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Abstract

Many materials such as drugs and explosives have characteristic spectral signatures in

the terahertz (THz) band. These unique signatures imply great promise for spectral

detection and classification using THz radiation. While such spectral features are

most easily observed in transmission, real-life imaging systems will need to identify

materials of interest from reflection measurements, often in non-ideal geometries.

One important, yet commonly overlooked source of signal corruption is the etalon

effect – interference phenomena caused by multiple reflections from dielectric layers

of packaging and clothing likely to be concealing materials of interest in real-life

scenarios.

This thesis focuses on the development and implementation of a model-based ma-

terial parameter estimation technique, primarily for use in reflection spectroscopy,

that takes the influence of the etalon effect into account. The technique is adapted

from techniques developed for transmission spectroscopy of thin samples and is demon-

strated using measured data taken at the Northwest Electromagnetic Research Lab-

oratory (NEAR-Lab) at Portland State University. Further tests are conducted,

demonstrating the technique’s robustness against measurement noise and common

sources of error.
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1 in terms of Sn from (4.1). 59

4.10 Lorentz model parameters for hypothetical test material with a single

resonance used in evaluation of numerical optimization techniques. . . 60

4.11 Lorentz model parameters for explosive composition 4 (C4) from Ya-

mamoto [16]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

vi



List of Figures

1.1 The “Terahertz Gap” shown within the greater electromagnetic spec-

trum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Terahertz science and engineering journal articles published by year.

Data taken from the Compendex search engine. . . . . . . . . . . . . 2

1.3 Absorption spectra of four common explosives illustrate the potential

of THz as a means of fingerprinting materials [3]. . . . . . . . . . . . 3
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Chapter 1

Introduction

The “Terahertz Gap” is a relatively unexplored band of the electromagnetic spectrum.

Shown in Figure 1.1, it is commonly defined as residing between 0.3 × 1012 and

3.0 × 1012 Hz [1]. Historically, the development of sufficiently powerful terahertz

Figure 1.1: The “Terahertz Gap” shown within the greater electromagnetic spectrum.

(THz) sources and sufficiently sensitive THz receivers has lagged behind that of the

neighboring microwave and infrared bands. This lack of instrumentation has left

the region relatively underutilized. However, recent advances in both microwave/RF

and optical technologies have began to fill in the gap, unlocking a host of new and

potentially revolutionary technologies and applications in a wide variety of scientific

and engineering disciplines.

Terahertz is a growing area of research in modern electromagnetics, as evident in

Figure 1.2, which shows the increasing number of published articles on the subject

since 1984. Part of the appeal is due to the combination of properties exhibited by

THz radiation. Like in the infrared band, many materials have unique characteristic

absorption spectra in the THz band, facilitating the spectroscopic “fingerprinting” of

1



Figure 1.2: Terahertz science and engineering journal articles published by year. Data
taken from the Compendex search engine.

compounds such as drugs and explosives [2]. Examples of such absorption features

present in military-grade explosive compounds are shown in Figure 1.3 [3]. In addi-

tion, non-polar materials such as clothing, paper, and plastic are transparent to THz,

just as they are to microwaves and millimeter waves. While many technical challenges

still remain – such as mitigating the influence of atmospheric water vapor absorption

lines on measured spectra – the aforementioned combination of properties, combined

with the fact that THz waves are non-ionizing, makes the technology well suited for

screening mail or luggage and passengers in airports.
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Figure 1.3: Absorption spectra of four common explosives illustrate the potential of
THz as a means of fingerprinting materials [3].

1.1 Terahertz Spectroscopy

THz spectral features are detectable in both transmission mode, in which THz radia-

tion propagates through a target sample, and reflection mode, in which THz radiation

is reflected off of a target. These absorption features are primarily determined us-

ing transmission measurements, usually with carefully prepared samples in controlled

laboratory settings. To date, many absorption spectra, including those shown in Fig-

ure 1.3 have been determined this way and subsequently published. However, most

3



real-world targets are opaque to THz waves, necessitating the use of reflection mea-

surements for standoff detection. Most work on identifying materials based on their

reflection spectra has been carried out using terahertz pulsed imaging (TPI) [4, 5, 6].

In TPI, a target is probed using broadband THz pulses in a configuration similar

to pulse-echo ultrasound. For a multiply-layered target with near-parallel bound-

aries, such as a drug in tablet form or an explosive concealed in the sole of a shoe

or beneath layers of clothing or packaging, reflections are caused by refractive index

discontinuities at the boundaries between materials. These reflected echo pulses are

recorded coherently in the time domain – their times of flight proportional to the

optical thicknesses of each layer of material – thereby yielding information on the 3D

structure of the target [7]. The echoes also contain spectral information, which can

be used to estimate and classify the chemical compositions of the various layers using

both spectral magnitude and phase information from the pulses [7].

To date, most of the work in material identification via reflection TPI assumes

the layers of material are optically thick enough that reflected pulses do not overlap

in time and can therefore be treated separately. If any of the layers are optically thin,

the resulting pulses may not be separable or may be so close together that narrow

time windows that limit spectral resolution are required to isolate them. When such

multiple pulses are included in a time window, interference patters in the observed

spectra result due to the Fabry-Pérot or etalon effect. In the field of THz spec-

troscopy, the etalon effect has been treated primarily in the literature on material

4



parameter estimation from transmission measurements of thin samples [8, 9, 10, 11].

In such a scenario, the thin sample itself acts as the layer; the first transmitted pulse

is followed in the time domain by multiple pulses from reflections within it. The

basic method outlined in those works involved constructing a theoretical model for

the transmission measurement that took these multiple pulses into account, and then

solving the inverse problem using a numerical algorithm to fit the measured data to

the model. This is typically done in a non-parametric fashion in which the number of

complex refractive index data points is equal to the number of measured frequency

domain data points. Problems arise using this method due to the multimodal solu-

tion space caused by ambiguity in the phase of the measured and modeled data [8].

Dorney [10] solved this problem by unwrapping the phase of both the measured and

modeled data in the estimation algorithm. Unfortunately, applying this same tech-

nique in reflection is not straightforward, as the phase of a properly-aligned reflection

measurement does not change linearly in frequency as does the phase from a trans-

mission measurement. The unwrapping step therefore has no effect on the phase of a

reflection measurement. The relationship between a reflection measurement’s magni-

tude and phase and the real and imaginary parts of the sample’s complex refractive

index is also more complicated than it is the case of a transmission measurement

[12]. Applying the numerical inversion technique used by Pupeza [11] to the case

of reflection measurements typically results in discontinuities and other non-physical

artifacts in the estimated material parameter curves due to the multimodal solution

5



space, especially when combined with noise and error in nuisance parameters such as

sample thickness [13]. These difficulties associated with non-parametric model-based

techniques suggest a parametric model-based technique which incorporates a priori

information – the assumption that the complex refractive index behaves consistently

with a dispersion model – may be preferable.

Such a parametric technique was recently developed by Ahmed [14], who param-

eterized the complex refractive index of various sample materials using a variety of

dispersion models. The sample thickness was also parameterized, allowing its efficient

estimation along with the dispersion model parameters. However, Ahmed’s formula-

tion was only for transmission mode, and as previously mentioned, reflection mode is

more of interest for standoff detection. Ahmed also only treated materials with single

resonances, not materials with several distinct resonances such as the explosives listed

in Figure 1.3.

1.2 Thesis Work

The focus of this thesis was the development of a model-based approach to material

parameter estimation from layered materials, primarily for use in reflection mode. In

this method, the complex refractive index is parameterized using the Lorentz disper-

sion model, allowing the absorption fingerprints to be described by a relatively small

number of parameters that specify the number of absorption peaks, their individual

6



strengths, spectral locations, and spectral widths. The benefits of this parameter-

ization are threefold: It simplifies the inversion process, increasing efficiency and

robustness against the influence of measurement noise; allows the simultaneous es-

timation of sample thickness and displacement error between sample and reference

mirror in reflection; and provides a concise description of a material’s absorption fea-

tures for the purpose of material classification. As reflection mode is more important

for practical applications, it is emphasized over transmission mode in this thesis.

Findings from this research were presented at The International Society for Optics

and Photonics (SPIE) Defense, Security, and Sensing conference in Orlando, FL on

April 8, 2010 and published in Proceedings of SPIE - The International Society for

Optical Engineering [13].

1.3 Contributions

∙ Developed Matlab models of THz wave interactions with stratified media and

a non-parametric material parameter estimation routine based on these models

and techniques from literature.

∙ Developed parametric material parameter inversion method based on Lorentz

dispersion model and implemented it in Matlab.

∙ Validated parametric technique in transmission mode with results of conven-

tional non-parametric technique based on method from the literature using

measured THz transmission data.

7



∙ Tested parametric technique for consistency between results attained from trans-

mission mode and reflection mode data.

∙ Quantified parametric technique’s sensitivity to initial parameter estimates,

measurement noise, and ability to estimate nuisance parameters including sam-

ple thickness and displacement error between sample and reference.
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Chapter 2

Theory

As discussed previously, materials of interest such as drugs and explosives have charac-

teristic absorption spectra in the THz band. These spectra arise from the excitation

of molecular vibrational modes. This section discusses the parameters used to de-

scribe wave interactions with dielectric materials and introduces the Lorentz model

– a classical model of the fluctuations in these parameters due to such vibrational

modes. Mathematical descriptions of wave interactions with layered materials are are

then presented.

2.1 Material Properties

Wave propagation in a source-free region is described by the homogeneous wave equa-

tion,

∇2
E − 1

v2p

∂2

∂t2
E = 0, (2.1)

where

vp =
1√
��

is the phase velocity of the wave in the medium and, following the convention of

Balanis [15], E is the time-varying electric field vector. In time harmonic form, in

which

E (x, y, z; t) = ℜ
[

E (x, y, z) ei!t
]

,
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the wave equation (2.1) simplifies to

∇2E+ k2E = 0, (2.2)

where the wavenumber

k =
!

vp
= !

√
��

encapsulates the characteristics of the medium in terms of its reaction to an oscillating

electromagnetic wave of angular frequency !. The magnetic permeability, �, is the

degree to which a material becomes magnetized in reaction to an applied magnetic

field. For most dielectric materials, the permeability is approximately equal to that

of free space, �0 = 4� × 10−7 H/m. The electric permittivity � describes a material’s

polarizability in response to an electric field. In general, the permittivity is frequency

dependent and complex,

� = �′ − i�′′,

with absorption in the material described by the imaginary part of the permittivity, �′′.

The dielectric constant or relative permittivity, �r, is defined as the permittivity of a

substance normalized by the permittivity of free space, �0 = 8.85418782×10−12 F/m,

�r =
�

�0
.
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A material’s properties can also be described in terms of the refractive index ñ which

offers a more physically intuitive description of the way a material slows and attenu-

ates a wave propagating through it. The refractive index is related to the permeability

and permittivity by

ñ =

√

�

�0

�

�0
,

which for most non-magnetic dielectrics simplifies to

ñ =
√
�r. (2.3)

The refractive index is therefore also complex and frequency dependent, and is often

expressed as

ñ = n− i�, (2.4)

where the real part of the refractive index,

n =
c

vp
, (2.5)

describes how the phase velocity vp of a wave of a given frequency is reduced relative

to the speed of light in vacuum, c. The imaginary part of the refractive index, �, is

referred to as the extinction coefficient, as it describes the degree to which a wave is

attenuated as it propagates through a medium. The absorption coefficient � is the

power absorption per unit path length at a given frequency f . It is related to the
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extinction coefficient by

� =
4�f

c
�. (2.6)

2.1.1 Classical Dispersion: The Lorentz Oscillator Model

The Lorentz oscillator model of classical dispersion theory is often used to describe

a material’s dielectric constant in the terahertz regime [16, 17, 18]. In this model, a

medium is described as being composed of atoms that act as atomic dipole (Lorentz)

oscillators. The material’s spectral absorption lines are then described as resonant

modes of these oscillators [19, 12, 15]. A derivation of the Lorentz model is given in

Appendix A. The resulting expression,

�r(!) = �∞ +
P
∑

p=1

Δ�p!
2
p

!2
p − !2 − i
p!

