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i

Abstract

Strongly inspired by an understanding of mammalian cortical structure and func-

tion, the Hierarchical Temporal Memory Cortical Learning Algorithm (HTM CLA)

is a promising new approach to problems of recognition and inference in space and

time. Only a subset of the theoretical framework of this algorithm has been stud-

ied, but it is already clear that there is a need for more information about the

performance of HTM CLA with real data and the associated computational costs.

For the work presented here, a complete implementation of Numenta's current

algorithm was done in C++. In validating the implementation, �rst and higher

order sequence learning was brie�y examined, as was algorithm behavior with noisy

data doing simple pattern recognition. A pattern recognition task was created us-

ing sequences of handwritten digits and performance analysis of the sequential

implementation was performed. The analysis indicates that the resulting rapid

increase in computing load may impact algorithm scalability, which may, in turn,

be an obstacle to widespread adoption of the algorithm. Two critical hotspots

in the sequential code were identi�ed and a parallelized version was developed

using OpenMP multi-threading. Scalability analysis of the parallel implementa-

tion was performed on a state of the art multi-core computing platform. Modest

speedup was readily achieved with straightforward parallelization. Parallelization

on multi-core systems is an attractive choice for moderate sized applications, but

signi�cantly larger ones are likely to remain infeasible without more specialized

hardware acceleration accompanied by optimizations to the algorithm.
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Chapter 1

Introduction

1.1 Background

The Hierarchical Temporal Memory Cortical Learning Algorithm (HTM CLA)

presents a unique and novel way of approaching problems in Machine Learning,

Arti�cial Intelligence and Data Mining, amongst others. The development of the

HTM CLA marks one of the most complete attempts to utilize knowledge of cor-

tical structure and operation in a functional machine learning technology that is

applicable to many problem domains. An HTM network can be considered a new

form of neural network with a signi�cantly more sophisticated model of the neu-

ron. HTM is but one member in a family of biologically inspired, hierarchically

organized network structures. Other members of this family include HMAX [1],

Convolutional Neural Networks [2] and Deep Belief Networks [3], but the strong

inspiration from mammalian cortex and potential application across a variety of

problem domains places the HTM CLA at the forefront.

In between the bottom-up view of neuroscience and the top-down view of AI and

statistical machine learning lies a variety of interesting behaviors such as percep-

tion, inference, prediction and complex movement. Neural Networks (NNs) lie

somewhere in between these two approaches. They have been successfully em-

ployed in a wide variety of tasks and are capable of recognizing di�erent kinds

of patterns; the latter is a necessary (if not su�cient) aspect of intelligence. But
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most neural network models have been extraordinarily simple in comparison to the

massive complexity of the human brain which contains about one hundred billion

neurons, each one connected to thousands of others [4]. NN models typically pos-

sess a very rudimentary neuron-like element and their lack of scalability to large

implementations is a signi�cant obstacle.

It is increasingly obvious that we need to understand biological intelligence in

order to build machines that exhibit intelligence and there is no real alternative

but to study the neocortex. Neuroscience has achieved a good understanding

of the behavior of neurons and the functioning of many parts of the brain but

lacks a theory of intelligence as a whole, leaving a wide gap in understanding.

The HTM CLA may o�er a new approach to bridging the large gap between

our understanding of neural mechanisms and manifesting intelligent behavior in

machines.

1.2 Systems Science Perspective

In contrast to, but not at odds with traditional sciences, systems science includes

a strong focus on relations amongst �things� rather than just the things them-

selves. Systems science can be described as the �science of relations�; �systems

problems� are problems of understanding relations; �systems knowledge� is essen-

tially knowledge about relations. As systems scientists we approach problems by

�rst abstracting away the �thingness� of a system and then seeking to understand

the relations of the system. It is often useful to describe not only relations, but sys-

tems themselves, in terms of di�erent levels. An investigator may de�ne a system
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with a set of relations which can be broken into sub-systems (or super-systems)

with a di�erent set of elements and relations. It is from this general, yet powerful

perspective that systems science approaches scienti�c inquiry.

In systems literature Cartesian products are typically the basis for de�ning rela-

tions with a relation being a subset of some Cartesian product of given sets [5]. We

also note that any mapping is a relation, though not all relations are a mapping.

Nonetheless, it is sometimes useful to think about relations in terms of mappings.

The brain receives sensory input patterns through time and forms relations be-

tween these input patterns and the 'real world' causes of them. At the highest

level (call this the �A level�) we observe that the brain performs some mapping of

sensory input to output (be it behavioral, perceptual, inferential, etc.). The HTM

CLA characterize a process for mapping sensory stimuli to speci�c cellular activa-

tion patterns that result in inference and prediction. Thus we expect that an HTM

CLA simulation would produce outputs that indicate that handwritten digits, for

instance, are being correctly classi�ed after the system has been presented with

adequate training examples.

At a conceptual level, NNs instantiate mappings from input to output and thus

serve as valuable tools for approaching this problem and for the systems scientist in

general. Some classes of NNs have an associated universal approximation theorem

which suggests that (these types of) NNs are well suited to performing input-output

mappings of a general nature. Therefore it is reasonable to believe that NNs are a

practical vehicle for characterizing a process that maps inputs to outputs, and if

formulated appropriately, do so in a manner similar to how the brain maps sensory

inputs through time to outputs.
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In order to see how the HTM CLAmight produce the desired outputs at the A level,

we need to shift perspective from the A level to a subsystem level (call it the �B

level�)1. The HTM CLA emulate cortical structure and functioning using relatively

simple, local rules. At the B level cortical columns and their corresponding cells

interact with feed-forward stimuli as well as locally with each other. The work of

this project is done at this B level. I have implemented the algorithm that carrys

out these simple, local rules and veri�ed that the implementation is functioning

properly. We suspect that the B level interactions de�ned by these algorithms will

result in the desired mapping being observed at the A level but do not attempt

to validate that the behavior of the model actually corresponds to the behavior of

the brain. It would be interesting to investigate the theoretical nature of how such

an A level mapping emerges from the B level emulation of the cortex but that is

beyond the scope of this project.

1.3 Key Aspects of Hierarchical Temporal Memory (HTM)

In this section I will brie�y discuss some of the key aspects of HTM.

1.3.1 Encode Inputs Di�erently Depending Upon the Context

The HTM CLA provide a method for representing the same input di�erently de-

pending upon the context of previous inputs. The brain must have a way of forming

di�erent internal representations for the same sensory input when it is preceded by

di�erent sequences of inputs. This is a universal feature of perception and action

1See "On Systemsness and the Problem Solver: Tutorial Comments" by Lendaris for a full
discussion on the use of di�erent perceptual levels to aid problem solving [6].
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[7]. The role a previous input context plays in representing and recognizing input

sequences is discussed more in chapter 4.

1.3.2 E�cient Encoding Using a Sparse Distributed Representation

Information in the brain is represented as a sparse distributed representation

(SDR). Much like actual neurons in the brain, HTM cells are highly intercon-

nected but local inhibition ensures that only a small percentage are active at any

one time. Though the number of possible input patters is much greater than the

number of possible representations, forming a SDR of the input does not generate

a practical loss of information. In fact it has several advantageous properties.

When used in conjunction with an appropriate storage algorithm, SDR possesses

the property of mapping similar inputs to similar representations. Because the

number of possible representations is often much greater than the actual num-

ber of representations used, only a subset of the input patterns need be matched

to guarantee a correct match. The similarity of two patterns can be e�ectively

identi�ed by comparing the overlap of bits (in the case of a bit string).

Perhaps the most advantageous property of SDR is e�ciency. SDR is memory e�-

cient because it provides an encoding that allows you to store a number of unique

inputs that is far larger than the number of representing units. It is also compu-

tationally e�cient. To really take advantage of the increasingly large amounts of

data available we need to utilize the e�ciencies provided by SDR.
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1.3.3 Hierarchy

A constant theme in almost all cortical circuitry is hierarchy. As in the cortex,

information processing in an HTM network is hierarchical. At the lowest level

of an HTM network the input patterns are constantly changing, much like the

incoming sensory stimuli we humans receive. Traveling up the hierarchy, spatial

and temporal resolution dilate. Cell activation patterns are more stable because

information is transferred up the hierarchy in predictable sequences. The brain

constantly compares incoming sensory patterns and stores a model of the world

that is largely independent from how it is perceived under changing conditions.

To accomplish this the cortex forms invariant representations at all levels in a

hierarchy.

Hierarchical structure can aid in the modeling of high dimensional input spaces

with moderate amounts of memory and processing. Hierarchy also signi�cantly

improves e�ciency in that it reduces training time and the amount of memory

required. This is, in part, because low-level patterns are recombined at the mid-

levels of the hierarchy, and mid-level patterns are recombined at high-levels. To

learn a new high level pattern you don't need to relearn all of its components [7].

It also leads to more e�cient use of neuron connections, perhaps the biggest cost

in implementing such algorithms in hardware.

1.4 Description of the Algorithm

In an HTM CLA network, SDR is used to learn a large number of spatial patterns

and temporal sequences. Training data in the form of an input stream is presented
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to the network and a model of the statistical structure of the training data is

built. Unlike models for static pattern recognition, HTM accounts for spatial and

temporal variability in the input data. It accomplishes this by learning sequences

of commonly occurring input patterns in an unsupervised manner.

In explaining HTM some de�nitions are in order. The term �layer� is common

to both neural network terminology and neuroscience. Here �layer� carries the

neuroscience connotation and all the layers in a cortical sheet are modeled by a

�level�. �Column� and �cell� are closely related to the corresponding neuroscience

terms. A column is an organizing element of the cortex and consists of a large

number of cells. �Region�, also carries the neuroscience connotation with HTM

regions containing interconnected cells arranged in columns. Several regions can

exist at the same level and be arranged in a hierarchy.

An HTM region is made up of columns, each of which contains interconnected

cells (see �gure 1.1). Cells have both feed-forward and lateral inputs via proximal

and distal dendrites respectively. All cells in a column share a single proximal

dendrite with an associated set of potential synapses which map a subset of the

input space to a given column. Feed-forward input may come from sensory data

or from another level lower in the hierarchy. Synapses are not �xed and have the

ability to connect or disconnect through time based on a �permanence� value.

Cells may have many distal dendrite segments each of which also has an associated

set of potential synapses (see �gure 1.2). The set of potential synapses are mapped

to a subset of other cells within a neighborhood2, also called a �learning radius�.

2A cell's �neighborhood� refers to the other cells within a certain radius around it but does
not include the other cells in the same column to which it belongs.
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Figure 1.1: A column with four cells is depicted. The cells in a column share
a common proximal dendrite which maps to the input space or the immediately
lower level via a set of synapses which are depicted as a set of circles in red at the
bottom. Solid circles represent a valid synapse connection to an input bit with
a permenance value above the connection threshold. Non-solid circles represent
a potential synapse connection to an input bit with a permenance value below
the connection threshold. Feed-forward input may result in a column becoming
activated after a local inhibition step if enough valid synapses are connected to
active input bits.

A dendrite segment forms connections to cells that were active together at a point

in time, thus remembering the activation state of other cells in the neighborhood.

If the same cellular activation pattern is encountered again by one of its segments,

i.e., the number of active synapses on any segment is above a threshold, the cell

will enter a predictive state indicating that feed-forward input is expected to result

in column activation soon.
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Figure 1.2: A cell is depicted with its distral dendrites, shown to the right. Each
dendrite segment has several synapse connections to other cells within its learning
radius. Solid (blue) circles represent a valid synapse connection to another cell with
a permenance value above the connection threshold. Non-solid circles represent a
potential synapse connection to another cell with a permenance value below the
connection threshold. Column activation resulting from feed-forward input via the
proximal dendrite is shown in the bottom-left. Cells in a column share a single
binary-valued column activation signal. Individual cells have their own binary-
valued �active� state that participates in the feed-forward output of a cell and is
also propagated to other cells via lateral connections depicted in the upper-left.
The cell may enter a �predictive� state if at least one of its dendrite segments
is connected to enough active cells. A cell's binary-valued predictive state only
participates in the feed-forward output of a cell and is not propagated laterally.
The cell outputs the boolean OR of its active state and predictive state to the next
level.

1.4.1 Spatial Pooling Algorithm

Starting with sensory input, a sum is computed by convolving input data in a

column's receptive �eld with the set of associated synapses (i.e., its proximal den-

drite). A column's sum is multiplied by a scalar �boost� value. Columns which

habitually have a low sum after the convolution step are given a larger boost.

Boosting is designed to promote relatively uniform activity among the columns. An
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inhibition step follows in which columns with a strong activation inhibit columns

with a weaker activation within the local neighborhood. The local inhibition re-

sults in a sparse set of active columns that serves as input for the temporal learn-

ing phase at that same level. In the active columns, Hebbian like learning is used

to strengthen synapses that were aligned with active input and weaken synapses

aligned with inactive inputs. Synapses whose permanence value exceeds or falls

below a threshold value will become valid or invalid accordingly.

Figure 1.3: Overview of Spatial Pooling.

