pavlov’s famous example of associative memory behavior in dogs [39].

In this experiment Pavlov demonstrated that, the sight of food first (i.e., acting

as first input) sets salivation of the dog’s mouth. Then if, the sight of food is

accompanied with a sound (i.e., second input) over a certain period of time, the

dog learns to associate the sound with the food. Hence, when only presented

with sound alone (i.e., second input), salivation can be triggered without the sight

senses [7]. Pershin et al. [7] experimentally demonstrated this associative behavior

between two different inputs using a simple neural network as shown in Figure 7.12.

Here, N1, N2, and N3 represent neurons and S1 and S2 represents synapse. In this

experimental setup an analog to digital converter (ADC) emulates (N1, N2, and

N3) and the circuit emulating memristor property is configured as a synapse.

For this experiment, we define the inputs as VA and VB. Inputs are defined to

be PULSE signal with amplitude of +0.5V and period of 1ms. Here, VA is the

primary input and VB is the secondary input that needs to be associated with VA.

The associative behavior output transient response is divided in four-phases:

1. Phase A - Secondary Input: When only input VB is presented, output

VTARGET should not be activated.

2. Phase B - Primary Input: When only input VA is presented, output

VTARGET should be activated.
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3. Phase C - Learning Phase: When both input VA and VB are presented,

output VTARGET should be strongly activated.

4. Phase D - Response Phase: When only input VB is presented, output

VTARGET should be activated.

In this experimental setup, we choose reservoirs with 6, 10 and 15 nodes. Ta-

ble 7.6 summarizes simulated reservoir sizes and corresponding fitness values. The

output response shown in Figure 7.14 is clearly marked with four phases described

above.

Associative Memory Experiment
Reservoir Memristor Reservoir Figure Output Figure Fitness

Size N Count MC Reference Reference
15 35 Fig. 6.13 Fig. 7.14 (subplot 4) 6.060
10 25 Fig. 6.7 Fig. 7.14 (subplot 5) 9.006
6 21 Fig. 6.1 Fig. 7.14 (subplot 6) 5.701

Table 7.6: Fitness values obtained for the associative memory experiment.

For example we consider 10-node and 15-node reservoir response shown in Fig-

ure 7.14. From the ideal output response it can be observed that during phaseA

there should not be any output activation. But, we observe some activations for

both the reservoir’s readout in phaseA. In the real world noise is introduced in

the system due to device mechanics and component connectivity. Here, we define

an acceptable threshold level as 0.2V to determine the validity of the reservoir

response. Thus, we can observe that the phaseA response is valid, which is below

the set threshold level.

Discussion: Comparing the reservoir performance for the 6-node, 10-node and

15-node reservoirs, we conclude that only the 10-node and the 15-node reservoirs
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introduces noise in the phaseA output. This noise is below the pre-defined thresh-

old level and hence is acceptable. Also, no noise is introduced in the output phases

from B to D. We also observe that the output response show amplitude variation

across the phases from B to D; this is due to the non-linear memristance change,

which is reflected as the non-linear voltage change across the memristors. Thus, in

conclusion, the response obtained is because of the non-linear memristor character-

istics, which cannot be obtained given a resistor topology. Noise is introduced due

to the passive device behavior and their interconnectivity. Note that acceptable

noise levels is ultimately a design choice.
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Figure 7.12: Simple neural network. Here, N1, N2, and N3 represent neurons and
S1 and S2 represent synapse. (Source: [7]).

Figure 7.13: Output response from the electrical circuit emulating associative
memory using a neural network [7]. Input1 represents (sight of food), Input2 repre-
sents (sound) and the probing phase of the output represents salivation which indi-
cated the learning behavior when the only input present is the sound. (Source: [7]).
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7.7 Experiment 6: Logical Computation

Memristor based logic circuit have been demonstrated using a structured crossbar

architecture approach in [40]. In one of the recent publications by Daniel et al.

in [41] logical AND operation has been demonstrated using only memristors.

We conducted experiments to show basic logical computation AND, OR and

XOR using the reservoir computing approach. Table 7.7 summarizes the fitness

results and the reservoirs used in this experiment. Logic implementation using

memristors require less than four memristor count as shown by Raja et al. and

Batas et al. [40,41]. Hence, we demonstrate the logic implementation using smaller

reservoirs i.e., 6-node and 10-node reservoirs with a lower memristor count as

compared to the 15-node or 30-node reservoirs.

Figure 7.15 shows the output response for the OR gate. We can clearly observe

the internal state change for the memristor element. The output shows the voltage

level of approximately 0.4V when only one input is present representing the (1 0)

condition and when both the inputs are present, we observe the voltage changes

from 0.4V to approximately 0.6V representing the (1 1) condition. Similarly, the

response for logical AND computation is shown in Figure 7.16. Here, we observe

that the output shows a reduced voltage level of 0.4V when an 0.5V input is

presented. From Figure 7.17 representing logical XOR computation, we observe

that the responses do not show convergence towards the desired output response.