, (2.7)

is a description of the frequency (!) dependent dielectric constant of a material with

P molecular resonant modes in terms of 3P + 1 parameters:

∙ �∞, the dielectric constant in the high frequency limit which sets a baseline for

the real part of the dielectric constant across frequency,

∙ !p, the angular frequency of the p-th molecular resonant mode in radians per

second,

∙ Δ�p, the change in the relative permittivity due to the p-th molecular resonant

mode, equivalent to the strength of the mode, and

12



∙ 
p, the p-th damping coefficient which determines the full width at half maxi-

mum of the p-th resonant mode.

2.2 Waves in Layered Media

The basic principle of modeling the propagation of waves through layered media

involves applying appropriate boundary conditions to solutions of the electromagnetic

wave equation (2.2). A convenient solution for this analysis is that for the case of

rectangular symmetry – namely, the plane wave. The general case of such a wave E

propagating in an unbounded medium can be expressed as

E = âEe−ik̄⋅r̄, (2.8)

where â is the unit polarization vector, E is the amplitude, k̄ = kxx̂+kyŷ+kz ẑ is the

propagation vector shown in Figure 2.1, and r̄ = xx̂+ yŷ + zẑ is the position vector

in 3-dimensional space.

The specific case of a plane wave Ei with amplitude Ei propagating through a

semi-infinite half space of air with refractive index ñ0 = 1 (medium 0) before imping-

ing at normal incidence on a layer of thickness d with refractive index ñ1 (medium 1)

is depicted in Figure 2.2. Behind the layer lies a semi-infinite half space of back-

ground medium with refractive index ñ2 (medium 2). All interfaces between layers

are assumed to be planar and parallel and all media are assumed to homogeneous,

isotropic, and nonmagnetic (� = �0).
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Figure 2.1: Wave vector k̄ = kxx̂+ kyŷ + kz ẑ.

Upon encountering the boundary at normal incidence, a portion of Ei is reflected

while the remainder is transmitted. The transmitted wave then encounters the back

surface of the sample, whereupon the wave is again split into a transmitted and

reflected portion. The reflected portion from the back surface then encounters the

sample-air boundary and is again split. The resulting reflected field Er from successive

reflections can be expressed as

Er = r01Ei + t01t10r12e
−i2k1dEi + t01t10r10r

2
12e

−i4k1dEi + ⋅ ⋅ ⋅

= r01Ei + t01t10r12e
−i2k1dEi

Q
∑

q=0

(

r10r12e
−i2k1d

)q
, (2.9)

where k1 = 2�f
c
ñ1 is the wavenumber in medium 1, Q is the number of reflections,

and f and c are the frequency and speed of light in vacuum, respectively. The
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Figure 2.2: Geometry for reflection and transmission of incident plane wave with
amplitude Ei from a layer of thickness d with refractive index ñ1 against a semi-
infinite half space of background material with refractive index ñ2.

Fresnel reflection coefficient rab, where a, b = 0, 1, or 2 in this case, corresponds to

a wave reflected from medium b back into medium a while tba refers to the Fresnel

transmission coefficient of the corresponding wave transmitted from medium a into

medium b:

rab =
ñb − ña

ñb + ña

. (2.10)

tba =
2ñb

ña + ñb

. (2.11)

Similarly, the resulting transmitted field Et can be expressed as

Et = t10t21e
−ik1dEi + t10t21r10r12e

−i3k1dEi + ⋅ ⋅ ⋅

= t10t21e
−ik1dEi

Q
∑

q=0

(

r10r12e
−i2k1d

)q
. (2.12)
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Taking the limit as Q → ∞, the sums in (2.9) and (2.12) converge in a geometric

series, allowing the total reflected and transmitted fields to be expressed as

Er =
r01 + r12e

−i2k1d

1 + r01r12e−i2k1d
Ei (2.13)

and

Et =
t01t12e

−ik1d

1 + r01r12e−i2k1d
Ei, (2.14)

respectively [15, 12]. Dividing both sides of (2.13) and (2.14) by the incident field

Ei yield quantities similar to Fresnel reflection and transmission coefficients. These

quantities,

reff =
r01 + r12e

−i2k1d

1 + r01r12e−i2k1d
, (2.15)

and

teff =
t01t12e

−ik1d

1 + r01r12e−i2k1d
, (2.16)

constitute “effective” reflection and transmission coefficients, respectively, as they

encapsulate the total reflection and transmission responses of the layer structure in

Figure 2.2, including contributions from all orders of internally reflected waves in

medium 1 [15, 12].
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Chapter 3

Terahertz Time Domain Spectroscopy

In THz time domain spectroscopy (THz-TDS), broadband THz pulses are used to

estimate the complex refractive index of a sample from measurements made in either

transmission or reflection mode. TPI, mentioned previously, uses these same THz

pulses, typically in reflection mode, in a similar fashion to pulse-echo ultrasound.

In TPI, THz-TDS measurements are typically taken along a 2D grid to generate a

3D dataset of time-domain waveforms from which echo pulse time of flight yields

depth information and short-time Fourier transforms are used to acquire spectral

information [4, 5, 7].

This chapter provides a description of the Picometrix T-Ray 4000 THz-TDS sys-

tem at the Northwest Electromagnetics and Acoustics Research Lab (NEAR-Lab) at

Portland State University (PSU), which was used in all measurements in this thesis.

An overview of its principles of operation is presented as well as a comparison of three

common material parameter estimation methods using transmission THz-TDS mea-

surements. Problems associated with adapting these non-parametric transmission

mode methods for reflection mode are then discussed. Finally, a parametric method

based on theory introduced in Chapter 2 is presented as a potential solution.
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3.1 NEAR-Lab Terahertz Time Domain Spectroscopy System

Many methods exist for generating and detecting terahertz signals. One of the most

widely used techniques involves the use of ultrafast lasers in conjunction with non-

linear crystals or semiconductor antennas. The Picometrix T-Ray 4000, shown in

Figure 3.2, is an example of such a system. It operates by splitting pulses from a

mode-locked 100 femtosecond (fs) fiber laser operating at 1.064 �m wavelength into a

pump beam and a probe beam. The pump beam is used in the transmitter to excite

carriers in a photoconductive bow tie antenna held under a DC bias. The excited car-

riers create brief pulses in current across the antenna with each incident laser pulse.

These short current pulses have a rise time on the order of picoseconds, resulting in a

0.2-3 THz frequency spectrum with average power less than 10 - 500 �W. An example

of a pulse and its frequency spectrum obtained using a fast Fourier transform (FFT)

is shown in Figure 3.1. The antenna is affixed to a hyper-hemispherical silicon lens,

which directs the energy toward a polyethylene collimating or focusing lens. The

receiver consists of a similar set of lenses that focus the incoming THz pulse into an-

other photoconductive antenna. After passing through a delay line, the probe beam

excites carriers in the receiving antenna. The carriers pass through the antenna in the

presence of a THz pulse’s electric field, inducing a photocurrent proportional to the

strength of the field. Sweeping the delay of the probe beam with respect to the pump

beam allows coherent sampling the incoming THz pulse incident on the antenna. As

the electric field of the THz pulse is sampled directly in the time domain, the recorded

18



0 20 40 60 80
−0.2

−0.1

0

0.1

0.2

0.3

Time (ps)

A
m

pl
itu

de
 (

a.
u.

)

(a)

0.5 1 1.5 2 2.5 3
10

−6

10
−4

10
−2

10
0

10
2

Frequency (THz)

A
m

pl
itu

de
 (

a.
u.

)

(b)

Figure 3.1: (a) A THz Pulse measured with the Picometrix T-Ray 4000 at the NEAR-
Lab. (b) Spectrum of THz pulse in obtained via fast Fourier transform.

waveform contains both magnitude and phase information. The system records a new

waveform every 10 ms and signal-to-noise ratio (SNR) is typically improved through

coherent averaging of multiple waveforms.

The TDS system can be configured for either monostatic measurements (in which

the transmitter and receiver are collocated) or bistatic measurements (in which the

transmitter and receiver are separate). The collinear head is shown in a reflection

measurement configuration in Figure 3.2(a) along with a closeup of the sample stage

shown in Figure 3.2(b). The collinear head uses a beam splitter so that a single

polyethylene lens can be used for transmitting and receiving. As a result, SNR is

reduced by approximately 10 dB across the measurement band as compared to the

separate transmit and receive heads. This also reduces the maximum detectable

bandwidth to approximately 2 THz, depending on the number of waveforms aver-

aged. The separate transmit and receive heads are shown in Figure 3.2(c) configured
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(a)

(b) (c)

Figure 3.2: (a) T-Ray 4000 time domain spectroscopy system shown configured for
reflection measurements with collinear head. (b) Closeup of reflection sample stage.
(c) Closeup of transmit and receive heads configured for transmission measurement
in purge chamber.

for transmission mode spectroscopy. The purge chamber is filled with dry air or nitro-

gen during measurement to reduce the influence of absorption lines in the measured

spectra due to ambient water vapor in the air.
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3.2 Material Parameter Estimation: Non-Parametric Techniques

To date, the bulk of the research on material parameter estimation has been con-

ducted using non-parametric techniques in which each measured frequency domain

data point yields a corresponding complex refractive index value, making the num-

ber of parameters required to describe a material’s response to THz radiation equal

to the number of measured data points [8, 9, 10, 11, 20, 3]. This section reviews

three such commonly used non-parametric approaches for estimating material pa-

rameters in transmission spectroscopy; one which requires an optically thick sample

and uses a single transmitted pulse, and two that solve the inverse problem includ-

ing multiple pulses in the transmitted waveform. Starting with a description of the

measurement procedure common to all three, the single pulse method is presented

and its limitations are discussed. Attention then turns to the two methods of solving

the inverse problem for multiple pulses in the transmitted waveform. The associated

complications of the two methods are compared and one method is chosen for use in

subsequent transmission mode analysis. Finally, the adaptation of the two multiple-

pulse transmission mode techniques for reflection mode is discussed, starting with a

description of the reflection mode measurement procedure. Complications in both re-

flection measurement and inversion processing are then presented before introducing

a parametric technique as a potential solution.
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3.2.1 Transmission Mode

As shown in Figure 3.1(b), the measurement system has a frequency dependent in-

put spectrum. To isolate the effect of a sample material on the received frequency

spectrum of a transmission measurement, the measured spectrum from the sample

is typically normalized by the spectrum from a reference measurement – a process

often referred to as “deconvolution” [1]. The sample and reference measurements are

illustrated in Figure 3.3. In the sample measurement shown in Figure 3.3(a), the in-

cident wave Ei with spectrum shown in Figure 3.1(b) passes through the sample with

complex refractive index ñ1 and thickness d and is reflected within it as described in

Section 2.2. These multiple reflections are typically visible as multiple pulses in the

received time domain signal as shown in the transmitted waveform from a sample of

polyethylene in Figure 3.4. The wave also accumulates phase as it propagates a total

distance L through the air from the transmitter to the front surface of the sample and

from the back surface of the sample to the receiver. This phase is represented by the

complex exponential term, e−ik0L, where k0 =
2�f
c
ñ0 and ñ0

∼= 1 are the wavenumber

in and refractive index in medium 0 (which is always assumed to be free space), re-

spectively. Similarly, Figure 3.3(b) shows how Ei accumulates phase along its path L

through the air as well through a path of air of equal length to the sample thickness

d.

Once the sample and reference measurements are made, two main approaches can

be used to estimate ñ1 from the data; one method involves only the first transmitted
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(a) Sample measurement

(b) Reference measurement

Figure 3.3: Typical transmission measurement configuration: (a) Sample measure-
ment. (b) Reference measurement required for deconvolution.

pulse, the other involves additional pulses.