1.4.2 Temporal Pooling Algorithm

It is convenient to organize the temporal pooling algorithm into 3 phases. Portions

of phases 1 and 2 are performed while a network is learning as well as during

inference. Phase 3 is performed during learning only. A similar organization of the
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algorithm is employed in [7], which may serve as a useful reference. The phases

are described in the sections that follow.

Figure 1.4: Overview of Temporal Pooling.

1.4.2.1 Phase 1

When a column becomes active due to feed-forward input, it �rst checks to see if

any of its cells are in a predictive state from a previous time step, meaning that the

current activation was anticipated. If a cell was predicting the current input, then

that cell is switched from predictive to active. The resulting set of all active cells
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represents the current input in the context of the previous input. If no cells were

predictive then the input was not anticipated and all cells in the column are set

to active. Furthermore, the cell that has the dendrite segment that best matches

the input at the previous time step is selected for learning.

Figure 1.5: Phase 1 of Temporal Pooling Algorithm.

1.4.2.2 Phase 2

Alternatively, cells in any column may enter a predictive state. Every dendrite

segment on every cell is checked to see if the number of active synapses connected
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to currently active cells is above the threshold. If it is, the dendrite segment is

activated and the cell enters a predictive state. Similar to the synapses of the proxi-

mal dendrite, whenever a dendrite segment becomes active, the permanence values

of its associated synapses are modi�ed according to the Hebbian rule. However,

these changes are marked as 'temporary' until we will know if the cell correctly

predicted the feed-forward input, at which point changes in permanence values

will either be removed or allowed. In addition to the modi�cations to the synapses

associated with the active segment, the cell's segment that best matches the state

of the system at the previous time step is also selected for learning in order to

predict sequences further back in time. Using the previous state of the system,

the permanence values of its associated synapses are modi�ed according to the

Hebbian rule and are also marked as 'temporary'. Finally, a vector representing

the active and predictive states of all cells in the level becomes the input to the

next level in the hierarchy.

1.4.2.3 Phase 3

Cells which have undergone learning have pending changes to existing dendrite

segments and may also have learned new segments. If the cell correctly predicts

feed-forward input, then these pending changes are made permanent and the per-

manence values of the appropriate synapses are incremented. Otherwise, if the cell

ever stops predicting, then these pending changes are cleared and the permanence

values of the appropriate synapses are decremented.
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Figure 1.6: Phase 2 of Temporal Pooling Algorithm.

Figure 1.7: Phase 3 of Temporal Pooling Algorithm.
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Chapter 2

Literature Review and Motivation

2.1 Literature Review

Hawkins' theory of the brain as a memory system and the basis for what he has

called the �memory-prediction system� were �rst laid out in a book he co-authored

called �On Intelligence� [8]. A mathematical framework was developed by George

[9]. The theoretical concepts, mathematical framework and biological mapping

were in continuous development for a number of years by Numenta, a California

based company[10]. Additionally, others studied HTM applications [11, 12] and

several commercially successful applications were developed.

The prior versions of the HTM algorithms di�er signi�cantly from the HTM CLA.

Prior versions of the algorithm used Markov chains and Bayesian Belief Propa-

gation. In these versions, novel input patterns were compared to the subset of

stored input patterns and the likelihood over the set of stored input patterns was

calculated. The likelihood over the set of stored patterns became the input to

the temporal learning component of a node in which a Markov graph of temporal

transitions was learned by building a �rst-order transition matrix. The Markov

graph was then partitioned to form Markov chains. The likelihood over the spatial

input pattern was used to compute the single most probable Markov chain given

the current evidence. The most probable Markov chain was passed as input to the



Chapter 2. Literature Review and Motivation 16

next layer of nodes. With the development of the HTM CLA, Numenta discontin-

ued further research of these earlier versions. There is no evidence whether others

continue to pursue them.

Several other notable models have taken a cue from neuroscience and utilize hier-

archical structure with common neural elements to represent sensory information

and capture spatiotemporal dependencies. The Deep SpatioTemporal Inference

Network (DeSTIN) is a type of deep learning architecture that combines unsuper-

vised learning for dynamic pattern representation with Bayesian inference. Every

node in the architecture has a common functionality and the belief states formed

across the hierarchy inherently capture sequences of patterns, and spatiotemporal

dependencies within the data. This approach shares some similarities with previ-

ous versions of HTM algorithms but uses a discriminative, rather than a generative

model [13].

Chappelier and Grumbach explored a connectionist architecture that handles spa-

tiotemporal patterns[14]. The RST (réseau spatio temporal) network takes into

account spatial and temporal aspects at the architectural level of the network. The

spatial aspect is addressed by a speci�c connection distribution function and the

temporal aspect is addressed via a leaky-integrator neuron model with a refractory

period and postsynaptic potentials. Numerous other temporal connectionist mod-

els exist and constitute a growing body of research in temporal processing with

neural networks [15].
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2.2 Motivation

I believe that an accurate and scalable model for predicting sequential data would

be instrumental in overcoming a number of existing challenges. Important po-

tential applications for this type of model include the identi�cation of objects in

images and video, the identi�cation of a speaker in an audio recording, control sig-

nals for machines, resource management in complex systems, web analytics, power

use optimization, and the prediction of power system failure. The HTM CLA are

actually the result of continuous algorithm development over several di�erent ver-

sions in the last 5 years by Numenta. The HTM CLA version of the algorithms is

a signi�cant departure from previous versions. In a technical report recently made

available on their website, Numenta describes the theoretical framework for the

algorithms and provides psuedocode [7].

The HTM CLA represent perhaps the most rigorous attempt to date to model the

general structure and function of the neocortex in a machine learning algorithm.

While the algorithms are not mathematically sophisticated, they are of consider-

able procedural complexity. Not surprisingly, a full implementation of HTM CLA

is a signi�cant commitment of time and e�ort, but such an e�ort is essential for

further analysis of the algorithms and for determining potential improvements. A

published study of HTM CLA performance on an actual data set has not yet been

done. Accordingly, the computational costs of the HTM CLA are also unknown,

as well as the performance on multi-core architectures. However, there is some

concern that the computational costs could impede the wide-spread adoption of

the HTM CLA. A need exists for more study of the performance of HTM CLA
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with real data and the associated computational costs.

Power limitations constrain faster clocks and so performance improvements now

have to come from parallelism. The semiconductor industry is moving into ever

larger numbers of multiple cores, but unlike faster clock speeds, which were trans-

parent to the program, programmers now need to ensure their applications are

designed to be able to do many tasks in parallel which can be a di�cult propo-

sition. Simultaneously, massive amounts of data are becoming available for use

in machine learning applications. To really take advantage of high performance

computing and ever larger amounts of data, we need to exploit the available par-

allelism. A multi-core implementation will o�er important insights into the ability

to accelerate the HTM CLA using a common computer architecture. The use of

multi-core architectures represents just one of several high performance computing

platforms, but they are the most generic and are a good place to start.

This research is guided by the following questions:

1. What kind of execution time can be expected when using the HTM CLA for

a pattern recognition task?

2. Will it scale well with larger amounts of data?

3. How does the HTM CLA scale on a multi-core system?

There are numerous implementation decisions associated with the HTM CLA and

this is an opportunity to explore the implementation space and begin addressing

the many implementation and operation questions that remain. By implementing

the algorithm as it is described by Numenta, my goal has been to understand
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what kind of performance can be expected from the HTM CLA and at what

computational cost. Also, having an implementation of the �standard� version of

the algorithms is essential to further research e�orts. I am not attempting to verify

that the algorithms accurately model the behavior of the mammalian cortex, or

attempting to show that they can outperform other machine learning technologies

in some pattern recognition task.

The algorithm appears to lend itself well to parallelization and a corollary goal

has been to see if signi�cant speed up is possible using a multi-core architecture.

The aim has been to develop a full implementation of the HTM CLA and verify

proper functionality using a test process described by Numenta. The project re-

ported here developed and implemented a parallelized version for use on multi-core

architectures, and was compared to the benchmark established by the sequential

version. Performance of the multi-core implementation can be used in a compar-

ative study exploring more specialized hardware like GPUs and FPGAs which is

likely to follow as future work.

2.3 List of Contributions

This work resulted in the following contributions:

1. A complete and veri�ed C++ implementation of the current version of the

HTM CLA available for use in future research projects including machine

learning applications and continued algorithm development.

2. A performance analysis of a parallel implementation of the HTM CLA on

a multi-core system that will be used in a comparative study with other
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hardware including FPGA and GPUs. Additionally, an estimate of scalability

based on further parallelization is provided.

3. The identi�cation of two subroutines, segmentActive and getBestMatch-

ingSegment, that together account for more than 90% of the total execution

time. These two subroutines are key to an HTM CLA acceleration e�ort.

4. The identi�cation of two high-level HTM CLA routines, Phase 2 and Phase 1

of the temporal pooling algorithm, that are responsible for all segmentActive

and getBestMatchingSegment calls.

5. The measurements of sequential execution time using �ve sizes of data sets

provide a reasonable estimate of HTM CLA sequential implementation per-

formance in a representative pattern recognition task.

6. Detailed software documentation provided makes this complete implemen-

tation more accessible to users and may aid other developers in their own

implementation.

7. A discussion of observations made during the implementation veri�cation

process that provides insight into the nature of HTM CLA �rst order and

higher order sequence learning.

8. A �rst look at HTMCLA behavior with noisy data using a simple experiment.
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Chapter 3

Methodology

3.1 General Overview

The research was conducted in two phases.

The �rst phase comprised:

1. Implement a single process version of the full HTM CLA in C++.

2. Verify proper functioning of the implementation using veri�cation tests de-

scribed by Numenta.

3. Design a pattern recognition task suitable for analysis of the sequential and

parallel implementations.

4. Benchmark the sequential implementation on the pattern recognition task

using Intel's VTune parallel workbench and program analysis package.

The second phase comprised:

5. Identify key hotspots to focus parallelization e�orts.

6. Implement a parallel version of the code.

7. Analyze the parallel version running on multiple cores using VTune.

8. Perform a parallel scalability analysis of the multi-core trials.
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The PC used for analyzing the implementation has a Intel Xeon X5650 6-core CPU

with 12GB RAM.

The primary focus of this work is on implementation and hardware mapping as-

pects, not on the recognition results of the algorithm. Attempting to build the

best classi�er using this algorithm would have added additional complexity to

an already complex project, and would distract from the stated motivations. It

would also be beyond the scope of a single MS thesis. However, applications of the

algorithms need to be explored and this project resulted in a functioning implemen-

tation that will allow us to pursue future research in applications and in hardware

implementation. Furthermore, use of VTune focused on identifying hotspots in

the sequential code in order to guide the parallelization e�ort. No attempt was

made to modify the algorithms in order to improve performance or explore other

trade-o�s. The HTM CLA is a complex, newly developing algorithm and in many

ways it is still a �moving target�. There are many potential modi�cations to the

algorithms that may be explored but are beyond the scope of this work.

3.2 Need for Veri�cation

C++ was selected as the programming language for the implementation because

of its fast execution speed and because it is one of the few languages supported by

the two APIs considered for implementing parallelization. Whatever the chosen

language is for an implementation of the HTM CLA, veri�cation of the implemen-

tation should be performed to ensure that the subtleties of the algorithm have been
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well understood and that the implementation functions as intended. The veri�ca-

tion tests described to us by Numenta ensured proper functioning and clari�ed the

more subtle aspects of the algorithms. The assurance of proper functioning and

better understanding of the algorithms gained by the veri�cation process became

even more valuable in light of the second phase of this project. Parallelization adds

another level of complexity and it is important to have sequential code that has

been well tested and debugged before parallelizing such code.

3.3 Choice of Parallelization Method

There is an ongoing discussion in the high performance computing (HPC) com-

munity on the topic of how to best approach parallel programming on multi-core

systems. Two distinct approaches to parallel programming were considered for this

work, multi-threading and message passing, each of which o�ers its own advan-

tages and disadvantages. It is generally accepted that multi-threading provides a

quick, e�cient approach for shared memory parallel programming and that mes-

sage passing is intended for distributed memory systems, but it can also be used

on multi-core systems and frequently is. A hybrid approach using both message

passing and multi-threading may achieve greater results than either approach used

in isolation, but it presents a considerable challenge to the programmer who is not

well-experienced in HPC programming.

OpenMP is a multi-threading API for multi-platform shared-memory parallel pro-

gramming. More speci�cally, OpenMP is a set of compiler directives and library

routines that extend C++ (as well as C and Fortran). Shared-memory parallel
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programs created through OpenMP are executed by multiple independent threads

on one or more processors that share some or all of the available memory. The API

provides a means for starting up threads, assigning work to them and coordinating

synchronization. Implementing parallelism using OpenMP is often straightfor-

ward once the programmer has identi�ed where the parallelism is in the program.

Though not always the case, signi�cant performance gains may often be achieved

with OpenMP by using basic compiler directives and expecting the compiler to

generate the parallel code. Using OpenMP [16] by Chapman, Jost and Van Der

Pas is a valuable resource for information on OpenMP and shared memory parallel

programming.