Discussion: Comparing the logical computation response for the AND and OR

and XOR operation for 6-node and 10-node reservoirs, we conclude that both the

reservoirs performed equally well for AND and OR operations, while none of the

reservoirs were able to converge towards the expected XOR response. This maybe
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Logical Computation Experiment
Logical Reservoir Memristor Reservoir Figure Output Figure Fitness

Operation Size N Count MC Reference Reference
OR 10 30 Fig. 6.6 Fig. 7.15 5.476

6 14 Fig. 6.3 Fig. 7.15 5.537
AND 10 33 Fig. 6.10 Fig. 7.16 0.00823

6 13 Fig. 6.4 Fig. 7.16 0.0104
XOR 10 33 Fig. 6.10 Fig. 7.17 17.87

6 14 Fig. 6.3 Fig. 7.17 17.714

Table 7.7: Table summarizes the simulation results obtained for logical OR oper-
ation.

because XOR is not a linearly separable function. In Figures 7.15 and 7.16, the

characteristic voltage drop seen for the logical OR and AND operation is due to the

non-linear state change of memristors and is not possible by using only resistors.

We conclude that memristor-based reservoir computing can be used to perform

simple logical operations.
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8

Conclusion and Future Work

In this thesis, we have presented a memristor-based reservoir computing architec-

ture. To the best of our knowledge, memristors have never been used as reservoir

components. Our approach to explore the inherent properties of nanoscale devices

using this novel reservoir computing architecture is an important step that pro-

vides a unique perspective on the computational power of a random dynamical

networks to perform particular tasks. Our framework can also be expanded to

explore new nanoscale devices, such as the memcapacitor and the meminductor.

For this thesis we have developed a Matlab-based framework called the Reservoir

Computing Simulation Program with Integrated Circuit Emphasis (RCspice) for

this purpose.

Using this software simulator, we demonstrated the generation of a N -node

random memristor reservoir using a graph-based approach. The performance of

the reservoir, i.e., the ability to solve a task is evaluated using a genetic algorithm.

In our first experiment, we evaluated the reservoir size and the GA parameters

for the triangular-square pattern recognition benchmark task. The reservoir size is

a measure of the memristor’s dynamic state space and the GA parameters evaluate

the quality of the solution. We chose to explore 6-node, 10-node, 15-node, 30-

node and 40-node reservoirs. The optimum GA parameter set was found to be a

mutation rate of 0.05, a population size of 50 and reinsertion rate of 0.08. Our

results showed that for the 30-node and 40-node reservoirs, the GA required more

than 7, 500 generations to reach the target solution as compared to the 6-node,
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10-node and 15-node reservoirs which required less than 3, 000 generations. This

is a because of the larger search space the GA has to explore. We conclude that the

6-node, 10-node and 15-node reservoirs showed the best performance with respect

to the final solution obtained and the computational time.

The optimum GA parameter set found in the first experiment was used for

all the subsequent experiments. Next, we demonstrated the capability of the

memristor-reservoirs for pattern recognition benchmark tasks. This included the

triangular-square, the frequency and the amplitude modulated input patterns. For

the first task, i.e., triangular-square pattern recognition was performed on differ-

ent reservoir sizes and connectivity. On an average, all the reservoirs converged

towards the required target response. But the evaluation for the 30-node and

40-node reservoirs showed higher fitness values and computation time in compar-

ison with the smaller reservoirs. To study the reservoir characteristics for signal

variation, we performed a variation experiment by sweeping the signal amplitude

from 0.2V to 1V for the triangular-square input pattern. We observed that for

amplitude variation, the internal reservoir state space is unique, which is reflected

as a change in the fitness response with respect to the applied signal variation.

Next, to study the frequency-dependent characteristics for memristors in a

network, we simulated reservoirs with frequency modulated signals with variation

in the modulation index MI, i.e., MI = 5 and MI = 4. Our results showed

that for MI = 5 signal, the 30-node reservoir did not convergence towards the

desired response and smaller size reservoirs, i.e., 6, 10 and 15 nodes showed signs of

convergence. While for MI = 4, all the reservoir sizes robustly converged towards

the desired response. Next, to study the response of variation in the amplitude,
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we applied an amplitude modulated signal. We observed that all the memristor-

reservoirs can robustly distinguish between the signals with different amplitude.

In summary, we learned that the reservoir connectivity, the size, and the type of

the applied input are key parameters.

To explore the memristor’s memory property, we performed a benchmark asso-

ciative memory experiment on 6-node, 10-node and 15-node reservoirs. Our results

show that the memristor reservoirs are able to demonstrate the associative behav-

ior properly. This experiment is an important step that demonstrated the memory

behavior using reservoir computing, which can be further expanded for more com-

plex tasks. Although memristors are been explored for different applications, the

basic logic gates are important building blocks from a circuit perspective. Hence,

we tested our memristor reservoirs for the basic logical computation i.e., OR, AND

and XOR gates. Since these tasks do not demand large number of memristors, we

performed experiments on smaller reservoirs only, i.e., 6-node and 10-node reser-

voirs. Our results show that the reservoirs were able to solve both the OR and

AND task except the XOR task.

Some of the limitations for evaluating the reservoir performance are due to

the memristor SPICE model. The model used for our framework is a reasonable

model that is based on the original TiO2 physical device. Using a more accurate

SPICE model that allows for fast simulation time and higher number of memristor

elements would help us to gain a more detail insight into the reservoir state space.

We conclude that the reservoir topology and size are important parameters

for a given task. Large reservoir topologies have an disadvantage with respect

to the average power consumed. This is because in a large reservoir, some of
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the memristor elements are non-varying and simply act as a resistor. These non-

varying elements contribute towards the static average power.

For future work, we would like to extent our framework to study structured

reservoir topologies and validate our hypothesis by implementing our approach on

a physical memristor network hardware.
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