Material Parameter Estimation from a Single Pulse

The method employed by [20], [3], and [4] involves assuming n1 >> �1 so that ñ1

can be approximated as ñ1
∼= n1, allowing the transmission coefficients t01 and t10
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Figure 3.4: Transmission measurement of a sample of polyethylene showing multiple
pulses due to reverberation within the sample as shown in Figure 3.3 and described
in Section 2.2.

to be approximated by

t01 ∼=
2n0

n1 + n0

(3.1)

and

t10 ∼=
2n1

n0 + n1

. (3.2)

For a sample with sufficient optical thickness, the first transmitted pulse Esamp can

be isolated in the time domain. Using (3.1) and (3.2) in (2.12) for the case of Q = 0

and including the phase shift e−ik0L introduced by the wave’s propagation a distance
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L through the air, Esamp becomes

Esamp = t10t01e
−ik1de−ik0LEi

=
4n0n1

(n0 + n1)
2 e

−ik1de−ik0LEi. (3.3)

Similarly, the reference measurement Eref can be expressed as

Eref = e−ik0de−ik0LEi. (3.4)

After deconvolution with the reference measurement, the measured quantity Edec

becomes

Edec =
Esamp

Eref

=
t10t01e

−ik1de−ik0LEi

e−ik0de−ik0LEi

=
4n0n1

(n0 + n1)
2 e

−ik1deik0d

=
4n0n1

(n0 + n1)
2 e

−ik0(n1−n0)d. (3.5)

Expressing the measured data in terms of its frequency dependent phase and magni-

tude yields

Edata = mei�. (3.6)
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Rearranging (3.5), this measured magnitude m and phase � in (3.6) can then be used

to calculate the refractive index and extinction coefficient using

n1 =
�c

2�fd
+ n0 (3.7)

and

� =
c

2�fd
ln

(

4n0n1

m (n0 + n1)
2

)

. (3.8)

While this method is simple and effective, there are practical limits on the thick-

ness of samples on which it can be used [21]. Samples must be sufficiently thick

for transmitted pulses not to overlap in time yet thin enough to allow a detectable

amount of signal to pass through the sample. If the sample is too thin, a narrow

time window must be used to isolate the first transmitted pulse. This reduces the

resolution in the frequency domain, resulting in smoothing of the spectral features as

illustrated in Figure 3.5 for the case of a transmission measurement through a sample

of lactose. The portion of the measured waveform included in a short, 250 point FFT

window centered about the peak value in the THz pulse and spanning ≈ 20 ps is

shown in red in Figure 3.5(a). The corresponding FFT amplitude spectrum is shown

in red in Figure 3.5(b). The effect of lengthening the FFT window to 500 points

(‘medium’ window, spanning ≈ 39 ps) and 1000 points (‘long’ window, spanning

≈ 78 ps) are also shown in green and blue, respectively. The shorter FFT windows

shown in Figure 3.5(a) act to reduce the frequency domain resolution, smoothing the
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sharp spectral absorption features shown in Figure 3.5(b). On the other hand, if the
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Figure 3.5: (a) THz pulse transmitted through a lactose sample. Blue: 1000 point
(≈ 78 ps) ‘Long’ window, Green: 500 point (≈ 39 ps) ‘Medium’ window, Red: 250
point (≈ 20 ps) ‘Short’ window. (b) Shortening the time window reduces frequency
resolution, smoothing the spectral features in resulting FFT spectrum.

sample is too thick, the amount of attenuation may exceed the dynamic range of

the measurement system, causing the measured spectrum to reach the system’s noise

floor. As such, these tradeoffs must be considered carefully during sample preparation

[21].

Material Parameter Estimation from Multiple Pulses

Accounting for the influence of the multiple reflections in the time domain allows

a longer time domain window to be used for measuring thinner samples, tying the

lower limit of sample thickness to the measurement system’s SNR-limited bandwidth

rather than the time delay of the first echo pulse as discussed previously [22]. While

several variations of this technique have been developed [8, 9, 10, 11], most start from
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a description of the measurement much like (3.5). The influence of the etalon effect

can be accounted for using (2.16) with ñ2 = ñ0, resulting in the expression

Edec =
Esamp

Eref

=
teffe

−ik0LEi

e−ik0de−ik0LEi

= teffe
ik0d (3.9)

for the measured quantity. As (3.9) is a nonlinear function of the material’s complex

refractive index ñ1, the inverse problem cannot be solved analytically. Instead, it must

be solved numerically by minimizing the squared error norm St between the measured

data Edata and the model Edec across frequency using ñ1. Representing the finite sets

of measured frequency f , complex refractive index ñ1, model data Edec, and measured

data Edata as the discrete sets, {fj}, {ñ1,j}, {Edec,j}, and {Edata,j}, respectively, with

frequency domain index j, the squared error norm can be calculated using

St =
∑

j

tER2
j , (3.10)

where the elements of the set {tERj} are given by

tERj =
∣

∣Edata,j − Edec,j

∣

∣

=
∣

∣Edata,j − teff (fj, ñ1,j)e
ik0(fj)d

∣

∣. (3.11)
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The non-parametric nature of this method is indicated by the index j of ñ1,j in (3.11):

Each individual data point in the measured data set {Edata,j} has a corresponding

ñ1,j value.

The minimization of St can be done in a variety of ways. One approach is to

treat the frequency domain data points in {Edata,j} separately and use a numerical

algorithm at each individual frequency fj in the dataset to search the complex plane

of ñ1 values for values of the real refractive index and extinction coefficient that

minimize the corresponding tERj. This is equivalent to solving (3.10), and is similar

to the method used by Pupeza [11]. This approach will therefore be referred to

hereafter as the Pupeza method. One main disadvantage of the Pupeza method is

the multimodal solution space that results from the complex exponentials in (2.16)

and (3.9) [10, 8]. This is illustrated in the ambiguity surfaces shown in Figure 3.6,

generated by evaluating (tERj)
2 on a 2D complex plane of ñ1 values at four different

frequencies for the simulated case of a material with a constant complex refractive

index,

Edata,j = teff (fj, ñ1 = 1.5− i0.001)eik0(fj)d,

and thickness d = 3.4 mm. The blue regions in Figure 3.6 indicate minima in the

solution space with the true solution, ñ1 = 1.5 − i0.001, as labeled. As frequency

increases, the minima move through the solution space, sometimes taking nonphysical

values, with n < 1 and � < 0. The solution space also scales such that the local

minima become smaller and closer together with increasing frequency. These multiple
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(d) fj = 0.190 THz

Figure 3.6: Squared transmission mode objective function (3.11) plotted as a function
of refractive index, n1, and extinction coefficient, �1, at four frequencies. In (3.11),
Edata,j was calculated from (3.9) using d = 3.4 mm and ñ1 = 1.5 − i0.001 for all
frequencies.

solutions act to throw off the numerical solver, resulting in discontinuous jumps in

the estimated real refractive index and extinction coefficient.

This ambiguity in the solution space can be eliminated by unwrapping the phase

of the measurement data Edata and model teffe
ik0d in a consistent manner before min-

imizing St in (3.10) [10, 8]. Using the unwrapped phase is facilitated by considering
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the entire frequency series of the data and model rather than treating each frequency

bin separately. This also changes the nature of the numerical algorithm required to

perform the minimization, as will be shown.

In transmission mode, the THz pulse travels through the sample, causing the first

transmitted pulse to arrive later in time than the reference pulse, which travels the

same distance d through free space. This time delay results in a linear phase shift

in the frequency domain, the slope of which is proportional to the difference between

the optical path length through the sample and through free space,

(n1 − n0) d. (3.12)

Localized variations in the sample’s frequency dependent refractive index, n1 are

observable in localized changes in the frequency dependent slope of the unwrapped

phase, �. Similarly, localized changes in the extinction coefficient �1 result in localized

absorption observable in the magnitude, m, of the transmitted spectrum. This results

in straightforward relationships between n1 and the unwrapped phase and �1 and the

transmitted spectrum;

n1(f) ↔ �(f)

�1(f) ↔ m(f). (3.13)

Dorney [10] used a variation on the gradient descent algorithm from [23] to exploit
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this relationship. Starting with an initial guess for n1 based on the sample thickness,

time delay between the reference pulse and the first pulse transmitted through the

sample, and assuming �1 = 0, the error in magnitude and unwrapped phase between

measurement and model at frequency fj,

mERj ≡
∣

∣Edata,j

∣

∣−
∣

∣teff (fj, ñ1,j)e
ik0(fj)d

∣

∣

�ERj ≡ ∠Edata,j − ∠teff (fj, ñ1,j)e
ik0(fj)d, (3.14)

can be used in a recursive update scheme, where values of the refractive index and

extinction coefficient are updated using (3.14) according to

nnew
1,j = nold

1,j + � �ERj

�new
1,j = �old

1,j + � mERj, (3.15)

where � is the update step size. A step size of � = 0.01 gives good results [10]. This

numerical inversion method, hereafter referred to as the Dorney method, will be used

in all subsequent non-parametric material parameter estimation due to its robustness

(as compared to the method of Pupeza) against the influence of the multimodal

solution space.

Whichever numerical inversion method is chosen, a good estimate of the sample

thickness d is also required. If the incorrect thickness is used, the resulting estimated

n1 and �1 exhibit oscillatory behavior with frequency, [9, 10, 11]. This occurs because
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the period of the oscillations in the frequency spectrum is a function of the optical

path length n1d in the sample. If the optical path length differs significantly between

measurement and model, their oscillations in the frequency domain will have different

spacing. In order for the oscillations to line up, the optical path length must change,

which means either n1 or d must be modified. To deal with this, a measure of the

total variation in the estimated material parameters is used to optimize the unknown

sample thickness [10, 11]. The total variation is determined by first calculating the

set of absolute differences {Dj} between adjacent material parameter values, given

by

Dj =
∣

∣n1,j−1 − n1,j

∣

∣+
∣

∣�1,j−1 − �1,j

∣

∣. (3.16)

The total variation V is simply the sum of these differences over frequency,

V =
∑

j

Dj. (3.17)

Repeating the inversion for a range of sample thickness values and calculating V for

each yields the thickness d̂ that minimizes V , which constitutes the best estimate of

the sample thickness.

3.2.2 Reflection Mode

The measurement process in reflection mode differs from that in transmission mode

in that a conductive mirror with reflection coefficient r ∼= −1 is used as the reference

as illustrated in Figure 3.7 for the case of a monostatic measurement (in which the
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transmitter and receiver are collocated) made at normal incidence. Unlike in trans-

(a) Sample measurement

(b) Reference measurement

Figure 3.7: Ideal reflection measurement setup.

mission mode, the first received pulse has not penetrated the sample; only the trailing

pulses are influenced (attenuated and shifted in phase) by propagation through the

sample. This makes reflection mode more desirable for highly attenuating, opaque,

and/or optically dense samples.

Ideally, the front surface of the reference mirror is placed exactly where the front
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surface of the sample was during measurement as shown in Figure 3.7. If this is the

case, the expression for the deconvolved measurement becomes simply

Edec =
Esamp

Eref

=
reffe

−i2k0LEi

−e−i2k0LEi

= −reff , (3.18)

where reff is given by (2.15) and L is the distance from the transceiver to the front

surface of both the sample and the reference. Unlike in the case of transmission mode,

no time delay will occur between the reference pulse and the first reflected pulse from

the sample in such a properly aligned reflection mode measurement. If the sample

and reference are not placed the exact same distance from the transceiver, as depicted

in Figure 3.8, a linear phase shift is introduced, modifying (3.18) and resulting in

Edec =
Esamp

Eref

=
reffe

−i2k0LEi

−e−i2k0(L+ΔL)Ei

= −reffe
i2k0ΔL, (3.19)

where ΔL is the difference in position between the reference and sample shown in

Figure 3.8 [4]. Aligning reference and sample such that ΔL ∼= 0 is possible, but quite

difficult in practice. Furthermore, unlike in a transmission measurement in which

the measured phase is proportional to the optical thickness of the sample, the phase
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Figure 3.8: Positioning error ΔL between sample and reference in reflection mode
introduces linear phase shift expressed in (3.19).

shift in the reflection measurement due to the sample’s complex refractive index is

much smaller than the influence of even a small misplacement error [24]. Methods

have been developed to address this sensitivity, such as using the second derivative

of the reflected phase with no reference measurement [25] or discarding the phase

completely and using the first derivative of the reflected amplitude spectrum [6] to

recover a qualitative spectral signature. However, it is unlikely that these techniques
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will give useful results in the presence of interference phenomena from thin materials

measured in reflection.

Instead, the slope of the linear trend in the unwrapped phase introduced by align-

ment error is used to estimate ΔL. This estimated ΔL is then used in (3.19) to

apply a phase correction to the measured data [4]. The process then proceeds in a

fashion similar to that from transmission mode; starting from the description of the

measurement in (3.18) and using a numerical method to find the ñ1 that minimizes

the squared error norm Sr over frequency,

Sr =
∑

j

rER2
j , (3.20)

where

rERj =
∣

∣Edata,j − reff (fj, ñ1,j)
∣

∣. (3.21)

Just as in the case of transmission, the solution space of rERj in the complex

plane of n1 and �1 values is multimodal, as shown in Figure 3.9, which shows values of

(rERj)
2 again evaluated on a complex plane of ñ1 values at four different frequencies

for the simulated case of a material with a constant complex refractive index,

Edata,j = −reff (fj, ñ1 = 1.5− i0.001).