Unlike the shared-memory model of parallel programming, message passing as-

sumes each process will have its own private address space. Message passing

libraries, such as MPICH2, are based on the Message Passing Interface (MPI),

a speci�cation for message passing libraries. MPICH2 and other such libraries

provide a means for initiating and managing each process, as well as operations

for sending and receiving messages between processes. Although the original mes-

sage passing model implies that processes will exchange messages whenever one of

them needs data from another one, �MPI-2�, the newer MPI speci�cation, extends

the original model to include �single-sided communication� which allows a process

to directly access memory in another process without needing to call any corre-

sponding send or receive operation in the other process. Using MPI-2: Advanced

Features of the Message Passing Interface [17] by Gropp, Lusk, and Thakur is a

good reference for information on message passing and single-sided communication.

OpenMP possess several very attractive qualities which were key in the decision
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to use OpenMP for the parallelization e�ort instead of an MPI library. OpenMP

is a smaller API and the set of features needed to do simple parallelization can be

learned quickly. After identifying where the parallelism lies in a program, OpenMP

can be applied incrementally to parallelize the program by inserting directives

into a sequential program and letting the compiler determine the details of the

parallel code. Once the additional code has been compiled and tested, another

portion of code can be parallelized from the sequential code. This process does

not require a single major reorganization of the sequential code as is typical of

MPI in which it's �all or nothing.� Incidentally, the application can still compile as

sequential code even on a compiler that has no knowledge of the OpenMP standard.

The remote memory operations speci�ed by MPI-2 are powerful but should be

distinguished from the shared-memory model employed by OpenMP because the

address space is not shared so programs cannot be conveniently written using the

familiar variable reference and assignment statements as they can in the shared

memory model [16]. In summation, OpenMP was found to be easy to learn, o�ered

a smooth, incremental approach to parallelization without a lot of reorganization,

and conveniently handled variables of complex user-de�ned data types.
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Chapter 4

Veri�cation Testing and Investigation of Algorithm Properties

Due to the complex nature of the algorithm and its implementation, particularly

the parts associated with temporal pooling, specialized testing was necessary to

verify proper functionality of the implementation. A series of veri�cation tests were

suggested by Numenta upon request. These tests are not a simple comparison of

accuracy results on a data set. They required additional time and e�ort in terms

of code writing and debugging, but provided a much higher level of con�dence that

the most complex pieces of the algorithm are implemented correctly. In addition

to veri�cation of the implementation, these tests also provide some insight into the

behavior of the algorithms.

The veri�cation tests focus on the temporal pooling operation. Unlike the spa-

tial pooling operation, whose functionality is relatively easy to observe and verify

during a typical debugging process, the temporal pooling algorithm can quickly

become too di�cult for someone to verify during typical step by step debugging

process and cannot easily be con�rmed from the �nal output of the network. The

veri�cation process can be divided into two categories of tests: the �rst relates

to learning a �rst order sequence using a single cell per column instantiation. It

also explores how many and what size sequences can be learned in a simple one

cell per column network. The second category involves learning higher order se-

quences using multiple cells per column and could be used to better understand

why a multi-celled con�guration is essential for learning higher order sequences.
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An additional test was conducted after the veri�cation tests were completed to

study how the algorithm behaves with noisy data. This test is described later in

section 4.4. Next, we will discuss the veri�cation tests, beginning with a general

description of the test setup used for these tests before describing the speci�cs of

each test.

4.1 Test Setup

4.1.1 Input

M input sequences, each consisting of N random patterns, are used. Each 100 bit

pattern contains between 21-25 active bits. The active bits of each pattern are

selected randomly subject to the constraint that a sequence does not contain any

consecutive patterns with a common active bit.

As an example consider the following valid sequence of 3 patterns, each of length

10:

0110100110
1001011000
0100100110

The following example is not valid because it has two consecutive patterns (the 1st

and 2nd) that both contain active bits in the 2nd and 5th (from the left) position.

0110100110
1101100001
0010011110
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4.1.2 Network Parameters

A 10 by 10 array of columns is used, with one column per input bit. Cells are

capable of forming a synapse connection to any other cell in the network1. When

forming a dendrite segment, 11 cells out of the 21-25 active columns are randomly

chosen for forming synapse connections2 . While determining cellular activation

states, at least 9 of the 11 synapses in a dendrite segment must be active for the

segment to be considered active3. The minimum threshold for learning is set to

11 synapses, ensuring that new dendrite segments are learned each time and no

additional synapses are added to existing segments. These parameters and others

are summarized in table 4.1.

Table 4.1: Network Parameters for Veri�cation Tests

New Synapse Count 11
Activation Threshold 9
Minimum Threshold 11
Initial Permanence 80

Connected Permanence 70
Permanence Decrement 0
Permanence Increment 40
Maximum Permanence 100

4.1.3 Training

Training is done with P passes of the M sequences, presenting each of the N patterns

one at a time. This makes the total number of iterations during training equal to

1Cells may not connect to other cells in the same column when a multiple cell per column
network is used

2This is determined by the �New Synapse Count� parameter
3This is determined by the �Activation Threshold� parameter
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P*N*M. Cellular activation patterns are cleared between sequences by reseting the

network. Only strict sequence learning is tested during the veri�cation process. As

a result, the part of the Phase 2 temporal pooling algorithm that learns dendrite

segments in order to predict more than one time step into the future is disabled

for all veri�cation tests.

4.1.4 Testing

Learning is disabled and the same set of sequences is presented to the network

for inference. Again the network is reset after each sequence. The network should

accurately predict the next pattern at each time step up to and including the N-1st

time step for each sequence. A prediction is considered perfect if every column in

the prediction is correct and no extra columns are in a predictive state. If 2 or

more columns are incorrect in a given prediction, the test failed.

4.2 Learning First Order Sequences

Networks with one cell per column are used to learn �rst order sequences. Pre-

diction of �rst order sequences does not require any temporal information. When

doing �rst order predictions, inference is based only on the static recognition of

the current input pattern. In other words, only the current input pattern is used

to predict the next input pattern. With a �rst order network (a network with one

cell per column), a given input pattern will always result in the same prediction

being made by the network, regardless of the other inputs that preceded it. The

reason why a �rst order network can't learn higher order sequences is discussed
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further at the end of the next section.

Test F1 Test that a �rst order sequence can be learned with M=1, N=100, P=1.

Test F2 Same as Test F1, except P=2. The same sequence is presented twice and

we check that synapse permanences are incremented and that no additional

synapses or segments are learned. The test fails if additional synapses or

segments are learned during the second pass.

Test F3 See how many sequences can be learned with N=300 and P=1. The

network was able to learn one 300-pattern sequence passing the test. When

two sequences were learned the network incorrectly predicted 4 patterns.

Test F4 See how many patterns can be learned by varying N and M. What is the

largest possible value of N*M? Start with N=100, M=3, P=1. The largest

value of N*M achieved was 375 with N=125 M=3. Runs with N=100 M=4

and N=150 M=3 both incorrectly predicted 2 patterns.

4.3 Learning Higher Order Sequences

In contrast to �rst order networks, which make predictions based only on the

current input, higher order networks (networks with multiple cells per column)

are capable of utilizing variable length context to learn time-based sequences. In

higher order sequences, the same spatial pattern may appear in several di�erent

contexts and so information beyond the current input is necessary for prediction.

This set of tests veri�es that high order sequences can be properly learned in a

multiple cells per column con�guration. The parameters are the same as the �rst
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order tests but multiple cells per column are used for some of the tests. No special

training or test procedures aside from those described are required for the higher

order sequence tests, but generating higher order input sequences does require

an additional constraint. In addition to the conditions described previously, the

sequences are constructed to contain shared subsequences. Consider two sequences

of 10 input patterns, where each input pattern is represented by a letter:

A B C D E F G H I J
K L M D E F N O P Q

The subsequence DEF is made up of three consecutive patterns that appear in

both sequences. The position and length of shared subsequences are parameters

in the tests. Two sequences of 100 patterns containing a shared subsequence of 8

patterns (the 50th through 57th patterns) were used.

Test H1 Two sequences with a short shared subsequence are learned using a net-

work with one cell per column. The same parameters from B1 are used

(M=2, N=100, P=1). This test should fail because only one cell per column

was used and multiple cells per column are required to learn these types of

sequences.

Test H2 Run test H1 again but with four cells per column. This test should pass.

Test H3 Run test H2 again with P=2. Check that synapse permanences are

incremented and that no additional synapses or segments are learned. The

test fails if additional synapses or segments are learned during the second

pass.
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In order to investigate the process in which a �rst order network fails during higher

order sequence prediction, detailed output from tests H1 and H2 was examined

closely. These tests consisted of sequences of 100 patterns with a shared subse-

quence of 8 patterns but for ease of discussion I make analogy to the two sequences

of 10 input patterns (represented by letters) with a shared subsequence of three

input patterns (DEF) previously given as an example. I will begin by describing

the observations made during the training of the �rst order network before moving

on to the higher order network.

Training of the �rst order network proceeds in the following manner. New segments

are learned at each time step (starting with the second) while the �rst sequence is

presented. As the second sequence is presented new dendrite segments are learned

until the start of the shared subsequence, pattern D. A representation of input

pattern D was learned from the �rst sequence and when this pattern is encountered

again it triggers a correct prediction of E and no new dendrite segments are learned

at the next time step, instead the appropriate synapses are reinforced. This process

repeats when pattern E precedes pattern F again. The network then predicts that

pattern G will follow F but the novel input pattern N appears instead and new

dendrite segments are learned. Learning new segments proceeds until the end of

the sequence. Because the network now has learned to represent pattern F as

preceding both G and N, whenever either of the two sequences containing F is

presented the network will predict that both G and N follow F instead of one or

the other.

Next we will examine training of the higher order network with four cells per

column. New dendrite segments are learned at each time step through the �rst
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sequence. However, unlike the �rst order network, new dendrite segments will con-

tinue to be learned throughout the second sequence, even when the input patterns

of the shared subsequence are encountered. When the start of the shared subse-

quence, pattern D, appears it results in the same set of active columns after spatial

pooling (due to the feed forward stimulus being exactly the same). However, the

cellular activation of these actives columns will not be same because each column

is capable of having any combination of it's four cells in an active state. Thus

while columnar activation for input pattern D is the same as it was when pattern

D was encountered in the �rst sequence, the cellular activation is not the same due

to the di�erent context from prior inputs. In contrast, a �rst order network only

has one cell, thus the similar columnar activation will always result in the same

cellular activation. This observed di�erence in the training of �rst versus higher

order networks provides some insight as to why the two types of networks behave

di�erently when noisy input sequences are encountered.

4.4 Algorithm Behavior with Noisy Data

How do the HTM CLA behave when presented with a noisy sequence? If the net-

work has correctly learned to predict a sequence of patterns and then is presented

with a slightly erroneous copy of the sequence, will it recover quickly after any

unexpected noisy patterns are encountered and correctly predict the rest of the

sequence? This would be a desirable property since real world data is likely to

be noisy. A simple test using a ten digit sequence of handwritten characters4 was

4Each example digit used in the test was taken from the MNIST database, a database of
handwritten characters created by Yann LeCun. After being converted to binary, each example
is presented to the network as a 784 bit vector. Detailed information about the MNIST database
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created to see how the HTM CLA might perform with a noisy sequence. After

learning to correctly predict the sequence 0 5 9 1 3 7 4 2 6 8, the network was

presented with the sequence 0 5 9 1 2 7 4 2 6 8 in which the 5th pattern, `3', was

replaced with a copy of the 8th pattern, `2'. The behavior of both �rst order and

higher order networks was studied.

As for the inference of the �rst order network, correct predictions are made for

`5' and `9' after which `3' is incorrectly predicted to follow the `1'. Next, `6' is

incorrectly predicted to follow the unexpected `2'. Following this, `7' is presented

and results in the correct prediction of `4'. At this point the network has recovered

and continues predicting the rest of the sequence correctly. It is interesting to note

the incorrect prediction of `6' following the `2'. As explained in the previous two

sections, this prediction is due to the �rst order network only being able to learn

a �rst order memory of the input pattern `6' (namely, that `2' precedes it). This

is not the case for a higher order network which is described next.

As in the �rst order network, `5' and `9' are correctly predicted then `3' is predicted

after the `1'. The next time step brings a `2' and the network does not make

a prediction, that is to say no cells enter a predictive state. The network has

learned to predict a `6' following a `2' when `2' appears as the 8th pattern in the

original sequence, however the patterns preceding this `2' are di�erent so `6' is not

predicted. In other words, the context of the prior input is not the same as the

original sequence so this `2' is not mistaken for the `2' that precedes `6' in the

original sequence. Following the `2' a `7' is presented and the network recovers as

it did in the case of the �rst order network, accurately predicting `4' and then the

is provided in chapter 5.
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rest of the sequence.