Unlike in transmission mode, in which a large linear phase shift is introduced by

the wave’s propagation through the sample, the main contribution to the reflection
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Figure 3.9: Squared reflection mode objective function (3.21) as a function of refrac-
tive index, n1, and extinction coefficient, �1, at four frequencies. In (3.21), Edata,j was
calculated from (3.18) using d = 3.4 mm and ñ1 = 1.5− i0.001 for all frequencies.

response does not propagate through the sample in a properly aligned reflection mea-

surement (depicted in Figure 3.7). Such a measurement will therefore have no linear

phase shift. As a result, unwrapping the phase of a reflection measurement has no ef-

fect. In addition, the relationship between n1 and �1 and the magnitude and phase of

a reflection measurement are not nearly as straightforward as those in (3.13). These

complications suggest an alternative approach – such as a parametric method – may
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be preferable.

3.3 Material Parameter Estimation: Parametric Technique

If some assumptions are made about the complex refractive index, i.e. that it can be

described by a parametric model such as the Lorentz model described in Section 2.1.1,

the problems of a multimodal solution space and a complicated relationship between

n1 and �1 measured phase and magnitude can be mitigated. This method involves

parameterizing ñ1 using (2.7) and (2.3) and calculating (3.9) or (3.18) directly from

the Lorentz parameters.

In a recent paper, Ahmed [14] introduced a similar approach. That work involved

modeling the dispersion of a variety of samples with a variety of models, including

Lorentz, Drude, Debye, and Cole-Cole. In contrast to this work, the Ahmed paper

only discussed materials with single resonant modes and only treated the case of

transmission mode measurement. It also used a slightly different objective function

for fitting the model to the measured data.

As described in Section 2.1.1, the complex refractive index ñ1 of a material with

P molecular resonant modes can be described concisely by 3P +1 Lorentz parameters

using (2.7) and (2.3). The material parameter estimation problem is then solved by

finding the vector of 3P + 1 Lorentz parameters,

� = [�∞, !1, !2, ⋅ ⋅ ⋅ , !P ,Δ�1,Δ�2, ⋅ ⋅ ⋅ ,Δ�P , 
1, 
2, ⋅ ⋅ ⋅ , 
P ] , (3.22)
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that minimize the squared error norms St and Sr in (3.10) and (3.20), respectively.

This requires slight modifications in tERj from (3.11) and rERj from (3.21), resulting

in

tERp
j =

∣

∣Edata,j − teff (fj,�)e
ik0(fj)d

∣

∣ (3.23)

for transmission mode, and

rERp
j =

∣

∣Edata,j − reff (fj,�)
∣

∣ (3.24)

for reflection mode. The superscript “p” in (3.23) and (3.24) indicates the parametric

nature of this method, wherein the complex refractive index is described completely

by the 3P +1 Lorentz parameters in � as opposed to a single complex refractive index

value for each data point as indicated by ñ1,j in (3.11) and (3.21).

Such nonlinear optimization problems can be solved using a variety of techniques.

In later sections, two such methods including the Nelder-Mead simplex described in

Appendix B will be compared in their efficiency and accuracy in minimizing Sr in

(3.20) using (3.24) for a simple test case.
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Chapter 4

Results and Discussion

In this chapter, the parametric material parameter estimation technique from Sec-

tion 3.3 applied in transmission mode is validated by comparison to the conventional,

non-parametric technique of Dorney [10] described in Section 3.2.1 using measure-

ment data collected at the NEAR-Lab. The parametric inversion technique is then

applied to reflection data from the same sample as was used in transmission, the

results of which are compared to results from transmission mode. Simulations are

then run to evaluate the performance of two different optimization algorithms, in-

cluding the Nelder-Mead method described in Appendix B, applied to the parametric

method in reflection mode. The algorithms are assessed in terms of their efficiency

and robustness against poor initial guesses. Additional simulations were then run to

quantify the parametric method’s sensitivity to differing levels of noise and its ability

to determine sample thickness and displacement error between reference and sample

in addition to the Lorentz parameters of the sample material.
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4.1 Comparison of Non-Parametric and Parametric Techniques in Trans-

mission

Transmission TDS measurements of a 13 mm diameter sample pellet of 10% (by

weight) �-lactose monohydrate in polyethylene (PE) powder prepared by JohnWilkin-

son of the Naval Surface Warfare Center, Indian Head, MD [26, 27] were carried out

at normal incidence using focusing lenses with a 3′′ focal length. Lactose was chosen

as a sample material due to its sharp spectral features at 0.527, 1.19, and 1.378 THz

[17, 18]. The measurements were taken in a dry nitrogen atmosphere to minimize the

influence of water vapor absorption lines on the measured spectra. A measurement

with the sample at the focal point was taken along with a reference measurement

without the sample as described in Section 3.2.1. While the focused beam was not

characterized completely, the focal depth was calculated to be 10.2 mm assuming

the wavefront incident on the 1.5′′ diameter 3′′ focal lens was a Gaussian beam [28]

with a frequency of 0.3 THz (corresponding to the frequency component with the

highest FFT amplitude). For simplicity, the focused THz beam incident on the sam-

ple was approximated as a plane wave in a manner consistent with the literature

[8, 9, 29, 17, 3, 27, 11]. The average of 10,000 time-domain waveforms was used

for a peak SNR of approximately 80 dB at 0.3 THz in the reference measurement.

Figure 4.1 shows the reference and sample waveforms in the time domain along with

their respective FFT amplitude spectra. In transmission mode, usable bandwidth is

set by the sample measurement, as it is usually lower in power than the reference due
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Figure 4.1: Lactose transmission data (a) in the time domain and (b) after FFT.
Second reflected pulse visible at ≈ 132 ps in the time domain.

to reflection loss and sample attenuation. The upper limit of usable bandwidth was

approximately 2 THz in this dataset. While frequency domain data below around

0.2 THz is typically unreliable, it is necessary to include in order to ensure the phase

of both the model and measured data are unwrapped consistently to 0 at DC. De-

convolution in the frequency domain results in the transmissivity and phase shown in

Figure 4.2. Frequency domain oscillations due to the etalon effect are clearly visible

in the deconvolved transmittance spectrum in Figure 4.2(a). A corresponding second

pulse is visible in the sample waveform at ≈ 132 ps in Figure 4.1(a).

As discussed in Section 3.2.1, an accurate sample thickness is required for non-

parametric inversion. The sample was therefore measured with a micrometer with a

tolerance of ±1 �m at three points along the outside edge and one point in the center.

These thickness values were found to be d = 1.417 mm, 1.450 mm, 1.426 mm, and
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Figure 4.2: Deconvolved lactose (a) transmission spectrum and (b) phase.

1.418 mm, respectively, for a mean thickness �d = 1.428 mm and standard deviation of

�d = 0.015 mm. Using the non-parametric material parameter estimation technique

of Dorney [10] described in Section 3.2.1, (3.14), and (3.15), were used to estimate

ñ1 for 101 values of thickness d in the range �d − 2�d ≤ d ≤ �d + 2�d. The

total variation V was calculated for each assumed thickness using (3.17). Results

of these calculations are shown in Figure 4.3, indicating a minimum corresponding

to d̂ ∼= 1.420 mm. This thickness was assumed in all subsequent analysis. The

estimated real and imaginary parts of the complex refractive index, ñnp
1 = nnp

1 − i�np
1 ,

corresponding to this assumed thickness are shown in Figure 4.4. The superscript

“np” indicates these material parameter curves are the result of the conventional,

non-parametric method. While a small amount of oscillation is still present in the

estimated nnp
1 and �np

1 curves in Figure 4.4, it is consistent with the results in the

literature [18, 9] and probably arises from the slight suppression of the reflected
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Figure 4.4: Estimated (a) refractive index nnp
1 and (b) extinction coefficient �np

1 using
non-parametric methods described in Section 3.2.1 and [10].

pulses by the Hamming window applied to the time domain data prior to the Fourier

transform.

To better compare the performance of the parametric inversion method to the

conventional, non-parametric method in terms of Lorentz parameters, the complex
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refractive index ñnp
1 resulting from the non-parametric method (shown in Figure 4.4)

was fit with the Lorentz model (2.7). This process is illustrated in the flowchart in

Figure 4.5, which shows the aforementioned estimation of ñnp
1 using the conventional

non-parametric method of Dorney as Step 1. The Lorentz fitting shown in Step 2

Figure 4.5: Flowchart showing the estimation of the complex refractive index ñnp
1 from

deconvolved data Edata using the conventional non-parametric method of Dorney as
Step 1. Step 2 consists of fitting of the Lorentz model (2.7) to ñnp

1 , which yields the
vector �fit of Lorentz parameters. Using �

fit in the Lorentz model yields ñfit
1 .

was carried out using the Nelder-Mead algorithm described in Appendix B to find

the Lorentz parameter vector �fit that minimizes the squared error norm Sn between

ñnp
1 and the output of the Lorentz model, ñLorentz

1 , across frequency;

Sn =
∑

j

nER2
j , (4.1)

where

nERj =
∣

∣ñnp
1,j − ñLorentz

1 (fj,�)
∣

∣

2
. (4.2)

As indicated in Figure 4.5, ñfit
1 is the output of the Lorentz model that results from

using the parameters in �
fit as inputs. Later sections will illustrate why the Nelder-

Mead method was the algorithm of choice for this type of minimization problem,
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including the parametric method described in Section 3.3. The initial guesses for

the Lorentz parameters required to initialize the Nelder-Mead algorithm are shown

in Table 4.1. It should be noted that while these initial guess values were chosen by

Mode �∞ !p/2� (THz) Δ�p × 103 
p/2� (GHz)

- 2.15 - - -
1 - 0.5300 8.00 30.0
2 - 1.194 0.900 40.0
3 - 1.370 3.10 48.0
4 - 1.800 0.900 200
5 - 3.680 87.0 1800

Table 4.1: Initial Guess for Lorentz model parameters used in initializing the Nelder-
Mead algorithm to solve (4.1).

trial and error in this analysis, a practical system will likely have initial guess values

stored in a database of parameters for known materials of interest. The corresponding

Mode �∞ !p/2� (THz) Δ�p × 103 
p/2� (GHz)

- 2.08 - - -
1 - 0.5292 6.54 25.2
2 - 1.187 1.24 92.9
3 - 1.370 3.06 55.1
4 - 1.791 0.808 135
5 - 4.570 161 2310

Table 4.2: Lorentz model parameters in �
fit resulting from solving (4.1) to fit ñnp

1 to
the Lorentz model as shown in Step 2 of Figure 4.5.

refractive index ñfit
1 is compared to ñnp

1 in Figure 4.6. The results of this fitting will

be treated as a best-case scenario – the closest the Lorentz model can get to ñnp
1

– and will constitute the standard to which results of the parametric method for

transmission will be compared.

The parametric method for transmission mode is shown in Step 3 of the flowchart
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Figure 4.6: (a) Refractive index nnp
1 estimated using non-parametric method of Dor-

ney [10], and refractive index nfit
1 calculated using Lorentz parameters in �

fit (shown
in Table 4.2) in the Lorentz model (2.7), and (b) corresponding extinction coefficients,
�np
1 and �fit

1 .

in Figure 4.7. The resulting vector of Lorentz parameters �
p and corresponding

Figure 4.7: Flowchart showing the parametric method of Section 3.3 in Step 3. Fitting
the measured data Edata by minimizing St in (3.10) using tERp

j from (3.23) yields the
Lorentz parameter vector �p. Using �

p as the input to the Lorentz model yields ñp
1.

complex refractive index ñp
1 are given the superscript “p” to signify the results of the

parametric method, which in this case consisted of fitting the transmitted data shown
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in Figure 4.2 by minimizing St in (3.10) using Lorentz model parameters as described

in Section 3.3. The Nelder-Mead algorithm was initialized using the same initial guess

parameters (given in Table 4.1) as were used in minimizing (4.1) to fit ñnp
1 to ñfit

1 .

Results of the fitting are shown in Figure 4.8 and corresponding Lorentz parameters

in �
p are given in Table 4.3. The resulting refractive index ñp

1 is compared to ñnp
1
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Figure 4.8: Results of parametric fitting of transmission data by minimizing the
squared error norm St as described in Section 3.3: (a) transmittance spectrum and
(b) phase.

Mode �∞ !p/2� (THz) Δ�p × 103 
p/2� (GHz)

- 2.06 - - -
1 - 0.5290 6.40 24.2
2 - 1.188 1.09 81.1
3 - 1.370 3.05 54.7
4 - 1.787 0.867 150
5 - 4.831 179 2380

Table 4.3: Lorentz model parameters in �
p resulting from minimizing St using the

parametric method as shown in Step 3 of Figure 4.7.

and ñfit
1 in Figure 4.9.
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Figure 4.9: (a) Refractive index and (b) extinction coefficient estimated using para-
metric method described in Section 3.3 applied in transmission mode (ñp

1) compared
to results of non-parametric method of Dorney [10] (ñnp

1 ) and fitting of non-parametric
result with Lorentz model (ñfit

1 ).

Figure 4.9 shows close qualitative agreement between ñfit
1 and the results of the

parametric method, ñp
1. The agreement is close enough that the curve of ñfit

1 is almost

indistinguishable from that of ñp
1. Both of these curves are also in agreement with the

results of the conventional method, ñnp
1 . The degree of this agreement was quantified

by comparing Sn from (4.1) to the same calculation with ñp
1 substituted for ñLorentz

1

in (4.2). The comparison is shown in Table 4.4. The close values of Sn show that

Sn

ñfit
1 0.00111
ñp
1 0.00117

Table 4.4: Quantitative comparison of ñfit
1 and ñp

1 to ñnp
1 in terms of squared error

norm Sn from (4.1).

fitting the Lorentz model to the conventional non-parametric estimate of the complex

refractive index and using the parametric method in transmission yield comparable
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results.

Table 4.5 shows the difference between the Lorentz parameters in �
fit and those

in �
p. Absolute differences in GHz are given for spectral locations !p and widths 


while percentage differences are given for the unitless quantities �∞ and Δ�p. The most

Mode % Difference in Difference in % Difference in Difference in
�∞ !p/2� (GHz) Δ�p 
p/2� (GHz)

- 0.903 - - -
1 - 0.2330 2.23 0.965
2 - 0.2760 12.0 11.8
3 - 0.1710 0.390 0.341
4 - 4.745 7.30 15.1
5 - 260.4 11.4 73.6

Table 4.5: Difference in Lorentz parameters between those in �
fit and those in �

p.
Absolute differences are given for !p/2� and 
p/2� while percent differences are given
for �∞ and Δ�p.

relevant information for the purpose of material identification or characterization of

lactose are the Lorentz parameters of the lowest three resonant modes. As Table 4.5

shows, the difference in spectral location between the lowest three modes of ñfit
1 and

ñp
1 are all within 0.3 GHz. In terms of the spectral width, modes 1 and 3 (the two most

prominent modes) are within 1 GHz of each other. The relative resonant strengths

of the two most prominent modes are also in agreement, differing by less than 3%.

This suggests that the accuracy in estimating spectral width and resonant strength

increases with the prominence of the mode. In contrast, the spectral locations seem

to be less dependent on mode prominence. The higher frequency modes are less

consistent due to their lack of prominence as well as the reduced SNR and higher

frequencies. The consistency in the estimates of the highest mode is further reduced
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due to the fact that it resides outside of the system’s measurement bandwidth.

Having established that the parametric method yields results consistent with the

conventional non-parametric method in transmission mode, the parametric method

used in the more practical case of reflection mode is now treated.

4.2 Comparison of Parametric Technique in Transmission and Reflection

Reflection measurements were conducted on the same lactose sample as was used in

Section 4.1 at normal incidence with the 3′′ focal length lens in the collinear head

in a dry air environment to reduce the effects of water vapor absorption lines on the

measured reflection spectra. A measurement was also taken of a flat, polished metal

reference mirror. As with the transmission mode measurements, the focused THz

beam was approximated as a plane wave in a manner consistent with the literature

[8, 9, 29, 17, 3, 27, 11]. The sample and reference mirror were mounted using a

Newport Opti-Claw mount attached to a 3-axis translation stage during measurement,

allowing precise adjustment of tip, tilt, and 3D translation. The first reflected pulse

arrivals in the time domain waveforms of both reference and sample were aligned

using the translation stage to reduce positioning error ΔL between the reference

and sample. The average of 10,000 time-domain waveforms was used for a peak

SNR of approximately 70 dB at 0.3 THz, allowing an upper limit of 2 THz on the

usable bandwidth, consistent with transmission measurements. Figure 4.10 shows the

reference and sample waveforms in the time domain along with their respective FFT
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amplitude spectra. The deconvolved reflectance spectrum and unwrapped phase in
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Figure 4.10: Measured lactose reflection data (a) in the time domain and (b) after
FFT.

the frequency domain are shown in Figure 4.11. The aforementioned unreliability of
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Figure 4.11: Deconvolved lactose (a) reflection spectrum and (b) phase.

the frequency domain data below around 0.1 THz is evident in Figure 4.11, but is

again necessary to include when unwrapping the phase to ensure the phase of both the
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model and measured data are unwrapped consistently to 0 at DC. In contrast to the

second transmitted pulse in Figure 4.1(a), the second reflected pulse in Figure 4.10(a)

is comparable in amplitude to the first reflected pulse. This results in the greater

amplitude of frequency domain oscillations due to the etalon effect in reflection mode,

as shown in Figure 4.11(a), as compared to transmission mode, shown in Figure 4.2(a).

Also notable is the influence of the spectral features on the etalon interference

pattern shown in Figure 4.11(a) in the regions around 0.53 and 1.4 THz. The nar-

rowband attenuation in those regions and increasing, wider band attenuation in the

higher frequencies (shown in Figure 4.9(b)) result in selective attenuation of those fre-

quency components as they pass through the sample. These frequency components

then contribute less to the interference pattern, resulting in localized damping of the

interference structure and causing the reflection from the front surface to dominate

the total reflection response. In addition, the associated dispersion in these regions

(shown in Figure 4.9(a)) result in slight dilations in the frequency spacing of the

interference pattern due to the local increase in n1 slightly below the resonant fre-

quency and subsequent contractions due to the local decrease in n1 slightly above the

resonant frequency. This can be explained by referring to the complex exponential

terms in the numerator and denominator of the expression (2.15) for reff , which give

rise to its periodic behavior. The complex exponentials go through a complete cycle

when the real parts of their arguments,

ℜ{2k1d} =
4�fn1

c
d,
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change from 0 to 2�. These real parts change linearly with frequency according to

∂

∂f

4�fn1

c
d =

4�n1

c
d.

The change in the cycling rate of the complex exponentials in (2.15) with respect

to frequency is therefore proportional to the real refractive index n1. Increases or

decreases in n1 act to increase or decrease the cycling rate, respectively, which changes

the frequency spacing of the oscillations for frequencies close to a vibrational mode.

While alignment of the reference and first reflected sample pulse in Figure 4.10(a)

suggests the sample and reference mirror were placed with very little displacement ΔL

between them, the phase in Figure 4.11(b) shows a slight linear trend with negative

slope in frequency, suggesting a small amount of positioning error in the data. This

small displacement ΔL was estimated using a linear fit of the unwrapped phase as

described in Section 3.2.2 and shown in Figure 4.12(a). In this case, the corresponding

ΔL = − 4.829 �m, and the resulting corrected phase is shown in Figure 4.12(b).

Following the phase correction, the reflection data is ready for use in the paramet-

ric method from Section 3.3 to estimate the Lorentz parameters of the sample. The

process is outlined in Step 4 of the flowchart in Figure 4.13. The resulting vector of

Lorentz parameters �r and corresponding complex refractive index ñr
1 are given the

superscript “r” to signify that they are the results of the parametric method applied

in reflection mode. Again initializing the Nelder-Mead algorithm with the parameters

in Table 4.1, the resulting fit of reflection data and corresponding Lorentz parameters
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Figure 4.12: (a) Linear fit of unwrapped phase. (b) Result of phase correction using
slope of fit line.

in �
r are shown in Figure 4.14 and Table 4.6, respectively. The data and parametric

Mode �∞ !p/2� (THz) Δ�p × 103 
p/2� (GHz)

- 2.16 - - -
1 - 0.5300 7.00 35.5
2 - 1.192 0.620 34.3
3 - 1.366 4.18 50.9
4 - 1.094 0.000562 212
5 - 3.930 82.6 2940

Table 4.6: Lorentz model parameters in �
r resulting from minimizing Sr using the

parametric method applied to reflection mode as shown in Step 4 of Figure 4.13.

fit show strong qualitative agreement, especially in the lower frequencies (less than

≈ 950 GHz) where the SNR is higher.

The resulting complex refractive index ñr
1 is compared to the transmission result ñp

1

(from Figure 4.9) in Figure 4.15. Figure 4.15 shows fairly close qualitative agreement

between the results of the parametric method in transmission and reflection, although

not as close as that exhibited by the curves in Figure 4.9. While the resonant strengths
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Figure 4.13: Flowchart showing the parametric method of Section 3.3 applied to
reflection mode in Step 4. Steps 1-3 are also shown for reference. Fitting the measured
data Edata by minimizing Sr in (3.20) using rERp

j from (3.24) yields the Lorentz
parameter vector �r. Using �

r as the input to the Lorentz model yields ñr
1.
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Figure 4.14: Results of parametric fitting of reflection data by minimizing the squared
error norm Sr as described in Section 3.3: (a) reflection spectrum and (b) phase.

and widths of the lowest three modes appear to differ between ñp
1 and ñr

1, their spectral

locations appear to be consistent. This is verified by the difference values between
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Figure 4.15: (a) Refractive index and (b) extinction coefficient estimated using para-
metric method in transmission ñp

1 and reflection ñr
1.

Lorentz parameters in �
r and �

p shown in Table 4.7, which shows !p/2� varying by

less than 5 GHz for these three modes. This is consistent with the observations from

Mode % Difference in Difference in % Difference in Difference in
�∞ !p/2� (GHz) Δ�p 
p/2� (GHz)

- 4.95 - - -
1 - 1.007 9.42 11.3
2 - 4.035 43.2 46.7
3 - 3.626 37.2 3.83
4 - 692.5 99.9 62.5
5 - 900.6 53.9 557

Table 4.7: Difference in Lorentz parameters between those in �
r and those in �

p.
Absolute differences are given for !p/2� and 
p/2� while percent differences are given
for �∞ and Δ�p.

Section 4.1 that suggest the relative robustness of the parametric method’s ability to

provide good estimates of spectral locations of the resonant modes in comparison to

the other Lorentz parameters. Table 4.8 shows the percent difference in the resonant

frequency !p of the lowest three modes estimated parametrically in reflection to the
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corresponding values estimated in transmission. The values are within 0.4% of each

other, indicating consistency between the values of !p estimated in transmission and

reflection.

mode 1 2 3
% Difference 0.190 0.340 0.265

Table 4.8: Percent difference between !p values in �
r and �

p.

The consistency of the results of the parametric method in both reflection (ñr
1)

and transmission (ñp
1) with the result of the conventional, non-parametric, transmis-

sion mode method (ñnp
1 ) was quantified by substituting ñr

1 and ñp
1 for ñLorentz

1 in the

expression for nERj (4.2) and calculating Sn from (4.1) for each case. The results

of the comparison, shown in Table 4.9, indicate that the transmission case gives a

closer result than does the case of reflection mode. This is to be expected given the

lower SNR of the reflection measurement due to the collinear head and the additional

complications inherent in reflection measurement.

Sn

ñp
1 0.00117

ñr
1 0.01729

Table 4.9: Quantitative comparison of ñp
1 and ñr

1 to ñnp
1 in terms of Sn from (4.1).

4.3 Simulations for Sensitivity Analysis

In this section, simulated data from a simple test case are first used to evaluate

the performance of two different optimization algorithms, including the Nelder-Mead

method described in Appendix B, applied to the parametric method in reflection
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mode in terms of efficiency and robustness against poor initial guesses. Next, the

effects of system noise on estimated Lorentz parameters is investigated. Finally, the

ability of the parametric method to determine sample thickness and positioning error

between sample and reference measurements is tested.