This test suggests that when presented with a sequence containing an erroneous

pattern, the network will continue to predict the rest of the sequence correctly. The

behavior of a �rst order network does di�er from that of a higher order network

when subjected to a simple noisy sequence. This di�erence makes sense in light

of our understanding of how single and multiple cell per column networks learn to

represent patterns.
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Chapter 5

Pattern Recognition Task for Performance Analysis

While the veri�cation tests described in sections 4.2 and 4.3 were essential in en-

suring that the most di�cult portions of the algorithm were functioning properly,

they were inadequate for estimating implementation performance. Each veri�ca-

tion test executed quickly and did not fully employ the spatial pooling algorithm.

Because the veri�cation tests could not be used to gain an adequate estimate of

the implementation performance, a pattern recognition task was devised in order

to provide a more representative baseline of implementation performance. The

pattern recognition task makes use of the MNIST dataset made available by Yann

LeCun which is actually a subset of a larger set available from the National Insti-

tute of Standards and Technology (NIST). It has a training set of 60,000 example

digits, and a test set of 10,000 example digits. According to LeCun's website, the

original binary images from NIST were size normalized to �t in a 20x20 pixel box

while preserving their aspect ratio. The resulting images are 8 bit greyscale. The

images were centered in a 28x28 image by computing the center of mass of the

pixels, and translating the image so as to position this point at the center of the

28x28 �eld [18]. The images were converted back to binary for our use here and

are presented to the network as a 784 bit vector of binary pixel values.

A typical pattern recognition task using this dataset could be characterized as

presenting training examples of each digit one at a time during the learning phase,

then testing the generalization of the classi�er by presenting each test example and
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Figure 5.1: Binary Representation of a Digit from MNIST Database

seeing how many digits are classi�ed correctly. However, using the dataset in this

manner does not incorporate any temporal information in the task and therefore

would not serve as a representative baseline of the HTM CLA. Another alternative

would be to create short 'movies' of each digit by presenting a digit as a series

of translations, rotations and scales throughout the input �eld. However, such a

sophisticated scheme is not necessary to create a temporal data sequence. A much

simpler approach is to create a sequence of digits and train the network to recognize

sequences of digits as opposed to individual digits. This task incorporates both

spatial and temporal elements and is easy to conduct. To this end, 10 unique

sequences, each consisting of the 10 digits, were created.
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Table 5.1: Digit Sequences for Pattern Recognition

0591374268
4086927351
3792608145
7342605918
7089542613
6472389501
1682537904
3271804695
7895460312
2936814570

Note that some sequences contained shared subsequences of digits. For example,

7089542613
6472389501

This ensured that a higher order network would be necessary to adequately learn

to represent the data as discussed in sections 4.2 and 4.3. After the 10 sequences

of digits had been determined, MatLab code was written to generate �ve sizes of

data sets (see table 5.2) for measuring the execution time of the sequential imple-

mentation. Examples of individual digits were selected without replacement from

the MNIST database and were assembled to form examples of the digit sequences.

Thus, each example sequence contains unique example digits. The MNIST dataset

is large enough that 5,000 training sequences and 810 test sequences can be assem-

bled for this pattern recognition task.

Finally, a note on parameter tuning. To achieve the best generalization results in

a pattern recognition task, network parameters are often tuned, either by hand or

through optimization, until a satisfactory set of parameters are found. My experi-

ence with these algorithms in their current form suggests that parameter selection
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Table 5.2: Datasets for the Digit Sequence Recognition Task

Data Set Train Sequences Test Sequences Total Iterations
1 200 50 2500
2 500 100 6000
3 750 130 8300
4 1000 150 11500
5 1250 180 14300

may strongly in�uence execution time, particularly parameters associated with the

temporal pooler. This work does not study how well the network generalizes in the

given pattern recognition task and so no attempt was made to adjust parameter

settings in order to achieve the best generalization results. Nonetheless, I believe

this pattern recognition task serves as a representative task from which to obtain

performance measurements associated with scalability and that the network pa-

rameters used are a reasonable starting point if one were to actually apply the

network as a classi�er to the task.
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Chapter 6

Analysis of Sequential Implementation

6.1 CPU Time of Sequential Implementation

Intel's VTune [19], a powerful threading and performance pro�ler for understanding

an application's serial and parallel behavior to improve performance and scalability,

was used to pro�le the sequential implementation run on a single core and establish

a baseline for comparison. The CPU time was measured across the �ve data sets

shown in table 5.2 with network parameters kept constant. Figure 6.1 shows a

considerable increase in execution time as the size of the dataset increases with

the largest data set taking well over 3 hours to complete.

While 3 hours per run may not be prohibitive for some applications, there is

a large set of network parameters that will likely need to be tuned. In some

applications, the data set may be signi�cantly larger (for comparison, the MNIST

database contains 70,000 examples in its entirety) and may have a greater number

of dimensions. If the baseline measurements observed here are indicative of general

HTM CLA performance, then in cases of larger, high-dimensional data, the run

time of the HTM CLA is likely to be prohibitive.

If the execution time increased linearly with the number of iterations the network

performs, then we would expect the CPU time per iteration to be constant. How-

ever, �gure 6.2 shows that network iterations actually take longer to complete as

the size of the data set increases and that the increase in CPU time is not due
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Figure 6.1: The CPU Time of the sequential implementation measured in seconds
using the �ve sizes of data sets is shown. The considerable increase in execution
time seen may be indicative of poor scalability with larger amounts of data and
larger networks. Measurements are averaged over several runs and y-axis error
bars display the 95% con�dence interval (the intervals are so small they appear
solid).

to simply running more iterations of a constant execution time. In other words,

the CPU time per iteration does not remain constant as the size of the data set

increases, it gets worse as the size of the data set increases.

Assuming that we have created a representative task for the HTM CLA with appro-

priate network parameters for the task, it is likely that the baseline measurements

observed indicate that the algorithms would strongly bene�t from speedup and

the parallelization e�ort on a multi-core system is justi�ed. Though an algorithm

analysis of the HTM CLA is not done in this work, we expect that results of such

an analysis would be consistent with our empirical results.



Chapter 6. Analysis of Sequential Implementation 42

Figure 6.2: The average CPU time per iteration is shown for the �ve sizes of data
sets. Instead of staying constant, the average CPU time per iteration increases as
the size of the data increases. Iterations are taking longer to complete when the
network has a larger data set to contend with. Measurements are averaged over
several runs and y-axis error bars display the 95% con�dence interval (the intervals
are so small they appear solid).

6.2 Hotspots

Hotspots, code regions in the application that consume a lot of CPU time, were

identi�ed using the pro�ling data for three of the data sets collected by VTune.

This analysis was an important step in guiding the parallelization e�ort, because

it identi�ed several functions in the algorithm that consumed considerable CPU

time. We suspected that temporal pooling functions would make up the majority

of CPU time, which they did. We did not expect to �nd that two temporal pool-

ing functions would completely dominate (see �gure 6.3). This was a signi�cant

discovery because it strongly in�uenced the approach to parallelization and led to

signi�cant performance gains with a simple, e�ective parallelization approach.
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Figure 6.3: Using pro�ling data from the 2000 Train−500 Test, 5000 Train−1000
Test, and 10000 Train−1500 Test data sets, two hotspots were identi�ed. CPU time
is dominated by two sub-routines, segmentActive and getBestMatchingSegment,
which take between 90%−98% of the total execution time. These two sub-routines
are key to the parallelization e�ort.

Two temporal pooling functions, `segmentActive' and `getBestMatchingSegment'

accounted for approximately 90% to 98% of the total execution time depending

on the size of the data set. We observe that these two functions account for an

increasing amount of the total execution time as the size of the data set increases,

further underscoring the importance of targeting them for parallelization.

6.2.1 segmentActive

For a given dendrite segment, cell state and time, the segmentActive routine de-

termines if the number of connected synapses is above the activation threshold.

Pro�ling data from the 500 train and 100 test sequence data set run was orga-

nized by function and call stack to determine where the most time is spent on
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segmentActive. Phase 2, described in �gure 1.6, was the largest calling routine

of segmentActive with 92% of segmentActive's CPU time attributed to Phase 2

calls. The segmentActive function executes quickly but accounts for such a large

percentage of total CPU time because it is called many times. During Phase 2,

segmentActive is called many times by every cell in every column. The number

of segmentActive calls becomes large as more and more dendrite segments are

learned with each training iteration. In a two dimensional network with a 28 by

28 region of columns, each having four cells, if each cell where to learn a 1000 den-

drite segments, Phase 2 may result in upwards of 3 million segmentActive calls.

Parallelizing segmentActive would probably not be worth the associated thread

overhead. Instead, it makes more sense to parallelize the calling routine, Phase 2,

e�ectively bringing the parallelization to the column level rather than the segment

level.

6.2.2 getBestMatchingSegment

For a given cell and time, this routine �nds the dendrite segment with largest num-

ber of active synapses. If the cell does not have any dendrite segments with enough

active synapses above a minimum threshold, no segment is returned. Phase 2 was

also found to be the largest caller of getBestMatchingSegment with just over 50%

of getBestMatchingSegment's CPU time attributed to Phase 2 calls. Phase 2 was

the obvious choice for starting an incremental parallelization approach. Phase 2

calls were responsible for the majority of segmentActive and getBestMatchingSeg-

ment's CPU time, which were in turn responsible for a large majority of the total

execution time.
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Chapter 7

Parallelization of the Sequential Implementation

Two hotspots, segmentActive and getBestMatchingSegment predominately exe-

cuted in Phase 2, were identi�ed using the pro�ling data. Consequently, Phase

2 of the temporal pooling algorithm was selected as the starting point for incre-

mental parallelization. An initial parallelization of most of Phase 2 was carried

out using loop-parallelization. The program was executed with up to 6 cores with

three sizes of data sets shown in table 7.1, and pro�ling data was collected using

VTune. Parallel speedup S, which is de�ned as Sp =
T1

Tp
where p is the number of

processors, T1 is the execution time of the sequential code and Tp is the execution

time of the parallelized code with p processors, was calculated for each of the runs.

Despite a large remaining fraction of sequential code and load imbalances, rea-

sonable speedup was readily achieved with this simple and e�ective parallelization

step. The results of this initial parallelization are shown in �gure 7.1.

Table 7.1: Datasets Used for Measuring Parallel Scalability

Data Set Train Sequences Test Sequences Total Iterations
1 200 50 2500
2 500 100 6000
4 1000 150 11500

Somewhat surprisingly, the largest of the three data sets did not bene�t the most

from the initial parallelization. This is likely due to an increase in primary memory

access. With the larger data set, more dendrite segments are stored by each cell,
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Figure 7.1: After some initial parallelization of the sequential code, execution time
was measured with up to six cores using three of the data sets and speedup was
calculated. Some speedup is readily achieved through loop-parallelization of Phase
2 of the temporal pooling algorithm which targets the identi�ed hotspots, segmen-
tActive and getBestMatchingSegment. Measurements are averaged over several
runs and y-axis error bars display the 95% con�dence interval (some intervals are
so small they appear solid).

making each column larger and probably resulting in a decreased ability to e�ec-

tively leverage the memory hierarchy. Pro�ling data shows that the percentage of

execution time spent in parallel regions did increase with the larger data set but

this was most likely o�set by the penalty resulting from an increase in primary

memory access. An analysis of memory access is needed to say conclusively.
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7.1 Parallel Coverage1

Amdahl's Law, discussed in more detail in chapter 8, indicates that parallel scala-

bility2 is limited by the size of the sequential code remaining in a parallel program.

An e�ort to increase the fraction of parallel code and reduce the fraction of se-

quential code was made through further parallelization. The remaining Phase 2

calls that had not yet been parallelized were brought into parallel regions, making

parallelization of Phase 2 complete and further increasing speedup. Parallelization

of Phase 1 of the temporal pooling algorithm (shown in �gure 1.5), the routine

which accounted for the remainder of segmentActive and getBestMatchingSegment

calls, was parallelized at the cell level. However, preliminary results indicated that

the bene�t was outweighed by high overhead costs when Phase 1 was parallelized

at the cell level. The parallelization of Phase 1 at the column level, which is how

Phase 2 is parallelized, should be successful and is left for future work.

7.2 Load Imbalances

When threads perform di�erent amounts of work in a work-shared region3, threads

with less work will �nish faster and have to wait for the slower ones to �nish and

reach the synchronization barrier. Idle threads could be used to do other work.

This uneven distribution of workload amongst threads is known as load imbalance

and it can result in a signi�cant performance hit. Though the HTM CLA is

1Parallel coverage is de�ned as the fraction of execution time spent inside parallel regions.
2Parallel scalability refers to a program's ability to decrease execution time with an increasing

number of processors.
3Here a �region� refers to all the code encountered during a speci�c instance of the execution

of a given section of code, including any called routines. Thus a work-sharing region is a given
region of code in which the work is distributed among the executing threads.
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designed to learn and store activation patterns in an evenly distributed number of

segments across the region of columns, in practice there may be a large discrepancy

in the number of dendrite segments stored amongst di�erent cells in the region. If

thread scheduling4 is not done, some threads may be assigned cells with a small

number of dendrite segments and others may be assigned cells with a large number

of dendrite segments, leading to load imbalance.