4.3.1 Initial Guesses for Numerical Optimization Algorithms

The parametric method described in Section 3.3 requires the use of a numerical op-

timization routine that should be capable of handling 4 to 30 or so unknowns and

possibly as many constraints. Such routines typically require an initial guess for ini-

tialization. In future deployable systems, initial guesses may be stored in a database

of known Lorentz parameter values for various materials of interest. Variations in

concentration and other factors may complicate this process, so a robust system will

need to be able to minimize Sr in (3.20) using rERp
j in (3.24) with as little a priori

information as possible. In this analysis, two optimization routines are compared in

their ability to efficiently converge to the correct solution if given poor initial guesses.

For simplicity, this was done using a test case of a hypothetical material with a single

resonance, the Lorentz parameters for which are given in Table 4.10. Corresponding

refractive index and extinction coefficient curves are shown in Figure 4.16. These

�∞ !/2� (THz) Δ�× 103 
/2� (GHz)

2 1 250 1

Table 4.10: Lorentz model parameters for hypothetical test material with a single
resonance used in evaluation of numerical optimization techniques.

complex refractive index values were then used in (3.18) assuming a thickness of
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Figure 4.16: (a) refractive index and (b) extinction coefficient corresponding to
Lorentz parameters in Table 4.10.

d = 1.5 mm to generate simulated reflection data shown in Figure 4.17. The two

routines tested were the Nelder-Mead simplex algorithm described in detail in Ap-

pendix B and the medium-scale sequential quadratic programming (SQP) method

implemented as the “Active-Set” algorithm in fmincon.m in Matlab’s optimization

toolbox. The Active-Set algorithm uses a quasi-Newton method to approximate the

Hessian matrix of the Lagrangian function. This approximate Hessian is then used to

obtain the search direction for a line search procedure. Convergence is attained when

the magnitude of the search direction or its derivative fall below a given threshold

while simultaneously, any constraints supplied to the optimizer are satisfied to within

a given tolerance. Convergence criteria for the Nelder-Mead algorithm are given in

Appendix B.

The algorithms were used to minimize Sr using the simulated data shown in Fig-

ure 4.17 as Edata after being initialized with each Lorentz parameter in Table 4.10
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Figure 4.17: Calculated (a) reflectance and (b) unwrapped phase using assuming
d = 1.5 mm in (3.18) and the refractive index and extinction coefficient values shown
in Figure 4.16.

perturbed, one by one by a range of percentages from the correct value. Each algo-

rithm’s performance was quantified using two metrics, one of which being the number

of iterations required for convergence. Each algorithm terminates if either is termina-

tion criteria are satisfied or after a specified maximum number of algorithm iterations

and objective function evaluations. These upper limits on iterations and function

evaluations were set high enough to ensure the algorithms terminated only due to

convergence to a solution. Once convergence was reached, the squared difference

norm Sn in (4.1) was calculated by substituting the correct complex refractive index

(shown in Figure 4.16) and the estimated complex refractive index at convergence

in place of ñnp
1 and ñLorentz

1 in (4.2), respectively. The resulting Sn was used as the

second performance metric for each algorithm. Figure 4.18 shows the result for per-

turbing the initial guess of �∞. While fewer iterations of the active-set method were
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Figure 4.18: Effect of perturbing initial guess of �∞ on Nelder-Mead and Active-Set
algorithms on (a) iterations required for convergence and (b) squared difference norm
Sn between complex refractive index values at convergence and correct values shown
in Figure 4.16. While less efficient, the Nelder-Mead algorithm converges consistently
to the correct value (global minimum) for perturbations ranging from -6% to 18% of
the correct value, while the more efficient active-set method converges to the correct
value for perturbations within only ±3% of the correct value. Outside these ranges,
both algorithms are thown off by local minima.

required for convergence than were required of the Nelder-Mead method (as shown in

Figure 4.18(a)), the Nelder-Mead algorithm consistently converged to values within

Sn < 10−4 for perturbations ranging from -6% to 18% of the correct value (as shown

in Figure 4.18(b)). Outside this range, the Nelder-Mead method was attracted to lo-

cal minimuma different from the global minimum corresponding to the correct value.

In contrast, the active-set algorithm consistenly converged to the correct solution for

initial guess perturbations within ±3% of the correct value. Outside of this narrow

range, the active-set algorithm converged to local minima distinct from the correct

value (global minimum), as evident by the higher Sn values in this range. This sug-

gests that while less efficient, the Nelder-Mead algorithm can be expected to be less
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sensitive to poor initial guesses for �∞ than the active-set algorithm. This also sug-

gests good results can be obtained using the Nelder-Mead method provided the inital

guess is within -6% to 18% of the correct value.

The same perturbation test was run on initial guesses of Δ�, the results of which

are shown in Figure 4.19. In contrast to the results from perturbing �∞, the active-set
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Figure 4.19: Effect of perturbing initial guess of Δ� on Nelder-Mead and Active-Set
algorithms on (a) iterations required for convergence and (b) squared difference norm
Sn between complex refractive index values at convergence and correct values shown
in Figure 4.16. The more efficient active-set algorithm converges consistently to the
correct value (global minimum) for perturbations ranging from -45% to 39% of the
correct value, while the less efficient Nelder-Mead method converges to the correct
value for perturbations from -22% to 17% of the correct value. Outside these ranges,
both algorithms are thown off by local minima.

method was found not only to be more efficient than the Nelder-Mead algorithm (as

demonstrated in Figure 4.19(a)), but converged to the correct value (global minimum)

if given initial guess values of Δ� perturbed from -45% to 39% of the correct value, as

compared to -22% to 17% with the Nelder-Mead algorithm (shown in Figure 4.19(b)).

Outside these ranges, the algorithms converged to local minima distinct from the
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correct value (global minimum).

Results of perturbing initial guesses of 
 are shown in Figure 4.20. Like for the
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Figure 4.20: Effect of perturbing initial guess of 
 on Nelder-Mead and Active-Set
algorithms on (a) iterations required for convergence and (b) squared difference norm
Sn between complex refractive index values at convergence and correct values shown
in Figure 4.16. The algorithms converge to comparable solutions when initial guesses
are perturbed from the correct value.

cases of �∞ and Δ�, Figure 4.20(a) shows the active-set method is more efficient than

the Nelder-Mead method. In contrast to the perturbation tests of the other two

parameters however, the two algorithms are comparable in their ability to converge

to the correct solution (global minimum) in the presence of poor initial guesses, as

shown in Figure 4.20(b).

Finally, results of perturbing initial guesses of ! are shown in Figure 4.21. As

before, the active-set method is more efficient than the Nelder-Mead method, as

shown in Figure 4.21(a). Figure 4.21(b) shows the Nelder-Mead method converged

to the correct solution (global minimum) for starting ! values from -18% to 15% of
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Figure 4.21: Effect of perturbing initial guess of ! on Nelder-Mead and Active-Set
algorithms on (a) iterations required for convergence and (b) squared difference norm
Sn between complex refractive index values at convergence and correct values shown
in Figure 4.16. While less efficient, the Nelder-Mead algorithm converges consistently
to the correct value (global minimum) for perturbations ranging from -18% to 15%
of the correct value with a single exception at -3%, while the more efficient active-set
method converges to the correct value for perturbations between -11% and 23% of
the correct value with two exceptions at 18% and 22%. Outside these ranges, both
algorithms are consistenly thown off by local minima.

the correct value with a single exception at -3% of the correct value. In contrast,

the active set only converged consistently to the correct solution for perturbations

between -11% and 23% of the correct value with two exceptions at 18% and 22%.

This suggests the Nelder-Mead algorithm is more robust against poor initial guesses

of the resonant frequency than the active-set algorithm.

The preceding results suggest that there is a tradeoff between efficiency and initial

guess sensitivity between the two methods. The deciding factor for this work was the

decreased sensitivity to poor initial guesses as provided by the Nelder-Mead algorithm.

If give wholly incorrect guesses, both algorithms are likely to either not converge, or
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converge to a local minimum. As mentioned before, a real-world system may draw

initial guesses from a database of known values for a variety of materials of interest.

This suggests a matched filter like approach to material identification in which the

measured data set is tested using a range of initial guesses corresponding to several

such materials. It should also be noted that the Nelder-Mead algorithm has been

shown to become less efficient as the scale of the problem increases [30], suggesting

that increasing the number of resonant frequencies will slow its convergence.

4.3.2 Effect of System Noise

Complex refractive index data for composition 4 (C4) explosive was generated us-

ing the Lorentz model (2.7) and the parameters from Yamamoto [16] shown in Ta-

ble 4.11. The resulting refractive index and extinction coefficient curves are shown in

Mode �∞ !p/2� (THz) Δ�p × 103 
p/2� (GHz)

- 2.87 - - -
1 - 0.807 263 219
2 - 1.065 14.0 108
3 - 1.356 34.0 189
4 - 1.530 32.0 258
5 - 1.971 50.0 324
6 - 2.244 19.0 327

Table 4.11: Lorentz model parameters for explosive composition 4 (C4) from Ya-
mamoto [16].

Figure 4.22. These refractive index and extinction coefficient curves then were used in

(3.18) assuming a thickness of d = 1.5 mm to generate the idealized noiseless sample

reflectance and phase curves shown in Figure 4.23. System noise was modeled in the
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Figure 4.22: Refractive index (a) and extinction coefficient (b) corresponding to
Lorentz parameters for C4 shown in Table 4.11 [16].

frequency domain as an ensemble of random phasors,

ã = aei�, (4.3)

where the amplitude a and phase � are random variables with a ∼ N (0, �2
a) and

� ∼ U(0, 2�). The standard deviation �a of the phasor amplitude was varied to

adjust the SNR of the simulated data, relative to Eref = 1 in (3.18), using

SNR = −20 log10

∣

∣

∣

∣

�a

Eref

∣

∣

∣

∣

= −20 log10 ∣�a∣ . (4.4)

Differing levels of this system noise were then added to the noiseless curve shown

in Figure 4.23 to generate simulated noisy data with adjustable SNR. The effect of
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Figure 4.23: Calculated (a) reflectance and (b) unwrapped phase using assuming
d = 1.5 mm in (2.15) and the refractive index and extinction coefficient values shown
in Figure 4.22.

differing SNR on the simulated data is illustrated in Figure 4.24. In Figures 4.24(a),

4.24(b), and 4.24(c), 1000 realizations of simulated noisy data for each given SNR were

generated. The ensemble mean �r and standard deviation �r of the reflectance were

then calculated for each SNR value and used to generate the curves corresponding

to the ensemble mean �r and confidence intervals �r ± �r shown on a linear scale.

Figure 4.24(d) shows the case of infinite SNR on the same axes for comparison.

The Nelder-Mead algorithm was then used to minimize Sr in (3.20) using rERp
j

from (3.24) for 200 realizations each of 20 dB, 40 dB, and 60 dB SNR to quantify

the effect of noise on the estimated Lorentz parameters. Since the objective is to

quantify the effect of noise on the recovered Lorentz parameters rather than inversion

performance, the the correct C4 Lorentz parameters shown in Table 4.11 were used to

initialize the Nelder-Mead algorithm. For each SNR level, the ensemble mean � and
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(b) 40 dB SNR
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(c) 60 dB SNR
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Figure 4.24: Effect of (a) 20 dB, (b) 40 dB, and (c) 60 dB SNR on mean �r and con-
fidence interval �r±�r of reflectance based on an ensemble of 1000 noise realizations,
and (d) the case of infinite SNR.

standard deviation � of each estimated Lorentz parameter were calculated. To get

an idea of the expected variability of each set of Lorentz parameters for each of C4’s

six molecular vibrational modes when subject to noise, the standard deviation was

taken as a percentage of the mean before plotting in Figure 4.25. The results in Fig-

ures 4.25(a) and 4.25(d) suggest �∞ and !p, whose standard deviations are less than

0.1% and 6% of the mean, respectively, are much less vulnerable to the influence of
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Figure 4.25: Effect of SNR on variance of estimated C4 Lorentz parameters as a
percentage of the ensemble mean for all six molecular modes (see Table 4.11). (a) �∞
(b) Δ�p (c) 
p (d) !p

reduced SNR than Δ�p and 
p, as shown in Figures 4.25(b) and 4.25(c). Also notewor-

thy is the relatively low variabilty of the material parameters corresponding to modes

1 and 5 as compared with the other modes illustrated in Figures 4.25(d), 4.25(c), and

4.25(d). This is to be expected as modes 1 and 5 are the two strongest according to

their Δ�p values in Table 4.11, and most prominent according to Figure 4.22.
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While better SNR will increase performance for any technique, these results sug-

gest the inclusion of a priori information in the form of stored initial guess Lorentz

parameters make the parametric approach effective in the presence of noise if given

enough measurements to mitigate the effects of low SNR. In a real-world system, a

tradeoff may be necessary between the number of measurements (increased measure-

ment time) and convergence to a useful solution.

4.3.3 Effect of Thickness Error

The parametric approach of Section 3.3 potentially can be extended to include an

optimization over sample thickness d as well as Lorentz parameters. In such an

extension, the parameter vector � in (3.24) is modified so that it includes the thickness

d, resulting in

�
′ = [�∞, !1, !2, ⋅ ⋅ ⋅ , !P ,Δ�1,Δ�2, ⋅ ⋅ ⋅ ,Δ�P , 
1, 
2, ⋅ ⋅ ⋅ , 
P , d] , (4.5)

and changing rERp
j in (3.24) to

rERp′
j =

∣

∣Edata,j − reff (fj,�
′)
∣

∣. (4.6)

While Ahmed [14] recently demonstrated this process for transmission mode, it

has yet to be demonstrated in reflection mode. The feasibility of this process was

assessed using the simulated reflection response shown in Figure 4.23 from a 1.5 mm
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thick C4 sample as Edata in (4.6). The Nelder-Mead algorithm was used to solve (4.6)

for a range of initial thickness guesses from -15% to 10% of the correct value, 1.5 mm.

For each initial guess of the thickness, the percent difference between the estimated

thickness value at convergence and the correct value was calculated as well as the

squared difference norm Sn between the correct complex refractive index (shown in

Figure 4.22) and the complex refractive index calculated from the estimated �
′ at

convergence. Results are shown in Figure 4.26. Figure 4.26(a) shows the algorithm

−15 −10 −5 0 5 10
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

% difference in initial guess thickness from actual

%
 e

rr
or

 in
 e

st
im

at
ed

th
ic

kn
es

s 
at

 c
on

ve
rg

en
ce

(a)

−15 −10 −5 0 5 10
10

−6

10
−4

10
−2

10
0

10
2

10
4

% difference in initial guess thickness from actual

S n a
t c

on
ve

rg
en

ce

(b)

Figure 4.26: Results of solving (4.6) with Nelder-Mead algorithm starting from initial
thickness guesses ranging from -15% to 10% of correct value. (a) Percent error between
actual thickness and estimated thickness at convergence. (b) Squared difference norm
Sn between correct complex refractive index and complex refractive index calculated
from estimated �

′ at convergence.

was able to correct initial guesses that deviate from the correct value by -11% to

7%, bringing them to less than 0.02% of the correct value. This is consistent with

Figure 4.26(b), which shows complex refractive index values in this range are also

close to the correct value. These results suggest a good initial guess will allow the

73



Nelder-Mead algorithm to optimize the sample thickness in reflection, eliminating the

need for the use of the total variation method of Dorney [10].

4.3.4 Effect of Positioning Error

In addition to thickness error, the phase shift resulting from positioning error, ΔL

in (3.19), can also be estimated parametrically by including ΔL in the modified

parameter vector, resulting in

�
′′ = [�∞, !1, !2, ⋅ ⋅ ⋅ , !P ,Δ�1,Δ�2, ⋅ ⋅ ⋅ ,Δ�P , 
1, 
2, ⋅ ⋅ ⋅ , 
P ,ΔL] , (4.7)

and changing rERp
j in (3.24) to

rERp′′
j =

∣

∣Edata,j − reff (fj,�
′′)ei2k0(fj)ΔL(�′′)

∣

∣. (4.8)

The feasibility of this process was assessed by introducing a phase shift corre-

sponding to ΔL = 5 �m into the simulated reflection response shown in Figure 4.23,

resulting in the simulated data shown in Figure 4.27. The Nelder-Mead algorithm

was then used to solve (4.8) for a range of initial guesses for ΔL. For each initial

guess, the percent difference between the estimated thickness value at convergence

and the correct value was calculated as well as the squared difference norm Sn be-

tween the correct complex refractive index (shown in Figure 4.22)) and the complex

refractive index calculated from the estimated �
′′ at convergence. Results are shown
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Figure 4.27: Calculated (a) reflectance and (b) unwrapped phase of simulated data
from (3.19) in red, shown with unaltered data from Figure 4.23 in blue for comparison.

in Figure 4.28. Figure 4.28(a) shows the algorithm was able to reliably correct initial
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Figure 4.28: Results of solving (4.8) with Nelder-Mead algorithm starting from initial
guesses for ΔL ranging from -200% to 350% of correct value. (a) Percent error between
estimated thickness and actual thickness at convergence. (b) Squared difference norm
Sn between actual complex refractive index and complex refractive index calculated
from �

′′ at convergence.

guesses to within 2% of the actual value from about -69% to about 162.5% of the cor-

rect value. However, Figure 4.28(b) indicates the estimated refractive index is more
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sensitive to bad initial guesses of the displacement error. The squared difference norm

Sn between the estimated and correct values was found to be below 0.01 a narrower

range of initial guesses; only -37.5% to 62.5% of the correct value.

4.4 Discussion

The results in this chapter suggest that the parametric approach to material param-

eter estimation may be a useful tool for material identification and/or classification

from reflection measurements of thin samples. The parametric method used in trans-

mission was shown to compare well to results from a conventional non-parametric

method. Applying the method in reflection yielded useful results, in that the method

revealed the sample’s most prominent resonant frequencies to within a few tenths of

one percent. This was found to be consistent with results of sensitivity testing, which

suggest �∞ and !p are the Lorentz parameters with the least susceptibility to the

influence of measurement noise. Sensitivity testing also revealed the potential of the

parametric method for simultaneously estimating layer thickness and misplacement

error between sample and reference.
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Chapter 5

Conclusions

Hailed as a new frontier of electromagnetics research, terahertz spectroscopy has

gained recent attention for its potential applications in security screening, biomedical

sensing, and nondestructive evaluation. While THz spectral “fingerprints” can be de-

tected in both transmission and reflection modes, the opacity of many targets, such as

human passengers in the case of airport screening, limit future THz scanners to reflec-

tion geometry. In practical scenarios, the spectral response may be affected by such

uncontrollable factors as rough surface and volume scattering. Another complication

worth considering is the case of layered structures with multiple boundaries, such

as a target material under one or more layers of clothing or packaging. While such

materials are usually transparent, if they present a significant impedance mismatch

between the air and target material, the layers may cause multiple reflections within

them that complicate the detected spectra by introducing interference patterns in the

frequency domain due to the etalon effect. Most work to date in identifying layered

materials from reflection measurements has ignored the etalon effect, using samples

with layers that were sufficiently optically thick that reflected THz pulses did not

overlap in the time domain. However, little attention has been paid to the case of

optically thin layers, from which reflected THz pulses cannot be separated in time

and for which the etalon effect cannot be ignored.
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This thesis investigated techniques commonly used to estimate material parame-

ters from transmission measurements of optically thin samples that take the etalon

effect into account and adapted them for use in reflection geometry. The Lorentz

oscillator model of classical dispersion was first introduced and derived, as were the

effective reflection and transmission coefficients from a single layer of dielectric mate-

rial between two semi-infinite half spaces of air and another dielectric. Conventional

non-parametric material parameter estimation algorithms based on these effective

reflection and transmission coefficients were introduced and discussed before intro-

ducing a parametric technique based on these coefficients and the Lorentz dispersion

model.

Both the non-parametric and parametric techniques were implemented in Mat-

lab and tested using data measured using the Picometrix T-Ray 4000 time-domain

spectroscopy system at Portland State University’s Northwest Electromagnetics Re-

search Laboratory (NEAR-Lab). Transmission measurements of a lactose sample

were first presented and its complex refractive index was estimated from the data

using a conventional non-parametric inversion technique from the literature. Results

from this non-parametric technique were used to validate the parametric inversion

technique in transmission. Reflection measurements were then presented and results

from the parametric technique applied in reflection mode were compared to the val-

idated results from the transmission mode data. The spectral locations of the three
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most prominent modes of the sample material were found to be most consistent be-

tween the transmission and reflection results, suggesting the potential utility of the

parametric method in material classification.

As the parametric technique requires the use of a numerical optimization routine,

two such routines were compared in their efficiency and sensitivity to initial estimates

for the Lorentz parameters required for algorithm initialization. Next, the sensitivity

of the parametric technique to measurement noise was tested using simulated noisy

data. Results of these analyses suggest the spectral locations of strong resonant modes

are least susceptible to the influence of measurement noise. The parametric technique

was then evaluated on its ability to correct for the effects of imprecise knowledge of

sample thickness and positioning error between sample and reference measurements

- two common sources of error.

This work established the utility of parametric material parameter estimation

techniques for reflection spectroscopy and suggests their potential for future use in

material classification algorithms based on estimated Lorentz parameters.

Findings from this research were published in the Proceedings of SPIE - The

International Society for Optical Engineering [13], and were presented at the SPIE’s

annual Defense, Security, and Sensing conference in Orlando, Florida in April, 2010.
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5.1 Future Work

Future work in this area will address the case in which a target material is covered

by one or more layers of an optically thin barrier material – a situation likely to be

encountered in real life scenarios. This section shows preliminary measurement results

illustrating the complication of the reflected spectrum due to a single thin layer.

Vinyl electrical tape was chosen as the material for the layer as it is of practi-

cal importance and it fits the assumptions of a homogeneous medium with parallel

planar boundaries made in the model in Section 2.2. The layer of adhesive on the

tape was assumed to be thin enough to have a negligible effect on the measurement

while providing a mechanically stable, airtight boundary between the layer and tar-

get material, as assumed in the model. The thickness of the tape was taken to be

1/3 of the thickness (measured with a micrometer) of a sample consisting of three

layers of the tape. In preparing the sample, care was taken not to change the layer

thickness by stretching the tape or introduce scatterers by allowing pockets of air or

other noticeable particles to be trapped between the tape layers before measurement.

The sample was measured at three points along the outside edge and one point in

the center. These thickness values were d = 0.518 mm, 0.519 mm, 0.527 mm, and

0.527 mm, respectively, for a mean thickness �d = 0.523 mm and standard deviation

of �d = 0.005 mm. This corresponds to a thickness of d = 0.174 mm for a single layer

of tape.
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A thick sample of target material is required for a good approximation to a semi-

infinite half-space. Such a thick sample was prepared by mixing lactose 10% (w/w)

in extra fine PE powder and pressing 5 g of the mixture into a 4 cm diameter pellet

at 10 tons of pressure using a hydraulic press. The lactose powder was first sifted

using a standard No. 270 sieve to ensure the particles were smaller than 53 �m before

mixing and pressing to reduce volume scattering within the pellet. A micrometer was

then used to measure the pellet at three points along the outside edge and one point

in the center. These thickness values were d = 4.006 mm, 4.005 mm, 4.026 mm, and

4.013 mm, respectively, for a mean thickness �d = 4.013 mm and standard deviation

of �d = 0.010 mm.

Reflection measurements were taken of the 10% lactose sample covered by a single

layer of tape, two layers of tape, and no tape at normal incidince using the T-Ray

4000’s collinear head equipped with a 6′′ focusing lens. The time domain waveforms

are shown in Figure 5.1. The etalon reflections from within the tape are nearly

invisible in the waveform from the single layer sample. They are only revealed in

the slight difference in shape of the waveforms in the approximately 8 ps following

the first reflected pulse. The waveform from the sample covered with two layers of

tape clearly shows the influence of the thicker 0.3486 mm tape layer, but even so,

the pulses overlap to such a degree that they cannot be separated by time domain

windowing.

To study the effect of the tape layer on the returned spectra, the waveforms were
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Figure 5.1: Time domain reflection waveforms of 10% lactose sample with no tape
compared with waveforms from the same sample covered with a single layer of tape
and two layers of tape. Waveforms are offset vertically by 0.1 a.u. for clarity.

time gated to exclude the reflection from the back surface of the sample (not shown

in Figure 5.1) before being Fourier transformed and deconvolved with a reference

measurement as described in Section 3.2.2. Results are shown in Figure 5.2. The

reflectance curves from the pellets with tape show oscillatory behavior consistent

with the etalon effect. The spacing of the oscillations in the frequency domain should

be inversely proportional to the spacing between pulses in the time domain [22], which

suggests the spectrum from the sample with the thicker tape layer should have more

closely spaced oscillations than that from the sample with the thinner tape layer.

This is consistent with the results in Figure 5.2.