OpenMP parallelized �for loops� are scheduled with static scheduling by default,

meaning that each thread is assigned an equal number of iterations to complete. If

there are n iterations and T threads, each thread will get n/T iterations5. It is pos-

sible to specify other scheduling schemes using a scheduling clause6. With dynamic

scheduling, each thread executes a number of iterations speci�ed by a chunk-size

parameter. A �chunk� refers to a speci�c number of contiguous iterations that are

allocated to a thread at a time. After a thread has �nished executing a chunk of

iterations, it requests another chunk, and continues until all of the iterations are

completed7[16].

7.3 Result of Parallelization E�ort

After completing parallelization of Phase 2 and using dynamic scheduling to ad-

dress load imbalance, parallel speedup was again measured using up to six cores

with with the 500 Train, 100 Test size data set. Figure 7.2 shows notable improve-

ment in speedup was achieved compared to the initial results, indicating that the

4Thread scheduling refers to the way threads are assigned to run on the available processors.
5OpenMP also handles the case when n is not evenly divisible by T
6Clauses may be appended to OpenMP directives for additional control over data sharing,

synchronization and scheduling.
7The last set of iterations may be less than chunk-size
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reduction in sequential and load imbalance overheads was signi�cant.

Figure 7.2: After additional parallelization and the use of dynamic scheduling,
execution time was measured with up to six cores using the 500 Train, 100 Test
dataset and speedup was calculated. Speedup for the previous parallel con�gu-
ration is shown for comparison. Performance has improved notably but speedup
remains modest. Measurements are averaged over several runs and y-axis error
bars display the 95% con�dence interval (some intervals are so small they appear
solid).
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Chapter 8

Discussion

Figures 7.1 and 7.2 show a continuing increase in speedup as the number of cores

increases up to the 6-core case investigated here. This indicates that the limits

to scalability have not yet been reached at six cores. However, the cores become

increasingly less e�cient as more are added, as seen in �gure 8.1, and there are

clearly diminishing returns. If the observed trend continues, we expect that the

limits of scalability would be reached after adding but a few more cores. The

maximum parallel speedup of this implementation would likely be around a factor

of 3 with no signi�cant additional increase seen with the further addition of cores.

Figure 8.1: Parallel e�ciency of the best con�guration with the 500 Train, 100
Test size data set decreases as additional cores are added.
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Though more aggressive parallelization of the implementation is possible, reason-

able speedup was readily achieved with straightforward OpenMP directives and

the execution time of the 500 Train, 100 Test data set was reduced from about 29

minutes to under 13 minutes. Based on the pro�ling data collected, we estimate

that less than 25% of this time is spent performing inference on the test data.

Therefore, performing inference using a test set and network of similar size should

only take a few minutes after the network has been fully trained and that may

be su�cient in many cases. If the speedup observed here is su�cient for a given

HTM CLA application, then the multi-core approach is an attractive choice using

common hardware. However, the scalability observed is considerably more limited

than we had hoped for. In general, several factors can limit the scalability of a

multi-threaded application. These factors include the fraction of sequential code,

access to primary memory, parallelization overhead, load imbalance, and synchro-

nization overhead [16]. However, synchronization overhead was not a factor in

this implementation and load imbalance was addressed using dynamic scheduling,

leaving the fraction of sequential code, access to primary memory and paralleliza-

tion overhead as the likely causes of the limited scalability observed with this

implementation.

8.1 Theoretical Maximum to Parallel Scalability

A theoretical maximum to parallel scalability is determined by Amdahl's Law1

which is de�ned as S = 1

(1−fpar)+
fpar
P

where fpar is the fraction of parallel code

1It's possible to do better than Amdahl's Law. Superlinear speedup may be achieved when
a program has access to more cache and less data has to be fetched from main memory at run
time.
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and P is the number of processors. Given a certain fraction of sequential code,

if a parallel program did not have any overhead, then the speedup de�ned by

Amdahl's Law should be observed. The limit to scalability would be purely due

to the remaining sequential code. The actual speedup observed in our parallel

implementation is less than the theoretical speedup given the same fraction of

sequential code, indicating that there is some overhead present that is causing a

performance hit.

Figure 8.2: The actual speedup achieved with the best parallel con�guration and
500 Train, 100 Test data set is compared to the theoretical limit determined by Am-
dahl's Law. Performance is slightly below the theoretical value, which is believed
to be due to some remaining parallelization overhead and a performance penalty
resulting from accessing primary memory. However, the theoretical speedup curve
is considerably less than linear and the fraction of sequential code must be reduced
to improve scalability. Measurements for the actual speedup curve are averaged
over several runs and y-axis error bars display the 95% con�dence interval (some
intervals are so small they appear solid).
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The theoretical speedup seen in �gure 8.2 is signi�cantly less than linear, showing

that even without the presence of overhead, the scalability of this implementation

is strongly limited by the size of the serial sections remaining2. More aggressive

parallelization will be needed to keep serial code from limiting parallel scalability

as the number of cores increases. With regard to the overhead observed, we suspect

the obstacles to achieving the theoretical speedup are the overheads introduced by

forking and joining threads and memory accesses. It appears that the increase

in aggregate cache capacity provided by the additional cores was not enough to

bene�t from but an analysis of memory access by threads would be needed to

say conclusively. That said, even if overhead was not causing a performance hit

and near theoretical speedup could be achieved, it may still not be su�cient for

many applications of the algorithm. Increasing the fraction of parallel code in the

implementation appears to o�er the greatest potential for improving scalability

and achieving greater speedup on a multi-core system.

8.2 Increasing Parallel Coverage to Improve Scalability

This parallel implementation has targeted Phase 2 of the temporal pooling algo-

rithm, which was found to be the largest consumer of CPU time by far. However,

the algorithm is massively parallel and additional opportunities for parallelization

2A small part of this is due to the code associated with reading input data from a �le and
writing the network's output to a �le. These functions were not considered for parallelization
because they are not part of the core algorithms and their impact is likely to change depending
upon the application. They accounted for about 1.4% of the total execution time for the 500
Train, 100 Test data set and therefore contribute to some of the sequential overhead that limits
scalability.
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exist. Phase 1 of the temporal pooling algorithm accounts for a much smaller per-

centage of execution time than Phase 2 does, so incremental parallelization should

start with phase 2. Although, Phase 1 is responsible for a much smaller fraction

of CPU time than Phase 2, it is responsible for a much greater percentage of CPU

time than any of the other remaining routines. If both Phase 1 and Phase 2 where

parallelized, scalability would likely improve greatly because the fraction of re-

maining sequential code would be relatively small. Using pro�ling data from the

500 Train, 100 Test data set runs, the theoretical speedup was calculated based

on what the fraction of sequential code would be if both Phase 1 and Phase 2

were parallelized and if only Phase 1 were parallelized. It is compared with the

theoretical speedup calculated when just Phase 2 is parallelized in �gure 8.3.

There is no fundamental reason why this level of parallel coverage could not be

realized in an implementation of the HTM CLA. Of course, we don't now what the

actual speedup achieved by such an implementation would be and some overhead

will surely be present. Nonetheless, we believe increasing parallel coverage would

have a substantial impact on scalability. Figure 8.3 suggests that a considerable

increase in speedup may be achieved with further parallelization of the remaining

sequential code. However, it is not clear that even linear speedup would be su�-

cient when the data set and network are large, unless a large number of cores could

be used. Other ways to accelerate the algorithm, or modi�cations to the algorithm,

may need to be explored when signi�cantly larger data sets and network sizes are

required.
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Figure 8.3: Theoretical speedup is calculated for three parallel con�gurations based
on execution times from the runs with the 500 Train, 100 Test data set: complete
parallelization of Phase 1 and Phase 2 of the temporal pooling algorithm, paral-
lelization of Phase 2 only, and parallelization of Phase 1 only. Phase 1 is respon-
sible for a much smaller percentage of total execution time than Phase 2 is, but
scalability greatly improves when both Phase 1 and Phase 2 are parallelized.
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Chapter 9

Conclusions and Future Work

Performance analysis of the sequential implementation in a pattern recognition

task shows a rapid increase in execution time as the size of the data set increases

and indicates that the performance problems may limit scalability which may be

an obstacle to their adoption. The parallelized version developed for a multi-core

system using multi-threading demonstrated that speedup is readily achieved with

straightforward OpenMP directives that do not require major modi�cations to the

sequential code. More aggressive parallelization than what was performed here is

possible, but even without it we believe that parallelization on multi-core systems

is a reasonable choice for moderate sized HTM CLA applications. However, the

resulting speedup was modest (up to a factor of 3) and larger applications are likely

to remain infeasible without further acceleration or modi�cations to the algorithm.

Additional parallelism remains to be leveraged and analysis indicates that consid-

erably better speedup may be achieved with the additional parallelization of Phase

1 of the temporal pooling algorithm but this is left for future work.

Any attempt to accelerate the HTM CLA should focus on the hotspots clearly

identi�ed as a result of the analysis in section 6.2. These two sub-routines, seg-

mentActive and getBestMatchingSegment, are shown to be responsible for an in-

creasingly large majority of the execution time, up to 98% of the total execution

time. Furthermore, Phase 2 of the temporal pooling algorithm is a good place to

start the parallelization e�ort since the majority of these two sub-routines' CPU



Chapter 9. Conclusions and Future Work 57

time was attributed to Phase 2 calls. Phase 1 of the temporal pooling algorithms

accounts for the remainder of these two hotspots' CPU time and should also be

targeted for parallelization.

Much remains to be discovered about the HTM CLA, which o�ers a novel approach

to pattern recognition and inference in spatio-temporal problems. By employing

what we believe to be a representative pattern recognition task and selecting rea-

sonable network parameters, we have begun to understand what kind of execution

time can be expected when using the HTM CLA for a pattern recognition task and

how an implementation of the algorithm will scale with larger amounts of data.

As seen in section 6.1, execution time for some of the larger data sets was on the

order of several hours. Likewise, the parallel version has informed us as to how

the HTM CLA scales on a multi-core system and what kind of speedup can be

expected. The parallelization results described in section 7.3 indicate that speedup

of around a factor of three can be expected when only Phase 2 is parallelized, but

theoretical calculations in section 8.2 suggest that much greater performance may

be achieved by parallelizing both Phase 2 and Phase 1. Though not a primary

focus of the work, some aspects of the algorithms themselves were investigated.

First order and higher order sequence learning were brie�y examined during ver-

i�cation of the implementation in section 4.3 and algorithm behavior with noisy

data was examined in a simple experiment in section 4.4.

Many opportunities for future work remain. In order to get the best possible

parallelization results from a multi-core implementation, the remaining sequential

fraction of code should be parallelized. Future work could address the remaining

sequential code through more aggressive parallelization. Additionally, an analysis
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of the memory access by threads should be done to determine if better utiliza-

tion of the thread-local cache is possible, which may o�set some of the overhead

associated with parallelization. Lastly, an algorithm analysis could be done to fur-

ther substantiate the empirical results of the sequential implementation analysis

which exhibits large growth as the size of the data set increases and provide addi-

tional insights or suggest modi�cations to the algorithms. Many opportunities for

algorithm optimization and modi�cations exist and should be explored.
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Appendix A

Software Guide

A.1 Introduction

This brief introduction to the software is intended to provide the user with enough

know how to run the software from the source code. The topics covered in this

appendix include required packages, compiling the source code, setting network

parameters and reading data �les. Detailed reference material for the source code,

including collaboration diagrams for each class, can be found in Appendix B.

A.2 Requirements

Boost The Boost C++ libraries are required and can be found at www.boost.org.

Our software makes limited use of these libraries (only for random number

generation) and no speci�c version of the library is required. We're using

version 1.40 on Linux and version 1.44 on Windows.

OpenMP To take advantage of the multi-threaded version using OpenMP direc-

tives, a compiler that implements the OpenMP API must be used. A list

of many of the compilers that implement the OpenMP API can be found

at http://openmp.org/wp/openmp-compilers/. We're using the GNU g++

compiler on Linux and Visual Studio 2008 with the Visual C++ compiler on

Windows.
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A.3 Getting Started

A.3.1 Compiling

A make�le is provided for compiling on Linux using the GNU g++ compiler. Make

sure to compile with the -fopenmp option if you wish to run the software using

multiple threads. Currently the number of threads is set in the source �le level.cpp,

not at runtime. After compiling, type `htm' to run. We've used Visual Studio

2008 for development on Windows and recommend Visual Studio for compiling

and running the source code on Windows since Visual C++ supports OpenMP.

Build �les are not provided for Visual Studio, so the source �les should be added as

a new project and built �from scratch�. Alternatively, you can compile the source

code the Linux way using Cygwin or MinGW on Windows but we have not tested

this.

A.3.2 Setting Network Parameters

A number of network parameters are available for the user to set in the source �le

topology.cpp. Information about these parameters is provided in Appendix B. The

veri�cation tests can be run using the macros in the source �le topology.h. Un-

commenting VERIFY, TEST_2, TEST_3_4, HIGHER_O, and HIGHER_O2A

in topology.h will enable the veri�cation tests described in sections 4.2 and 4.3.
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A.3.3 Datasets

The Example class, implemented in the source �le example.cpp, provides a con-

tainer and functions for reading in an example from a �le and storing it in a

temporary object that is passed to the network. The user must specify the relative

paths to the training and test data. This is done in the source �le example.cpp by

specifying the string variables train�les and test�les. Additionally, the number of

�les to be used can be set with the NUM_FILES variable. Input data is expected

to be presented with a newline separating individual input patterns and a `;' (pre-

ceded and followed by newlines) separating input sequences. Of course, the user is

encouraged to modify the source �le example.cpp or write their own interface to

handle the desired data format or their choice.

A.3.4 Network Output

Network output is written to �output.txt�, a �le created at runtime. Typically, the

input pattern and level output are written at each time step. The source code can

be modi�ed to write only the level output at each time step, if say, the user desires

to pass the network's output to a classifer such as SVM of kNN.
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Appendix B

Software Reference

This software reference guide contains descriptions of nearly all the member func-

tions and attributes of each class. It is designed to provide the reader with a better

understanding of how the implementation was designed. Collaboration diagrams

are shown for each class. In these diagrams, objects are represented as boxes

and dotted lines indicate a reference or pointer to another documented class, with

the corresponding reference or pointer name given beside the dotted line. This

reference documentation and was created using Doxygen [20], a software package

designed for rapid generation of detailed documentation.

B.1 data Namespace Reference

Variables

• static std::string train�les [ ]

Relative paths and �lenames for training data.

• static std::string test�les [ ]

Relative paths and �lenames for training data.

• const int NUM_FILES = 10
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The number of �les to use in the run.

B.1.1 Variable Documentation

B.1.1.1 std::string data::test�les[ ] [static]

Initial value:

{

"data_files/test/5/sequence1.test",

"data_files/test/5/sequence2.test",

"data_files/test/5/sequence3.test",

"data_files/test/5/sequence4.test",

"data_files/test/5/sequence5.test",

"data_files/test/5/sequence6.test",

"data_files/test/5/sequence7.test",

"data_files/test/5/sequence8.test",

"data_files/test/5/sequence9.test",

"data_files/test/5/sequence10.test"}

Relative paths and �lenames for training data.

B.1.1.2 std::string data::train�les[ ] [static]

Initial value:

{

"data_files/train/20/sequence1.train",

"data_files/train/20/sequence2.train",
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"data_files/train/20/sequence3.train",

"data_files/train/20/sequence4.train",

"data_files/train/20/sequence5.train",

"data_files/train/20/sequence6.train",

"data_files/train/20/sequence7.train",

"data_files/train/20/sequence8.train",

"data_files/train/20/sequence9.train",

"data_files/train/20/sequence10.train"}

Relative paths and �lenames for training data.
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B.2 Cell Class Reference

Cell

std::list< Cell * >

elements

std::list< segUpdate >

segUpdateList

segUpdate

elements

newSynapsesToAdd DendriteSegment

synapse

std::list< activeSynapsePair >

synapseChanges segToUpdate

std::list< DendriteSegment >

elements

std::list< uint8_t >

permanence DSlist

Figure B.1: Collaboration diagram for Cell.

Public Member Functions

• bool setCell (const unsigned int &numLatNbrCols)

Friends

• class TemporalPooler
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B.2.1 Member Function Documentation

B.2.1.1 bool Cell::setCell (const unsigned int & numLatNbr)

The setCell routine determines a cell's lateral connectivity with its neighboring

cells. The possibility of a connection is based on a random distribution. Or, the

cell may be allowed to form connections with all lateral cells within its learning

radius. This is done during the veri�cation process, for example.
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B.3 Column Class Reference

Column
neighbors
lateralNbr

TemporalPooler

TP

Cell

neighborCells
cellArray

std::list< Cell * >

elements

std::list< segUpdate >

segUpdateList

segUpdate

elements

newSynapsesToAdd DendriteSegment

synapse

std::list< activeSynapsePair >

synapseChanges segToUpdate

std::list< DendriteSegment >

elements

std::list< uint8_t >

permanence DSlist

SpatialPooler

SP

std::queue< actOvrPair >

history

Figure B.2: Collaboration diagram for Column.

Public Member Functions

• bool setSP (XYindex &In_data_upper_left_xy)

• bool setTP ()

• bool setNeighbors (int row, int col, Column ∗∗&columnArray)

• bool setCellNeighbors ()

• Cell ∗ getCells (int &cellIndex)

Returns a pointer to speci�c cell in a column.

• bool computeSPScore (std::vector< bool > &dataInl)

• bool isActive ()

• bool SPUpdateActiveColPerm ()
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Calls the Spatial Pooler member function UpdateActiveColPerm to increment

synapses connected to active input bits and decrement ones connected to inactive

bits.

• bool SPColumnLearning (�oat &numPresentations)

• bool updateDutyCycle (�oat &numPresentations)

• �oat maxDutyCycleNeighbors ()

Returns the highest active duty cycle from a column's neighbors.

• unsigned int getScore ()

Returns a column's overlap score.

• �oat getDutyCycle ()

Returns a column's active duty cycle.

• bool TPphase1 ()

Calls the Temporal Pooler member function phase1.

• bool TPphase1start ()

Calls the Temporal Pooler member function phase1start.

• bool TPphase2 ()

Calls the Temporal Pooler member function phase2.
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• bool TPphase3 ()

Calls the Temporal Pooler member function phase3.

• bool infComputeScore (std::vector< bool > &test_data)

• bool infIsActive ()

• bool TPinfPhase1 ()

Calls the Temporal Pooler member function infPhase1.

• bool TPinfPhase2 ()

Calls the Temporal Pooler member function infPhase2.

• bool �Output (std::vector< bool ∗ > &levelOutput)

Calls the Temporal Pooler member function �Output to generate feedforward

output.

• bool updateStates ()

Calls the Temporal Pooler member function updateStates.

• bool clearStates ()

Calls the Temporal Pooler member function clearStates.

• bool printStates ()

Calls the Temporal Pooler member function printStates.
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• bool printSS ()

Calls the Temporal Pooler member function printSS.

B.3.1 Member Function Documentation

B.3.1.1 bool Column::computeSPScore (std::vector< bool > &

dataIn)

Calls the Spatial Pooler member function computeMatch to compute the column's

overlap score with the current input.

Parameters

dataIn Input data for the current time step.

B.3.1.2 bool Column::infComputeScore (std::vector< bool > &

test_data)

Calls the inference only version of the Spatial Pooler member function computeM-

atch which calculates a column's overlap score with the current input. No learning

is performed.

Parameters

test_data The input data for inference only mode.
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B.3.1.3 bool Column::infIsActive ()

Inference only version of the isActive function. The overlap score of a column is

compared to its neighbors. If its score is greater than the nth score, where n is

determined by the parameter desiredLocalActivity, the function returns true and

the column is added to the list of active columns. If the score is less than then nth

score, then the column is inhibited and the function returns false. This process is

not done during veri�cation testing. No learning is performed.

B.3.1.4 bool Column::isActive ()

The overlap score of a column is compared to its neighbors. If its score is greater

than the nth score, where n is determined by the parameter desiredLocalActivity,

the function returns true and the column is added to the list of active columns. If

the score is less than then nth score, then the column is inhibited and the function

returns false. This process is not done during veri�cation testing.

B.3.1.5 bool Column::setCellNeighbors ()

Calls the Temporal Pooler member function setLateralNeighbors to create pointers

to a column's neighboring cells.

Parameters

lateralNbr A column's array of pointers to neighboring columns.

numLatNbr The number of lateral neighbors this column has.
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B.3.1.6 bool Column::setNeighbors (int rowPosition, int colPosition,

Column ∗∗& columnArray)

Sets a column's neighborhoods for spatial and temporal pooling based on the

column's xy position in the column array. Pointers to neighboring columns are

created using the column's position and the inhibition radius and learning radius

parameters. A special con�guration is made for the veri�cation tests.

Parameters

rowPosition This column's row position in the column array.

colPosition This column's column position in the column array.

columnArray The array of columns at a level in the network.

B.3.1.7 bool Column::setSP (XYindex & SPIn_data_upper_left_xy)

Initializes a column's spatial pooling object by calling the Spatial Pooler construc-

tor.

Parameters

SPIn_data_upper_left_xy Determined by the level class, this parameter

maps a column to speci�c subset of input space.

B.3.1.8 bool Column::setTP ()

Initializes a column's temporal pooler object by calling the constructor of the

temporal pooling class.



Appendix B. Software Reference 76

Parameters

numLatNbr The number of lateral neighbors this column has.

B.3.1.9 bool Column::SPColumnLearning (�oat & numPresentations)

Calculates the minimum duty cycle based on the maximum duty cycle value of a

column's neighbors. If the column's active duty cycle is less than the minimum,

then the Spatial Pooler member function increaseBoost is called to increase the

column's boost value. If the column's overlap duty cycle is less than the minimum,

then Spatial Pooler member function increasePermanences is called to increment

all of the column's proximal dendrite synapses.

Parameters

numPresentations The number of input patterns that have been presented

thus far.

B.3.1.10 bool Column::updateDutyCycle (�oat & numPresentations)

Done before the column member function SPColumnLearning. This routine up-

dates a column's active duty cycle. If the number of presentations is less than the

average duty window, then the rolling average is used to calculate the active duty

cycle and overlap duty cycle. If the number of presentations is greater than the

average duty window, then the moving average is used and the �rst item in the

column's history queue is processed.
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Parameters

numPresentations The number of input patterns that have been presented

thus far.
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B.4 DendriteSegment Class Reference

DendriteSegment

segUpdate

segToUpdate

std::list< DendriteSegment >

elements

std::list< Cell * >

synapse

newSynapsesToAdd

Cell

elements

std::list< segUpdate >

segUpdateList

elements

std::list< activeSynapsePair >

synapseChanges

DSlist

std::list< uint8_t >

permanence

Figure B.3: Collaboration diagram for DendriteSegment.

Friends

• class TemporalPooler
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B.5 Example Struct Reference

Public Member Functions

• bool open_�le (std::string &�lename)

• bool close_�le ()

• bool read_next (Network ∗htmNetwork, bool &new_seq)

Public Attributes

• std::vector< bool > stimulus

Container for the current input pattern.

• std::fstream data

Filestream object for reading from current data �le.

B.5.1 Detailed Description

Provides a means for reading in an example from a data �le that is formatted with

a newline delimiting input patterns and SEQ_DELIM delimiting input sequences.

A �lestream is opened, the next input pattern is read and stored in the public

attribute `stimulus'. A member function is provided to close the �lestream after

all the input sequences are read.
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B.5.2 Member Function Documentation

B.5.2.1 bool Example::read_next (Network ∗ htmNetwork, bool &

new_seq) [inline]

Checks that the �le has opened before reading the next input. If the next character

is the sequence delimiter, then the network states are cleared by calling the Network

member function clearStates, and the the new_seq �ag is set to true. If the end

of the �le has not been reached, then the next input pattern is read and parsed

into input bits which are stored in the Example public attribute `stimulus'.

Parameters

htmNetwork A pointer to the network.

new_seq A bool �ag set to true at the beginning of a new input sequence.
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B.6 Level Class Reference

Level

Column

columnArray

neighbors
lateralNbr

std::vector< Column * >

elements

TemporalPooler

TP

Cell

neighborCells
cellArray

std::list< Cell * >

elements

std::list< segUpdate >

segUpdateList

segUpdate

elements

newSynapsesToAdd DendriteSegment

synapse

std::list< activeSynapsePair >

synapseChanges segToUpdate

std::list< DendriteSegment >

elements

std::list< uint8_t >

permanence DSlist

SpatialPooler

SP

std::queue< actOvrPair >

history

std::vector< bool * >

levelOutput activeColumns

Figure B.4: Collaboration diagram for Level.

Public Member Functions

• Level ()

• bool SPoverlap (std::vector< bool > &dataIn)

• bool SPinhibition ()

• bool SPlearning (�oat &numPresentations)

• bool TPlearning ()

• bool TPlearn1st ()

• bool SPinference (std::vector< bool > &test_data)

• bool TPinference ()

• bool generateOutput ()

• bool updateStates ()

• bool clearStates ()
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• bool printStates ()

• void generateData (std::vector< std::vector< int > > &data)

• void generateData (std::vector< std::vector< int > > &data1, std::vector<

std::vector< int > > &data2)

• bool Verify2 (std::vector< std::vector< int > > ∗data_ptr, �oat &numP-

resentations)

• bool printSS ()

B.6.1 Constructor & Destructor Documentation

B.6.1.1 Level::Level ()

The constructor for the Level class creates the array of columns and then de-

termines the mapping of each column to the input space by calculating a pair

of coordinates which correspond to the upper left corner of a column's receptive

�eld. The constructor then calls the Column class member functions setSP, set-

Neighbors, setTP and setCellNeigbors to create a Spatial Pooler object, set each

column's neighborhood, create a Temporal Pooler object and cells, and then set

each cell's lateral connections.

B.6.2 Member Function Documentation

B.6.2.1 bool Level::clearStates ()

Calls the Column member function clearStates for every column in the level. The

level's list of active columns is also cleared.
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B.6.2.2 void Level::generateData (std::vector< std::vector< int > > &

data, std::vector< std::vector< int > > & data2)

Generates data containing shared subsequences for the veri�cation tests.