These results demonstrate that optically thin layers covering materials of interest

are likely to be detrimental to methods of material feature estimation in reflection
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Figure 5.2: Reflectance spectra of 10% lactose sample with no tape compared to
spectra from the same sample covered with a single layer of tape and two layers
of tape. Reflections from the back surface of the sample shown in Figure 5.1 were
excluded from the Fourier transform windows.

mode commonly found in the literature that rely on derivatives of measured magni-

tude or phase [4, 5, 7, 6, 25]. Model-based techniques such as the parametric approach

explored in this thesis may eventually prove useful in the future development of prac-

tical, deployable systems for THz spectroscopic sensing.
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Appendix A

Derivation of Lorentz Dispersion Model

Derivations of the Lorentz model can be found in [12], [15], and [19]. This derivation

follows closely that presented in Fox [19]. The derivation starts with with an atom

modeled as a simple electric dipole consisting of a positively charged nucleus with mass

M and a negatively charged electron with mass m held together with a restorative

force equal to mr!
2
0, where the reduced mass mr is given by

1

mr

=
1

m
+

1

M
.

Since m << M , the reduced mass can be approximated as mr
∼= m.

The motion of a Lorentz dipole oscillator in response to an applied alternating

electric field with amplitude E can then be modeled as that of a damped harmonic

oscillator,

m
d2x

dt2
+m


dx

dt
+m!2

0x = −qE, (A.1)

where x is the displacement of the electron from its equilibrium position, !0 is the

resonant frequency, 
 is the damping coefficient, q is the electric charge of an electron.

Substituting the time-harmonic solutions x(t) = X0e
i!t and E = E0e

i!t into (A.1)

yields

X0 =
−qE0/m

!2
0 − !2 − i
!

. (A.2)
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This time-harmonic motion of charge induces a time-varying dipole moment p(t) =

−qx(t) in the atom. For a bulk material made up of N atoms per unit volume, the

resonant polarization amplitude P becomes

P = Np

= −Nqx

= −NqX0e
i!t

=
Nq2

m

1

!2
0 − !2 − i
!

E. (A.3)

This amplitude is that of the the resonant polarization described by the vector P.

The electric flux density of a material in response to an applied electric field E is then

given in terms of P by

D = �0E+P. (A.4)

In (A.4), P can be expressed in as a sum of a baseline component Pb and a component

due to resonance Pr, which results in

D = �0E+Pb +Pr

= �0E+ �0�E+Pr

= �0 (1 + �)E+Pr, (A.5)
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where � is the electric susceptibility. Combining (A.5) with

D = �0�rE (A.6)

and (A.3) gives an expression for the effective frequency dependent dielectric constant,

�r(!) = 1 + �+
Nq2

�0m

1

!2
0 − !2 − i
!

. (A.7)

Using the low frequency (DC) limit,

�DC ≡ lim
!→0

�r(!) = 1 + �+
Nq2

�0m!2
0

, (A.8)

and the high frequency limit,

�∞ ≡ lim
!→∞

�r(!) = 1 + �, (A.9)

allows the simplification of (A.7) as

�r(!) = �∞ +
Δ�!2

0

!2
0 − !2 − i
!

, (A.10)

where Δ� = �DC − �∞.

In general, a material may contain several such resonances. Assuming the resonant

modes are uncoupled, the contribution to the complex dielectric constant from each
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oscillator can be summed, yielding the final expression, (2.7), in Section 2.1.1, for the

case of P resonances.
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Appendix B

Nelder-Mead Simplex Algorithm

The algorithm developed in 1965 by Nelder and Mead [31] for unconstrained nonlinear

optimization has gone through several stages of development since its inception. It

is sometimes also referred to as the “Amoeba Method” [32]. The refined version of

Lagarias [33] is implemented natively as the function fminsearch.m in Matlab and

is presented here.

The Nelder-Mead method is a simple derivative-free, direct search optimization

method for solving the problem,

min
�

f(�), (B.1)

where � ∈ ℝ
n and f(�) ∈ ℝ. At the each iteration, a simplex consisting of n + 1

vertices, P1, P2, . . . , Pn+1, in ℝ
n is generated and the objective function f(Pi), where

1 ≤ i ≤ n + 1, is evaluated at each vertex. The function values are then sorted and

vertices renumbered such that

f(P1) ≤ f(P2) ≤ . . . ≤ f(Pn+1). (B.2)

As the objective function is to be minimized, the point P1 and function value f(P1)

constitute the ‘best’ point and function value, respectively, for that iteration. Simi-

larly, the Pn+1 and f(Pn+1) constitute the ‘worst’ point and function value, and Pn
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and f(Pn) constitute the ‘next-worst’ point and function value, for the iteration. The

next iteration generates a new and distinct simplex by either replacing the worst

point, Pn+1 with a new point using one of three operations – reflection, expansion, or

contraction – or replacing all but the best point P1 via a shrinkage operation.

The initial simplex is generated using an initial guess P0 from which the other n

points Pi of the simplex are generated using [32]

Pi = P0 +Δâi, (B.3)

where Δ is a small deviation from P0 in the directions specified by the n unit vectors

âi in ℝ
n. In fminsearch.m,

Δ =

⎧





⎨





⎩

0.00025 : P0 = 0

0.05P0â
T
i : P0 ∕= 0.

Each iteration begins with the evaluation of the objective function at the n + 1

points of the simplex, followed by the sorting and renaming of the vertices according

to (B.2). After this initial sort operation, the centroid P̄ of the first n points (all but

the worst point) is calculated using

P̄ =
1

n

n
∑

i=1

Pi. (B.4)

The algorithm then begins with a reflection in which a new point Pr is generated by
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reflecting the worst point Pn+1 about the centroid P̄ as illustrated in Figure B.1 for

the 2D case. The distance
∥

∥

∥
P̄Pr

∥

∥

∥
along the line Pn+1P̄ in ℝ

n is set by the coefficient

Figure B.1: Nelder-Mead reflection operation illustrated for the 2D case (n = 2). The
new point Pr is generated by reflecting Pn+1 = P3 about the centroid P̄ . Original
simplex indicated by dashed lines.

of reflection, � according to

� =

∥

∥

∥
P̄Pr

∥

∥

∥

∥

∥

∥
Pn+1P̄

∥

∥

∥

. (B.5)

In general, � > 0, and the standard value is � = 1. Using �, P̄ , and Pn+1, the point
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Pr is generated as follows;

Pr = P̄ + �
(

P̄ − Pn+1

)

= (1 + �) P̄ − �Pn+1. (B.6)

If the function value at the reflected point, f(Pr), is found to be between that at the

best point, f(P1), and at the next-worst point, f(Pn); that is, if

f(P1) ≤ f(Pr) < f(Pn), (B.7)

the worst point Pn+1 is replaced with the reflected point, the current iteration is

terminated, and the next iteration begins. If (B.7) is not satisfied, then either

f(Pr) < f(P1) (B.8)

or

f(Pn) ≤ f(Pr). (B.9)

If (B.8) is satisfied, an expansion operation is performed in which another new

point Pe is generated on the line Pn+1P̄ in ℝ
n at a distance

∥

∥

∥
P̄Pe

∥

∥

∥
>

∥

∥

∥
P̄Pr

∥

∥

∥
as

illustrated in Figure B.2 for the 2D case. The distance
∥

∥

∥
P̄Pe

∥

∥

∥
relative to

∥

∥

∥
P̄Pr

∥

∥

∥
is
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Figure B.2: Nelder-Mead expansion operation illustrated for the 2D case (n = 2).
Original simplex indicated by dashed lines.

set by the coefficient of expansion, � according to

� =

∥

∥

∥
P̄Pe

∥

∥

∥

∥

∥

∥
P̄Pr

∥

∥

∥

=

∥

∥

∥
P̄Pe

∥

∥

∥

�
∥

∥

∥
Pn+1P̄

∥

∥

∥

. (B.10)

In general, � > 1, and a standard value is � = 2. Using � and �, the point Pe is
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generated by

Pe = P̄ + �
(

Pr − P̄
)

= P̄ + ��
(

P̄ − Pn+1

)

= (1 + ��) P̄ − ��Pn+1. (B.11)

The function at this expansion point f(Pe) is then evaluated and compared to the

function value at the reflected point f(Pr). If

f(Pe) < f(Pr), (B.12)

the expansion point is chosen over the reflection point, otherwise the reflection point

is chosen. The chosen point then replaces the worst point Pn+1, the current iteration

terminates, and the next iteration begins.

If (B.8) is not satisfied then (B.9) is the case and the function evaluated at the

reflected point f(Pr) either lies between that of the worst and next-worst points,

f(Pn) ≤ f(Pr) < f(Pn+1), (B.13)

or it lies above the worst point,

f(Pn+1) ≤ f(Pr). (B.14)
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In either case, a contraction operation is performed. The two possible contraction

operations are illustrated in Figure B.3 for the 2D case. If (B.13) is satisfied, an

(a)

(b)

Figure B.3: Nelder-Mead contraction operations illustrated for the 2D case (n = 2).
(a) Outside contraction, in which the new point Poc is generated between P̄ and Pr

along the line Pn+1P̄ . (b) Inside contraction, in which the new point Pic is generated

between Pn+1 and P̄ along the line Pn+1P̄ . Original simplices indicated by dashed
lines.

outside contraction is carried out in which a new point Poc is generated on the line

Pn+1P̄ between P̄ and Pr as shown in Figure B.3(a). The distance
∥

∥

∥
P̄Poc

∥

∥

∥
relative to
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the distance
∥

∥

∥
P̄Pr

∥

∥

∥
along the line Pn+1P̄ is set by the the coefficient of contraction,


 according to


 =

∥

∥

∥
P̄Poc

∥

∥

∥

∥

∥

∥
P̄Pr

∥

∥

∥

=

∥

∥

∥
P̄Poc

∥

∥

∥

�
∥

∥

∥
Pn+1P̄

∥

∥

∥

. (B.15)

In general, 0 < 
 < 1, and a standard value is 
 = 1
2
. Using 
 and �, the point Poc is

generated by

Poc = P̄ + 

(

Pr − P̄
)

= P̄ + 
�
(

P̄ − Pn+1

)

= (1 + �
) P̄ − �
Pn+1. (B.16)

Similarly, if (B.14) is satisfied, an inside contraction is carried out in which a new point

Pic is generated on the line Pn+1P̄ between Pn+1 and P̄ as shown in Figure B.3(b)

for the 2D case. The distance
∥

∥

∥
PicP̄

∥

∥

∥
is again set by 
, according to


 =

∥

∥

∥
PicP̄

∥

∥

∥

∥

∥

∥
Pn+1P̄

∥

∥

∥

. (B.17)
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Using 
, Pic is generated by

Pic = P̄ − 

(

P̄ − Pn+1

)

= (1− 
) P̄ + 
Pn+1. (B.18)

If either

f(Poc) ≤ f(Pr) (B.19)

or

f(Pic) ≤ f(Pn+1), (B.20)

the result of the contraction operation replaces the worst point Pn+1, the current

iteration terminates, and the next iteration begins.

If neither (B.19) nor (B.20) is satisfied, a shrink step is performed in which P1 is

retained and all other points Pi ∕=1 are replaced with new points P ′
i ∕=1 as illustrated in

Figure B.4. The degree to which the distances
∥

∥P1P ′
i ∕=1

∥

∥ are reduced relative to the

corresponding distances
∥

∥P1Pi ∕=1

∥

∥ is given by the coefficient of shrinkage, � according

to

� =

∥

∥P1P ′
i ∕=1

∥

∥

∥

∥P1Pi ∕=1

∥

∥

. (B.21)

In general, 0 < � < 1, and a standard value is � = 1
2
. Using �, the points P ′

i ∕=1 are

generated by

P ′
i = P1 + � (Pi − P1) . (B.22)

102



Figure B.4: Nelder-Mead shrink operation illustrated for the 2D case (n = 2). All
points but P1 are replaced with values P ′

i ∕=1 closer to P1. Original simplex indicated
by dashed lines.

After the shrink step, the current iteration is terminated and the next iteration begins.

The iterations continue until both the maximum distance in ℝ
n between the best

point P1 and all the other points Pi ∕=1 falls below a clustering threshold and the

difference in objective function values f(Pi) corresponding to these points falls to

within a specified tolerance. The algorithm also terminates if it does not converge

before it reaches an upper limit on either the number of iterations or the number of

function evaluations.
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