Parameters

data A 2d vector container for storing the veri�cation data.

data2 Another 2d vector container for storing the veri�cation data.

B.6.2.3 void Level::generateData (std::vector< std::vector< int > > &

data)

Generates the data for the veri�cation tests.

Parameters

data A 2d vector container for storing the veri�cation data.

B.6.2.4 bool Level::generateOutput ()

Calls the Column member function �Output to generate the feedforward output

for a level, then prints the output to stdout for every column in the level.

B.6.2.5 bool Level::printSS ()

Prints a column's row and column position and calls the Column member function

printSS for every column in the level. Mainly used for the veri�cation tests.
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B.6.2.6 bool Level::printStates ()

Prints a column's row and column position and calls the Column member function

printStates for every column in the level. Mainly used for debugging.

B.6.2.7 bool Level::SPinference (std::vector< bool > & test_data)

Executes the spatial pooling functions associated with inference. The Column

member functions infComputeScore and infIsActive are called for all columns in

the level.

Parameters

test_data Input data for inference only.

B.6.2.8 bool Level::SPinhibition ()

Executes the local inhibition step of spatial pooling by calling the Column member

function isActive for every column in the level. Active columns are added to the

level's list of active columns.

B.6.2.9 bool Level::SPlearning (�oat & numPresentations)

Executes the spatial pooling functions associated with learning. The Column mem-

ber functions updateDutyCycle, SPUpdateActiveColPerm, and SPColumnLearn-

ing are called. updateDutyCycle and SPColumnLearning are called for all columns

in the level and SPUpdateActiveColPerm is called for all currently active columns.
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B.6.2.10 bool Level::SPoverlap (std::vector< bool > & dataIn)

Computes the overlap score of each column by calling the Column member function

computeSPScore for every column in the level.

Parameters

dataIn The input data for the current time step.

B.6.2.11 bool Level::TPinference ()

Executes the temporal pooling functions associated with inference. The Column

member functions TPinfPhase1, and TPinfPhase2 are called. TPinfPhase2 is

called for all columns in the level and TPinfPhase1 is called for all currently active

columns.

B.6.2.12 bool Level::TPlearn1st ()

Executes the temporal pooling functions associated with learning when the �rst

input pattern in a new sequence is presented. The Column member functions

TPphase1start, TPphase2, and TPphase3 are called. TPphase2 and TPphase3

are called for all columns in the level and TPphase1start is called for all currently

active columns.

B.6.2.13 bool Level::TPlearning ()

Executes the temporal pooling functions associated with learning. The Column

member functions TPphase1, TPphase2, and TPphase3 are called. TPphase2 and
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TPphase3 are called for all columns in the level and TPphase1 is called for all

currently active columns.

B.6.2.14 bool Level::updateStates ()

Calls the Column member function updateStates for every column in the level.

The level's list of active columns is also cleared.

B.6.2.15 bool Level::Verify2 (std::vector< std::vector< int > > ∗

data_ptr, �oat & numPresentations)

Compares the predictions of each column to the next input to determine if a

veri�cation test is passed or failed. Results are printed to stdout.

Parameters

data_ptr A pointer to the 2d vector of veri�cation data.

numPresentations The number of input presentations thus far.
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B.7 Network Class Reference

Network

Level

levelArray

Column

columnArray

neighbors
lateralNbr

std::vector< Column * >

elements

TemporalPooler

TP

Cell

neighborCells
cellArray

std::list< Cell * >

elements

std::list< segUpdate >

segUpdateList

segUpdate

elements

newSynapsesToAdd DendriteSegment

synapse

std::list< activeSynapsePair >

synapseChanges segToUpdate

std::list< DendriteSegment >

elements

std::list< uint8_t >

permanence DSlist

SpatialPooler

SP

std::queue< actOvrPair >

history

std::vector< bool * >

levelOutput activeColumns

Figure B.5: Collaboration diagram for Network.

Public Member Functions

• bool runSPoverlap (std::vector< bool > &dataIn)

Increments the number of presentations (numPresentations) and calls the Level

member function SPoverlap.

• bool runSPinhibition ()

Calls the Level member function SPinhibition.

• bool runSPlearning ()

Calls the Level member function SPlearning.

• bool runTPlearning ()
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Calls the Level member function TPlearning.

• bool runTPlearn1st ()

Calls the Level member function TPlearn1st.

• bool inference (std::vector< bool > &test_data)

• bool levelOutput ()

Calls the Level member function generateOutput.

• bool updateStates ()

Calls the Level member function updateStates.

• bool clearStates ()

Calls the Level member function clearStates and resets the number of presenta-

tions.

• bool levelOutput (std::vector< std::vector< int > > ∗data_ptr)

Used for veri�cation testing. Calls the Level member function generateOutput

and Verify2.

• void genData (std::vector< std::vector< int > > &data)

Used for veri�cation testing. Calls the Level member function generateData.
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• void genData (std::vector< std::vector< int > > &data1, std::vector<

std::vector< int > > &data2)

Used for veri�cation testing. Calls the Level member function generateData to

generate data with shared subsequences.

• bool printSS ()

Mainly used for veri�cation testing. Calls the Level member function printSS.

Public Attributes

• �oat numPresentations

B.7.1 Member Function Documentation

B.7.1.1 bool Network::inference (std::vector< bool > & test_data)

Increments the number of presentations (numPresentations) and calls the Level

member functions associated with inference, SPinference and TPinference.

Parameters

test_data Input data for inference.
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B.8 segUpdate Struct Reference

segUpdate

std::list< segUpdate >

elements

std::list< Cell * >

newSynapsesToAdd

DendriteSegment

synapse

Cell

elements

segUpdateList

std::list< DendriteSegment >
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elements

std::list< uint8_t >
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std::list< activeSynapsePair >

synapseChanges

Figure B.6: Collaboration diagram for segUpdate.
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Public Attributes

• DendriteSegment ∗ segToUpdate

• std::list< activeSynapsePair > synapseChanges

• std::list< Cell ∗ > newSynapsesToAdd

• bool sequenceSegment

B.8.1 Member Data Documentation

B.8.1.1 std::list<Cell ∗> segUpdate::newSynapsesToAdd

Pointers to cells which will be added to a dendrite Segments's synapse list with

permenance equal to initialPerm.

B.8.1.2 DendriteSegment∗ segUpdate::segToUpdate

A pointer (initially null) to the segment to be updated.

B.8.1.3 bool segUpdate::sequenceSegment

A bool (initially false) to indicate if the segment is a sequence segment



Appendix B. Software Reference 92

B.9 SpatialPooler Class Reference

Public Member Functions

• SpatialPooler (XYindex &In_data_upper_left_xy)

• unsigned int computeMatch (std::vector< bool > &dataIn, std::queue<

actOvrPair > &history)

• bool UpdateActiveColPerm ()

• bool increaseBoost (�oat &dutyCycleDi�erence)

• bool increasePermanences ()

• unsigned int computeMatch (std::vector< bool > &dataIn)

B.9.1 Constructor & Destructor Documentation

B.9.1.1 SpatialPooler::SpatialPooler (XYindex &

In_data_upper_left_xy)

The constructor takes an STL Pair argument which indicates xy coordinates in the

input space to which the upper left corner of a this column's receptive �eld will

be mapped. Arrays of potential synapses and permenances are created initalized

using a random distribution function.

Parameters

In_data_upper_left_xy An stl pair that maps to the input space.
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B.9.2 Member Function Documentation

B.9.2.1 unsigned int SpatialPooler::computeMatch (std::vector< bool

> & dataIn)

Run during inference only mode. Computes the number of valid synapses that

are aligned with active input at the current time step. If an input bit is active

and the associated synapses have a permenance value above threshold, then the

score is incremented. If the resulting score is above the threshold for minimum

overlap (minOverlap), then the score is multiplied by the column's boost value.

Otherwise, if the score is below minThreshold, the score is set to 0. No overlap

history is updated.

Parameters

dataIn The input data.

Returns

A column's boosted score is returned.

B.9.2.2 unsigned int SpatialPooler::computeMatch (std::vector< bool

> & dataIn, std::queue< actOvrPair > & history)

Computes the number of valid synapses that are aligned with active input at the

current time step. If an input bit is active and the associated synapses have a

permenance value above threshold, then the score is incremented. If the resulting

score is above the threshold for minimum overlap (minOverlap), then the score is
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multiplied by the column's boost value and a column's history is updated to re�ect

that the input resulted in signi�cant overlap at this time step. Otherwise, if the

score is below minThreshold, the score is set to 0 and the history is updated to

re�ect that the input did not result in signi�cant overlap at this time step.

Parameters

dataIn The input data.

history Keeps track of how often a column has had a signi�cant match score

for computing the overlap duty cycle.

Returns

A column's boosted score is returned.

B.9.2.3 bool SpatialPooler::increaseBoost (�oat &

dutyCycleDi�erence)

Increases a column's boost value based on its duty cycle di�erence.

Parameters

dutyCycleDi�erence The di�erence between the minimum duty cycle and

the column's active duty cycle.

B.9.2.4 bool SpatialPooler::increasePermanences ()

Increases the permanence values of all the synapses in a coulmn's proximal den-

drite. This routine is called when a column's overlap duty cycle falls below the

minimum duty cycle.
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B.9.2.5 bool SpatialPooler::UpdateActiveColPerm ()

Updates the permenance of potential synapses that are aligned with active input

at the current time step and decrements the permanences of synapses aligned

with currently inactive input. Permenance values will not exceed or fall below the

maximum and minimum values of 100 and 0.
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B.10 TemporalPooler Class Reference

TemporalPooler

Cell
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cellArray

std::list< Cell * >
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Figure B.7: Collaboration diagram for TemporalPooler.

Public Member Functions

• TemporalPooler (const unsigned int &numNeighborCells)

• bool setLateralNeighbors (Column ∗∗&colNeighbors, const unsigned int

&numLatNbr)

• Cell ∗ getCells (int &cellIndex)

• bool segmentActive (DendriteSegment ∗seg, const int timeStep, const

int cellState)

• DendriteSegment ∗ getActiveSegment (Cell ∗a_cell, const int

timeStep, const int cellState)

• DendriteSegment ∗ getBestMatchingSegment (Cell ∗currentCell, int

&myMaxNumActiveSynapses)
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• Cell ∗ getBestMatchingCell (DendriteSegment ∗&selectedSeg)

• bool getSegmentActiveSynapses (Cell ∗bestCell, segUpdate &sUp-

date, DendriteSegment ∗selectedSeg, const int &timeStep, const unsigned

int &numNeighbors, bool newSynapses)

• bool adaptSegments (Cell ∗&adaptingCell, std::list< segUpdate >

&segUpdateList, bool posReinforce)

• bool phase1 (const unsigned int &numNeighbors)

• bool phase1start ()

• bool phase2 (const unsigned int &numNeighbors)

• bool phase3 ()

• bool �Output (std::vector< bool ∗ > &levelOutput)

• bool infPhase1 ()

• bool infPhase2 ()

• bool updateStates ()

• bool clearStates ()

• bool printStates ()

• bool printSS ()

B.10.1 Constructor & Destructor Documentation

B.10.1.1 TemporalPooler::TemporalPooler (const unsigned int &

numLatNbr)

The constructor of the Temporal Pooler class creates an array of cells and deter-

mines the lateral connections to neighboring cells.
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Parameters

numLatNbr The number of lateral neighbors.

B.10.2 Member Function Documentation

B.10.2.1 bool TemporalPooler::adaptSegments (Cell ∗& cellToAdapt,

std::list< segUpdate > & segUpdateList, bool posReinforce)

This routine iterates through a cell's list of segUpdates and reinforces each seg-

ment according the the posReinforce agrument. If posReinforce is True, then active

synapses in the activeSynapsePair list get ther permanences incremented by per-

manenceInc and all other synapses get their permancences decremented by perma-

nenceDec. If posReinforce is False, then active synapses in the activeSynapsePair

list get their permanences decremented by permanenceDec. If the synToAdd list

is not empty, new synapses are added with permanence equal to intialPerm. If

the segment update points to NULL meaning the segment doesn't exist yet, a new

segment is created and the synapses are added with initalPerm.

Parameters

cellToAdapt A pointer to the cell being updated.

segUpdateList The list of segUpdates to be adapted.

posReinforce An bool argument which indicates whether or not synpases

will be incremented or decremented.
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B.10.2.2 bool TemporalPooler::clearStates ()

Clears all states in a cell's state machine by setting all values of the current and

previous states to false.

B.10.2.3 bool TemporalPooler::�Output (std::vector< bool ∗ > &

levelOutput)

Determines the output of every cell in the level. If the cell is either active or

predictive, then a pointer to one of those two cell states is added to levelOutput,

a vector of bool pointers, which represents the feedfoward output of the level. If

the cell is neither active or predictive, a pointer to the cell's active state (which is

false) is added to the levelOutput. The routine behaves slightly di�erently when it

is run during the veri�cation process. In this case, only pointers to the predictive

state are added in order to verify that the appropriate predictions are being made

based on the level output.

B.10.2.4 DendriteSegment ∗ TemporalPooler::getActiveSegment (Cell

∗ cel, const int timeStep, const int cellState)

Finds a dendrite segment stored by the given cell such that the routine 'segmentAc-

tive' is true. Preference is given to dendrite segments that are 'sequence segments'

(those with the seqSeg �ag set to True) with the most activity. If no active seg-

ments are found than a null pointer is returned.
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Parameters

cel Points to the cell with the dendrite segment to evaluate.

timeStep The speci�ed time step for the segmentActive routine.

cellState The speci�ed cell state for the segmentActive routine.

Returns

A pointer to the selected active segment or null if none exists.

B.10.2.5 Cell ∗ TemporalPooler::getBestMatchingCell

(DendriteSegment ∗& selectedSeg)

Finds the cell with the best matching segment by calling the getBestMatchingSeg-

ment routine for each cell in the column and comparing the maxNumActiveSy-

napses argument in order to �nd the best match. If no cell has a matching segment

than the cell with the fewest number of segments is returned

Parameters

selectedSeg A DendriteSegment pointer that will point to a cell's best match-

ing segment.

Returns

The best matching cell or cell with the minimum number of segments.
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B.10.2.6 DendriteSegment ∗ Tempo-

ralPooler::getBestMatchingSegment (Cell ∗ cel,

int & myMaxNumActiveSynapses)

For a given cell, �nds the dendrite segment with the largest number of active

synapses at the previous time step. The permanence value of the synapses is

allowed to be below the connection threshold (TPthreshold) and the number of

active synapses is allowed to be below activationThreshold but must be above the

minimum threshold (minThreshold).

Parameters

cel A pointer to the speci�ed cell.

myMaxNumActiveSynapses An interger argument for keeping track of the

largest number of active synapses.

Returns

A pointer to the best matching dendrite segment or NULL if no segments are

found.

B.10.2.7 Cell ∗ TemporalPooler::getCells (int & cellIndex)

Returns a pointer to a speci�c cell in a column.

Parameters

cellIndex Speci�es which cell to return a pointer to.
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B.10.2.8 bool TemporalPooler::getSegmentActiveSynapses (Cell

∗ bestCell, segUpdate & sUpdate, DendriteSegment ∗

selectedSeg, const int & timeStep, const unsigned int &

numNeighbors, bool newSynapses)

This is one of the most complex routines of the algorithm. It generates a dendrite

segment update structure containing a list of proposed changes that will be made

permanent with the adaptSegments routine. These changes may include making a

list of pointers to existing synapses that should be reinforced, adding new synapses

to an existing segment, or adding a new dendrite segment to the speci�ed cell. If

the segment to be updated already exists, then a list of active synapses is made.

newSynapseCount - numActiveSynapses new synapses are added (if possible), if

the optional argument newSynapses is true. If the argument selectedSeg is NULL,

meaning the dendrite segment doesn't exist yet, then a segment update structure is

created with newSynapseCount new synapses (if possible) with permanence equal

to initialPerm.

Parameters

bestCell A pointer to the best cell returned by the getBestMatchingCell rou-

tine.

sUpdate A new segment update structure which will contain the proposed

changes.

selectedSeg A pointer to the dendrite segment to be updated. Points to

NULL if the segment doesn't exist yet.

timeStep The time step for determining which synapses are connected to
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active cells.

numNeighbors The number of lateral neighbors best cell has.

newSynapses An optional bool argument. Set to true if new synapses are

to be added.

Returns

True if a segment update was created successfully. Return false if there weren't

any connected learning cells from previous time step and a new segment

couldn't be created.

B.10.2.9 bool TemporalPooler::infPhase1 ()

No learning is done during the inference only version of Phase 1 of temporal pool-

ing. Predictive cells from the previous time step are checked to see if the prediction

is due to a dendrite segment that is marked as a 'sequence segment', indicating

that it is predicting the current feed-forward input. If the prediction is due to a

sequence segment, the botUpPredicted �ag is set to true. If the botUpPredicted

�ag is still false after each cell in the active column has been evaluated, then all

cells are set to active. No cells are set to the learn state and no segment update

structures are stored in the inference only mode of Phase 1.

B.10.2.10 bool TemporalPooler::infPhase2 ()

No learning is done during the inference only version of Phase 2 of temporal pool-

ing. Phase 2 calculates the predictive state for all cells in the network. A cell
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enters the predictive state if one of its dendrite segments has enough of its lateral

connections are connected to currently active cells. If not, it remains inactive. No

segment updates are stored during the Phase 2 inference only mode.

B.10.2.11 bool TemporalPooler::phase1 (const unsigned int &

numNeighbors)

This routine is run for each active column starting with the second pattern in an

input sequence. Predictive cells from the previous time step are checked to see if

the prediction is due to a dendrite segment that is marked as a 'sequence segment',

indicating that it is predicting the current feed-forward input. If the prediction is

due to a sequence segment, the botUpPredicted �ag is set to true and the seqment

is checked to see if it is active due to cells in the learn state at the previous time

step. If so, the learnCellChosen �ag is set to true and the cell is set to the learn

state. After each cell in the active column as been evaluated, if the botUpPredicted

�ag is still false, then all cells are set to active. If the learnCellChosen �ag is still

false, then the best matching cell is found and a segment update structure is created

with the sequence segment �ag set to true by calling the getSegmentActiveSynapses

sub-routine. The best matching cell is also set to the learn state.

Parameters

numNeighbors The number of lateral neighbors is passed to the getSegmen-

tActiveSynapses sub-routine.
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B.10.2.12 bool TemporalPooler::phase1start ()

This routine is run for each active column when the �rst input of a new input

sequence is presented. Because this is a new input sequence, there is no prior

input and no cells will be in a predictive state, thus all cells in the active column

are set to active. The �rst cell in the column is placed in the learn state.

B.10.2.13 bool TemporalPooler::phase2 (const unsigned int &

numNeighbors)

This routine calculates the predictive state for all cells in the network. A cell will

enter the predictive state if one of its dendrite segments has enough of its lateral

connections are connected to currently active cells. If so, active dendrite segments

will store a new segment update. Additionally, a dendrite segment that could have

predicted this activiation pattern will be selected to store a segment update as

well.

Parameters

numNeighbors The number of lateral neighbors is passed to the getSegmen-

tActiveSynapses sub-routine.

B.10.2.14 bool TemporalPooler::phase3 ()

Every cell in the network is evaluated in this routine. Cells currently in the learn

state will have their segment update lists implemented with 'postive reinforce-

ment'. Cells that were in the predictive state at the previous time step but are
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not predictive at the current time step, will have their segment update list imple-

mented with 'negative reinforcement'. In both cases the segment update lists are

cleared after being implemented.

B.10.2.15 bool TemporalPooler::printSS ()

Prints the number of dendrite segments learned by each cell in a column and the

number of synapses in each segment. Which segments are 'sequence segments' may

also be printed optionally. This routine is used in the veri�cation process and for

aiding in debugging.

B.10.2.16 bool TemporalPooler::printStates ()

Prints a cell's current and previous states, as well as the number of dendrite seg-

ments learned by the cell and number of synapses in each of its dendrite segments.

This routine is mainly used for parameter tuning and debugging.

B.10.2.17 bool TemporalPooler::segmentActive (DendriteSegment ∗

seg, const int timeStep, const int cellState)

For a dendrite segment, time step and cell state, this routine determines if the

number of valid synapses connected to active cells is greater than the activation

threshold, 'activationThreshold'.

Parameters

seg Pointer to the given dendrite segment.
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timeStep Speci�ed time step (previous or current).

cellState Speci�ed cell state (predictive, active, learn).

Returns

True if above the activation threshold, false if below.

B.10.2.18 bool TemporalPooler::setLateralNeighbors (Column ∗∗&

colNeighbors, const unsigned int & numLatNbr)

Creates an array of pointers to neighboring cells by �rst creating an array of cell

pointers and points them to each cell in this column's neighboring columns.

Parameters

colNeighbors An array of pointers to this column's neighbors.

numLatNbr The number of lateral neighbors for this column.

B.10.2.19 bool TemporalPooler::updateStates ()

Implements a 'time step' in a cell's state machine. A cell's current and previous

states are updated. The previous state is set to the values of the current state and

the current state is cleared by setting the values to false.
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B.11 example.cpp File Reference

Classes

• struct Example

Namespaces

• namespace data

Variables

• static std::string data::train�les [ ]

Relative paths and �lenames for training data.

• static std::string data::test�les [ ]

Relative paths and �lenames for training data.

• const int data::NUM_FILES = 10

The number of �les to use in the run.

• const char SEQ_DELIM = ';'

Delimeter used in the data�le to separate input sequences.

• const int NUM_BITS = 784

Number of input bits.
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B.12 htm.cpp File Reference

Functions

• int main (int argc, char ∗∗argv)

B.12.1 Detailed Description

Contains the main function. Input patterns are read in one at a time using an

Example struct. Training is performed with all input sequences in the speci�ed

training data �les before inference is performed with all input sequences in the

speci�ed test data �les. The various veri�cation tests, which are contained here,

can be enabled by using the macros described in the topology.h source �le. Output

is written to �output.txt�.

B.13 params.h File Reference

Variables

• �oat PROB

Probablity to be used for Bernouli and Binomial distributions.

• int columnsPerRow

The number of columns per row in a square array.
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• uint8_t SPRFSize

Receptive �eld of a column's spatial pooler.

• int inhibitionRadius

Inhibition radius for spatial pooling.

• int learningRadius

Learning radius for temporal pooling.

• unsigned int inputDim

Input dimension is assumed to be square.

• uint8_t initialPerm

The initial permanence value for newly added synapses.

• uint8_t SPthreshold

The permanence threshold for spatial pooler synapses (proximal dendrite

synapses).

• unsigned int minOverlap

The minimum overlap score a column must have to compete in local competition,

otherwise score is set to 0.
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• uint8_t desiredLocalActivity

The number of columns that will be winners after the local inhibition step.

• uint8_t numCells

The number of cells per column.

• unsigned int newSynapseCount

The number of lateral connections to cells to store in a dendrite segment.

• uint8_t TPthreshold

The permanence threshold for temporal pooler synapses(lateral connections in

dendrite segments).

• uint8_t activationThreshold

The number of cells that must be active in a dendrite segment for the segment

to be considered active.

• uint8_t minThreshold

The minimum number of active synapses required for a segment to be considered

as a match in the getBestMatchingSegment routine.

• uint8_t permanenceInc

The amount to increment permanence by during learning.
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• uint8_t permanenceDec

The amount to decrement permanence by during learning.

• �oat avgDutyWindow

The number of previous presentations over which the moving average is calcu-

lated when determining activeDutCycle and overlapDutyCycle.

• uint8_t increasePerm

The amount to increase all of a column's proximal dendrite synapse permanences

when a column is underperforming.

B.13.1 Detailed Description

This �le contains the extern declarations for the network parameters. Network

parameters can be set by the user in the source �le topology.cpp.

B.14 rng.h File Reference

Typedefs

• typedef boost::mt11213b gen_type

• typedef boost::bernoulli_distribution bern_dist

• typedef boost::variate_generator< gen_type &, bern_dist > bern_gen

• typedef boost::binomial_distribution binom_dist
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• typedef boost::variate_generator< gen_type &, binom_dist > binom_gen

• typedef boost::uniform_int uni_int_dist

• typedef boost::variate_generator< gen_type &, uni_int_dist > uni_int_-

gen

B.14.1 Detailed Description

This �le contains the type de�nition for the various random distributions and

random number generators used.

B.15 topology.h File Reference

Typedefs

• typedef std::pair< uint8_t, uint8_t > XYindex

• typedef std::pair< bool, bool > actOvrPair

B.15.1 Detailed Description

This �le contains the macros (not shown) for enabling and disabling the various

veri�cation tests. A few typedefs are also found here.
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B.15.2 Typedef Documentation

B.15.2.1 actOvrPair

A STL Pair of bools used for maintaining a column's activation and overlap history.

The �rst value stores a bool indicating if the column was active, the second value

stores a bool indicating the column had signi�cant overlap.

B.15.2.2 XYindex

A STL Pair used for indexing the X and Y dimensions in each 2D array. The �rst

element is the column index and the second element is the row index.

B.16 tp.h File Reference

Classes

• struct segUpdate

• class TemporalPooler

• class Cell

• class DendriteSegment

Typedefs

• typedef std::pair< uint8_t ∗, bool > activeSynapsePair
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Variables

De�nitions of the three cell states, active, predictive, and learn. Each is maintained

for two time steps, previous and current.

• const int ACTIVE = 0

• const int PREDICTIVE = 1

• const int LEARN = 2

• const int PREVIOUS = 0

• const int CURRENT = 1

B.16.1 Typedef Documentation

B.16.1.1 activeSynapsePair

A STL "pair" structure used for segment updates. Contains a pointer to each of

a dendrite segment's permanence values that are associated with a synapse and a

bool indicating if the corresponding synapse is active (true) or not (false).
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